WO2023138458A1 - 编码方法、设备及可读存储介质 - Google Patents

编码方法、设备及可读存储介质 Download PDF

Info

Publication number
WO2023138458A1
WO2023138458A1 PCT/CN2023/071802 CN2023071802W WO2023138458A1 WO 2023138458 A1 WO2023138458 A1 WO 2023138458A1 CN 2023071802 W CN2023071802 W CN 2023071802W WO 2023138458 A1 WO2023138458 A1 WO 2023138458A1
Authority
WO
WIPO (PCT)
Prior art keywords
encoding
symbol period
symbol
symbols
transmission
Prior art date
Application number
PCT/CN2023/071802
Other languages
English (en)
French (fr)
Inventor
黄伟
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023138458A1 publication Critical patent/WO2023138458A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0675Space-time coding characterised by the signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/22Arrangements affording multiple use of the transmission path using time-division multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/22Arrangements affording multiple use of the transmission path using time-division multiplexing
    • H04L5/225Arrangements affording multiple use of the transmission path using time-division multiplexing combined with the use of transition coding

Definitions

  • the present application belongs to the technical field of communication, and in particular relates to an encoding method, equipment and a readable storage medium.
  • OSTBC Orthogonal Space Time Block Code
  • Alamouti codes can obtain full diversity gain and full rate, they are all designed for traditional active radio frequency communication, without considering the modulation characteristics and implementation complexity of passive terminals such as backscatter communication; at the same time, the decoding end is required to know the channel state information (Channel State Information, CSI) between all transmitting antennas and receiving antennas.
  • CSI Channel State Information
  • the traditional differential group code is only suitable for constant modes such as Multiple Phase Shift Keying (MPSK).
  • MPSK Multiple Phase Shift Keying
  • Non -constant modes such as Ude Modulation, QAM), because the energy of each constellation symbol is different, it is impossible to directly use the traditional differential empty -coding coding method.
  • Embodiments of the present application provide an encoding method, device, and readable storage medium, which can solve the problem that the decoding end cannot reduce system implementation complexity without knowing the CSI between all transmitting antennas and receiving antennas, and is applicable to non-constant modulus modulation.
  • an encoding method including:
  • the encoding end obtains the transmitted symbol of the current symbol period by encoding the differential space time block coding (DSTBC) encoding method, the new space time block coding (NSTBC) codebook, and the power sum of the transmitted symbols on the transmission antennas of the first two symbol periods, and the first two symbol periods are two adjacent symbol periods before the current symbol period;
  • DTBC differential space time block coding
  • NTBC new space time block coding
  • the encoding end determines the transmitted symbols of the next symbol period of the current symbol period according to the transmitted symbols of the current symbol period and the NSTBC codebook.
  • an encoding device including:
  • the differential encoding module is used for the encoding end to obtain the transmission symbols of the current symbol period by encoding the differential space-time block code DSTBC encoding method, the new space-time block code NSTBC codebook, and the power sum of the transmission symbols on the transmission antennas of the first two symbol periods, and the first two symbol periods are two adjacent symbol periods before the current symbol period;
  • the NSTBC encoding module is used for the encoding end to determine the transmission symbols of the next symbol period of the current symbol period according to the transmission symbols of the current symbol period and the NSTBC codebook.
  • a third aspect provides an encoding end, the encoding end includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and when the programs or instructions are executed by the processor, the steps of the method described in the first aspect are implemented.
  • a coding end including a processor and a communication interface, wherein the processor is used for the coding end to obtain the transmission symbol of the current symbol period by encoding the DSTBC encoding method, the NSTBC codebook, and the power sum of the transmission symbols on the transmission antennas of the previous two symbol periods;
  • the encoding end determines the transmitted symbols of the next symbol period of the current symbol period according to the transmitted symbols of the current symbol period and the NSTBC codebook, and the first two symbol periods are two adjacent symbol periods before the current symbol period.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method according to the first aspect are implemented.
  • a chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the method as described in the first aspect.
  • a computer program product is provided, the computer program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the steps of the method described in the first aspect.
  • a communication device configured to perform the steps of the method described in the first aspect.
  • the DSTBC encoding method, the NSTBC codebook, and the power sum of the transmitted symbols on the transmitting antennas in the first two symbol periods are used to calculate the transmitted symbols of the current symbol period; on the other hand, the low-complexity NSTBC codebook is used to calculate the transmitted symbols of the next symbol period.
  • the CSI that is, there is no need to transmit pilot signals on each transmit antenna, which reduces system overhead; when calculating the transmit symbols of the current symbol period, the power sum of the transmit symbols on the transmit antennas in the previous two symbol periods is used to realize the application of non-constant modulus modulation.
  • the NSTBC codebook can reduce the number of load impedance types on the antenna while ensuring the diversity gain, reduce the complexity of system implementation, and effectively reduce the detection error probability.
  • Figure 1a is a schematic structural diagram of a backscatter communication transmitting end
  • Figure 1b is a schematic diagram of Alamouti space-time block code diversity transmission
  • FIG. 2 is a schematic flow chart of an encoding method provided in an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an encoding device provided in an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a terminal provided in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a network side device provided by an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It should be understood that the terms used in this way can be interchanged under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by "first” and “second” are usually of one type, and the number of objects is not limited. For example, there can be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • the following description describes the New Radio (New Radio, NR) system for exemplary purposes, and uses NR terminology in most of the following descriptions, but these technologies can also be applied to applications other than NR system applications, such as the 6th generation ( 6th Generation, 6G) communication system.
  • NR New Radio
  • 6G 6th Generation
  • the encoding end may be deployed on the sending device, for example, it may be a terminal or a network side device.
  • the terminal may be a mobile phone, a tablet computer (Tablet Personal Computer, TPC), a laptop computer (Laptop Computer, LC) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, an ultra-mobile personal computer (Ultra-Mobile Personal Computer, UMPC), a mobile Internet device (Mobile Internet Device, MID), an augmented reality (Augmented Reality, AR) /Virtual Reality (VR) equipment, robots, wearable devices (Wearable Device, WD), vehicle-mounted equipment (Vehicle User Equipment, VUE), pedestrian terminals (Pedestrian User Equipment, PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers (Personal Computer, PC), teller machines or self-service machines
  • the network side equipment may include access network equipment or core network equipment, where the access network equipment may also be called radio access network equipment, radio access network (Radio Access Network, RAN), radio access network function or radio access network unit.
  • the network side equipment may include access network equipment or core network equipment, where the access network equipment may also be called radio access network equipment, radio access network (Radio Access Network, RAN), radio access network function or radio access network unit.
  • radio access network equipment Radio Access Network, RAN
  • radio access network function radio access network unit.
  • the access network device may include a base station, a wireless local area network (Wireless Local Area Network, WLAN) access point, or a wireless fidelity (Wireless Fidelity, WiFi) node, etc.
  • the base station may be called a node B, an evolved node B (eNB), an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, a basic service set (Basic Service Set, BSS), an extended service set (Extended Service Set, ES) S), Home Node B, Home Evolved Node B, Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary.
  • the core network equipment may include but not limited to at least one of the following: core network node, core network function, mobility management entity (Mobility Management Entity, MME), access mobility management function (Access and Mobility Management Function, AMF), session management function (Session Management Function, SMF), user plane function (User Plane Function, UPF), policy control function (Policy Control Function, PCF), policy and Policy and Charging Rules Function (PCRF), Edge Application Server Discovery Function (EASDF), Unified Data Management (UDM), Unified Data Repository (UDR), Home Subscriber Server (HSS), Centralized network configuration (CN) C), network storage function (Network Repository Function, NRF), network exposure function (Network Exposure Function, NEF), local NEF (Local NEF, or L-NEF), binding support function (Binding Support Function, BSF), application function (Application Function (Mobility Management Entity, MME), access mobility management function (Access and Mobility Management Function, AMF), session management function (Session Management Function, SMF),
  • the future 6G communication network needs to support massive Internet of Everything.
  • the number of IoT devices will reach hundreds of billions, and its connection density will increase by 10-100 times compared to the 5th Generation (5G) communication system, reaching a connection density of 10-100/m2.
  • Massive IoT devices pose new challenges to both cost and power consumption.
  • Cellular networking, low cost, low power consumption and even zero power consumption are the main trends in the development of IoT devices in the future.
  • Traditional passive terminals are limited by their power consumption and hardware capabilities, and their communication transmission distances are mostly less than 10 meters, which is far from reaching the goal of cellular coverage of 100 meters. Therefore, how to effectively increase the communication distance of passive terminals becomes a difficult point to be solved after the technology is turned into a cellular network.
  • backscatter communication controls the amplitude or phase of the signal by changing the load impedance
  • backscatter communication modulation circuit considering other non-ideal factors of the backscatter communication modulation circuit, there are more or less errors in the amplitude or phase of the output signal. But as long as these signal errors are within the distinguishable range, they have no effect on signal demodulation. Therefore, if the number or types of load impedances to be controlled on the antenna are fewer, the tolerable error can be larger and the probability of false detection is smaller.
  • BSC UE backscatter communication equipment
  • Backscatter communication means that backscatter communication devices use radio frequency signals from other devices or the environment to perform signal modulation to transmit their own information. Its modulation circuit is shown in Figure 1a.
  • the backscatter communication device controls the reflection coefficient ⁇ of the circuit by adjusting its internal impedance, thereby changing the amplitude, frequency, and phase of the incident signal to achieve signal modulation.
  • the reflection coefficient of the signal can be characterized as:
  • the backscatter communication device may be a Tag in a traditional radio frequency identification (Radio Frequency Identification, RFID), or a passive or semi-passive Internet of Things (Passive/Semi-passive Internet of Things, IoT). For convenience, it is collectively referred to as BSC UE here.
  • RFID Radio Frequency Identification
  • IoT passive/Semi-passive Internet of Things
  • Typical modulation techniques can be classified into constant modulus modulation and non-constant modulus modulation.
  • the so-called constant modulus modulation means that the power or amplitude of the modulated symbol constellation points is the same, and MPSK is a typical constant modulus modulation.
  • Non-constant modulus modulation means that the power or amplitude of the modulated symbol constellation points is different.
  • Typical non-constant modulus modulation includes APSK, QAM, etc.
  • OSTBC Orthogonal Space Time Block Code
  • STBC Space-time block code
  • STBC is widely used in cellular communication and wireless local area network. STBC obtains diversity gain and antenna gain without increasing bandwidth by introducing signal redundancy in the space and time domains and constructing a block-coded transmission matrix reasonably.
  • OSTBC is a special linear STBC whose linear space-time block code S satisfies the following single condition:
  • I represents the identity matrix with dimension M
  • i represents the i-th element of M dimension
  • s i is the diagonal element
  • the i-th row element in S represents the symbol transmitted on the i-th transmitting antenna within M time
  • the j-th column element in S represents the symbol transmitted on the n t antenna at the j-th time.
  • Each column in the transmission matrix S that satisfies the above formula is orthogonal to each other, which means that the transmitted signal sequences on different antennas are also orthogonal, thereby ensuring that STBC can obtain full diversity gain at the same time.
  • the corresponding decoding end only needs to perform simple maximum ratio combining (MRC) to sequentially decouple the transmitted symbols on different antennas, and detect and estimate through the maximum likelihood detection (Maximum likelihood, ML) algorithm.
  • MRC maximum ratio combining
  • Alamouti code is the most representative OSTCB code, and can obtain full diversity and full rate gain.
  • Figure 1b shows the functional block diagram of the Alamouti code.
  • the symbol sent on antenna 1 is marked as s 1
  • the symbol sent on antenna 2 is marked as s 2 .
  • the symbol transmitted on antenna 1 is And the symbols transmitted on antenna 2 are
  • the following space-time block code matrix is formed:
  • n 1 and n 2 represent receiving noise and signal interference.
  • the decoder performs combined reception according to the following criteria:
  • the signals s 1 and s 2 can be estimated by the ML detector.
  • NTBC New Space Time Block Code
  • the symbol sent on antenna 1 is denoted as s 1
  • the symbol sent on antenna 2 is denoted as But in the next symbol period, the symbol sent on antenna 1 is s 2 , and the symbol sent on antenna 2 is According to the definition of OSTBC code word, S 2 belongs to OSTBC code word, so it can obtain full diversity gain and full rate transmission. The difference between this type of codeword and the traditional Alamouti code in backscatter communication is analyzed below.
  • mapping rules of symbols 0 and 1 and reflection coefficients are:
  • the symbols 0 and 1 are represented by controlling two phase-reversed load impedances. Therefore, the coding table for the diversity coding code word S2 to transmit different symbols simultaneously on two antennas is shown in Table 5.
  • Table 3 and Table 4 also provide coding tables for the Alamouti codeword and the extended Alamouti codeword to transmit different symbols simultaneously on two antennas. Among them, the extended Alamouti codeword is:
  • antenna 1 only needs two kinds of coefficients
  • antenna 2 also only needs two kinds of coefficients
  • antenna 1 and antenna 2 need four kinds of coefficients
  • the same approach can be extended to four-antenna and above scenarios.
  • DTBC Differential Space Time Block Code
  • the decoding end adopts the decoding scheme of coherent detection, so the decoding end needs the exact channel state information (Chanel State Information, CSI) from the transmitting antenna to the receiving antenna.
  • CSI Channel State Information
  • the decoder cannot obtain the CSI information of the project.
  • the differential space-time block code is a scheme in which neither the encoding end nor the decoding end needs to know the CSI information, the encoding and decoding are simple, and the diversity gain can be obtained.
  • two-antenna transmission and single-antenna reception are taken as examples for description.
  • the information s 1 and s 2 sent twice do not carry information and are only used as reference signals.
  • the encoding end uses differential encoding to send. Assuming that in the 2t-1 symbol period, the symbols sent from the first antenna and the second antenna are s 2t-1 and s 2t respectively, then in the 2t symbol period, the symbols sent from the first antenna and the second antenna are respectively and In the 2t+1 symbol period, a group of 2m bits arrive at the encoding end, and the corresponding encoding coefficient vector is generated The encoding end sends the symbol vector and the current encoding coefficient vector according to the previous two symbol periods Calculate the symbols sent in the current 2t+1 symbol period:
  • the transmitted symbols on the two antennas of the 2t+2 symbol period are calculated as and Among them, the coding coefficient vector satisfy:
  • the symbols are repeatedly encoded and transmitted.
  • the channel matrix is defined as:
  • the noise signal is:
  • the NSTBC codebook proposed for backscatter communication reduces the complexity of hardware implementation and reduces the high probability of detection errors by optimizing the codebook of the traditional Alamouti code, but this method requires the decoding end to know the CSI information between all transmitting antennas and receiving antennas.
  • the traditional Alamouti-based differential space-time block code does not need to know the CSI information between all transmitting antennas and receiving antennas, it does not consider the modulation characteristics and implementation complexity of passive terminals such as backscatter communication.
  • the embodiment of the present application provides an encoding method
  • the execution body of the method is the encoding end
  • the encoding end may be a terminal device or a network side device
  • the method includes:
  • Step 201 The encoding end uses the DSTBC encoding method, the NSTBC codebook, and the power sum of the transmitted symbols on the transmitting antennas for the first two symbol periods to encode and obtain the transmitted symbols of the current symbol period;
  • Step 202 The encoding end determines the transmitted symbols of the next symbol period of the current symbol period according to the transmitted symbols of the current symbol period and the NSTBC codebook.
  • the preceding two symbol periods are two adjacent symbol periods before the current symbol period.
  • the DSTBC encoding method, the NSTBC codebook, and the power sum of the transmitted symbols on the transmitting antennas in the first two symbol periods are used to calculate the transmitted symbols of the current symbol period; on the other hand, the low-complexity NSTBC codebook is used to calculate the transmitted symbols of the next symbol period.
  • the CSI that is, there is no need to transmit pilot signals on each transmit antenna, which reduces the system overhead; when calculating the transmit symbols of the current symbol period, the power sum of the transmit symbols of the previous two symbol periods is used for normalization on the transmit antennas, so as to realize the application of non-constant modulus modulation.
  • the NSTBC codebook can reduce the number of load impedance types on the antenna while ensuring the diversity gain, reduce the complexity of system implementation, and effectively reduce the detection error probability.
  • the encoding method provided by the embodiment of the present application is by combining the DSTBC encoding method with the NSTBC codebook, and Perform power normalization to calculate the symbol of the current symbol period, extract the advantages of both, so that each transmit antenna does not need to transmit pilot signals, reduce system overhead, and at the same time realize the application of non-constant modulus modulation, obtain constellation shaping gain, and use NSTBC codebook, while ensuring diversity gain, it can reduce the number of load impedance types on the antenna, reduce the complexity of system implementation, and effectively reduce the probability of detection errors.
  • this new coding method obtained it can be called non-constant modulus differential NSTBC coding.
  • the non-constant modulus differential NSTBC coding method of the embodiment of the present application can be applied to two-antenna transmit diversity scenarios.
  • the transmission symbols in the embodiments of the present application are constant modulus modulation symbols, or non-constant modulus modulation symbols; wherein, constant modulus modulation includes at least: BPSK modulation, multi-ary digital phase modulation (Multiple Phase Shift Keying, MPSK); non-constant modulus modulation includes at least: APSK modulation, that is, the modulation method adopted by the encoding end can include: Binary Phase Shift Keying (Binary Phase Shift Keying, BPSK), amplitude phase shift keying (Amplitude Phase Shift Keying, APSK).
  • BPSK Binary Phase Shift Keying
  • APSK amplitude phase shift keying
  • the NSTBC codebook is used for space-time block codes, or the NSTBC codebook is used for polarization-time block codes, that is, the two transmitting antennas can be separated in space or in the polarization direction;
  • the polarization method includes one or more of the following:
  • mapping relationship between the original bits of the current symbol period and the transmitted symbols of the current symbol period.
  • mapping relationship between (M, N)-APSK (taking APSK as an example) and NSTBC codebook is firstly designed, wherein M represents the amplitude order of APSK, and N represents the phase type of APSK.
  • M represents the amplitude order of APSK
  • N represents the phase type of APSK.
  • the NSTBC codebook structure is as follows:
  • the two-antenna NSTBC codebook and the four-antenna NSTBC codebook are:
  • NSTBC and Alamouti encoding tables based on APSK modulation are shown in Table 6 and Table 7 respectively, wherein Table 6 is a two-antenna transmit diversity encoding table based on NSTBC under (2,1)-APSK modulation, and Table 7 is a two-antenna transmit diversity encoding table based on Alamouti under (2,1)-APSK modulation:
  • antenna 1 under APSK modulation only needs to support one phase e j ⁇ and two amplitudes
  • antenna 2 under APSK modulation needs to support two phases e -j ⁇ and e -j( ⁇ + ⁇ ) , two amplitudes
  • antenna 1 and antenna 2 under APSK modulation need to support two amplitudes and two phases, while antenna 1 and antenna 2 under BPSK modulation need to support one amplitude and four phases.
  • APSK reduces the number of impedance matches that support phase modulation by increasing the number of impedance matches that support amplitude modulation for some antennas, which is beneficial to some backscatter communications where the amplitude modulation capability is better than the phase modulation capability.
  • the antenna 1 in the NSTBC codebook encoding table only needs to support one phase, while the antenna 1 in the Alamouti codebook encoding table needs to support two phases, so the NSTBC codebook can reduce the number of impedance matching types of the phase modulation of antenna 1.
  • NSTBC and ABBA four-antenna transmit diversity coding tables based on APSK modulation are shown in Table 8 and Table 9 respectively, wherein Table 8 is based on the NSTBC four-antenna transmit diversity coding table under (2,1)-APSK modulation, and Table 9 is based on (2,1)-APSK modulation.
  • antenna 1 and/or antenna 2 have fewer impedance matching types that support phase modulation and more types of impedance matching that support amplitude modulation based on APSK modulation; compared with ABBA codebooks based on NSTBC codebooks, antenna 1 has fewer impedance matching types that support phase modulation. Therefore, APSK modulation is more suitable for backscatter communication in which impedance amplitude modulation is better than phase modulation.
  • differential NSTBC encoding under (M,N)-APSK modulation can be performed according to the following encoding rules.
  • the codebook structure of the NSTBC codebook satisfies:
  • s 2t+1 and is the transmitted symbols on the two transmitting antennas encoded by the encoding end in the 2t+1 symbol period (it should be noted that the transmitted symbols can also be called constellation symbols, constellation points, etc., and this embodiment of the present application does not specifically limit the name)
  • the coding end uses the DSTBC coding method and the NSTBC codebook to encode and obtain the transmitted symbols of the current symbol period, including:
  • the encoding end determines the encoding coefficient vector of the current symbol period through the DSTBC encoding method, the NSTBC codebook, and the power of the transmitted symbol of the previous symbol period;
  • the coding end determines the coded transmission symbols of the current symbol period according to the coding coefficient vector of the current symbol period, the power of the transmission symbols on the transmission antennas of the symbols of the first two symbol periods of the current symbol period.
  • the embodiment of the present application provides two specific implementation manners, including:
  • s 2t+1 and s 2t-1 and s 2t are the transmitted symbols on the two transmitting antennas encoded by the encoding end in the 2t symbol period.
  • the encoding end uses direct calculation to calculate the encoding coefficient vector of the current symbol period
  • the above (1) encoding end determines the encoding coefficient vector of the current symbol period, and also includes:
  • the encoding end determines the encoding coefficient vector at the encoding end in the 2t+1 symbol period according to the preset mapping table of the original bit or original symbol and the encoding coefficient vector
  • the preset mapping table contains original bits or original symbols and The mapping relationship between them after the initial reference symbols are determined.
  • the above original bit or original symbol refers to the initial data bit or initial symbol to be coded
  • the above initial reference symbol refers to the reference symbol on the transmitting antenna in the initial symbol period, that is, in the first symbol period.
  • the encoding end directly checks the mapping table to determine
  • the above (2) encoding end determines the encoded transmission symbols of the current symbol period according to the encoding coefficient vector of the current symbol period, including:
  • the encoding end calculates the transmission symbols of the current symbol period through power normalization according to the coding coefficient vector of the current symbol period and the power sum of the transmission symbols on the transmission antennas in the first two symbol periods of the current symbol period.
  • the symbols transmitted from the first antenna and the second antenna are s 2t-1 and Then in the 2t symbol period, the symbols transmitted from the first antenna and the second antenna are s 2t and That is, the transmission signals of the transmitting end on the two antennas in the 2t-1 and 2t symbol periods satisfy:
  • the symbols transmitted on the two antennas are Among them, the coding coefficient vector Satisfy the following relationship with the current input symbol:
  • s 2t+1 and s 2t-1 and s 2t are the transmitted symbols on the two transmit antennas encoded by the encoder in the 2t symbol period, is the square root of the power sum of the transmitted symbols on the two transmit antennas in the 2t-1th symbol period.
  • the encoding end uses direct calculation to calculate the encoding coefficient vector of the current symbol period
  • the above (1) encoding end determines the encoding coefficient vector of the current symbol period, and also includes:
  • the encoding end determines the encoding coefficient vector at the encoding end in the 2t+1 symbol period according to the preset mapping table of the original bit or original symbol and the encoding coefficient vector
  • the preset mapping table contains original bits or original symbols and The mapping relationship between them after the initial reference symbols are determined.
  • the above (2) encoding end determines the encoded transmission symbols of the current symbol period according to the encoding coefficient vector of the current symbol period, including:
  • the encoding coefficient vector of the 2t+1 symbol period determined for the encoder, s 2t-1 and s 2t and are the transmitted symbols on the two transmit antennas encoded by the encoder in the 2t symbol period, is the square root of the power sum of the transmitted symbols on the two transmit antennas in the 2t-1th symbol period.
  • the encoding end calculates the power of the current symbol period by normalizing the power sum of the transmitted symbols on the transmitting antennas in the first two symbol periods of the current symbol period according to the coding coefficient vector of the current symbol period. Send symbol.
  • the symbols transmitted from the first antenna and the second antenna are s 2t-1 and Then in the 2t symbol period, the symbols transmitted from the first antenna and the second antenna are s 2t and That is, the transmission signals of the transmitting end on the two antennas in the 2t-1 and 2t symbol periods satisfy:
  • the symbols transmitted on the two antennas are Among them, the coding coefficient vector Satisfy the following relationship with the current input symbol:
  • the method also includes:
  • Embodiment 1 and Embodiment 2 The above describes the process (including Embodiment 1 and Embodiment 2) of the encoding end at the 2t+1 symbol period to obtain the transmitted symbols on the two transmitting antennas.
  • the differential NSTBC coded transmission of all the information bits to be transmitted can be completed.
  • one symbol period can encode two symbols, and the transmitted symbols of two symbol periods only need to be encoded once (because the transmitted symbols of the next symbol period can be determined according to the transmitted symbols of the current symbol period and the NSTBC codebook).
  • the symbol period time delay and then use the differential NSTBC encoding method to perform encoding processing from the 2t+3 symbol period, because the transmitted symbol of the 2t+1 symbol period and the transmitted symbol of the 2t+2 symbol period can be determined in one encoding process.
  • (2,2)-APSK is taken as an example and the encoding process of differential NSTBC is described by using the first implementation mode.
  • (2,2)-APSK modulation is used
  • the set of constellation points is ⁇ -3,-1,1,3 ⁇
  • mapping relationship is:
  • the transmitted symbols on the two transmit antennas in the 2t symbol period are:
  • the encoder sends the symbol vector and the current encoding coefficient vector according to the previous two symbol periods Calculate the symbol sent at the current moment:
  • the transmitted symbols on the two transmitting antennas are:
  • (2,2)-APSK is taken as an example and the encoding process of the differential NSTBC is described by using the second implementation mode.
  • the set of constellation points is ⁇ -3,-1,1,3 ⁇
  • mapping relationship is:
  • the encoding coefficient vector can be obtained.
  • the mapping relationship is:
  • the transmitted symbols on the two transmit antennas in the 2t symbol period are:
  • the input bit to the encoder is 1110, according to the mapping rule of the input bit and the encoding coefficient vector, there is
  • the encoder sends the symbol vector and the current encoding coefficient vector according to the previous two symbol periods Calculate the symbol sent at the current moment:
  • the transmitted symbols on the two transmitting antennas are:
  • the encoding method provided in the embodiment of the present application may be executed by an encoding device.
  • the encoding device provided in the embodiment of the present application is described by taking the encoding device executing the encoding method as an example.
  • an encoding device 300 including:
  • the differential encoding module 301 is used for the encoding end to obtain the transmission symbol of the current symbol period by encoding the differential space-time block code DSTBC encoding method, the new space-time block code NSTBC codebook and the power sum of the transmission symbols on the transmission antennas of the previous two symbol periods;
  • the NSTBC encoding module 302 is used for the encoding end to determine the transmission symbols of the next symbol period of the current symbol period according to the transmission symbols of the current symbol period and the NSTBC codebook, and the first two symbol periods are two adjacent symbol periods before the current symbol period.
  • the DSTBC encoding method, the NSTBC codebook, and the power sum of the transmitted symbols on the transmitting antennas in the first two symbol periods are used to calculate the transmitted symbols of the current symbol period; on the other hand, the low-complexity NSTBC codebook is used to calculate the transmitted symbols of the next symbol period.
  • the NSTBC codebook can reduce the number of load impedance types on the antenna while ensuring the diversity gain, reduce the complexity of system implementation, and effectively reduce the detection error probability.
  • the codebook structure of the NSTBC codebook satisfies:
  • s 2t+1 and s 2t+2 are the transmitted symbols on the two transmitting antennas obtained by encoding at the encoding end in the 2t+2 symbol period; where the symbols is the conjugate of the symbol s 2t+2 , the symbol is the negative conjugate of symbol s 2t+1 ; the 2t+1 symbol period is the current symbol period, and the 2t+2 symbol period is the next symbol period of the current symbol period.
  • the differential encoding module and the NSTBC encoding module are specifically used for:
  • the encoding end determines the encoding coefficient vector of the current symbol period through the DSTBC encoding method, the NSTBC codebook and the power of the transmission symbol of the previous symbol period, and determines the encoded transmission symbol of the current symbol period;
  • the encoding end determines, according to the encoded transmission symbols of the current symbol period, the transmission symbols of the next symbol period after the current symbol period.
  • the differential encoding module is specifically used for:
  • the encoding end is according to the formula:
  • the encoding coefficient vector of the 2t+1 symbol period determined for the encoding end, the s 2t-1 and the is the transmission symbols on the two transmission antennas obtained by encoding at the coding end in the 2t-1 symbol period, the s 2t and the is the transmitted symbols on the two transmitting antennas encoded by the encoding end in the 2t-th symbol period, and the
  • 2 is the power sum of the transmission symbols on the two transmitting antennas in the 2t-1-th symbol period.
  • the differential encoding module is specifically used for:
  • the encoding end is according to the formula:
  • s 2t+1 and s 2t-1 and s 2t are the transmitted symbols on the two transmitting antennas encoded by the encoding end in the 2t symbol period.
  • the differential encoding module is specifically used for:
  • the encoding end determines the encoding coefficient vector of the encoding end in the 2t+1 symbol period according to the preset mapping table of the original bit or original symbol and the encoding coefficient vector
  • the preset mapping table contains the original bit or symbol and the The mapping relationship between them after the initial reference symbols are determined.
  • the differential encoding module is also specifically used for:
  • the encoding end is according to the formula:
  • the encoding coefficient vector of the 2t+1 symbol period determined for the encoding end, the s 2t-1 and the is the transmission symbols on the two transmission antennas obtained by encoding at the coding end in the 2t-1 symbol period, the s 2t and the is the transmitted symbols on the two transmitting antennas obtained by encoding at the encoding end in the 2t symbol period, the is the square root of the power sum of the transmitted symbols on the two transmit antennas in the 2t-1th symbol period.
  • the differential encoding module can also be specifically used for:
  • the encoding end is according to the formula:
  • s 2t+1 and s 2t-1 and s 2t are the transmitted symbols on the two transmitting antennas encoded by the encoding end in the 2t symbol period.
  • the differential encoding module is also specifically used for:
  • the encoding end determines the encoding end according to the preset mapping table of the original bit or original symbol and the encoding coefficient vector Coding coefficient vector at the 2t+1 symbol period
  • the preset mapping table contains the original bit or symbol and the The mapping relationship between them after the initial reference symbols are determined.
  • the NSTBC encoding module is specifically used for:
  • the encoding end determines the transmitted symbols of the next symbol period of the current symbol period according to the encoded transmitted symbols of the current symbol period and the NSTBC codebook.
  • the encoding end codes to obtain the transmitted symbols s 2t+ 1 and After that, according to the NSTBC codebook structure
  • the device also includes:
  • mapping relationship between the original bits of the current symbol period and the transmitted symbols of the current symbol period.
  • the NSTBC codebook is used for space-time block codes, or the NSTBC codebook is used for polarization-time block codes, that is, the two transmitting antennas can be separated in space or in polarization directions.
  • the transmission symbol is a constant modulus modulation symbol, or a non-constant modulus modulation symbol
  • the constant modulus modulation at least includes: BPSK modulation;
  • the non-constant modulus modulation at least includes: APSK modulation.
  • the encoding device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or a component in the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal, or other devices other than the terminal.
  • the terminal may include but not limited to the types of terminals listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in this embodiment of the present application.
  • NAS Network Attached Storage
  • the encoding device provided by the embodiment of the present application can realize each process realized by the method embodiment in FIG. 2 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a communication device 400, including a processor 401 and a memory 402.
  • the memory 402 stores programs or instructions that can run on the processor 401.
  • the communication device 400 is a terminal
  • the program or instructions are executed by the processor 401
  • each step of the above-mentioned encoding device method embodiment is implemented, and the same technical effect can be achieved.
  • the communication device 400 is a network-side device
  • the program or instruction is executed by the processor 401
  • the various steps of the above-mentioned encoding device method embodiment can be achieved, and the same technical effect can be achieved. To avoid repetition, I won't go into details here.
  • the DSTBC encoding method, the NSTBC codebook, and the power sum of the transmitted symbols on the transmitting antennas in the first two symbol periods are used to calculate the transmitted symbols of the current symbol period; on the other hand, the low-complexity NSTBC codebook is used to calculate the transmitted symbols of the next symbol period.
  • the NSTBC codebook can reduce the number of load impedance types on the antenna while ensuring the diversity gain, reduce the complexity of system implementation, and effectively reduce the detection error probability.
  • FIG. 5 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 500 includes, but is not limited to: at least some components in a radio frequency unit 501, a network module 502, an audio output unit 503, an input unit 504, a sensor 505, a display unit 506, a user input unit 507, an interface unit 508, a memory 509, and a processor 510.
  • the terminal 500 can also include a power supply (such as a battery) for supplying power to various components, and the power supply can be logically connected to the processor 510 through the power management system, so as to implement functions such as management of charging, discharging, and power consumption management through the power management system.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 5 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange different components, which will not be repeated here.
  • the input unit 504 may include a graphics processing unit (Graphics Processing Unit, GPU) 5041 and a microphone 5042, and the graphics processor 5041 processes image data of still pictures or videos obtained by an image capture device (such as a camera) in the video capture mode or image capture mode.
  • the display unit 506 may include a display panel 5061, and the display panel 5061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 507 includes at least one of a touch panel 5071 and other input devices 5072 .
  • the touch panel 5071 is also called a touch screen.
  • the touch panel 5071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 5072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 501 may transmit the downlink data from the network side device to the processor 510 for processing after receiving it; in addition, the radio frequency unit 501 may send uplink data to the network side device.
  • the radio frequency unit 501 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 509 can be used to store software programs or instructions as well as various data.
  • the memory 509 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • memory 59 may include volatile memory or nonvolatile memory, or memory 509 may include both volatile and nonvolatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or a flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • Volatile memory can be Random Access Memory (Random Access Memory, RAM), Static Random Access Memory (Static RAM, SRAM), Dynamic Random Access Memory (Dynamic RAM, DRAM), Synchronous Dynamic Random Access Memory (Synchronous DRAM, SDRAM), Double Data Rate Synchronous Dynamic Random Access Memory (Double Data Rate SDRAM, DDRSDRAM), Enhanced Synchronous Dynamic Random Access Memory (Enhanced SDRAM, ESD RAM), synchronous connection dynamic random access memory (Synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • the memory x09 in the embodiment of the present application includes but is not limited to these and any other suitable types of memory.
  • the processor 510 may include one or more processing units; optionally, the processor 510 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to the operating system, user interface, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It can be understood that the foregoing modem processor may not be integrated into the processor 510 .
  • the processor 510 is used for the encoding end to encode and obtain the transmission symbol of the current symbol period through the differential space-time block code DSTBC coding method, the new space-time block code NSTBC codebook, and the power sum of the transmission symbols on the transmission antennas of the previous two symbol periods;
  • the processor 510 is used for the encoding end to determine the transmission symbols of the next symbol period of the current symbol period according to the transmission symbols of the current symbol period and the NSTBC codebook, and the first two symbol periods are two adjacent symbol periods before the current symbol period.
  • the DSTBC encoding method, the NSTBC codebook, and the power sum of the transmitted symbols on the transmitting antennas in the first two symbol periods are used to calculate the transmitted symbols of the current symbol period; on the other hand, the low-complexity NSTBC codebook is used to calculate the transmitted symbols of the next symbol period.
  • the NSTBC codebook can reduce the number of load impedance types on the antenna while ensuring the diversity gain, reduce the complexity of system implementation, and effectively reduce the detection error probability.
  • the codebook structure of the NSTBC codebook satisfies:
  • s 2t+1 and s 2t+2 are the transmitted symbols on the two transmitting antennas obtained by encoding at the encoding end in the 2t+2 symbol period; where the symbols is the conjugate of the symbol s 2t+2 , the symbol is the negative conjugate of symbol s 2t+1 ; the 2t+1 symbol period is the current symbol period, and the 2t+2 symbol period is the next symbol period of the current symbol period.
  • the processor 510 is specifically configured to:
  • the encoding end determines the encoding coefficient vector of the current symbol period through the DSTBC encoding method, the NSTBC codebook, and the power of the transmitted symbol of the previous symbol period;
  • the encoding end determines the encoded coefficient vector of the current symbol period according to the encoding coefficient vector of the current symbol period The transmitted symbol for the next symbol period.
  • the processor 510 is specifically configured to:
  • the encoding end is according to the formula:
  • the encoding coefficient vector of the 2t+1 symbol period determined for the encoding end, the s 2t-1 and the is the transmission symbols on the two transmission antennas obtained by encoding at the coding end in the 2t-1 symbol period, the s 2t and the is the transmitted symbols on the two transmitting antennas encoded by the encoding end in the 2t-th symbol period, and the
  • 2 is the power sum of the transmission symbols on the two transmitting antennas in the 2t-1-th symbol period.
  • the processor 510 is specifically configured to:
  • the encoding end is according to the formula:
  • s 2t+1 and s 2t-1 and s 2t are the transmitted symbols on the two transmitting antennas encoded by the encoding end in the 2t symbol period.
  • the processor 510 is specifically configured to:
  • the encoding end determines the encoding coefficient vector of the encoding end in the 2t+1 symbol period according to the preset mapping table of the original bit or original symbol and the encoding coefficient vector
  • the preset mapping table contains the original bit or symbol and the The mapping relationship between them after the initial reference symbols are determined.
  • processor 510 may also be specifically configured to:
  • the encoding end is according to the formula:
  • the encoding coefficient vector of the 2t+1 symbol period determined for the encoding end, the s 2t-1 and the is the transmission symbols on the two transmission antennas obtained by encoding at the coding end in the 2t-1 symbol period, the s 2t and the is the transmitted symbols on the two transmitting antennas obtained by encoding at the encoding end in the 2t symbol period, the is the square root of the power sum of the transmitted symbols on the two transmit antennas in the 2t-1th symbol period.
  • processor 510 may also be specifically configured to:
  • the encoding end is according to the formula:
  • s 2t+1 and s 2t-1 and s 2t are the transmitted symbols on the two transmitting antennas encoded by the encoding end in the 2t symbol period.
  • processor 510 may also be specifically configured to:
  • the encoding end determines the encoding coefficient vector of the encoding end in the 2t+1 symbol period according to the preset mapping table of the original bit or original symbol and the encoding coefficient vector
  • the preset mapping table contains the original bit or symbol and the The mapping relationship between them after the initial reference symbols are determined.
  • the processor 510 is specifically configured to:
  • mapping relationship between the original bits of the current symbol period and the amplitude of the transmitted symbol of the current symbol period.
  • the NSTBC codebook is used for space-time block codes, or the NSTBC codebook is used for polarization-time block codes.
  • the transmission symbol is a constant modulus modulation symbol, or a non-constant modulus modulation symbol
  • the constant modulus modulation at least includes: BPSK modulation;
  • the non-constant modulus modulation at least includes: APSK modulation.
  • the antenna 61 is connected to the radio frequency device 62 .
  • the radio frequency device 62 receives information through the antenna 61, and sends the received information to the baseband device 63 for processing.
  • the baseband device 63 processes the information to be sent and sends it to the radio frequency device 62
  • the radio frequency device 62 processes the received information and sends it out through the antenna 61 .
  • the methods in the above method embodiments may be implemented in the baseband device 63, where the baseband device 63 includes a baseband processor.
  • the baseband device 63 may include at least one baseband board, for example, a plurality of chips are arranged on the baseband board, as shown in FIG. 6 As shown, one of the chips is, for example, a baseband processor, which is connected to the memory 65 through a bus interface, so as to call a program in the memory 65 to execute the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 66, such as a common public radio interface (Common Public Radio Interface, CPRI).
  • a network interface 66 such as a common public radio interface (Common Public Radio Interface, CPRI).
  • CPRI Common Public Radio Interface
  • the network-side device 600 in the embodiment of the present invention further includes: instructions or programs stored in the memory 65 and operable on the processor 64.
  • the processor 64 invokes the instructions or programs in the memory 65 to execute the methods performed by the modules shown in FIG.
  • the embodiment of the present application also provides a readable storage medium.
  • the readable storage medium stores a program or an instruction.
  • the program or instruction is executed by a processor, each process of the above encoding method embodiment can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk, and the like.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a program or an instruction to implement each process of the above encoding method embodiment, and can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the embodiment of the present application further provides a computer program product, the computer program product is stored in a storage medium, and the computer program product is executed by at least one processor to implement the various processes of the above encoding method embodiment, and can achieve the same technical effect, and to avoid repetition, details are not repeated here.
  • the embodiment of the present application further provides a communication device, the communication device is configured to execute each process of the above encoding method embodiment, and can achieve the same technical effect, and to avoid repetition, details are not repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请公开了一种编码方法、设备及可读存储介质,属于通信技术领域,该方法包括:编码端通过DSTBC编码方式、NSTBC码本以及前两个符号周期发送天线上的发送符号的功率和,编码得到当前符号周期的发送符号;编码端根据当前符号周期的发送符号和NSTBC码本,确定当前符号周期的下一个符号周期的发送符号,前两个符号周期为当前符号周期之前的两个相邻的符号周期。

Description

编码方法、设备及可读存储介质
相关申请的交叉引用
本申请主张在2022年01月18日在中国提交的中国专利申请No.202210056640.9的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种编码方法、设备及可读存储介质。
背景技术
传统的包括Alamouti码在内的正交空时分组码(Orthogonal Space Time Block Code,OSTBC)类编码码本虽然能够获得满分集增益同时获得满速率,它们都是针对传统有源射频通信而设计的,而没有考虑类似于反向散射通信等无源终端的调制特性与实现复杂度;同时要求解码端需知道所有发送天线到接收天线之间的信道状态信息(Channel State Information,CSI)。
传统的差分空时分组码只适用于多进制数字相位调制(Multiple Phase Shift Keying,MPSK)等恒模调制,对于振幅移相键控(Amplitude Phase Shift Keying,APSK)、正交振幅调制(Quadrature Amplitude Modulation,QAM)等非恒模调制,因为各星座符号的能量不同因而无法直接采用传统的差分空时分组码的编解码方法。
目前亟需一种即不需要解码端获知所有发送天线到接收天线之间的CSI,同时能够降低系统实现复杂度,而且能够适用于非恒模调制的差分空时分组码的编码方法。
发明内容
本申请实施例提供一种编码方法、设备及可读存储介质,能够解决解码端无法实现在不获知所有发送天线到接收天线之间的CSI的同时,降低系统实现复杂度,以及对非恒模调制的适用的问题。
第一方面,提供了一种编码方法,包括:
编码端通过差分空时分组码(differential space time block coding,DSTBC)编码方式、新型空时分组码(new space time block coding,NSTBC)码本以及前两个符号周期发送天线上的发送符号的功率和,编码得到当前符号周期的发送符号,所述前两个符号周期为所述当前符号周期之前的两个相邻的符号周期;
所述编码端根据所述当前符号周期的发送符号和NSTBC码本,确定所述当前符号周期的下一个符号周期的发送符号。
第二方面,提供了一种编码装置,包括:
差分编码模块,用于编码端通过差分空时分组码DSTBC编码方式、新型空时分组码NSTBC码本以及前两个符号周期发送天线上的发送符号的功率和,编码得到当前符号周期的发送符号,所述前两个符号周期为所述当前符号周期之前的两个相邻的符号周期;
NSTBC编码模块,用于所述编码端根据所述当前符号周期的发送符号和NSTBC码本,确定所述当前符号周期的下一个符号周期的发送符号。
第三方面,提供了一种编码端,该编码端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种编码端,包括处理器及通信接口,其中,所述处理器用于编码端通过DSTBC编码方式、NSTBC码本以及前两个符号周期发送天线上的发送符号的功率和,编码得到当前符号周期的发送符号;
所述编码端根据所述当前符号周期的发送符号和NSTBC码本,确定所述当前符号周期的下一个符号周期的发送符号,所述前两个符号周期为所述当前符号周期之前的两个相邻的符号周期。
第五方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第七方面,提供了一种计算机程序产品,所述计算机程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤。
第八方面,提供了一种通信设备,所述通信设备被配置为执行如第一方面所述的方法的步骤。
在本申请实施例中,一方面采用DSTBC编码方式、NSTBC码本以及前两个符号周期发送天线上的发送符号的功率和来计算当前符号周期的发送符号,另一方面利用低复杂度的NSTBC码本来计算下一个符号周期的发送符号。基于DSTBC设计,编码端和解码端都不需要知道CSI,即每根发送天线上无需发送导频信号,降低了系统开销;在计算当前符号周期的发送符号时采用前两个符号周期发送天线上的发送符号的功率和,实现对非恒模调制的适用。同时NSTBC码本,在保证分集增益的同时能够减少天线上的负载阻抗种类数,降低系统实现复杂度,并且有效降低检测错误概率。
附图说明
图1a是反向散射通信发射端的结构示意图;
图1b是Alamouti空时分组码分集传输示意图;
图2是本申请实施例提供的编码方法的流程示意图;
图3是本申请实施例提供的编码装置的结构示意图;
图4是本申请实施例提供的通信设备的结构示意图;
图5是本申请实施例提供的终端的结构示意图;
图6是本申请实施例提供的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
本申请实施例中,编码端可以部署在发送设备上,例如可以是终端或网络侧设备。其中,终端可以是手机、平板电脑(Tablet Personal Computer,TPC)、膝上型电脑(Laptop Computer,LC)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(Augmented Reality,AR)/虚拟现实(Virtual Reality,VR)设备、机器人、可穿戴式设备(Wearable Device,WD)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(Personal Computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限 定终端的具体类型。网络侧设备可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或无线保真(Wireless Fidelity,WiFi)节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
为更好理解本申请的技术方案,首先对以下内容进行介绍:
未来的6G通信网络需要支持海量的万物互联,其中物联网设备数量将达到千亿级别,其连接密度相比第5代(5th Generation,5G)通信系统提升了10-100倍,达到10-100个/m2的连接密度。海量的物联网设备对成本和功耗都提出了新的挑战。蜂窝网络化、低成本、低功耗甚至零功耗无源化是未来物联网设备发展的主要趋势。传统的无源终端受限于其功耗与硬件能力,其通信传输距离大多在10米以下,远远达不到蜂窝化百米覆盖范围的目标。因此,如何有效的提高无源终端的通信距离成为该技术蜂窝网络化后需要解决的难点。
由于反向散射通信(Backscatter Communication,BSC)是通过改变负载阻抗来控制信号的幅度或相位,考虑反向散射通信调制电路其它非理想因素,输出信号的幅度或相位或多或少存在误差。但只要这些信号误差在可分辨的范围之内,对于信号解调就没有什么影响。因此,如果天线上需要控制的负载阻抗个数或种类越少,可容忍的误差就可越大,错误检测概率也就越小。另外,受限于反向散射通信设备(BSC UE)的功耗与能力限制,在某些情况下不希望因为发送导频和浪费功耗和资源,即要求解码端不需要知道CSI信息 即可完成信号解调。
反向散射通信(Backscatter Communication,BSC)
反向散射通信是指反向散射通信设备利用其它设备或者环境中的射频信号进行信号调制来传输自己信息。其调制电路如图1a所示,反向散射通信设备通过调节其内部阻抗来控制电路的反射系数Γ,从而改变入射信号的幅度、频率、相位等,实现信号的调制。其中信号的反射系数可表征为:
其中,Z0为天线特性阻抗,Z1是负载阻抗,j表示复数,θT表示相位。假设入射信号为Sin(t),则输出信号为因此,通过合理的控制反射系数可实现对应的幅度调制、频率调制或相位调制。基于此,反向散射通信设备,可以是传统射频识别标识(Radio Frequency Identification,RFID)中的Tag,或者是无源或半无源物联网(Passive/Semi-passive Internet of Things,IoT)。为了方便,这里统称为BSC UE。
恒模调制与非恒模调制(Constant Modulation and Nonconstant Modulation)
典型的调制技术可以分为恒模调制和非恒模调制。所谓的恒模调制即调制后的符号星座点的功率或者幅度是相同的,其中MPSK就是一种典型的恒模调制。而非恒模调制即调制后的符号星座点的功率或幅度是不相同的,典型的非恒模调制包括APSK,QAM等。
由于典型的恒模调制MPSK只在相位维度上区分星座点,因而星座点之间的欧式距离相对较小,很容易受到噪声的干扰。而APSK或QAM等非恒模调制的星座点扩展到了幅度和相位二维空间,星座点之间的欧式距离增大,因而抗噪声或抗干扰能力更强。表1给出了相同的频带效率或调制阶数下MPSK和MQAM调制的信噪比(Signal-to-Noise Ratio,SNR)差异。从表中可以看出,在一定比特误率(Bit Error Ratio,BER)性能时,64相移键控(Phase Shift Keying,PSK)相比于64QAM需要额外的9.95dB SNR才能获得相同的BER性能。
表1
正交空时分组码(Orthogonal Space Time Block Code,OSTBC)
空时分组码STBC被广泛应用在蜂窝通信和无线局域网中。STBC通过在空间和时间域引入信号冗余,通过合理的构造分组编码传输矩阵,在不增加带宽的情况下来获得分集增益和天线增益。
OSTBC是一种特殊的线性STBC,其线性空时分组码S满足如下单一条件:
其中,I表示维度为M的单位矩阵,i表示M维的第i个元素,si是对角线元素,S中的第i行元素表示在M个时刻内在第i根发送天线上传输的符号,S中的第j列元素表示在nt根天线上在第j个时刻上传输的符号。满足如上公式的传输矩阵S中的每一列都是互相正交的,这就意味着,不同天线上的发送信号序列也是正交的,从而保证STBC能够在同一时间获得满分集增益。其对应的解码端只需要进行简单的最大比合并(Maximal ratio combining,MRC)就能够顺序的解耦不同天线上的发送符号,并通过最大似然检测(Maximum likelihood,ML)算法进行检测和估计。
Alamouti码是最具有代表性的OSTCB码,并且能够获得满分集和满速率增益。如图1b所示为Alamouti码的原理框图,在给定的符号周期内,两个符号同时在两根天线上发送。假设在当前符号周期,天线1上发送的符号记为s1,而在天线2上发送的符号记为s2。但是在下一个符号周期,天线1上发送的符号为而在天线2上发送的符号为从而构成如下空时分组码矩阵:
假设两根发送天线到接收天线上的信道分别表示为h1,h2,并且在两个相邻的符号周期内满足时不变特性,即:

则在两个符号周期上,接收天线上的接收信号为:
r1=r(t)=h1s1+h2s2+n1
其中,n1,n2表示接收噪声和信号干扰。解码端按照如下准则进行合并接收:

将接收信号r1,r2代入,可得:

最后通过ML检测器就可以估计出信号s1,s2
除了典型的Alamouti分组码之外,典型的两天线OSTBC码的码本如表2所示。
表2
新型空时分组码(New Space Time Block Code,NSTBC)
近些年,随着反向散射通信研究的深入,有研究学者提出了Backscatter分集的概念及设计出相应的空时分组码码字。这类码字通过优化传统Alamouti码的码本来降低硬件实现的复杂度及降低检测错误概率高。
以两天线发射分集为例,即此时的码字矩阵S的维度为2×2,其编码结构为:
根据上述编码结构,假设在当前符号周期,天线1上发送的符号记为s1,而在天线2上发送的符号记为但是在下一个符号周期,天线1上发送的符号为s2,而在天线2上发送的符号为根据OSTBC码字定义,S2属于OSTBC码字,因而能够获得满分集增益与满速率传输。下面分析这类码字相比传统的Alamouti码在反向散射通信中的区别。
假设基于BPSK调制符号进行传输,根据反向散射通信映射原则,符号0和1与反射系数的映射规则为:
即通过控制两个相位反转的负载阻抗来表征符号0和1。因此,分集编码码字S2在两天线同时发送不同的符号的编码表为表5。作为对比,表3和表4也给出了Alamouti码字与扩展Alamouti码字的在两天线同时发送不同的符号的编码表。其中,扩展的Alamouti码字为:
表3
表4
表5
根据表3可知,基于NSTBC设计出的码本,天线1只需要2种系数|Γ|e和|Γ|ej(θ+π);天线2也只需要2种系数|Γ|e-jθ和|Γ|e-j(θ+π),即每根天线上只需要2种负载阻抗就可以。根据表4-5可知,基于Alamouti码字和扩展的Alamouti码字,天线1和天线2都需要4种系数|Γ|e,|Γ|ej(θ+π),|Γ|e-jθ,|Γ|e-j(θ+π),即每根天线上需要4种负载阻抗。相同的方法可以扩展到四天线及以上场景。
差分空时分组码(Differential Space Time Block Code,DSTBC)
对于传统的OSTBC和NSTBC,解码端采用相干检测的解码方案,因此解码端需要发送天线到接收天线确切信道状态信息(Chanel State Information,CSI)。但是在高速移动场景或者信道衰落条件快速变化的场景,或者在反向散射通信中由于受功率和成本限制下发送导频困难的场景下,解码端就很难确切的进行信道估计或者准确进行信道估计的代价很高,此时解码端就无法获得立项的CSI信息。差分空时分组码就是一种编码端和解码端都不需要知道CSI信息,编译码简单并且能够获得分集增益的方案。下面以两天线发送和单天线接收为例进行说明。
在发送编码端,假设在符号周期1和符号周期2编码端按照Alamouti方案发送如下符号:
其中这两次发送的信息s1,s2不携带信息,只是作为参考信号。接下来编码端采用差分编码方式进行发送。假设在2t-1个符号周期,从第一根天线和第二根天线发送的符号分别是s2t-1和s2t,则在2t个符号周期,从第一根天线和第二根天线上发送的符号分别是在2t+1个符号周期,一组2m个比特到达编码端,并产生对应的编码系数向量编码端根据前两个符号周期发送的符号向量和当前编码系数向量计算出当前第2t+1符号周期发送的符号:
同时根据Alamouti码本,计算出第2t+2个符号周期的两根天线上的发送符号分别为其中,编码系数向量满足:

按照上述编码规则,重复编码发送符号。
在接收解码端,假设信号r2t-1,r2t,r2t+1,r2t+2被接收到,定义信道矩阵为:
噪声信号为:
则接收信号可表示为:

因此,有:
合并处理后可得:
为了表述简单,定义:

由此可得:
根据之前的数学推导,有:
因此有:
其中,
将四个时刻的信号进行如下处理:
展开,得:
为了表述简单,定义:
可得:
联合之前的数学推导,有:
由于编码系数向量集合中所有编码系数矢量长度相等且与输入 符号信息具有一一对应的关系,接收机选择到判决与统计信号向量欧式距离最近
计算得到后,再反映射到原始符号,从而恢复出原始比特。
传统的包括Alamouti在内的OSTBC类编码码本虽然能够获得满分集增益同时获得满速率,它们都是针对传统有源射频通信而设计的,而没有考虑类似于反向散射通信等无源终端的调制特性与实现复杂度;同时要求解码端知道所有发送天线到接收天线之间的信道状态信息CSI。
针对反向散射通信提出的NSTBC码本通过优化传统Alamouti码的码本来降低硬件实现的复杂度及降低检测错误概率高,但这种方式要求解码端知道所有发送天线到接收天线之间的CSI信息。传统基于Alamouti的差分空时分组码虽然不需要知道所有发送天线到接收天线之间的CSI信息,但没有考虑类似于反向散射通信等无源终端的调制特性与实现复杂度。
更进一步,传统的差分空时分组码只适用于MPSK等恒模调制,对于APSK、QAM等非恒模调制,因为各星座符号的能量不同因而无法直接采用传统的差分空时分组码的编解码方法。但考虑到非恒模调制相比于恒模调制所带来的星座成形增益,以及反向散射通信中调幅能力和调相能力的差异,需要解决基于非恒模调制下的差分空时分组码编解码问题。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的编码方法进行详细地说明。
参见图2,本申请实施例提供一种编码方法,该方法的执行主体为编码端,该编码端可以是终端设备或网络侧设备,方法包括:
步骤201:编码端通过DSTBC编码方式、NSTBC码本以及前两个符号周期发送天线上的发送符号的功率和,编码得到当前符号周期的发送符号;
步骤202:编码端根据当前符号周期的发送符号和NSTBC码本,确定当前符号周期的下一个符号周期的发送符号。
上述前两个符号周期为当前符号周期之前的两个相邻的符号周期。
在本申请实施例中,一方面采用DSTBC编码方式、NSTBC码本以及前两个符号周期发送天线上的发送符号的功率和来计算当前符号周期的发送符号,另一方面利用低复杂度的NSTBC码本来计算下一个符号周期的发送符号。基于DSTBC设计,编码端和解码端都不需要知道CSI,即每根发送天线上无需发送导频信号,降低了系统开销;在计算当前符号周期的发送符号时采用前两个符号周期的发送符号发送天线上的功率和进行归一化,实现对非恒模调制的适用。同时NSTBC码本,在保证分集增益的同时能够减少天线上的负载阻抗种类数,降低系统实现复杂度,并且有效降低检测错误概率。
本申请实施例所提供的编码方法是通过将DSTBC编码方式与NSTBC码本结合,且 进行功率归一化来计算当前符号周期的符号,提取两者优点,使每根发送天线上无需发送导频信号,降低了系统开销,同时实现对非恒模调制的适用,获得星座成形增益,而且采用NSTBC码本,在保证分集增益的同时能够减少天线上的负载阻抗种类数,降低系统实现复杂度,并且有效降低检测错误概率,对于这种得到的新型编码方法,可以称之为非恒模差分NSTBC编码方式。
在一些具体的实施方式中,本申请实施例的非恒模差分NSTBC编码方式可应用于两天线发射分集场景。
在一些具体的实施方式中,本申请实施例的发送符号为恒模调制符号,或非恒模调制符号;其中,恒模调制至少包括:BPSK调制、多进制数字相位调制(Multiple Phase Shift Keying,MPSK);非恒模调制至少包括:APSK调制,即编码端所采用的调制方式可以包括:二进制相移键控(Binary Phase Shift Keying,BPSK)、振幅移相键控(Amplitude Phase Shift Keying,APSK)。
在一些具体的实施方式中,NSTBC码本用于空间-时间分组码,或者NSTBC码本用于极化-时间分组码,即两根发送天线即可以在空间上隔离或者在极化方向上隔离;
其中,极化方式包括以下一项或者多项:
水平极化、垂直极化、左旋椭圆极化、右旋椭圆极化、左旋圆极化、右旋圆极化。
在一些具体的实施方式中,当前符号周期的原始比特与当前符号周期的发送符号之间具有映射关系。
在本申请实施例中,首先设计(M,N)-APSK(以APSK为例进行说明)到NSTBC码本的映射关系,其中M表示APSK的幅度阶数,N表示APSK的相位种类。按照如下准则进行映射:
0→|Γ1|e
1→|Γ2|e
NSTBC码本结构如下:
具体的,两天线NSTBC码本和四天线NSTBC码本分别为:

则基于APSK调制下的NSTBC、Alamouti编码表分别如表6和表7所示,其中表6为基于(2,1)-APSK调制下的NSTBC的两天线发射分集编码表,表7为基于(2,1)-APSK调制下的Alamouti的两天线发射分集编码表:
表6
表7
对比基于表3-5中基于BPSK调制下的编码表,表6-7中基于APSK调制下,有些天线上的相位种类变少。以NSTBC码本为例,APSK调制下的天线1只需要支持1种相位即e,两种幅度|Γ1|,|Γ2|;而BPSK调制下的天线1需要支持2种相位e和ej(θ+π),一种幅度|Γ|。相同的,APSK调制下的天线2需要支持2种相位e-jθ和e-j(θ+π),两种幅度|Γ1|,|Γ2|;而BPSK调制下的天线2需要支持2种相位e-jθ和e-j(θ+π),一种幅度|Γ|。而对于Alamouti码本,APSK调制下的天线1和天线2需要支持两种幅度和两种相位,而BPSK调制下的天线1和天线2需要支持一种幅度四种相位。
因此,相比于BPSK,APSK对某些天线是通过增加支持幅度调制的阻抗匹配数量来减少支持相位调制的阻抗匹配数量,这对某些调幅能力优于调相能力的反向散射通信来说是有利的。另外,对比相同APSK调制下的NSTBC码本和Alamouti码本,NSTBC码本编码表中的天线1只需要支持一种相位,而Alamouti码本编码表中的天线1需要支持两种相位,因此NSTBC码本可以减少天线1的相位调制的阻抗匹配种类数。
同样的,基于APSK调制下的NSTBC、ABBA类四天线发射分集编码表分别如表8、表9所示,其中表8为基于(2,1)-APSK调制下的NSTBC的四天线发射分集编码表,表9为基于(2,1)-APSK调制下的ABBA类准正交空时分组码(QSTBC)四天线发射分集编码表,其中ABBA类码本为:
表8

表9

同样的,在四发射分集下,基于APSK调制相比BPSK调制天线1和/或天线2的支持相位调制的阻抗匹配种类变少,支持幅度调制的阻抗匹配种类变多;基于NSTBC码本相比于ABBA类码本,天线1的支持调相的阻抗匹配种类变少。因此,APSK调制更加适合于通过阻抗调幅优于调相的反向散射通信。
基于上述(M,N)-APSK调制下的编码表,可按照如下编码规则进行(M,N)-APSK调制下的差分NSTBC编码。
在具体的实施方式中,NSTBC码本的码本结构满足:
其中,s2t+1为编码端在第2t+1个符号周期编码得到的两根发送天线上的发送符号(需要说明的是,发送符号也可以称为星座符号、星座点等,本申请实施例对该名称不做具体限定),s2t+2为编码端在第2t+2个符号周期编码得到的两根发送天线上的发送符号;其中符号为符号s2t+2的共轭,符号为符号s2t+1的负数共轭;第2t+1个符号周期为当前符号周期,第2t+2个符号周期为当前符号周期的下一个符号周期。
在具体的实施方式中,编码端通过DSTBC编码方式和NSTBC码本,编码得到当前符号周期的发送符号,包括:
(1)编码端通过DSTBC编码方式、NSTBC码本以及上一个符号周期的发送符号的功率确定当前符号周期的编码系数向量;
(2)编码端根据当前符号周期的编码系数向量,当前符号周期的前两个符号周期符号的发送天线上的发送符号的功率和确定当前符号周期编码后的发送符号。
具体地,针对上述(1)编码端确定当前符号周期的编码系数向量,本申请实施例提供两种具体地实施方式,包括:
实施方式一:
(1.1)编码端根据公式:

确定编码端在第2t+1个符号周期的编码系数向量
其中,s2t+1为编码端在第2t+1个符号周期编码得到的两根发送天线上的发送符号,s2t-1为编码端在第2t-1个符号周期编码得到的两根发送天线上的发送符号,s2t为编码端在第2t个符号周期编码得到的两根发送天线上的发送符号。
在本申请实施例中,编码端采用直接计算的方式计算出当前符号周期的编码系数向量
具体地,上述(1)编码端确定当前符号周期的编码系数向量,还包括:
(1.2)编码端根据原始比特或原始符号和编码系数向量的预设映射表,确定编码端在第2t+1个符号周期的编码系数向量
其中,预设映射表中包含原始比特或原始符号与之间在初始参考符号确定后的映射关系。
上述原始比特或原始符号指的是待编码的初始数据比特或初始符号,上述初始参考符号指的是在最初的符号周期,即在第1符号周期,发送天线上的参考符号。
在本申请实施例中,编码端采用直接查映射表的方式确定出
具体地,上述(2)编码端根据当前符号周期的编码系数向量,确定当前符号周期编码后的发送符号,包括:
(2.1)编码端根据公式:
确定编码端在第2t+1个符号周期编码得到的两根发送天线上的发送符号;
其中,为编码端确定的第2t+1个符号周期的编码系数向量,s2t-1为编码端在第2t-1个符号周期编码得到的两根发送天线上的发送符号,s2t为编码端在第2t个符号周期编码得到的两根发送天线上的发送符号,|s2t-1|2+|s2t|2为第2t-1个符号周期内的两根发送天线上的发送符号的功率和。
在本申请实施例中,编码端根据当前符号周期的编码系数向量,以及当前符号周期的前两个符号周期发送天线上的发送符号的功率和,通过功率归一化计算出当前符号周期的发送符号。
例如:假设在第2t-1个符号周期,从第一根天线和第二根天线发送的符号分别是s2t-1则在第2t个符号周期,从第一根天线和第二根天线上发送的符号分别是s2t即发送端在第2t-1和第2t个符号周期在两根天线上的发送信号满足:
在第2t+1个符号周期,一组2m个比特到达编码端,并根据映射关系产生对应的编码系数向量(以查预设映射表为例),编码端根据前两个符号周期发 送的符号向量和当前编码系数向量计算出当前时刻发送的符号:
并且在第2t+2符号周期,在两根天线上发送的符号为其中,编码系数向量与当前输入符号满足如下关系:

实施方式二:
(1.1)编码端根据公式:

确定编码端在第2t+1个符号周期的编码系数向量
其中,s2t+1为编码端在第2t+1个符号周期编码得到的两根发送天线上的发送符号,s2t-1为编码端在第2t-1个符号周期编码得到的两根发送天线上的发送符号,s2t为编码端在第2t个符号周期编码得到的两根发送天线上的发送符号,为第2t-1个符号周期内的两根发送天线上的发送符号的功率和的开方。
在本申请实施例中,编码端采用直接计算的方式计算出当前符号周期的编码系数向量
具体地,上述(1)编码端确定当前符号周期的编码系数向量,还包括:
(1.2)编码端根据原始比特或原始符号和编码系数向量的预设映射表,确定编码端在第2t+1个符号周期的编码系数向量
其中,预设映射表中包含原始比特或原始符号与之间在初始参考符号确定后的映射关系。
具体地,上述(2)编码端根据当前符号周期的编码系数向量,确定当前符号周期编码后的发送符号,包括:
(2.1)编码端根据公式:
确定编码端在第2t+1个符号周期编码得到的两根发送天线上的发送符号;
其中,为编码端确定的第2t+1个符号周期的编码系数向量,s2t-1为编码端在第2t-1个符号周期编码得到的两根发送天线上的发送符号,s2t为编码端在第2t个符号周期编码得到的两根发送天线上的发送符号,为第2t-1个符号周期内的两根发送天线上的发送符号的功率和的开方。
在本申请实施例中,编码端根据当前符号周期的编码系数向量,以及当前符号周期的前两个符号周期发送天线上的发送符号的功率和,通过功率归一化计算出当前符号周期的 发送符号。
例如:假设在第2t-1个符号周期,从第一根天线和第二根天线发送的符号分别是s2t-1则在第2t个符号周期,从第一根天线和第二根天线上发送的符号分别是s2t即发送端在第2t-1和第2t个符号周期在两根天线上的发送信号满足:
在第2t+1个符号周期,一组2m个比特到达编码端,并根据映射关系产生对应的编码系数向量(以查预设映射表为例),编码端根据前两个符号周期发送的符号向量和当前编码系数向量计算出当前时刻发送的符号:
并且在第2t+2符号周期,在两根天线上发送的符号为其中,编码系数向量与当前输入符号满足如下关系:

在具体的实施方式中,方法还包括:
编码端确定第1个符号周期编码得到的两根发送天线上的发送符号为以及编码端在第2个符号周期编码得到的两根发送天线上的发送符号为
其中,满足如下NSTBC码本:
为确定的初始参考符号。
上文描述了编码端在第2t+1个符号周期编码得到两根发送天线上的发送符号的过程(包括实施方式一和实施方式二),通过重复上述过程即可完成所有待传输信息比特的差分NSTBC编码传输。
需要说明的是,根据上述过程可以发现,差分NSTBC编码中,一次符号周期可以编码两个符号,两个符号周期的发送符号只需要编码一次就可以(因为下一个符号周期的发送符号可以根据当前符号周期的发送符号和NSTBC码本确定出),下一个符号周期是上一个符号周期的冗余,因此在实际应用场景中,可以设置一个延时器,通过差分NSTBC编码方法,从第2t+1个符号周期做编码处理,然后通过延时器记录一个符号周期时间延迟,然后通过差分NSTBC编码方法,从第2t+3个符号周期做编码处理,因为第2t+1个符号周期的发送符号和第2t+2个符号周期的发送符号时在一次编码过程中就可以确定。
下面结合具体实施示例对本申请实施例的技术方案进行描述:
示例一:
本方案实施例以(2,2)-APSK为例并以前述实施方式一来说明差分NSTBC的编码过程。假设采用(2,2)-APSK调制,则星座点的集合为{-3,-1,1,3},编码系数向量的集合为设两个初始参考调制信号为s1=1和s2=3,在编码器输入端的4个输入比特分别为 c1c2c3c4。按照映射规则“00,01,10,11”→{1,3,-1,-3},前两个比特c1c2映射成符号s3,后两个比特c3c4映射成符号s4,映射关系为:

根据编码系数向量的定义,有:

根据输入比特c1和c2的不同取值,可得与编码系数向量的映射关系如表10所示:
表10
假设在第2t-1个符号周期发射两根天线上的发送符号为:
按照NSTBC编码规则,第2t个符号周期两根发射天线上的发送符号为:
假设在第2t+1个符号周期,到达编码器的输入比特为0010,按照输入比特与编码系数向量的映射规则,有
从而,有编码器根据前两个符号周期发送的符号向量和当前编码系数向量计算出当前时刻发送的符号:
在第2t+2个符号周期,按照NSTBC编码规则,两根发射天线上的发送符号为:
重复以上过程,完成APSK下的差分NSTBC编码。
示例二:
本方案实施例以(2,2)-APSK为例并以前述实施方式二来说明差分NSTBC的编码过程。假设采用(2,2)-APSK调制,则星座点的集合为{-3,-1,1,3},编码系数向量的集合 为设两个初始参考调制信号为s1=1和s2=3,在编码器输入端的4个输入比特分别为c1c2c3c4。按照映射规则“00,01,10,11”→{1,3,-1,-3},前两个比特c1c2映射成符号s3,后两个比特c3c4映射成符号s4,映射关系为:

根据编码系数向量的定义,有

根据输入比特c1和c2的不同取值,可得与编码系数向量的映射关系为:
假设在第2t-1个符号周期发射两根天线上的发送符号为:
按照NSTBC编码规则,第2t个符号周期两根发射天线上的发送符号为:
假设在第2t+1个符号周期,到达编码器的输入比特为1110,按照输入比特与编码系数向量的映射规则,有
从而,有编码器根据前两个符号周期发送的符号向量和当前编码系数向量计算出当前时刻发送的符号:
在第2t+2个符号周期,按照NSTBC编码规则,两根发射天线上的发送符号为:
重复以上过程,完成(2,2)-APSK下的差分NSTBC编码。
本申请实施例提供的编码方法,执行主体可以为编码装置。本申请实施例中以编码装置执行编码方法为例,说明本申请实施例提供的编码装置。
参见图3,本申请实施例提供一种编码装置300,包括:
差分编码模块301,用于编码端通过差分空时分组码DSTBC编码方式、新型空时分组码NSTBC码本以及前两个符号周期发送天线上的发送符号的功率和,编码得到当前符号周期的发送符号;
NSTBC编码模块302,用于所述编码端根据所述当前符号周期的发送符号和NSTBC码本,确定所述当前符号周期的下一个符号周期的发送符号,所述前两个符号周期为所述当前符号周期之前的两个相邻的符号周期。
在本申请实施例中,一方面采用DSTBC编码方式、NSTBC码本以及前两个符号周期发送天线上的发送符号的功率和来计算当前符号周期的发送符号,另一方面利用低复杂度的NSTBC码本来计算下一个符号周期的发送符号。基于DSTBC设计,编码端和解码端都不需要知道CSI,即每根发送天线上无需发送导频信号,降低了系统开销;在计算当前符号周期的发送符号时采用前两个符号周期发送天线上的发送符号的功率和进行归一化,实现对非恒模调制的适用。同时NSTBC码本,在保证分集增益的同时能够减少天线上的负载阻抗种类数,降低系统实现复杂度,并且有效降低检测错误概率。
在具体的实施方式中,所述NSTBC码本的码本结构满足:
其中,s2t+1为所述编码端在第2t+1个符号周期编码得到的两根发送天线上的发送符号,s2t+2为所述编码端在第2t+2个符号周期编码得到的两根发送天线上的发送符号;其中符号为符号s2t+2的共轭,符号为符号s2t+1的负数共轭;所述第2t+1个符号周期为所述当前符号周期,所述第2t+2个符号周期为所述当前符号周期的下一个符号周期。
在具体的实施方式中,所述差分编码模块和NSTBC编码模块,具体用于:
所述编码端通过DSTBC编码方式、NSTBC码本以及上一个符号周期的发送符号的功率确定所述当前符号周期的编码系数向量,确定所述当前符号周期编码后的发送符号;
所述编码端根据所述当前符号周期编码后的发送符号,确定所述当前符号周期后的下一个符号周期的发送符号。
在具体的实施方式中,所述差分编码模块,具体用于:
所述编码端根据公式:
确定所述编码端在第2t+1个符号周期编码得到的两根发送天线上的发送符号;
其中,为所述编码端确定的第2t+1个符号周期的编码系数向量,所述s2t-1和所述为所述编码端在第2t-1个符号周期编码得到的两根发送天线上的发送符号,所述s2t和所述为所述编码端在第2t个符号周期编码得到的两根发送天线上的发送符号,所述|s2t-1|2+|s2t|2为第2t-1个符号周期内的两根发送天线上的发送符号的功率和。
在具体的实施方式中,所述差分编码模块,具体用于:
所述编码端根据公式:

确定所述编码端在第2t+1个符号周期的编码系数向量
其中,s2t+1为所述编码端在第2t+1个符号周期编码得到的两根发送天线上的发送符号,s2t-1为所述编码端在第2t-1个符号周期编码得到的两根发送天线上的发送符号,s2t为所述编码端在第2t个符号周期编码得到的两根发送天线上的发送符号。
在具体的实施方式中,所述差分编码模块,具体用于:
所述编码端根据原始比特或原始符号和编码系数向量的预设映射表,确定所述编码端在第2t+1个符号周期的编码系数向量
其中,所述预设映射表中包含所述原始比特或符号与所述之间在初始参考符号确定后的映射关系。
在具体的实施方式中,所述差分编码模块,具体还用于:
所述编码端根据公式:
确定所述编码端在第2t+1个符号周期编码得到的两根发送天线上的发送符号;
其中,为所述编码端确定的第2t+1个符号周期的编码系数向量,所述s2t-1和所述为所述编码端在第2t-1个符号周期编码得到的两根发送天线上的发送符号,所述s2t和所述为所述编码端在第2t个符号周期编码得到的两根发送天线上的发送符号,所述为第2t-1个符号周期内的两根发送天线上的发送符号的功率和的开方。
在具体的实施方式中,所述差分编码模块,具体还可以用于:
所述编码端根据公式:

确定所述编码端在第2t+1个符号周期的编码系数向量
其中,s2t+1为所述编码端在第2t+1个符号周期编码得到的两根发送天线上的发送符号,s2t-1为所述编码端在第2t-1个符号周期编码得到的两根发送天线上的发送符号,s2t为所述编码端在第2t个符号周期编码得到的两根发送天线上的发送符号。
在具体的实施方式中,所述差分编码模块,具体还用于:
所述编码端根据原始比特或原始符号和编码系数向量的预设映射表,确定所述编码端 在第2t+1个符号周期的编码系数向量
其中,所述预设映射表中包含所述原始比特或符号与所述之间在初始参考符号确定后的映射关系。
在具体的实施方式中,所述NSTBC编码模块,具体用于:
所述编码端根据编码得到的当前符号周期的发送符号和NSTBC码本,确定当前符号周期的下一个符号周期的发送符号。所述编码端编码得到第2t+1个符号周期的两根发送天线上的发送符号s2t+1后,按照NSTBC码本结构
编码得到第2t+2个符号周期的两根发送天线上的发送符号s2t+2
在具体的实施方式中,所述装置还包括:
第一确定模块,用于所述编码端确定所述编码端在第1个符号周期编码得到的两根发送天线上的发送符号为以及所述编码端在第2个符号周期编码得到的两根发送天线上的发送符号为
其中,所述与所述满足如下NSTBC码本:
所述为确定的初始参考符号。
在具体的实施方式中,当前符号周期的原始比特与当前符号周期的发送符号之间具有映射关系。
在具体的实施方式中,所述NSTBC码本用于空间-时间分组码,或者所述NSTBC码本用于极化-时间分组码,即两根发送天线即可以在空间上隔离或者在极化方向上隔离。
在具体的实施方式中,所述发送符号为恒模调制符号,或非恒模调制符号;
所述恒模调制至少包括:BPSK调制;
所述非恒模调制至少包括:APSK调制。
本申请实施例中的编码装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的编码装置能够实现图2的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图4所示,本申请实施例还提供一种通信设备400,包括处理器401和存储器402,存储器402上存储有可在所述处理器401上运行的程序或指令,例如,该通信设备400为终端时,该程序或指令被处理器401执行时实现上述编码装置方法实施例的各个步骤,且能达到相同的技术效果。该通信设备400为网络侧设备时,该程序或指令被处理器401执行时实现上述编码装置方法实施例的各个步骤,且能达到相同的技术效果,为 避免重复,这里不再赘述。
在本申请实施例中,一方面采用DSTBC编码方式、NSTBC码本以及前两个符号周期发送天线上的发送符号的功率和来计算当前符号周期的发送符号,另一方面利用低复杂度的NSTBC码本来计算下一个符号周期的发送符号。基于DSTBC设计,编码端和解码端都不需要知道CSI,即每根发送天线上无需发送导频信号,降低了系统开销;在计算当前符号周期的发送符号时采用前两个符号周期发送天线上的发送符号的功率和进行归一化,实现对非恒模调制的适用。同时NSTBC码本,在保证分集增益的同时能够减少天线上的负载阻抗种类数,降低系统实现复杂度,并且有效降低检测错误概率。
具体地,针对编码端是终端的情况,图5为实现本申请实施例的一种终端的硬件结构示意图。
该终端500包括但不限于:射频单元501、网络模块502、音频输出单元503、输入单元504、传感器505、显示单元506、用户输入单元507、接口单元508、存储器509以及处理器510等中的至少部分部件。
本领域技术人员可以理解,终端500还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器510逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图5中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元504可以包括图形处理单元(Graphics Processing Unit,GPU)5041和麦克风5042,图形处理器5041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元506可包括显示面板5061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板5061。用户输入单元507包括触控面板5071以及其他输入设备5072中的至少一种。触控面板5071,也称为触摸屏。触控面板5071可包括触摸检测装置和触摸控制器两个部分。其他输入设备5072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元501接收来自网络侧设备的下行数据后,可以传输给处理器510进行处理;另外,射频单元501可以向网络侧设备发送上行数据。通常,射频单元501包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器509可用于存储软件程序或指令以及各种数据。存储器509可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器59可以包括易失性存储器或非易失性存储器,或者,存储器509可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。 易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器x09包括但不限于这些和任意其它适合类型的存储器。
处理器510可包括一个或多个处理单元;可选的,处理器510集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器510中。
其中,处理器510,用于编码端通过差分空时分组码DSTBC编码方式、新型空时分组码NSTBC码本以及前两个符号周期发送天线上的发送符号的功率和,编码得到当前符号周期的发送符号;
处理器510,用于所述编码端根据所述当前符号周期的发送符号和NSTBC码本,确定所述当前符号周期的下一个符号周期的发送符号,所述前两个符号周期为所述当前符号周期之前的两个相邻的符号周期。
在本申请实施例中,一方面采用DSTBC编码方式、NSTBC码本以及前两个符号周期发送天线上的发送符号的功率和来计算当前符号周期的发送符号,另一方面利用低复杂度的NSTBC码本来计算下一个符号周期的发送符号。基于DSTBC设计,编码端和解码端都不需要知道CSI,即每根发送天线上无需发送导频信号,降低了系统开销;在计算当前符号周期的发送符号时采用前两个符号周期发送天线上的发送符号的功率和进行归一化,实现对非恒模调制的适用。同时NSTBC码本,在保证分集增益的同时能够减少天线上的负载阻抗种类数,降低系统实现复杂度,并且有效降低检测错误概率。
具体地,所述NSTBC码本的码本结构满足:
其中,s2t+1为所述编码端在第2t+1个符号周期编码得到的两根发送天线上的发送符号,s2t+2为所述编码端在第2t+2个符号周期编码得到的两根发送天线上的发送符号;其中符号为符号s2t+2的共轭,符号为符号s2t+1的负数共轭;所述第2t+1个符号周期为所述当前符号周期,所述第2t+2个符号周期为所述当前符号周期的下一个符号周期。
具体地,所述处理器510,具体用于:
所述编码端通过DSTBC编码方式、NSTBC码本以及上一个符号周期的发送符号的功率确定所述当前符号周期的编码系数向量;
所述编码端根据所述当前符号周期的编码系数向量,确定所述当前符号周期编码后的 下一个符号周期的发送符号。
具体地,所述处理器510,具体用于:
所述编码端根据公式:
确定所述编码端在第2t+1个符号周期编码得到的两根发送天线上的发送符号;
其中,为所述编码端确定的第2t+1个符号周期的编码系数向量,所述s2t-1和所述为所述编码端在第2t-1个符号周期编码得到的两根发送天线上的发送符号,所述s2t和所述为所述编码端在第2t个符号周期编码得到的两根发送天线上的发送符号,所述|s2t-1|2+|s2t|2为第2t-1个符号周期内的两根发送天线上的发送符号的功率和。
具体地,所述处理器510,具体用于:
所述编码端根据公式:

确定所述编码端在第2t+1个符号周期的编码系数向量
其中,s2t+1为所述编码端在第2t+1个符号周期编码得到的两根发送天线上的发送符号,s2t-1为所述编码端在第2t-1个符号周期编码得到的两根发送天线上的发送符号,s2t为所述编码端在第2t个符号周期编码得到的两根发送天线上的发送符号。
具体地,所述处理器510,具体用于:
所述编码端根据原始比特或原始符号和编码系数向量的预设映射表,确定所述编码端在第2t+1个符号周期的编码系数向量
其中,所述预设映射表中包含所述原始比特或符号与所述之间在初始参考符号确定后的映射关系。
具体地,所述处理器510,具体还可以用于:
所述编码端根据公式:
确定所述编码端在第2t+1个符号周期编码得到的两根发送天线上的发送符号;
其中,为所述编码端确定的第2t+1个符号周期的编码系数向量,所述s2t-1和所述为所述编码端在第2t-1个符号周期编码得到的两根发送天线上的发送符号,所述s2t和所述为所述编码端在第2t个符号周期编码得到的两根发送天线上的发送符号,所述为第2t-1个符号周期内的两根发送天线上的发送符号的功率和的开方。
具体地,所述处理器510,具体还可以用于:
所述编码端根据公式:

确定所述编码端在第2t+1个符号周期的编码系数向量
其中,s2t+1为所述编码端在第2t+1个符号周期编码得到的两根发送天线上的发送符号,s2t-1为所述编码端在第2t-1个符号周期编码得到的两根发送天线上的发送符号,s2t为所述编码端在第2t个符号周期编码得到的两根发送天线上的发送符号。
具体地,所述处理器510,具体还可以用于:
所述编码端根据原始比特或原始符号和编码系数向量的预设映射表,确定所述编码端在第2t+1个符号周期的编码系数向量
其中,所述预设映射表中包含所述原始比特或符号与所述之间在初始参考符号确定后的映射关系。
具体地,所述处理器510,具体用于:
所述编码端确定所述编码端在第1个符号周期编码得到的两根发送天线上的发送符号为以及所述编码端在第2个符号周期编码得到的两根发送天线上的发送符号为
其中,所述与所述满足如下NSTBC码本:
所述为确定的初始参考符号。
具体地,当前符号周期的原始比特与当前符号周期的发送符号的幅度之间具有映射关系。
具体地,所述NSTBC码本用于空间-时间分组码,或者所述NSTBC码本用于极化-时间分组码。
具体地,所述发送符号为恒模调制符号,或非恒模调制符号;
所述恒模调制至少包括:BPSK调制;
所述非恒模调制至少包括:APSK调制。
具体地,针对编码端是网络侧设备的情况,如图6所示,该网络侧设备600包括:天线61、射频装置62、基带装置63、处理器64和存储器65。天线61与射频装置62连接。在上行方向上,射频装置62通过天线61接收信息,将接收的信息发送给基带装置63进行处理。在下行方向上,基带装置63对要发送的信息进行处理,并发送给射频装置62,射频装置62对收到的信息进行处理后经过天线61发送出去。
以上方法实施例中的方法可以在基带装置63中实现,该基带装置63包括基带处理器。
基带装置63例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图6所 示,其中一个芯片例如为基带处理器,通过总线接口与存储器65连接,以调用存储器65中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口66,该接口例如为通用公共无线接口(Common Public Radio Interface,CPRI)。
具体地,本发明实施例的网络侧设备600还包括:存储在存储器65上并可在处理器64上运行的指令或程序,处理器64调用存储器65中的指令或程序执行图3所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述编码方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述编码方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序产品,所述计算机程序产品被存储在存储介质中,所述计算机程序产品被至少一个处理器执行以实现上述编码方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例另提供了一种通信设备,所述通信设备被配置为执行上述编码方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡 献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (26)

  1. 一种编码方法,包括:
    编码端通过差分空时分组码DSTBC编码方式、新型空时分组码NSTBC码本以及前两个符号周期的发送天线上发送符号的功率和,编码得到当前符号周期的发送符号;
    所述编码端根据所述当前符号周期的发送符号和所述NSTBC码本,确定所述当前符号周期的下一个符号周期的发送符号,所述前两个符号周期为所述当前符号周期之前的两个相邻的符号周期。
  2. 根据权利要求1所述的方法,其中,所述NSTBC码本的码本结构满足:
    其中,s2t+1为所述编码端在第2t+1个符号周期编码得到的两根发送天线上的发送符号,s2t+2为所述编码端在第2t+2个符号周期编码得到的两根发送天线上的发送符号;其中符号为符号s2t+2的共轭,符号为符号s2t+1的负数共轭;所述第2t+1个符号周期为所述当前符号周期,所述第2t+2个符号周期为所述当前符号周期的下一个符号周期。
  3. 根据权利要求1所述的方法,其中,所述编码端通过DSTBC编码方式、NSTBC码本以及上一个符号周期的发送符号的功率,编码得到当前符号周期的发送符号,包括:
    所述编码端通过DSTBC编码方式、NSTBC码本以及上一个符号周期的发送符号的功率确定所述当前符号周期的编码系数向量;
    所述编码端根据所述当前符号周期的编码系数向量,确定所述当前符号周期编码后的发送符号。
  4. 根据权利要求3所述的方法,其中,所述编码端根据所述当前符号周期的编码系数向量,确定所述当前符号周期编码后的发送符号,包括:
    所述编码端根据公式:
    确定所述编码端在第2t+1个符号周期编码得到的两根发送天线上的发送符号;
    其中,为所述编码端确定的第2t+1个符号周期的编码系数向量,所述s2t-1和所述为所述编码端在第2t-1个符号周期编码得到的两根发送天线上的发送符号,所述s2t和所述为所述编码端在第2t个符号周期编码得到的两根发送天线上的发送符号,所述|s2t-1|2+|s2t|2为第2t-1个符号周期内的两根发送天线上的发送符号的功率和。
  5. 根据权利要求4所述的方法,其中,所述编码端确定所述当前符号周期的编码系数向量,包括:
    所述编码端根据公式:

    确定所述编码端在第2t+1个符号周期的编码系数向量
    其中,s2t+1为所述编码端在第2t+1个符号周期编码得到的两根发送天线上的发送符号,s2t-1为所述编码端在第2t-1个符号周期编码得到的两根发送天线上的发送符号,s2t为所述编码端在第2t个符号周期编码得到的两根发送天线上的发送符号。
  6. 根据权利要求3所述的方法,其中,所述编码端根据所述当前符号周期的编码系数向量,确定所述当前符号周期编码后的发送符号,包括:
    所述编码端根据公式:
    确定所述编码端在第2t+1个符号周期编码得到的两根发送天线上的发送符号;
    其中,为所述编码端确定的第2t+1个符号周期的编码系数向量,所述s2t-1和所述为所述编码端在第2t-1个符号周期编码得到的两根发送天线上的发送符号,所述s2t和所述为所述编码端在第2t个符号周期编码得到的两根发送天线上的发送符号,所述为第2t-1个符号周期内的两根发送天线上的发送符号的功率和的开方。
  7. 根据权利要求6所述的方法,其中,所述编码端确定所述当前符号周期的编码系数向量,包括:
    所述编码端根据公式:

    确定所述编码端在第2t+1个符号周期的编码系数向量
    其中,s2t+1为所述编码端在第2t+1个符号周期编码得到的两根发送天线上的发送符号,s2t-1为所述编码端在第2t-1个符号周期编码得到的两根发送天线上的发送符号,s2t为所述编码端在第2t个符号周期编码得到的两根发送天线上的发送符号。
  8. 根据权利要求1所述的方法,其中,所述编码端通过DSTBC编码方式、NSTBC码本以及上一个符号周期的发送符号的功率,编码得到当前符号周期的发送符号,包括:
    所述编码端根据原始比特或原始符号和编码系数向量的预设映射表,确定所述编码端在当前符号周期的编码系数向量;
    其中,所述预设映射表中包含所述原始比特或原始符号与所述编码系数向量之间在初始参考符号确定后的映射关系,所述映射关系表根据所述DSTBC编码方式、所述NSTBC码本以及所述上一个符号周期的发送符号的功率得到;
    所述编码端根据所述当前符号周期的编码系数向量,确定所述当前符号周期编码后的发送符号。
  9. 根据权利要求1所述的方法,其中,所述编码端在第一个符号周期编码得到的两根发送天线上的发送符号为以及所述编码端在第二个符号周期编码得到的两根发送天线上的发送符号为
    其中,所述与所述满足如下NSTBC码本:
    所述为确定的初始参考符号。
  10. 根据权利要求1至9任一项所述的方法,其中,
    当前符号周期的原始比特与当前符号周期的发送符号的幅度之间具有映射关系。
  11. 根据权利要求1至9任一项所述的方法,其中,
    所述NSTBC码本用于空间-时间分组码,或者所述NSTBC码本用于极化-时间分组码。
  12. 根据权利要求1至9任一项所述的方法,其中,
    所述发送符号为恒模调制符号,或非恒模调制符号;
    所述恒模调制至少包括:二进制相移键控BPSK调制;
    所述非恒模调制至少包括:振幅移相键控APSK调制。
  13. 一种编码装置,包括:
    差分编码模块,用于编码端通过差分空时分组码DSTBC编码方式、新型空时分组码NSTBC码本以及前两个符号周期的发送天线上的发送符号的功率和,编码得到当前符号周期的发送符号;
    NSTBC编码模块,用于所述编码端根据所述当前符号周期的发送符号和所述NSTBC码本,确定所述当前符号周期的下一个符号周期的发送符号,所述前两个符号周期为所述当前符号周期之前的两个相邻的符号周期。
  14. 根据权利要求13所述的装置,其中,所述NSTBC码本的码本结构满足:
    其中,s2t+1为所述编码端在第2t+1个符号周期编码得到的两根发送天线上的发送符号,s2t+2为所述编码端在第2t+2个符号周期编码得到的两根发送天线上的发送符号;其中符号为符号s2t+2的共轭,符号为符号s2t+1的负数共轭;所述第2t+1个符号周期为所述当前符号周期,所述第2t+2个符号周期为所述当前符号周期的下一个符号周期。
  15. 根据权利要求13所述的装置,其中,所述差分编码模块,具体用于:
    所述编码端通过DSTBC编码方式、NSTBC码本以及上一个符号周期的发送符号的功率确定所述当前符号周期的编码系数向量;
    所述编码端根据所述当前符号周期的编码系数向量,确定所述当前符号周期编码后的 发送符号。
  16. 根据权利要求15所述的装置,其中,所述差分编码模块,具体用于:
    所述编码端根据公式:
    确定所述编码端在第2t+1个符号周期编码得到的两根发送天线上的发送符号;
    其中,为所述编码端确定的第2t+1个符号周期的编码系数向量,所述s2t-1和所述为所述编码端在第2t-1个符号周期编码得到的两根发送天线上的发送符号,所述s2t和所述为所述编码端在第2t个符号周期编码得到的两根发送天线上的发送符号,所述|s2t-1|2+|s2t|2为第2t-1个符号周期内的两根发送天线上的发送符号的功率和。
  17. 根据权利要求16所述的装置,其中,所述差分编码模块,具体用于:
    所述编码端根据公式:

    确定所述编码端在第2t+1个符号周期的编码系数向量
    其中,s2t+1为所述编码端在第2t+1个符号周期编码得到的两根发送天线上的发送符号,s2t-1为所述编码端在第2t-1个符号周期编码得到的两根发送天线上的发送符号,s2t为所述编码端在第2t个符号周期编码得到的两根发送天线上的发送符号。
  18. 根据权利要求15所述的装置,其中,所述差分编码模块,具体用于:
    所述编码端根据公式:
    确定所述编码端在第2t+1个符号周期编码得到的两根发送天线上的发送符号;
    其中,为所述编码端确定的第2t+1个符号周期的编码系数向量,所述s2t-1和所述为所述编码端在第2t-1个符号周期编码得到的两根发送天线上的发送符号,所述s2t和所述为所述编码端在第2t个符号周期编码得到的两根发送天线上的发送符号,所述为第2t-1个符号周期内的两根发送天线上的发送符号的功率和的开方。
  19. 根据权利要求18所述的装置,其中,所述差分编码模块,具体用于:
    所述编码端根据公式:

    确定所述编码端在第2t+1个符号周期的编码系数向量
    其中,s2t+1为所述编码端在第2t+1个符号周期编码得到的两根发送天线上的发送符号,s2t-1为所述编码端在第2t-1个符号周期编码得到的两根发送天线上的发送符号,s2t为所述编码端在第2t个符号周期编码得到的两根发送天线上的发送符号。
  20. 根据权利要求13所述的装置,其中,所述差分编码模块,具体用于:
    所述编码端根据原始比特或原始符号和编码系数向量的预设映射表,确定所述编码端在当前符号周期的编码系数向量;
    其中,所述预设映射表中包含所述原始比特或符号与所述编码系数向量之间在初始参考符号确定后的映射关系,所述映射关系表根据所述DSTBC编码方式、所述NSTBC码本以及所述上一个符号周期的发送符号的功率得到;
    所述编码端根据所述当前符号周期的编码系数向量,确定所述当前符号周期编码后的发送符号。
  21. 根据权利要求13所述的装置,其中,所述编码端确定所述编码端在第一个符号周期编码得到的两根发送天线上的发送符号为以及所述编码端在第二个符号周期编码得到的两根发送天线上的发送符号为
    其中,所述与所述满足如下NSTBC码本:
    所述为确定的初始参考符号。
  22. 根据权利要求13至21任一项所述的装置,其中,
    当前符号周期的原始比特与当前符号周期的发送符号的幅度之间具有映射关系。
  23. 根据权利要求13至21任一项所述的装置,其中,
    所述NSTBC码本用于空间-时间分组码,或者所述NSTBC码本用于极化-时间分组码。
  24. 根据权利要求13至21任一项所述的装置,其中,
    所述发送符号为恒模调制符号,或非恒模调制符号;
    所述恒模调制至少包括:BPSK调制;
    所述非恒模调制至少包括:APSK调制。
  25. 一种编码端,包括处理器和存储器,其中,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至12任一项所述的编码方法的步骤。
  26. 一种可读存储介质,所述可读存储介质上存储程序或指令,其中,所述程序或指令被处理器执行时实现如权利要求1至12任一项所述的编码方法的步骤。
PCT/CN2023/071802 2022-01-18 2023-01-11 编码方法、设备及可读存储介质 WO2023138458A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210056640.9A CN116506084A (zh) 2022-01-18 2022-01-18 编码方法、设备及可读存储介质
CN202210056640.9 2022-01-18

Publications (1)

Publication Number Publication Date
WO2023138458A1 true WO2023138458A1 (zh) 2023-07-27

Family

ID=87329040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071802 WO2023138458A1 (zh) 2022-01-18 2023-01-11 编码方法、设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN116506084A (zh)
WO (1) WO2023138458A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019019839A1 (zh) * 2017-07-26 2019-01-31 华为技术有限公司 用于数据传输的方法、装置和系统
CN111586874A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 一种天线参数调整的方法以及相关装置
CN112789816A (zh) * 2018-08-03 2021-05-11 株式会社Ntt都科摩 用户终端
US20210204303A1 (en) * 2019-12-26 2021-07-01 Vinod Kristem Transmit power allocation and modulation coding scheme for multi-user orthogonal frequency-division multiple access

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019019839A1 (zh) * 2017-07-26 2019-01-31 华为技术有限公司 用于数据传输的方法、装置和系统
CN112789816A (zh) * 2018-08-03 2021-05-11 株式会社Ntt都科摩 用户终端
CN111586874A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 一种天线参数调整的方法以及相关装置
US20210204303A1 (en) * 2019-12-26 2021-07-01 Vinod Kristem Transmit power allocation and modulation coding scheme for multi-user orthogonal frequency-division multiple access

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Discussion on sidelink physical layer procedures", 3GPP DRAFT; R1-1905337-NOKIA-5G_V2X_NRSL-SIDELINK PROCEDURES, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 3 April 2019 (2019-04-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051707412 *
NTT DOCOMO, INC.: "Codebook and non-codebook based transmission for uplink", 3GPP DRAFT; R1-1705717_CODEBOOK AND NON-CODEBOOK BASED TRANSMISSION FOR UPLINK_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20170403 - 20170407, 2 April 2017 (2017-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051243832 *

Also Published As

Publication number Publication date
CN116506084A (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
US9634747B2 (en) Apparatus and method of processing signal, and recording medium
US11722339B2 (en) Pilot information system sending method, channel estimation method, and communications device
US10050767B2 (en) System and method for multiple-input and multiple-output (MIMO) full-duplex precoding algorithms
Cogen et al. Hexagonal quadrature amplitude modulation aided spatial modulation
US20230171023A1 (en) Estimation method of discrete digital signals in noisy overloaded wireless communication systems with csi errors
US9066247B2 (en) Communication devices and methods for signal detection
WO2023138458A1 (zh) 编码方法、设备及可读存储介质
US9705646B2 (en) Multi-input multi-output (MIMO) detection systems
WO2023138459A1 (zh) 解码方法、设备及可读存储介质
WO2023125423A1 (zh) 编码方法、设备及可读存储介质
WO2023125424A1 (zh) 解码方法、设备及可读存储介质
US11483039B2 (en) Method and apparatus for detecting signal with quantum computing in MIMO system
WO2023138523A1 (zh) 编码方法、设备及可读存储介质
CN103873125A (zh) 一种多天线系统中下行信号的发射方法和设备
WO2023103912A1 (zh) 分集传输方法、终端及网络侧设备
WO2023088376A1 (zh) 上行传输方法、装置、终端及bsc接收设备
WO2022228282A1 (zh) 一种全双工天线及通信节点
US9197267B2 (en) Methods and apparatus for joint demodulation with max-log MAP (MLM)
US20230171026A1 (en) Zigzag decoding of upstream-processed signals from independent receiver subarrays
US8649251B2 (en) Multi-user multiplexing method and transmission device
US11979260B2 (en) BP equalization method, device, communication apparatus and storage medium
WO2024113524A1 (zh) NAFD uRLLC系统的频谱效率确定方法及组件
CN107196741A (zh) 一种用于mimo‑scma系统的检测方法
CN108418654B (zh) 一种信号检测方法及装置
Archana et al. PCCV: Parallel Cancellation and Convolution Viterbi Encoding/Decoding Approach for MIMO-OFDMA for Efficient Resource Allocation and Power Consumption

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23742773

Country of ref document: EP

Kind code of ref document: A1