WO2019019839A1 - 用于数据传输的方法、装置和系统 - Google Patents

用于数据传输的方法、装置和系统 Download PDF

Info

Publication number
WO2019019839A1
WO2019019839A1 PCT/CN2018/092023 CN2018092023W WO2019019839A1 WO 2019019839 A1 WO2019019839 A1 WO 2019019839A1 CN 2018092023 W CN2018092023 W CN 2018092023W WO 2019019839 A1 WO2019019839 A1 WO 2019019839A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding
indication information
terminal device
network device
precoding matrices
Prior art date
Application number
PCT/CN2018/092023
Other languages
English (en)
French (fr)
Inventor
吴晔
金黄平
韩玮
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112019025541-9A priority Critical patent/BR112019025541A2/pt
Priority to CN201880046875.1A priority patent/CN110892648B/zh
Priority to EP18838422.6A priority patent/EP3661076B1/en
Priority to JP2019571466A priority patent/JP2020526093A/ja
Publication of WO2019019839A1 publication Critical patent/WO2019019839A1/zh
Priority to US16/703,607 priority patent/US11683076B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0606Space-frequency coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0675Space-time coding characterised by the signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1685Details of the supervisory signal the supervisory signal being transmitted in response to a specific request, e.g. to a polling signal

Definitions

  • the present application relates to the field of communications and, more particularly, to methods, apparatus and systems for data transmission.
  • Massive multiple-input multiple-output is one of the key technologies recognized by the industry for fifth-generation (5th generation, 5G) mobile communications.
  • 5th generation 5th generation
  • signals can usually be processed by precoding, thereby achieving spatial multiplexing and greatly improving spectrum utilization.
  • MIMO systems usually use precoding techniques to improve the channel.
  • precoding techniques to improve the channel.
  • CSI channel state information
  • a relatively accurate precoding matrix cannot be obtained.
  • the signal to be transmitted obtained by the encoding process cannot be successfully demodulated by the receiving end, thereby causing the quality of the received signal to deteriorate.
  • the present application provides a method, apparatus and system for data transmission to perform channel measurement and feedback based on different transmission schemes, which can obtain diversity gain to a greater extent and improve reliability of data transmission.
  • a method for data transmission is provided, the method being applied to a communication system including a network device and a terminal device, wherein the network device and the terminal device pre-store a plurality of precoding matrices,
  • the method includes:
  • the terminal device receives at least one reference signal for channel measurement
  • the terminal device Transmitting, by the terminal device, the first indication information according to the transmission scheme based on the at least one reference signal and the channel state information CSI feedback, where the plurality of first indication information is used to indicate x target precoding matrices, At least one of the plurality of first indication information is used to indicate a target precoding matrix, and the x target precoding matrices are determined based on the plurality of precoding matrices;
  • x is the number of target precoding matrices that need to be fed back, and x is an integer greater than one.
  • the embodiment of the present application performs channel measurement based on the transmission scheme by the terminal device, and feeds back indication information for determining multiple precoding matrices, so that the network device can determine multiple precoding matrices of the precoding polling based on the feedback to satisfy
  • the precoding matrix obtained by multiple measurements can be provided for precoding polling, so that the diversity gain can be better obtained, which is beneficial to improving the reliability of data transmission and is beneficial to the transmission scheme. Improve the robustness of the communication system.
  • the transmission scheme based on the CSI feedback includes: precoding polling, space-time diversity diversity (STTD) based on precoder cycling (or space time block coding). , STBC)), space-frequency transmit diversity (SFTD) based on precoding polling (or space frequency block coding (SFBC)), cyclic delay diversity based on precoding polling (cyclic delay diversity, CDD) and the like based on precoding polling transmission scheme.
  • STTD space-time diversity diversity
  • SFTD space-frequency transmit diversity
  • CDD cyclic delay diversity
  • the reference signal may include a precoded reference signal and a precoded reference signal.
  • each of the at least one reference signal is a precoded polled reference signal
  • each of the plurality of first indication information The first indication information is used to indicate a precoding matrix corresponding to one of the at least one reference signal on a precoding polling granularity, where the number of precoding polling is greater than or equal to 1, for the precoding wheel
  • the number of precoding matrices to be queried is y, and y is an integer greater than one.
  • each precoding matrix in the y precoding matrices used for precoding polling is used to determine one target precoding matrix in the x target precoding matrices,
  • the y precoding matrices are in one-to-one correspondence with the x target precoding matrices.
  • the method further includes:
  • Second indication information indicates x precoding matrices in y precoding matrices for precoding polling, used in precoding encoding x precoding matrices
  • Each precoding matrix is used to determine one target precoding matrix in the x target precoding matrices, and the x precoding matrices for precoding polling and the x target precoding matrices are one by one correspond.
  • a precoding polling granularity is taken as an example to illustrate that the number of columns of the precoding matrix used by the precoding polling is corresponding to the number of reference signals carried by the precoding polling granularity, or Said to correspond to the number of ports.
  • the terminal device may select a precoding vector of an optimal port under a certain metric as a column vector in the target precoding matrix.
  • each first indication information is used to indicate a precoding column vector, and multiple The plurality of precoding column vectors indicated by the first indication information may be combined to obtain a target precoding matrix; or, the precoding vectors of the plurality of ports may be selected for linear superposition to obtain a column vector in the target precoding matrix.
  • the plurality of first indication information is used to indicate one precoding column vector, and the plurality of precoding column vectors indicated by the plurality of first indication information may be combined to obtain one target precoding matrix.
  • the port selection is only one possible implementation manner, and the terminal device may also not directly select the port, and directly feed back the precoding matrix used by the precoding polling to the network device.
  • each of the at least one reference signal is a non-precoded reference signal
  • An indication information includes three codebook indexes, and three codebook indexes in each first indication information are used to jointly indicate a precoding matrix, and the plurality of first indication information and the x target precoding matrix are A correspondence.
  • the first indication information is a precoding matrix indicator (PMI), and the three codebook indexes are i 1,1 , i 1,2 and i 2 .
  • PMI precoding matrix indicator
  • the method further comprises:
  • the terminal device sends indication information of a precoding polling granularity.
  • the network device performs precoding polling based on the optimal precoding polling granularity, which is more advantageous for obtaining diversity gain and further improving reliability of data transmission.
  • the method further comprises:
  • the terminal device receives at least one candidate value of a precoding polling granularity.
  • the network device may send a candidate value of the precoding polling granularity to the terminal device in advance, and the terminal device may separately perform measurement according to the at least one candidate value to determine an optimal precoding polling granularity feedback to the network device under a certain metric. At the same time, the complexity of the measurement of the terminal device can be reduced.
  • the number x of target precoding matrices that need to be fed back may be predefined (for example, defined by a protocol).
  • the number x of target precoding matrices that need to be fed back may be pre-configured on the network device and the terminal. In the device.
  • the number of the target pre-coding matrices that can be fed back is also determined by the network device, and the terminal device is notified by signaling.
  • the method further includes: the terminal device receiving the fifth indication information, the fifth indication The information indicates the number x of target precoding matrices that need to be fed back.
  • a method for data transmission is provided, the method being applied to a communication system including a network device and a terminal device, where the network device and the terminal device pre-store a plurality of precoding matrix sets, Each of the plurality of precoding matrix sets includes at least one precoding matrix, and the method includes:
  • the terminal device receives a plurality of reference signals for channel measurement
  • the terminal device Transmitting, by the terminal device, the third indication information and the fourth indication information according to the transmission scheme based on the multiple reference signals and the CSI feedback, where the third indication information is used to indicate the first one of the plurality of precoding matrix sets a precoding matrix set, where the fourth indication information is used to indicate x target precoding matrices in the first precoding matrix set;
  • x is the number of target precoding matrices that need to be fed back, and x is an integer greater than one.
  • the embodiment of the present application performs channel measurement based on the transmission scheme by the terminal device, and feeds back indication information for determining multiple precoding matrices, so that the network device can determine multiple precoding matrices of the precoding polling based on the feedback to satisfy
  • the precoding matrix obtained by multiple measurements can be provided for precoding polling, so that the diversity gain can be better obtained, which is beneficial to improving the reliability of data transmission and is beneficial to the transmission scheme. Improve the robustness of the communication system.
  • the transmission scheme based on the CSI feedback includes: precoding polling, space-time diversity based on precoding polling, space frequency diversity based on precoding polling, cyclic delay diversity based on precoding polling, etc. based on precoding polling Transmission scheme.
  • each of the plurality of reference signals is a reference signal that is not precoded
  • the third indication information includes two codebook indexes
  • the two codebook indexes in the third indication information are used to jointly indicate the first precoding matrix set.
  • the third indication information may be two codebook indexes i 1,1 and i 1,2 in the PMI, in the Long Term Evolution (LTE) protocol, i 1,1 and i 1, 2 can be used to jointly indicate a precoding matrix set.
  • LTE Long Term Evolution
  • the method further includes:
  • the terminal device sends indication information of a precoding polling granularity.
  • the network device can perform precoding polling based on the optimal precoding polling granularity, which is more advantageous for obtaining the diversity gain and further improving the reliability of data transmission.
  • the method further includes:
  • the terminal device receives at least one candidate value of a precoding polling granularity.
  • the network device may send a candidate value of the precoding polling granularity to the terminal device in advance, and the terminal device may separately perform measurement according to the at least one candidate value to determine an optimal precoding polling granularity feedback to the network device under a certain metric. At the same time, the complexity of the measurement of the terminal device can be reduced.
  • the number x of target precoding matrices that need to be fed back may be predefined (for example, defined by a protocol).
  • the number x of target precoding matrices that need to be fed back may be pre-configured on the network device and the terminal. In the device.
  • the number of the target pre-coding matrices that can be fed back is also determined by the network device, and the terminal device is notified by signaling.
  • the method further includes: the terminal device receiving the fifth indication information, the fifth indication The information indicates the number x of target precoding matrices that need to be fed back.
  • a third aspect provides a method for data transmission, where the method is applied to a communication system including a network device and a terminal device, where the network device and the terminal device pre-store a plurality of precoding matrices.
  • the method includes:
  • the network device transmits at least one reference signal for channel measurement
  • x is the number of target precoding matrices that need to be fed back, and x is an integer greater than one.
  • the embodiment of the present application performs channel measurement based on the transmission scheme by the terminal device, and feeds back indication information for determining multiple precoding matrices, so that the network device can determine multiple precoding matrices of the precoding polling based on the feedback to satisfy
  • the precoding matrix obtained by multiple measurements can be provided for precoding polling, so that the diversity gain can be better obtained, which is beneficial to improving the reliability of data transmission and is beneficial to the transmission scheme. Improve the robustness of the communication system.
  • the transmission scheme based on the CSI feedback includes: precoding polling, space-time diversity based on precoding polling, space frequency diversity based on precoding polling, cyclic delay diversity based on precoding polling, etc. based on precoding polling Transmission scheme.
  • the reference signal may include a precoded reference signal and a precoded reference signal.
  • each of the at least one reference signal is a precoded polled reference signal
  • each of the plurality of first indication information The first indication information is used to indicate a precoding matrix corresponding to one of the at least one reference signal on a precoding polling granularity, where the number of precoding polling is greater than or equal to 1, for the precoding wheel
  • the number of precoding matrices to be queried is y, and y is an integer greater than one.
  • the network device determines the x target precoding matrices according to the multiple first indication information, including:
  • each target precoding matrix in the x target precoding matrices according to each of the plurality of first indication information and each precoding matrix in the y precoding matrices used for precoding polling,
  • the y precoding matrices for precoding polling are in one-to-one correspondence with the x target precoding matrices.
  • the network device determines the x target precoding matrices according to the multiple first indication information, including:
  • the network device receives the second indication information, and determines x precoding matrices from the y precoding matrices for precoding polling according to the second indication information;
  • each target precoding matrix in the x target precoding matrices is determined according to each of the plurality of first indication information and each precoding matrix in the x precoding matrices used for precoding polling.
  • the x precoding matrices for precoding polling are in one-to-one correspondence with the x target precoding matrices.
  • a precoding polling granularity is taken as an example to illustrate that the number of columns of the precoding matrix used by the precoding polling is corresponding to the number of reference signals carried by the precoding polling granularity, or Said to correspond to the number of ports.
  • the terminal device may select a precoding vector of an optimal port under a certain metric as a column vector in the target precoding matrix.
  • each first indication information is used to indicate a precoding column vector, and multiple The plurality of precoding column vectors indicated by the first indication information may be combined to obtain a target precoding matrix; or, the precoding vectors of the plurality of ports may be selected for linear superposition to obtain a column vector in the target precoding matrix.
  • the plurality of first indication information is used to indicate one precoding column vector, and the plurality of precoding column vectors indicated by the plurality of first indication information may be combined to obtain one target precoding matrix.
  • each of the at least one reference signal is a non-precoded reference signal
  • An indication information includes three codebook indexes, and three codebook indexes in each first indication information are used to jointly indicate a precoding matrix, and the plurality of first indication information and the x target precoding matrices are A correspondence.
  • the first indication information is a precoding matrix indicator (PMI), and the three codebook indexes are i 1,1 , i 1,2 and i 2 .
  • PMI precoding matrix indicator
  • the method further comprises:
  • the network device receives indication information of a precoding polling granularity.
  • the network device can perform precoding polling based on the optimal precoding polling granularity, which is more advantageous for obtaining diversity gain and further improving the reliability of data transmission.
  • the method further comprises:
  • the network device pre-codes at least one candidate value of the polling granularity.
  • the network device may send a candidate value of the precoding polling granularity to the terminal device in advance, and the terminal device may separately perform measurement according to the at least one candidate value to determine an optimal precoding polling granularity feedback to the network device under a certain metric. At the same time, the complexity of the measurement of the terminal device can be reduced.
  • the number x of target precoding matrices that need to be fed back may be predefined (for example, defined by a protocol).
  • the number x of target precoding matrices that need to be fed back may be pre-configured on the network device and the terminal. In the device.
  • the number of the target pre-coding matrices to be fed back may also be determined by the network device, and the terminal device is notified by signaling.
  • the method further includes: the network device sending the fifth indication information, the fifth indication The information indicates the number x of target precoding matrices that need to be fed back.
  • a fourth aspect provides a method for data transmission, the method being applied to a communication system including a network device and a terminal device, where the network device and the terminal device pre-store a plurality of precoding matrix sets, Each of the plurality of precoding matrix sets includes at least one precoding matrix, and the method includes:
  • the network device transmits a plurality of reference signals for channel measurement
  • third indication information and fourth indication information that are sent by the terminal device according to the transmission scheme that is based on the multiple reference signals and CSI feedback, where the third indication information is used to indicate the multiple precoding a first precoding matrix set in the matrix set, the fourth indication information is used to indicate x target precoding matrices in the first precoding matrix set;
  • x is the number of target precoding matrices that need to be fed back, and x is an integer greater than one.
  • the embodiment of the present application performs channel measurement based on the transmission scheme by the terminal device, and feeds back indication information for determining multiple precoding matrices, so that the network device can determine multiple precoding matrices of the precoding polling based on the feedback to satisfy
  • the precoding matrix obtained by multiple measurements can be provided for precoding polling, so that the diversity gain can be better obtained, which is beneficial to improving the reliability of data transmission and is beneficial to the transmission scheme. Improve the robustness of the communication system.
  • the transmission scheme based on the CSI feedback includes: precoding polling, space-time diversity based on precoding polling, space frequency diversity based on precoding polling, cyclic delay diversity based on precoding polling, etc. based on precoding polling Transmission scheme.
  • each of the plurality of reference signals is a reference signal that is not precoded
  • the third indication information includes two codebook indexes
  • the two codebook indexes in the third indication information are used to jointly indicate the first precoding matrix set.
  • the third indication information may be two codebook indexes i 1,1 and i 1,2 in the PMI.
  • i 1,1 and i 1,2 may be used to jointly indicate a precoding. Matrix collection.
  • the method further includes:
  • the network device receives indication information of a precoding polling granularity.
  • the network device can perform precoding polling based on the optimal precoding polling granularity, which is more advantageous for obtaining diversity gain and further improving the reliability of data transmission.
  • the method further includes:
  • the network device transmits at least one candidate value of a precoding polling granularity.
  • the network device may send a candidate value of the precoding polling granularity to the terminal device in advance, and the terminal device may separately perform measurement according to the at least one candidate value to determine an optimal precoding polling granularity feedback to the network device under a certain metric. At the same time, the complexity of the measurement of the terminal device can be reduced.
  • the number x of target precoding matrices that need to be fed back may be predefined (for example, defined by a protocol).
  • the number x of target precoding matrices that need to be fed back may be pre-configured on the network device and the terminal. In the device.
  • the number of the target pre-coding matrices to be fed back may also be determined by the network device, and the terminal device is notified by signaling.
  • the method further includes: the network device sending the fifth indication information, the fifth indication The information indicates the number x of target precoding matrices that need to be fed back.
  • a fifth aspect provides a method for data transmission, where the method is applied to a communication system including a network device and a terminal device, where the network device and the terminal device pre-store a plurality of precoding matrices.
  • the method includes:
  • the network device receives at least one reference signal for channel measurement
  • the network device sends, according to the at least one reference signal and a transmission scheme based on the CSI measurement, a plurality of sixth indication information, where the multiple sixth indication information is used to indicate x target precoding matrices, where the multiple At least one sixth indication information of the six indication information is used to indicate a target precoding matrix, and the x target precoding matrices are determined based on the plurality of precoding matrices;
  • x is the number of target precoding matrices that need to be indicated, and x is an integer greater than one.
  • the embodiment of the present application performs channel measurement based on a transmission scheme by a network device, and sends indication information for determining a plurality of precoding matrices, so that the terminal device can determine a plurality of precoding matrices of precoding polling based on the indication information, to Compared with the prior art, the precoding matrix obtained by multiple measurements can be provided for precoding polling, so that the diversity gain can be better obtained, which is beneficial to improving the reliability of data transmission. It is beneficial to improve the robustness of the communication system.
  • the transmission scheme based on the CSI measurement includes: precoding polling, space time diversity based on precoding polling, space frequency diversity based on precoding polling, cyclic delay diversity based on precoding polling, etc. based on precoding polling Transmission scheme.
  • the reference signal may include a precoded reference signal and a precoded reference signal.
  • each of the at least one reference signal is a precoded polled reference signal
  • each of the plurality of sixth indication information is used to indicate a precoding matrix corresponding to one of the at least one reference signal on a precoding polling granularity, where the number of precoding polling is greater than or equal to 1, for the precoding wheel
  • the number of precoding matrices to be queried is y, and y is an integer greater than one.
  • each precoding matrix in the y precoding matrices used for precoding polling is used to determine one target precoding matrix in the x target precoding matrices,
  • the y precoding matrices are in one-to-one correspondence with the x target precoding matrices.
  • the method further includes:
  • the network device sends seventh indication information, where the seventh indication information is used to indicate x precoding matrices in y precoding matrices for precoding polling, and x precodings for precoding polling Each precoding matrix in the matrix is used to determine one target precoding matrix in the x target precoding matrices, the x precoding matrices used for precoding polling and the x target precoding matrices One-to-one correspondence.
  • a precoding polling granularity is taken as an example to illustrate that the number of columns of the precoding matrix used by the precoding polling is corresponding to the number of reference signals carried by the precoding polling granularity, or Said to correspond to the number of ports.
  • the network device may select a precoding vector of an optimal port under a certain metric as a column vector in the target precoding matrix.
  • each sixth indication information is used to indicate a precoding column vector, and multiple The plurality of precoding column vectors indicated by the sixth indication information may be combined to obtain a target precoding matrix; or, the precoding vectors of the plurality of ports may be selected for linear superposition to obtain a column vector in the target precoding matrix.
  • the plurality of sixth indication information is used to indicate one precoding column vector, and the plurality of precoding column vectors indicated by the plurality of sixth indication information may be combined to obtain one target precoding matrix.
  • the port selection is only one possible implementation manner, and the network device may also not perform port selection, and directly indicate the precoding matrix used by the precoding polling to the terminal device.
  • each of the at least one reference signal is a non-precoded reference signal
  • each of the plurality of sixth indication information includes three codebook indexes, and the three codebook indexes in each sixth indication information are used to jointly indicate a precoding matrix, and the plurality of sixth indication information and the x target precoding matrices are A correspondence.
  • the sixth indication information is a PMI
  • the three codebook indexes are i 1,1 , i 1,2 and i 2 .
  • the method further includes:
  • the network device sends indication information of a precoding polling granularity.
  • the terminal device performs precoding polling based on the optimal precoding polling granularity, which is more advantageous for obtaining the diversity gain and further improving the reliability of data transmission.
  • the number x of the target pre-coding matrix to be indicated may be defined in advance (for example, by a protocol), or may be determined by a network device, which is not limited in this application.
  • a method for data transmission is provided, where the method is applied to a communication system including a network device and a terminal device, where the network device and the terminal device pre-store a plurality of precoding matrix sets, Each of the plurality of precoding matrix sets includes at least one precoding matrix, and the method includes:
  • the network device receives a plurality of reference signals for channel measurement
  • the network device sends, according to the multiple reference signals and the transmission scheme based on the CSI measurement, the eighth indication information and the ninth indication information, where the eighth indication information is used to indicate the first one of the multiple precoding matrix sets a precoding matrix set, the ninth indication information is used to indicate x target precoding matrices in the first precoding matrix set;
  • x is the number of target precoding matrices that need to be indicated, and x is an integer greater than one.
  • the embodiment of the present application performs channel measurement based on a transmission scheme by a network device, and sends indication information for determining a plurality of precoding matrices, so that the terminal device can determine a plurality of precoding matrices of precoding polling based on the indication information, to Compared with the prior art, the precoding matrix obtained by multiple measurements can be provided for precoding polling, so that the diversity gain can be better obtained, which is beneficial to improving the reliability of data transmission. It is beneficial to improve the robustness of the communication system.
  • the transmission scheme based on the CSI measurement includes: precoding polling, space time diversity based on precoding polling, space frequency diversity based on precoding polling, cyclic delay diversity based on precoding polling, etc. based on precoding polling Transmission scheme.
  • each of the plurality of reference signals is a reference signal that is not precoded
  • the eighth indication information includes two codebook indexes
  • the two codebook indexes in the eighth indication information are used to jointly indicate the first precoding matrix set.
  • the eighth indication information may be two codebook indexes i 1,1 and i 1,2 in the PMI.
  • i 1,1 and i 1,2 may be used to jointly indicate a precoding. Matrix collection.
  • the method further includes:
  • the network device sends indication information of a precoding polling granularity.
  • the terminal device can perform precoding polling based on the optimal precoding polling granularity, which is more advantageous for obtaining the diversity gain and further improving the reliability of data transmission.
  • the number x of the target pre-coding matrix to be indicated may be defined in advance (for example, by a protocol), or may be determined by a network device, which is not limited in this application.
  • a method for data transmission is provided, where the method is applied to a communication system including a network device and a terminal device, where the network device and the terminal device pre-store a plurality of precoding matrices.
  • the method includes:
  • a plurality of sixth indication information that is sent by the network device according to the at least one reference signal and a transmission scheme based on CSI measurement, where the multiple sixth indication information is used to indicate x target precoding matrices, At least one of the plurality of sixth indication information is used to indicate a target precoding matrix, and the x target precoding matrices are determined based on the plurality of precoding matrices;
  • x is the number of target precoding matrices that need to be indicated, and x is an integer greater than one.
  • the embodiment of the present application performs channel measurement based on a transmission scheme by a network device, and sends indication information for determining a plurality of precoding matrices, so that the terminal device can determine a plurality of precoding matrices of precoding polling based on the indication information, to Compared with the prior art, the precoding matrix obtained by multiple measurements can be provided for precoding polling, so that the diversity gain can be better obtained, which is beneficial to improving the reliability of data transmission. It is beneficial to improve the robustness of the communication system.
  • the transmission scheme based on the CSI measurement includes: precoding polling, space time diversity based on precoding polling, space frequency diversity based on precoding polling, cyclic delay diversity based on precoding polling, etc. based on precoding polling Transmission scheme.
  • the reference signal may include a precoded reference signal and a precoded reference signal.
  • each of the at least one reference signal is a precoded polled reference signal
  • each of the plurality of sixth indication information is used to indicate a precoding matrix corresponding to one of the at least one reference signal on a precoding polling granularity, where the number of precoding polling is greater than or equal to 1, for the precoding wheel
  • the number of precoding matrices to be queried is y, and y is an integer greater than one.
  • each precoding matrix in the y precoding matrices used for precoding polling is used to determine one target precoding matrix in the x target precoding matrices,
  • the y precoding matrices are in one-to-one correspondence with the x target precoding matrices.
  • the terminal device determines the x target precoding matrices according to the multiple pieces of sixth indication information, including:
  • each target precoding matrix in the x target precoding matrices according to each of the plurality of sixth indication information and each precoding matrix in the x precoding matrices used for precoding polling.
  • the x precoding matrices for precoding polling are in one-to-one correspondence with the x target precoding matrices.
  • a precoding polling granularity is taken as an example to illustrate that the number of columns of the precoding matrix used by the precoding polling is corresponding to the number of reference signals carried by the precoding polling granularity, or Said to correspond to the number of ports.
  • the network device may select a precoding vector of an optimal port under a certain metric as a column vector in the target precoding matrix.
  • each sixth indication information is used to indicate a precoding column vector, and multiple The plurality of precoding column vectors indicated by the sixth indication information may be combined to obtain a target precoding matrix; or, the precoding vectors of the plurality of ports may be selected for linear superposition to obtain a column vector in the target precoding matrix.
  • the plurality of sixth indication information is used to indicate one precoding column vector, and the plurality of precoding column vectors indicated by the plurality of sixth indication information may be combined to obtain one target precoding matrix.
  • the port selection is only one possible implementation manner, and the network device may also not perform port selection, and directly indicate the precoding matrix used by the precoding polling to the terminal device.
  • each of the at least one reference signal is a non-precoded reference signal
  • each of the plurality of sixth indication information includes three codebook indexes, and the three codebook indexes in each sixth indication information are used to jointly indicate a precoding matrix, and the plurality of sixth indication information and the x target precoding matrices are A correspondence.
  • the sixth indication information is a PMI
  • the three codebook indexes are i 1,1 , i 1,2 and i 2 .
  • the method further includes:
  • the terminal device receives indication information of precoding polling.
  • the terminal device performs precoding polling based on the optimal precoding polling granularity, which is more advantageous for obtaining the diversity gain and further improving the reliability of data transmission.
  • the number x of the target pre-coding matrix to be indicated may be defined in advance (for example, by a protocol), or may be determined by a network device, which is not limited in this application.
  • a method for data transmission is provided, where the method is applied to a communication system including a network device and a terminal device, where the network device and the terminal device pre-store a plurality of precoding matrix sets, Each of the plurality of precoding matrix sets includes at least one precoding matrix, and the method includes:
  • the terminal device transmits a plurality of reference signals for channel measurement
  • eighth indication information and ninth indication information that are sent by the network device according to the transmission scheme that is based on the multiple reference signals and CSI measurement, where the eighth indication information is used to indicate the multiple precoding a first precoding matrix set in the matrix set, the ninth indication information is used to indicate x target precoding matrices in the first precoding matrix set;
  • x is the number of target precoding matrices that need to be indicated, and x is an integer greater than one.
  • the embodiment of the present application performs channel measurement based on a transmission scheme by a network device, and sends indication information for determining a plurality of precoding matrices, so that the terminal device can determine a plurality of precoding matrices of precoding polling based on the indication information, to Compared with the prior art, the precoding matrix obtained by multiple measurements can be provided for precoding polling, so that the diversity gain can be better obtained, which is beneficial to improving the reliability of data transmission. It is beneficial to improve the robustness of the communication system.
  • the transmission scheme based on the CSI measurement includes: precoding polling, space time diversity based on precoding polling, space frequency diversity based on precoding polling, cyclic delay diversity based on precoding polling, etc. based on precoding polling Transmission scheme.
  • each of the plurality of reference signals is a reference signal that is not precoded
  • the eighth indication information includes two codebook indexes
  • the two codebook indexes in the eighth indication information are used to jointly indicate the first precoding matrix set.
  • the eighth indication information may be two codebook indexes i 1,1 and i 1,2 in the PMI.
  • i 1,1 and i 1,2 may be used to jointly indicate a precoding. Matrix collection.
  • the method further includes:
  • the terminal device receives indication information of a precoding polling granularity.
  • the terminal device can perform precoding polling based on the optimal precoding polling granularity, which is more advantageous for obtaining diversity gain and further improving the reliability of data transmission.
  • a ninth aspect provides a channel measurement indication method, including:
  • the terminal device receives tenth indication information, where the tenth indication information indicates a frequency band granularity on which the channel measurement is based, and a frequency band corresponding to one frequency band granularity corresponds to one precoding matrix;
  • the terminal device determines the frequency band granularity according to the tenth indication information.
  • the measurement bandwidth includes at least one frequency band granularity.
  • the measurement bandwidth may be a bandwidth corresponding to the transmission channel measurement reference signal, or may be a bandwidth on which the CSI is fed back after the measurement. That is, the measurement bandwidth can measure the full bandwidth or part of the bandwidth of the reference signal for the transmission channel.
  • the terminal device performs channel measurement based on the frequency band granularity, and can measure an equivalent channel pre-coded by using multiple precoding matrices on the measurement bandwidth in the case of inaccurate channel measurement, so as to obtain a more accurate CSI, which is beneficial to improve.
  • the reliability of data transmission improves the robustness of the system.
  • the method further includes: the terminal device performing channel measurement on the measurement bandwidth according to the frequency band granularity, where the measurement bandwidth is based on feedback channel state information CSI Bandwidth.
  • the terminal device can perform channel measurement based on the frequency band granularity indicated by the network device, and can perform CSI feedback based on the result of the measurement of the entire measurement bandwidth.
  • the feedback CSI is based on a bandwidth that is a total bandwidth or a portion of a bandwidth of the transmission reference signal.
  • the frequency band granularity is a bandwidth size of the pre-coded resource block group PRG.
  • the precoding matrix is randomly selected by the terminal device from a predefined codebook.
  • the terminal device performs channel measurement on the measurement bandwidth according to the frequency band granularity, including:
  • the terminal device uses the frequency band granularity as a granularity of precoding polling, and performs channel measurement on the measurement bandwidth based on a transmission scheme of precoding polling.
  • the tenth indication information is carried in any one of the following signaling: a radio resource control RRC message, a media access control MAC-control element CE, or downlink control information. DCI.
  • the precoding matrices corresponding to any two adjacent frequency bands having the same frequency band granularity are different.
  • a method for data transmission comprising:
  • the network device determines a frequency band granularity on which the channel measurement is based, and a frequency band corresponding to one frequency band granularity corresponds to a precoding matrix
  • the network device sends tenth indication information, where the tenth indication information indicates the frequency band granularity.
  • the measurement bandwidth includes at least one frequency band granularity.
  • the measurement bandwidth may be a bandwidth corresponding to the transmission channel measurement reference signal, or may be a bandwidth on which the CSI is fed back after the measurement. That is, the measurement bandwidth can measure the full bandwidth or part of the bandwidth of the reference signal for the transmission channel.
  • the terminal device performs channel measurement based on the frequency band granularity, and can measure an equivalent channel pre-coded by using multiple precoding matrices on the measurement bandwidth in the case of inaccurate channel measurement, so as to obtain a more accurate CSI, which is beneficial to improve.
  • the reliability of data transmission improves the robustness of the system.
  • the frequency band granularity is a bandwidth size of the pre-coded resource block group PRG.
  • the tenth indication information is carried in any one of the following signaling: a radio resource control RRC message, a medium access control MAC-control element CE, or downlink control information. DCI.
  • any two adjacent frequency bands having the same frequency band granularity have different precoding matrices.
  • a terminal device comprising respective modules for performing the method for data transmission in the first aspect or any of the possible implementations of the first aspect, or The respective modules of the method for data transmission in any of the possible implementations of the second aspect or the second aspect, or the method for performing data transmission in any of the possible implementations of the seventh aspect or the seventh aspect.
  • Each module, or a module for performing the method for data transmission in any of the possible implementations of the eighth aspect or the eighth aspect, or for performing the ninth aspect or the ninth aspect of any possible implementation The various modules of the method for data transmission.
  • a network device comprising means for performing the method for data transmission in any of the possible implementations of the third aspect or the third aspect, or The various modules of the method for data transmission in any of the possible implementations of the fourth aspect or the fourth aspect, or the method for performing data transmission in any of the possible implementations of the fifth aspect or the fifth aspect.
  • Each module, or a module for performing the method for data transmission in any of the possible aspects of the sixth aspect or the sixth aspect, or for performing the tenth aspect or the tenth aspect of any possible implementation Individual modules for the method of data transmission.
  • a terminal device including a transceiver, a processor, and a memory.
  • the processor is configured to control a transceiver transceiver signal for storing a computer program for calling and running the computer program from the memory, such that the network device performs the first aspect or any of the possible implementations of the first aspect
  • the method of any one of the possible implementations of the second or second aspect, or the method of any of the seventh or seventh aspect, or the eighth or eighth aspect A method in a possible implementation, or a module for performing the method for data transmission in any of the possible implementations of the ninth or ninth aspect.
  • a network device including a transceiver, a processor, and a memory.
  • the processor is configured to control a transceiver transceiver signal for storing a computer program, the processor for calling and running the computer program from the memory, such that the terminal device performs any of the third aspect or the third aspect.
  • the method of any one of the possible implementations of the fourth or fourth aspect, or the method of any of the possible implementations of the fifth or fifth aspect, or any of the sixth or sixth aspect A method in a possible implementation, or a module for performing the method for data transmission in any of the possible implementations of the tenth or tenth aspect.
  • the processor in the thirteenth aspect or the fourteenth aspect may be used to perform, for example, but not limited to, baseband related processing, and the receiver and the transmitter may be respectively used for performing, for example, but not limited to, radio frequency.
  • Send and receive may be respectively disposed on separate chips, or at least partially or completely on the same chip.
  • the receiver and the transmitter may be disposed on the receiver chip and the transmitter chip which are independent of each other. It can be integrated into a transceiver and then placed on the transceiver chip.
  • the processor can be further divided into an analog baseband processor and a digital baseband processor, wherein the analog baseband processor can be integrated on the same chip as the transceiver, and the digital baseband processor can be disposed on a separate chip.
  • a digital baseband processor can be combined with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) Integrated on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip can be referred to as a system on chip. Separate devices on different chips or integrated on one or more chips often depends on the specific needs of the product design. The specific implementation form of the above device is not limited in the embodiment of the present application.
  • a processor comprising: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, such that the processor performs the first to tenth aspects and any one of the first to tenth aspects The method in .
  • the processor may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
  • the signal output by the output circuit may be, for example, but not limited to, output to and transmitted by the transmitter, and the input circuit and output.
  • the circuit can be the same circuit that acts as an input circuit and an output circuit at different times.
  • the specific implementation manners of the processor and various circuits are not limited in the embodiment of the present application.
  • a processing apparatus comprising: a memory and a processor.
  • the processor is configured to read an instruction stored in the memory, and receive a signal through a receiver, and transmit a signal through a transmitter to perform the first to tenth aspects and any one of the first aspect to the tenth aspect The method in the implementation.
  • the processor is one or more, and the memory is one or more.
  • the memory may be integrated with the processor or the memory may be separate from the processor.
  • the memory may be a non-transitory memory, such as a read only memory (ROM), which may be integrated on the same chip as the processor, or may be separately set in different On the chip, the embodiment of the present application does not limit the type of the memory and the manner in which the memory and the processor are disposed.
  • ROM read only memory
  • a chip comprising a processor and a memory, the memory being for storing a computer program for calling and running the computer program from the memory, the computer program for implementing the first aspect to the first
  • a computer program product comprising: a computer program (also referred to as a code, or an instruction) that, when executed, causes the computer to perform the first aspect described above.
  • a computer program also referred to as a code, or an instruction
  • a computer readable medium storing a computer program (which may also be referred to as a code, or an instruction), when executed on a computer, causes the computer to perform the first aspect described above.
  • the computer readable storage medium is non-transitory.
  • the embodiment of the present application can perform channel measurement based on a transmission scheme, and feedback indication information for determining a plurality of precoding matrices to meet the requirement of a transmission scheme of precoding polling, which is beneficial to improving reliability of data transmission.
  • the robustness of the communication system can be improved.
  • FIG. 1 is a schematic diagram of a communication system suitable for a method for data transmission in an embodiment of the present application
  • FIG. 2 is a schematic diagram of a downlink physical channel processing procedure used in an existing LTE system
  • FIG. 3 is a schematic flowchart of a method for data transmission provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a bitmap provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method for data transmission provided by another embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for data transmission provided by another embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a method for data transmission provided by another embodiment of the present application.
  • FIG. 8 is a schematic block diagram of an apparatus for data transmission provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic block diagram of an apparatus for data transmission according to another embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a network device according to another embodiment of the present disclosure.
  • FIG. 12 is a schematic flowchart of a channel measurement indication method according to an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a channel measurement indication apparatus according to an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a channel measurement indication apparatus according to an embodiment of the present application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD LTE frequency division duplex
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • FIG. 1 shows a schematic diagram of a communication system suitable for a method and apparatus for data transmission in accordance with an embodiment of the present application.
  • the communication system 100 includes a network device 102 that can include multiple antennas, such as antennas 104, 106, 108, 110, 112, and 114. Additionally, network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer) , demodulator, demultiplexer or antenna, etc.).
  • the network device may be any device having a wireless transceiving function or a chip that can be disposed on the device, including but not limited to: a base station (eg, a base station NodeB, an evolved base station eNodeB, a network in a 5G communication system) Equipment (such as transmission point (TP), transmission reception point (TRP), base station, small base station equipment, etc.), network equipment in future communication systems, and Wireless-Fidelity (WiFi) system
  • TP transmission point
  • TRP transmission reception point
  • WiFi Wireless-Fidelity
  • Network device 102 can communicate with a plurality of terminal devices, such as terminal device 116 and terminal device 122.
  • Network device 102 can communicate with any number of terminal devices similar to terminal device 116 or 122.
  • the terminal device may also be referred to as a user equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless communication.
  • Device user agent, or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet, a computer with a wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal.
  • VR virtual reality
  • AR augmented reality
  • the embodiment of the present application does not limit the application scenario.
  • the foregoing terminal device and a chip that can be disposed in the foregoing terminal device are collectively referred to as a terminal device.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over forward link 118 and receive information from terminal device 116 over reverse link 120.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • the embodiments of the present application can be applied to downlink data transmission, and can also be applied to uplink data transmission, and can also be applied to device to device (D2D) data transmission.
  • D2D device to device
  • the device at the transmitting end is a base station, and the device at the corresponding receiving end is a UE;
  • the device at the transmitting end is a UE, and the device at the corresponding receiving end is a base station;
  • the transmitting device is a UE.
  • the corresponding receiving device is also a UE.
  • the embodiment of the present application does not limit this.
  • the forward link 118 can utilize a different frequency band than that used by the reverse link 120, and the forward link 124 can utilize the reverse link. 126 different frequency bands used.
  • FDD frequency division duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, a forward link 124, and a reverse link.
  • Link 126 can use a common frequency band.
  • Each antenna (or set of antennas consisting of multiple antennas) and/or regions designed for communication is referred to as a sector of network device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network device 102 coverage area.
  • the transmit antenna of network device 102 may utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
  • the network device 102 uses beamforming to transmit signals to the randomly dispersed terminal devices 116 and 122 in the relevant coverage area, the network device 102 uses a single antenna to transmit signals to all of its terminal devices. Mobile devices are subject to less interference.
  • Network device 102, terminal device 116 or terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • the communication system 100 may be a public land mobile network (PLMN) network or a device to device (D2D) network or a machine to machine (M2M) network or other network, and FIG. 1 is only for easy understanding.
  • PLMN public land mobile network
  • D2D device to device
  • M2M machine to machine
  • FIG. 1 is only for easy understanding.
  • other network devices may also be included in the network, which are not shown in FIG.
  • FIG. 2 is a schematic diagram of a downlink physical channel processing procedure used in an existing LTE system.
  • the processing object of the downlink physical channel processing is a codeword, and the codeword is usually a bitstream that is encoded (including at least channel coding).
  • the code word is scrambling to generate a scrambled bit stream.
  • the scrambled bit stream is subjected to modulation mapping to obtain a stream of modulation symbols.
  • the modulation symbol stream is mapped to a plurality of layers by layer mapping.
  • the symbol stream after layer mapping may be referred to as a layer mapping space layer.
  • the layer mapping spatial layer is precoded to obtain a plurality of precoded data streams (or precoded symbol streams).
  • the precoded symbol stream is mapped through a resource element (RE) and mapped to multiple REs. These REs are then subjected to orthogonal frequency division multiplexing (OFDM) modulation to generate an OFDM symbol stream.
  • OFDM orthogonal frequency division multiplexing
  • the precoding technique may be that, in the case of a known channel state, the pre-processing is performed on the signal to be transmitted at the transmitting end, that is, the signal to be transmitted is processed by means of a precoding matrix matched with the channel resource, so that the pre-preprocessing is performed.
  • the coded signal to be transmitted is adapted to the channel such that the complexity of the interference between channels at the receiving end is reduced. Therefore, the received signal quality (for example, signal to interference plus noise ratio (SINR)) is improved by precoding processing of the transmitted signal. Therefore, by using the precoding technology, the transmitting end device and the multiple receiving end devices can be transmitted on the same time-frequency resource, that is, multiple user multiple input multiple output (MU-MIMO) is implemented.
  • SINR signal to interference plus noise ratio
  • precoding technology is for example only, and is not intended to limit the scope of protection of the embodiments of the present application.
  • precoding may also be performed by other means (for example, when the channel matrix cannot be known).
  • the precoding is performed by using a pre-set precoding matrix or a weighting processing method, and the details are not described herein.
  • the receiving end tends to feed back the long-term wideband CSI.
  • the precoding matrix determined according to such CSI feedback is inaccurate, and the current channel state. It cannot be accurately adapted. Therefore, the pre-coded signal to be transmitted cannot be successfully demodulated by the receiving end, and finally the quality of the received signal is degraded.
  • a transmission scheme which uses multiple precoding vectors to perform precoding polling on the same data stream, and obtains diversity gain through polling of multiple precoding vectors, so as to be suitable for high-speed channel environment transformation or other Get the CSI scene accurately.
  • This transmission scheme can be referred to as precoding polling. It can be understood that precoding polling belongs to a transmission scheme of diversity transmission.
  • the transmitting end does not acquire the CSI measured based on the transmission scheme when using the transmission scheme of precoding polling.
  • the receiving end when performing channel measurement, usually performs channel measurement based on a closed-loop spatial multiplexing (CLSM) transmission scheme.
  • CLSM closed-loop spatial multiplexing
  • the fed back CSI is also generally applicable to the CLSM transmission scheme. Can not meet the needs of diversity transmission.
  • the transmitting end may perform channel measurement in advance by transmitting a reference signal, and obtain CSI obtained by channel measurement at the receiving end, thereby determining a more accurate precoding.
  • the matrix performs precoding processing on the data to be transmitted.
  • the reference signal may include a non-precoded reference signal and a precoded reference signal (or a beamformed reference signal).
  • the reference signal that is not precoded is similar to the Class A reference signal in the LTE protocol, and the precoded reference signal is similar to the Class B reference signal in the LTE protocol.
  • the difference between the two is that the CSI of the feedback (or indication) after channel measurement is different.
  • the receiving end can estimate the complete channel between the transmitting antenna and the receiving antenna based on the reference signal that is not precoded, and the CSI is obtained based on the measurement of the complete channel.
  • the receiving end can measure the equivalent channel based on the precoded reference signal, and the CSI is obtained based on the measurement of the equivalent channel. Therefore, it can be understood that although the receiving end feeds back CSI based on the two reference signals, the content contained in the CSI fed back (or indicated) by the channel measurement may be different based on different reference signals.
  • the pilot overhead caused by channel measurement (specifically, CSI measurement) using a pre-coded reference signal is large, and the transmission of each reference signal is large.
  • the power is lower, the channel measurement accuracy is lower; the pre-coded reference signal can be used to measure the equivalent channel matrix, and the terminal device measures the beam-shaped equivalent channel, so the number of antenna ports can be reduced.
  • the frequency overhead is small, so the transmission power is improved and the accuracy of channel measurement is improved.
  • both the precoded reference signal and the precoded reference signal can be used to determine the precoding matrix.
  • the former determines a precoding matrix based on the measurement of the complete channel, and the precoding matrix can be used for the precoding device to precode the data; the latter determines the precorresponding to the antenna port (or the beam) based on the measurement of the equivalent channel.
  • the coding vector that is, the precoding vector corresponding to the antenna port used for data transmission.
  • the precoding reference signal is used to select a precoding vector, or to select an antenna port, and select a beam.
  • an antenna port may correspond to a precoding vector, and when the transmitting end transmits the precoded reference signal based on a precoding vector corresponding to one antenna port, the transmitted signal
  • the precoding reference signal has a certain directivity. Therefore, the precoding reference signal transmitted by one antenna port can be understood as a beam in a specific direction. Simply put, one antenna port corresponds to one beam.
  • the communication mode and the type of reference signal to which the reference signal is applied in the present application are not particularly limited.
  • the transmitting end may be a network device, and the receiving end may be a terminal device, and the reference signal may be, for example, a channel state information reference signal (CSI-RS); for uplink data transmission,
  • the transmitting end may be a terminal device, and the receiving end may be a network device, and the reference signal may be, for example, a sounding reference signal (SRS);
  • SRS sounding reference signal
  • D2D device to device
  • the transmitting end may be It is a terminal device, and the receiving end may also be a terminal device, and the reference signal may be, for example, an SRS.
  • the types of reference signals listed above are merely exemplary and should not be construed as limiting the application, and the application does not exclude the possibility of using other reference signals to achieve the same or similar functions.
  • an antenna port (or simply referred to as a port) may be referred to as a reference signal port, and one reference signal corresponds to one antenna port.
  • the reference signal herein may include, for example, a channel state information reference signal.
  • the CSI-RS port and the DMRS port may also include an SRS port and a DMRS port. Different types of reference signals are used to implement different functions.
  • the description of the antenna port in this application may be a CSI-RS port or a DMRS port. Or, it may be an SRS port or a DMRS port, which can be understood by those skilled in the art.
  • the transmission scheme (or the transmission mode, the transmission mechanism) may be a transmission scheme defined in an existing protocol (for example, the LTE protocol), or may be related in the future 5G.
  • the transmission scheme defined in the protocol is not specifically limited in this embodiment of the present application. It should be understood that the transmission scheme can be understood as a term used to indicate the technical solution used for transmitting data, and should not be construed as limiting the embodiment of the present application.
  • the embodiment of the present application does not exclude the replacement of the transmission scheme by other names in the future protocol. Possible.
  • the method for data transmission provided by the present application is described in detail below by taking a reference signal that is not precoded and a reference signal that is precoded as an example.
  • the wireless communication system can be the communication system 100 shown in FIG.
  • the communication system can include at least one network device and at least one terminal device, and the network device and the terminal device can communicate via a wireless air interface.
  • the network device in the communication system may correspond to the network device 102 shown in FIG. 1
  • the terminal device may correspond to the terminal device 116 or 122 shown in FIG.
  • the network device and the terminal device may pre-store the same codebook, in which a plurality of precoding matrices and a plurality of indexes (for example, PMI) may be stored.
  • a plurality of precoding matrices and a plurality of indexes for example, PMI
  • the one-to-one correspondence between the plurality of precoding matrices and the plurality of PMIs may be predefined (for example, defined by a protocol) and configured in the network device and the terminal device, may be pre-defined by the network device, and pre-passed by the letter
  • the terminal device is notified to save the one-to-one correspondence between the plurality of precoding matrices and the plurality of PMIs.
  • FIG. 3 is a schematic flowchart of a method 200 for data transmission provided by an embodiment of the present application from the perspective of device interaction. Specifically, FIG. 3 shows a scenario of downlink data transmission. As shown, the method 200 illustrated in FIG. 3 can include steps 210 through 260.
  • step 210 the network device transmits at least one reference signal for channel measurement.
  • the terminal device receives at least one reference signal for channel measurement.
  • the at least one reference signal may be a reference signal carried on the same reference signal resource.
  • the resources of the multiple reference signal resources carried by the one reference signal resource may be time division multiplexing (TDM) or frequency division multiplexing.
  • TDM time division multiplexing
  • FDM frequency division multiplexing
  • CDM code division multiplexing
  • the network device can distinguish different antenna ports by means of TDM, FDM, CDM, and the like. If FDM or TDM is used, the frequency domain resources or time domain resources occupied by the reference signals of different antenna ports may be different. If CDM is used, the time-frequency resources occupied by the reference signals of different antenna ports may be the same, and different antenna ports are distinguished by multiplexing codes.
  • the resource allocation manner of the at least one first reference signal in the present application is not particularly limited.
  • the reference signal in downlink data transmission, may be, for example, a CSI-RS, and the reference signal resource may be, for example, a CSI-RS resource.
  • step 220 the terminal device feeds back a plurality of first indication information, which is used to indicate x precoding matrices, according to the at least one reference signal and the transmission scheme based on the CSI feedback.
  • the network device receives a plurality of first indication information that the terminal device feeds back based on the transmission scheme based on the at least one reference signal and the CSI feedback, and thereafter, in step 230, the network device is based on the multiple An indication information is used to determine x target precoding matrices.
  • x is the number of target precoding matrices that need to be fed back, and x is an integer greater than one.
  • the terminal device may indicate, by using the at least one first indication information, one target precoding matrix in the x target precoding matrices, and the network device may determine the x targets according to the prestored codebook and the at least one first indication information.
  • a target precoding matrix in the precoding matrix may be indicated (or determined) by a first indication information, or may be indicated (or determined) by a plurality of first indication information.
  • the x target precoding matrices may be different from each other, or may be partially identical, which is not limited in this application.
  • the transmission scheme based on the CSI feedback may be pre-agreed (for example, defined by a protocol) and configured in the network device and the terminal device, or may be determined and notified by the network device.
  • the network device may explicitly indicate the transmission scheme on which the terminal device CSI feedback is based by signaling.
  • the method further includes: Step 240, the network device sends indication information of the transmission scheme on which the CSI feedback is based.
  • the terminal device can perform measurement and feedback according to the transmission scheme indicated by the indication information. Therefore, the indication information of the transmission scheme on which the CSI feedback is based may also be referred to as indication information of a feedback type.
  • CSI feedback based transmission schemes include: precoding polling, space precoding based on precoding polling, space frequency diversity based on precoding polling, cyclic delay diversity based on precoding polling, etc. Precoding the transmission scheme of the poll.
  • the transmission scheme on which the CSI feedback is based can be understood as a hypothesis of a transmission scheme, and the terminal device performs CSI measurement and feedback based on the assumed transmission scheme.
  • the reference signal may be a pre-coded reference signal (case 1) or a pre-coded reference signal (case 2).
  • the indication information is used to indicate (or determine) a specific method of the precoding matrix.
  • the reference signal is a reference signal that is not precoded.
  • the network device may send a plurality of unprecoded reference signals in step 210, and the terminal device performs channel measurement based on the plurality of unprecoded reference signals sent by the network device in step 220, where the channel is measured.
  • the measurement can be a measurement of the complete channel between the transmit and receive antennas.
  • the terminal device determines a plurality of precoding matrices based on the channel measurement, and indicates the plurality of target precoding matrices by feeding back the plurality of first indication information.
  • the first indication information is a PMI
  • each of the multiple PMIs includes three codebook indexes i 1,1 , i 1,2 and i 2 , and three codebook indexes in each PMI
  • x PMIs are in one-to-one correspondence with x precoding matrices.
  • each PMI contains two PMI values, namely i 1 and i 2 .
  • the pre encoding matrix set may include at least one precoding matrix, the precoding matrix comprises at least one target precoding matrix; i 2 i.e. corresponding to the codebook of i 2, the index may be used to further from ⁇ i 1,1, i 1
  • a target precoding matrix is determined in the set of precoding matrices indicated by 2 ⁇ .
  • i 1 and i 2 can be used to jointly indicate a target precoding matrix.
  • a PMI can be used to determine a target precoding matrix.
  • the x target precoding matrices may be indicated by x PMIs.
  • the network device may determine the corresponding index according to the two PMI values included in each PMI, and further determine the precoding matrix indicated by each PMI, when the x PMIs are received. Precoding the matrix for the target.
  • the reference signal is a reference signal that is precoded and polled.
  • the network device may transmit at least one precoded reference signal in step 210.
  • the terminal device may perform channel measurement based on the at least one precoded reference signal transmitted by the network device in step 220, and the channel measurement may be a measurement of an equivalent channel.
  • the terminal device determines x target precoding matrices based on equivalent channel measurements.
  • each of the at least one reference signal may be a precoded reference signal.
  • Precoding polling can be understood as precoding the reference signal with at least two different precoding matrices on one reference signal resource.
  • the parameters used to characterize the precoding polling may include: a precoding polling granularity and a number of precoding matrices.
  • the precoding polling granularity indicates the number of consecutive resource units precoded using the same precoding matrix, and the number of precoding matrices indicates a reference signal.
  • the number of different precoding matrices used in the resource in the embodiment of the present application, the number of precoding matrices is denoted as y, y is an integer greater than 1.
  • the process of performing precoding polling by using y precoding matrices for each of the y resource groups may be recorded as one polling period, and one polling period, that is, the number of polling times is one, or, Ask once.
  • a resource unit can be understood as a minimum scheduling unit of physical layer transmission.
  • Each resource unit may be a resource block RB (resoruce block, RB) defined in the LTE protocol, or may be an RB group (RB group) composed of multiple RBs, and may also be 1/2 RB, 1/
  • the four RBs may be one or more resource elements (REs), which is not specifically limited in this application.
  • the resource unit is an RB, the granularity of the precoding polling may also be referred to as a precoding resource block group size (PRG size) or a polling PRG size.
  • PRG size precoding resource block group size
  • PRG size polling resource block group size
  • the at least one reference signal corresponds to at least one port one by one. If the number of reference signals is only 1, the precoding matrix of the reference signal includes only one column vector, and if the number of reference signals is R Then, the precoding matrix of the R reference signals includes R column vectors.
  • the measurement bandwidth of the reference signal may be divided into multiple physical resource groups (or simply resource groups), and each resource group may include at least one resource unit.
  • the y resource groups may be divided in the frequency domain or in the time domain, which is not specifically limited in this application.
  • the at least one precoding reference signal may be carried in the multiple resource groups, each resource group carrying the at least one precoding reference signal, and the precoding matrix corresponding to the signal carried by any two adjacent resource groups is different. It can be understood that the resource group is an example of the precoding polling granularity.
  • the measurement bandwidth is divided into four consecutive subbands (it should be understood that the subbands are resource groups divided in the frequency domain), which are subbands #1, subbands #2, and subbands, respectively. 3 and sub-band #4.
  • Each subband is precoded using the same precoding matrix.
  • the precoding matrix used on subband #1 and subband #3 is the same, and the precoding matrix used on subband #2 and subband #4 is the same.
  • the granularity of the precoding polling is one subband, and the number y of precoding matrices is 2.
  • the terminal device may determine x target precoding matrices according to the received y precoding matrices corresponding to the precoded polled reference signals.
  • the terminal device can directly use x precoding matrices in the y precoding matrices for precoding polling as x target precoding matrices. In this case, the terminal device can directly feed back to the network device an indication information carrying the number x of precoding matrices.
  • the network device may select x precoding matrices from the y precoding matrices for precoding polling for data transmission according to the indication information; another possible design is that the terminal device may be used according to the precoding wheel
  • the y precoding matrices of the query determine x target precoding matrices, wherein each target precoding matrix may be obtained by port selection based on at least one precoding matrix for precoding polling.
  • P B when a target precoding matrix (for example, P B ) is determined according to a precoding matrix (for example, P A ), P B may be composed of some or all column vectors in P A ;
  • P A and P C when at least one precoding matrix (e.g., denoted as P A and P C ) determines a target precoding matrix (e.g., denoted P D ), P B may be linearly superposed by some or all of the column vectors of P A and P C .
  • the terminal device may correspond to each resource group in the measurement bandwidth.
  • the precoding matrix determines x target precoding matrices, that is, determines a target precoding matrix according to at least one precoding reference signal carried by each resource group. It can be understood that, due to the precoding polling of the reference signal, when the number of polling times is greater than 1, there may be multiple resource groups corresponding to the same precoding matrix.
  • each precoding matrix in the y precoding matrices used for precoding polling is used to determine one target precoding matrix in the x target precoding matrices, the y precoding matrices One-to-one correspondence with x target precoding matrices.
  • the first indication information is a PMI, and each of the multiple PMIs is used to indicate a port corresponding to one precoding reference signal.
  • each PMI includes an index, which can be used to indicate a matrix, which may include at least one column vector whose column number is related to rank. If the rank is R, the matrix includes R column vectors. Each column vector is used to determine a precoding vector, and the matrix with the column number R can be used to determine a target precoding matrix with rank R.
  • step 230 when the network device receives multiple PMIs, it may determine, according to the matrix indicated by the index in each PMI, the precoding matrix indicated by each PMI, and then determine x target pre-determinations. Encoding matrix.
  • the following shows an example of the PMI used in the second case to indicate (or determine) the target precoding matrix.
  • the rank is greater than 1 (for example, the rank is 2)
  • the matrix enumerated above shows a matrix corresponding to the PMIs of ranks 1 and 2 under the four antenna ports.
  • the column vector is used to determine a precoding vector of the selected port, and the precoding vector is a target precoding matrix. 4 indicates the number of ports and 3 indicates the currently selected port.
  • each column vector in the matrix is used to determine a precoding vector for the selected port, which matrix can be used to determine a target precoding matrix with a column number of two. 4 indicates the number of ports, 3 in the first column indicates the port currently selected for the first data layer, and 0 in the second column indicates the port currently selected for the second data layer.
  • the following shows another example of the PMI used in Case 2 to indicate (or determine) the target precoding matrix.
  • the rank is greater than 1 (for example, the rank is 2)
  • the matrix enumerated above shows a matrix corresponding to the PMIs of ranks 1 and 2 under the eight antenna ports.
  • the column vector is used to determine a precoding vector of the selected port, and the precoding vector may correspond to two polarization directions, where 4 represents the number of ports, 3 represents the currently selected port, and two One Between the polarization antenna phase factor (co-phase) ⁇ , the value of the polarization antenna phase factor ⁇ can be any value in [1, -1, j, -j].
  • the column vector can be used to determine a precoding vector for data transmission, that is, the precoding vector corresponding to the third port in the first polarization direction and the third port in the second polarization direction are spliced together.
  • the precoding vector is constructed.
  • the precoding vector corresponding to the third port in the first polarization direction is P 1
  • the precoding vector corresponding to the third port in the second polarization direction is P 2
  • the precoding determined according to the column vector is used.
  • the vector is:
  • the precoding vector is a target precoding matrix.
  • each column vector in the matrix is used to determine a precoding vector for the selected port, which matrix can be used to determine a target precoding matrix with a column number of two.
  • Each precoding vector in the target precoding matrix may correspond to two polarization directions, where 4 represents the number of ports, and 0 in the first column represents the currently selected port for the first data layer, 3 of the two columns represents the currently selected port for the second data layer, and each column vector can be distinguished by the polarization antenna phase factor ⁇ .
  • the precoding vector corresponding to the third port in the first polarization direction is P 1
  • the precoding vector corresponding to the third port in the second polarization direction is P 2
  • the 0th port in the first polarization direction is P 3
  • the precoding vector corresponding to the 0th port in the second polarization direction is P 4
  • the target precoding matrix determined according to the matrix is:
  • each column vector in the target precoding matrix determined by the first indication information fed back by the terminal device may have a one-to-one correspondence with the port configured by the network device.
  • the network device is based on the first indication.
  • Each column vector in the target precoding matrix determined by the information is a precoding vector used by the corresponding port; the precoding vector fed back by the terminal device may also correspond to multiple ports configured by the network device (ie, The port is merged.
  • the precoding vector may be a linear superposition of the precoding vectors used by the multiple ports.
  • the terminal device may feed multiple ports and linear combination coefficients to the network device. In order for the network device to determine the precoding vector.
  • the method for performing port merging by the terminal device may be the same as the method in the prior art. For the sake of brevity, a detailed description of the specific process is omitted here.
  • the terminal device may first select x from y precoding matrices.
  • the precoding matrix notifies the network device by using the second indication information, and then the terminal device may determine x target precoding matrices based on the x precoding matrices, and feed back the x target precoding matrices to the network device by using the first indication information. .
  • the method further includes:
  • the terminal device sends second indication information indicating x precoding matrices in the y precoding matrices for precoding polling, each of the x precoding matrices used for precoding polling.
  • the precoding matrix is used to determine a target precoding matrix in the x target precoding matrices, and the x precoding matrices used for precoding polling are in one-to-one correspondence with the x target precoding matrices.
  • the network device receives the second indication information, and determines, according to the second indication information, the x precoding matrices from the y precoding matrices used for precoding polling;
  • the network device determines each target precoding matrix in the x target precoding matrices according to the plurality of first indication information and each precoding matrix in the x precoding matrices used for precoding polling.
  • the second indication information may be a bitmap, where multiple bits in the bitmap are in one-to-one correspondence with the y pre-coding matrices, or a polling included in the measurement bandwidth
  • the y resource groups in the period are in one-to-one correspondence, and the value in each bit is used to indicate whether the corresponding precoding matrix is selected, or a precoding matrix for indicating whether to select the reference signal carried by the corresponding resource group.
  • a bit in the bitmap is set to "0" to indicate that the corresponding precoding matrix is not selected, and the bit in the bitmap is set to "1" to indicate that the corresponding precoding matrix is selected. It can be understood that, due to the precoding polling of the reference signal, when the number of polling times is greater than 1, there may be multiple resource groups corresponding to the same precoding matrix.
  • the number of pre-coding matrices y is 4, the number of polling times is one, and four sub-bands are in one-to-one correspondence with four precoding matrices, and feedback is needed.
  • the number x of target precoding matrices is 2. 4 is a schematic diagram of a bitmap provided by an embodiment of the present application. As shown in FIG. 4, the four bits in the bitmap are displayed as "0101", indicating that the precoding matrix corresponding to subband #1 and subband #3 is not selected, and the preamble corresponding to subband #2 and subband #4 The coding matrix is selected.
  • the first indication information is used to indicate (or determine) the target precoding matrix is described in detail above in connection with Case 1 and Case 2. It can be understood that the method for indicating the target precoding matrix is used as an indirect indication method, and the network device may determine x target precoding matrices according to the received multiple first indication information.
  • the terminal device may measure and determine a plurality of target precoding matrices according to a transmission scheme based on CSI feedback.
  • the number x of the target precoding matrices may be pre-agreed (e.g., as defined by a protocol), or may be determined by the network device based on the current channel state and signaled to the terminal device.
  • the method 200 further includes: Step 250, the network device sends fifth indication information, where the fifth indication information indicates the number x of target precoding matrices.
  • the fifth indication information may be carried in any one of the following signaling: radio resource control (RRC) message, media access control (MAC)-control element (CE) Downlink control information (DCI).
  • RRC radio resource control
  • MAC media access control
  • CE control element
  • DCI Downlink control information
  • the method 200 further includes: Step 260: The network device sends indication information of a maximum value c of the number c of target precoding matrices, where c ⁇ x,c is an integer.
  • the network device may further limit the maximum number of target precoding matrices that the terminal device feeds back to limit the signaling overhead caused by the terminal device feedback.
  • the indication information of the maximum value c of the target precoding quantity may be carried in any one of the following signaling: RRC message, MAC-CE or DCI.
  • the method 200 further includes: Step 270: The network device performs precoding polling on the data to be sent according to the x target precoding matrices determined in step 230, and sends the precoded polled data.
  • the network device may pre-code the data to be directly sent according to the x target precoding matrices determined in step 230, or perform mathematical transformation or mathematics according to the x target precoding matrices determined in step 230.
  • Computing obtaining a plurality of precoding matrices for the precoding operation, and performing precoding polling on the data to be transmitted based on the obtained plurality of precoding matrices.
  • the network device After the network device performs precoding polling on the data, the network device obtains and transmits the data after the precoding polling.
  • the transmission scheme for downlink data transmission may be pre-agreed (for example, defined by a protocol) and configured in the network device and the terminal device, or may be determined by the network device according to the CSI of the terminal device measurement feedback.
  • the transmission scheme based on the CSI feedback is the same as the transmission scheme used for the downlink data transmission, and both are precoding polling.
  • the present invention is not limited to the present application.
  • the transmission scheme based on the CSI feedback and the transmission scheme used for the downlink data transmission may be the same or different, which is not limited in this application.
  • the method 200 further includes: Step 280: The terminal device sends the indication information of the precoding polling granularity.
  • the indication information of the precoding polling granularity may be further fed back to the network device.
  • the terminal device may perform measurement by using multiple possible precoding polling granularities, and the optimal precoding polling granularity under a certain metric is fed back to the network device.
  • the network device performs precoding polling based on the optimal precoding polling granularity, which is more advantageous for obtaining diversity gain and further improving the reliability of data transmission.
  • the metric may include, but is not limited to, a signal-to-interference-plus-noise ratio (SINR) maximization, a Shannon capacity maximization, or a quantized equivalent channel matrix corresponding to the PMI.
  • SINR signal-to-interference-plus-noise ratio
  • MSE mean square error
  • the terminal device may select an optimal precoding polling granularity under a certain metric in at least one candidate value of the precoding polling granularity.
  • At least one candidate value of the precoding polling granularity may be predetermined (eg, defined by a protocol), or may be determined by the network device and signaled to the terminal device.
  • the method 200 further includes: Step 290: The network device sends at least one candidate value of the precoding polling granularity.
  • the network device may send a candidate value of the precoding polling granularity to the terminal device in advance, and the terminal device may separately perform measurement based on the at least one candidate value to determine an optimal precoding polling granularity feedback to the network device under a certain metric.
  • the terminal device can select the optimal precoding polling granularity within a small range, and can reduce the complexity of the terminal device measurement.
  • the embodiment of the present application feeds back, by using the terminal device, indication information for determining multiple target precoding matrices, so that the network device can determine multiple target precoding matrices for precoding polling based on the feedback to meet the requirements of the transmission scheme. Therefore, the diversity gain can be better obtained, which is beneficial to improving the reliability of data transmission and improving the robustness of the communication system.
  • FIG. 5 is a schematic flowchart of a method 300 for data transmission provided by another embodiment of the present application from the perspective of device interaction. Specifically, FIG. 5 shows a scenario of uplink data transmission. As shown, the method 300 illustrated in FIG. 5 can include steps 310 through 350.
  • step 310 the terminal device transmits at least one reference signal for channel measurement.
  • the network device receives at least one reference signal for channel measurement.
  • the at least one reference signal may be a reference signal carried on the same reference signal resource.
  • resources configured by the plurality of reference signals carried by the one reference signal resource may be TDM, FDM, or CDM.
  • the reference signal may be, for example, an SRS
  • the reference signal resource may be, for example, an SRS resource
  • step 310 is similar to the specific process of step 210 in method 200. For brevity, no further details are provided herein.
  • step 320 the network device sends, according to the at least one reference signal and the transmission scheme based on the CSI measurement, a plurality of sixth indication information, where the multiple sixth indication information is used to indicate the x target precoding matrices.
  • CSI measurement based transmission schemes include: precoding polling, space precoding based on precoding polling, space frequency diversity based on precoding polling, cyclic delay diversity based on precoding polling, etc. Precoding the transmission scheme of the poll.
  • a transmission scheme based on CSI measurement can be understood as a hypothesis of a transmission scheme, and a network device performs CSI measurement and indication based on the assumed transmission scheme.
  • x is the number of target precoding polls that need to be indicated. Since the network device can determine, according to the current channel state, that several precoding matrices need to be used for polling, that is, determine the number x of target precoding matrices that need to be indicated, the network device can directly poll the target according to the target. The number x determines x target precoding matrices.
  • the specific method for measuring and indicating the uplink channel may follow the measurement and feedback method of the downlink channel in the LTE, and indicate the precoding matrix through the PMI.
  • a precoding matrix is jointly indicated by three codebook indexes; for a precoded reference signal, a precoding matrix can be determined by a port indicated by the PMI.
  • step 320 is the same as the specific process of step 220 in method 200. For brevity, details are not described herein again.
  • the terminal device receives the plurality of sixth indication information in step 320, and in step 330, the terminal device determines x target precoding matrices according to the plurality of sixth indication information.
  • the reference signal may be a reference signal that is not precoded and a precoded reference signal.
  • the indication information of the two reference signals ie, the sixth indication information
  • each precoding matrix in the y precoding matrices used for precoding polling is used to determine one target precoding matrix in the x target precoding matrices,
  • the y precoding matrices are in one-to-one correspondence with the x target precoding matrices.
  • the method 300 further includes:
  • the network device sends seventh indication information, where the seventh indication information is used to indicate x precoding matrices in the y precoding matrices used for precoding polling, for precoding the x precoding matrices of the precoding matrix.
  • Each precoding matrix is used to determine a target precoding matrix in the x target precoding matrices, and the x precoding matrices for precoding polling are in one-to-one correspondence with the x target precoding matrices.
  • the sixth indication information and the seventh indication information are The first indication information and the second indication information are indication information named for facilitating the distinction between the uplink and the downlink, respectively, and the two have the same function. Therefore, when receiving the plurality of sixth indication information, the terminal device can The plurality of sixth indication information determines x target precoding matrices, or when the sixth indication information and the seventh indication information are received, the x target precoding matrices may be determined according to the sixth indication information and the seventh indication information.
  • the specific method and method for determining, by the terminal device, the x target precoding matrices according to the plurality of sixth indication information, in step 330 the network device determines, in step 230, x target precoding matrices according to the plurality of first indication information.
  • the specific method is the same, and is used to indirectly indicate x target precoding matrices;
  • the specific method and method for determining x target precoding matrices according to the sixth indication information and the seventh indication information in step 330 by the terminal device are
  • the specific method for determining the x target precoding matrices according to the sixth indication information and the seventh indication information is the same in step 230. For brevity, details are not described herein again.
  • the transmission scheme for uplink data transmission may be pre-agreed (for example, defined by a protocol) and configured in the network device and the terminal device, or may be determined by the network device and notified to the terminal device by signaling.
  • the method 300 further includes: Step 340: The network device sends indication information of a transmission scheme for uplink data transmission.
  • the terminal device can determine x precoding matrices based on the received plurality of sixth indication information according to the transmission scheme of the precoding polling.
  • the transmission scheme based on the network device CSI measurement and the transmission scheme used for the uplink data transmission may be the same or different.
  • the network device can make measurements based on multiple transmission schemes and select an optimal transmission scheme for data transmission based on the metrics. This application does not limit this.
  • the transmission scheme for the uplink data transmission is a precoding polling.
  • the method further includes: Step 350, the terminal device performs precoding polling on the data to be sent according to the x target precoding matrices, and sends the precoding. Data after polling.
  • step 350 is the same as the specific process of step 270 of method 200, and for brevity, no further details are provided herein.
  • the method 300 further includes: Step 360: The network device sends the indication information of the precoding polling granularity.
  • the network device may determine, by measurement, an optimal precoding polling granularity under a certain metric, and notify the terminal device of the precoding rounding granularity by using the indication information. After learning the precoding polling granularity, the terminal device may perform precoding polling on the data to be transmitted based on the precoding polling granularity and the x target precoding matrices determined in step 330.
  • the embodiment of the present application sends indication information for determining a plurality of target precoding matrices by using a network device, so that the terminal device can determine, according to the indication information, multiple target precoding matrices for precoding polling to satisfy precoding.
  • the requirements of the polling transmission scheme can better obtain the diversity gain, which is beneficial to improve the reliability of data transmission and improve the robustness of the communication system.
  • FIG. 6 shows a schematic flow diagram of a method 400 for data transmission in accordance with yet another embodiment of the present application from the perspective of device interaction. Specifically, FIG. 6 shows a scenario of downlink data transmission. As shown, the method 400 illustrated in FIG. 6 can include steps 410 through 490.
  • step 410 the network device transmits a plurality of reference signals for channel measurement.
  • the terminal device receives a plurality of reference signals for channel measurement.
  • the plurality of reference signals may be reference signals carried on the same reference signal resource.
  • the specific process of step 410 is the same as the specific process of step 210 in method 200. For brevity, details are not described herein again.
  • the reference signal sent by the network device may be a reference signal that is not precoded, and the terminal device may perform channel according to multiple unprecoded reference signals and CSI feedback based transmission schemes sent by the network device.
  • the channel measurement can be a measurement of the complete channel between the transmit and receive antennas.
  • the terminal device determines x target precoding matrices based on the channel measurement, and feeds back indication information of the x target precoding matrices to the network device in step 420.
  • x is the number of target precoding matrices that need to be fed back, and x is an integer greater than one.
  • CSI feedback based transmission schemes include: precoding polling, space precoding based on precoding polling, space frequency diversity based on precoding polling, cyclic delay diversity based on precoding polling, etc. Precoding the transmission scheme of the poll.
  • the transmission scheme on which the CSI feedback is based can be understood as a hypothesis of a transmission scheme, and the terminal device performs CSI measurement and feedback based on the assumed transmission scheme.
  • PMI may comprise two values, wherein the value of i 1 can be a PMI codebook corresponding to the pair of indexes ⁇ i 1,1 , i 1,2 ⁇ , a set of precoding matrices may be determined by a pair of indices ⁇ i 1,1 , i 1,2 ⁇ , which may include at least one precoding matrix.
  • the indication information (ie, the third indication information) used to indicate the x target precoding matrices may be one PMI value i 1 in the foregoing PMI.
  • the PMI value i 1 may be used to indicate a precoding matrix set (referred to as a first precoding matrix set for convenience of distinction and description), and the first precoding matrix set may include z precoding matrices, where z>1 , y is an integer.
  • the terminal device may only feed back the third indication information to pass the third indication information. Indicates the first precoding matrix set.
  • the terminal device may further use the first precoding matrix indicated by the third indication information.
  • the x target precoding matrices are selected in the set, and the network device is notified by the fourth indication information.
  • each precoding matrix included in each precoding matrix set in the codebook may be divided into multiple groups, and each group includes at least one precoding matrix.
  • each group may include x precoding matrices.
  • a one-to-one correspondence between the plurality of groups and the plurality of indexes is predefined in the codebook.
  • the terminal device may send the index of the group of the selected x precoding matrices to the network device, that is, the fourth indication information may be an index of the group in which the precoding matrix is located.
  • the first precoding matrix includes four precoding matrices (for example, P 1 , P 2 , P 3 , and P 4 ), and the four precoding matrices are divided into two groups, each group including Two precoding matrices, the precoding matrix contained in each group and the one-to-one correspondence with the index are shown in the following table:
  • the terminal device indicates a mapping table of the mapping relationship between the precoding matrix and the index by using the third indication information, and further indicates a certain group of precoding matrices in the mapping table by using the fourth indication information.
  • the fourth indication information may be a bitmap.
  • the plurality of bits in the bitmap are in one-to-one correspondence with the plurality of precoding matrices included in the precoding matrix set, and the value in each bit is used to indicate whether the corresponding precoding matrix is selected.
  • the first precoding matrix set includes four precoding matrices (for example, P 1 , P 2 , P 3 , and P 4 ), and the bitmap includes the four precoding matrices. Corresponding four bits.
  • the bit in the bitmap is set to "0" to indicate that the corresponding precoding matrix is not selected, and the bit in the bitmap is set to "1" to indicate that the corresponding precoding matrix is selected.
  • the bitmap shown in FIG. 4 can be understood as the precoding matrices P 2 and P 4 are selected.
  • the terminal device may indicate the x target precoding matrices to the network device by using the third indication information and the fourth indication information. Based on the same method, in step 430, the network device determines x target precoding matrices according to the third indication information and the fourth indication information.
  • the transmission scheme based on the CSI feedback may be pre-agreed (for example, defined by a protocol) and configured in the network device and the terminal device, or may be determined and notified by the network device.
  • the network device may explicitly indicate the transmission scheme on which the terminal device CSI feedback is based by signaling.
  • the method further includes: Step 440: The network device sends indication information of the transmission scheme on which the CSI feedback is based.
  • the terminal device can perform measurement and feedback according to the transmission scheme indicated by the indication information. Therefore, the indication information of the transmission scheme on which the CSI feedback is based may also be referred to as indication information of a feedback type.
  • CSI feedback based transmission schemes include: precoding polling, space precoding based on precoding polling, space frequency diversity based on precoding polling, cyclic delay diversity based on precoding polling, etc. Precoding the transmission scheme of the poll.
  • the transmission scheme based on the CSI feedback and the transmission scheme used for the downlink data transmission may be the same or different, which is not limited in this application.
  • the terminal device may measure and determine a plurality of target precoding matrices according to a transmission scheme based on CSI feedback.
  • the number x of the target precoding matrices may be pre-agreed (e.g., as defined by a protocol), or may be determined by the network device based on the current channel state and signaled to the terminal device.
  • the method 400 further includes: Step 450, the network device sends fifth indication information indicating the number of target precoding matrices that need to be fed back. x.
  • the fifth indication information may be carried in any one of the following signaling: RRC message, MAC-CE, or DCI.
  • the method 400 further includes: Step 460: The network device sends indication information of a maximum value c of the target precoding matrix number.
  • the network device may further limit the maximum number of target precoding matrices that the terminal device feeds back to limit the signaling overhead caused by the terminal device feedback.
  • the indication information of the maximum value c of the target precoding quantity may be carried in any one of the following signaling: RRC message, MAC-CE or DCI.
  • the method 400 further includes: Step 470: The network device performs precoding polling on the precoding data to be sent according to the x target precoding matrices determined in step 430, and sends the precoded polled data.
  • the network device may pre-code the data to be directly sent according to the x target precoding matrices determined in step 430, or perform mathematical transformation or mathematics according to the x target precoding matrices determined in step 430.
  • Computing obtaining a plurality of precoding matrices for the precoding operation, and performing precoding polling on the data to be transmitted based on the obtained plurality of precoding matrices.
  • the network device After the network device performs precoding polling on the data, the network device obtains and transmits the data after the precoding polling.
  • the x target precoding matrices fed back by the above terminal device are not limited to being used for precoding polling of data.
  • the network device may further select (eg, randomly select) one of the x target precoding matrices for pre-predicting the data. Encoded precoding matrix. This application does not limit the function of the x target precoding matrices.
  • the transmission scheme for downlink data transmission may be pre-agreed (for example, defined by a protocol) and configured in the network device and the terminal device, or may be determined by the network device according to the CSI of the terminal device measurement feedback.
  • the transmission scheme based on the CSI feedback is the same as the transmission scheme used for the downlink data transmission, and both are precoding polling.
  • the present invention is not limited to the present application.
  • the transmission scheme based on the CSI feedback and the transmission scheme used for the downlink data transmission may be the same or different, which is not limited in this application.
  • the method 400 further includes: Step 480: The terminal device sends the indication information of the precoding polling granularity.
  • the indication information of the precoding polling granularity may be further fed back to the network device.
  • the terminal device may perform measurement by using multiple possible precoding polling granularities, and the optimal precoding polling granularity under a certain metric is fed back to the network device.
  • the network device performs precoding polling based on the optimal precoding polling granularity, which is more advantageous for obtaining diversity gain and further improving the reliability of data transmission.
  • the terminal device may select an optimal precoding polling granularity under a certain metric in at least one candidate value of the precoding polling granularity.
  • At least one candidate value of the precoding polling granularity may be predetermined (eg, defined by a protocol), or may be determined by the network device and signaled to the terminal device.
  • the method 400 further includes: Step 490, the network device sends at least one candidate value of the precoding polling granularity.
  • the network device may send a candidate value of the precoding polling granularity to the terminal device in advance, and the terminal device may separately perform measurement according to the at least one candidate value to determine an optimal precoding polling granularity under a certain metric, and step 460 Feedback to network devices.
  • the terminal device can select the optimal precoding polling granularity within a small range, and can reduce the complexity of the terminal device measurement.
  • the embodiment of the present application feeds back, by using the terminal device, indication information for determining multiple target precoding matrices, so that the network device can determine multiple target precoding matrices for precoding polling based on the feedback to satisfy precoding polling.
  • the requirements of the transmission scheme can better obtain the diversity gain, which is beneficial to improve the reliability of data transmission and improve the robustness of the communication system.
  • FIG. 7 is a schematic flowchart of a method 500 for data transmission provided by another embodiment of the present application from the perspective of device interaction. Specifically, FIG. 7 shows a scenario of uplink data transmission. As shown, the method 500 shown in FIG. 7 can include steps 510 through 550.
  • step 510 the terminal device transmits a plurality of reference signals for channel measurement.
  • the network device receives a plurality of reference signals for channel measurements.
  • step 510 is similar to the specific process of step 210 in method 200, and is not described herein for brevity.
  • the network device sends eighth indication information and ninth indication information, based on the multiple reference signals and the transmission scheme based on the CSI measurement, the eighth indication information and the ninth indication information are used to determine x precoding matrices.
  • CSI measurement based transmission schemes include: precoding polling, space precoding based on precoding polling, space frequency diversity based on precoding polling, cyclic delay diversity based on precoding polling, etc. Precoding the transmission scheme of the poll.
  • a transmission scheme based on CSI measurement can be understood as a hypothesis of a transmission scheme, and a network device performs CSI measurement and indication based on the assumed transmission scheme.
  • the specific method for measuring and indicating the uplink channel may follow the measurement and feedback method of the downlink channel in the LTE.
  • a precoding matrix in the precoding matrix set is indicated by first indicating a precoding matrix set by an indication information (for example, an index), and then by an indication information (for example, an index, a bitmap, or the like).
  • step 520 is similar to the specific process of step 420 of method 400, and for brevity, no further details are provided herein.
  • the eighth indication information and the ninth indication information and the third indication information and the fourth indication information in the method 400 are indication information named to facilitate distinguishing between uplink and downlink, and both have the same function. Therefore, the network device is When the eighth indication information and the ninth indication information are received, the x precoding matrices may be determined according to the eighth indication information and the ninth indication information in step 530.
  • the specific method and method 400 for the terminal device to determine x precoding matrices according to the eighth indication information and the ninth indication information in step 530 determines that the network device determines the x according to the third indication information and the fourth indication information in step 430.
  • the specific methods of the precoding matrix are the same, and for brevity, no further details are provided here.
  • the method 500 further includes: Step 540: The network device sends indication information of a transmission scheme for uplink data transmission.
  • the method 500 further includes: Step 550: The terminal device performs precoding polling on the data to be sent according to the x precoding matrices, and sends the precoded polled data.
  • the x target precoding matrices indicated by the above network device are not limited to being used for precoding polling of data.
  • the terminal device may further select (eg, randomly select) one of the x target precoding matrices for pre-predicting the data. Encoded precoding matrix. This application does not limit the function of the x target precoding matrices.
  • the method 500 further includes: Step 560: The network device sends the indication information of the precoding polling granularity.
  • steps 540 to 560 are similar to the specific processes of step 340 and step 360 in the method 300, and are not described herein again for brevity.
  • the embodiment of the present application sends indication information for determining a plurality of target precoding matrices by using a network device, so that the terminal device can determine, according to the indication information, multiple target precoding matrices for precoding polling to satisfy precoding.
  • the requirements of the polling transmission scheme can better obtain the diversity gain, which is beneficial to improve the reliability of data transmission and improve the robustness of the communication system.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • FIG. 8 is a schematic block diagram of the apparatus 10 provided by the embodiment of the present application.
  • the device 10 may be a terminal device, or may be a chip or a circuit, such as a chip or a circuit that can be disposed in the terminal device.
  • the terminal device may correspond to the terminal device in the foregoing method.
  • the device 10 can be configured in a communication system including a network device and the device 10, the network device and the device 10 pre-storing a plurality of precoding matrices.
  • the device 10 can include a receiving module 11 and a transmitting module 12.
  • the receiving module 11 is configured to receive multiple reference signals for channel measurement.
  • the sending module 12 is configured to send, according to the multiple reference signals and the transmission scheme based on the CSI feedback, a plurality of first indication information, where the multiple first indication information is used to indicate x target precoding matrices, the multiple first At least one first indication information in the indication information is used to indicate a target precoding matrix, where the x target precoding matrices are determined based on multiple precoding matrices;
  • x is the number of target precoding matrices that need to be fed back, and x is an integer greater than one.
  • each of the at least one reference signal is a precoded polled reference signal
  • each of the plurality of first indication information is used to indicate a granularity in a precoding polling And a precoding matrix corresponding to one of the at least one reference signal, wherein the number of precoding polls is greater than or equal to 1, and the number of precoding matrices used for precoding polling is y, and y is greater than 1. Integer.
  • each precoding matrix in the y precoding matrices used for precoding polling is used to determine one target precoding matrix in the x target precoding matrices,
  • the y precoding matrices are in one-to-one correspondence with the x target precoding matrices.
  • the sending module 12 is further configured to send second indication information, where the second indication information indicates x precoding matrices in the y precoding matrices used for precoding polling. And each precoding matrix in the x precoding matrices for precoding polling is used to determine one target precoding matrix in the x target precoding matrices, the x precodings for precoding polling The matrix has a one-to-one correspondence with the x target precoding matrices.
  • each of the at least one reference signal is a reference signal that is not precoded
  • each of the plurality of first indication information includes three codebook indexes, each first The three codebook indexes in the indication information are used to jointly indicate a precoding matrix, and the plurality of first indication information are in one-to-one correspondence with the x target precoding matrices.
  • the sending module 12 is further configured to send the indication information of the precoding polling granularity.
  • the receiving module 11 is further configured to receive at least one candidate value of the precoding polling granularity.
  • the receiving module 11 is further configured to use fifth indication information, where the fifth indication information indicates the number x of target target precoding matrices that need to be fed back.
  • the number x of target precoding matrices that need to be fed back is pre-configured in the device 10 and the network device.
  • the apparatus 10 may correspond to a terminal device in the method 200 for data transmission in accordance with an embodiment of the present application, the apparatus 10 may include a terminal device for performing the method 200 for data transmission in FIG.
  • the module of the method are respectively used to implement the corresponding process of the method 200 for data transmission in FIG. 3, and specifically, the receiving module 11 is configured to perform step 210 in the method 200, Steps 240 to 260 and steps 270 and 290, the sending module 12 is configured to perform step 220 and step 280 in the method 200.
  • the specific process of each module performing the corresponding steps has been described in detail in the method 200. No longer.
  • the apparatus 10 may be configured in a communication system including a network device and the apparatus 10, the network apparatus and the apparatus 10 pre-preserving a plurality of precoding matrix sets, each precoding of the plurality of precoding matrix sets
  • the matrix set contains at least one precoding matrix.
  • the apparatus 10 can include a receiving module 11, a transmitting module 12, and a processing module.
  • the sending module 12 is configured to send at least one reference signal used for channel measurement.
  • the receiving module 11 is configured to receive, by the network device, a plurality of sixth indication information that is sent according to the at least one reference signal and a transmission scheme based on the CSI measurement, where the multiple sixth indication information is used to indicate x target precoding matrices, where the At least one sixth indication information of the sixth indication information is used to indicate a target precoding matrix, and the x target precoding matrices are determined based on the plurality of precoding matrices;
  • the processing module 13 is configured to determine the x target precoding matrices according to the plurality of sixth indication information
  • x is the number of target precoding matrices that need to be indicated, and x is an integer greater than one.
  • each of the at least one reference signal is a precoded polled reference signal
  • each of the plurality of sixth indication information is used to indicate a granularity in a precoding polling And a precoding matrix corresponding to one of the at least one reference signal, wherein the number of precoding polls is greater than or equal to 1, and the number of precoding matrices used for precoding polling is y, and y is greater than 1. Integer.
  • each precoding matrix in the y precoding matrices used for precoding polling is used to determine one target precoding matrix in the x target precoding matrices,
  • the y precoding matrices are in one-to-one correspondence with the x target precoding matrices.
  • the receiving module 11 is further configured to receive the seventh indication information
  • the processing module 13 is further configured to determine, according to the seventh indication information, x precoding matrices from the y precoding matrices used for precoding polling;
  • the processing module 13 is specifically configured to determine, according to the multiple sixth indication information and each precoding matrix in the x precoding matrices used for precoding polling, each target precoding matrix in the x target precoding matrices,
  • the x precoding matrices for precoding polling are in one-to-one correspondence with the x target precoding matrices.
  • each of the at least one reference signal is a reference signal that is not precoded
  • each of the plurality of sixth indication information includes three codebook indexes
  • each sixth The three codebook indexes in the indication information are used to jointly indicate a precoding matrix
  • the plurality of sixth indication information are in one-to-one correspondence with the x target precoding matrices.
  • the receiving module 11 is further configured to receive indication information of the precoding polling.
  • the number x of target precoding matrices that need to be indicated is pre-configured in the network device and the device 10.
  • the apparatus 10 may correspond to a terminal device in the method 300 for data transmission of an embodiment of the present application, and the apparatus 10 may include a method for performing the terminal device of the method 300 for data transmission in FIG. Module.
  • each module in the device 10 and the other operations and/or functions described above are respectively used to implement the corresponding process of the method 300 for data transmission in FIG. 5, specifically, the sending module 12 is configured to perform step 310 in the method 300, Step 340 to step 360, the receiving module 11 is configured to perform step 320 in the method 300, and the processing module 13 is configured to perform step 330 in the method 300.
  • the specific process of each module performing the corresponding step is described in detail in the method 300. Concise, no longer repeat here.
  • the apparatus 10 may be configured in a communication system including a network device and the apparatus 10, the network apparatus and the apparatus 10 pre-preserving a plurality of precoding matrix sets, each precoding of the plurality of precoding matrix sets
  • the matrix set contains at least one precoding matrix.
  • the device 10 can include a receiving module 11 and a transmitting module 12.
  • the receiving module 11 is configured to receive multiple reference signals for channel measurement.
  • the sending module 12 is configured to send, according to the multiple reference signals and the transmission scheme based on the CSI feedback, the third indication information and the fourth indication information, where the third indication information is used to indicate the first one of the plurality of precoding matrix sets a coding matrix set, the fourth indication information is used to indicate x target precoding matrices in the first precoding matrix set; wherein x is the number of target precoding matrices that need to be fed back, and x is an integer greater than 1.
  • each of the plurality of reference signals is a reference signal that is not precoded
  • the third indication information includes two codebook indexes
  • two codebook indexes in the third indication information are used for The joint indicates the first precoding matrix set.
  • the sending module 12 is further configured to send the indication information of the precoding polling granularity.
  • the receiving module 11 is further configured to receive fifth indication information, where the fifth indication information indicates the number x of target precoding matrices that need to be fed back.
  • the apparatus 10 may correspond to a terminal device in the method 400 for data transmission of an embodiment of the present application, and the apparatus 10 may include a method for performing the terminal device of the method 400 for data transmission in FIG. Module.
  • the modules in the device 10 and the other operations and/or functions described above are respectively used to implement the corresponding process of the method 400 for data transmission in FIG. 6, and specifically, the receiving module 11 is configured to perform step 410 in the method 400, Step 440 to step 470 and step 490, the sending module 12 is configured to perform step 420 and step 480 in the method 400.
  • the specific process of each module performing the corresponding steps is described in detail in the method 300. For brevity, no further details are provided herein. .
  • the apparatus 10 may be configured in a communication system including a network device and the apparatus 10, the network apparatus and the apparatus 10 pre-preserving a plurality of precoding matrix sets, each of the plurality of precoding matrix sets being precoded
  • the matrix set contains at least one precoding matrix.
  • the device 10 can include a transmitting module 12, a receiving module 11, and a processing module 13.
  • the sending module 12 is configured to send multiple reference signals for channel measurement.
  • the receiving module 11 is configured to receive eighth indication information and ninth indication information that are sent by the network device according to the transmission scheme that is based on the multiple reference signals and the CSI measurement, where the eighth indication information is used to indicate the multiple precoding matrix sets. a first precoding matrix set, the ninth indication information is used to indicate x target precoding matrices in the first precoding matrix set;
  • the processing module 13 is configured to determine the x target precoding matrices according to the eighth indication information and the ninth indication information;
  • x is the number of target precoding matrices that need to be indicated, and x is an integer greater than one.
  • each of the plurality of reference signals is a reference signal that is not precoded
  • the eighth indication information includes two codebook indexes
  • two codebook indexes in the eighth indication information are used for The joint indicates the first precoding matrix set.
  • the receiving module 11 is further configured to receive indication information of a precoding polling granularity.
  • the number x of target precoding matrices that need to be indicated is configured in the network device and the device 10.
  • the apparatus 10 may correspond to a terminal device in the method 500 for data transmission of an embodiment of the present application, and the apparatus 10 may include a method for performing the terminal device of the method 500 for data transmission in FIG. Module.
  • the modules in the device 10 and the other operations and/or functions described above are respectively used to implement the corresponding process of the method 500 for data transmission in FIG. 7.
  • the sending module 12 is configured to perform step 510 in the method 500
  • the receiving module 11 is configured to perform step 520 in the method 500
  • the processing module 13 is configured to perform step 530 in the method 500.
  • the specific process for each module to perform the corresponding step is described in detail in the method 300. Concise, no longer repeat here.
  • FIG. 9 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the terminal device includes a processor 701 and a transceiver 702.
  • the terminal device further includes a memory 703.
  • the processor 702, the transceiver 702 and the memory 703 communicate with each other through an internal connection path for transmitting control and/or data signals
  • the memory 703 is for storing a computer program
  • the processor 701 is used for the memory 703.
  • the computer program is called and run to control the transceiver 702 to send and receive signals.
  • the processor 701 and the memory 703 may be combined to form a processing device, and the processor 701 is configured to execute the program code stored in the memory 703 to implement the above functions.
  • the memory 703 may also be integrated in the processor 701 or independent of the processor 701.
  • the foregoing terminal device may further include an antenna 704, configured to send the uplink data or the uplink control signaling output by the transceiver 702 by using a wireless signal.
  • the terminal device may correspond to a terminal device in the method 200 for data transmission according to an embodiment of the present application, and the terminal device may include a terminal device for performing the method 200 for data transmission in FIG.
  • the module of the method each module in the terminal device and the other operations and/or functions described above respectively implement a corresponding flow of the method 200 for data transmission in FIG. 3, specifically, the memory 703 is configured to store the program code such that the processor 701 When the program code is executed, the transceiver 702 is controlled to perform step 210, step 220, and step 240 to step 290 in method 200 via antenna 704.
  • the specific process in which each module performs the above-mentioned corresponding steps has been described in detail in the method 200. For brevity, no further details are provided herein.
  • the terminal device may correspond to a terminal device in the method 300 for data transmission according to an embodiment of the present application, and the terminal device may include a method performed by the terminal device for performing the method 300 for data transmission in FIG. Module.
  • each module in the terminal device and the other operations and/or functions described above respectively implement a corresponding flow of the method 300 for data transmission in FIG. 5, specifically, the memory 703 is configured to store the program code, so that the processor 701 When the program code is executed, the transceiver 702 is controlled to perform step 310, step 320, and step 340 to step 360 in method 300 via antenna 704, and step 330 is performed.
  • the specific process in which each module performs the above-mentioned corresponding steps has been described in detail in the method 300. For brevity, no further details are provided herein.
  • the terminal device may correspond to a terminal device in the method 400 for data transmission according to an embodiment of the present application, the terminal device may comprise a method for performing the terminal device of the method 400 for data transmission in FIG. Module.
  • each module in the terminal device and the other operations and/or functions described above respectively implement a corresponding flow of the method 400 for data transmission in FIG. 6, specifically, the memory 703 is configured to store the program code such that the processor 701 When the program code is executed, the transceiver 702 is controlled to perform step 410, step 42, and step 440 to step 490 in method 400 via antenna 704.
  • the specific process in which each module performs the above-mentioned corresponding steps has been described in detail in the method 400. For brevity, no further details are provided herein.
  • the terminal device may correspond to a terminal device in the method 500 for data transmission according to an embodiment of the present application, and the terminal device may include a method for performing the terminal device of the method 500 for data transmission in FIG. Module.
  • each module in the terminal device and the other operations and/or functions described above respectively implement a corresponding flow of the method 500 for data transmission in FIG. 7, specifically, the memory 703 is configured to store the program code such that the processor 701 When the program code is executed, the transceiver 702 is controlled to perform step 510, step 520, and step 540 to step 560 in the method 500 through the antenna 704, and step 530 is performed.
  • the specific process in which each module performs the above-mentioned corresponding steps has been described in detail in the method 300. For brevity, no further details are provided herein.
  • the foregoing processor 701 can be used to perform the actions implemented by the terminal in the foregoing method embodiments, and the transceiver 702 can be used to perform the action of the terminal to transmit or transmit to the network device in the foregoing method embodiment.
  • the transceiver 702 can be used to perform the action of the terminal to transmit or transmit to the network device in the foregoing method embodiment.
  • the above processor 701 and memory 703 can be integrated into one processing device, and the processor 701 is configured to execute program code stored in the memory 703 to implement the above functions.
  • the memory 703 can also be integrated in the processor 701.
  • the terminal device described above may also include a power source 705 for providing power to various devices or circuits in the terminal.
  • the terminal device may further include one or more of an input unit 706, a display unit 707, an audio circuit 708, a camera 709, a sensor 710, and the like, and the audio circuit may also It includes a speaker 7082, a microphone 7084, and the like.
  • FIG. 10 is a schematic block diagram of an apparatus 20 provided by an embodiment of the present application.
  • the device 20 can be a network device, or can be a chip or a circuit, such as a chip or circuit that can be disposed in a network device.
  • the device 20 corresponds to the network device in the above method.
  • the device 20 may be configured in a communication system including a terminal device and the device 20, the terminal device and the device 20 pre-storing a plurality of precoding matrices.
  • the device 20 can include a transmitting module 21, a receiving module 22, and a processing module 23.
  • the sending module 21 is configured to send at least one reference signal used for channel measurement.
  • the receiving module 22 is configured to receive, by the terminal device, a plurality of first indication information that is fed back according to the transmission scheme based on the at least one reference signal and the CSI feedback, where the multiple first indication information is used to indicate x target precoding matrices, where the At least one first indication information of the first indication information is used to indicate a target precoding matrix, and the x target precoding matrices are determined based on the plurality of precoding matrices;
  • the processing module 23 is configured to determine the x target precoding matrices according to the plurality of first indication information
  • x is the number of target precoding matrices that need to be fed back, and x is an integer greater than one.
  • each of the at least one reference signal is a precoded polled reference signal
  • each of the plurality of first indication information is used to indicate a granularity in a precoding polling And a precoding matrix corresponding to one of the at least one reference signal, wherein the number of precoding polls is greater than or equal to 1, and the number of precoding matrices used for precoding polling is y, and y is greater than 1. Integer.
  • the processing module 23 is specifically configured to determine the x according to the multiple first indication information and each precoding matrix in the y precoding matrices used for precoding polling.
  • Each target precoding matrix in the target precoding matrix, the y precoding matrices used for precoding polling are in one-to-one correspondence with the x target precoding matrices.
  • the receiving module 22 is further configured to receive the second indication information
  • the processing module 23 is further configured to determine, according to the second indication information, x precoding matrices from the y precoding matrices used for precoding polling;
  • the processing module 23 is specifically configured to determine, according to the multiple first indication information and each precoding matrix in the x precoding matrices used for precoding polling, each target precoding matrix in the x target precoding matrices.
  • the x precoding matrices for precoding polling are in one-to-one correspondence with the x target precoding matrices.
  • each of the at least one reference signal is a reference signal that is not precoded
  • each of the plurality of first indication information includes three codebook indexes, each first The three codebook indexes in the indication information are used to jointly indicate a precoding matrix, and the plurality of first indication information are in one-to-one correspondence with the x target precoding matrices.
  • the receiving module 22 is further configured to receive indication information of a precoding polling granularity.
  • the sending module 21 is further configured to send fifth indication information, where the fifth indication information indicates the number x of target precoding matrices that need to be fed back.
  • the number x of target precoding matrices that need to be fed back is pre-configured in the device 20 and the terminal device.
  • the apparatus 20 may correspond to a network device in the method 200 for data transmission in accordance with an embodiment of the present application, the apparatus 20 may include a network device for performing the method 200 for data transmission of FIG.
  • the module of the method each module in the device 20 and the other operations and/or functions described above are respectively used to implement the corresponding process of the method 200 for data transmission in FIG. 4, specifically, the sending module 21 is configured to perform step 210 in the method 200, Step 240 and step 270 and step 290, the receiving module 22 is configured to perform step 220 and step 280 in the method 200, the processing module 23 is configured to perform step 230 in the method 200, and the specific process of each module performing the corresponding step is in the method 200. It has been described in detail, and for brevity, it will not be described here.
  • the device 20 may be configured in a communication system including a terminal device and the device 20, the terminal device and the device 20 pre-preserving a plurality of precoding matrices.
  • the device 20 can include a transmitting module 21 and a receiving module 22.
  • the receiving module 22 is configured to receive at least one reference signal used for channel measurement.
  • the sending module 21 is configured to send, according to the transmission scheme based on the at least one reference signal and the CSI measurement, a plurality of sixth indication information, where the multiple sixth indication information is used to indicate x target precoding matrices, where the multiple At least one sixth indication information in the sixth indication information is used to indicate a target precoding matrix, where the x target precoding matrices are determined based on the multiple precoding matrices;
  • x is the number of target precoding matrices that need to be indicated, and x is an integer greater than one.
  • each of the at least one reference signal is a precoded polled reference signal
  • each of the plurality of sixth indication information is used to indicate a granularity in a precoding polling And a precoding matrix corresponding to one of the at least one reference signal, wherein the number of precoding polls is greater than or equal to 1, and the number of precoding matrices used for precoding polling is y, and y is greater than 1. Integer.
  • each precoding matrix in the y precoding matrices used for precoding polling is used to determine one target precoding matrix in the x target precoding matrices,
  • the y precoding matrices are in one-to-one correspondence with the x target precoding matrices.
  • the sending module 21 is further configured to send seventh indication information, where the seventh indication information is used to indicate x pre-preparations in the y precoding matrices used for precoding polling.
  • An encoding matrix, each of the x precoding matrices used for precoding polling is used to determine a target precoding matrix in the x target precoding matrices, the x used for precoding polling
  • the precoding matrix has a one-to-one correspondence with the x target precoding matrices.
  • each of the at least one reference signal is a reference signal that is not precoded
  • each of the plurality of sixth indication information includes three codebook indexes
  • each sixth The three codebook indexes in the indication information are used to jointly indicate a precoding matrix
  • the plurality of sixth indication information are in one-to-one correspondence with the x target precoding matrices.
  • the sending module 21 is further configured to send the indication information of the precoding polling granularity.
  • the apparatus 20 may correspond to a network device in the method 300 for data transmission in accordance with an embodiment of the present application, which may include a network device for performing the method 300 for data transmission in FIG.
  • the module of the method are respectively used to implement the corresponding process of the method 300 for data transmission in FIG. 5, and specifically, the receiving module 22 is configured to perform step 310 in the method 300, In the step 340 to the step 360, the sending module 21 is configured to perform the step 320 in the method 300.
  • the specific process in which the modules perform the foregoing steps is described in detail in the method 300. For brevity, no further details are provided herein.
  • the apparatus 20 may be configured in a communication system including a terminal device and the device 20, the terminal device and the device 20 pre-preserving a plurality of precoding matrix sets, each of the plurality of precoding matrix sets being precoded
  • the matrix set contains at least one precoding matrix.
  • the device 20 can include a transmitting module 21, a receiving module 22, and a processing module 23.
  • the sending module 21 is configured to send multiple reference signals for channel measurement.
  • the receiving module 22 is configured to receive third indication information and fourth indication information that are sent by the terminal device according to the transmission scheme based on the multiple reference signals and the CSI feedback, where the third indication information is used to indicate the multiple precoding matrix sets. a first precoding matrix set, the fourth indication information is used to indicate x target precoding matrices in the first precoding matrix set;
  • the processing module 23 is configured to determine the x target precoding matrices according to the third indication information and the fourth indication information;
  • x is the number of target precoding matrices that need to be fed back, and x is an integer greater than one.
  • each of the plurality of reference signals is a reference signal that is not precoded
  • the third indication information includes two codebook indexes
  • two codebook indexes in the third indication information are used for The joint indicates the first precoding matrix set.
  • the receiving module 22 is further configured to receive indication information of a precoding polling granularity.
  • the sending module 21 is further configured to send fifth indication information, where the fifth indication information indicates the number x of target precoding matrices that need to be fed back.
  • the number x of target precoding matrices that need to be fed back is pre-configured in the device 20 and the terminal device.
  • the apparatus 20 may correspond to a network device in the method 400 for data transmission in accordance with an embodiment of the present application, the apparatus 20 may include a network device for performing the method 500 for data transmission of FIG.
  • the module of the method are respectively used to implement the corresponding process of the method 400 for data transmission in FIG. 6, specifically, the sending module 21 is configured to perform step 410 in the method 400, Step 440 to step 470 and step 490, the receiving module 22 is configured to perform step 420 and step 480 in the method 400, the processing module 23 is configured to perform step 430 in the method 400, and each module performs a specific process of the corresponding step in the method 400. It has been described in detail, and for brevity, it will not be described here.
  • the apparatus 20 may be configured in a communication system including a terminal device and the device 20, the terminal device and the device 20 pre-preserving a plurality of precoding matrix sets, each precoding of the plurality of precoding matrix sets
  • the matrix set contains at least one precoding matrix.
  • the device 20 can include a transmitting module 21 and a receiving module 22.
  • the receiving module 22 is configured to receive multiple reference signals for channel measurement.
  • the sending module 21 is configured to send, according to the multiple reference signals and the transmission scheme based on the CSI measurement, the eighth indication information and the ninth indication information, where the eighth indication information is used to indicate the first one of the plurality of precoding matrix sets a coding matrix set, the ninth indication information is used to indicate x target precoding matrices in the first precoding matrix set;
  • x is the number of target precoding matrices that need to be indicated, and x is an integer greater than one.
  • each of the plurality of reference signals is a reference signal that is not precoded
  • the eighth indication information includes two codebook indexes
  • two codebook indexes in the eighth indication information are used for The joint indicates the first precoding matrix set.
  • the sending module 21 is further configured to send the indication information of the precoding polling granularity.
  • the number x of target precoding matrices that need to be indicated is pre-configured in the device 20 and the terminal device.
  • the apparatus 20 may correspond to a network device in a method 500 for data transmission in accordance with an embodiment of the present application, the apparatus 20 may include a network device for performing the method 500 for data transmission of FIG.
  • the module of the method are respectively used to implement the corresponding process of the method 50 for data transmission in FIG. 7, and specifically, the sending module 21 is configured to perform step 520 in the method 500, The receiving module 22 is configured to perform step 510 and steps 540 to 560 in method 500.
  • the specific process in which each module performs the above-mentioned corresponding steps has been described in detail in the method 500. For brevity, no further details are provided herein.
  • FIG. 11 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the network device includes a processor 610 and a transceiver 620.
  • the network device further includes a memory 630.
  • the processor 610, the transceiver 620, and the memory 630 communicate with each other through an internal connection path for transferring control and/or data signals.
  • the memory 630 is configured to store a computer program, and the processor 610 is configured to be called from the memory 630.
  • the computer program is run to control the transceiver 620 to send and receive signals.
  • the processor 610 and the memory 630 may be combined to form a processing device, and the processor 610 is configured to execute the program code stored in the memory 630 to implement the above functions.
  • the memory 630 may also be integrated in the processor 610 or independent of the processor 610 in particular implementations.
  • the network device may further include an antenna 640, configured to send downlink data or downlink control signaling output by the transceiver 620 by using a wireless signal.
  • the network device may correspond to a network device in method 200 for data transmission in accordance with an embodiment of the present application, which network device may include a network device for performing the method 200 for data transmission in FIG.
  • the module of the method each module in the network device and the other operations and/or functions described above respectively implement a corresponding flow of the method 200 for data transmission in FIG. 4, specifically, the memory 630 is configured to store the program code such that the processor 610 When the program code is executed, the transceiver 620 is controlled to perform step 210, step 220, and step 240 to step 290 in the method 200 via the antenna 640, and to perform step 230 in the method 200.
  • the specific process in which each module performs the above-mentioned corresponding steps has been described in detail in the method 200. For brevity, no further details are provided herein.
  • the network device may correspond to a network device in method 300 for data transmission in accordance with an embodiment of the present application, which may include a method for performing network device execution of method 300 for data transmission in FIG. Module.
  • each module in the network device and the other operations and/or functions described above respectively implement a corresponding flow of the method 300 for data transmission in FIG. 5, specifically, the memory 630 is configured to store the program code such that the processor 610 When the program code is executed, control transceiver 620 performs step 310, step 320, and steps 340 through 360 of method 300 via antenna 640.
  • the specific process in which each module performs the above-mentioned corresponding steps has been described in detail in the method 300. For brevity, no further details are provided herein.
  • the network device may correspond to a network device in method 400 for data transmission in accordance with an embodiment of the present application, the network device may include a method for performing network device execution of method 400 for data transmission in FIG. Module.
  • each module in the network device and the other operations and/or functions described above respectively implement a corresponding flow of the method 400 for data transmission in FIG. 6, specifically, the memory 630 is configured to store program code such that the processor 610 When the program code is executed, the control transceiver 620 performs step 410, step 420, and steps 440 through 490 of the method 300 through the antenna 640, and performs step 430.
  • the specific process in which each module performs the above-mentioned corresponding steps has been described in detail in the method 300. For brevity, no further details are provided herein.
  • the network device may correspond to a network device in method 500 for data transmission in accordance with an embodiment of the present application, the network device may include a method for performing network device execution of method 500 for data transmission in FIG. Module.
  • each module in the network device and the other operations and/or functions described above respectively implement a corresponding flow of the method 500 for data transmission in FIG. 7, specifically, the memory 630 is configured to store the program code such that the processor 610 When the program code is executed, control transceiver 620 performs step 510, step 520, and steps 540 through 560 of method 500 via antenna 640.
  • the specific process in which each module performs the above-mentioned corresponding steps has been described in detail in the method 300. For brevity, no further details are provided herein.
  • FIG. 12 is a schematic flowchart of a channel measurement indication method 900 provided by an embodiment of the present application from the perspective of device interaction. As shown in FIG. 12, the method 900 can include steps 910 through 940.
  • step 910 the network device determines the frequency band granularity upon which the channel measurement is based.
  • a frequency band of one frequency band size may correspond to one precoding matrix. That is to say, the precoding matrix used in performing channel measurement on the bandwidth corresponding to one band granularity is the same, or the precoding matrix used in performing channel measurement in the bandwidth corresponding to one band granularity is unique. Therefore, the band granularity can be understood as a frequency band unit in which the terminal device performs channel measurement.
  • any two adjacent bandwidths having the same frequency band granularity have different precoding matrices.
  • the bandwidth of the measurement band may be the above-mentioned band unit or a band including at least one of the above-mentioned band units.
  • the bandwidth of the measurement bandwidth may be divided into at least one frequency band, and the bandwidth of any two frequency bands is one frequency band granularity.
  • the frequency band granularity within a measurement bandwidth can be unique.
  • the measurement bandwidth may be a bandwidth corresponding to the transmission channel measurement reference signal, or may be a bandwidth on which the CSI is fed back after the measurement. That is, the measurement bandwidth can measure the full bandwidth or part of the bandwidth of the reference signal for the transmission channel.
  • the definition of measurement bandwidth is not limited in this application.
  • the channel measurement reference signal may be a reference signal used for channel measurement, such as, but not limited to, a CSI-RS or a cell reference signal (CRS).
  • the frequency band granularity can be understood as a frequency band unit on which the terminal device performs channel measurement.
  • the frequency band granularity may be, for example but not limited to, one or more subcarriers (or resources corresponding to one or more REs in the frequency domain), and resources corresponding to one resource unit in the frequency domain.
  • the resources corresponding to the RB group (RBG) composed of multiple resource units in the frequency domain may also be 1/2 resource unit, 1/4 resource unit, and pre-coded resource block group (PRG size).
  • the resource unit may be an RB defined in the LTE protocol.
  • frequency band granularity is merely illustrative, and should not be construed as limiting the present application.
  • the size of the frequency band granularity is not limited herein.
  • the foregoing precoding matrix corresponding to the frequency band granularity may be previously indicated by the network device, or may be randomly selected by the terminal device from the codebook. This application is not limited thereto.
  • step 920 the network device sends tenth indication information indicating the frequency band granularity.
  • step 920 the terminal device receives the tenth indication information.
  • the tenth indication information may be carried in any one of the following signaling: RRC message, MAC-CE or DCI.
  • the above-mentioned frequency band granularity may be semi-statically indicated or dynamically indicated.
  • the network device can dynamically adjust the frequency band granularity on which the channel measurement is based by means of signaling.
  • the above-mentioned signaling for carrying the tenth indication information is merely exemplary, and should not be construed as limiting the application.
  • the multiple signalings listed above may be used in combination to indicate the frequency band granularity, or the tenth indication information may also be carried in other signaling.
  • the present application does not limit signaling for carrying the tenth indication information.
  • the above-mentioned band granularity may also be predefined, for example, a protocol definition.
  • the network device can signal whether to use the band granularity. For example, the frequency band granularity is used when a certain field in the RRC message is set to “1”. At this time, the terminal device may perform channel measurement based on the frequency band granularity indicated by the network device, and when the field is set to “0”, the frequency band is not used. Granularity, ie, channel measurement based on the entire measurement bandwidth.
  • step 930 the terminal device determines the frequency band granularity according to the tenth indication information.
  • the method further includes: Step 940, the terminal device performs channel measurement based on the frequency band granularity.
  • the channel measurement may be, for example, but not limited to, calculating a channel matrix of the measurement frequency band.
  • the terminal device may perform channel measurement by using different precoding matrices on any two consecutive frequency band granularities according to the foregoing frequency band granularity, by using a channel matrix on each frequency band granularity (for example, subcarrier) in the measurement frequency band. The averaging is performed to obtain a channel matrix of the frequency band. It will be understood by those skilled in the art that the terminal device can also obtain the channel matrix of the above frequency band by other means.
  • the terminal device may pre-code the channel matrix of each frequency band granularity based on the precoding matrix corresponding to the frequency band granularity to obtain an equivalent channel matrix of each frequency band granularity. Based on the equivalent channel matrix, the terminal device can further calculate corresponding channel state information CSI.
  • the CSI may include, for example, at least one of the following information: CQI, RI, PMI, and feed back to the network device.
  • step 940 specifically includes: the terminal device uses the frequency band granularity as a precoding polling granularity, and performs channel measurement based on a precoding polling transmission scheme.
  • the terminal device can perform channel measurement based on a transmission scheme of precoding polling.
  • the terminal device may use the frequency band granularity indicated by the foregoing network device as the precoding polling granularity, that is, adopting different precoding matrices for channel measurement on any two consecutive frequency band granularities, and corresponding to multiple frequency band granularities. Multiple precoding matrices can be recycled over the frequency band.
  • channel measurement based on a precoding polling transmission scheme is only one possible implementation manner, and the terminal device may also perform measurement frequency bands on the measurement frequency band based on a plurality of different precoding matrices and the foregoing frequency band granularity.
  • Channel measurement in this case, the precoding matrix corresponding to any two consecutive frequency band granularities is different, but it can be understood that there is a one-to-one correspondence between multiple frequency band granularities and multiple precoding matrices.
  • the terminal device performs channel measurement based on the frequency band granularity, and can measure an equivalent channel pre-coded by using multiple precoding matrices on the measurement bandwidth in the case of inaccurate channel measurement, so as to obtain a more accurate CSI, which is beneficial to improve.
  • the reliability of data transmission improves the robustness of the system.
  • the embodiment of the present application further provides a channel measurement indication device 30.
  • the channel measurement indicating device may be a terminal device, or may be a chip or a circuit, such as a chip or a circuit that can be disposed in the terminal device.
  • the schematic block diagram of the channel measurement indicating device 30 can be as shown in FIG. As shown in FIG. 13, the channel measurement indicating device 30 includes a receiving module 31 and a processing module 32.
  • the receiving module 31 is configured to receive tenth indication information, where the tenth indication information indicates a frequency band granularity on which the measurement is based, and a frequency band corresponding to one frequency band granularity corresponds to a precoding matrix;
  • the processing module 32 is configured to determine the frequency band granularity according to the tenth indication information.
  • the processing module 32 is further configured to perform channel measurement according to the frequency band granularity.
  • the processing module is specifically configured to use the frequency band granularity as a granularity of precoding polling, and perform channel measurement according to a transmission scheme of precoding polling.
  • any two adjacent frequency bands having the same frequency band granularity have different precoding matrices.
  • the channel measurement indication device 30 may correspond to a terminal device in the channel measurement indication method 900 according to an embodiment of the present application, and the channel measurement indication device 30 may include a terminal device for performing the channel measurement indication method 900 in FIG.
  • each module in the channel measurement indicating device 30 and the other operations and/or functions described above are respectively configured to implement the corresponding flow of the channel measurement indicating method 900 in FIG.
  • the receiving module 31 is configured to perform step 920 in the method 900, where the processing module 32 is configured to perform steps 930 and 940 in the method 900.
  • the specific process in which each module performs the above-mentioned corresponding steps has been described in detail in the method 900. For brevity, no further details are provided herein.
  • the embodiment of the present application further provides a terminal device.
  • the structure diagram of the terminal device can be as shown in FIG. 9.
  • the module included in the terminal device has been described in detail above with reference to FIG. 9. For brevity, no further details are provided herein.
  • the terminal device may correspond to a terminal device in the channel measurement indication method 900 according to an embodiment of the present application, and the terminal device may include a module for performing a method performed by the terminal device of the channel measurement indication method 900 in FIG.
  • each module in the terminal device and the other operations and/or functions described above respectively implement a corresponding flow of the channel measurement indication method 900 in FIG.
  • the memory 703 is configured to store program code such that when executing the program code, the processor 701 controls the transceiver 702 to perform step 920 of the method 900 via the antenna 704 and performs steps 930 and 940.
  • the specific process in which each module performs the above-mentioned corresponding steps has been described in detail in the method 900. For brevity, no further details are provided herein.
  • the embodiment of the present application further provides a channel measurement indication device 40.
  • the channel measurement indicating device 40 may be a network device, or may be a chip or a circuit, such as a chip or a circuit that can be disposed in the terminal device.
  • a schematic block diagram of the channel measurement indicating device 40 can be as shown in FIG. 14.
  • the channel measurement indicating device 40 includes a processing module 41 and a transmitting module 42.
  • the processing module 41 is configured to determine a frequency band granularity on which the channel measurement is based, and a frequency band corresponding to one frequency band granularity corresponds to a precoding matrix;
  • the sending module 42 is configured to send tenth indication information, where the tenth indication information indicates the frequency band granularity.
  • any two adjacent frequency bands having the same frequency band granularity have different precoding matrices.
  • the channel measurement indication device 40 may correspond to a network device in the channel measurement indication method 900 according to an embodiment of the present application, and the channel measurement indication device 40 may include a network device for performing the channel measurement indication method 900 in FIG.
  • each module in the channel measurement indicating device 40 and the other operations and/or functions described above are respectively configured to implement the corresponding flow of the channel measurement indicating method 900 in FIG.
  • the processing module 41 is configured to perform step 910 in the method 900, where the sending module 42 is configured to perform step 920 in the method 900.
  • the specific process in which each module performs the above-mentioned corresponding steps has been described in detail in the method 900. For brevity, no further details are provided herein.
  • the embodiment of the present application further provides a network device.
  • the structure diagram of the network device can be as shown in FIG.
  • the modules included in the network device have been described in detail above with reference to FIG. 11, and are not described herein again for brevity.
  • the network device may correspond to a network device in a channel measurement indication method 900 in accordance with an embodiment of the present application, which may include means for performing the method performed by the network device of the channel measurement indication method 900 of FIG.
  • each module in the network device and the other operations and/or functions described above are respectively configured to implement the corresponding flow of the channel measurement indication method 900 in FIG.
  • the memory 630 is configured to store program code such that when executing the program code, the processor 610 executes step 910 of the method 900 and controls the transceiver 620 to perform step 920 of the method 900 via the antenna 640.
  • the specific process in which each module performs the above-mentioned corresponding steps has been described in detail in the method 900. For brevity, no further details are provided herein.
  • the embodiment of the present application further provides a system including the foregoing network device and one or more terminal devices.
  • the processor may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration.
  • DSPs digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic randomness synchronous dynamic randomness.
  • Synchronous DRAM SDRAM
  • DDR SDRAM double data rate synchronous DRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Take memory
  • DR RAM direct memory bus random access memory
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the processes or functions according to embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be wired from a website site, computer, server or data center (for example, infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that contains one or more sets of available media.
  • the usable medium can be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium.
  • the semiconductor medium can be a solid state hard drive.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本申请提供了一种用于数据传输的方法、装置和系统,能够提高数据传输的可靠性。该方法应用于包含有网络设备和终端设备的通信系统中,网络设备和终端设备预先保存有多个预编码矩阵,该方法包括:终端设备接收用于信道测量的多个参考信号;该终端设备根据该至少一个参考信号和CSI反馈基于的传输方案,发送多个第一指示信息,该多个第一指示信息用于指示x个目标预编码矩阵,该多个第一指示信息中的至少一个第一指示信息用于指示一个目标预编码矩阵,该x个目标预编码矩阵是基于多个预编码矩阵确定,其中,x为需要反馈的目标预编码矩阵的数量,x为大于1的整数。

Description

用于数据传输的方法、装置和系统
本申请要求于2017年7月26日提交中国专利局、申请号为201710619655.0、申请名称为“用于数据传输的方法、装置和系统”,以及于2017年9月18日提交中国专利局、申请号为201710843482.0、申请名称为“用于数据传输的方法、装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及用于数据传输的方法、装置和系统。
背景技术
大规模多输入多输出(massive multiple-input multiple-output,Massive MIMO)是业界公认的第五代(5th generation,5G)移动通信的关键技术之一。为了避免多用户之间的干扰,提高信号质量,通常可以采用预编码的方式对信号进行处理,从而实现了空间复用(spatial multiplexing),大大提高了频谱利用率。
MIMO系统通常使用预编码技术来改善信道,然而,在信道环境高速变换或者其他无法获取到信道状态信息(channel state Information,CSI)的情况下,就无法获得比较准确的预编码矩阵,故经预编码处理得到的待发射信号也就不能被接收端成功地解调,从而导致接收到的信号质量下降。
为了提高数据传输的可靠性,目前已知一种传输方案(transmission scheme),采用多个预编码向来对数据进行预编码轮询,以获得分集增益。然而,当前技术中还未能提供一种方案,能够针对这样的传输方案进行信道测量和CSI反馈。
发明内容
本申请提供一种用于数据传输的方法、装置和系统,以基于不同的传输方案进行信道测量和反馈,能够更大程度地获得分集增益,提高数据传输的可靠性。
第一方面,提供了一种用于数据传输的方法,所述方法应用于包含有网络设备和终端设备的通信系统中,所述网络设备和所述终端设备预先保存有多个预编码矩阵,所述方法包括:
所述终端设备接收用于信道测量的至少一个参考信号;
所述终端设备根据所述至少一个参考信号和信道状态信息CSI反馈基于的传输方案,发送多个第一指示信息,所述多个第一指示信息用于指示x个目标预编码矩阵,所述多个第一指示信息中的至少一个第一指示信息用于指示一个目标预编码矩阵,所述x个目标预编码矩阵是基于所述多个预编码矩阵确定;
其中,x为需要反馈的目标预编码矩阵的数量,x为大于1的整数。
因此,本申请实施例通过终端设备基于传输方案进行信道测量,并反馈用于确定多个 预编码矩阵的指示信息,使得网络设备能够基于反馈确定预编码轮询的多个预编码矩阵,以满足传输方案的需求,相比于现有技术而言,能够提供多个测量获得的预编码矩阵进行预编码轮询,从而能够更好地获得分集增益,有利于提高数据传输的可靠性,有利于提高通信系统的鲁棒性。
其中,CSI反馈基于的传输方案包括:预编码轮询、基于预编码轮询(precoder cycling)的空时分集(space-time transmit diversity,STTD)(或者称,空时分组编码(space time block coding,STBC))、基于预编码轮询的空频分集(space-frequency transmit diversity,SFTD)(或者称,空频分组编码(space frequency block coding,SFBC))、基于预编码轮询的循环延迟分集(cyclic delay diversity,CDD)等基于预编码轮询的传输方案。
在本申请实施例中,参考信号可以包括经过预编码的参考信号和未经过预编码的参考信号。
结合第一方面,在第一方面的某些实现方式中,所述至少一个参考信号中的每个参考信号为经过预编码轮询的参考信号,所述多个第一指示信息中的每个第一指示信息用于指示在一个预编码轮询粒度上所述至少一个参考信号中的一个参考信号对应的预编码矩阵,其中,预编码轮询的次数大于或等于1,用于预编码轮询的预编码矩阵的数量为y,y为大于1的整数。
可选地,在y=x的情况下,用于预编码轮询的y个预编码矩阵中的每个预编码矩阵用于确定所述x个目标预编码矩阵中的一个目标预编码矩阵,所述y个预编码矩阵与所述x个目标预编码矩阵一一对应。
可选地,在y>x的情况下,所述方法还包括:
所述终端设备发送第二指示信息,所述第二指示信息指示用于预编码轮询的y个预编码矩阵中的x个预编码矩阵,用于预编码轮询的x个预编码矩阵中的每个预编码矩阵用于确定所述x个目标预编码矩阵中的一个目标预编码矩阵,所述用于预编码轮询的x个预编码矩阵与所述x个目标预编码矩阵一一对应。
为便于理解,这里以一个预编码轮询粒度为例来说明,预编码轮询所使用的预编码矩阵的列数是与该预编码轮询粒度所承载的参考信号的数量是对应的,或者说是与端口数对应的。终端设备可以通过测量选择某度量准则下最优的端口的预编码向量作为目标预编码矩阵中的列向量,这种情况下,每个第一指示信息用于指示一个预编码列向量,多个第一指示信息所指示的多个预编码列向量可以组合得到一个目标预编码矩阵;或者,也可以通过测量选择多个端口的预编码向量进行线性叠加以得到目标预编码矩阵中的列向量,这种情况下,多个第一指示信息用于指示一个预编码列向量,多个第一指示信息所指示的多个预编码列向量可以组合得到一个目标预编码矩阵。
应理解,端口选择仅为一种可能的实现方式,终端设备也可以不作端口选择,将预编码轮询所使用的预编码矩阵直接反馈给网络设备。
结合第一方面,在第一方面的某些实现方式中,所述至少一个参考信号中的每个参考信号为未经过预编码的参考信号,所述多个第一指示信息中的每个第一指示信息包括三个码本索引,每个第一指示信息中的三个码本索引用于联合指示一个预编码矩阵,所述多个第一指示信息与所述x个目标预编码矩阵一一对应。
可选地,该第一指示信息为预编码矩阵指示(precoding matrix indicator,PMI),该 三个码本索引为i 1,1、i 1,2和i 2
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:
所述终端设备发送预编码轮询粒度的指示信息。
从而使得网络设备基于最优的预编码轮询粒度进行预编码轮询,更加有利于获得分集增益,进一步提高数据传输的可靠性。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:
所述终端设备接收预编码轮询粒度的至少一个候选值。
网络设备可以预先给终端设备发送预编码轮询粒度的候选值,终端设备可以基于该至少一个候选值分别进行测量,以确定出某度量准则下最优的预编码轮询粒度反馈给网络设备,同时可以减小终端设备测量的复杂度。
在本申请实施例中,需要反馈的目标预编码矩阵的数量x可以预先定义(例如,由协议定义),可选地,需要反馈的目标预编码矩阵的数量x可以预先配置于网络设备和终端设备中。
需要反馈的目标预编码矩阵的数量x也可以由网络设备确定,并通过信令通知终端设备,可选地,所述方法还包括:所述终端设备接收第五指示信息,所述第五指示信息指示需要反馈的目标预编码矩阵的数量x。
第二方面,提供了一种用于数据传输的方法,所述方法应用于包含有网络设备和终端设备的通信系统中,所述网络设备和所述终端设备预先保存多个预编码矩阵集合,所述多个预编码矩阵集合中的每个预编码矩阵集合包含至少一个预编码矩阵,所述方法包括:
所述终端设备接收用于信道测量的多个参考信号;
所述终端设备根据所述多个参考信号和CSI反馈基于的传输方案,发送第三指示信息和第四指示信息,所述第三指示信息用于指示所述多个预编码矩阵集合中的第一预编码矩阵集合,所述第四指示信息用于指示所述第一预编码矩阵集合中的x个目标预编码矩阵;
其中,x为需要反馈的目标预编码矩阵的数量,x为大于1的整数。
因此,本申请实施例通过终端设备基于传输方案进行信道测量,并反馈用于确定多个预编码矩阵的指示信息,使得网络设备能够基于反馈确定预编码轮询的多个预编码矩阵,以满足传输方案的需求,相比于现有技术而言,能够提供多个测量获得的预编码矩阵进行预编码轮询,从而能够更好地获得分集增益,有利于提高数据传输的可靠性,有利于提高通信系统的鲁棒性。
其中,CSI反馈基于的传输方案包括:预编码轮询、基于预编码轮询的空时分集、基于预编码轮询的空频分集、基于预编码轮询的循环延迟分集等基于预编码轮询的传输方案。
结合第二方面,在第二方面的某些实现方式中,所述多个参考信号中的每个参考信号为未经过预编码的参考信号,所述第三指示信息包括两个码本索引,所述第三指示信息中的两个码本索引用于联合指示所述第一预编码矩阵集合。
可选地,该第三指示信息可以为PMI中的两个码本索引i 1,1和i 1,2,在长期演进(Long Term Evolution,LTE)协议中,i 1,1和i 1,2可用于联合指示一个预编码矩阵集合。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:
所述终端设备发送预编码轮询粒度的指示信息。
从而使得网络设备能够基于最优的预编码轮询粒度进行预编码轮询,更加有利于获得分集增益,进一步提高数据传输的可靠性。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:
所述终端设备接收预编码轮询粒度的至少一个候选值。
网络设备可以预先给终端设备发送预编码轮询粒度的候选值,终端设备可以基于该至少一个候选值分别进行测量,以确定出某度量准则下最优的预编码轮询粒度反馈给网络设备,同时可以减小终端设备测量的复杂度。
在本申请实施例中,需要反馈的目标预编码矩阵的数量x可以预先定义(例如,由协议定义),可选地,需要反馈的目标预编码矩阵的数量x可以预先配置于网络设备和终端设备中。
需要反馈的目标预编码矩阵的数量x也可以由网络设备确定,并通过信令通知终端设备,可选地,所述方法还包括:所述终端设备接收第五指示信息,所述第五指示信息指示需要反馈的目标预编码矩阵的数量x。
第三方面,提供了一种用于数据传输的方法,所述方法应用于包含有网络设备和终端设备的通信系统中,所述网络设备和所述终端设备预先保存有多个预编码矩阵,所述方法包括:
所述网络设备发送用于信道测量的至少一个参考信号;
所述网络设备接收所述终端设备根据所述至少一个参考信号和CSI反馈基于的传输方案反馈的多个第一指示信息,所述多个第一指示信息用于指示x个目标预编码矩阵,所述多个第一指示信息中的至少一个第一指示信息用于指示一个目标预编码矩阵,所述x个目标预编码矩阵是基于所述多个预编码矩阵确定;
所述网络设备根据所述多个第一指示信息确定所述x个目标预编码矩阵;
其中,x为需要反馈的目标预编码矩阵的数量,x为大于1的整数。
因此,本申请实施例通过终端设备基于传输方案进行信道测量,并反馈用于确定多个预编码矩阵的指示信息,使得网络设备能够基于反馈确定预编码轮询的多个预编码矩阵,以满足传输方案的需求,相比于现有技术而言,能够提供多个测量获得的预编码矩阵进行预编码轮询,从而能够更好地获得分集增益,有利于提高数据传输的可靠性,有利于提高通信系统的鲁棒性。
其中,CSI反馈基于的传输方案包括:预编码轮询、基于预编码轮询的空时分集、基于预编码轮询的空频分集、基于预编码轮询的循环延迟分集等基于预编码轮询的传输方案。
在本申请实施例中,参考信号可以包括经过预编码的参考信号和未经过预编码的参考信号。
结合第三方面,在第三方面的某些实现方式中,所述至少一个参考信号中的每个参考信号为经过预编码轮询的参考信号,所述多个第一指示信息中的每个第一指示信息用于指示在一个预编码轮询粒度上所述至少一个参考信号中的一个参考信号对应的预编码矩阵,其中,预编码轮询的次数大于或等于1,用于预编码轮询的预编码矩阵的数量为y,y为大于1的整数。
可选地,在y=x的情况下,所述网络设备根据所述多个第一指示信息确定所述x个目 标预编码矩阵,包括:
所述网络设备根据所述多个第一指示信息和用于预编码轮询的y个预编码矩阵中的各预编码矩阵,确定所述x个目标预编码矩阵中的各目标预编码矩阵,所述用于预编码轮询的y个预编码矩阵与所述x个目标预编码矩阵一一对应。
可选地,在y>x的情况下,所述网络设备根据所述多个第一指示信息确定所述x个目标预编码矩阵,包括:
所述网络设备接收第二指示信息,并根据所述第二指示信息从所述用于预编码轮询的y个预编码矩阵中确定x个预编码矩阵;
所述网络设备根据所述多个第一指示信息和用于预编码轮询的x个预编码矩阵中的各预编码矩阵,确定所述x个目标预编码矩阵中的各目标预编码矩阵,所述用于预编码轮询的x个预编码矩阵与所述x个目标预编码矩阵一一对应。
为便于理解,这里以一个预编码轮询粒度为例来说明,预编码轮询所使用的预编码矩阵的列数是与该预编码轮询粒度所承载的参考信号的数量是对应的,或者说是与端口数对应的。终端设备可以通过测量选择某度量准则下最优的端口的预编码向量作为目标预编码矩阵中的列向量,这种情况下,每个第一指示信息用于指示一个预编码列向量,多个第一指示信息所指示的多个预编码列向量可以组合得到一个目标预编码矩阵;或者,也可以通过测量选择多个端口的预编码向量进行线性叠加以得到目标预编码矩阵中的列向量,这种情况下,多个第一指示信息用于指示一个预编码列向量,多个第一指示信息所指示的多个预编码列向量可以组合得到一个目标预编码矩阵。
结合第三方面,在第三方面的某些实现方式中,所述至少一个参考信号中的每个参考信号为未经过预编码的参考信号,所述多个第一指示信息中的每个第一指示信息包含三个码本索引,每个第一指示信息中的三个码本索引用于联合指示一个预编码矩阵,所述多个第一指示信息与所述x个目标预编码矩阵一一对应。
可选地,该第一指示信息为预编码矩阵指示(precoding matrix indicator,PMI),该三个码本索引为i 1,1、i 1,2和i 2
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:
所述网络设备接收预编码轮询粒度的指示信息。
因此,网络设备能够基于最优的预编码轮询粒度进行预编码轮询,更加有利于获得分集增益,进一步提高数据传输的可靠性。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:
所述网络设备放预编码轮询粒度的至少一个候选值。
网络设备可以预先给终端设备发送预编码轮询粒度的候选值,终端设备可以基于该至少一个候选值分别进行测量,以确定出某度量准则下最优的预编码轮询粒度反馈给网络设备,同时可以减小终端设备测量的复杂度。
在本申请实施例中,需要反馈的目标预编码矩阵的数量x可以预先定义(例如,由协议定义),可选地,需要反馈的目标预编码矩阵的数量x可以预先配置于网络设备和终端设备中。
需要反馈的目标预编码矩阵的数量x也可以由网络设备确定,并通过信令通知终端设备,可选地,所述方法还包括:所述网络设备发送第五指示信息,所述第五指示信息指示 需要反馈的目标预编码矩阵的数量x。
第四方面,提供了一种用于数据传输的方法,所述方法应用于包含有网络设备和终端设备的通信系统中,所述网络设备和所述终端设备预先保存多个预编码矩阵集合,所述多个预编码矩阵集合中的每个预编码矩阵集合包含至少一个预编码矩阵,所述方法包括:
所述网络设备发送用于信道测量的多个参考信号;
所述网络设备接收所述终端设备根据所述多个参考信号和CSI反馈基于的传输方案反馈的第三指示信息和第四指示信息,所述第三指示信息用于指示所述多个预编码矩阵集合中的第一预编码矩阵集合,所述第四指示信息用于指示所述第一预编码矩阵集合中的x个目标预编码矩阵;
所述网络设备根据所述第三指示信息和所述第四指示信息确定所述x个目标预编码矩阵;
其中,x为需要反馈的目标预编码矩阵的数量,x为大于1的整数。
因此,本申请实施例通过终端设备基于传输方案进行信道测量,并反馈用于确定多个预编码矩阵的指示信息,使得网络设备能够基于反馈确定预编码轮询的多个预编码矩阵,以满足传输方案的需求,相比于现有技术而言,能够提供多个测量获得的预编码矩阵进行预编码轮询,从而能够更好地获得分集增益,有利于提高数据传输的可靠性,有利于提高通信系统的鲁棒性。
其中,CSI反馈基于的传输方案包括:预编码轮询、基于预编码轮询的空时分集、基于预编码轮询的空频分集、基于预编码轮询的循环延迟分集等基于预编码轮询的传输方案。
结合第四方面,在第四方面的某些实现方式中,所述多个参考信号中的每个参考信号为未经过预编码的参考信号,所述第三指示信息包含两个码本索引,所述第三指示信息中的两个码本索引用于联合指示所述第一预编码矩阵集合。
可选地,该第三指示信息可以为PMI中的两个码本索引i 1,1和i 1,2,在LTE协议中,i 1,1和i 1,2可用于联合指示一个预编码矩阵集合。
结合第四方面,在第四方面的某些实现方式中,所述方法还包括:
所述网络设备接收预编码轮询粒度的指示信息。
因此,网络设备能够基于最优的预编码轮询粒度进行预编码轮询,更加有利于获得分集增益,进一步提高数据传输的可靠性。
结合第四方面,在第四方面的某些实现方式中,所述方法还包括:
所述网络设备发送预编码轮询粒度的至少一个候选值。
网络设备可以预先给终端设备发送预编码轮询粒度的候选值,终端设备可以基于该至少一个候选值分别进行测量,以确定出某度量准则下最优的预编码轮询粒度反馈给网络设备,同时可以减小终端设备测量的复杂度。
在本申请实施例中,需要反馈的目标预编码矩阵的数量x可以预先定义(例如,由协议定义),可选地,需要反馈的目标预编码矩阵的数量x可以预先配置于网络设备和终端设备中。
需要反馈的目标预编码矩阵的数量x也可以由网络设备确定,并通过信令通知终端设备,可选地,所述方法还包括:所述网络设备发送第五指示信息,所述第五指示信息指示 需要反馈的目标预编码矩阵的数量x。
第五方面,提供了一种用于数据传输的方法,所述方法应用于包含有网络设备和终端设备的通信系统中,所述网络设备和所述终端设备预先保存有多个预编码矩阵,所述方法包括:
所述网络设备接收用于信道测量的至少一个参考信号;
所述网络设备根据所述至少一个参考信号和CSI测量基于的传输方案,发送多个第六指示信息,所述多个第六指示信息用于指示x个目标预编码矩阵,所述多个第六指示信息中的至少一个第六指示信息用于指示一个目标预编码矩阵,所述x个目标预编码矩阵是基于所述多个预编码矩阵确定;
其中,x为需要指示的目标预编码矩阵的数量,x为大于1的整数。
因此,本申请实施例通过网络设备基于传输方案进行信道测量,并发送用于确定多个预编码矩阵的指示信息,使得终端设备能够基于指示信息确定预编码轮询的多个预编码矩阵,以满足传输方案的需求,相比于现有技术而言,能够提供多个测量获得的预编码矩阵进行预编码轮询,从而能够更好地获得分集增益,有利于提高数据传输的可靠性,有利于提高通信系统的鲁棒性。
其中,CSI测量基于的传输方案包括:预编码轮询、基于预编码轮询的空时分集、基于预编码轮询的空频分集、基于预编码轮询的循环延迟分集等基于预编码轮询的传输方案。
在本申请实施例中,参考信号可以包括经过预编码的参考信号和未经过预编码的参考信号。
结合第五方面,在第五方面的某些实现方式中,所述至少一个参考信号中的每个参考信号为经过预编码轮询的参考信号,所述多个第六指示信息中的每个第六指示信息用于指示在一个预编码轮询粒度上所述至少一个参考信号中的一个参考信号对应的预编码矩阵,其中,预编码轮询的次数大于或等于1,用于预编码轮询的预编码矩阵的数量为y,y为大于1的整数。
可选地,在y=x的情况下,用于预编码轮询的y个预编码矩阵中的每个预编码矩阵用于确定所述x个目标预编码矩阵中的一个目标预编码矩阵,所述y个预编码矩阵与所述x个目标预编码矩阵一一对应。
可选地,在y>x的情况下,所述方法还包括:
所述网络设备发送第七指示信息,所述第七指示信息用于指示用于预编码轮询的y个预编码矩阵中的x个预编码矩阵,用于预编码轮询的x个预编码矩阵中的每个预编码矩阵用于确定所述x个目标预编码矩阵中的一个目标预编码矩阵,所述用于预编码轮询的x个预编码矩阵与所述x个目标预编码矩阵一一对应。
为便于理解,这里以一个预编码轮询粒度为例来说明,预编码轮询所使用的预编码矩阵的列数是与该预编码轮询粒度所承载的参考信号的数量是对应的,或者说是与端口数对应的。网络设备可以通过测量选择某度量准则下最优的端口的预编码向量作为目标预编码矩阵中的列向量,这种情况下,每个第六指示信息用于指示一个预编码列向量,多个第六指示信息所指示的多个预编码列向量可以组合得到一个目标预编码矩阵;或者,也可以通过测量选择多个端口的预编码向量进行线性叠加以得到目标预编码矩阵中的列向量,这种 情况下,多个第六指示信息用于指示一个预编码列向量,多个第六指示信息所指示的多个预编码列向量可以组合得到一个目标预编码矩阵。
应理解,端口选择仅为一种可能的实现方式,网络设备也可以不作端口选择,将预编码轮询所使用的预编码矩阵直接指示给终端设备。
结合第五方面,在第五方面的某些实现方式中,所述至少一个参考信号中的每个参考信号为未经过预编码的参考信号,所述多个第六指示信息中的每个第六指示信息包括三个码本索引,每个第六指示信息中的三个码本索引用于联合指示一个预编码矩阵,所述多个第六指示信息与所述x个目标预编码矩阵一一对应。
可选地,该第六指示信息为PMI,该三个码本索引为i 1,1、i 1,2和i 2
结合第五方面,在第五方面的某些实现方式中,所述方法还包括:
所述网络设备发送预编码轮询粒度的指示信息。
从而使得终端设备基于最优的预编码轮询粒度进行预编码轮询,更加有利于获得分集增益,进一步提高数据传输的可靠性。
在本申请实施例中,需要指示的目标预编码矩阵的数量x可以预先定义(例如,由协议定义),也可以由网络设备确定,本申请对此不作限定。
第六方面,提供了一种用于数据传输的方法,所述方法应用于包含有网络设备和终端设备的通信系统中,所述网络设备和所述终端设备预先保存多个预编码矩阵集合,所述多个预编码矩阵集合中的每个预编码矩阵集合包含至少一个预编码矩阵,所述方法包括:
所述网络设备接收用于信道测量的多个参考信号;
所述网络设备根据所述多个参考信号和CSI测量基于的传输方案,发送第八指示信息和第九指示信息,所述第八指示信息用于指示所述多个预编码矩阵集合中的第一预编码矩阵集合,所述第九指示信息用于指示所述第一预编码矩阵集合中的x个目标预编码矩阵;
其中,x为需要指示的目标预编码矩阵的数量,x为大于1的整数。
因此,本申请实施例通过网络设备基于传输方案进行信道测量,并发送用于确定多个预编码矩阵的指示信息,使得终端设备能够基于指示信息确定预编码轮询的多个预编码矩阵,以满足传输方案的需求,相比于现有技术而言,能够提供多个测量获得的预编码矩阵进行预编码轮询,从而能够更好地获得分集增益,有利于提高数据传输的可靠性,有利于提高通信系统的鲁棒性。
其中,CSI测量基于的传输方案包括:预编码轮询、基于预编码轮询的空时分集、基于预编码轮询的空频分集、基于预编码轮询的循环延迟分集等基于预编码轮询的传输方案。
结合第六方面,在第六方面的某些实现方式中,所述至多个参考信号中的每个参考信号为未经过预编码的参考信号,所述第八指示信息包括两个码本索引,所述第八指示信息中的两个码本索引用于联合指示所述第一预编码矩阵集合。
可选地,该第八指示信息可以为PMI中的两个码本索引i 1,1和i 1,2,在LTE协议中,i 1,1和i 1,2可用于联合指示一个预编码矩阵集合。
结合第六方面,在第六方面的某些实现方式中,所述方法还包括:
所述网络设备发送预编码轮询粒度的指示信息。
从而使得终端设备能够基于最优的预编码轮询粒度进行预编码轮询,更加有利于获得 分集增益,进一步提高数据传输的可靠性。
在本申请实施例中,需要指示的目标预编码矩阵的数量x可以预先定义(例如,由协议定义),也可以由网络设备确定,本申请对此不作限定。
第七方面,提供了一种用于数据传输的方法,所述方法应用于包含有网络设备和终端设备的通信系统中,所述网络设备和所述终端设备预先保存有多个预编码矩阵,所述方法包括:
所述终端设备发送用于信道测量的至少一个参考信号;
所述终端设备接收所述网络设备根据所述至少一个参考信号和CSI测量基于的传输方案发送的多个第六指示信息,所述多个第六指示信息用于指示x个目标预编码矩阵,所述多个第六指示信息中的至少一个第六指示信息用于指示一个目标预编码矩阵,所述x个目标预编码矩阵是基于所述多个预编码矩阵确定;
所述终端设备根据所述多个第六指示信息确定所述x个目标预编码矩阵;
其中,x为需要指示的目标预编码矩阵的数量,x为大于1的整数。
因此,本申请实施例通过网络设备基于传输方案进行信道测量,并发送用于确定多个预编码矩阵的指示信息,使得终端设备能够基于指示信息确定预编码轮询的多个预编码矩阵,以满足传输方案的需求,相比于现有技术而言,能够提供多个测量获得的预编码矩阵进行预编码轮询,从而能够更好地获得分集增益,有利于提高数据传输的可靠性,有利于提高通信系统的鲁棒性。
其中,CSI测量基于的传输方案包括:预编码轮询、基于预编码轮询的空时分集、基于预编码轮询的空频分集、基于预编码轮询的循环延迟分集等基于预编码轮询的传输方案。
在本申请实施例中,参考信号可以包括经过预编码的参考信号和未经过预编码的参考信号。
结合第七方面,在第七方面的某些实现方式中,所述至少一个参考信号中的每个参考信号为经过预编码轮询的参考信号,所述多个第六指示信息中的每个第六指示信息用于指示在一个预编码轮询粒度上所述至少一个参考信号中的一个参考信号对应的预编码矩阵,其中,预编码轮询的次数大于或等于1,用于预编码轮询的预编码矩阵的数量为y,y为大于1的整数。
可选地,在y=x的情况下,用于预编码轮询的y个预编码矩阵中的每个预编码矩阵用于确定所述x个目标预编码矩阵中的一个目标预编码矩阵,所述y个预编码矩阵与所述x个目标预编码矩阵一一对应。
可选地,在y>x的情况下,所述终端设备根据所述多个第六指示信息确定所述x个目标预编码矩阵,包括:
所述终端设备接收第七指示信息,并根据所述第七指示信息从所述用于预编码轮询的y个预编码矩阵中确定x个预编码矩阵;
所述终端设备根据所述多个第六指示信息和用于预编码轮询的x个预编码矩阵中的各预编码矩阵,确定所述x个目标预编码矩阵中的各目标预编码矩阵,所述用于预编码轮询的x个预编码矩阵与所述x个目标预编码矩阵一一对应。
为便于理解,这里以一个预编码轮询粒度为例来说明,预编码轮询所使用的预编码矩 阵的列数是与该预编码轮询粒度所承载的参考信号的数量是对应的,或者说是与端口数对应的。网络设备可以通过测量选择某度量准则下最优的端口的预编码向量作为目标预编码矩阵中的列向量,这种情况下,每个第六指示信息用于指示一个预编码列向量,多个第六指示信息所指示的多个预编码列向量可以组合得到一个目标预编码矩阵;或者,也可以通过测量选择多个端口的预编码向量进行线性叠加以得到目标预编码矩阵中的列向量,这种情况下,多个第六指示信息用于指示一个预编码列向量,多个第六指示信息所指示的多个预编码列向量可以组合得到一个目标预编码矩阵。
应理解,端口选择仅为一种可能的实现方式,网络设备也可以不作端口选择,将预编码轮询所使用的预编码矩阵直接指示给终端设备。
结合第七方面,在第七方面的某些实现方式中,所述至少一个参考信号中的每个参考信号为未经过预编码的参考信号,所述多个第六指示信息中的每个第六指示信息包括三个码本索引,每个第六指示信息中的三个码本索引用于联合指示一个预编码矩阵,所述多个第六指示信息与所述x个目标预编码矩阵一一对应。
可选地,该第六指示信息为PMI,该三个码本索引为i 1,1、i 1,2和i 2
结合第七方面,在第七方面的某些实现方式中,所述方法还包括:
所述终端设备接收预编码轮询的指示信息。
因此,终端设备基于最优的预编码轮询粒度进行预编码轮询,更加有利于获得分集增益,进一步提高数据传输的可靠性。
在本申请实施例中,需要指示的目标预编码矩阵的数量x可以预先定义(例如,由协议定义),也可以由网络设备确定,本申请对此不作限定。
第八方面,提供了一种用于数据传输的方法,所述方法应用于包含有网络设备和终端设备的通信系统中,所述网络设备和所述终端设备预先保存多个预编码矩阵集合,所述多个预编码矩阵集合中的每个预编码矩阵集合包含至少一个预编码矩阵,所述方法包括:
所述终端设备发送用于信道测量的多个参考信号;
所述终端设备接收所述网络设备根据所述多个参考信号和CSI测量基于的传输方案发送的第八指示信息和第九指示信息,所述第八指示信息用于指示所述多个预编码矩阵集合中的第一预编码矩阵集合,所述第九指示信息用于指示所述第一预编码矩阵集合中的x个目标预编码矩阵;
所述终端设备根据所述第八指示信息和所述第九指示信息确定所述x个目标预编码矩阵;
其中,x为需要指示的目标预编码矩阵的数量,x为大于1的整数。
因此,本申请实施例通过网络设备基于传输方案进行信道测量,并发送用于确定多个预编码矩阵的指示信息,使得终端设备能够基于指示信息确定预编码轮询的多个预编码矩阵,以满足传输方案的需求,相比于现有技术而言,能够提供多个测量获得的预编码矩阵进行预编码轮询,从而能够更好地获得分集增益,有利于提高数据传输的可靠性,有利于提高通信系统的鲁棒性。
其中,CSI测量基于的传输方案包括:预编码轮询、基于预编码轮询的空时分集、基于预编码轮询的空频分集、基于预编码轮询的循环延迟分集等基于预编码轮询的传输方案。
结合第八方面,在第八方面的某些实现方式中,所述多个参考信号中的每个参考信号为未经过预编码的参考信号,所述第八指示信息包含两个码本索引,所述第八指示信息中的两个码本索引用于联合指示所述第一预编码矩阵集合。
可选地,该第八指示信息可以为PMI中的两个码本索引i 1,1和i 1,2,在LTE协议中,i 1,1和i 1,2可用于联合指示一个预编码矩阵集合。
结合第八方面,在第八方面的某些实现方式中,所述方法还包括:
所述终端设备接收预编码轮询粒度的指示信息。
因此,终端设备能够基于最优的预编码轮询粒度进行预编码轮询,更加有利于获得分集增益,进一步提高数据传输的可靠性。
第九方面,提供了一种信道测量指示方法,包括:
终端设备接收第十指示信息,所述第十指示信息指示信道测量所基于的频带粒度,一个频带粒度所对应的频带与一个预编码矩阵对应;
所述终端设备根据所述第十指示信息,确定所述频带粒度。
在本申请实施例中,测量带宽包括至少一个频带粒度。其中,测量带宽可以为传输信道测量参考信号所对应的带宽,也可以为测量后反馈CSI所基于的带宽。也就是说,测量带宽可以为传输信道测量参考信号的全部带宽或部分带宽。
因此,终端设备基于频带粒度进行信道测量,能够在信道测量不准确的情况下,测量在测量带宽上采用多个预编码矩阵进行预编码的等效信道,以获得较为准确的CSI,有利于提高数据传输的可靠性,提高系统的鲁棒性。
结合第九方面,在第九方面的某些实现方式中,所述方法还包括:所述终端设备根据所述频带粒度对测量带宽进行信道测量,所述测量带宽为反馈信道状态信息CSI所基于的带宽。
也就是说,终端设备可以基于网络设备所指示的频带粒度进行信道测量,并可基于对整个测量带宽测量后的结果进行CSI反馈。
结合第九方面,在第九方面的某些实现方式中,所述反馈CSI所基于的带宽为传输参考信号的全部带宽或部分带宽。
结合第九方面,在第九方面的某些实现方式中,所述频带粒度为预编码资源块组PRG的带宽大小。
结合第九方面,在第九方面的某些实现方式中,所述预编码矩阵由终端设备从预定义的码本中随机选择。
结合第九方面,在第九方面的某些实现方式中,所述终端设备根据所述频带粒度对测量带宽进行信道测量,包括:
所述终端设备将所述频带粒度作为预编码轮询的粒度,并基于预编码轮询的传输方案对所述测量带宽进行信道测量。
结合第九方面,在第九方面的某些实现方式中,所述第十指示信息承载于以下任意一个信令中:无线资源控制RRC消息、媒体接入控制MAC-控制元素CE或下行控制信息DCI。
结合第九方面,在第九方面的某些实现方式中,具有相同的频带粒度的任意两个相邻的频带对应的预编码矩阵不同。
第十方面,提供了一种用于数据传输的方法,包括:
网络设备确定信道测量所基于的频带粒度,一个频带粒度所对应的频带与一个预编码矩阵对应;
所述网络设备发送第十指示信息,所述第十指示信息指示所述频带粒度。
在本申请实施例中,测量带宽包括至少一个频带粒度。其中,测量带宽可以为传输信道测量参考信号所对应的带宽,也可以为测量后反馈CSI所基于的带宽。也就是说,测量带宽可以为传输信道测量参考信号的全部带宽或部分带宽。
因此,终端设备基于频带粒度进行信道测量,能够在信道测量不准确的情况下,测量在测量带宽上采用多个预编码矩阵进行预编码的等效信道,以获得较为准确的CSI,有利于提高数据传输的可靠性,提高系统的鲁棒性。
结合第十方面,在第十方面的某些实现方式中,所述频带粒度为预编码资源块组PRG的带宽大小。
结合第十方面,在第十方面的某些实现方式中,所述第十指示信息承载于以下任意一个信令中:无线资源控制RRC消息、媒体接入控制MAC-控制元素CE或下行控制信息DCI。
结合第十方面,在第十方面的某些实现方式中,具有相同的频带粒度的任意两个相邻的频带对应的预编码矩阵不同。
第十一方面,提供了一种终端设备,所述终端设备包括用于执行第一方面或第一方面任一种可能实现方式中的用于数据传输的方法的各个模块,或者用于执行第二方面或第二方面任一种可能实现方式中的用于数据传输的方法的各个模块,或者用于执行第七方面或第七方面任一种可能实现方式中的用于数据传输的方法的各个模块,或者用于执行第八方面或第八方面任一种可能实现方式中的用于数据传输的方法的各个模块,或者用于执行第九方面或第九方面任一种可能实现方式中的用于数据传输的方法的各个模块。
第十二方面,提供了一种网络设备,所述网络设备包括用于执行第三方面或第三方面任一种可能实现方式中的用于数据传输的方法的各个模块,或者用于执行第四方面或第四方面任一种可能实现方式中的用于数据传输的方法的各个模块,或者用于执行第五方面或第五方面任一种可能实现方式中的用于数据传输的方法的各个模块,或者用于执行六方面或第六方面任一种可能实现方式中的用于数据传输的方法的各个模块,或者用于执行第十方面或第十方面任一种可能实现方式中的用于数据传输的方法的各个模块。
第十三方面,提供了一种终端设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该网络设备执行第一方面或第一方面任一种可能实现方式中的方法、或者第二方面或第二方面任一种可能实现方式中的方法、或者第七方面或第七方面任一种可能实现方式中的方法、或者第八方面或第八方面任一种可能实现方式中的方法,或者用于执行第九方面或第九方面任一种可能实现方式中的用于数据传输的方法的各个模块。
第十四方面,提供了一种网络设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该终端设备执行第三方面或第三方面任一种可能实现方式中的方法、或者第四方面或第四方面任一种可能实现方式中的方法、或者第五方面或第五方面任一种 可能实现方式中的方法、或者第六方面或第六方面任一种可能实现方式中的方法,或者用于执行第十方面或第十方面任一种可能实现方式中的用于数据传输的方法的各个模块。
在具体实现过程中,上述第十三方面或第十四方面中的处理器可用于进行,例如但不限于,基带相关处理,接收器和发射器可分别用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上,例如,接收器和发射器可以设置在彼此独立的接收器芯片和发射器芯片上,也可以整合为收发器继而设置在收发器芯片上。又例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器,其中模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多,例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(System on Chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的具体需要。本申请实施例对上述器件的具体实现形式不做限定。
第十五方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行第一方面至第十方面以及第一方面至第十方面任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第十六方面,提供了一种处理装置,包括:存储器和处理器。所述处理器用于读取所述存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面至第十方面以及第一方面至第十方面任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(Read Only Memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第十七方面,提供了一种芯片,包括处理器和存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,该计算机程序用于实现第一方面至第十方面以及第一方面至第十方面任一种可能实现方式中的方法。
第十八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面至第十方面以及第一方面至第十方面中任一种可能实现方式中的方法。
第十九方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也 可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第十方面以及第一方面至第十方面中任一种可能实现方式中的方法。
其中,所述计算机可读存储介质为非瞬时性。
基于上述设计,本申请实施例能够基于传输方案进行信道测量,通过反馈用于确定多个预编码矩阵的指示信息,满足预编码轮询的传输方案的需求,有利于提高数据传输的可靠性,进而可以提高通信系统的鲁棒性。
附图说明
图1是适用于本申请实施例的用于数据传输的方法的通信系统的示意图;
图2是现有LTE系统中所采用的下行物理信道处理过程的示意图;
图3是本申请一实施例提供的用于数据传输的方法的示意性流程图;
图4是本申请一实施例提供的位图的示意图;
图5是本申请另一实施例提供的用于数据传输的方法的示意性流程图;
图6是本申请又一实施例提供的用于数据传输的方法的示意性流程图;
图7是本申请再一实施例提供的用于数据传输的方法的示意性流程图;
图8是本申请实施例提供的用于数据传输的装置的示意性框图;
图9是本申请实施例提供的终端设备的结构示意图;
图10是本申请另一实施例提供的用于数据传输的装置的示意性框图;
图11是本申请另一实施例提供的网络设备的结构示意图;
图12是本申请一实施例提供的信道测量指示方法的示意性流程图;
图13是本申请一实施例提供的信道测量指示装置的示意性框图;
图14是本申请一实施例提供的信道测量指示装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的5G系统或新无线(new radio,NR)等。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例的通信系统。图1示出了适用于本申请实施例的用于数据传输的方法和装置的通信系统的示意图。如图1所示,该通信系统100包括网络设备102,网络设备102可包括多个天线例如,天线104、106、108、110、112和114。另外,网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
应理解,网络设备可以是任意一种具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:基站(例如,基站NodeB、演进型基站eNodeB、5G通信系统中的网络设备(如传输点(transmission point,TP)、发送接收点(transmission reception point,TRP)、基站、小基站设备等)、未来通信系统中的网络设备、无线保真(Wireless-Fidelity,WiFi)系统中的接入节点、无线中继节点、无线回传节点等。
网络设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。网络设备102可以与类似于终端设备116或122的任意数目的终端设备通信。
应理解,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将前述终端设备及可设置于前述终端设备的芯片统称为终端设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
本申请的实施例可以适用于下行数据传输,也可以适用于上行数据传输,还可以适用于设备到设备(device to device,D2D)的数据传输。例如,对于下行数据传输,发送端的设备是基站,对应的接收端的设备是UE;对于上行数据传输,发送端的设备是UE,对应的接收端的设备是基站;对于D2D的数据传输,发送设备是UE,对应的接收设备也是UE。本申请的实施例对此不做限定。
例如,在频分双工(frequency division duplex,FDD)系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在时分双工(time division duplex,TDD)系统和全双工(full duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每个天线(或者由多个天线组成的天线组)和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。在网络设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与网络设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是公共陆地移动网络(PLMN)网络或者设备对设备(device to device,D2D)网络或者机器对机器(machine to machine,M2M)网络或者其他网络,图1仅为便于理解而示例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
为便于理解本申请实施例,以下结合图2简单说明LTE系统中下行物理信道的处理过程。图2是现有LTE系统中所采用的下行物理信道处理过程的示意图。下行物理信道处理过程的处理对象为码字,码字通常为经过编码(至少包括信道编码)的比特流。码字(code word)经过加扰(scrambling),生成加扰比特流。加扰比特流经过调制映射(modulation mapping),得到调制符号流。调制符号流经过层映射(layer mapping),被映射到多个层(layer),为便于区分和说明,在本申请实施例以中,可以将经层映射之后的符号流称为层映射空间层(或者称,层映射空间流、层映射符号流)。层映射空间层经过预编码(precoding),得到多个预编码数据流(或者称,预编码符号流)。预编码符号流经过资源粒(resource element,RE)映射,被映射到多个RE上。这些RE随后经过正交频分复用(orthogonal frequency division multiplexing,OFDM)调制,生成OFDM符号流。OFDM符号流随后通过天线端口(antenna port)发射出去。
其中,预编码技术可以是在已知信道状态的情况下,通过在发送端对待发射信号做预先的处理,即,借助与信道资源相匹配的预编码矩阵来对待发射信号进行处理,使得经过预编码的待发射信号与信道相适配,使得接收端消除信道间影响的复杂度降低。因此,通过对发射信号的预编码处理,接收信号质量(例如信号与干扰加噪声比(signal to interference plus noise ratio,SINR))得以提升。因此,采用预编码技术,可以实现发送端设备与多个接收端设备在相同的时频资源上传输,也就是实现了多用户多输入多输出(multiple user multiple input multiple output,MU-MIMO)。应注意,有关预编码技术的相关描述仅用于举例,并非用于限制本申请实施例的保护范围,在具体实现过程中,还可以通过其他方式进行预编码(例如在无法获知信道矩阵的情况下采用预先设置的预编码矩阵或者加权处理方式进行预编码),具体内容本文不再赘述。
然而,在信道环境高速变换或者其他无法获取到CSI的情况下,接收端往往反馈的是长时宽带的CSI,根据这样的CSI反馈确定出的预编码矩阵是不准确的,与当前的信道状态不能够准确地适配,因此,经过预编码后的待发射信号也就不能被接收端成功地解调,最终导致接收到的信号质量下降。
目前,已知一种传输方案,采用多个预编码向量对同一个数据流进行预编码轮询,通过多个预编码向量的轮询来获得分集增益,以适用于信道环境高速变换或者其他无法准确获取到CSI的场景。这种传输方案可以称为预编码轮询。可以理解,预编码轮询属于一种分集传输的传输方案。
然而,在当前技术中,发送端在采用预编码轮询的传输方案时,并未获取到基于该传 输方案而测量得到的CSI。事实上,接收端在进行信道测量时,通常是基于闭环空间复用(closed-loop spatial multiplexing,CLSM)的传输方案来进行信道测量的,所反馈的CSI也通常适用于CLSM的传输方案,而不能满足分集传输的需求。
因此,需要提供一种方案,基于预编码轮询的传输方案反馈CSI,以便发送端设备获取能够与当前信道状态相适配的多个预编码矩阵进行预编码轮询,从而提高信号的接收质量。
通常情况下,发送端为了获取能够与信道相适配的预编码矩阵,可以通过发送参考信号的方式来预先进行信道测量,获取接收端经信道测量得到的CSI,从而确定出较为准确的预编码矩阵来对待发送数据进行预编码处理。
在本申请中,参考信号可以包括未经过预编码(non-precoded)的参考信号和经过预编码的参考信号(或者称,波束赋形(beamformed)的参考信号)。其中,未经过预编码的参考信号类似于LTE协议中的A类(Class A)参考信号,经过预编码的参考信号类似于LTE协议中的B类(Class B)参考信号。在本申请实施例中,两者的区别在于经信道测量后反馈(或者指示)的CSI不同。
具体来说,接收端基于未经过预编码的参考信号可以估计得到发射天线与接收天线之间的完整信道,CSI是基于完整信道的测量得到的。接收端基于经过预编码的参考信号可以测量等效信道,CSI是基于等效信道的测量得到的。因此,可以理解,虽然接收端基于这两种参考信号都会反馈CSI,但基于不同的参考信号进行信道测量所反馈(或者指示)的CSI中所包含的内容可能是不同的。
随着多天线技术的发展,由于天线端口数较多,采用未经过预编码的参考信号进行信道测量(具体地说,为CSI测量)带来的导频开销较大,每个参考信号的发射功率较低,信道测量的准确性较低;经过预编码的参考信号可以用于测量等效信道矩阵,终端设备测量得到的是经过波束赋形的等效信道,因此天线端口数得以减少,导频开销较小,因此发射功率得以提高,信道测量的准确性也得以提高。
因此,不论是未经过预编码的参考信号还是经过预编码的参考信号,都可以用于确定预编码矩阵。其中,前者基于完整信道的测量确定预编码矩阵,该预编码矩阵可以用于发送端设备对数据进行预编码;后者基于等效信道的测量确定与天线端口(或者说,波束)对应的预编码向量,也就是确定用于数据传输的天线端口所对应的预编码向量。换句话说,预编码参考信号用于进行预编码向量的选择,或者说,天线端口的选择、波束的选择。在本申请中,若参考信号为预编码参考信号,则一个天线端口可以对应一个预编码向量,当发送端基于一个天线端口所对应的预编码向量发射预编码后的参考信号时,所发射的预编码参考信号具有一定的指向性,因此,一个天线端口发射的预编码参考信号可以理解为一个特定方向的波束,简单地说,一个天线端口对应一个波束。
应理解,本申请对于该参考信号所适用的通信方式及参考信号的类型并未特别限定。例如,对于下行数据传输,该发送端可以为网络设备,接收端可以为终端设备,该参考信号可以为例如信道状态信息参考信号(channel state information reference signal,CSI-RS);对于上行数据传输,该发送端可以为终端设备,接收端可以为网络设备,该参考信号可以为例如探测参考信号(sounding reference signal,SRS);对于设备到设备(device to device,D2D)的数据传输,发送端可以是终端设备,接收端也可以是终端设备,该参考信号可以 为例如SRS。但应理解,以上列举的参考信号的类型仅为示例性说明,而不应对本申请构成任何限定,本申请也并不排除采用其他的参考信号以实现相同或相似功能的可能。
需要说明的是,在本申请实施例中,天线端口(或者,简称端口)可以理解为参考信号端口,一个参考信号与一个天线端口对应,这里所说的参考信号例如可以包括信道状态信息参考信号CSI-RS端口、DMRS端口,也可以包括SRS端口、DMRS端口,不同类型的参考信号用于实现不同的功能,本申请中涉及天线端口的描述,可以为CSI-RS端口,也可以为DMRS端口,或者,可以为SRS端口,也可以为DMRS端口,本领域的技术人员可以理解其含义。
还需要说明的是,在本申请实施例中,传输方案(或者称,传输方式、传输机制)可以为现有的协议(例如,LTE协议)中定义的transmission scheme,也可以为未来5G中相关协议中定义的transmission scheme,本申请实施例对此并未特别限定。应理解,传输方案可以理解为用于表示传输数据所使用的技术方案的一个称呼,不应对本申请实施例构成任何限定,本申请实施例并不排除在未来协议中通过其他称呼来替代传输方案的可能。
下面分别以未经过预编码的参考信号和经过预编码的参考信号为例,结合附图详细说明本申请提供的用于数据传输的方法。
应理解,本申请的技术方案可以应用于采用了多天线技术的无线通信系统,例如,该无线通信系统可以为图1中所示的通信系统100。该通信系统可以包括至少一个网络设备和至少一个终端设备,网络设备和终端设备可以通过无线空口通信。例如,该通信系统中的网络设备可以对应于图1中所示的网络设备102,终端设备可以对应于图1中所示的终端设备116或122。
在如上所述的无线通信系统中,网络设备和终端设备可以预先保存相同的码本(codebook),该码本中可以保存有多个预编码矩阵与多个索引(例如,PMI)的一一对应关系。可以理解,该多个预编码矩阵与多个PMI的一一对应关系可以预先定义(例如,由协议定义)并配置与网络设备和终端设备中,由可以由网络设备预先定义,并预先通过信令通知终端设备,终端设备保存该多个预编码矩阵与多个PMI的一一对应关系。
下面结合图3至图7详细说明本申请实施例的用于数据传输的方法。
图3从设备交互的角度示出了本申请一实施例提供的用于数据传输的方法200的示意性流程图。具体地,图3示出了下行数据传输的场景。如图所示,图3中示出的方法200可以包括步骤210至步骤260。
在步骤210中,网络设备发送用于信道测量的至少一个参考信号。
相应地,在步骤210中,终端设备接收用于信道测量的至少一个参考信号。
具体地,该至少一个参考信号可以为承载于同一参考信号资源上的参考信号。在一个参考信号资源承载多个参考信号的情况下,该一个参考信号资源所承载的多个参考信号配置的资源可以是时分复用(time division multiplexing,TDM)的,也可以是频分复用(frequency division multiplexing,FDM)的,还可以是码分复用(code division multiplexing,CDM)的。换句话说,网络设备可以通过TDM、FDM、CDM等方式来区分不同的天线端口。若采用FDM或者TDM,则不同天线端口的参考信号所占用的频域资源或者时域资源可以是不同的。若采用CDM,则不同天线端口的参考信号所占用的时频资源可以是相同的,而通过复用码来区分不同的天线端口。本申请对于该至少一个第一参考信号的资源 配置方式并未特别限定。
作为示例而非限定,在下行数据传输中,该参考信号例如可以为CSI-RS,该参考信号资源例如可以为CSI-RS资源(CSI-RS resource)。
在步骤220中,终端设备根据该至少一个参考信号和CSI反馈基于的传输方案,反馈多个第一指示信息,该多个第一指示信息用于指示x个预编码矩阵。
相应地,在步骤220中,网络设备接收终端设备基于该至少一个参考信号和CSI反馈基于的传输方案反馈的多个第一指示信息,其后,在步骤230中,网络设备基于该多个第一指示信息,确定x个目标预编码矩阵。
其中,x为需要反馈的目标预编码矩阵的数量,x为大于1的整数。
具体地,终端设备可以通过至少一个第一指示信息指示x个目标预编码矩阵中的一个目标预编码矩阵,网络设备可以根据预存的码本以及该至少一个第一指示信息,确定该x个目标预编码矩阵中的一个目标预编码矩阵。也就是说,一个目标预编码矩阵可以由一个第一指示信息指示(或者说,确定),也可以由多个第一指示信息指示(或者说,确定)。
应理解,该x个目标预编码矩阵可以彼此各不相同,也可以有部分相同,本申请对此并不做限定。
在本申请实施例中,CSI反馈基于的传输方案可以预先约定(例如,由协议定义)并配置于网络设备和终端设备中,也可以由网络设备确定并通知终端设备。
在网络设备确定CSI反馈基于的传输方案的情况下,网络设备可以通过信令显式地指示终端设备CSI反馈基于的传输方案。可选地,该方法还包括:步骤240,网络设备发送CSI反馈基于的传输方案的指示信息。
终端设备可以根据该指示信息所指示的传输方案进行测量和反馈。因此,该CSI反馈基于的传输方案的指示信息也可以称为反馈类型(feedback type)的指示信息。
作为示例而非限定,CSI反馈基于的传输方案包括:预编码轮询、基于预编码轮询的空时分集、基于预编码轮询的空频分集、基于预编码轮询的循环延迟分集等基于预编码轮询的传输方案。
应理解,CSI反馈基于的传输方案可以理解为一种传输方案的假设,终端设备基于该假设的传输方案进行CSI测量和反馈。
在本申请实施例中,该参考信号可以为未经过预编码的参考信号(情况一),也可以为经过预编码的参考信号(情况二),下面分别结合情况一和情况二详细说明第一指示信息用于指示(或者说,确定)预编码矩阵的具体方法。
情况一:该参考信号为未经过预编码的参考信号。
在情况一中,网络设备在步骤210中可以发送多个未经过预编码的参考信号,终端设备在步骤220中,基于网络设备发送的多个未经过预编码的参考信号进行信道测量,该信道测量可以是对发射天线和接收天线之间的完整信道的测量。终端设备基于信道测量,确定多个预编码矩阵,并通过反馈多个第一指示信息来指示该多个目标预编码矩阵。
可选地,该第一指示信息为PMI,则多个PMI中的每个PMI包含三个码本索引i 1,1、i 1,2和i 2,每个PMI中的三个码本索引用于联合指示一个预编码矩阵,x个PMI与x个预编码矩阵一一对应。
在某些情况下,也可以这样理解:每个PMI包含两个PMI值(PMI value),分别为 i 1和i 2
其中,i 1对应于码本中的一对索引{i 1,1,i 1,2},通过一对索引{i 1,1,i 1,2}可以确定一个预编码矩阵集合,该预编码矩阵集合可以包括至少一个预编码矩阵,该至少一个预编码矩阵包括目标预编码矩阵;i 2即对应于码本中的i 2,可用于进一步从这对索引{i 1,1,i 1,2}所指示的预编码矩阵集合中确定一个目标预编码矩阵。因此,换句话说,i 1和i 2可以用于联合指示一个目标预编码矩阵。
因此,在情况一中,一个PMI可用于确定一个目标预编码矩阵。x个目标预编码矩阵可以由x个PMI来指示。
网络设备在步骤230中,在接收到该x个PMI时,可以根据上述所说的每个PMI中所包含的两个PMI值确定所对应的索引,进而确定每个PMI所指示的预编码矩阵为目标预编码矩阵。
情况二:该参考信号为经过预编码轮询的参考信号。
在情况二中,网络设备在步骤210中可以发送至少一个经过预编码的参考信号。终端设备在步骤220中,可以基于网络设备发送的至少一个经过预编码的参考信号进行信道测量,该信道测量可以是对等效信道的测量。终端设备基于等效信道测量,确定x个目标预编码矩阵。
可选地,该至少一个参考信号中的每个参考信号可以为经过预编码轮询的参考信号。
预编码轮询可以理解为在一个参考信号资源上采用了至少两种不同的预编码矩阵对参考信号进行预编码。用于表征预编码轮询的参数可以包括:预编码轮询粒度和预编码矩阵的数量。其中,预编码轮询粒度(或者称预编码轮询的大小)所指示的是使用同一个预编码矩阵进行预编码的连续的资源单元的数目,预编码矩阵数量所指示的是在一个参考信号资源上所使用的不同的预编码矩阵的数量,在本申请实施例中,预编码矩阵数量记作y,y为大于1的整数。在本申请实施例中,可以将对y个资源组分别采用y个预编码矩阵进行预编码轮询的过程记作一个轮询周期,一个轮询周期即轮询次数为一,或者说,轮询一次。
这里,资源单元可以理解为物理层传输的最小调度单位。每个资源单元可以为LTE协议中定义的一个资源块RB(resouce block,RB),也可以为多个RB构成的RB组(RB group,RBG),还可以为1/2个RB、1/4个RB,或者,也可以为一个或多个资源粒子(resource element,RE),本申请对此并未特别限定。若资源单元为RB,则预编码轮询的粒度也可以称为预编码资源块组大小(precoding resource block group size,PRG size),或者,轮询的PRG大小(cycling PRG size)。
另外,还需要说明的是,该至少一个参考信号与至少一个端口一一对应,若参考信号数量仅为1,则该参考信号的预编码矩阵仅包括一个列向量,若参考信号的数量为R,则该R个参考信号的预编码矩阵包括R个列向量。
在本申请实施例中,参考信号的测量带宽可以划分为多个物理资源组(或者简称,资源组),每个资源组可以包括至少一个资源单元。该y个资源组可以是频域上划分的也可以是时域上划分的,本申请对此并未特别限定。
至少一个预编码参考信号可承载于该多个资源组中,每个资源组均承载该至少一个预编码参考信号,任意两个相邻的资源组所承载的信号对应的预编码矩阵不同。可以理解, 资源组为预编码轮询粒度的一例。
举例来说,测量带宽被划分为4个连续的子带(subband)(应理解,子带即频域上划分的资源组),依次分别为子带#1、子带#2、子带#3和子带#4。每个子带上使用同一个预编码矩阵进行预编码,子带#1和子带#3上所采用的预编码矩阵相同,子带#2和子带#4上所采用的预编码矩阵相同。则预编码轮询的粒度为一个子带,预编码矩阵的数量y为2。
在本申请实施例中,终端设备可以根据接收到的经过预编码轮询的参考信号所对应的y个预编码矩阵确定x个目标预编码矩阵。一种可能的设计是,终端设备可以将用于预编码轮询的y个预编码矩阵中的x个预编码矩阵直接用作x个目标预编码矩阵。在这种情况下,终端设备可以直接向网络设备反馈一个携带有预编码矩阵的数量x的指示信息。网络设备可以根据该指示信息,从用于预编码轮询的y个预编码矩阵中选择x个预编码矩阵用于数据传输;另一种可能的设计是,终端设备可以根据用于预编码轮询的y个预编码矩阵确定x个目标预编码矩阵,其中,每个目标预编码矩阵可以是基于至少一个用于预编码轮询的预编码矩阵进行端口选择而获得的。也就是说,当根据一个预编码矩阵(例如记作P A)确定一个目标预编码矩阵(例如记作P B)时,P B可能由P A中部分或全部列向量组合而成;当根据至少一个预编码矩阵(例如记作P A和P C)确定一个目标预编码矩阵(例如记作P D)时,P B可能由P A和P C中部分或全部列向量线性叠加而成。
下面详细说明通过端口选择确定x个目标预编码矩阵并反馈多个第一指示信息的具体方法。
在本申请实施例中,若用于预编码轮询的预编码矩阵的数量y与需要反馈的预编码矩阵的数量x相等,即y=x,终端设备可以根据测量带宽内各资源组对应的预编码矩阵,确定x个目标预编码矩阵,即根据每个资源组所承载的至少一个预编码参考信号确定一个目标预编码矩阵。可以理解的是,由于对参考信号进行了预编码轮询,在轮询的次数大于1的情况下,可能会有多个资源组对应相同的预编码矩阵。
在这种情况下,用于预编码轮询的y个预编码矩阵中的每个预编码矩阵用于确定所述x个目标预编码矩阵中的一个目标预编码矩阵,该y个预编码矩阵与x个目标预编码矩阵一一对应。
可选地,该第一指示信息为PMI,则多个PMI中的每个PMI用于指示一个预编码参考信号所对应的端口。
具体地,在情况二中,每个PMI包含一个索引,该索引可用于指示一个矩阵,该矩阵可以包括至少一个列向量,该矩阵的列数与秩(rank)相关。若秩为R,则该矩阵包括R个列向量。每个列向量用于确定一个预编码向量,则该列数为R的矩阵可以用于确定一个秩为R的目标预编码矩阵。
网络设备在步骤230中,在接收到多个PMI时,可以根据上述所说的每个PMI中的索引所指示的矩阵,确定确定每个PMI所指示的预编码矩阵,进而确定x个目标预编码矩阵。以下示出了情况二中PMI用于指示(或者说,确定)目标预编码矩阵的一例。
假设PMI中包含的码本索引所对应的矩阵为:
若秩为1,
Figure PCTCN2018092023-appb-000001
若秩大于1(例如,秩为2),
Figure PCTCN2018092023-appb-000002
则以上列举的矩阵示出了四天线端口下秩分别为1和2的PMI对应的矩阵。
若秩为1,则该列向量用于确定所选择的端口的预编码向量,该预编码向量即为一个目标预编码矩阵。其中,4表示端口数量,3表示当前被选择的端口。
若秩大于1(例如,秩为2),则该矩阵中每个列向量用于确定所选择的端口的预编码向量,该矩阵可以用于确定一个列数为2的目标预编码矩阵。其中,4表示端口数量,第一列中的3表示当前被选择的用于第一个数据层的端口,第二列中的0表示当前被选择的用于第二个数据层的端口。
以下示出了情况二中PMI用于指示(或者说,确定)目标预编码矩阵的又一例。
假设PMI中包含码本(codebook)的索引值为12,码本中索引为12时所对应的矩阵为:
若秩为1,
Figure PCTCN2018092023-appb-000003
若秩大于1(例如,秩为2),
Figure PCTCN2018092023-appb-000004
则以上列举的矩阵示出了八天线端口下秩分别为1和2的PMI对应的矩阵。
若秩为1,则该列向量用于确定所选择的端口的预编码向量,该预编码向量可以对应于两个极化方向,其中,4表示端口数量,3表示当前被选择的端口,两个
Figure PCTCN2018092023-appb-000005
之间通过极化天线相位因子(co-phase)α区分,该极化天线相位因子α的取值可以为[1,-1,j,-j]中的任意值。该列向量可用于确定用于数据传输的一个预编码向量,即,将第一极化方向的第3个端口和第二极化方向的第3个端口所对应的预编码向量拼接在一起,构成该预编码向量。例如,第一极化方向的第3个端口对应的预编码向量为P 1,第二极化方向的第3个端口对应的预编码向量为P 2,则根据该列向量所确定的预编码向量为:
Figure PCTCN2018092023-appb-000006
该预编码向量即为一个目标预编码矩阵。
若秩大于1(例如,秩为2),则该矩阵中每个列向量用于确定所选择的端口的预编码向量,该矩阵可以用于确定一个列数为2的目标预编码矩阵。该目标预编码矩阵中的每个预编码向量可以对应于两个极化方向,其中,4表示端口数量,第一列中的0表示当前被选择的用于第一个数据层的端口,第二列中的3表示当前被选择的用于第二个数据层的端口,每个列向量都可以通过极化天线相位因子α区分。假设,第一极化方向的第3个端口对应的预编码向量为P 1,第二极化方向的第3个端口对应的预编码向量为P 2,第一极化方向的第0个端口对应的预编码向量为P 3,第二极化方向的第0个端口对应的预编码向量为P 4,则根据该矩阵所确定的目标预编码矩阵为:
Figure PCTCN2018092023-appb-000007
需要说明的是,根据终端设备反馈的第一指示信息所确定的目标预编码矩阵中的每个列向量可以与网络设备所配置的端口具有一一对应关系,此时,网络设备基于第一指示信息所确定的目标预编码矩阵中的每个列向量即为所对应的端口所使用的预编码向量;终端设备所反馈的预编码向量还可以与网络设备所配置的多个端口对应(即,端口合并),此时,该预编码向量可以是该多个端口所使用的预编码向量的线性叠加,在这种情况下,终 端设备可以将多个端口以及线性组合的系数反馈给网络设备,以便于网络设备确定预编码向量。
应理解,终端设备进行端口合并的方法可以与现有技术中的方法相同,为了简洁,这里省略对其具体过程的详细说明。
在本申请实施例中,若用于预编码轮询的预编码矩阵的数量y大于需要反馈的预编码矩阵的数量x,即y>x,终端设备可以先从y个预编码矩阵中选择x个预编码矩阵通过第二指示信息通知网络设备,然后终端设备可以基于该x个预编码矩阵确定x个目标预编码矩阵,并将该x个目标预编码矩阵通过第一指示信息反馈给网络设备。
可选地,该方法还包括:
终端设备发送第二指示信息,该第二指示信息指示用于预编码轮询的y个预编码矩阵中的x个预编码矩阵,用于预编码轮询的x个预编码矩阵中的每个预编码矩阵用于确定该x个目标预编码矩阵中的一个目标预编码矩阵,该用于预编码轮询的x个预编码矩阵与该x个目标预编码矩阵一一对应。
对应地,网络设备接收第二指示信息,并根据该第二指示信息从该用于预编码轮询的y个预编码矩阵中确定x个预编码矩阵;
该网络设备根据该多个第一指示信息和用于预编码轮询的x个预编码矩阵中的各预编码矩阵,确定该x个目标预编码矩阵中的各目标预编码矩阵。
在一种可能的实现方式中,该第二指示信息可以为位图,该位图中的多个比特位与y个预编码矩阵一一对应,或者,与测量带宽内所包含的一个轮询周期内的y个资源组一一对应,每个比特位中的值用于指示是否选用所对应的预编码矩阵,或者,用于指示是否选用所对应的资源组承载的参考信号的预编码矩阵。例如,位图中的比特位被置“0”表示所对应的预编码矩阵未被选择,位图中的比特位被置“1”表示所对应的预编码矩阵被选择。可以理解的是,由于对参考信号进行了预编码轮询,在轮询的次数大于1的情况下,可能会有多个资源组对应相同的预编码矩阵。
举例来说,假设有四个子带(即,资源组的一例),预编码矩阵的数量y为4,则轮询次数为一,四个子带与四个预编码矩阵一一对应,需要反馈的目标预编码矩阵的数量x为2。图4是本申请一实施例提供的位图的示意图。如图4所示,位图中的四个比特位显示为“0101”,则表示子带#1和子带#3对应的预编码矩阵未被选择,子带#2和子带#4对应的预编码矩阵被选择。
应理解,通过位图来指示被选择的x个预编码矩阵的方法仅为一种可能的实现方式,而不应对本申请构成任何限定,本申请还可以通过其他的方法来指示被选择的x个资源组。
上文中结合情况一和情况二详细说明了第一指示信息用于指示(或者说,确定)目标预编码矩阵的具体方法。可以理解,上述列举的第一指示信息用于指示目标预编码矩阵的方法是一种间接指示的方法,网络设备可以根据接收到的多个第一指示信息确定x个目标预编码矩阵。
在本申请实施例中,终端设备可以根据CSI反馈基于的传输方案测量并确定多个目标预编码矩阵。该目标预编码矩阵的数量x可以预先约定(例如,由协议定义),也可以由网络设备根据当前的信道状态确定并通过信令通知终端设备。
在网络设备确定目标预编码矩阵数量x的情况下,可选地,该方法200还包括:步骤250,网络设备发送第五指示信息,该第五指示信息指示目标预编码矩阵的数量x。
可选地,第五指示信息可以承载于以下任意一个信令中:无线资源控制(radio resource control,RRC)消息、媒体接入控制(media access control,MAC)-控制元素(control element,CE)、下行控制信息(downlink control information,DCI)。
可选地,该方法200还包括:步骤260,网络设备发送目标预编码矩阵数量c的最大值c的指示信息,其中,c≥x,c为整数。
网络设备还可以进一步限制终端设备反馈的目标预编码矩阵数量的最大值,以限制终端设备反馈所带来的信令开销。
可选地,目标预编码数量的最大值c的指示信息可以承载于以下任意一个信令中:RRC消息、MAC-CE或DCI。
应理解,上述列举的用于承载指示信息的信令仅为示例性说明,而不应对本申请构成任何限定。
可选地,该方法200还包括:步骤270,网络设备基于在步骤230中确定的x个目标预编码矩阵对待发送的数据进行预编码轮询,并发送预编码轮询后的数据。
具体地,网络设备可以根据在步骤230中确定出的x个目标预编码矩阵直接对待发送的数据进行预编码,也可以根据在步骤230中确定出的x个目标预编码矩阵进行数学变换或数学计算,得到用于预编码操作的多个预编码矩阵,并基于该得到的多个预编码矩阵对待发送的数据进行预编码轮询。网络设备在对数据进行预编码轮询后,得到并发送预编码轮询后的数据。
在本申请实施例中,用于下行数据传输的传输方案可以预先约定(例如,由协议定义)并配置于网络设备和终端设备中,也可以由网络设备根据终端设备测量反馈的CSI确定。
应理解,在本申请实施例中,为便于说明,假设CSI反馈基于的传输方案和用于下行数据传输的传输方案相同,均为预编码轮询。但这不应对本申请构成任何限定,CSI反馈基于的传输方案和用于下行数据传输的传输方案可以相同也可以不同,本申请对此不作限定。
可选地,该方法200还包括:步骤280,终端设备发送预编码轮询粒度的指示信息。
终端设备在获知了用于下行数据传输的传输方案之后,可以进一步向网络设备反馈预编码轮询粒度的指示信息。具体地,终端设备可以采用多种可能的预编码轮询粒度进行测量,将某度量准则下最优的预编码轮询粒度,并反馈给网络设备。网络设备基于最优的预编码轮询粒度进行预编码轮询,更加有利于获得分集增益,进一步提高数据传输的可靠性。
其中,该度量准则可以包括但不限于:信干噪比(signal-to-interference-plus-noise ratio,SINR)最大化、香农容量最大化或PMI所对应的量化等效信道矩阵与测量等效信道矩阵间均方误差(mean square error,MSE)最小化。以下,为了简洁,省略对相同或相似情况的说明。
进一步地,终端设备可以在预编码轮询粒度的至少一个候选值中选择某度量准则下最优的预编码轮询粒度。该预编码轮询粒度的至少一个候选值可以预先预定(例如,由协议定义),也可以由网络设备确定,并通过信令通知终端设备。
在网络设备通过信令通知终端设备的情况下,可选地,该方法200还包括:步骤290, 网络设备发送预编码轮询粒度的至少一个候选值。
网络设备可以预先给终端设备发送预编码轮询粒度的候选值,终端设备可以基于该至少一个候选值分别进行测量,以确定出某度量准则下最优的预编码轮询粒度反馈给网络设备。
由此,终端设备可以在一个较小的范围内选择最优的预编码轮询粒度,可以减小终端设备测量的复杂度。
因此,本申请实施例通过终端设备反馈用于确定多个目标预编码矩阵的指示信息,使得网络设备能够基于反馈确定用于预编码轮询的多个目标预编码矩阵,以满足传输方案的需求,从而能够更好地获得分集增益,有利于提高数据传输的可靠性,有利于提高通信系统的鲁棒性。
图5从设备交互的角度示出了本申请另一实施例提供的用于数据传输的方法300的示意性流程图。具体地,图5示出了上行数据传输的场景。如图所示,图5中示出的方法300可以包括步骤310至步骤350。
在步骤310中,终端设备发送用于信道测量的至少一个参考信号。
相应地,在步骤310中,网络设备接收用于信道测量的至少一个参考信号。
具体地,该至少一个参考信号可以为承载于同一参考信号资源上的参考信号。在一个参考信号资源承载多个参考信号的情况下,该一个参考信号资源所承载的多个参考信号配置的资源可以TDM的,也可以是FDM的,还可以是CDM的。
作为示例而非限定,在上行数据传输中,该参考信号例如可以为SRS,该参考信号资源例如可以为SRS资源(SRS resource)。
应理解,步骤310的具体过程与方法200中步骤210的具体过程相似,为了简洁,这里不再赘述。
在步骤320中,网络设备根据该至少一个参考信号和CSI测量基于的传输方案发送多个第六指示信息,该多个第六指示信息用于指示x个目标预编码矩阵。
作为示例而非限定,CSI测量基于的传输方案包括:预编码轮询、基于预编码轮询的空时分集、基于预编码轮询的空频分集、基于预编码轮询的循环延迟分集等基于预编码轮询的传输方案。
应理解,CSI测量基于的传输方案可以理解为一种传输方案的假设,网络设备基于该假设的传输方案进行CSI测量和指示。
其中,x为需要指示的目标预编码轮询数量。由于网络设备可以根据当前的信道状态确定需要使用几个预编码矩阵来做轮询,也就是确定需要指示的目标预编码矩阵的数量x,因此,网络设备直接就可以根据目标预编码轮询的数量x确定x个目标预编码矩阵。
在本申请实施例中,上行信道的测量和指示的具体方法,可以沿用LTE中下行信道的测量和反馈方法,通过PMI来指示预编码矩阵。例如,对于未经过预编码的参考信号,通过三个码本索引来联合指示一个预编码矩阵;对于经过预编码的参考信号,可以通过PMI指示的端口确定预编码矩阵。
应理解,步骤320的具体过程与方法200中步骤220的具体过程相同,为了简洁,这里不再赘述。
相应地,终端设备在步骤320中接收该多个第六指示信息,并在在步骤330中,终端 设备根据该多个第六指示信息,确定x个目标预编码矩阵。
在本申请实施例中,参考信号可以为未经过预编码的参考信号和预编码的参考信号。这两种参考信号的指示信息(即,第六指示信息)用于确定目标预编码矩阵的方法不同。
可选地,在y=x的情况下,用于预编码轮询的y个预编码矩阵中的每个预编码矩阵用于确定该x个目标预编码矩阵中的一个目标预编码矩阵,该y个预编码矩阵与该x个目标预编码矩阵一一对应。
可选地,在y>x的情况下,该方法300还包括:
该网络设备发送第七指示信息,该第七指示信息用于指示用于预编码轮询的y个预编码矩阵中的x个预编码矩阵,用于预编码轮询的x个预编码矩阵中的每个预编码矩阵用于确定该x个目标预编码矩阵中的一个目标预编码矩阵,该用于预编码轮询的x个预编码矩阵与该x个目标预编码矩阵一一对应。
应理解,上文中方法200已经结合情况一和情况二详细说明了第一指示信息用于确定x个目标预编码矩阵的具体方法,在本实施例中,第六指示信息和第七指示信息与第一指示信息和第二指示信息分别是为便于区分上行和下行而命名的指示信息,两者具有相同的功能,因此,终端设备在接收到该多个第六指示信息时,便可以根据该多个第六指示信息确定x个目标预编码矩阵,或者在接收到第六指示信息和第七指示信息时,便可以根据第六指示信息和第七指示信息确定x个目标预编码矩阵。
应理解,终端设备在步骤330中根据多个第六指示信息确定x个目标预编码矩阵的具体方法与方法200中网络设备在步骤230中根据多个第一指示信息确定x个目标预编码矩阵的具体方法相同,用于间接地指示x个目标预编码矩阵;终端设备在步骤330中根据第六指示信息和第七指示信息确定x个目标预编码矩阵的具体方法与方法200中网络设备在步骤230中根据第六指示信息和第七指示信息确定x个目标预编码矩阵的具体方法相同,为了简洁,这里不再赘述。
在本申请实施例中,用于上行数据传输的传输方案可以预先约定(例如,由协议定义)并配置于网络设备和终端设备中,也可以由网络设备确定并通过信令通知终端设备。
在网络设备确定传输方案的情况下,可选地,该方法300还包括:步骤340,网络设备发送用于上行数据传输的传输方案的指示信息。
由此,终端设备便可以根据该预编码轮询的传输方案,基于接收到的多个第六指示信息确定x个预编码矩阵。
可以理解的是,网络设备CSI测量基于的传输方案和用于上行数据传输的传输方案可以相同也可以不同。例如,网络设备可以基于多种传输方案进行测量,并基于度量准则选择最优的传输方案用于数据传输。本申请对此并不做限定。
假设用于上行数据传输的传输方案为预编码轮询,可选地,该方法还包括:步骤350,终端设备根据x个目标预编码矩阵对待发送的数据进行预编码轮询,并发送预编码轮询后的数据。
应理解,步骤350的具体过程与方法200中步骤270的具体过程相同,为了简洁,这里不再赘述。
可选地,该方法300还包括:步骤360,网络设备发送预编码轮询粒度的指示信息。
具体地,网络设备可以通过测量确定某度量准则下最优的预编码轮询粒度,并将该预 编码轮询粒度通过指示信息通知终端设备。终端设备在获知了预编码轮询粒度后,便可以基于该预编码轮询粒度以及在步骤330中确定得到的x个目标预编码矩阵,对待发送的数据进行预编码轮询。
因此,本申请实施例通过网络设备发送用于确定多个目标预编码矩阵的指示信息,使得终端设备能够基于该指示信息确定用于预编码轮询的多个目标预编码矩阵,以满足预编码轮询的传输方案的需求,从而能够更好地获得分集增益,有利于提高数据传输的可靠性,有利于提高通信系统的鲁棒性。
图6从设备交互的角度示出了本申请又一实施例的用于数据传输的方法400的示意性流程图。具体地,图6示出了下行数据传输的场景。如图所示,图6中示出的方法400可以包括步骤410至步骤490。
在步骤410中,网络设备发送用于信道测量的多个参考信号。
相应地,在步骤410中,终端设备接收用于信道测量的多个参考信号。
具体地,该多个参考信号可以为承载于同一参考信号资源上的参考信号。步骤410的具体过程与方法200中步骤210的具体过程相同,为了简洁,这里不再赘述。
在本申请实施例中,该网络设备发送的参考信号可以为未经过预编码的参考信号,终端设备可以基于网络设备发送的多个未经过预编码的参考信号和CSI反馈基于的传输方案进行信道测量,该信道测量可以是对发射天线和接收天线之间的完整信道的测量。终端设备基于信道测量,确定x个目标预编码矩阵,并在步骤420中向网络设备反馈x个目标预编码矩阵的指示信息。
其中,x为需要反馈的目标预编码矩阵的数量,x为大于1的整数。
作为示例而非限定,CSI反馈基于的传输方案包括:预编码轮询、基于预编码轮询的空时分集、基于预编码轮询的空频分集、基于预编码轮询的循环延迟分集等基于预编码轮询的传输方案。
应理解,CSI反馈基于的传输方案可以理解为一种传输方案的假设,终端设备基于该假设的传输方案进行CSI测量和反馈。
具体地,在方法200中已经说明,基于未经过预编码的参考信号反馈的PMI可以包含两个PMI值,其中的一个PMI值i 1可对应于码本中的一对索引{i 1,1,i 1,2},通过一对索引{i 1,1,i 1,2}可以确定一个预编码矩阵集合,该预编码矩阵集合可以包括至少一个预编码矩阵。
在本申请实施例中,用于指示x个目标预编码矩阵的指示信息(即,第三指示信息)可以为上述PMI中的一个PMI值i 1。该PMI值i 1可用于指示一个预编码矩阵集合(为便于区分和说明,记作第一预编码矩阵集合),该第一预编码矩阵集合可以包括z个预编码矩阵,其中,z>1,y为整数。
在该第一预编码矩阵集合所包含的预编码矩阵的数量恰好等于目标预编码矩阵数量x的情况下,即z=x,终端设备可以仅反馈第三指示信息,以通过该第三指示信息指示该第一预编码矩阵集合。
在该第一预编码矩阵集合所包含的预编码矩阵的数量大于目标预编码矩阵数量x的情况下,即z>x,终端设备可以进一步从该第三指示信息所指示的第一预编码矩阵集合中选择出x个目标预编码矩阵,并通过第四指示信息通知网络设备。
在一种可能的实现方式中,码本中每个预编码矩阵集合所包含的至少一个预编码矩阵可以划分为多个组,每个组包含至少一个预编码矩阵。在本申请实施例中,每个组可以包含x个预编码矩阵。码本中预先定义了该多个组与多个索引的一一对应关系。终端设备可以将所选择的x个预编码矩阵所在组的索引发送给网络设备,即该第四指示信息可以为预编码矩阵所在组的索引。
举例来说,该第一预编码矩阵中包括四个预编码矩阵(例如记作,P 1、P 2、P 3和P 4),将该四个预编码矩阵分为两组,每组包含两个预编码矩阵,每组所包含的预编码矩阵以及与索引的一一对应关系如下表所示:
表1
索引(index) 预编码矩阵
0 P 1、P 2
1 P 3、P 4
2 P 1、P 3
3 P 2、P 4
4 P 1、P 4
5 P 2、P 3
换句话说,终端设备通过第三指示信息指示了一个预编码矩阵与索引对应关系的映射表,再通过第四指示信息进一步指示该映射表中的某一组预编码矩阵。
在另一种可能的实现方式中,该第四指示信息可以为位图。该位图中的多个比特位与预编码矩阵集合中所包含的多个预编码矩阵一一对应,每个比特位中的值用于指示是否选用所对应的预编码矩阵。
举例来说,该第一预编码矩阵集合中包括四个预编码矩阵(例如记作,P 1、P 2、P 3和P 4),则位图中包括与该四个预编码矩阵一一对应的四个比特位。位图中的比特位被置“0”表示所对应的预编码矩阵未被选择,位图中的比特位被置“1”表示所对应的预编码矩阵被选择。例如图4中示出的位图,可以理解为预编码矩阵P 2和P 4被选择。
通过上文的描述,终端设备可以通过第三指示信息和第四指示信息向网络设备指示x个目标预编码矩阵。基于相同的方法,在步骤430中,网络设备根据第三指示信息和第四指示信息,确定x个目标预编码矩阵。
在本申请实施例中,CSI反馈基于的传输方案可以预先约定(例如,由协议定义)并配置于网络设备和终端设备中,也可以由网络设备确定并通知终端设备。
在网络设备确定CSI反馈基于的传输方案的情况下,网络设备可以通过信令显式地指示终端设备CSI反馈基于的传输方案。可选地,该方法还包括:步骤440,网络设备发送CSI反馈基于的传输方案的指示信息。
终端设备可以根据该指示信息所指示的传输方案进行测量和反馈。因此,该CSI反馈基于的传输方案的指示信息也可以称为反馈类型(feedback type)的指示信息。
作为示例而非限定,CSI反馈基于的传输方案包括:预编码轮询、基于预编码轮询的空时分集、基于预编码轮询的空频分集、基于预编码轮询的循环延迟分集等基于预编码轮询的传输方案。
可以理解的是,CSI反馈基于的传输方案和用于下行数据传输的传输方案可以相同也 可以不同,本申请对此不作限定。
在本申请实施例中,终端设备可以根据CSI反馈基于的传输方案测量并确定多个目标预编码矩阵。该目标预编码矩阵的数量x可以预先约定(例如,由协议定义),也可以由网络设备根据当前的信道状态确定并通过信令通知终端设备。
在网络设备确定目标预编码矩阵数量x的情况下,可选地,该方法400还包括:步骤450,网络设备发送第五指示信息,该第五指示信息指示需要反馈的目标预编码矩阵数量的x。
可选地,该第五指示信息可以承载于以下任意一个信令中:RRC消息、MAC-CE或者DCI。
可选地,该方法400还包括:步骤460,网络设备发送目标预编码矩阵数量最大值c的指示信息。
网络设备还可以进一步限制终端设备反馈的目标预编码矩阵数量的最大值,以限制终端设备反馈所带来的信令开销。
可选地,目标预编码数量的最大值c的指示信息可以承载于以下任意一个信令中:RRC消息、MAC-CE或DCI。
应理解,上述列举的用于承载指示信息的信令仅为示例性说明,而不应对本申请构成任何限定。
可选地,该方法400还包括:步骤470,网络设备基于在步骤430中确定的x个目标预编码矩阵对待发送的预编码数据进行预编码轮询,并发送预编码轮询后的数据。
具体地,网络设备可以根据在步骤430中确定出的x个目标预编码矩阵直接对待发送的数据进行预编码,也可以根据在步骤430中确定出的x个目标预编码矩阵进行数学变换或数学计算,得到用于预编码操作的多个预编码矩阵,并基于该得到的多个预编码矩阵对待发送的数据进行预编码轮询。网络设备在对数据进行预编码轮询后,得到并发送预编码轮询后的数据。
应理解,上述终端设备反馈的x个目标预编码矩阵并不限于用于对数据进行预编码轮询。例如,网络设备在根据第三指示信息和第四指示信息确定出x个目标预编码矩阵之后,还可以从该x个目标预编码矩阵中选择(例如,随机选择)一个用于对数据进行预编码的预编码矩阵。本申请对于x个目标预编码矩阵的功能不做限定。
在本申请实施例中,用于下行数据传输的传输方案可以预先约定(例如,由协议定义)并配置于网络设备和终端设备中,也可以由网络设备根据终端设备测量反馈的CSI确定。
应理解,在本申请实施例中,为便于说明,假设CSI反馈基于的传输方案和用于下行数据传输的传输方案相同,均为预编码轮询。但这不应对本申请构成任何限定,CSI反馈基于的传输方案和用于下行数据传输的传输方案可以相同也可以不同,本申请对此不作限定。
可选地,该方法400还包括:步骤480,终端设备发送预编码轮询粒度的指示信息。
终端设备在获知了用于下行数据传输的传输方案之后,可以进一步向网络设备反馈预编码轮询粒度的指示信息。具体地,终端设备可以采用多种可能的预编码轮询粒度进行测量,将某度量准则下最优的预编码轮询粒度,并反馈给网络设备。网络设备基于最优的预编码轮询粒度进行预编码轮询,更加有利于获得分集增益,进一步提高数据传输的可靠性。
进一步地,终端设备可以在预编码轮询粒度的至少一个候选值中选择某度量准则下最优的预编码轮询粒度。该预编码轮询粒度的至少一个候选值可以预先预定(例如,由协议定义),也可以由网络设备确定,并通过信令通知终端设备。
在网络设备通过信令通知终端设备的情况下,可选地,该方法400还包括:步骤490,网络设备发送预编码轮询粒度的至少一个候选值。
网络设备可以预先给终端设备发送预编码轮询粒度的候选值,终端设备可以基于该至少一个候选值分别进行测量,以确定出某度量准则下最优的预编码轮询粒度,并通过步骤460反馈给网络设备。
由此,终端设备可以在一个较小的范围内选择最优的预编码轮询粒度,可以减小终端设备测量的复杂度。
因此,本申请实施例通过终端设备反馈用于确定多个目标预编码矩阵的指示信息,使得网络设备能够基于反馈确定用于预编码轮询的多个目标预编码矩阵,以满足预编码轮询的传输方案的需求,从而能够更好地获得分集增益,有利于提高数据传输的可靠性,有利于提高通信系统的鲁棒性。
图7从设备交互的角度示出了本申请再一实施例提供的用于数据传输的方法500的示意性流程图。具体地,图7示出了上行数据传输的场景。如图所示,图7中所示的方法500可以包括步骤510至步骤550。
在步骤510中,终端设备发送用于信道测量的多个参考信号。
相应地,在步骤510中,网络设备接收用于信道测量的多个参考信号。
应理解,步骤510的具体过程与方法200中步骤210的具体过程相似,为了简洁,这里不再赘述。
在步骤520中,网络设备基于该多个参考信号和CSI测量基于的传输方案发送第八指示信息和第九指示信息,该第八指示信息和第九指示信息用于确定x个预编码矩阵。
作为示例而非限定,CSI测量基于的传输方案包括:预编码轮询、基于预编码轮询的空时分集、基于预编码轮询的空频分集、基于预编码轮询的循环延迟分集等基于预编码轮询的传输方案。
应理解,CSI测量基于的传输方案可以理解为一种传输方案的假设,网络设备基于该假设的传输方案进行CSI测量和指示。
在本申请实施例中,上行信道的测量和指示的具体方法,可以沿用LTE中下行信道的测量和反馈方法。例如,通过先通过一个指示信息(例如,索引)来指示一个预编码矩阵集合,再通过一个指示信息(例如,索引、位图等)来指示该预编码矩阵集合中的一个预编码矩阵。
应理解,步骤520的具体过程与方法400中步骤420的具体过程相似,为了简洁,这里不再赘述。其中,第八指示信息和第九指示信息与方法400中的第三指示信息和第四指示信息是为了便于区分上行和下行而命名的指示信息,两者具有相同的功能,因此,网络设备在接收到第八指示信息和第九指示信息时,便可以在步骤530中根据第八指示信息和第九指示信息确定x个预编码矩阵。
应理解,终端设备在步骤530中根据第八指示信息和第九指示信息确定x个预编码矩阵的具体方法与方法400中网络设备在步骤430中根据第三指示信息和第四指示信息确定 x个预编码矩阵的具体方法相同,为了简洁,这里不再赘述。
可选地,该方法500还包括:步骤540,网络设备发送用于上行数据传输的传输方案的指示信息。
可选地,该方法500还包括:步骤550,终端设备根据x个预编码矩阵对待发送的数据进行预编码轮询,并发送预编码轮询后的数据。
应理解,上述网络设备指示的x个目标预编码矩阵并不限于用于对数据进行预编码轮询。例如,终端设备在根据第八指示信息和第九指示信息确定出x个目标预编码矩阵之后,还可以从该x个目标预编码矩阵中选择(例如,随机选择)一个用于对数据进行预编码的预编码矩阵。本申请对于x个目标预编码矩阵的功能不做限定。
可选地,该方法500还包括:步骤560,网络设备发送预编码轮询粒度的指示信息。
应理解,步骤540至步骤560的具体过程与方法300中的步骤340和步骤360的具体过程相似,为了简洁,这里不再赘述。
因此,本申请实施例通过网络设备发送用于确定多个目标预编码矩阵的指示信息,使得终端设备能够基于该指示信息确定用于预编码轮询的多个目标预编码矩阵,以满足预编码轮询的传输方案的需求,从而能够更好地获得分集增益,有利于提高数据传输的可靠性,有利于提高通信系统的鲁棒性。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图3至图7详细说明了本申请实施例的用于数据传输的方法。以下,结合图8至图11详细说明本申请实施例的用于数据传输的装置。
根据前述方法,图8是本申请实施例提供的装置10的示意性框图。如图8所示,该装置10可以为终端设备,也可以为芯片或电路,比如可设置于终端设备的芯片或电路。其中,该终端设备可以对应上述方法中的终端设备。
具体地,该装置10可以配置于包含有网络设备和该装置10的通信系统中,该网络设备和该装置10预先保存有多个预编码矩阵。该装置10可以包括:接收模块11和发送模块12。
其中,该接收模块11用于接收用于信道测量的多个参考信号;
该发送模块12用于基于该多个参考信号和CSI反馈基于的传输方案,发送多个第一指示信息,该多个第一指示信息用于指示x个目标预编码矩阵,该多个第一指示信息中的至少一个第一指示信息用于指示一个目标预编码矩阵,该x个目标预编码矩阵是基于多个预编码矩阵确定;
其中,x为需要反馈的目标预编码矩阵的数量,x为大于1的整数。
可选地,该至少一个参考信号中的每个参考信号为经过预编码轮询的参考信号,该多个第一指示信息中的每个第一指示信息用于指示在一个预编码轮询粒度上该至少一个参考信号中的一个参考信号对应的预编码矩阵,其中,预编码轮询的次数大于或等于1,用于预编码轮询的预编码矩阵的数量为y,y为大于1的整数。
可选地,在y=x的情况下,用于预编码轮询的y个预编码矩阵中的每个预编码矩阵用于确定该x个目标预编码矩阵中的一个目标预编码矩阵,该y个预编码矩阵与该x个目标 预编码矩阵一一对应。
可选地,在y>x的情况下,该发送模块12还用于发送第二指示信息,该第二指示信息指示用于预编码轮询的y个预编码矩阵中的x个预编码矩阵,用于预编码轮询的x个预编码矩阵中的每个预编码矩阵用于确定该x个目标预编码矩阵中的一个目标预编码矩阵,该用于预编码轮询的x个预编码矩阵与该x个目标预编码矩阵一一对应。
可选地,该至少一个参考信号中的每个参考信号为未经过预编码的参考信号,该多个第一指示信息中的每个第一指示信息包括三个码本索引,每个第一指示信息中的三个码本索引用于联合指示一个预编码矩阵,该多个第一指示信息与该x个目标预编码矩阵一一对应。
可选地,该发送模块12还用于发送预编码轮询粒度的指示信息。
可选地,该接收模块11还用于接收预编码轮询粒度的至少一个候选值。
可选地,该接收模块11还用于第五指示信息,该第五指示信息指示需要反馈的目标目标预编码矩阵的数量x。
可选地,需要反馈的目标预编码矩阵的数量x预先配置于该装置10和网络设备中。
应理解,该装置10可以对应于根据本申请实施例的用于数据传输的方法200中的终端设备,该装置10可以包括用于执行图3中用于数据传输的方法200的终端设备执行的方法的模块。并且,该装置10中的各模块和上述其他操作和/或功能分别为了实现图3中用于数据传输的方法200的相应流程,具体地,接收模块11用于执行方法200中的步骤210、步骤240至步骤260以及步骤270、步骤290,发送模块12用于执行方法200中的步骤220和步骤280,各模块执行上述相应步骤的具体过程在方法200中已经详细说明,为了简洁,在此不再赘述。
或者,该装置10可以配置于包含有网络设备和该装置10的通信系统中,网络设备和该装置10预先保存有多个预编码矩阵集合,该多个预编码矩阵集合中的每个预编码矩阵集合包含至少一个预编码矩阵。该装置10可以包括接收模块11、发送模块12和处理模块。
其中,发送模块12用于发送用于信道测量的至少一个参考信号;
接收模块11用于接收该网络设备根据该至少一个参考信号和CSI测量基于的传输方案发送的多个第六指示信息,该多个第六指示信息用于指示x个目标预编码矩阵,该多个第六指示信息中的至少一个第六指示信息用于指示一个目标预编码矩阵,该x个目标预编码矩阵是基于该多个预编码矩阵确定;
处理模块13用于根据该多个第六指示信息确定该x个目标预编码矩阵;
其中,x为需要指示的目标预编码矩阵的数量,x为大于1的整数。
可选地,该至少一个参考信号中的每个参考信号为经过预编码轮询的参考信号,该多个第六指示信息中的每个第六指示信息用于指示在一个预编码轮询粒度上该至少一个参考信号中的一个参考信号对应的预编码矩阵,其中,预编码轮询的次数大于或等于1,用于预编码轮询的预编码矩阵的数量为y,y为大于1的整数。
可选地,在y=x的情况下,用于预编码轮询的y个预编码矩阵中的每个预编码矩阵用于确定该x个目标预编码矩阵中的一个目标预编码矩阵,该y个预编码矩阵与该x个目标预编码矩阵一一对应。
可选地,在y>x的情况下,接收模块11还用于接收第七指示信息;
处理模块13还用于根据该第七指示信息从该用于预编码轮询的y个预编码矩阵中确定x个预编码矩阵;
处理模块13具体用于根据该多个第六指示信息和用于预编码轮询的x个预编码矩阵中的各预编码矩阵,确定该x个目标预编码矩阵中的各目标预编码矩阵,该用于预编码轮询的x个预编码矩阵与该x个目标预编码矩阵一一对应。
可选地,该至少一个参考信号中的每个参考信号为未经过预编码的参考信号,该多个第六指示信息中的每个第六指示信息包括三个码本索引,每个第六指示信息中的三个码本索引用于联合指示一个预编码矩阵,该多个第六指示信息与该x个目标预编码矩阵一一对应。
可选地,接收模块11还用于接收预编码轮询的指示信息。
可选地,需要指示的目标预编码矩阵的数量x预先配置于网络设备和该装置10中。
应理解,该装置10可以对应于本申请实施例的用于数据传输的方法300中的终端设备,该装置10可以包括用于执行图5中用于数据传输的方法300的终端设备执行的方法的模块。并且,该装置10中的各模块和上述其他操作和/或功能分别为了实现图5中用于数据传输的方法300的相应流程,具体地,发送模块12用于执行方法300中的步骤310、步骤340至步骤360,接收模块11用于执行方法300中的步骤320,处理模块13用于执行方法300中的步骤330,各模块执行上述相应步骤的具体过程在方法300中已经详细说明,为了简洁,在此不再赘述。
或者,该装置10可以配置于包含有网络设备和该装置10的通信系统中,网络设备和该装置10预先保存有多个预编码矩阵集合,该多个预编码矩阵集合中的每个预编码矩阵集合包含至少一个预编码矩阵。该装置10可以包括接收模块11和发送模块12。
其中,接收模块11用于接收用于信道测量的多个参考信号;
发送模块12用于根据该多个参考信号和CSI反馈基于的传输方案,发送第三指示信息和第四指示信息,该第三指示信息用于指示该多个预编码矩阵集合中的第一预编码矩阵集合,该第四指示信息用于指示该第一预编码矩阵集合中的x个目标预编码矩阵;其中,x为需要反馈的目标预编码矩阵的数量,x为大于1的整数。
可选地,该多个参考信号中的每个参考信号为未经过预编码的参考信号,该第三指示信息包括两个码本索引,该第三指示信息中的两个码本索引用于联合指示该第一预编码矩阵集合。
可选地,发送模块12还用于发送预编码轮询粒度的指示信息。
可选地,接收模块11还用于接收第五指示信息,该第五指示信息指示需要反馈的目标预编码矩阵的数量x。
可选地,该需要反馈的目标预编码矩阵的数量x预先配置于网络设备和该装置10中。应理解,该装置10可以对应于本申请实施例的用于数据传输的方法400中的终端设备,该装置10可以包括用于执行图6中用于数据传输的方法400的终端设备执行的方法的模块。并且,该装置10中的各模块和上述其他操作和/或功能分别为了实现图6中用于数据传输的方法400的相应流程,具体地,接收模块11用于执行方法400中的步骤410、步骤440至步骤470以及步骤490,发送模块12用于执行方法400中的步骤420和步骤480, 各模块执行上述相应步骤的具体过程在方法300中已经详细说明,为了简洁,在此不再赘述。
或者,该装置10可以配置于包含有网络设备和该装置10的通信系统中,该网络设备和该装置10预先保存多个预编码矩阵集合,该多个预编码矩阵集合中的每个预编码矩阵集合包含至少一个预编码矩阵。该装置10可以包括:发送模块12、接收模块11和处理模块13。
其中,发送模块12用于发送用于信道测量的多个参考信号;
接收模块11用于接收该网络设备根据该多个参考信号和CSI测量基于的传输方案发送的第八指示信息和第九指示信息,该第八指示信息用于指示该多个预编码矩阵集合中的第一预编码矩阵集合,该第九指示信息用于指示该第一预编码矩阵集合中的x个目标预编码矩阵;
处理模块13用于根据该第八指示信息和该第九指示信息确定该x个目标预编码矩阵;
其中,x为需要指示的目标预编码矩阵的数量,x为大于1的整数。
可选地,该多个参考信号中的每个参考信号为未经过预编码的参考信号,该第八指示信息包含两个码本索引,该第八指示信息中的两个码本索引用于联合指示该第一预编码矩阵集合。
可选地,该接收模块11还用于接收预编码轮询粒度的指示信息。
可选地,需要指示的目标预编码矩阵的数量x配置于网络设备和该装置10中。
应理解,该装置10可以对应于本申请实施例的用于数据传输的方法500中的终端设备,该装置10可以包括用于执行图7中用于数据传输的方法500的终端设备执行的方法的模块。并且,该装置10中的各模块和上述其他操作和/或功能分别为了实现图7中用于数据传输的方法500的相应流程,具体地,发送模块12用于执行方法500中的步骤510、步骤540至步骤560,接收模块11用于执行方法500中的步骤520,处理模块13用于执行方法500中的步骤530,各模块执行上述相应步骤的具体过程在方法300中已经详细说明,为了简洁,在此不再赘述。
图9是本申请实施例提供的终端设备的结构示意图。如图9所示,该终端设备包括处理器701和收发器702,可选地,该终端设备还包括存储器703。其中,其中,处理器702、收发器702和存储器703之间通过内部连接通路互相通信,传递控制和/或数据信号,该存储器703用于存储计算机程序,该处理器701用于从该存储器703中调用并运行该计算机程序,以控制该收发器702收发信号。
上述处理器701和存储器703可以合成一个处理装置,处理器701用于执行存储器703中存储的程序代码来实现上述功能。具体实现时,该存储器703也可以集成在处理器701中,或者独立于处理器701。上述终端设备还可以包括天线704,用于将收发器702输出的上行数据或上行控制信令通过无线信号发送出去。
具体地,该终端设备可对应于根据本申请实施例的用于数据传输的方法200中的终端设备,该终端设备可以包括用于执行图3中用于数据传输的方法200的终端设备执行的方法的模块。并且,该终端设备中的各模块和上述其他操作和/或功能分别为了实现图3中用于数据传输的方法200的相应流程,具体地,该存储器703用于存储程序代码,使得处理器701在执行该程序代码时,控制该收发器702通过天线704执行方法200中的步骤 210、步骤220以及步骤240至步骤290。各模块执行上述相应步骤的具体过程在方法200中已经详细说明,为了简洁,在此不再赘述。
或者,该终端设备可对应于根据本申请实施例的用于数据传输的方法300中的终端设备,该终端设备可以包括用于执行图5中用于数据传输的方法300的终端设备执行的方法的模块。并且,该终端设备中的各模块和上述其他操作和/或功能分别为了实现图5中用于数据传输的方法300的相应流程,具体地,该存储器703用于存储程序代码,使得处理器701在执行该程序代码时,控制该收发器702通过天线704执行方法300中的步骤310、步骤320以及步骤340至步骤360,并执行步骤330。各模块执行上述相应步骤的具体过程在方法300中已经详细说明,为了简洁,在此不再赘述。
或者,该终端设备可对应于根据本申请实施例的用于数据传输的方法400中的终端设备,该终端设备可以包括用于执行图6中用于数据传输的方法400的终端设备执行的方法的模块。并且,该终端设备中的各模块和上述其他操作和/或功能分别为了实现图6中用于数据传输的方法400的相应流程,具体地,该存储器703用于存储程序代码,使得处理器701在执行该程序代码时,控制该收发器702通过天线704执行方法400中的步骤410、步骤42、以及步骤440至步骤490。各模块执行上述相应步骤的具体过程在方法400中已经详细说明,为了简洁,在此不再赘述。
或者,该终端设备可对应于根据本申请实施例的用于数据传输的方法500中的终端设备,该终端设备可以包括用于执行图7中用于数据传输的方法500的终端设备执行的方法的模块。并且,该终端设备中的各模块和上述其他操作和/或功能分别为了实现图7中用于数据传输的方法500的相应流程,具体地,该存储器703用于存储程序代码,使得处理器701在执行该程序代码时,控制该收发器702通过天线704执行方法500中的步骤510、步骤520以及步骤540至步骤560,并执行步骤530。各模块执行上述相应步骤的具体过程在方法300中已经详细说明,为了简洁,在此不再赘述。
上述处理器701可以用于执行前面方法实施例中描述的由终端内部实现的动作,而收发器702可以用于执行前面方法实施例中描述的终端向网络设备传输或者发送的动作。具体请见前面方法实施例中的描述,此处不再赘述。
上述处理器701和存储器703可以集成为一个处理装置,处理器701用于执行存储器703中存储的程序代码来实现上述功能。具体实现时,该存储器703也可以集成在处理器701中。
上述终端设备还可以包括电源705,用于给终端中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备还可以包括输入单元706,显示单元707,音频电路708,摄像头709和传感器710等中的一个或多个,该音频电路还可以包括扬声器7082,麦克风7084等。
图10是本申请实施例提供的装置20的示意性框图。如图10所示,该装置20可以为网络设备,也可以为芯片或电路,如可设置于网络设备内的芯片或电路。其中,该装置20对应上述方法中的网络设备。
具体地,该装置20可以配置于包含有终端设备和该装置20的通信系统中,该终端设备和该装置20预先保存有多个预编码矩阵。该装置20可以包括:发送模块21、接收模块22和处理模块23。
其中,发送模块21用于发送用于信道测量的至少一个参考信号;
接收模块22用于接收该终端设备根据该至少一个参考信号和CSI反馈基于的传输方案反馈的多个第一指示信息,该多个第一指示信息用于指示x个目标预编码矩阵,该多个第一指示信息中的至少一个第一指示信息用于指示一个目标预编码矩阵,该x个目标预编码矩阵是基于该多个预编码矩阵确定;
处理模块23用于根据该多个第一指示信息确定该x个目标预编码矩阵;
其中,x为需要反馈的目标预编码矩阵的数量,x为大于1的整数。
可选地,该至少一个参考信号中的每个参考信号为经过预编码轮询的参考信号,该多个第一指示信息中的每个第一指示信息用于指示在一个预编码轮询粒度上该至少一个参考信号中的一个参考信号对应的预编码矩阵,其中,预编码轮询的次数大于或等于1,用于预编码轮询的预编码矩阵的数量为y,y为大于1的整数。
可选地,在y=x的情况下,该处理模块23具体用于根据该多个第一指示信息和用于预编码轮询的y个预编码矩阵中的各预编码矩阵,确定该x个目标预编码矩阵中的各目标预编码矩阵,该用于预编码轮询的y个预编码矩阵与该x个目标预编码矩阵一一对应。
可选地,在y>x的情况下,该接收模块22还用于接收第二指示信息;
该处理模块23还用于根据该第二指示信息从用于预编码轮询的y个预编码矩阵中确定x个预编码矩阵;
该处理模块23具体用于根据该多个第一指示信息和用于预编码轮询的x个预编码矩阵中的各预编码矩阵,确定该x个目标预编码矩阵中的各目标预编码矩阵,该用于预编码轮询的x个预编码矩阵与该x个目标预编码矩阵一一对应。
可选地,该至少一个参考信号中的每个参考信号为未经过预编码的参考信号,该多个第一指示信息中的每个第一指示信息包含三个码本索引,每个第一指示信息中的三个码本索引用于联合指示一个预编码矩阵,该多个第一指示信息与该x个目标预编码矩阵一一对应。
可选地,该接收模块22还用于接收预编码轮询粒度的指示信息。
可选地,该发送模块21还用于发送第五指示信息,该第五指示信息指示需要反馈的目标预编码矩阵的数量x。
可选地,需要反馈的目标预编码矩阵的数量x预先配置于该装置20和该终端设备中。
应理解,该装置20可以对应于根据本申请实施例的用于数据传输的方法200中的网络设备,该装置20可以包括用于执行图4中用于数据传输的方法200的网络设备执行的方法的模块。并且,该装置20中的各模块和上述其他操作和/或功能分别为了实现图4中用于数据传输的方法200的相应流程,具体地,发送模块21用于执行方法200中的步骤210、步骤240和步骤270以及步骤290,接收模块22用于执行方法200中的步骤220和步骤280,处理模块23用于执行方法200中的步骤230,各模块执行上述相应步骤的具体过程在方法200中已经详细说明,为了简洁,在此不再赘述。
或者,该装置20可以配置于包含有终端设备和该装置20的通信系统中,该终端设备和该装置20预先保存有多个预编码矩阵。该装置20可以包括发送模块21和接收模块22。
其中,接收模块22用于接收用于信道测量的至少一个参考信号;
发送模块21用于根据所述至少一个参考信号和CSI测量基于的传输方案,发送多个 第六指示信息,所述多个第六指示信息用于指示x个目标预编码矩阵,所述多个第六指示信息中的至少一个第六指示信息用于指示一个目标预编码矩阵,该x个目标预编码矩阵是基于该多个预编码矩阵确定;
其中,x为需要指示的目标预编码矩阵的数量,x为大于1的整数。
可选地,该至少一个参考信号中的每个参考信号为经过预编码轮询的参考信号,该多个第六指示信息中的每个第六指示信息用于指示在一个预编码轮询粒度上该至少一个参考信号中的一个参考信号对应的预编码矩阵,其中,预编码轮询的次数大于或等于1,用于预编码轮询的预编码矩阵的数量为y,y为大于1的整数。
可选地,在y=x的情况下,用于预编码轮询的y个预编码矩阵中的每个预编码矩阵用于确定该x个目标预编码矩阵中的一个目标预编码矩阵,该y个预编码矩阵与该x个目标预编码矩阵一一对应。
可选地,在y>x的情况下,该发送模块21还用于发送第七指示信息,该第七指示信息用于指示用于预编码轮询的y个预编码矩阵中的x个预编码矩阵,用于预编码轮询的x个预编码矩阵中的每个预编码矩阵用于确定该x个目标预编码矩阵中的一个目标预编码矩阵,该用于预编码轮询的x个预编码矩阵与该x个目标预编码矩阵一一对应。
可选地,该至少一个参考信号中的每个参考信号为未经过预编码的参考信号,该多个第六指示信息中的每个第六指示信息包括三个码本索引,每个第六指示信息中的三个码本索引用于联合指示一个预编码矩阵,该多个第六指示信息与该x个目标预编码矩阵一一对应。
可选地,该发送模块21还用于发送预编码轮询粒度的指示信息。
可选地,需要指示的目标预编码矩阵的数量x预先配置于该装置20和该终端设备中。应理解,该装置20可以对应于根据本申请实施例的用于数据传输的方法300中的网络设备,该装置20可以包括用于执行图5中用于数据传输的方法300的网络设备执行的方法的模块。并且,该装置20中的各模块和上述其他操作和/或功能分别为了实现图5中用于数据传输的方法300的相应流程,具体地,接收模块22用于执行方法300中的步骤310、步骤340至步骤360,发送模块21用于执行方法300中的步骤320,各模块执行上述相应步骤的具体过程在方法300中已经详细说明,为了简洁,在此不再赘述。
或者,该装置20可以配置于包含有终端设备和该装置20的通信系统中,终端设备和该装置20预先保存多个预编码矩阵集合,所述多个预编码矩阵集合中的每个预编码矩阵集合包含至少一个预编码矩阵。该装置20可以包括:发送模块21、接收模块22和处理模块23。
其中,发送模块21用于发送用于信道测量的多个参考信号;
接收模块22用于接收该终端设备根据该多个参考信号和CSI反馈基于的传输方案反馈的第三指示信息和第四指示信息,该第三指示信息用于指示该多个预编码矩阵集合中的第一预编码矩阵集合,该第四指示信息用于指示该第一预编码矩阵集合中的x个目标预编码矩阵;
处理模块23用于根据该第三指示信息和该第四指示信息确定该x个目标预编码矩阵;
其中,x为需要反馈的目标预编码矩阵的数量,x为大于1的整数。
可选地,该多个参考信号中的每个参考信号为未经过预编码的参考信号,该第三指示 信息包含两个码本索引,该第三指示信息中的两个码本索引用于联合指示该第一预编码矩阵集合。
可选地,该接收模块22还用于接收预编码轮询粒度的指示信息。
可选地,该发送模块21还用于发送第五指示信息,该第五指示信息指示需要反馈的目标预编码矩阵的数量x。
可选地,需要反馈的目标预编码矩阵的数量x预先配置于该装置20和终端设备中。
应理解,该装置20可以对应于根据本申请实施例的用于数据传输的方法400中的网络设备,该装置20可以包括用于执行图6中用于数据传输的方法500的网络设备执行的方法的模块。并且,该装置20中的各模块和上述其他操作和/或功能分别为了实现图6中用于数据传输的方法400的相应流程,具体地,发送模块21用于执行方法400中的步骤410、步骤440至步骤470以及步骤490,接收模块22用于执行方法400中的步骤420和步骤480,处理模块23用于执行方法400中的步骤430,各模块执行上述相应步骤的具体过程在方法400中已经详细说明,为了简洁,在此不再赘述。
或者,该装置20可以配置于包含有终端设备和该装置20的通信系统中,该终端设备和该装置20预先保存多个预编码矩阵集合,该多个预编码矩阵集合中的每个预编码矩阵集合包含至少一个预编码矩阵。该装置20可以包括:发送模块21和接收模块22。
其中,接收模块22用于接收用于信道测量的多个参考信号;
发送模块21用于根据该多个参考信号和CSI测量基于的传输方案,发送第八指示信息和第九指示信息,该第八指示信息用于指示该多个预编码矩阵集合中的第一预编码矩阵集合,该第九指示信息用于指示该第一预编码矩阵集合中的x个目标预编码矩阵;
其中,x为需要指示的目标预编码矩阵的数量,x为大于1的整数。
可选地,该多个参考信号中的每个参考信号为未经过预编码的参考信号,该第八指示信息包括两个码本索引,该第八指示信息中的两个码本索引用于联合指示该第一预编码矩阵集合。
可选地,发送模块21还用于发送预编码轮询粒度的指示信息。
可选地,需要指示的目标预编码矩阵的数量x预先配置于该装置20和终端设备中。
应理解,该装置20可以对应于根据本申请实施例的用于数据传输的方法500中的网络设备,该装置20可以包括用于执行图7中用于数据传输的方法500的网络设备执行的方法的模块。并且,该装置20中的各模块和上述其他操作和/或功能分别为了实现图7中用于数据传输的方法50的相应流程,具体地,发送模块21用于执行方法500中的步骤520,接收模块22用于执行方法500中的步骤510以及步骤540至步骤560。各模块执行上述相应步骤的具体过程在方法500中已经详细说明,为了简洁,在此不再赘述。
图11是本申请实施例提供的网络设备的结构示意图。如图11所示,该网络设备包括处理器610和收发器620,可选地,该网络设备还包括存储器630。其中,处理器610、收发器620和存储器630之间通过内部连接通路互相通信,传递控制和/或数据信号,该存储器630用于存储计算机程序,该处理器610用于从该存储器630中调用并运行该计算机程序,以控制该收发器620收发信号。
上述处理器610和存储器630可以合成一个处理装置,处理器610用于执行存储器630中存储的程序代码来实现上述功能。具体实现时,该存储器630也可以集成在处理器 610中,或者独立于处理器610。
上述网络设备还可以包括天线640,用于将收发器620输出的下行数据或下行控制信令通过无线信号发送出去。
具体地,该网络设备可对应于根据本申请实施例的用于数据传输的方法200中的网络设备,该网络设备可以包括用于执行图4中用于数据传输的方法200的网络设备执行的方法的模块。并且,该网络设备中的各模块和上述其他操作和/或功能分别为了实现图4中用于数据传输的方法200的相应流程,具体地,该存储器630用于存储程序代码,使得处理器610在执行该程序代码时,控制该收发器620通过天线640执行方法200中的步骤210、步骤220以及步骤240至步骤290,并执行方法200中的步骤230。各模块执行上述相应步骤的具体过程在方法200中已经详细说明,为了简洁,在此不再赘述。
或者,该网络设备可对应于根据本申请实施例的用于数据传输的方法300中的网络设备,该网络设备可以包括用于执行图5中用于数据传输的方法300的网络设备执行的方法的模块。并且,该网络设备中的各模块和上述其他操作和/或功能分别为了实现图5中用于数据传输的方法300的相应流程,具体地,该存储器630用于存储程序代码,使得处理器610在执行该程序代码时,控制收发器620通过天线640执行方法300中的步骤310、步骤320以及步骤340至步骤360。各模块执行上述相应步骤的具体过程在方法300中已经详细说明,为了简洁,在此不再赘述。
或者,该网络设备可对应于根据本申请实施例的用于数据传输的方法400中的网络设备,该网络设备可以包括用于执行图6中用于数据传输的方法400的网络设备执行的方法的模块。并且,该网络设备中的各模块和上述其他操作和/或功能分别为了实现图6中用于数据传输的方法400的相应流程,具体地,该存储器630用于存储程序代码,使得处理器610在执行该程序代码时,控制收发器620通过天线640执行方法300中的步骤410、步骤420以及步骤440至步骤490,并执行步骤430。各模块执行上述相应步骤的具体过程在方法300中已经详细说明,为了简洁,在此不再赘述。
或者,该网络设备可对应于根据本申请实施例的用于数据传输的方法500中的网络设备,该网络设备可以包括用于执行图7中用于数据传输的方法500的网络设备执行的方法的模块。并且,该网络设备中的各模块和上述其他操作和/或功能分别为了实现图7中用于数据传输的方法500的相应流程,具体地,该存储器630用于存储程序代码,使得处理器610在执行该程序代码时,控制收发器620通过天线640执行方法500中的步骤510、步骤520以及步骤540至步骤560。各模块执行上述相应步骤的具体过程在方法300中已经详细说明,为了简洁,在此不再赘述。
另一方面,本申请还提供了一种信道测量指示方法。图12从设备交互的角度示出了本申请实施例提供的信道测量指示方法900的示意性流程图。如图12所示,该方法900可以包括步骤910至步骤940。
在步骤910中,网络设备确定信道测量所基于的频带粒度。
其中,一个频带粒度的频带可以与一个预编码矩阵对应。也就是说,在对一个频带粒度对应的带宽进行信道测量时使用的预编码矩阵是相同的,或者说,在一个频带粒度所对应带宽内进行信道测量时使用的预编码矩阵是唯一的。因此,该频带粒度可以理解为终端设备进行信道测量的频带单位。
可选地,当测量带宽包含有多个具有相同频带粒度的带宽时,具有相同的频带粒度的任意两个相邻的带宽对应的预编码矩阵不同。
因此,上述测量频带的频带宽度可以为上述频带单位,或者,包含至少一个上述频带单位的频带。或者说,测量带宽的频带宽度可以被划分为至少一个频带,任意两个频带的带宽为一个频带粒度。换句话说,一个测量带宽内的频带粒度可以是唯一的。
其中,测量带宽可以为传输信道测量参考信号所对应的带宽,也可以为测量后反馈CSI所基于的带宽。也就是说,测量带宽可以为传输信道测量参考信号的全部带宽或部分带宽。本申请对于测量带宽的定义并不做限定。其中,信道测量参考信号可以是用于信道测量的参考信号,例如但不限于,CSI-RS或者小区参考信号(cell reference signal,CRS)等。
具体地说,该频带粒度可以理解为终端设备进行信道测量所基于的频带单位。可选地,该频带粒度可以是,例如但不限于,一个或多个子载波(或者说,一个或多个RE在频域上所对应的资源),一个资源单元在频域上所对应的资源、多个资源单元组成的RB组(RBG)在频域上所对应的资源,还可以为1/2个资源单元、1/4个资源单元以及预编码资源块组(PRG size)。
其中,资源单元可以为LTE协议中定义的RB。
应理解,上述列举的频带粒度的大小仅为示例性说明,而不应对本申请构成任何限定,本申请对于频带粒度的大小并不做限定。
还应理解,上述与频带粒度对应的预编码矩阵可以由网络设备预先指示,也可以由终端设备从码本中随机选择。本申请对此并不限定。
在步骤920中,该网络设备发送第十指示信息,该第十指示信息指示该频带粒度。
相对应地,在步骤920中,终端设备接收该第十指示信息。
可选地,该第十指示信息可以承载于以下任意一个信令中:RRC消息、MAC-CE或DCI。
因此,上述频带粒度可以是半静态指示的,也可以是动态指示的。换句话说,网络设备可以通过信令指示的方式动态调整信道测量所基于的频带粒度。
应理解,上述列举的用于承载第十指示信息的信令仅为示例性说明,而不应对本申请构成任何限定。例如,上述列举的多个信令可以结合使用以指示该频带粒度,或者,该第十指示信息还可以承载于其他信令中。本申请对于承载第十指示信息的信令不做限定。
另外,上述频带粒度也可以是预先定义的,例如,协议定义。网络设备可以通过信令指示是否使用该频带粒度。例如,在RRC消息中的某一字段置“1”时使用该频带粒度,此时,终端设备可以基于网络设备所指示的频带粒度进行信道测量,当该字段置“0”时不使用该频带粒度,即,基于整个测量带宽进行信道测量。
在步骤930中,该终端设备根据该第十指示信息,确定频带粒度。
可选地,该方法还包括:步骤940,该终端设备基于频带粒度进行信道测量。
在具体实现过程中,上述信道测量可以是,例如但不限于,计算该测量频带的信道矩阵。具体来说,终端设备可以根据上述频带粒度,在任意两个连续的频带粒度上采用不同的预编码矩阵进行信道测量,通过对该测量频带内各频带粒度(例如,子载波)上的信道矩阵进行平均,来获得该频带的信道矩阵。本领域的技术人员应当明白,终端设备也可以 采用其他方式获得上述频带的信道矩阵。有关信道测量的相关技术可以参考现有技术,其具体方案本申请实施例对于信道测量的具体方案不做限定。
此后,终端设备可以基于频带粒度所对应的预编码矩阵对该各频带粒度的信道矩阵进行预编码,得到各频带粒度的等效信道矩阵。基于该等效信道矩阵,终端设备可以进一步计算相应的信道状态信息CSI。其中,CSI可以包括例如下列信息之中的至少一项:CQI、RI、PMI,并反馈给网络设备。
可选地,步骤940具体包括:终端设备将该频带粒度作为预编码轮询粒度,基于预编码轮询的传输方案进行信道测量。
具体来说,终端设备可以基于预编码轮询的传输方案进行信道测量。终端设备可以将上述网络设备所指示的频带粒度作为预编码轮询粒度,即,在任意两个连续的频带粒度上采用不同的预编码矩阵进行信道测量,且,与多个频带粒度一一对应的多个预编码矩阵可以在频带上循环使用。
其中,有关预编码轮询的相关内容可以参考上文中的描述或者现有技术,其具体方案本发明实施例不做限定。
但应理解,终端设备基于预编码轮询的传输方案进行信道测量仅为一种可能的实现方式,终端设备也可以在测量频带上基于多个不同的预编码矩阵以及上述频带粒度对测量频带进行信道测量,在这种情况下,任意两个连续的频带粒度对应的预编码矩阵不同,但可以理解的是,多个频带粒度与多个预编码矩阵之间具有一一对应关系。
因此,终端设备基于频带粒度进行信道测量,能够在信道测量不准确的情况下,测量在测量带宽上采用多个预编码矩阵进行预编码的等效信道,以获得较为准确的CSI,有利于提高数据传输的可靠性,提高系统的鲁棒性。
根据前述方法,本申请实施例还提供了一种信道测量指示装置30。该信道测量指示装置可以为终端设备,也可以为芯片或电路,比如可设置于终端设备的芯片或电路。其中,信道测量指示装置30的示意性框图可如图13所示。如图13所示,该信道测量指示装置30包括:接收模块31和处理模块32。
其中,所述接收模块31用于接收第十指示信息,所述第十指示信息指示测量所基于的频带粒度,一个频带粒度所对应的频带与一个预编码矩阵对应;
所述处理模块32用于根据所述第十指示信息确定所述频带粒度。
可选地,所述处理模块32还用于根据所述频带粒度进行信道测量。
可选地,所述处理模块具体用于将所述频带粒度作为预编码轮询的粒度,并基于预编码轮询的传输方案进行信道测量。
可选地,具有相同的频带粒度的任意两个相邻的频带对应的预编码矩阵不同。
具体地,该信道测量指示装置30可对应于根据本申请实施例的信道测量指示方法900中的终端设备,该信道测量指示装置30可以包括用于执行图12中信道测量指示方法900的终端设备执行的方法的模块。并且,该信道测量指示装置30中的各模块和上述其他操作和/或功能分别为了实现图12中信道测量指示方法900的相应流程。具体地,该接收模块31用于执行方法900中的步骤920,该处理模块32用于执行方法900中的步骤930和940。各模块执行上述相应步骤的具体过程在方法900中已经详细说明,为了简洁,在此不再赘述。
本申请实施例还提供了一种终端设备。该终端设备的结构示意图可如图9所示。该终端设备包括的模块在上文中已经结合图9详细说明,为了简洁,这里不再赘述。
具体地,该终端设备可对应于根据本申请实施例的信道测量指示方法900中的终端设备,该终端设备可以包括用于执行图12中信道测量指示方法900的终端设备执行的方法的模块。并且,该终端设备中的各模块和上述其他操作和/或功能分别为了实现图12中信道测量指示方法900的相应流程。具体地,该存储器703用于存储程序代码,使得处理器701在执行该程序代码时,控制该收发器702通过天线704执行方法900中的步骤920,并执行步骤930和940。各模块执行上述相应步骤的具体过程在方法900中已经详细说明,为了简洁,在此不再赘述。
本申请实施例还提供了一种信道测量指示装置40。该信道测量指示装置40可以为网络设备,也可以为芯片或电路,比如可设置于终端设备的芯片或电路。其中,信道测量指示装置40的示意性框图可如图14所示。如图14所示,该信道测量指示装置40包括:处理模块41和发送模块42。
其中,所述处理模块41用于确定信道测量所基于的频带粒度,一个频带粒度所对应的频带与一个预编码矩阵对应;
所述发送模块42用于发送第十指示信息,所述第十指示信息指示所述频带粒度。
可选地,具有相同的频带粒度的任意两个相邻的频带对应的预编码矩阵不同。
具体地,该信道测量指示装置40可对应于根据本申请实施例的信道测量指示方法900中的网络设备,该信道测量指示装置40可以包括用于执行图12中信道测量指示方法900的网络设备执行的方法的模块。并且,该信道测量指示装置40中的各模块和上述其他操作和/或功能分别为了实现图12中信道测量指示方法900的相应流程。具体地,该处理模块41用于执行方法900中的步骤910,该发送模块42用于执行方法900中的步骤920。各模块执行上述相应步骤的具体过程在方法900中已经详细说明,为了简洁,在此不再赘述。
本申请实施例还提供了一种网络设备。该网络设备的结构示意图可如11所示。该网络设备包括的模块在上文中已经结合图11详细说明,为了简洁,这里不再赘述。
具体地,该网络设备可对应于根据本申请实施例的信道测量指示方法900中的网络设备,该网络设备可以包括用于执行图12中信道测量指示方法900的网络设备执行的方法的模块。并且,该网络设备中的各模块和上述其他操作和/或功能分别为了实现图12中信道测量指示方法900的相应流程。具体地,该存储器630用于存储程序代码,使得处理器610在执行该程序代码时,执行方法900中的步骤910,并控制该收发器620通过天线640执行方法900中的步骤920。各模块执行上述相应步骤的具体过程在方法900中已经详细说明,为了简洁,在此不再赘述。
根据本申请实施例提供的方法,本申请实施例还提供一种系统,其包括前述的网络设备和一个或多个终端设备。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻 辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载或执行该计算机程序指令时,全部或部分地产生按照本申请实施例该的流程或功能。该计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的 部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (64)

  1. 一种用于数据传输的方法,其特征在于,所述方法应用于包含有网络设备和终端设备的通信系统中,所述网络设备和所述终端设备预先保存有多个预编码矩阵,所述方法包括:
    所述终端设备接收用于信道测量的至少一个参考信号;
    所述终端设备根据所述至少一个参考信号和信道状态信息CSI反馈基于的传输方案,发送多个第一指示信息,所述多个第一指示信息用于指示x个目标预编码矩阵,所述多个第一指示信息中的至少一个第一指示信息用于指示一个目标预编码矩阵,所述x个目标预编码矩阵是基于所述多个预编码矩阵确定;
    其中,x为需要反馈的目标预编码矩阵的数量,x为大于1的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述至少一个参考信号中的每个参考信号为经过预编码轮询的参考信号,所述多个第一指示信息中的每个第一指示信息用于指示在一个预编码轮询粒度上所述至少一个参考信号中的一个参考信号对应的预编码矩阵,其中,预编码轮询的次数大于或等于1,用于预编码轮询的预编码矩阵的数量为y,y为大于1的整数。
  3. 根据权利要求2所述的方法,其特征在于,在y=x的情况下,用于预编码轮询的y个预编码矩阵中的每个预编码矩阵用于确定所述x个目标预编码矩阵中的一个目标预编码矩阵,所述y个预编码矩阵与所述x个目标预编码矩阵一一对应。
  4. 根据权利要求2所述的方法,其特征在于,在y>x的情况下,所述方法还包括:
    所述终端设备发送第二指示信息,所述第二指示信息指示用于预编码轮询的y个预编码矩阵中的x个预编码矩阵,用于预编码轮询的x个预编码矩阵中的每个预编码矩阵用于确定所述x个目标预编码矩阵中的一个目标预编码矩阵,所述用于预编码轮询的x个预编码矩阵与所述x个目标预编码矩阵一一对应。
  5. 根据权利要求1所述的方法,其特征在于,所述至少一个参考信号中的每个参考信号为未经过预编码的参考信号,所述多个第一指示信息中的每个第一指示信息包括三个码本索引,每个第一指示信息中的三个码本索引用于联合指示一个预编码矩阵,所述多个第一指示信息与所述x个目标预编码矩阵一一对应。
  6. 一种用于数据传输的方法,其特征在于,所述方法应用于包含有网络设备和终端设备的通信系统中,所述网络设备和所述终端设备预先保存多个预编码矩阵集合,所述多个预编码矩阵集合中的每个预编码矩阵集合包含至少一个预编码矩阵,所述方法包括:
    所述终端设备接收用于信道测量的多个参考信号;
    所述终端设备根据所述多个参考信号和信道状态信息CSI反馈基于的传输方案,发送第三指示信息和第四指示信息,所述第三指示信息用于指示所述多个预编码矩阵集合中的第一预编码矩阵集合,所述第四指示信息用于指示所述第一预编码矩阵集合中的x个目标预编码矩阵;
    其中,x为需要反馈的目标预编码矩阵的数量,x为大于1的整数。
  7. 根据权利要求6所述的方法,其特征在于,所述多个参考信号中的每个参考信号 为未经过预编码的参考信号,所述第三指示信息包括两个码本索引,所述第三指示信息中的两个码本索引用于联合指示所述第一预编码矩阵集合。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备发送预编码轮询粒度的指示信息。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第五指示信息,所述第五指示信息指示需要反馈的目标预编码矩阵的数量x。
  10. 根据权利要求1至8中任一项所述的方法,其特征在于,所述需要反馈的目标预编码矩阵的数量x预先配置于所述网络设备和所述终端设备中。
  11. 一种用于数据传输的方法,其特征在于,所述方法应用于包含有网络设备和终端设备的通信系统中,所述网络设备和所述终端设备预先保存有多个预编码矩阵,所述方法包括:
    所述网络设备发送用于信道测量的至少一个参考信号;
    所述网络设备接收所述终端设备根据所述至少一个参考信号和信道状态信息CSI反馈基于的传输方案反馈的多个第一指示信息,所述多个第一指示信息用于指示x个目标预编码矩阵,所述多个第一指示信息中的至少一个第一指示信息用于指示一个目标预编码矩阵,所述x个目标预编码矩阵是基于所述多个预编码矩阵确定;
    所述网络设备根据所述多个第一指示信息确定所述x个目标预编码矩阵;
    其中,x表示需要反馈的目标预编码矩阵的数量,x为大于1的整数。
  12. 根据权利要求11所述的方法,其特征在于,所述至少一个参考信号中的每个参考信号为经过预编码轮询的参考信号,所述多个第一指示信息中的每个第一指示信息用于指示在一个预编码轮询粒度上所述至少一个参考信号中的一个参考信号对应的预编码矩阵,其中,预编码轮询的次数大于或等于1,用于预编码轮询的预编码矩阵的数量为y,y为大于1的整数。
  13. 根据权利要求12所述的方法,其特征在于,在y=x的情况下,所述网络设备根据所述多个第一指示信息确定所述x个目标预编码矩阵,包括:
    所述网络设备根据所述多个第一指示信息和用于预编码轮询的y个预编码矩阵中的各预编码矩阵,确定所述x个目标预编码矩阵中的各目标预编码矩阵,所述用于预编码轮询的y个预编码矩阵与所述x个目标预编码矩阵一一对应。
  14. 根据权利要求12所述的方法,其特征在于,在y>x的情况下,所述网络设备根据所述多个第一指示信息确定所述x个目标预编码矩阵,包括:
    所述网络设备接收第二指示信息,并根据所述第二指示信息从所述用于预编码轮询的y个预编码矩阵中确定x个预编码矩阵;
    所述网络设备根据所述多个第一指示信息和用于预编码轮询的x个预编码矩阵中的各预编码矩阵,确定所述x个目标预编码矩阵中的各目标预编码矩阵,所述用于预编码轮询的x个预编码矩阵与所述x个目标预编码矩阵一一对应。
  15. 根据权利要求11所述的方法,其特征在于,所述至少一个参考信号中的每个参考信号为未经过预编码的参考信号,所述多个第一指示信息中的每个第一指示信息包含三个码本索引,每个第一指示信息中的三个码本索引用于联合指示一个预编码矩阵,所述多 个第一指示信息与所述x个目标预编码矩阵一一对应。
  16. 一种用于数据传输的方法,其特征在于,所述方法应用于包含有网络设备和终端设备的通信系统中,所述网络设备和所述终端设备预先保存多个预编码矩阵集合,所述多个预编码矩阵集合中的每个预编码矩阵集合包含至少一个预编码矩阵,所述方法包括:
    所述网络设备发送用于信道测量的多个参考信号;
    所述网络设备接收所述终端设备根据所述多个参考信号和信道状态信息CSI反馈基于的传输方案反馈的第三指示信息和第四指示信息,所述第三指示信息用于指示所述多个预编码矩阵集合中的第一预编码矩阵集合,所述第四指示信息用于指示所述第一预编码矩阵集合中的x个目标预编码矩阵;
    所述网络设备根据所述第三指示信息和所述第四指示信息确定所述x个目标预编码矩阵;
    其中,x为需要反馈的目标预编码矩阵的数量,x为大于1的整数。
  17. 根据权利要求14中所述的方法,其特征在于,所述多个参考信号中的每个参考信号为未经过预编码的参考信号,所述第三指示信息包含两个码本索引,所述第三指示信息中的两个码本索引用于联合指示所述第一预编码矩阵集合。
  18. 根据权利要求11至17中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收预编码轮询粒度的指示信息。
  19. 根据权利要求11至18中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第五指示信息,所述第五指示信息指示需要反馈的目标预编码矩阵的数量x。
  20. 根据权利要求11至18中任一项所述的方法,其特征在于,所述需要反馈的目标预编码矩阵的数量x预先配置于所述网络设备和所述终端设备中。
  21. 一种用于数据传输的装置,其特征在于,用于执行如权利要求1至20中任意一项所述的方法。
  22. 一种用于数据传输的装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1至20中任一项所述的方法。
  23. 一种信道测量指示方法,其特征在于,包括:
    终端设备接收第十指示信息,所述第十指示信息指示信道测量所基于的频带粒度,一个频带粒度所对应的频带与一个预编码矩阵对应;
    所述终端设备根据所述第十指示信息,确定所述频带粒度。
  24. 根据权利要求23所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述频带粒度对测量带宽进行信道测量,所述测量带宽为反馈信道状态信息CSI所基于的带宽。
  25. 如权利要求24所述的方法,其特征在于,所述反馈CSI所基于的带宽为传输参考信号的全部带宽或部分带宽。
  26. 如权利要求23至25中任一项所述的方法,其特征在于,所述频带粒度为预编码资源块组PRG的带宽大小。
  27. 如权利要求23至26中任一项所述的方法,其特征在于,所述预编码矩阵由终端设备从预定义的码本中随机选择。
  28. 根据权利要求24至26中任一项所述的方法,其特征在于,所述终端设备根据所述频带粒度对测量带宽进行信道测量,包括:
    所述终端设备将所述频带粒度作为预编码轮询的粒度,并基于预编码轮询的传输方案对所述测量带宽进行信道测量。
  29. 如权利要求23至28中任一项所述的方法,其特征在于,所述第十指示信息承载于以下任意一个信令中:无线资源控制RRC消息、媒体接入控制MAC-控制元素CE或下行控制信息DCI。
  30. 根据权利要求23至29中任一项所述的方法,其特征在于,具有相同的频带粒度的任意两个相邻的频带对应的预编码矩阵不同。
  31. 一种信道测量指示方法,其特征在于,包括:
    网络设备确定信道测量所基于的频带粒度,一个频带粒度所对应的频带与一个预编码矩阵对应;
    所述网络设备发送第十指示信息,所述第十指示信息指示所述频带粒度。
  32. 如权利要求31所述的方法,其特征在于,所述频带粒度为预编码资源块组PRG的带宽大小。
  33. 如权利要求31或32所述的方法,其特征在于,所述指示信息承载于以下任意一个信令中:无线资源控制RRC消息、媒体接入控制MAC-控制元素CE或下行控制信息DCI。
  34. 根据权利要求31至33中任一项所述的方法,其特征在于,具有相同的频带粒度的任意两个相邻的频带对应的预编码矩阵不同。
  35. 一种终端设备,其特征在于,包括:收发模块,用于接收第十指示信息,所述第十指示信息指示信道测量所基于的频带粒度,一个频带粒度所对应的频带与一个预编码矩阵对应;
    处理模块,用于根据所述第十指示信息,确定所述频带粒度。
  36. 如权利要求35所述的终端设备,其特征在于,所述处理模块还用于根据所述频带粒度对测量带宽进行信道测量,所述测量带宽为反馈信道状态信息CSI所基于的带宽。
  37. 如权利要求36所述的终端设备,其特征在于,所述反馈CSI所基于的带宽为传输参考信号的全部带宽或部分带宽。
  38. 如权利要求35至37中任一项所述的终端设备,其特征在于,所述频带粒度为预编码资源块组PRG的带宽大小。
  39. 如权利要求35至38中任一项所述的终端设备,其特征在于,所述预编码矩阵从预定义的码本中随机选择。
  40. 如权利要求36至38中任一项所述的终端设备,其特征在于,所述处理模块具体用于:将所述频带粒度作为预编码轮询的粒度,并基于预编码轮询的传输方案进行信道测量。
  41. 如权利要求35至40中任一项所述的终端设备,其特征在于,所述第十指示信息承载于以下任意一个信令中:无线资源控制RRC消息、媒体接入控制MAC-控制元素CE 或下行控制信息DCI。
  42. 如权利要求35至41中任一项所述的终端设备,其特征在于,具有相同的频带粒度的任意两个相邻的频带对应的预编码矩阵不同。
  43. 一种网络设备,其特征在于,包括:
    处理模块,用于确定信道测量所基于的频带粒度,一个频带粒度所对应的频带与一个预编码矩阵对应;
    收发模块,用于发送第十指示信息,所述第十指示信息指示所述频带粒度。
  44. 如权利要求43所述的网络设备,其特征在于,所述频带粒度为预编码资源块组PRG的带宽大小。
  45. 如权利要求43或44所述的网络设备,其特征在于,所述第十指示信息承载于以下任意一个信令中:无线资源控制RRC消息、媒体接入控制MAC-控制元素CE或下行控制信息DCI。
  46. 如权利要求43至45中任一项所述的网络设备,其特征在于,具有相同的频带粒度的任意两个相邻的频带对应的预编码矩阵不同。
  47. 一种终端设备,其特征在于,包括:
    处理器,用于接收第十指示信息,所述第十指示信息指示信道测量所基于的频带粒度,一个频带粒度所对应的频带与一个预编码矩阵对应;
    收发器,用于根据所述第十指示信息,确定所述频带粒度。
  48. 如权利要求47所述的终端设备,其特征在于,所述处理器还用于根据所述频带粒度对测量带宽进行信道测量,所述测量带宽为反馈信道状态信息CSI所基于的带宽。
  49. 如权利要求48所述的终端设备,其特征在于,所述反馈CSI所基于的带宽为传输参考信号的全部带宽或部分带宽。
  50. 如权利要求47至49中任一项所述的终端设备,其特征在于,所述频带粒度为预编码资源块组PRG的带宽大小。
  51. 如权利要求47至50中任一项所述的终端设备,其特征在于,所述预编码矩阵从预定义的码本中随机选择。
  52. 如权利要求48至50中任一项所述的终端设备,其特征在于,所述处理器具体用于:将所述频带粒度作为预编码轮询的粒度,并基于预编码轮询的传输方案对所述测量带宽进行信道测量。
  53. 如权利要求47至52中任一项所述的终端设备,其特征在于,所述第十指示信息承载于以下任意一个信令中:无线资源控制RRC消息、媒体接入控制MAC-控制元素CE或下行控制信息DCI。
  54. 如权利要求47至53中任一项所述的终端设备,其特征在于,具有相同的频带粒度的任意两个相邻的频带对应的预编码矩阵不同。
  55. 一种网络设备,其特征在于,包括:
    处理器,用于确定信道测量所基于的频带粒度,一个频带粒度所对应的频带与一个预编码矩阵对应;
    收发器,用于发送第十指示信息,所述第十指示信息指示所述频带粒度。
  56. 如权利要求55所述的网络设备,其特征在于,所述频带粒度为预编码资源块组 PRG的带宽大小。
  57. 如权利要求55或56所述的网络设备,其特征在于,所述第十指示信息承载于以下任意一个信令中:无线资源控制RRC消息、媒体接入控制MAC-控制元素CE或下行控制信息DCI。
  58. 如权利要求55至57中任一项所述的网络设备,其特征在于,具有相同的频带粒度的任意两个相邻的频带对应的预编码矩阵不同。
  59. 一种处理器,其特征在于,用于执行如权利要求23至34中任一项所述的方法。
  60. 一种处理装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,以执行如权利要求23至34中任一项所述的方法。
  61. 一种芯片系统,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,使得安装有所述芯片系统的设备执行如权利要求23至34中任一项所述的方法。
  62. 一种计算机可读存储介质,包括计算机程序,当其在计算机上运行时,使得所述计算机执行如权利要求23至34中任一项所述的方法。
  63. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求23至34中任一项所述的方法。
  64. 一种通信系统,其特征在于,包括:
    如权利要求35至42中任一项所述的终端设备以及如权利要求43至46中任一项所述的网络设备;或者
    如权利要求47至54中任一项所述的终端设备以及如权利要求55至58中任一项所述的网络设备。
PCT/CN2018/092023 2017-07-26 2018-06-20 用于数据传输的方法、装置和系统 WO2019019839A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112019025541-9A BR112019025541A2 (pt) 2017-07-26 2018-06-20 Método e aparelho, e sistema de transmissão de dados
CN201880046875.1A CN110892648B (zh) 2017-07-26 2018-06-20 用于数据传输的方法、装置和系统
EP18838422.6A EP3661076B1 (en) 2017-07-26 2018-06-20 Method, apparatus, and system for data transmission
JP2019571466A JP2020526093A (ja) 2017-07-26 2018-06-20 データ送信の方法および装置ならびにシステム
US16/703,607 US11683076B2 (en) 2017-07-26 2019-12-04 Data transmission method and apparatus, and system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710619655 2017-07-26
CN201710619655.0 2017-07-26
CN201710843482.0A CN109309518B (zh) 2017-07-26 2017-09-18 用于数据传输的方法、装置和系统
CN201710843482.0 2017-09-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/703,607 Continuation US11683076B2 (en) 2017-07-26 2019-12-04 Data transmission method and apparatus, and system

Publications (1)

Publication Number Publication Date
WO2019019839A1 true WO2019019839A1 (zh) 2019-01-31

Family

ID=64294951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092023 WO2019019839A1 (zh) 2017-07-26 2018-06-20 用于数据传输的方法、装置和系统

Country Status (6)

Country Link
US (1) US11683076B2 (zh)
EP (1) EP3661076B1 (zh)
JP (1) JP2020526093A (zh)
CN (4) CN108880644B (zh)
BR (1) BR112019025541A2 (zh)
WO (1) WO2019019839A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020192346A1 (zh) * 2019-03-27 2020-10-01 电信科学技术研究院有限公司 一种信道状态信息反馈方法及装置
EP3937529A4 (en) * 2019-03-25 2022-05-04 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR MEASUREMENT OF CHANNEL STATE INFORMATION AND NETWORK SIDE DEVICE
WO2022105457A1 (zh) * 2020-11-23 2022-05-27 华为技术有限公司 信道矩阵的确定方法、装置及系统
WO2023138458A1 (zh) * 2022-01-18 2023-07-27 维沃移动通信有限公司 编码方法、设备及可读存储介质
WO2023197953A1 (zh) * 2022-04-11 2023-10-19 维沃移动通信有限公司 预编码矩阵的反馈方法、终端及网络侧设备
US12009889B2 (en) 2020-02-13 2024-06-11 Beijing Unisoc Communications Technology Co., Ltd. Uplink data transmission method, user equipment, and readable storage medium

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020150884A1 (en) 2019-01-22 2020-07-30 Qualcomm Incorporated Csi processing for fine csi granularity
CN113783663B (zh) * 2019-02-22 2023-06-09 Oppo广东移动通信有限公司 传输信息的方法、终端设备和网络设备
CN111865376B (zh) * 2019-04-30 2021-06-08 华为技术有限公司 一种通信方法及装置
CN111865377B (zh) * 2019-04-30 2022-06-14 华为技术有限公司 指示和确定预编码矩阵的方法以及通信装置
EP4068660A4 (en) * 2019-12-31 2022-11-30 Huawei Technologies Co., Ltd. CHANNEL INFORMATION FEEDBACK METHOD AND COMMUNICATION DEVICE
CN113258969B (zh) * 2020-02-13 2022-08-09 华为技术有限公司 发送物理上行共享信道的方法及装置
WO2021163925A1 (zh) * 2020-02-19 2021-08-26 北京小米移动软件有限公司 数据传输方法、装置、通信设备及存储介质
WO2021179171A1 (zh) * 2020-03-10 2021-09-16 Oppo广东移动通信有限公司 码本反馈方法、网络设备、终端设备及计算机存储介质
CN113810152B (zh) * 2020-06-11 2023-06-13 上海诺基亚贝尔股份有限公司 用于缓存无线数据的网络编码方法、装置和系统
CN114070366A (zh) * 2020-07-30 2022-02-18 华为技术有限公司 一种通信方法及装置
EP4193475A4 (en) * 2020-08-07 2024-04-10 Apple Inc HIERARCHICAL CHANNEL STATE INFORMATION (CSI) FEEDBACK WITH PARTIAL RECIPROCITY WITH USER EQUIPMENT (UE)
WO2022077484A1 (zh) * 2020-10-16 2022-04-21 华为技术有限公司 一种信息指示方法及装置
CN116830469A (zh) * 2020-12-29 2023-09-29 株式会社Ntt都科摩 信息发送方法、预编码粒度确定方法、终端以及基站
US20230101382A1 (en) * 2021-09-27 2023-03-30 Qualcomm Incorporated Precoding for sidelink communications
US11909472B2 (en) 2021-11-16 2024-02-20 Samsung Electronics Co., Ltd Method and apparatus for selection of linear combination coefficients for precoding in frequency-selective channels
WO2023087203A1 (en) * 2021-11-18 2023-05-25 Qualcomm Incorporated Method and apparatus for codebook design for closed loop operation
WO2023092359A1 (zh) * 2021-11-24 2023-06-01 株式会社Ntt都科摩 接收设备和发射设备
US11616541B1 (en) * 2021-11-29 2023-03-28 Qualcomm Incorporated Non-linear precoding for multi-user multiple-input multiple-output
US11689258B2 (en) 2021-11-29 2023-06-27 Qualcomm Incorporated Channel estimation and demodulation procedure for non-linear multi-user multiple-input multiple-output precoding
WO2023155106A1 (zh) * 2022-02-17 2023-08-24 北京小米移动软件有限公司 信道状态指示反馈信息传输方法、通信设备和存储介质
WO2023159547A1 (en) * 2022-02-28 2023-08-31 Qualcomm Incorporated Parameters for lattice reduction

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1699145A2 (en) * 2005-03-04 2006-09-06 Samsung Electronics Co., Ltd. Beam and power allocation method for MIMO communication system
CN101257367A (zh) * 2007-02-28 2008-09-03 皇家飞利浦电子股份有限公司 选择预编码的方法和装置
CN102244559A (zh) * 2010-05-12 2011-11-16 华为技术有限公司 一种预编码信息的发送和接收方法及装置
CN102638337A (zh) * 2012-04-20 2012-08-15 电信科学技术研究院 一种csi上报控制方法、csi上报方法及装置
CN104144007A (zh) * 2013-05-09 2014-11-12 电信科学技术研究院 一种基于码本的信息反馈方法和装置
CN106559182A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 信道参数的配置获取方法、装置及系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8259835B2 (en) * 2007-03-22 2012-09-04 Marvell World Trade Ltd. Variable codebook for MIMO system
EP2409416A2 (en) * 2009-03-16 2012-01-25 Telefonaktiebolaget LM Ericsson (publ) Method and arrangement in a cellular communication system
US9172561B2 (en) * 2009-07-29 2015-10-27 Qualcomm Incorporated Adaptive transmissions in coordinated multiple point communications
WO2011020235A1 (zh) * 2009-08-17 2011-02-24 上海贝尔股份有限公司 在通信网络中用于保持预编码信道相干性的方法及装置
US8411783B2 (en) * 2009-09-23 2013-04-02 Intel Corporation Method of identifying a precoding matrix corresponding to a wireless network channel and method of approximating a capacity of a wireless network channel in a wireless network
US9253784B2 (en) 2010-01-11 2016-02-02 Samsung Electronics Co., Ltd. Method and system for enabling resource block bundling in LTE-A systems
EP2582075A4 (en) * 2010-06-09 2015-10-14 Lg Electronics Inc METHOD AND DEVICE FOR SENDING AND RECEIVING CHANNEL STATUS INFORMATION IN A WIRELESS COMMUNICATION SYSTEM SUPPORTING MULTIPLE SUPPORTS
US8649423B2 (en) * 2010-11-12 2014-02-11 Telefonaktiebolaget Lm Ericsson (Publ) Methods and systems for precoder selection assisted by demodulation reference signals (DM-RS)
JP6110366B2 (ja) * 2011-04-29 2017-04-05 インターデイジタル パテント ホールディングス インコーポレイテッド 開ループ空間処理
WO2013033919A1 (zh) * 2011-09-09 2013-03-14 富士通株式会社 数据传输方法、系统、发射机和接收机
US9042336B2 (en) * 2012-06-19 2015-05-26 Telefonaktiebolaget L M Ericsson (Publ) Signaling of precoding vector pattern in a lean-carrier system
WO2014101242A1 (zh) * 2012-12-31 2014-07-03 华为技术有限公司 报告信道状态信息csi的方法、用户设备和基站
KR101978776B1 (ko) * 2013-02-28 2019-05-16 삼성전자주식회사 다수의 안테나를 사용하는 이동통신 시스템에서 피드백 송수신 방법 및 장치
JP6449904B2 (ja) * 2014-03-24 2019-01-09 華為技術有限公司Huawei Technologies Co.,Ltd. プリコーディングマトリクスインジケータフィードバック方法、受信方法、および装置
KR102258289B1 (ko) * 2014-05-22 2021-05-31 삼성전자 주식회사 이차원 배열 안테나를 사용하는 이동통신 시스템에서의 채널 피드백의 생성 및 전송 방법 및 장치
CN104202276B (zh) * 2014-07-16 2018-06-01 中兴通讯股份有限公司 信道信息的量化反馈、数据的预编码方法及装置
US9698881B2 (en) * 2014-11-14 2017-07-04 Telefonaktiebolaget Lm Ericsson (Publ) Feedback channel transmission and detection in multi antenna wireless communication systems
WO2016131487A1 (en) * 2015-02-19 2016-08-25 Nokia Solutions And Networks Oy Pre-coding
KR102517868B1 (ko) * 2015-08-13 2023-04-04 한국전자통신연구원 주기적으로 csi 피드백 정보를 전송하는 단말
US11405138B2 (en) * 2017-02-06 2022-08-02 Telefonaktiebolaget Lm Ericsson (Publ) Mixed space time and space frequency block coding
WO2018227542A1 (en) * 2017-06-16 2018-12-20 Qualcomm Incorporated Channel state information feedback for semi-open-loop and open loop schemes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1699145A2 (en) * 2005-03-04 2006-09-06 Samsung Electronics Co., Ltd. Beam and power allocation method for MIMO communication system
CN101257367A (zh) * 2007-02-28 2008-09-03 皇家飞利浦电子股份有限公司 选择预编码的方法和装置
CN102244559A (zh) * 2010-05-12 2011-11-16 华为技术有限公司 一种预编码信息的发送和接收方法及装置
CN102638337A (zh) * 2012-04-20 2012-08-15 电信科学技术研究院 一种csi上报控制方法、csi上报方法及装置
CN104144007A (zh) * 2013-05-09 2014-11-12 电信科学技术研究院 一种基于码本的信息反馈方法和装置
CN106559182A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 信道参数的配置获取方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3661076A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3937529A4 (en) * 2019-03-25 2022-05-04 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR MEASUREMENT OF CHANNEL STATE INFORMATION AND NETWORK SIDE DEVICE
US11817929B2 (en) 2019-03-25 2023-11-14 Huawei Technologies Co., Ltd. Channel state information measurement method and apparatus and network side device
WO2020192346A1 (zh) * 2019-03-27 2020-10-01 电信科学技术研究院有限公司 一种信道状态信息反馈方法及装置
CN111756419A (zh) * 2019-03-27 2020-10-09 电信科学技术研究院有限公司 一种信道状态信息反馈方法及装置
CN111756419B (zh) * 2019-03-27 2021-06-04 电信科学技术研究院有限公司 一种信道状态信息反馈方法及装置
US11936455B2 (en) 2019-03-27 2024-03-19 Datang Mobile Communications Equipment Co., Ltd. Channel state information feedback method and device
US12009889B2 (en) 2020-02-13 2024-06-11 Beijing Unisoc Communications Technology Co., Ltd. Uplink data transmission method, user equipment, and readable storage medium
WO2022105457A1 (zh) * 2020-11-23 2022-05-27 华为技术有限公司 信道矩阵的确定方法、装置及系统
WO2023138458A1 (zh) * 2022-01-18 2023-07-27 维沃移动通信有限公司 编码方法、设备及可读存储介质
WO2023197953A1 (zh) * 2022-04-11 2023-10-19 维沃移动通信有限公司 预编码矩阵的反馈方法、终端及网络侧设备

Also Published As

Publication number Publication date
EP3661076B1 (en) 2022-07-06
CN110892648A (zh) 2020-03-17
EP3661076A1 (en) 2020-06-03
CN109309518B (zh) 2021-09-07
US20200106491A1 (en) 2020-04-02
CN108880644B (zh) 2019-06-11
CN109309518A (zh) 2019-02-05
CN108880644A (zh) 2018-11-23
CN108880645A (zh) 2018-11-23
CN110892648B (zh) 2021-07-09
JP2020526093A (ja) 2020-08-27
BR112019025541A2 (pt) 2020-06-16
CN108880645B (zh) 2019-08-27
US11683076B2 (en) 2023-06-20
EP3661076A4 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
CN110892648B (zh) 用于数据传输的方法、装置和系统
US10164747B2 (en) Method and apparatus for operating MIMO measurement reference signals and feedback
CN109302220B (zh) 用于数据传输的方法、装置和系统
CN109495149B (zh) 通信方法、网络设备、终端设备和系统
US10411868B2 (en) Method and apparatus for channel state information (CSI) reporting
CN107431515B (zh) 用于码本设计和信令的方法和装置
US11411623B2 (en) Channel measurement method and communications apparatus
JP6118423B2 (ja) チャネル状態情報をフィードバックする方法、ユーザ装置及び基地局
US10574409B2 (en) Information notification method and channel state information process execution method
CN108781105B (zh) 用于信道状态信息(csi)报告的方法和装置
WO2017167156A1 (zh) Dmrs的发送方法及装置
WO2018228144A1 (zh) 发送和接收参考信号的方法、网络设备和终端设备
WO2018228599A1 (zh) 通信方法、通信装置和系统
JP2022530973A (ja) プリコーディング行列表示及び決定方法、及び通信装置
US11290906B2 (en) Channel measurement method
WO2020143461A1 (zh) 指示和确定预编码向量的方法以及通信装置
WO2018196589A1 (zh) 数据发送方法、数据接收方法、网络设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838422

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019025541

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019571466

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018838422

Country of ref document: EP

Effective date: 20200225

ENP Entry into the national phase

Ref document number: 112019025541

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191203