WO2021163925A1 - 数据传输方法、装置、通信设备及存储介质 - Google Patents

数据传输方法、装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2021163925A1
WO2021163925A1 PCT/CN2020/075868 CN2020075868W WO2021163925A1 WO 2021163925 A1 WO2021163925 A1 WO 2021163925A1 CN 2020075868 W CN2020075868 W CN 2020075868W WO 2021163925 A1 WO2021163925 A1 WO 2021163925A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding
units
frequency domain
time domain
resource
Prior art date
Application number
PCT/CN2020/075868
Other languages
English (en)
French (fr)
Inventor
牟勤
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2020/075868 priority Critical patent/WO2021163925A1/zh
Priority to EP20919861.3A priority patent/EP4109778A4/en
Priority to CN202080000294.1A priority patent/CN113544977B/zh
Publication of WO2021163925A1 publication Critical patent/WO2021163925A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication

Definitions

  • This application relates to the field of wireless communication technology but is not limited to the field of wireless communication technology, and in particular to a data transmission method, device, communication device and storage medium.
  • MTC Machine Type Communication
  • NB-IoT Narrowband Internet of Things
  • the embodiments of the application disclose a data transmission method, device, communication equipment, and storage medium.
  • a data transmission method wherein the method includes:
  • the unit includes: a plurality of precoding time domain units and/or a plurality of precoding frequency domain units.
  • the data is carried on M precoding resource units for repeated transmission, and the N precoding resource units in the M precoding resource units have the same precoding matrix or adopt different precoding matrixes.
  • Encoding matrix wherein, the M and the N are both positive integers greater than or equal to 1; and the M is greater than or equal to the N.
  • the carrying data on a plurality of precoding resource units includes:
  • the data is divided into a plurality of sub-data, and at least one sub-data of the plurality of sub-data is carried on M precoding resource units for repeated transmission, and N precoding resource units in the M precoding resource units
  • the coding resource unit adopts the same precoding matrix or adopts different precoding matrices; wherein, the M and the N are both positive integers greater than or equal to 1; and the M is greater than or equal to the N.
  • the carrying data on a plurality of precoding resource units includes:
  • the data includes a plurality of sub-data, and the plurality of sub-data are carried on a corresponding number of precoding resource units; wherein, the plurality of precoding resource units use the same precoding matrix or use different given precoding matrices.
  • the plurality of precoding resource units are on a plurality of the precoding time domain units, and the plurality of precoding time domain units are one or more time domain resources on the same frequency domain resource; and the plural number The precoding time domain units use the same precoding matrix;
  • the plurality of precoding resource units are on a plurality of the precoding time domain units, and the plurality of precoding time domain units are one or more time domain resources on the same frequency domain resource; and the plural number The precoding time domain units use the same precoding matrix.
  • Different precoding time domain units are coded by different precoding matrices
  • At least a part of the precoding time domain units in the different precoding time domain units use the same precoding matrix.
  • At least a part of the precoding time domain units in different precoding time domain units use the same precoding matrix, including:
  • different precoding time domain units use the same precoding matrix
  • the continuously distributed part of the precoding frequency domain units in the different precoding time domain units use the same precoding matrix.
  • the plurality of precoding resource units are a plurality of the precoding frequency domain units, and the plurality of precoding frequency domain units are one or more frequency domain resources on the same time resource; and the plurality of precoding frequency domain units are The coding frequency domain units use the same precoding matrix;
  • the plurality of precoding resource units are a plurality of the precoding frequency domain units, and the plurality of precoding frequency domain units are one or more frequency domain resources on the same time resource; and the plurality of precoding frequency domain units are The coding frequency domain unit uses the same precoding matrix.
  • Different precoding frequency domain units adopt different precoding matrix coding
  • At least a part of the precoding frequency domain units in the different precoding frequency domain units are coded by the same precoding matrix.
  • At least a part of the precoding frequency domain units in the different precoding frequency domain units adopt the same precoding matrix, including:
  • different precoding frequency domain units are coded by the same precoding matrix
  • the data carried on the continuously distributed part of the precoding frequency domain units in the different precoding frequency domain units are coded using the same precoding matrix.
  • the method further includes: determining the frequency domain resources and/or time domain resources included in the precoding resource unit;
  • the frequency domain resources and/or time domain resources included in the precoding resource unit are determined according to a communication protocol
  • the frequency domain resources and/or time domain resources included in the precoding resource unit are determined according to the number of times M of repeated data transmission.
  • a data transmission method wherein the method includes:
  • the precoding resource units adopt the same or different precoding matrices; wherein, the plurality of precoding resource units include: a plurality of precoding time domain units and/or a plurality of precoding frequency domain units.
  • the data is carried on M precoding resource units for repeated transmission, and N precoding resource units in the M precoding resource units use the same precoding matrix or use different precoding matrixes.
  • Encoding matrix wherein, the M and the N are both positive integers greater than or equal to 1; and the M is greater than or equal to the N.
  • the data includes a plurality of sub-data, and at least one sub-data in the plurality of sub-data is carried on M precoding resource units for repeated transmission, and the M precoding resource units
  • the N precoding resource units in, use the same precoding matrix or use different precoding matrices; wherein, the M and the N are both positive integers greater than or equal to 1; and the M is greater than or equal to the N .
  • the data includes a plurality of sub-data, and the plurality of sub-data is carried on a corresponding number of precoding resource units; and the precoding resource units adopt the same precoding matrix or adopt different precoding matrix.
  • the plurality of precoding resource units are a plurality of the precoding time domain units, and the plurality of precoding time domain units are one or more time domain resources on the same frequency domain resource; and the plurality of precoding time domain units are The precoding time domain unit uses the same precoding matrix;
  • the plurality of precoding resource units are a plurality of the precoding time domain units, and the plurality of precoding time domain units are one or more time domain resources on different frequency domain resources; and the plurality of The precoding time domain unit uses the same precoding matrix.
  • Different precoding frequency domain units adopt different precoding matrix coding
  • At least a part of the precoding frequency domain units in the different precoding frequency domain units are coded by the same precoding matrix.
  • At least a part of the precoding frequency domain units in the different precoding frequency domain units adopt the same precoding matrix, including:
  • different precoding frequency domain units are coded by the same precoding matrix
  • the data carried on the continuously distributed part of the precoding frequency domain units in the different precoding frequency domain units are coded using the same precoding matrix.
  • the data carried on the different precoding time domain units are coded using different precoding matrices, the data carried on the different precoding time domain units are processed respectively;
  • the merging process uses at least the same precoding matrix. Data carried on part of the precoding frequency domain units;
  • the method further includes:
  • the plurality of precoding resource units are a plurality of the precoding frequency domain units, and the plurality of precoding frequency domain units are one or more frequency domain resources on the same time domain resource; and the plurality of precoding frequency domain units are The precoding frequency domain units use the same precoding matrix;
  • the plurality of precoding resource units are a plurality of the precoding frequency domain units, and the plurality of precoding frequency domain units are one or more frequency domain resources on different time domain resources; and the plurality of The precoding frequency domain unit uses the same precoding matrix.
  • the method further includes:
  • the data carried on at least part of the precoding frequency domain units in the different precoding frequency domain units are coded using the same precoding matrix, and the merging process uses at least part of the same precoding matrix.
  • the data carried on the precoding frequency domain unit is coded using the same precoding matrix, and the merging process uses at least part of the same precoding matrix.
  • the method further includes: determining the frequency domain resources and/or time domain resources included in the precoding resource unit;
  • the frequency domain resources and/or time domain resources included in the precoding resource unit are determined according to a communication protocol
  • the frequency domain resources and/or time domain resources included in the precoding resource unit are determined according to the number of times M of repeated data transmission.
  • the method further includes:
  • the merging process uses at least the same precoding matrix. Data carried on part of the precoding frequency domain units;
  • the data carried on the different precoding frequency domain units are respectively processed.
  • the method further includes:
  • the M is a positive integer multiple of the N.
  • the method further includes:
  • the merging process uses precoding resource units of the same precoding matrix.
  • the method further includes: separately processing precoding resource units that use different precoding matrices.
  • a data transmission device wherein the device includes a first determining module and a bearing module; wherein,
  • the first determining module is configured to determine the data to be transmitted
  • the bearing module is configured to bear the data on a plurality of precoding resource units; wherein, the plurality of precoding resource units used to carry the data adopt the same or different precoding matrices; wherein ,
  • the plurality of precoding resource units include: a plurality of precoding time domain units and/or a plurality of precoding frequency domain units.
  • a data transmission device wherein the device includes a receiving module and a second determining module; wherein,
  • the receiving module is configured to receive data carried on a plurality of precoding resource units
  • the second determining module is configured to determine the frequency domain resource and/or the time domain resource corresponding to each of the precoding resource units; or, determine the precoding resource units coded using the same precoding matrix; wherein , The plurality of precoding resource units used to carry the data adopt the same or different precoding matrix; wherein, the plurality of precoding resource units include: a plurality of precoding time domain units and/or a plurality of precoding time domain units Precoding frequency domain units.
  • a communication device including:
  • the processor is respectively connected to the antenna and the memory, and is used to control the antenna to send and receive wireless signals by executing an executable program stored on the memory, and can execute the steps of the data transmission method provided by any of the foregoing technical solutions .
  • non-transitory computer-readable storage medium stores an executable program, wherein the executable program is executed by a processor When realizing the steps of the data transmission method provided by any of the foregoing technical solutions.
  • the data to be transmitted is determined; the data is carried on a plurality of precoding resource units; wherein the plurality of precoding resource units used to carry the data use the same or Different precoding matrices; wherein, the plurality of precoding resource units include: a plurality of precoding time domain units and/or a plurality of precoding frequency domain units.
  • the data carried on each precoding resource unit can be coded using the same precoding matrix, when the receiving end receives the data packet, because each precoding resource unit is The carried data has the same coding characteristics, and the data carried on the precoding resource unit can be processed together in the same manner, which improves data processing efficiency and data processing accuracy.
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of the disclosure.
  • Fig. 2 is a schematic diagram of a data transmission method provided by an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a time-frequency domain distribution provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a time-frequency domain distribution provided by another embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a time-frequency domain distribution provided by another embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a time-frequency domain distribution provided by another embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a time-frequency domain distribution provided by another embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a time-frequency domain distribution provided by another embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a data transmission method provided by another embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a data transmission method provided by another embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a data transmission device provided by an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of a data transmission device provided by another embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a terminal provided by an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a base station provided by an embodiment of the present disclosure.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
  • the words "if” and “if” as used herein can be interpreted as “when” or “when” or “in response to certainty”.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology.
  • the wireless communication system may include several terminals 11 and several base stations 12.
  • the terminal 11 may be a device that provides voice and/or data connectivity to the user.
  • the terminal 11 can communicate with one or more core networks via a radio access network (Radio Access Network, RAN).
  • the terminal 11 can be an Internet of Things terminal, such as a sensor device, a mobile phone (or “cellular” phone), and
  • the computer of the Internet of Things terminal for example, may be a fixed, portable, pocket-sized, handheld, built-in computer or vehicle-mounted device.
  • station For example, station (Station, STA), subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point, remote terminal ( remote terminal), access terminal (access terminal), user device (user terminal), user agent (user agent), user equipment (user device), or user terminal (user equipment, UE).
  • the terminal 11 may also be a device of an unmanned aerial vehicle.
  • the terminal 11 may also be an in-vehicle device, for example, it may be a trip computer with a wireless communication function, or a wireless communication device connected to the trip computer.
  • the terminal 11 may also be a roadside device, for example, it may be a street lamp, signal lamp, or other roadside device with a wireless communication function.
  • the base station 12 may be a network side device in a wireless communication system.
  • the wireless communication system may be the 4th generation mobile communication (4G) system, also known as the Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system. Also known as new radio (NR) system or 5G NR system.
  • the wireless communication system may also be the next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network). Or, MTC system.
  • the base station 12 may be an evolved base station (eNB) used in a 4G system.
  • the base station 12 may also be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 12 adopts a centralized distributed architecture it usually includes a centralized unit (CU) and at least two distributed units (DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer protocol stack; distribution
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • the unit is provided with a physical (Physical, PHY) layer protocol stack, and the embodiment of the present disclosure does not limit the specific implementation manner of the base station 12.
  • a wireless connection can be established between the base station 12 and the terminal 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as The wireless air interface is a new air interface; or, the wireless air interface may also be a wireless air interface based on a 5G-based next-generation mobile communication network technology standard.
  • an E2E (End to End) connection may also be established between the terminals 11.
  • V2V vehicle to vehicle
  • V2I vehicle to Infrastructure
  • V2P vehicle to pedestrian
  • the above-mentioned wireless communication system may further include a network management device 13.
  • the network management device 13 may be a core network device in a wireless communication system.
  • the network management device 13 may be a mobility management entity (Mobility Management Entity) in an Evolved Packet Core (EPC) network. MME).
  • the network management device may also be other core network devices, such as Serving GateWay (SGW), Public Data Network GateWay (PGW), Policy and Charging Rules function unit (Policy and Charging Rules). Function, PCRF) or home subscriber network side device (Home Subscriber Server, HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network GateWay
  • Policy and Charging Rules function unit Policy and Charging Rules
  • Function PCRF
  • HSS home subscriber network side device
  • the implementation form of the network management device 13 is not limited in the embodiment of the present disclosure.
  • the Internet of Things based on the 5G new air interface usually needs to meet the following requirements: 1. Low cost and low complexity; 2. A certain degree of coverage enhancement; 3. Power saving. Since the new air interface is designed for high-end terminals such as high-speed and low-latency, it cannot meet the above requirements. Therefore, the new air interface system needs to be modified to meet the above requirements. For example, in order to meet the requirements of low cost and low complexity, the radio frequency (RF) bandwidth of the Internet of Things can be limited, for example, the radio frequency bandwidth can be limited to 5MHz or 10MHz; or the size of the Internet of Things cache can be limited to limit each The size of the received transport block, etc. For power saving, the optimization direction can be to simplify the communication process and reduce the number of times the Internet of Things users detect the downlink control channel.
  • RF radio frequency
  • the transmitting end needs to precoding (precoding) the data to be sent, and the selection of the precoding matrix can be based on the CSI (channel status information) feedback from the user, or can be randomly selected.
  • CSI channel status information
  • an embodiment of the present disclosure provides a data transmission method, which is applied to the sending end, and the method includes:
  • Step 21 Determine the data to be transmitted
  • Step 22 Carry data on a plurality of precoding resource units; wherein, the plurality of precoding resource units used to carry the data adopt the same or different precoding matrix; wherein, the plurality of precoding resource units include: a plurality of precoding resource units Precoding time domain units and/or a plurality of precoding frequency domain units.
  • the sending end may be a base station or a terminal.
  • the transmitting end is a base station
  • the receiving end is a terminal.
  • the terminal can be a water meter, an electric meter, an environmental monitoring sensor, an industrial wireless sensor, a wearable device, etc.
  • the sending end when sending data to the receiving end, the sending end needs to use a precoding matrix to precoding (precoding) the data to be sent.
  • both the base station and the terminal can know the precoding matrix in advance, and the base station or the terminal will select a precoding matrix that can maximize the capacity of the channel matrix for encoding.
  • precoding may refer to multiplying the data to be transmitted by the precoding matrix.
  • the precoding resource unit is a resource unit of transmission resources, which may include: one or more physical resources, and these physical resources may be one or more time domain resources, or one or more frequency domain resources. In some embodiments, the precoding resource unit may be multiple physical resources distributed in the time domain and the frequency domain.
  • the plurality of precoding resource units include: a plurality of precoding time domain units and/or a plurality of precoding frequency domain units. That is, the plurality of precoding resource units may be a plurality of precoding time domain units, or a plurality of precoding frequency domain units, or a plurality of precoding frequency domain units and a plurality of precoding frequency domain units.
  • the plurality of precoding time domain units are one or more time domain resources on the same frequency domain resource; and the plurality of precoding time domain units use the same precoding matrix;
  • the plurality of precoding time domain units are one or more time domain resources on different frequency domain resources; and the plurality of precoding time domain units use the same precoding matrix.
  • the plurality of precoding frequency domain units are one or more frequency domain resources on the same time domain resource; and the plurality of precoding frequency domain units use the same precoding matrix;
  • the plurality of precoding frequency domain units are one or more frequency domain resources on different time domain resources; and the plurality of precoding frequency domain units adopt the same precoding matrix.
  • the time domain resource may be a time slot, a symbol, a subframe, or the like.
  • the frequency domain resource may be a physical resource block (PRB, physical resource block), a resource element group (REG, resource element group), a resource element group REG bundle (Bundle), and so on.
  • the plurality of time domain resources may be one or more time slots.
  • the plurality of frequency domain resources may be one or more physical resource blocks.
  • the precoding resource unit when the precoding resource unit includes multiple time domain resources, the precoding resource unit may be multiple consecutive time-frequency resources.
  • the precoding resource unit may be a plurality of time slot slots, and these time slot slots may be continuous or discontinuous, or some of them are continuous and the others are discontinuous.
  • the precoding frequency domain unit includes multiple frequency domain resources
  • the precoding resource unit may be multiple frequency domain resources.
  • the precoding resource unit may be multiple physical resource blocks, and these physical resource blocks may be continuous or discontinuous, or some of them are continuous and the others are discontinuous.
  • the precoding resource unit when the precoding resource unit includes multiple time domain resources, the precoding resource unit may be multiple discrete time-frequency resources. For example, the precoding resource unit may be a plurality of discrete time slots.
  • the precoding frequency domain unit includes multiple frequency domain resources
  • the precoding resource unit may be multiple discrete frequency domain resources.
  • the precoding resource unit may be a plurality of discrete physical resource blocks.
  • one piece of data may be carried on one precoding resource unit, or it may be divided into a plurality of sub-data and then carried on multiple precoding resource units. For example, if the data includes the first sub-data and the second sub-data, the first sub-data may be carried on the first precoding resource unit, and the second sub-data may be carried on the second precoding resource unit.
  • the precoding resource unit is a precoding time domain unit; the precoding time domain unit includes: a plurality of different time domain resources on the same frequency domain resource.
  • the frequency domain resource is the first frequency domain resource
  • the time domain resource includes the first time domain resource, the second time domain resource, the third time domain resource, and the fourth time domain resource.
  • the first coding time domain unit may include a first time domain resource, a second time domain resource, a third time domain resource, and a fourth time domain resource on the first frequency domain resource.
  • the specific number of different time domain resources included in the precoding time domain unit may be specified by a communication protocol, or determined by the network side and instructed by the terminal side, or negotiated between the network side and the terminal side, or The terminal side reports to the network side, or is determined according to a preset rule.
  • the first communication protocol specifies that the precoding time domain unit includes three different time domain resources on the same frequency domain resource; the second communication protocol specifies that the precoding time domain unit includes one time domain resource on the same frequency domain resource. 4 different time domain resources.
  • the sending end can determine the number of time domain resources included in each precoding time domain unit when communicating based on the corresponding communication protocol.
  • the precoding time domain unit includes: multiple consecutive time domain resources on the same frequency domain resource. In another embodiment, the precoding time domain unit includes a plurality of discrete time domain resources on the same frequency domain resource.
  • the data carried on different precoding time domain units are coded using different precoding matrices.
  • the first frequency domain resource has multiple time domain resources continuously distributed.
  • the following takes 6 time domain resources as one and coding frequency domain unit as an example.
  • one precoding frequency domain unit includes: first time domain resource, second time domain resource, third time domain resource, and fourth time domain resource. Domain resources, fifth time domain resources, and sixth time domain resources.
  • the first precoding time domain unit includes a first time domain resource and a second time domain resource; the second precoding time domain unit includes a third time domain resource and a fourth time domain resource; the third precoding time domain unit includes a fifth time domain resource.
  • the precoding matrix includes a first precoding matrix, a second precoding matrix, and a third precoding matrix.
  • the data carried on the first precoding time domain unit is encoded using a first precoding matrix; the data carried on the second precoding time domain unit is encoded using a second precoding matrix; The data carried on the third precoding time domain unit is coded using the third precoding matrix.
  • the precoding resource unit is a precoding frequency domain unit; the precoding frequency domain unit includes: a plurality of different frequency domain resources on the same time domain resource.
  • the time domain resources are the first time domain resources
  • the frequency domain resources include the first frequency domain resources, the second frequency domain resources, the third frequency domain resources, and the fourth frequency domain resources.
  • the first coding frequency domain unit may include a first frequency domain resource, a second frequency domain resource, a third frequency domain resource, and a fourth frequency domain resource on the first time domain resource.
  • how many different frequency domain resources the precoding frequency domain unit specifically includes may be specified by a communication protocol.
  • the first communication protocol specifies that the precoding frequency domain unit includes three different frequency domain resources on the same time domain resource; the second communication protocol specifies that the precoding frequency domain unit includes one frequency domain resource on the same time domain resource. 4 different frequency domain resources.
  • the sender can determine the number of frequency domain resources contained in each precoding frequency domain unit when communicating based on the corresponding communication protocol.
  • the precoding frequency domain unit includes: a plurality of continuous frequency domain resources on the same time domain resource. In another embodiment, the precoding frequency domain unit includes a plurality of discrete frequency domain resources on the same time domain resource.
  • the data carried on different precoding frequency domain units are coded using different precoding matrices.
  • the first time domain resource has continuously distributed first frequency domain resources, second frequency domain resources, third frequency domain resources, fourth frequency domain resources, and fifth frequency domain resources.
  • the sixth frequency domain resource includes a first frequency domain resource and a second frequency domain resource; the second precoding frequency domain unit includes a third frequency domain resource and a fourth frequency domain resource; the third precoding frequency domain unit includes a fifth frequency domain resource.
  • the data carried on the first precoding frequency domain unit is encoded using a first precoding matrix; the data carried on the second precoding frequency domain unit is encoded using a second precoding matrix; The data carried on the third precoding frequency domain unit is coded using the third precoding matrix.
  • data carried on at least part of the precoding frequency domain units in different precoding frequency domain units are coded using the same precoding matrix.
  • the first time domain resource has continuously distributed first frequency domain resources, second frequency domain resources, third frequency domain resources, fourth frequency domain resources, and fifth frequency domain resources.
  • the sixth frequency domain resource includes a first frequency domain resource and a second frequency domain resource
  • the second precoding frequency domain unit includes a third frequency domain resource and a fourth frequency domain resource
  • the third precoding frequency domain unit includes a fifth frequency domain resource.
  • Frequency domain resources and sixth frequency domain resources at least two of the first precoding frequency domain unit, the second precoding frequency domain unit, and the third precoding frequency domain unit use the same precoding matrix.
  • the first precoding frequency domain unit and the second precoding frequency domain unit use the first precoding matrix.
  • the third coding frequency domain unit uses the second precoding matrix.
  • data carried on at least part of the precoding frequency domain units in different precoding frequency domain units use the same precoding matrix, including:
  • first precoding frequency domain unit there are a first precoding frequency domain unit, a second precoding frequency domain unit, a third precoding frequency domain unit, and a fourth precoding frequency domain unit on the first time domain resource .
  • the second time domain resource has a fifth precoding unit, a sixth precoding unit, a seventh precoding unit, and an eighth precoding unit. Then, on the first time domain resource, the data carried on the first precoding frequency domain unit, the second precoding frequency domain unit, the third precoding frequency domain unit, and the fourth precoding frequency domain unit use the first precoding matrix coding. On the second time domain resource, the data carried on the fifth precoding unit, the sixth precoding unit, the seventh precoding unit, and the eighth precoding unit are coded using the second coding matrix.
  • data carried on part of the continuously distributed precoding frequency domain units in different precoding frequency domain units are coded using the same precoding matrix.
  • the data carried on the first precoding frequency domain unit and the second precoding frequency domain unit are coded using the first coding matrix; the third precoding The data carried on the frequency domain unit and the fourth precoding frequency domain unit are coded using the second coding matrix.
  • the data carried on the fifth precoding frequency domain unit and the sixth precoding frequency domain unit are coded using the third coding matrix; the seventh precoding frequency domain unit and the eighth precoding frequency domain unit are The carried data is coded using the fourth coding matrix.
  • the precoding resource unit is a precoding time domain unit and a precoding frequency domain unit, that is, multiple different time domain resources on multiple different frequency domain resources.
  • a part of the precoding resource units are multiple frequency domain resources on the same time domain resource
  • the other part of the precoding resource units are multiple time domain resources on the same frequency domain resource.
  • the multiple frequency domain resources on the same time domain resources may be continuous or discrete, or partly continuous and other parts discrete; these frequency domain resources on the same frequency domain resources may be continuous or discrete.
  • Multiple time-domain resources can be continuous or discrete, or partly continuous and other parts discrete.
  • one piece of data can be carried on M precoding resource units for repeated transmission, and N precoding resource units in the M precoding resource units use the same precoding matrix; where M and N are both A positive integer greater than or equal to 1; and M is greater than or equal to N.
  • that one piece of data can be carried on M precoding resource units for repeated transmission means that: M precoding resource units all carry the same data, so that the data is repeatedly transmitted M times through the M precoding resource units.
  • one piece of data may be carried on M precoding resource units for repeated transmission, and N precoding resource units in the M precoding resource units use different precoding matrices.
  • one piece of data can be carried on M precoding resource units for repeated transmission, and N precoding resource units in the M precoding resource units use different precoding matrices, and M precoding The other MN precoding resource units in the resource unit use the same precoding matrix.
  • the value of M can be configured according to signal coverage. For example, when the communication signal coverage is poor, a larger value of M can be set; when the signal coverage is better, a smaller value of M can be set.
  • setting a larger value of M can make the communication network have stronger coverage capabilities.
  • the data is divided into a plurality of sub-data, and at least one sub-data of the plurality of sub-data is carried on M precoding resource units for repeated transmission, and N precoding resource units among the M precoding resource units
  • the coding resource unit uses the same precoding matrix or uses a different given precoding matrix; wherein, M and N are both positive integers greater than or equal to 1; and M is greater than or equal to N.
  • one sub-data can be carried on M precoding resource units for repeated transmission means that: M precoding resource units all carry the same sub-data, so that the sub-data can be repeatedly transmitted through M precoding resource units. M times.
  • one sub-data may be carried on M precoding resource units for repeated transmission, and N precoding resource units in the M precoding resource units use different precoding matrices.
  • one sub-data may be carried on M precoding resource units for repeated transmission, and N precoding resource units in the M precoding resource units use different precoding matrices, and the M precoding resource units The other MN precoding resource units in the coding resource unit use the same precoding matrix.
  • one of the sub-data is carried on M precoding resource units for repeated transmission, and the other sub-data can be transmitted using the scheme of any embodiment of the present disclosure. It is understandable that the other sub-data may use the same pre-coding matrix as the sub-data to be repeatedly transmitted, or may use a different pre-coding matrix.
  • the data is divided into a plurality of sub-data, and the plurality of sub-data is carried on a corresponding number of precoding resource units; wherein the plurality of precoding resource units use the same precoding matrix.
  • the data is divided into a plurality of sub-data, and the plurality of sub-data is carried on a corresponding number of precoding resource units; wherein the plurality of precoding resource units use different precoding matrices.
  • the data is divided into a plurality of sub-data, and the plurality of sub-data are carried on a corresponding number of precoding resource units; some of the plurality of precoding resource units use the same precoding matrix, and some of the plurality of precoding resource units use the same precoding matrix.
  • the coding resource unit uses the same precoding matrix.
  • the plurality of precoding resource units are a plurality of precoding time domain units, and the plurality of precoding time domain units are one or more time domain resources on the same frequency domain resource; and the plurality of precoding time domain units are The time domain unit uses the same precoding matrix.
  • the plurality of precoding resource units are a plurality of precoding time domain units, and the plurality of precoding time domain units are one or more time domain resources on different frequency domain resources; and the plurality of precoding time domain units are The coding time domain unit uses the same precoding matrix.
  • different precoding time-domain units are coded with different precoding matrices.
  • the precoding time domain units in different precoding time domain units use the same precoding matrix.
  • different precoding time domain units use the same precoding matrix; or, in the same frequency domain, different precoding time domain units that are continuously distributed part of the precoding frequency domain units use the same The precoding matrix.
  • the plurality of precoding resource units are a plurality of precoding frequency domain units, and the plurality of precoding frequency domain units are one or more frequency domain resources on the same time domain resource; and a plurality of precoding units The frequency domain unit uses the same precoding matrix.
  • the plurality of precoding resource units are on a plurality of precoding frequency domain units, and the plurality of precoding frequency domain units are one or more frequency domain resources on different time domain resources; and The precoding frequency domain unit uses the same precoding matrix.
  • different precoding frequency domain units are coded with different precoding matrices.
  • the precoding frequency domain units in different precoding frequency domain units are coded by the same precoding matrix.
  • different precoding frequency domain units are coded by the same precoding matrix; or, in the same time domain, part of the precoding frequency domain units that are continuously distributed in different precoding frequency domain units are coded by The same precoding matrix encoding.
  • another embodiment of the present disclosure provides a data transmission method, which includes:
  • Step 91 Determine frequency domain resources and/or time domain resources included in the precoding resource unit.
  • the frequency domain resources and/or time domain resources included in the precoding resource unit are determined by a communication protocol. In another embodiment, the frequency domain resources and/or time domain resources included in the precoding resource unit are determined by the M value. Please refer to Table 1.
  • Another embodiment of the present disclosure provides a data transmission method, which includes: determining the value of N; wherein the value of N is determined by a communication protocol; that is, configuring the value of N according to the type of communication protocol used;
  • the value of N may be determined according to received signaling; for example, the value of N may be determined according to a value configured by higher layer signaling or a value configured through physical layer control signaling;
  • the value of N can be specified by a communication protocol.
  • the first communication protocol specifies that the value of N is 3; the second communication protocol specifies that the value of N is 4.
  • the sender can determine the value of N and configure the value of N when communicating based on the corresponding communication protocol.
  • the high-level information command may be a radio resource control layer (RRC, Radio Resource Control) signaling or a media access control layer (MAC, Media Access Control) signaling.
  • RRC Radio Resource Control
  • MAC Media Access Control
  • RRC signaling MAC control element (CE, Control Element) signaling, etc.
  • the value of N can be determined according to the value of M.
  • the value of M is less than or equal to 4 1 4 ⁇ M ⁇ 17 2 M>16 4
  • another embodiment of the present disclosure provides a data transmission method, wherein, when applied to a receiving end, the method includes:
  • Step 101 Receive data carried on a plurality of precoding resource units
  • Step 102 Determine frequency domain resources and/or time domain resources corresponding to each precoding resource unit;
  • precoding resource units that are coded using the same precoding matrix; wherein a plurality of precoding resource units used to carry data adopt the same or different precoding matrix; wherein, the plurality of precoding resource units include: a plurality of precoding Time domain unit and/or a plurality of precoding frequency domain units.
  • the receiving end may be a base station or a terminal.
  • the transmitting end is a base station
  • the receiving end is a terminal.
  • the terminal can be a water meter, an electric meter, an environmental monitoring sensor, an industrial wireless sensor, a wearable device, etc.
  • the sending end when sending data to the receiving end, the sending end needs to use a precoding matrix to precoding (precoding) the data to be sent.
  • both the base station and the terminal can know the precoding matrix in advance, and the base station or the terminal will select a precoding matrix that can maximize the capacity of the channel matrix for encoding.
  • precoding is to multiply the data to be transmitted by the precoding matrix.
  • a precoding resource unit is a resource unit of a transmission resource, which may include: one or more physical resources, and these physical resources may be one or more time domain resources, or one or more frequency domain resources. In some embodiments, the precoding resource unit may be multiple physical resources distributed in the time domain and the frequency domain.
  • the plurality of precoding resource units include: a plurality of precoding time domain units and/or a plurality of precoding frequency domain units. That is, the plurality of precoding resource units may be a plurality of precoding time domain units, or a plurality of precoding frequency domain units, or a plurality of precoding frequency domain units and a plurality of precoding frequency domain units.
  • the plurality of precoding time domain units are one or more time domain resources on the same frequency domain resource; and the plurality of precoding time domain units use the same precoding matrix;
  • the plurality of precoding time domain units are one or more time domain resources on different frequency domain resources; and the plurality of precoding time domain units use the same precoding matrix.
  • the plurality of precoding frequency domain units are one or more frequency domain resources on the same time domain resource; and the plurality of precoding frequency domain units use the same precoding matrix;
  • the plurality of precoding frequency domain units are one or more frequency domain resources on different time domain resources; and the plurality of precoding frequency domain units adopt the same precoding matrix.
  • the time domain resource may be a time slot, a symbol, a subframe, or the like.
  • the frequency domain resource may be a physical resource block (PRB, physical resource block), a resource element group (REG, resource element group), a resource element group REG bundle (Bundle), and so on.
  • the plurality of time domain resources may be one or more time slots.
  • the plurality of frequency domain resources may be one or more physical resource blocks.
  • the precoding resource unit when the precoding resource unit includes multiple time domain resources, the precoding resource unit may be multiple consecutive time-frequency resources.
  • the precoding resource unit may be a plurality of time slot slots, and these time slot slots may be continuous or discontinuous, or some of them are continuous and the others are discontinuous.
  • the precoding frequency domain unit includes multiple frequency domain resources
  • the precoding resource unit may be multiple frequency domain resources.
  • the precoding resource unit may be a plurality of physical resource blocks, and these physical resource blocks may be continuous or discontinuous, or some of them are continuous and the others are discontinuous.
  • the precoding resource unit when the precoding resource unit includes multiple time domain resources, the precoding resource unit may be multiple discrete time-frequency resources. For example, the precoding resource unit may be a plurality of discrete time slots.
  • the precoding frequency domain unit includes multiple frequency domain resources
  • the precoding resource unit may be multiple discrete frequency domain resources.
  • the precoding resource unit may be a plurality of discrete physical resource blocks.
  • one piece of data may be carried on one precoding resource unit, or it may be divided into a plurality of sub-data and then carried on multiple precoding resource units. For example, if the data includes the first sub-data and the second sub-data, the first sub-data may be carried on the first precoding resource unit, and the second sub-data may be carried on the second precoding resource unit.
  • the precoding resource unit is a precoding time domain unit; the precoding time domain unit includes: a plurality of different time domain resources on the same frequency domain resource.
  • the frequency domain resource is the first frequency domain resource
  • the time domain resource includes the first time domain resource, the second time domain resource, the third time domain resource, and the fourth time domain resource.
  • the first coding time domain unit may include the first time domain resource, the second time domain resource, the third time domain resource, and the fourth time domain resource on the first frequency domain resource.
  • the specific number of different time domain resources included in the precoding time domain unit may be specified by a communication protocol, or determined by the network side and instructed by the terminal side, or negotiated between the network side and the terminal side, or The terminal side reports to the network side, or is determined according to a preset rule.
  • the first communication protocol specifies that the precoding time domain unit includes three different time domain resources on the same frequency domain resource; the second communication protocol specifies that the precoding time domain unit includes one time domain resource on the same frequency domain resource. 4 different time domain resources.
  • the sending end can determine the number of time domain resources included in each precoding time domain unit when communicating based on the corresponding communication protocol.
  • the precoding time domain unit includes: multiple consecutive time domain resources on the same frequency domain resource. In another embodiment, the precoding time domain unit includes a plurality of discrete time domain resources on the same frequency domain resource.
  • the data carried on different precoding time domain units are coded using different precoding matrices.
  • the first frequency domain resource has multiple time domain resources continuously distributed.
  • the following takes 6 time domain resources as one and coding frequency domain unit as an example.
  • one precoding frequency domain unit includes: first time domain resource, second time domain resource, third time domain resource, and fourth time domain resource. Domain resources, fifth time domain resources, and sixth time domain resources.
  • the first precoding time domain unit includes a first time domain resource and a second time domain resource; the second precoding time domain unit includes a third time domain resource and a fourth time domain resource; the third precoding time domain unit includes a fifth time domain resource.
  • the precoding matrix includes a first precoding matrix, a second precoding matrix, and a third precoding matrix.
  • the data carried on the first precoding time domain unit is encoded using a first precoding matrix; the data carried on the second precoding time domain unit is encoded using a second precoding matrix; The data carried on the third precoding time domain unit is coded using the third precoding matrix.
  • the precoding resource unit is a precoding frequency domain unit; the precoding frequency domain unit includes: a plurality of different frequency domain resources on the same time domain resource.
  • the time domain resource is the first time domain resource
  • the frequency domain resource includes the first frequency domain resource, the second frequency domain resource, the third frequency domain resource, and the fourth frequency domain resource.
  • the first coding frequency domain unit may include a first frequency domain resource, a second frequency domain resource, a third frequency domain resource, and a fourth frequency domain resource on the first time domain resource.
  • how many different frequency domain resources the precoding frequency domain unit specifically includes may be specified by a communication protocol.
  • the first communication protocol specifies that the precoding frequency domain unit includes three different frequency domain resources on the same time domain resource; the second communication protocol specifies that the precoding frequency domain unit includes one frequency domain resource on the same time domain resource. 4 different frequency domain resources.
  • the sending end can determine the number of frequency domain resources included in each precoding frequency domain unit when communicating based on the corresponding communication protocol.
  • the precoding frequency domain unit includes: multiple consecutive frequency domain resources on the same time domain resource. In another embodiment, the precoding frequency domain unit includes a plurality of discrete frequency domain resources on the same time domain resource.
  • the data carried on different precoding frequency domain units are coded using different precoding matrices.
  • the first time domain resource has a first frequency domain resource, a second frequency domain resource, a third frequency domain resource, a fourth frequency domain resource, and a fifth frequency domain that are continuously distributed on the first time domain resource.
  • Resources and sixth frequency domain resources The first precoding frequency domain unit includes a first frequency domain resource and a second frequency domain resource; the second precoding frequency domain unit includes a third frequency domain resource and a fourth frequency domain resource; the third precoding frequency domain unit includes a fifth frequency domain resource.
  • Frequency domain resources and sixth frequency domain resources; the precoding matrix includes a first precoding matrix, a second precoding matrix, and a third precoding matrix.
  • the data carried on the first precoding frequency domain unit is encoded using a first precoding matrix; the data carried on the second precoding frequency domain unit is encoded using a second precoding matrix; The data carried on the third precoding frequency domain unit is coded using the third precoding matrix.
  • data carried on at least part of the precoding frequency domain units in different precoding frequency domain units are coded using the same precoding matrix.
  • the first time domain resource has a first frequency domain resource, a second frequency domain resource, a third frequency domain resource, a fourth frequency domain resource, and a fifth frequency domain that are continuously distributed on the first time domain resource.
  • Resources and sixth frequency domain resources The first precoding frequency domain unit includes a first frequency domain resource and a second frequency domain resource, the second precoding frequency domain unit includes a third frequency domain resource and a fourth frequency domain resource, and the third precoding frequency domain unit includes a fifth frequency domain resource. Frequency domain resources and sixth frequency domain resources.
  • at least two of the first precoding frequency domain unit, the second precoding frequency domain unit, and the third precoding frequency domain unit use the same precoding matrix.
  • the first precoding frequency domain unit and the second precoding frequency domain unit use the first precoding matrix.
  • the third coding frequency domain unit uses the second precoding matrix.
  • data carried on at least part of the precoding frequency domain units in different precoding frequency domain units use the same precoding matrix, including:
  • data carried on all precoding frequency domain units in different precoding frequency domain units are coded using the same precoding matrix.
  • the first precoding frequency domain unit, the second precoding frequency domain unit, the third precoding frequency domain unit, and the fourth precoding frequency domain unit are provided on the first time domain resource. unit.
  • the second time domain resource has a fifth precoding unit, a sixth precoding unit, a seventh precoding unit, and an eighth precoding unit. Then, on the first time domain resource, the data carried on the first precoding frequency domain unit, the second precoding frequency domain unit, the third precoding frequency domain unit, and the fourth precoding frequency domain unit use the first precoding matrix coding. On the second time domain resource, the data carried on the fifth precoding unit, the sixth precoding unit, the seventh precoding unit, and the eighth precoding unit are coded using the second coding matrix.
  • data carried on part of the continuously distributed precoding frequency domain units in different precoding frequency domain units are coded using the same precoding matrix.
  • the data carried on the first precoding frequency domain unit and the second precoding frequency domain unit are coded using the first coding matrix; the third precoding The data carried on the frequency domain unit and the fourth precoding frequency domain unit are coded using the second coding matrix.
  • the data carried on the fifth precoding frequency domain unit and the sixth precoding frequency domain unit are coded using the third coding matrix; the seventh precoding frequency domain unit and the eighth precoding frequency domain unit are The carried data is coded using the fourth coding matrix.
  • the precoding resource unit is a precoding time domain unit and a precoding frequency domain unit, that is, multiple different time domain resources on multiple different frequency domain resources.
  • a part of the precoding resource units are multiple frequency domain resources on the same time domain resource
  • the other part of the precoding resource units are multiple time domain resources on the same frequency domain resource.
  • the multiple frequency domain resources on the same time domain resources may be continuous or discrete, or partly continuous and other parts discrete; these frequency domain resources on the same frequency domain resources may be continuous or discrete.
  • Multiple time-domain resources can be continuous or discrete, or partly continuous and other parts discrete.
  • one piece of data can be carried on M precoding resource units for repeated transmission, and N precoding resource units in the M precoding resource units use the same precoding matrix; where M and N are both A positive integer greater than or equal to 1; and M is greater than or equal to N.
  • that one piece of data can be carried on M precoding resource units for repeated transmission means that: M precoding resource units all carry the same data, so that the data is repeatedly transmitted M times through the M precoding resource units.
  • one piece of data may be carried on M precoding resource units for repeated transmission, and N precoding resource units in the M precoding resource units use different precoding matrices.
  • one piece of data can be carried on M precoding resource units for repeated transmission, and N precoding resource units in the M precoding resource units use different precoding matrices, and M precoding The other MN precoding resource units in the resource unit use the same precoding matrix.
  • the value of M can be configured according to signal coverage. For example, when the communication signal coverage is poor, a larger value of M can be set; when the signal coverage is better, a smaller value of M can be set.
  • setting a larger value of M can make the communication network have stronger coverage capabilities.
  • the data is divided into a plurality of sub-data, and at least one sub-data of the plurality of sub-data is carried on M precoding resource units for repeated transmission, and N precoding resource units among the M precoding resource units
  • the coding resource unit uses the same precoding matrix or uses a different given precoding matrix; where M and N are both positive integers greater than or equal to 1; and M is greater than or equal to N.
  • one sub-data can be carried on M precoding resource units for repeated transmission means that: M precoding resource units all carry the same sub-data, so that the sub-data can be repeatedly transmitted through M precoding resource units. M times.
  • one sub-data may be carried on M precoding resource units for repeated transmission, and N precoding resource units in the M precoding resource units use different precoding matrices.
  • one sub-data may be carried on M precoding resource units for repeated transmission, and N precoding resource units in the M precoding resource units use different precoding matrices, and the M precoding resource units The other MN precoding resource units in the coding resource unit use the same precoding matrix.
  • one of the sub-data is carried on M precoding resource units for repeated transmission, and the other sub-data can be transmitted using the scheme of any embodiment of the present disclosure. It is understandable that the other sub-data may use the same pre-coding matrix as the sub-data to be repeatedly transmitted, or may use a different pre-coding matrix. The above examples are described, and the embodiments of the present disclosure do not limit this.
  • the data is divided into a plurality of sub-data, and the plurality of sub-data is carried on a corresponding number of precoding resource units; wherein the plurality of precoding resource units use the same precoding matrix.
  • the data is divided into a plurality of sub-data, and the plurality of sub-data is carried on a corresponding number of precoding resource units; wherein the plurality of precoding resource units use different precoding matrices.
  • the data is divided into a plurality of sub-data, and the plurality of sub-data are carried on a corresponding number of precoding resource units; some of the plurality of precoding resource units use the same precoding matrix, and some of the plurality of precoding resource units use the same precoding matrix.
  • the coding resource unit uses the same precoding matrix.
  • the plurality of precoding resource units are a plurality of precoding time domain units, and the plurality of precoding time domain units are one or more time domain resources on the same frequency domain resource; and the plurality of precoding time domain units are The time domain unit uses the same precoding matrix.
  • the plurality of precoding resource units are a plurality of precoding time domain units, and the plurality of precoding time domain units are one or more time domain resources on different frequency domain resources; and the plurality of precoding time domain units are The coding time domain unit uses the same precoding matrix.
  • different precoding time-domain units are coded with different precoding matrices.
  • the precoding time domain units in different precoding time domain units use the same precoding matrix.
  • different precoding time domain units use the same precoding matrix; or, in the same frequency domain, different precoding time domain units that are continuously distributed part of the precoding frequency domain units use the same The precoding matrix.
  • the data carried on the different precoding time domain units are processed separately.
  • data in the same frequency domain, the data carried on at least part of the precoding time domain units in different precoding time domain units are coded using the same precoding matrix, and the merging process uses the same precoding matrix. At least part of the data carried on the frequency domain unit is precoded.
  • different precoding time domain units are processed separately; that is, regardless of whether the precoding matrixes used are the same, the data carried on the precoding time domain units are processed separately.
  • the separate processing may include: respectively using the reference signal in the processing object to perform channel estimation and/or to perform data demodulation and/or to perform data channel decoding respectively.
  • the processing target may be a precoding time domain unit or a precoding frequency domain unit.
  • the precoding time domain unit is received at the receiving end, and the data carried on all the precoding time domain units in different precoding time domain units are combined and processed.
  • the data carried on successively distributed partial precoding time domain units using the same precoding matrix in different precoding time domain units are combined and processed.
  • the merging process may include: jointly using the reference signal in the target to perform channel estimation and/or performing joint demodulation on the data in the processing target and/or performing joint channel decoding on the data in the processing target.
  • the processing target may be a precoding time domain unit or a precoding frequency domain unit.
  • the plurality of precoding resource units are a plurality of precoding frequency domain units, and the plurality of precoding frequency domain units are one or more frequency domain resources on the same time domain resource; and a plurality of precoding units The frequency domain unit uses the same precoding matrix.
  • the plurality of precoding resource units are on a plurality of precoding frequency domain units, and the plurality of precoding frequency domain units are one or more frequency domain resources on different time domain resources; and The precoding frequency domain unit uses the same precoding matrix.
  • different precoding frequency domain units are coded with different precoding matrices.
  • the precoding frequency domain units in different precoding frequency domain units are coded by the same precoding matrix.
  • different precoding frequency domain units are coded by the same precoding matrix; or, in the same time domain, part of the precoding frequency domain units that are continuously distributed in different precoding frequency domain units are coded by The same precoding matrix encoding.
  • the data carried on different precoding frequency domain units are coded using different precoding matrices, and the data carried on different precoding frequency domain units are processed separately.
  • a precoding frequency domain unit in the same time domain, data carried on at least part of the precoding frequency domain units in different precoding frequency domain units are encoded using the same precoding matrix; Then, the receiving end combines the data carried on at least part of the precoding frequency domain units of the same precoding matrix.
  • the data carried on different frequency domain units with the same precoding are processed separately; that is, the data carried on the precoding time domain units are processed separately regardless of whether the precoding matrix used is the same.
  • the precoding frequency domain unit when the precoding frequency domain unit is received, the data carried on all the precoding frequency domain units in different precoding frequency domain units are combined and processed. In another embodiment, when the precoding frequency domain unit is received, the data carried on the continuously distributed partial precoding frequency domain units using the same precoding matrix in different precoding frequency domain units are combined and processed.
  • an embodiment of the present disclosure provides a data transmission device, wherein the device includes a first determining module 111 and a bearing module 112; wherein,
  • the first determining module 111 is configured to determine the data to be transmitted
  • the bearer module 112 is configured to bear data on a plurality of precoding resource units; wherein, the plurality of precoding resource units used to carry the data adopt the same or different precoding matrix; wherein, the plurality of precoding resource units Including: a plurality of precoding time domain units and/or a plurality of precoding frequency domain units.
  • data is carried on M precoding resource units for repeated transmission, and N precoding resource units in the M precoding resource units use the same precoding matrix or use different precoding matrices; where , M and N are both positive integers greater than or equal to 1; and M is greater than or equal to N.
  • the bearing module 112 is further configured to divide the data into a plurality of sub-data, and at least one sub-data of the plurality of sub-data is carried on M precoding resource units for repeated transmission, and M precoding
  • the N precoding resource units in the resource unit use the same precoding matrix or use different precoding matrices; wherein, both M and N are positive integers greater than or equal to 1; and M is greater than or equal to N.
  • the data is a plurality of sub-data
  • the bearing module 112 is further configured to carry the plurality of sub-data on a corresponding number of precoding resource units; wherein the plurality of precoding resource units use the same precoding resource unit. Coding matrix or using a different given precoding matrix.
  • the plurality of precoding resource units are on a plurality of the precoding time domain units, and the plurality of precoding time domain units are one or more time domains on the same frequency domain resource Resources; and the plurality of precoding time domain units use the same precoding matrix.
  • the plurality of precoding resource units are on a plurality of the precoding time domain units, and the plurality of precoding time domain units are one or more time domains on the same frequency domain resource Resources; and the plurality of precoding time domain units use the same precoding matrix.
  • different precoding time domain units are coded with different precoding matrices.
  • at least a part of the precoding time domain units in the different precoding time domain units use the same precoding matrix.
  • At least a part of the precoding time domain units in different precoding time domain units use the same precoding matrix, including:
  • different precoding time domain units use the same precoding matrix
  • the continuously distributed part of the precoding frequency domain units in the different precoding time domain units use the same precoding matrix.
  • the plurality of precoding resource units are a plurality of the precoding frequency domain units, and the plurality of precoding frequency domain units are one or more frequency domain resources on the same time resource; And the plurality of precoding frequency domain units use the same precoding matrix.
  • the plurality of precoding resource units are a plurality of the precoding frequency domain units, and the plurality of precoding frequency domain units are one or more frequency domain resources on the same time resource; And the plurality of precoding frequency domain units use the same precoding matrix.
  • different precoding frequency domain units are coded with different precoding matrices.
  • at least a part of the precoding frequency domain units in the different precoding frequency domain units are coded by the same precoding matrix.
  • At least a part of the precoding frequency domain units in the different precoding frequency domain units use the same precoding matrix, including:
  • different precoding frequency domain units are coded by the same precoding matrix
  • the data carried on the continuously distributed part of the precoding frequency domain units in the different precoding frequency domain units are coded using the same precoding matrix.
  • the bearer module 112 is configured to determine the frequency domain resources and/or time domain resources included in the precoding resource unit;
  • the frequency domain resources and/or time domain resources included in the precoding resource unit are determined according to a communication protocol
  • the frequency domain resources and/or time domain resources included in the precoding resource unit are determined according to the number of times M that data is repeatedly transmitted.
  • another embodiment of the present disclosure provides a data transmission device, wherein the device includes a receiving module 121 and a second determining module 122; wherein,
  • the receiving module 121 is configured to receive data carried on a plurality of precoding resource units
  • the second determining module 122 is configured to determine the frequency domain resource and/or the time domain resource corresponding to each precoding resource unit; or, determine the precoding resource unit coded using the same precoding matrix; wherein, it is used to carry data
  • the plurality of precoding resource units use the same or different precoding matrices; wherein, the plurality of precoding resource units include: a plurality of precoding time domain units and/or a plurality of precoding frequency domain units.
  • data is carried on M precoding resource units for repeated transmission, and N precoding resource units in the M precoding resource units use the same precoding matrix or use different precoding matrices; where , M and N are both positive integers greater than or equal to 1; and M is greater than or equal to N.
  • the data includes a plurality of sub-data, and at least one sub-data of the plurality of sub-data is carried on M precoding resource units for repeated transmission, and N precoding resources in the M precoding resource units
  • the units use the same precoding matrix or use different precoding matrices; wherein, M and N are both positive integers greater than or equal to 1; and M is greater than or equal to N.
  • the data includes a plurality of sub-data, and the plurality of sub-data is carried on a corresponding number of precoding resource units; and the precoding resource units adopt the same precoding matrix or adopt different precoding matrices.
  • the plurality of precoding resource units are a plurality of the precoding time domain units, and the plurality of precoding time domain units are one or more time domain resources on the same frequency domain resource ; And the plurality of precoding time domain units use the same precoding matrix.
  • the plurality of precoding resource units are a plurality of the precoding time domain units, and the plurality of precoding time domain units are one or more time domain resources on different frequency domain resources ; And the plurality of precoding time domain units use the same precoding matrix.
  • different precoding frequency domain units are coded with different precoding matrices.
  • at least a part of the precoding frequency domain units in the different precoding frequency domain units are coded by the same precoding matrix.
  • At least a part of the precoding frequency domain units in the different precoding frequency domain units use the same precoding matrix, including:
  • different precoding frequency domain units are coded by the same precoding matrix
  • the data carried on the continuously distributed part of the precoding frequency domain units in the different precoding frequency domain units are coded using the same precoding matrix.
  • the data carried on the different precoding time domain units are coded using different precoding matrices, the data carried on the different precoding time domain units are processed separately;
  • the merging process uses at least the same precoding matrix. Data carried on part of the precoding frequency domain units;
  • the second determining module 122 is configured to:
  • the plurality of precoding resource units are a plurality of the precoding frequency domain units, and the plurality of precoding frequency domain units are one or more frequency domain resources on the same time domain resource ; And the plurality of precoding frequency domain units use the same precoding matrix.
  • the plurality of precoding resource units are a plurality of the precoding frequency domain units, and the plurality of precoding frequency domain units are one or more frequency domain resources on different time domain resources ; And the plurality of precoding frequency domain units use the same precoding matrix.
  • different precoding frequency domain units are coded with different precoding matrices.
  • at least a part of the precoding frequency domain units in the different precoding frequency domain units are coded by the same precoding matrix.
  • At least a part of the precoding frequency domain units in the different precoding frequency domain units use the same precoding matrix, including:
  • different precoding frequency domain units are coded by the same precoding matrix
  • the data carried on the continuously distributed part of the precoding frequency domain units in the different precoding frequency domain units are coded using the same precoding matrix.
  • the second determining module 122 is configured to:
  • the data carried on at least part of the precoding frequency domain units in the different precoding frequency domain units are coded using the same precoding matrix, and the merging process uses at least part of the same precoding matrix.
  • the data carried on the precoding frequency domain unit is coded using the same precoding matrix, and the merging process uses at least part of the same precoding matrix.
  • the second determining module 122 is configured to determine the frequency domain resources and/or time domain resources included in the precoding resource unit;
  • the frequency domain resources and/or time domain resources included in the precoding resource unit are determined according to a communication protocol
  • the frequency domain resources and/or time domain resources included in the precoding resource unit are determined according to the number of times M of repeated data transmission.
  • the second determining module 122 is configured to:
  • the data carried on the different precoding frequency domain units are coded using different precoding matrices, the data carried on the different precoding frequency domain units are processed respectively;
  • the merging process uses at least the same precoding matrix. Data carried on part of the precoding frequency domain units;
  • the data carried on different and the same precoding frequency domain units are respectively processed.
  • the second determining module 122 is configured to:
  • the M is a positive integer multiple of the N.
  • the second determining module 122 is configured to combine precoding resource units using the same precoding matrix.
  • the second determining module 122 is configured to separately process precoding resource units using different precoding matrices.
  • the embodiment of the present disclosure also provides a communication device, including:
  • the processor is respectively connected to the antenna and the memory, and is configured to control the antenna to send and receive wireless signals by executing an executable program stored on the memory, and can execute the steps of the data transmission method provided by any of the foregoing embodiments.
  • the communication device provided in this embodiment may be the aforementioned terminal or base station.
  • the terminal can be a variety of human-borne terminals or vehicle-mounted terminals.
  • the base station may be various types of base stations, for example, a 4G base station or a 5G base station.
  • the antenna may be various types of antennas, for example, a mobile antenna such as a 3G antenna, a 4G antenna, or a 5G antenna; the antenna may also include a WiFi antenna or a wireless charging antenna.
  • a mobile antenna such as a 3G antenna, a 4G antenna, or a 5G antenna
  • the antenna may also include a WiFi antenna or a wireless charging antenna.
  • the memory may include various types of storage media, and the storage media is a non-transitory computer storage medium that can continue to store the information stored thereon after the communication device is powered off.
  • the processor may be connected to the antenna and the memory through a bus or the like, and is used to read an executable program stored on the memory, for example, at least one of the methods shown in any embodiment of the present disclosure.
  • the embodiments of the present disclosure also provide a non-transitory computer-readable storage medium, and the non-transitory computer-readable storage medium stores an executable program, where the executable program is executed by a processor to realize the data transmission provided by any of the foregoing embodiments
  • the steps of the method for example, at least one of the methods shown in any embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a structure of a terminal.
  • the terminal 800 shown in FIG. 13 provides a terminal 800.
  • the terminal may specifically be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc. .
  • the terminal 800 may include one or more of the following components: a processing component 802, a memory 804, a power supply component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, a sensor component 814, And the communication component 816.
  • the processing component 802 generally controls the overall operations of the terminal 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 802 may include one or more modules to facilitate the interaction between the processing component 802 and other components.
  • the processing component 802 may include a multimedia module to facilitate the interaction between the multimedia component 808 and the processing component 802.
  • the memory 804 is configured to store various types of data to support operations in the device 800. Examples of these data include instructions for any application or method operated on the terminal 800, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable and Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable and Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic Disk Magnetic Disk or Optical Disk.
  • the power supply component 806 provides power for various components of the terminal 800.
  • the power supply component 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the terminal 800.
  • the multimedia component 808 includes a screen that provides an output interface between the terminal 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor can not only sense the boundary of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC), and when the terminal 800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive external audio signals.
  • the received audio signal may be further stored in the memory 804 or transmitted via the communication component 816.
  • the audio component 810 further includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module.
  • the above-mentioned peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 814 includes one or more sensors for providing the terminal 800 with various status assessments.
  • the sensor component 814 can detect the on/off status of the device 800 and the relative positioning of components, such as the display and keypad of the terminal 800.
  • the sensor component 814 can also detect the position change of the terminal 800 or a component of the terminal 800. The presence or absence of contact with the terminal 800, the orientation or acceleration/deceleration of the terminal 800, and the temperature change of the terminal 800.
  • the sensor component 814 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the terminal 800 and other devices.
  • the terminal 800 can access a wireless network based on a communication standard, such as Wi-Fi, 2G, or 3G, or a combination thereof.
  • the communication component 816 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the terminal 800 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • non-transitory computer-readable storage medium including instructions, such as the memory 804 including instructions, and the foregoing instructions may be executed by the processor 820 of the terminal 800 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • the terminal may be used to implement the aforementioned method, for example, the method of any embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a structure of a base station.
  • the base station 900 may be provided as a network side device.
  • the base station 900 includes a processing component 922, which further includes one or more processors, and a memory resource represented by a memory 932, for storing instructions that can be executed by the processing component 922, such as application programs.
  • the application program stored in the memory 932 may include one or more modules each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to execute any method described in the foregoing method, for example, a method as in any embodiment of the present disclosure.
  • the base station 900 may also include a power supply component 926 configured to perform power management of the base station 900, a wired or wireless network interface 950 configured to connect the base station 900 to the network, and an input output (I/O) interface 958.
  • the base station 900 can operate based on an operating system stored in the memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • the wireless network interface 950 includes but is not limited to the antenna of the aforementioned communication device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种数据传输方法,其中,所述方法包括:确定待传输的所述数据;将所述数据承载在复数个预编码资源单元上;其中,用于承载所述数据的复数个所述预编码资源单元采用相同的或不同的预编码矩阵;其中,所述复数个预编码资源单元包括:复数个预编码时域单元和/或复数个预编码频域单元。

Description

数据传输方法、装置、通信设备及存储介质 技术领域
本申请涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种数据传输方法、装置、通信设备及存储介质。
背景技术
在LTE 4G系统中,为了支持物联网业务,提出了机器类通信(MTC,Machine Type Communication)、窄带物联网(NB-IoT,Narrow band Internet of thing)两大技术。这两大技术主要针对的是低速率、高时延等应用场景。例如,抄表,环境监测等应用场景。所述窄带物联网最大只能支持几百k的速率,所述机器类通信最大只能支持几M的速率。但是,随着物联网业务的不断发展,例如,视频监控、智能家居、可穿戴设备、工业传感监测等业务的普及,这些业务通常要求几十到百M的速率,且对时延也有相对较高的要求。因此,LTE中的所述机器类通信和所述窄带物联网技术很难满足需求。基于这种情况,提出了在5G新空口中再设计一种新的物联网技术以满足覆盖这种中端物联网设备的需求。
在这种新的物联网技术中,由于对终端能力进行了限制,例如,限制了带宽、限制了接收天线的数量等,这会对终端的覆盖带来负面影响。因此,为了减少这种影响,需要覆盖增强的方案。为了增强覆盖,通常使用的覆盖增强方案是重复传输数据。数据在每次传输数据时,发送端需要对待传输的数据进行预编码。但是,针对如何进行预编码并实现重复传输数据的情况没有解决方案。
发明内容
本申请实施例公开了一种数据传输方法、装置、通信设备及存储介质。
根据本公开实施例的第一方面,提供一种数据传输方法,其中,所述方法包括:
确定待传输的所述数据;
将所述数据承载在复数个预编码资源单元上;其中,用于承载所述数据的复数个所述预编码资源单元采用相同的或不同的预编码矩阵;其中,所述复数个预编码资源单元包括:复数个预编码时域单元和/或复数个预编码频域单元。
在一个实施例中,所述数据承载在M个预编码资源单元上进行重复传输,且所述M个预编码资源单元中的N个预编码资源单元具有相同的预编码矩阵或采用不同的预编码矩阵;其中,所述M和所述N均为大于或等于1的正整数;且所述M大于或等于所述N。
在一个实施例中,所述将数据承载在复数个预编码资源单元上,包括:
将所述数据分为复数个子数据,且所述复数个子数据中的至少一个子数据被承载在M个预编码资源单元上进行重复传输,且所述M个预编码资源单元中的N个预编码资源单元采用相同的预编码矩阵或采用不同的预编码矩阵;其中,所述M和所述N均为大于或等于1的正整数;且所述M大于或等于所述N。
在一个实施例中,所述将数据承载在复数个预编码资源单元上,包括:
所述数据包括复数个子数据,所述复数个子数据承载在相应数量的预编码资源单元上;其中,所述复数个预编码资源单元采用相同的预编 码矩阵或采用不同给的预编码矩阵。
在一个实施例中,
所述复数个预编码资源单元为复数个所述预编码时域单元上,且所述复数个预编码时域单元为在相同频域资源上的一个或多个时域资源;且所述复数个预编码时域单元采用相同的预编码矩阵;
或者,
所述复数个预编码资源单元为复数个所述预编码时域单元上,且所述复数个预编码时域单元为在相同频域资源上的一个或多个时域资源;且所述复数个预编码时域单元采用相同的预编码矩阵。
在一个实施例中,
不同所述预编码时域单元采用不同的预编码矩阵编码;
或者,
在相同频域上,不同所述预编码时域单元中的至少一部分预编码时域单元采用相同的预编码矩阵。
在一个实施例中,所述在相同时域上,不同所述预编码时域单元中的至少一部分预编码时域单元采用相同的预编码矩阵,包括:
在相同频域上,不同的所述预编码时域单元采用相同的预编码矩阵;
或者,
在相同频域上,所述不同所述预编码时域单元中的连续分布的部分所述预编码频域单元,采用相同的预编码矩阵。
在一个实施例中,
所述复数个预编码资源单元为复数个所述预编码频域单元,且所述复数个预编码频域单元为在相同时资源上的一个或多个频域资源;且所述复数个预编码频域单元采用相同的预编码矩阵;
或者,
所述复数个预编码资源单元为复数个所述预编码频域单元,且所述复数个预编码频域单元为在相同时资源上的一个或多个频域资源;且所述复数个预编码频域单元采用相同的预编码矩阵。
在一个实施例中,
不同所述预编码频域单元采用不同的预编码矩阵编码;
或者,
在相同时域上,不同所述预编码频域单元中的至少一部分预编码频域单元采用相同的预编码矩阵编码。
在一个实施例中,所述在相同时域上,不同所述预编码频域单元中的至少一部分预编码频域单元采用相同的预编码矩阵,包括:
在相同时域上,不同的所述预编码频域单元采用相同的预编码矩阵编码;
或者,
在相同时域上,所述不同所述预编码频域单元中的连续分布的部分所述预编码频域单元上所承载的数据,使用相同的预编码矩阵编码。
在一个实施例中,所述方法还包括:确定预编码资源单元中所包含的所述频域资源和/或时域资源;
其中,所述预编码资源单元中所包含的所述频域资源和/或时域资源是根据通信协议确定;
或者,
其中,所述预编码资源单元中所包含的所述频域资源和/或时域资源是根据数据被重复传输的次数M确定。
根据本公开实施例的第二方面,还提供一种数据传输方法,其中,所述方法包括:
接收承载在复数个预编码资源单元上的数据;
确定每个所述预编码资源单元所对应的频域资源和/或时域资源;或者,确定使用相同预编码矩阵编码的所述预编码资源单元;其中,用于承载所述数据的复数个所述预编码资源单元采用相同的或不同的预编码矩阵;其中,所述复数个预编码资源单元包括:复数个预编码时域单元和/或复数个预编码频域单元。
在一个实施例中,所述数据承载在M个预编码资源单元上进行重复传输,且所述M个预编码资源单元中的N个预编码资源单元采用相同的预编码矩阵或采用不同的预编码矩阵;其中,所述M和所述N均为大于或等于1的正整数;且所述M大于或等于所述N。
在一个实施例中,所述数据包括复数个子数据,且所述复数个子数据中的至少一个子数据被承载在M个预编码资源单元上进行重复传输,且所述M个预编码资源单元中的N个预编码资源单元采用相同的预编码矩阵或采用不同的预编码矩阵;其中,所述M和所述N均为大于或等于1的正整数;且所述M大于或等于所述N。
在一个实施例中,所述数据包括复数个子数据,所述复数个子数据承载在相应数量的预编码资源单元上;且所述预编码资源单元采用具有相同的预编码矩阵或采用不同的预编码矩阵。
在一个实施例中,
所述复数个预编码资源单元为复数个所述预编码时域单元,且所述复数个预编码时域单元为在相同频域资源上的一个或多个时域资源;且所述复数个预编码时域单元采用相同的预编码矩阵;
或者,
所述复数个预编码资源单元为复数个所述预编码时域单元,且所述复数个预编码时域单元为在不同频域资源上的一个或多个时域资源;且所述复数个预编码时域单元采用相同的预编码矩阵。
在一个实施例中,
不同所述预编码频域单元采用不同的预编码矩阵编码;
或者,
在相同时域上,不同所述预编码频域单元中的至少一部分预编码频域单元采用相同的预编码矩阵编码。
在一个实施例中,所述在相同时域上,不同所述预编码频域单元中的至少一部分预编码频域单元采用相同的预编码矩阵,包括:
在相同时域上,不同的所述预编码频域单元采用相同的预编码矩阵编码;
或者,
在相同时域上,所述不同所述预编码频域单元中的连续分布的部分所述预编码频域单元上所承载的数据,采用相同的预编码矩阵编码。
在一个实施例中,
当不同所述预编码时域单元上所承载的数据使用不同的预编码矩阵编码时,则分别处理不同所述预编码时域单元上所承载的数据;
或者,
在相同频域上,当不同所述预编码时域单元中的至少部分所述预编码时域单元上所承载的数据使用相同的预编码矩阵编码时,合并处理采用相同的预编码矩阵的至少部分所述预编码频域单元上所承载的数据;
或者
分别处理不同所述预编码时域单元。
在一个实施例中,所述方法还包括:
合并处理所述不同所述预编码时域单元中的全部所述预编码时域单元上所承载的数据;
或者,
合并处理所述不同所述预编码时域单元中的采用相同预编码矩阵的连续分布的部分所述预编码时域单元上所承载的数据。
在一个实施例中,
所述复数个预编码资源单元为复数个所述预编码频域单元,且所述复数个预编码频域单元为在相同时域资源上的一个或多个频域资源;且所述复数个预编码频域单元采用相同的预编码矩阵;
或者,
所述复数个预编码资源单元为复数个所述预编码频域单元,且所述复数个预编码频域单元为在不同时域资源上的一个或多个频域资源;且所述复数个预编码频域单元采用相同的预编码矩阵。
在一个实施例中,所述方法还包括:
当不同所述预编码频域单元上所承载的数据使用不同的预编码矩阵编码时,分别处理不同所述预编码频域单元上所承载的数据;
或者,
在相同时域上,不同所述预编码频域单元中的至少部分所述预编码频域单元上所承载的数据使用相同的预编码矩阵编码,合并处理采用相同的预编码矩阵的至少部分所述预编码频域单元上所承载的数据。
在一个实施例中,所述方法还包括:确定预编码资源单元中所包含的所述频域资源和/或时域资源;
其中,所述预编码资源单元中所包含的所述频域资源和/或时域资源是根据通信协议确定;
或者,
其中,所述预编码资源单元中所包含的所述频域资源和/或时域资源是根据数据被重复传输的次数M确定。
在一个实施例中,所述方法还包括:
当不同所述预编码频域单元上所承载的数据使用不同的预编码矩阵编码时,分别处理不同所述预编码频域单元上所承载的数据;
或者,
在相同时域上,当不同所述预编码频域单元中的至少部分所述预编码频域单元上所承载的数据使用相同的预编码矩阵编码时,合并处理采用相同的预编码矩阵的至少部分所述预编码频域单元上所承载的数据;
或者,
分别处理不同所述预编码频域单元上所承载的数据。
在一个实施例中,所述方法还包括:
合并处理所述不同所述预编码频域单元中的全部所述预编码频域单元上所承载的数据;
或者,
合并处理所述不同所述预编码频域单元中的采用相同预编码矩阵的连续分布的部分所述预编码频域单元上所承载的数据。
在一个实施例中,所述M为所述N的正整数倍。
在一个实施例中,所述方法还包括:
合并处理采用相同预编码矩阵的预编码资源单元。
在一个实施例中,所述方法还包括:分别处理采用不相同预编码矩阵的预编码资源单元。
根据本公开实施例的第三方面,还提供一种数据传输装置,其中,所述装置包括第一确定模块和承载模块;其中,
所述第一确定模块,被配置为确定待传输的数据;
所述承载模块,被配置为将所述数据承载在复数个预编码资源单元上;其中,用于承载所述数据的复数个所述预编码资源单元采用相同的或不同的预编码矩阵;其中,所述复数个预编码资源单元包括:复数个 预编码时域单元和/或复数个预编码频域单元。
根据本公开实施例的第四方面,还提供一种数据传输装置,其中,所述装置包括接收模块和第二确定模块;其中,
所述接收模块,被配置为接收承载在复数个预编码资源单元上的数据;
所述第二确定模块,被配置为确定每个所述预编码资源单元所对应的频域资源和/或时域资源;或者,确定使用相同预编码矩阵编码的所述预编码资源单元;其中,用于承载所述数据的复数个所述预编码资源单元采用相同的或不同的预编码矩阵;其中,所述复数个预编码资源单元包括:复数个预编码时域单元和/或复数个预编码频域单元。
根据本公开实施例的第五方面,还提供一种通信设备,包括:
天线;
存储器;
处理器,分别与所述天线及存储器连接,用于通过执行存储在所述存储器上的可执行程序,控制所述天线收发无线信号,并能够执行前述任一技术方案提供的数据传输方法的步骤。
根据本公开实施例的第六方面,还提供一种非临时性计算机可读存储介质,所述非临时性计算机可读存储介质存储有可执行程序,其中,所述可执行程序被处理器执行时实现前述任一技术方案提供的数据传输方法的步骤。
本公开实施例中,通过确定待传输的所述数据;将所述数据承载在复数个预编码资源单元上;其中,用于承载所述数据的复数个所述预编码资源单元采用相同的或不同的预编码矩阵;其中,所述复数个预编码资源单元包括:复数个预编码时域单元和/或复数个预编码频域单元。这里,由于每个所述预编码资源单元上所承载的数据可以使用相同的所述 预编码矩阵编码的,这样,接收端在接收所述数据包时,由于每个所述预编码资源单元上所承载的数据就具有相同的编码特性,就可以采用相同的方式对所述预编码资源单元上所承载的数据一起进行处理,提升了数据处理效率和数据处理准确率。
附图说明
图1为本公开实施例提供的一种无线通信系统的结构示意图。
图2本公开一个实施例提供的一种数据传输方法的示意图。
图3为本公开一个实施例提供的一种时频域分布的示意图。
图4为本公开另一个实施例提供的一种时频域分布的示意图。
图5为本公开另一个实施例提供的一种时频域分布的示意图。
图6为本公开另一个实施例提供的一种时频域分布的示意图。
图7为本公开另一个实施例提供的一种时频域分布的示意图。
图8为本公开另一个实施例提供的一种时频域分布的示意图。
图9为本公开另一个实施例提供的一种数据传输方法的示意图。
图10为本公开另一个实施例提供的一种数据传输方法的示意图。
图11为本公开一个实施例提供的一种数据传输装置的示意图。
图12为本公开另一个实施例提供的一种数据传输装置的示意图。
图13为本公开一个实施例提供的一种终端的结构示意图。
图14为本公开一个实施例提供的一种基站的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请实施 例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个终端11以及若干个基站12。
其中,终端11可以是指向用户提供语音和/或数据连通性的设备。终端11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端11可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment, UE)。或者,终端11也可以是无人飞行器的设备。或者,终端11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,终端11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,基站12可以是4G系统中采用的演进型基站(eNB)。或者,基站12也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和终端11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端11之间还可以建立E2E(End to End,端到端) 连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户网络侧设备(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
为了更好地理解本公开任一个实施例所描述的技术方案,首先,通过一个实施例对基于5G新空口中的物联网应用进行说明。
同LTE中的物联网设备类似,基于5G新空口中的物联网通常需要满足如下要求:1、低造价,低复杂度;2、一定程度的覆盖增强;3、功率节省。由于新空口是针对高速率、低时延等高端终端设计的,无法满足上述要求。因此,需要对新空口系统进行改造以满足上述要求。例如,为了满足低造价,低复杂度等要求,可以限制物联网的射频(RF,Radio Frequency)带宽,例如,将射频带宽限制到5MHz或者10MHz;或者限制物联网缓存的大小,进而限制每次接收传输块的大小等。针对功率节省,优化方向可以是简化通信流程、减少物联网用户检测下行控制信道的次数等。
对于物联网用户,由于对终端能力进行了限制,比如限制了带宽,限制了接收天线的数量。这会对终端的覆盖带来负面影响,因此,需要覆盖 增强方案。为了增强覆盖,通常使用的覆盖增强方案是重复传输。例如,在时域上重复发送相同的信息,然后在终端进行合并接收。在新空口中,发送端需要对待发送的数据进行预编码(precoding),对于预编码矩阵的选择可以基于用户反馈的CSI(channel status information)选择,也可以随机选择。在新空口系统中,由于基本都是单次传输,系统中对于在多次重复传输中的预编码矩阵的选择并没有解决方案。
如图2所示,本公开一个实施例提供了一种数据传输方法,应用于发送端中,方法包括:
步骤21,确定待传输的数据;
步骤22,将数据承载在复数个预编码资源单元上;其中,用于承载数据的复数个预编码资源单元采用相同的或不同的预编码矩阵;其中,复数个预编码资源单元包括:复数个预编码时域单元和/或复数个预编码频域单元。
在本公开的所有实施例以及全文中,复数个是指一个或一个以上。
在本公开的实施例中,发送端可以是基站,也可以是终端。
在一个实施例中,发送端为基站,接收端为终端。终端可以是水表、电表、环境监测传感器、工业无线传感器、可穿戴设备等。
在一个实施例中,发送端在向接收端发送数据时,需要利用预编码矩阵对待发送的数据进行预编码(precoding)。
在一个实施例中,基站和终端都可以事先获知预编码矩阵,基站或终端会选择一个可以使得信道矩阵容量最大的预编码矩阵进行编码。这里,预编码可以是指待发送的数据乘以预编码矩阵。
预编码资源单元为一种传输资源的资源单位,可以包括:一个或多个物理资源,这些物理资源可以是一个或多个时域资源,也可以是一个或多个频域资源。在一些实施例中,该预编码资源单元可以是在时域和频域上 分布的多个物理资源。
其中,复数个预编码资源单元包括:复数个预编码时域单元和/或复数个预编码频域单元。即:复数个预编码资源单元可以为复数个预编码时域单元,或是复数个预编码频域单元,或是复数个预编码频域单元和复数个预编码频域单元。
在一个实施例中,复数个预编码时域单元为在相同频域资源上的一个或多个时域资源;且复数个预编码时域单元采用相同的预编码矩阵;
或者,
复数个预编码时域单元为在不同频域资源上的一个或多个时域资源;且复数个预编码时域单元采用相同的预编码矩阵。
在一个实施例中,复数个预编码频域单元为在相同时域资源上的一个或多个频域资源;且复数个预编码频域单元采用相同的预编码矩阵;
或者,
复数个预编码频域单元为在不同时域资源上的一个或多个频域资源;且复数个预编码频域单元采用相同的预编码矩阵。
在本公开的实施例中,时域资源可以是时隙slot、符号symbol或子帧subframe等。频域资源可以是物理资源块(PRB,physical resource block)、资源元素组(REG,resource element group)、资源元素组REG束(bundle)等。
在一个实施例中,复数个时域资源可以是一个或多个时隙。复数个频域资源可以是一个或多个物理资源块。这里,当预编码资源单元包括多个时域资源时,预编码资源单元可以是多个连续的时频资源。例如,预编码资源单元可以是多个时隙slot,而这些时隙slot可以是连续的,或是不连续的,或是其中一部分连续而其他部分不连续。当预编码频域单元包括多个频域资源时,预编码资源单元可以是多个频域资源。例如,预编码资源单 元可以是多个物理资源块,而这些物理资源块可以是连续的,或是不连续的,或是其中一部分连续而其他部分不连续。
在一个实施例中,当预编码资源单元包括多个时域资源时,预编码资源单元可以是多个离散的时频资源。例如,预编码资源单元可以是多个离散的时隙。当预编码频域单元包括多个频域资源时,预编码资源单元可以是多个离散的频域资源。例如,预编码资源单元可以是多个离散的物理资源块。
在一个实施例中,一个数据可以被承载在一个预编码资源单元上,也可以被分割为复数个子数据后承载在多个预编码资源单元上。例如,数据包含第一子数据和第二子数据,则第一子数据可以承载在第一预编码资源单元上,第二子数据可以承载在第二预编码资源单元上。
在一个实施例中,预编码资源单元为预编码时域单元;预编码时域单元包括:在相同频域资源上的多个不同的时域资源。
在一个实施例中,请参见图3,频域资源为第一频域资源,时域资源包括第一时域资源、第二时域资源、第三时域资源和第四时域资源,则第一编码时域单元可以包括第一频域资源上的第一时域资源、第二时域资源、第三时域资源和第四时域资源。
在一个实施例中,预编码时域单元具体包括多少个不同的时域资源可以通过通信协议规定,或是由网络侧确定并指示终端侧,或是由网络侧与终端侧协商,或是由终端侧上报给网络侧,或是根据预设规则确定。在一个实施例中,第一通信协议规定预编码时域单元包括一个相同频域资源上的3个不同的时域资源;第二通信协议规定预编码时域单元包括一个相同频域资源上的4个不同的时域资源。这里,发送端在基于对应的通信协议进行通信时,就可以确定每个预编码时域单元所包含的时域资源的个数。
在一个实施例中,预编码时域单元包括:在相同频域资源上的多个连 续的时域资源。在另一个实施例中,预编码时域单元包括:在相同频域资源上的多个离散的时域资源。
在一个实施例中,不同的预编码时域单元上所承载的数据,使用不同的预编码矩阵编码。
在一个实施例中,请参见图4,第一频域资源上具有连续分布的多个时域资源。以下以6个时域资源为一个与编码频域单元进行举例说明,此时,一个预编码频域单元包括:第一时域资源、第二时域资源、第三时域资源、第四时域资源、第五时域资源和第六时域资源。第一预编码时域单元包括第一时域资源和第二时域资源;第二预编码时域单元包括第三时域资源和第四时域资源;第三预编码时域单元包括第五时域单元和第六时域单元。预编码矩阵包括第一预编码矩阵、第二预编码矩阵和第三预编码矩阵。在一个实施例中,第一预编码时域单元上所承载的数据,使用第一预编码矩阵进行编码;第二预编码时域单元上所承载的数据,使用第二预编码矩阵进行编码;第三预编码时域单元上所承载的数据,使用第三预编码矩阵进行编码。
在一个实施例中,预编码资源单元为预编码频域单元;预编码频域单元包括:在相同时域资源上的多个不同的频域资源。
在一个实施例中,请参见图5,时域资源为第一时域资源,频域资源包括第一频域资源、第二频域资源、第三频域资源和第四频域资源,则第一编码频域单元可以包括第一时域资源上的第一频域资源、第二频域资源、第三频域资源和第四频域资源。
在一个实施例中,预编码频域单元具体包括多少个不同的频域资源可以通过通信协议规定。在一个实施例中,第一通信协议规定预编码频域单元包括一个相同时域资源上的3个不同的频域资源;第二通信协议规定预编码频域单元包括一个相同时域资源上的4个不同的频域资源。这里,发 送端在基于对应的通信协议进行通信时,就可以确定每个预编码频域单元所包含的频域资源的个数。
在一个实施例中,预编码频域单元包括:在相同时域资源上的多个连续的频域资源。在另一个实施例中,预编码频域单元包括:在相同时域资源上的多个离散的频域资源。
在一个实施例中,不同预编码频域单元上所承载的数据,使用不同的预编码矩阵编码。
在一个实施例中,请参见图6,第一时域资源上具有连续分布的第一频域资源、第二频域资源、第三频域资源、第四频域资源、第五频域资源和第六频域资源。第一预编码频域单元包括第一频域资源和第二频域资源;第二预编码频域单元包括第三频域资源和第四频域资源;第三预编码频域单元包括第五频域资源和第六频域资源;预编码矩阵包括第一预编码矩阵、第二预编码矩阵和第三预编码矩阵。在一个实施例中,第一预编码频域单元上所承载的数据,使用第一预编码矩阵进行编码;第二预编码频域单元上所承载的数据,使用第二预编码矩阵进行编码;第三预编码频域单元上所承载的数据,使用第三预编码矩阵进行编码。
或者,在相同时域上,不同预编码频域单元中的至少部分预编码频域单元上所承载的数据,使用相同的预编码矩阵编码。
在一个实施例中,请参见图7,第一时域资源上具有连续分布的第一频域资源、第二频域资源、第三频域资源、第四频域资源、第五频域资源和第六频域资源。第一预编码频域单元包括第一频域资源和第二频域资源,第二预编码频域单元包括第三频域资源和第四频域资源,第三预编码频域单元包括第五频域资源和第六频域资源。在一个实施例中,第一预编码频域单元、第二预编码频域单元和第三预编码频域单元中的至少两个使用相同的预编码矩阵。例如,第一预编码频域单元和第二预编码频域单元使用 第一预编码矩阵。第三编码频域单元使用第二预编码矩阵。
在一个实施例中,在相同时域上,不同预编码频域单元中的至少部分预编码频域单元上所承载的数据,使用相同的预编码矩阵,包括:
在相同时域上,不同预编码频域单元中的全部预编码频域单元上所承载的数据,使用相同的预编码矩阵编码;
在一个实施例中,请参见图8,在第一时域资源上具有第一预编码频域单元、第二预编码频域单元、第三预编码频域单元和第四预编码频域单元。第二时域资源上具有第五预编码单元、第六预编码单元、第七预编码单元和第八预编码单元。则第一时域资源上,第一预编码频域单元、第二预编码频域单元、第三预编码频域单元和第四预编码频域单元上承载的数据,使用第一预编码矩阵编码。第二时域资源上,第五预编码单元、第六预编码单元、第七预编码单元和第八预编码单元上承载的数据,使用第二编码矩阵编码。
或者,在相同时域上,不同预编码频域单元中的连续分布的部分预编码频域单元上所承载的数据,使用相同的预编码矩阵编码。
在一个实施例中,请再次参见图8,第一时域资源上,第一预编码频域单元和第二预编码频域单元上承载的数据,使用第一编码矩阵编码;第三预编码频域单元和第四预编码频域单元上承载的数据,使用第二编码矩阵编码。第二时域资源上,第五预编码频域单元和第六预编码频域单元上承载的数据,使用第三编码矩阵编码;第七预编码频域单元和第八预编码频域单元上承载的数据,使用第四编码矩阵编码。
在一个实施例中,预编码资源单元为预编码时域单元和预编码频域单元,即:在多个不同频域资源上的多个不同时域资源。换句话说,预编码资源单元中,一部分预编码资源单元为在相同时域资源上的多个频域资源,另一部分预编码资源单元为在相同频域资源上的多个时域资源。当然,与 前面多个实施例相似的,这些相同时域资源上的多个频域资源可以是连续的,也可以是离散的,或是部分连续而其他部分离散;这些相同频域资源上的多个时域资源可以是连续的,也可以是离散的,或是部分连续而其他部分离散。
在一个实施例中,一个数据可以承载在M个预编码资源单元上进行重复传输,且M个预编码资源单元中的N个预编码资源单元采用相同的预编码矩阵;其中M和N均为大于或等于1的正整数;且M大于或等于N。其中,一个数据可以承载在M个预编码资源单元上进行重复传输是指:M个预编码资源单元都承载着相同的该数据,以将该数据通过M个预编码资源单元重复传输M次。在另一个实施例中,一个数据可以承载在M个预编码资源单元上进行重复传输,且M个预编码资源单元中的N个预编码资源单元采用不同的预编码矩阵。在又一个实施例中,一个数据可以承载在M个预编码资源单元上进行重复传输,且M个预编码资源单元中的N个预编码资源单元采用不同的预编码矩阵,且M个预编码资源单元中的另外M-N个预编码资源单元采用相同的预编码矩阵。
这里,重复传输可以提升通信网络的覆盖能力。在一个实施例中,M的值可以根据信号覆盖情况进行配置。例如,当通信信号覆盖较差时,可以设置较大的M的值;当信号覆盖较好时,则可以设置较小的M的值。这里,设置较大的M的值可以使得通信网络具有更强的覆盖能力。
在一个实施例中,将数据分为复数个子数据,且复数个子数据中的至少一个子数据被承载在M个预编码资源单元上进行重复传输,且M个预编码资源单元中的N个预编码资源单元采用相同的预编码矩阵或采用不同给的预编码矩阵;其中,M和N均为大于或等于1的正整数;且M大于或等于N。其中,一个子数据可以承载在M个预编码资源单元上进行重复传输 是指:M个预编码资源单元都承载着相同的该子数据,以将该子数据通过M个预编码资源单元重复传输M次。在另一个实施例中,一个子数据可以承载在M个预编码资源单元上进行重复传输,且M个预编码资源单元中的N个预编码资源单元采用不同的预编码矩阵。在又一个实施例中,一个子数据可以承载在M个预编码资源单元上进行重复传输,且M个预编码资源单元中的N个预编码资源单元采用不同的预编码矩阵,且M个预编码资源单元中的另外M-N个预编码资源单元采用相同的预编码矩阵。在再又一个实施例中,其中复数个子数据中,其中一个子数据被承载在M个预编码资源单元上进行重复传输,而其他的子数据可以采用本公开种任何实施例的方案进行传输。可以理解的,的其他的子数据,可以和被重复传输的子数据采用相同的预编码矩阵,也可以采用不同的预编码矩阵。上述的举例说明,本公开实施例并不对此做出限定
在一个实施例中,将数据分为复数个子数据,将复数个子数据承载在相应数量的预编码资源单元上;其中复数个预编码资源单元采用相同的预编码矩阵。在另一个实施例中,将数据分为复数个子数据,将复数个子数据承载在相应数量的预编码资源单元上;其中复数个预编码资源单元采用不同的预编码矩阵。在又一个实施例中,将数据分为复数个子数据,将复数个子数据承载在相应数量的预编码资源单元上;其中部分复数个预编码资源单元采用相同的预编码矩阵,且部分复数个预编码资源单元采用相同的预编码矩阵。
在一个实施例中,复数个预编码资源单元为复数个预编码时域单元,且复数个预编码时域单元为在相同频域资源上的一个或多个时域资源;且复数个预编码时域单元采用相同的预编码矩阵。在另一个实施例中,复数个预编码资源单元为复数个预编码时域单元,且复数个预编码时域单元为 在不同频域资源上的一个或多个时域资源;且复数个预编码时域单元采用相同的预编码矩阵。
在一个实施例中,不同预编码时域单元采用不同的预编码矩阵编码。
在另一个实施例中,在相同频域上,不同预编码时域单元中的至少一部分预编码时域单元采用相同的预编码矩阵。其中,在相同频域上,不同的预编码时域单元采用相同的预编码矩阵;或者,在相同频域上,不同预编码时域单元中的连续分布的部分预编码频域单元,采用相同的预编码矩阵。
在一个实施例中,复数个预编码资源单元为复数个预编码频域单元,且复数个预编码频域单元为在相同时域资源上的一个或多个频域资源;且复数个预编码频域单元采用相同的预编码矩阵。在另一个实施例中,复数个预编码资源单元为复数个预编码频域单元上,且复数个预编码频域单元为在不同时域资源上的一个或多个频域资源;且复数个预编码频域单元采用相同的预编码矩阵。
在一个实施例中,不同预编码频域单元采用不同的预编码矩阵编码。
在另一个实施例中,在相同时域上,不同预编码频域单元中的至少一部分预编码频域单元采用相同的预编码矩阵编码。其中,在相同时域上,不同的预编码频域单元采用相同的预编码矩阵编码;或者,在相同时域上,不同预编码频域单元中的连续分布的部分预编码频域单元,采用相同的预编码矩阵编码。
如图9所示,本公开另一个实施例提供了一种数据传输方法,该方法包括:
步骤91,确定预编码资源单元中所包含的频域资源和/或时域资源。
在一个实施例中,预编码资源单元中所包含的频域资源和/或时域资源, 是由通信协议确定的。在另一个实施例中,预编码资源单元中所包含的频域资源和/或时域资源,是由M值确定的。请参见表一,
Figure PCTCN2020075868-appb-000001
表一
本公开另一个实施例提供了一种数据传输方法,该方法包括:确定N的值;其中N的值是由通信协议确定的;即:根据所采用的通信协议类型配置N的值;
或者,根据接收到的信令确定N的值;例如,可以根据高层信令配置的值或者通过物理层控制信令配置的值确定N的值;
或者,根据M的值确定N的值。
在一个实施例中,N的值可以通过通信协议规定。在一个实施例中,第一通信协议规定N的值为3;第二通信协议规定N的值为4。这里,发送端在基于对应的通信协议进行通信时,就可以确定N的值并配置N的值。
在一个实施例中,高层信息令可以是无线资源控制层(RRC,Radio Resource Control)的信令或媒体访问控制层(MAC,Media Access Control)的信令。例如,RRC信令、MAC控制元素(CE,Control Element)信令等。
在一个实施例中,请参见表二,可以根据M的值确定N的值。
M的取值 N的取值
M小于或等于4 1
4<M<17 2
M>16 4
表二
如图10所示,本公开另一个实施例提供了一种数据传输方法,其中,应用于接收端中,该方法包括:
步骤101,接收承载在复数个预编码资源单元上的数据;
步骤102,确定每个预编码资源单元所对应的频域资源和/或时域资源;
或者,
确定使用相同预编码矩阵编码的预编码资源单元;其中,用于承载数据的复数个预编码资源单元采用相同的或不同的预编码矩阵;其中,复数个预编码资源单元包括:复数个预编码时域单元和/或复数个预编码频域单元。
在一个实施例中,接收端可以是基站,也可以是终端。
在一个实施例中,发送端为基站,接收端为终端。终端可以是水表、电表、环境监测传感器、工业无线传感器、可穿戴设备等。
在一个实施例中,发送端在向接收端发送数据时,需要利用预编码矩阵对待发送的数据进行预编码(precoding)。
在一个实施例中,基站和终端都可以事先获知预编码矩阵,基站或终端会选择一个可以使得信道矩阵容量最大的预编码矩阵进行编码。这里,预编码是将需要发送的数据乘以预编码矩阵。
预编码资源单元为一种传输资源的资源单位,可包括:一个或多个物理资源,这些物理资源可以是一个或多个时域资源,也可以是一个或多个频域资源。在一些实施例中,该预编码资源单元可以是在时域和频域上分布的多个物理资源。
其中,复数个预编码资源单元包括:复数个预编码时域单元和/或复数个预编码频域单元。即:复数个预编码资源单元可以为复数个预编码时域 单元,或是复数个预编码频域单元,或是复数个预编码频域单元和复数个预编码频域单元。
在一个实施例中,复数个预编码时域单元为在相同频域资源上的一个或多个时域资源;且复数个预编码时域单元采用相同的预编码矩阵;
或者,
复数个预编码时域单元为在不同频域资源上的一个或多个时域资源;且复数个预编码时域单元采用相同的预编码矩阵。
在一个实施例中,复数个预编码频域单元为在相同时域资源上的一个或多个频域资源;且复数个预编码频域单元采用相同的预编码矩阵;
或者,
复数个预编码频域单元为在不同时域资源上的一个或多个频域资源;且复数个预编码频域单元采用相同的预编码矩阵。
在本公开的实施例中,时域资源可以是时隙slot、符号symbol或子帧subframe等。频域资源可以是物理资源块(PRB,physical resource block)、资源元素组(REG,resource element group)、资源元素组REG束(bundle)等。
在一个实施例中,复数个时域资源可以是一个或多个时隙。复数个频域资源可以是一个或多个物理资源块。这里,当预编码资源单元包括多个时域资源时,预编码资源单元可以是多个连续的时频资源。例如,预编码资源单元可以是多个时隙slot,而这些时隙slot可以是连续的,或是不连续的,或是其中一部分连续而其他部分不连续。当预编码频域单元包括多个频域资源时,预编码资源单元可以是多个频域资源。例如,预编码资源单元可以是多个物理资源块,而这些物理资源块可以是连续的,或是不连续的,或是其中一部分连续而其他部分不连续。
在一个实施例中,当预编码资源单元包括多个时域资源时,预编码资 源单元可以是多个离散的时频资源。例如,预编码资源单元可以是多个离散的时隙。当预编码频域单元包括多个频域资源时,预编码资源单元可以是多个离散的频域资源。例如,预编码资源单元可以是多个离散的物理资源块。
在一个实施例中,一个数据可以被承载在一个预编码资源单元上,也可以被分割为复数个子数据后承载在多个预编码资源单元上。例如,数据包含第一子数据和第二子数据,则第一子数据可以承载在第一预编码资源单元上,第二子数据可以承载在第二预编码资源单元上。
在一个实施例中,预编码资源单元为预编码时域单元;预编码时域单元包括:在相同频域资源上的多个不同的时域资源。
在一个实施例中,请再次参见图3,频域资源为第一频域资源,时域资源包括第一时域资源、第二时域资源、第三时域资源和第四时域资源,则第一编码时域单元可以包括第一频域资源上的第一时域资源、第二时域资源、第三时域资源和第四时域资源。
在一个实施例中,预编码时域单元具体包括多少个不同的时域资源可以通过通信协议规定,或是由网络侧确定并指示终端侧,或是由网络侧与终端侧协商,或是由终端侧上报给网络侧,或是根据预设规则确定。在一个实施例中,第一通信协议规定预编码时域单元包括一个相同频域资源上的3个不同的时域资源;第二通信协议规定预编码时域单元包括一个相同频域资源上的4个不同的时域资源。这里,发送端在基于对应的通信协议进行通信时,就可以确定每个预编码时域单元所包含的时域资源的个数。
在一个实施例中,预编码时域单元包括:在相同频域资源上的多个连续的时域资源。在另一个实施例中,预编码时域单元包括:在相同频域资源上的多个离散的时域资源。
在一个实施例中,不同的预编码时域单元上所承载的数据,使用不同 的预编码矩阵编码。
在一个实施例中,请再次参见图4,第一频域资源上具有连续分布的多个时域资源。以下以6个时域资源为一个与编码频域单元进行举例说明,此时,一个预编码频域单元包括:第一时域资源、第二时域资源、第三时域资源、第四时域资源、第五时域资源和第六时域资源。第一预编码时域单元包括第一时域资源和第二时域资源;第二预编码时域单元包括第三时域资源和第四时域资源;第三预编码时域单元包括第五时域单元和第六时域单元。预编码矩阵包括第一预编码矩阵、第二预编码矩阵和第三预编码矩阵。在一个实施例中,第一预编码时域单元上所承载的数据,使用第一预编码矩阵进行编码;第二预编码时域单元上所承载的数据,使用第二预编码矩阵进行编码;第三预编码时域单元上所承载的数据,使用第三预编码矩阵进行编码。
在一个实施例中,预编码资源单元为预编码频域单元;预编码频域单元包括:在相同时域资源上的多个不同的频域资源。
在一个实施例中,请再次参见图5,时域资源为第一时域资源,频域资源包括第一频域资源、第二频域资源、第三频域资源和第四频域资源,则第一编码频域单元可以包括第一时域资源上的第一频域资源、第二频域资源、第三频域资源和第四频域资源。
在一个实施例中,预编码频域单元具体包括多少个不同的频域资源可以通过通信协议规定。在一个实施例中,第一通信协议规定预编码频域单元包括一个相同时域资源上的3个不同的频域资源;第二通信协议规定预编码频域单元包括一个相同时域资源上的4个不同的频域资源。这里,发送端在基于对应的通信协议进行通信时,就可以确定每个预编码频域单元所包含的频域资源的个数。
在一个实施例中,预编码频域单元包括:在相同时域资源上的多个连 续的频域资源。在另一个实施例中,预编码频域单元包括:在相同时域资源上的多个离散的频域资源。
在一个实施例中,不同预编码频域单元上所承载的数据,使用不同的预编码矩阵编码。
在一个实施例中,请再次参见图6,第一时域资源上具有连续分布的第一频域资源、第二频域资源、第三频域资源、第四频域资源、第五频域资源和第六频域资源。第一预编码频域单元包括第一频域资源和第二频域资源;第二预编码频域单元包括第三频域资源和第四频域资源;第三预编码频域单元包括第五频域资源和第六频域资源;预编码矩阵包括第一预编码矩阵、第二预编码矩阵和第三预编码矩阵。在一个实施例中,第一预编码频域单元上所承载的数据,使用第一预编码矩阵进行编码;第二预编码频域单元上所承载的数据,使用第二预编码矩阵进行编码;第三预编码频域单元上所承载的数据,使用第三预编码矩阵进行编码。
或者,在相同时域上,不同预编码频域单元中的至少部分预编码频域单元上所承载的数据,使用相同的预编码矩阵编码。
在一个实施例中,请再次参见图7,第一时域资源上具有连续分布的第一频域资源、第二频域资源、第三频域资源、第四频域资源、第五频域资源和第六频域资源。第一预编码频域单元包括第一频域资源和第二频域资源,第二预编码频域单元包括第三频域资源和第四频域资源,第三预编码频域单元包括第五频域资源和第六频域资源。在一个实施例中,第一预编码频域单元、第二预编码频域单元和第三预编码频域单元中的至少两个使用相同的预编码矩阵。例如,第一预编码频域单元和第二预编码频域单元使用第一预编码矩阵。第三编码频域单元使用第二预编码矩阵。
在一个实施例中,在相同时域上,不同预编码频域单元中的至少部分预编码频域单元上所承载的数据,使用相同的预编码矩阵,包括:
在相同时域上,不同预编码频域单元中的全部预编码频域单元上所承载的数据,使用相同的预编码矩阵编码。
在一个实施例中,请再次参见图8,在第一时域资源上具有第一预编码频域单元、第二预编码频域单元、第三预编码频域单元和第四预编码频域单元。第二时域资源上具有第五预编码单元、第六预编码单元、第七预编码单元和第八预编码单元。则第一时域资源上,第一预编码频域单元、第二预编码频域单元、第三预编码频域单元和第四预编码频域单元上承载的数据,使用第一预编码矩阵编码。第二时域资源上,第五预编码单元、第六预编码单元、第七预编码单元和第八预编码单元上承载的数据,使用第二编码矩阵编码。
或者,在相同时域上,不同预编码频域单元中的连续分布的部分预编码频域单元上所承载的数据,使用相同的预编码矩阵编码。
在一个实施例中,请再次参见图8,第一时域资源上,第一预编码频域单元和第二预编码频域单元上承载的数据,使用第一编码矩阵编码;第三预编码频域单元和第四预编码频域单元上承载的数据,使用第二编码矩阵编码。第二时域资源上,第五预编码频域单元和第六预编码频域单元上承载的数据,使用第三编码矩阵编码;第七预编码频域单元和第八预编码频域单元上承载的数据,使用第四编码矩阵编码。
在一个实施例中,预编码资源单元为预编码时域单元和预编码频域单元,即:在多个不同频域资源上的多个不同时域资源。换句话说,预编码资源单元中,一部分预编码资源单元为在相同时域资源上的多个频域资源,另一部分预编码资源单元为在相同频域资源上的多个时域资源。当然,与前面多个实施例相似的,这些相同时域资源上的多个频域资源可以是连续的,也可以是离散的,或是部分连续而其他部分离散;这些相同频域资源上的多个时域资源可以是连续的,也可以是离散的,或是部分连续而其他 部分离散。
在一个实施例中,一个数据可以承载在M个预编码资源单元上进行重复传输,且M个预编码资源单元中的N个预编码资源单元采用相同的预编码矩阵;其中M和N均为大于或等于1的正整数;且M大于或等于N。其中,一个数据可以承载在M个预编码资源单元上进行重复传输是指:M个预编码资源单元都承载着相同的该数据,以将该数据通过M个预编码资源单元重复传输M次。在另一个实施例中,一个数据可以承载在M个预编码资源单元上进行重复传输,且M个预编码资源单元中的N个预编码资源单元采用不同的预编码矩阵。在又一个实施例中,一个数据可以承载在M个预编码资源单元上进行重复传输,且M个预编码资源单元中的N个预编码资源单元采用不同的预编码矩阵,且M个预编码资源单元中的另外M-N个预编码资源单元采用相同的预编码矩阵。
这里,重复传输可以提升通信网络的覆盖能力。在一个实施例中,M的值可以根据信号覆盖情况进行配置。例如,当通信信号覆盖较差时,可以设置较大的M的值;当信号覆盖较好时,则可以设置较小的M的值。这里,设置较大的M的值可以使得通信网络具有更强的覆盖能力。
在一个实施例中,将数据分为复数个子数据,且复数个子数据中的至少一个子数据被承载在M个预编码资源单元上进行重复传输,且M个预编码资源单元中的N个预编码资源单元采用相同的预编码矩阵或采用不同给的预编码矩阵;其中M和N均为大于或等于1的正整数;且M大于或等于N。其中,一个子数据可以承载在M个预编码资源单元上进行重复传输是指:M个预编码资源单元都承载着相同的该子数据,以将该子数据通过M个预编码资源单元重复传输M次。在另一个实施例中,一个子数据可以承载在M个预编码资源单元上进行重复传输,且M个预编码资源单元中的 N个预编码资源单元采用不同的预编码矩阵。在又一个实施例中,一个子数据可以承载在M个预编码资源单元上进行重复传输,且M个预编码资源单元中的N个预编码资源单元采用不同的预编码矩阵,且M个预编码资源单元中的另外M-N个预编码资源单元采用相同的预编码矩阵。在再又一个实施例中,其中复数个子数据中,其中一个子数据被承载在M个预编码资源单元上进行重复传输,而其他的子数据可以采用本公开种任何实施例的方案进行传输。可以理解的,的其他的子数据,可以和被重复传输的子数据采用相同的预编码矩阵,也可以采用不同的预编码矩阵。上述的举例说明,本公开实施例并不对此做出限定。
在一个实施例中,将数据分为复数个子数据,将复数个子数据承载在相应数量的预编码资源单元上;其中复数个预编码资源单元采用相同的预编码矩阵。在另一个实施例中,将数据分为复数个子数据,将复数个子数据承载在相应数量的预编码资源单元上;其中复数个预编码资源单元采用不同的预编码矩阵。在又一个实施例中,将数据分为复数个子数据,将复数个子数据承载在相应数量的预编码资源单元上;其中部分复数个预编码资源单元采用相同的预编码矩阵,且部分复数个预编码资源单元采用相同的预编码矩阵。
在一个实施例中,复数个预编码资源单元为复数个预编码时域单元,且复数个预编码时域单元为在相同频域资源上的一个或多个时域资源;且复数个预编码时域单元采用相同的预编码矩阵。在另一个实施例中,复数个预编码资源单元为复数个预编码时域单元,且复数个预编码时域单元为在不同频域资源上的一个或多个时域资源;且复数个预编码时域单元采用相同的预编码矩阵。
在一个实施例中,不同预编码时域单元采用不同的预编码矩阵编码。
在另一个实施例中,在相同频域上,不同预编码时域单元中的至少一部分预编码时域单元采用相同的预编码矩阵。其中,在相同频域上,不同的预编码时域单元采用相同的预编码矩阵;或者,在相同频域上,不同预编码时域单元中的连续分布的部分预编码频域单元,采用相同的预编码矩阵。
在一个实施例中,在接收端接收到预编码时域单元,且不同预编码时域单元上所承载的数据使用不同的预编码矩阵编码,则分别处理不同预编码时域单元上所承载的数据。在另一个实施例中,在相同频域上,不同预编码时域单元中的至少部分预编码时域单元上所承载的数据使用相同的预编码矩阵编码,合并处理采用相同的预编码矩阵的至少部分预编码频域单元上所承载的数据。在又一个实施例中,分别处理不同预编码时域单元;即,不管采用的预编码矩阵是否相同,都对预编码时域单元上所承载的数据分别进行处理。这里,分别处理可以包括:分别使用处理对象内的参考信号进行信道估计和/或分别进行数据解调和/或分别进行数据的信道解码。这里,处理对象内可以是预编码时域单元或预编码频域单元内。
在一个实施例中,在接收端接收到预编码时域单元,合并处理不同预编码时域单元中的全部预编码时域单元上所承载的数据。在另一个实施例中,合并处理不同预编码时域单元中的采用相同预编码矩阵的连续分布的部分预编码时域单元上所承载的数据。这里,合并处理可以包括:联合使用对象内的参考信号进行信道估计和/或对处理对象内的数据进行联合解调和/或对处理对象内的数据进行联合信道解码。这里,处理对象内可以是预编码时域单元或预编码频域单元内。
在一个实施例中,复数个预编码资源单元为复数个预编码频域单元,且复数个预编码频域单元为在相同时域资源上的一个或多个频域资源;且复数个预编码频域单元采用相同的预编码矩阵。在另一个实施例中,复数 个预编码资源单元为复数个预编码频域单元上,且复数个预编码频域单元为在不同时域资源上的一个或多个频域资源;且复数个预编码频域单元采用相同的预编码矩阵。
在一个实施例中,不同预编码频域单元采用不同的预编码矩阵编码。
在另一个实施例中,在相同时域上,不同预编码频域单元中的至少一部分预编码频域单元采用相同的预编码矩阵编码。其中,在相同时域上,不同的预编码频域单元采用相同的预编码矩阵编码;或者,在相同时域上,不同预编码频域单元中的连续分布的部分预编码频域单元,采用相同的预编码矩阵编码。
在一个实施例中,当接收到预编码频域单元,不同预编码频域单元上所承载的数据使用不同的预编码矩阵编码,则分别处理不同预编码频域单元上所承载的数据。在另一个实施例中,当接收到预编码频域单元,在相同时域上,不同预编码频域单元中的至少部分预编码频域单元上所承载的数据使用相同的预编码矩阵编码;则接收端合并处理采用相同的预编码矩阵的至少部分预编码频域单元上所承载的数据。在又一个实施例中,分别处理不同同预编码频域单元上所承载的数据;即,不管采用的预编码矩阵是否相同,都对预编码时域单元上所承载的数据分别进行处理。
在一个实施例中,当接收到预编码频域单元,合并处理不同预编码频域单元中的全部预编码频域单元上所承载的数据。在另一个实施例中,当接收到预编码频域单元,合并处理不同预编码频域单元中的采用相同预编码矩阵的连续分布的部分预编码频域单元上所承载的数据。
如图11所示,本公开一个实施例提供了一种数据传输装置,其中,装置包括第一确定模块111和承载模块112;其中,
第一确定模块111,被配置为确定待传输的数据;
承载模块112,被配置为将数据承载在复数个预编码资源单元上;其中, 用于承载数据的复数个预编码资源单元采用相同的或不同的预编码矩阵;其中,复数个预编码资源单元包括:复数个预编码时域单元和/或复数个预编码频域单元。
在一个实施例中,数据承载在M个预编码资源单元上进行重复传输,且M个预编码资源单元中的N个预编码资源单元采用相同的预编码矩阵或采用不同的预编码矩阵;其中,M和N均为大于或等于1的正整数;且M大于或等于N。
在一个实施例中,承载模块112还被配置为将数据分为复数个子数据,且复数个子数据中的至少一个子数据被承载在M个预编码资源单元上进行重复传输,且M个预编码资源单元中的N个预编码资源单元采用相同的预编码矩阵或采用不同的预编码矩阵;其中,M和N均为大于或等于1的正整数;且M大于或等于N。
在一个实施例中,数据为复数个子数据,且所述承载模块112还被配置为将复数个子数据承载在相应数量的预编码资源单元上;其中所述复数个预编码资源单元采用相同的预编码矩阵或采用不同给的预编码矩阵。
在一些实施例中,所述复数个预编码资源单元为复数个所述预编码时域单元上,且所述复数个预编码时域单元为在相同频域资源上的一个或多个时域资源;且所述复数个预编码时域单元采用相同的预编码矩阵。
在一些实施例中,所述复数个预编码资源单元为复数个所述预编码时域单元上,且所述复数个预编码时域单元为在相同频域资源上的一个或多个时域资源;且所述复数个预编码时域单元采用相同的预编码矩阵。
在一些实施例中,不同所述预编码时域单元采用不同的预编码矩阵编码。在一些实施例中,在相同频域上,不同所述预编码时域单元中的至少一部分预编码时域单元采用相同的预编码矩阵。
在一些实施例中,所述在相同时域上,不同所述预编码时域单元中的 至少一部分预编码时域单元采用相同的预编码矩阵,包括:
在相同频域上,不同的所述预编码时域单元采用相同的预编码矩阵;
或者,
在相同频域上,所述不同所述预编码时域单元中的连续分布的部分所述预编码频域单元,采用相同的预编码矩阵。
在一些实施例中,所述复数个预编码资源单元为复数个所述预编码频域单元,且所述复数个预编码频域单元为在相同时资源上的一个或多个频域资源;且所述复数个预编码频域单元采用相同的预编码矩阵。
在一些实施例中,所述复数个预编码资源单元为复数个所述预编码频域单元,且所述复数个预编码频域单元为在相同时资源上的一个或多个频域资源;且所述复数个预编码频域单元采用相同的预编码矩阵。
在一些实施例中,不同所述预编码频域单元采用不同的预编码矩阵编码。在一些实施例中,在相同时域上,不同所述预编码频域单元中的至少一部分预编码频域单元采用相同的预编码矩阵编码。
在一些实施例中,所述在相同时域上,不同所述预编码频域单元中的至少一部分预编码频域单元采用相同的预编码矩阵,包括:
在相同时域上,不同的所述预编码频域单元采用相同的预编码矩阵编码;
或者,
在相同时域上,所述不同所述预编码频域单元中的连续分布的部分所述预编码频域单元上所承载的数据,使用相同的预编码矩阵编码。
在一些实施例中,所述承载模块112被配置确定预编码资源单元中所包含的所述频域资源和/或时域资源;
所述预编码资源单元中所包含的所述频域资源和/或时域资源是根据通信协议确定;
或是;
其中,所述预编码资源单元中所包含的所述频域资源和/或时域资源是根据数据被被重复传输的次数M确定。
如图12所示,本公开另一个实施例提供了一种数据传输装置,其中,装置包括接收模块121和第二确定模块122;其中,
接收模块121,被配置为接收承载在复数个预编码资源单元上的数据;
第二确定模块122,被配置为确定每个预编码资源单元所对应的频域资源和/或时域资源;或者,确定使用相同预编码矩阵编码的预编码资源单元;其中,用于承载数据的复数个预编码资源单元采用相同的或不同的预编码矩阵;其中,复数个预编码资源单元包括:复数个预编码时域单元和/或复数个预编码频域单元。
在一个实施例中,数据承载在M个预编码资源单元上进行重复传输,且M个预编码资源单元中的N个预编码资源单元采用相同的预编码矩阵或采用不同的预编码矩阵;其中,M和N均为大于或等于1的正整数;且M大于或等于N。
在一个实施例中,数据包括复数个子数据,且复数个子数据中的至少一个子数据被承载在M个预编码资源单元上进行重复传输,且M个预编码资源单元中的N个预编码资源单元采用相同的预编码矩阵或采用不同的预编码矩阵;其中,M和N均为大于或等于1的正整数;且M大于或等于N。
在一个实施例中,数据包括复数个子数据,复数个子数据承载在相应数量的预编码资源单元上;且所述预编码资源单元采用具有相同的预编码矩阵或采用不同的预编码矩阵。
在一些实施例中,所述复数个预编码资源单元为复数个所述预编码时域单元,且所述复数个预编码时域单元为在相同频域资源上的一个或多个时域资源;且所述复数个预编码时域单元采用相同的预编码矩阵。
在一些实施例中,所述复数个预编码资源单元为复数个所述预编码时域单元,且所述复数个预编码时域单元为在不同频域资源上的一个或多个时域资源;且所述复数个预编码时域单元采用相同的预编码矩阵。
在一些实施例中,不同所述预编码频域单元采用不同的预编码矩阵编码。在一些实施例中,在相同时域上,不同所述预编码频域单元中的至少一部分预编码频域单元采用相同的预编码矩阵编码。
在一些实施例中,所述在相同时域上,不同所述预编码频域单元中的至少一部分预编码频域单元采用相同的预编码矩阵,包括:
在相同时域上,不同的所述预编码频域单元采用相同的预编码矩阵编码;
或者,
在相同时域上,所述不同所述预编码频域单元中的连续分布的部分所述预编码频域单元上所承载的数据,采用相同的预编码矩阵编码。
在一些实施例中,不同所述预编码时域单元上所承载的数据使用不同的预编码矩阵编码时,则分别处理不同所述预编码时域单元上所承载的数据;
或者,
在相同频域上,当不同所述预编码时域单元中的至少部分所述预编码时域单元上所承载的数据使用相同的预编码矩阵编码时,合并处理采用相同的预编码矩阵的至少部分所述预编码频域单元上所承载的数据;
或者
分别处理不同所述预编码时域单元。
在一些实施例中,第二确定模块122被配置为:
合并处理所述不同所述预编码时域单元中的全部所述预编码时域单元上所承载的数据;
或者,
合并处理所述不同所述预编码时域单元中的采用相同预编码矩阵的连续分布的部分所述预编码时域单元上所承载的数据。
在一些实施例中,所述复数个预编码资源单元为复数个所述预编码频域单元,且所述复数个预编码频域单元为在相同时域资源上的一个或多个频域资源;且所述复数个预编码频域单元采用相同的预编码矩阵。
在一些实施例中,所述复数个预编码资源单元为复数个所述预编码频域单元,且所述复数个预编码频域单元为在不同时域资源上的一个或多个频域资源;且所述复数个预编码频域单元采用相同的预编码矩阵。
在一些实施例中,不同所述预编码频域单元采用不同的预编码矩阵编码。在一些实施例中,在相同时域上,不同所述预编码频域单元中的至少一部分预编码频域单元采用相同的预编码矩阵编码。
在一些实施例中,所述在相同时域上,不同所述预编码频域单元中的至少一部分预编码频域单元采用相同的预编码矩阵,包括:
在相同时域上,不同的所述预编码频域单元采用相同的预编码矩阵编码;
或者,
在相同时域上,所述不同所述预编码频域单元中的连续分布的部分所述预编码频域单元上所承载的数据,使用相同的预编码矩阵编码。
在一些实施例中,第二确定模块122被配置为:
不同所述预编码频域单元上所承载的数据使用不同的预编码矩阵编码时,分别处理不同所述预编码频域单元上所承载的数据;
或者,
在相同时域上,不同所述预编码频域单元中的至少部分所述预编码频域单元上所承载的数据使用相同的预编码矩阵编码,合并处理采用相同的 预编码矩阵的至少部分所述预编码频域单元上所承载的数据。
在一些实施例中,第二确定模块122被配置为:确定预编码资源单元中所包含的所述频域资源和/或时域资源;
其中,所述预编码资源单元中所包含的所述频域资源和/或时域资源是根据通信协议确定;
或是;
其中,所述预编码资源单元中所包含的所述频域资源和/或时域资源是根据数据被重复传输的次数M确定。
在一些实施例中,第二确定模块122被配置为:
当不同所述预编码频域单元上所承载的数据使用不同的预编码矩阵编码时,则分别处理不同所述预编码频域单元上所承载的数据;
或者,
在相同时域上,当不同所述预编码频域单元中的至少部分所述预编码频域单元上所承载的数据使用相同的预编码矩阵编码时,合并处理采用相同的预编码矩阵的至少部分所述预编码频域单元上所承载的数据;
或者
分别处理不同同所述预编码频域单元上所承载的数据。
在一些实施例中,第二确定模块122被配置为:
合并处理所述不同所述预编码频域单元中的全部所述预编码频域单元上所承载的数据;
或者,
合并处理所述不同所述预编码频域单元中的采用相同预编码矩阵的连续分布的部分所述预编码频域单元上所承载的数据。
在一些实施例中,所述M为所述N的正整数倍。
在一些实施例中,第二确定模块122被配置为:合并处理采用相同预 编码矩阵的预编码资源单元。
在一些实施例中,第二确定模块122被配置为:分别处理采用不相同预编码矩阵的预编码资源单元。
本公开实施例还提供一种通信设备,包括:
天线;
存储器;
处理器,分别与天线及存储器连接,用于通过执行存储在存储器上的可执行程序,控制天线收发无线信号,并能够执行前述任意实施例提供的数据传输方法的步骤。
本实施例提供的通信设备可为前述的终端或基站。该终端可为各种人载终端或车载终端。基站可为各种类型的基站,例如,4G基站或5G基站等。
天线可为各种类型的天线、例如,3G天线、4G天线或5G天线等移动天线;天线还可包括:WiFi天线或无线充电天线等。
存储器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
处理器可以通过总线等与天线和存储器连接,用于读取存储器上存储的可执行程序,例如,本公开任一个实施例所示方法的至少其中之一。
本公开实施例还提供一种非临时性计算机可读存储介质,非临时性计算机可读存储介质存储有可执行程序,其中,可执行程序被处理器执行时实现前述任意实施例提供的数据传输方法的步骤,例如,本公开任一个实施例所示方法的至少其中之一。
如图13所示,本公开一个实施例提供一种终端的结构。
参照图13所示终端800本实施例提供一种终端800,该终端具体可是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图13,终端800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制终端800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在设备800的操作。这些数据的示例包括用于在终端800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为终端800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为终端800生成、管理和分配电力相关联的组件。
多媒体组件808包括在终端800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自 用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当终端800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为终端800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如组件为终端800的显示器和小键盘,传感器组件814还可以检测终端800或终端800一个组件的位置改变,用户与终端800接触的存在或不存在,终端800方位或加速/减速和终端800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于终端800和其他设备之间有线或无线方式的通信。终端800可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,终端800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由终端800的处理器820执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
该终端可以用于实现前述的方法,例如,本公开任一个实施例的方法。
如图14所示,本公开一个实施例提供一种基站的结构。例如,基站900可以被提供为一网络侧设备。参照图14,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前 述任意方法,例如,如本公开任一个实施例的方法。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
该无线网络接口950包括但不限于前述通信设备的天线。本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (32)

  1. 一种数据传输方法,其中,所述方法包括:
    确定待传输的所述数据;
    将所述数据承载在复数个预编码资源单元上;其中,用于承载所述数据的复数个所述预编码资源单元采用相同的或不同的预编码矩阵;其中,所述复数个预编码资源单元包括:复数个预编码时域单元和/或复数个预编码频域单元。
  2. 根据权利要求1所述的方法,其中,所述数据承载在M个预编码资源单元上进行重复传输,且所述M个预编码资源单元中的N个预编码资源单元具有相同的预编码矩阵或采用不同的预编码矩阵;其中,所述M和所述N均为大于或等于1的正整数;且所述M大于或等于所述N。
  3. 根据权利要求1所述的方法,其中,所述将数据承载在复数个预编码资源单元上,包括:
    将所述数据分为复数个子数据,且所述复数个子数据中的至少一个子数据被承载在M个预编码资源单元上进行重复传输,且所述M个预编码资源单元中的N个预编码资源单元采用相同的预编码矩阵或采用不同的预编码矩阵;其中,所述M和所述N均为大于或等于1的正整数;且所述M大于或等于所述N。
  4. 根据权利要求1所述的方法,其中,所述将数据承载在复数个预编码资源单元上,包括:
    所述数据包括复数个子数据,所述复数个子数据承载在相应数量的预编码资源单元上;其中,所述复数个预编码资源单元采用相同的预编码矩阵或采用不同给的预编码矩阵。
  5. 根据权利要求1或2或3或4所述的方法,其中,
    所述复数个预编码资源单元为复数个所述预编码时域单元上,且所述 复数个预编码时域单元为在相同频域资源上的一个或多个时域资源;且所述复数个预编码时域单元采用相同的预编码矩阵;
    或者,
    所述复数个预编码资源单元为复数个所述预编码时域单元上,且所述复数个预编码时域单元为在相同频域资源上的一个或多个时域资源;且所述复数个预编码时域单元采用相同的预编码矩阵。
  6. 根据权利要求5所述的方法,其中,
    不同所述预编码时域单元采用不同的预编码矩阵编码;
    或者,
    在相同频域上,不同所述预编码时域单元中的至少一部分预编码时域单元采用相同的预编码矩阵。
  7. 根据权利要求6所述的方法,其中,所述在相同时域上,不同所述预编码时域单元中的至少一部分预编码时域单元采用相同的预编码矩阵,包括:
    在相同频域上,不同的所述预编码时域单元采用相同的预编码矩阵;
    或者,
    在相同频域上,所述不同所述预编码时域单元中的连续分布的部分所述预编码频域单元,采用相同的预编码矩阵。
  8. 根据权利要求1或2或3或4所述的方法,其中,
    所述复数个预编码资源单元为复数个所述预编码频域单元,且所述复数个预编码频域单元为在相同时资源上的一个或多个频域资源;且所述复数个预编码频域单元采用相同的预编码矩阵;
    或者,
    所述复数个预编码资源单元为复数个所述预编码频域单元,且所述复数个预编码频域单元为在相同时资源上的一个或多个频域资源;且所述复 数个预编码频域单元采用相同的预编码矩阵。
  9. 根据权利要求8所述的方法,其中,
    不同所述预编码频域单元采用不同的预编码矩阵编码;
    或者,
    在相同时域上,不同所述预编码频域单元中的至少一部分预编码频域单元采用相同的预编码矩阵编码。
  10. 根据权利要求9所述的方法,其中,所述在相同时域上,不同所述预编码频域单元中的至少一部分预编码频域单元采用相同的预编码矩阵,包括:
    在相同时域上,不同的所述预编码频域单元采用相同的预编码矩阵编码;
    或者,
    在相同时域上,所述不同所述预编码频域单元中的连续分布的部分所述预编码频域单元上所承载的数据,使用相同的预编码矩阵编码。
  11. 根据权利要求1至10任一项所述的方法,其中,所述方法还包括:确定预编码资源单元中所包含的所述频域资源和/或时域资源;
    其中,所述预编码资源单元中所包含的所述频域资源和/或时域资源是根据通信协议确定;
    或者,
    其中,所述预编码资源单元中所包含的所述频域资源和/或时域资源是根据数据被重复传输的次数M确定。
  12. 一种数据传输方法,其中,所述方法包括:
    接收承载在复数个预编码资源单元上的数据;
    确定每个所述预编码资源单元所对应的频域资源和/或时域资源;或者,确定使用相同预编码矩阵编码的预编码资源单元;其中,用于承载所述数 据的复数个所述预编码资源单元采用相同的或不同的预编码矩阵;其中,所述复数个预编码资源单元包括:复数个预编码时域单元和/或复数个预编码频域单元。
  13. 根据权利要求12所述的方法,其中,所述数据承载在M个预编码资源单元上进行重复传输,且所述M个预编码资源单元中的N个预编码资源单元采用相同的预编码矩阵或采用不同的预编码矩阵;其中,所述M和所述N均为大于或等于1的正整数;且所述M大于或等于所述N。
  14. 根据权利要求12所述的方法,其中,所述数据包括复数个子数据,且所述复数个子数据中的至少一个子数据被承载在M个预编码资源单元上进行重复传输,且所述M个预编码资源单元中的N个预编码资源单元采用相同的预编码矩阵或采用不同的预编码矩阵;其中,所述M和所述N均为大于或等于1的正整数;且所述M大于或等于所述N。
  15. 根据权利要求12所述的方法,其中,所述数据包括复数个子数据,所述复数个子数据承载在相应数量的预编码资源单元上;且所述预编码资源单元采用具有相同的预编码矩阵或采用不同的预编码矩阵。
  16. 根据权利要求12至15任一项所述的方法,其中,
    所述复数个预编码资源单元为复数个所述预编码时域单元,且所述复数个预编码时域单元为在相同频域资源上的一个或多个时域资源;且所述复数个预编码时域单元采用相同的预编码矩阵;
    或者,
    所述复数个预编码资源单元为复数个所述预编码时域单元,且所述复数个预编码时域单元为在不同频域资源上的一个或多个时域资源;且所述复数个预编码时域单元采用相同的预编码矩阵。
  17. 根据权利要求16所述的方法,其中,
    不同所述预编码频域单元采用不同的预编码矩阵编码;
    或者,
    在相同时域上,不同所述预编码频域单元中的至少一部分预编码频域单元采用相同的预编码矩阵编码。
  18. 根据权利要求17所述的方法,其中,所述在相同时域上,不同所述预编码频域单元中的至少一部分预编码频域单元采用相同的预编码矩阵,包括:
    在相同时域上,不同的所述预编码频域单元采用相同的预编码矩阵编码;
    或者,
    在相同时域上,所述不同所述预编码频域单元中的连续分布的部分所述预编码频域单元上所承载的数据,采用相同的预编码矩阵编码。
  19. 根据权利要求17或18所述的方法,其中,
    当不同所述预编码时域单元上所承载的数据使用不同的预编码矩阵编码时,则分别处理不同所述预编码时域单元上所承载的数据;
    或者,
    在相同频域上,当不同所述预编码时域单元中的至少部分所述预编码时域单元上所承载的数据使用相同的预编码矩阵编码时,合并处理采用相同的预编码矩阵的至少部分所述预编码频域单元上所承载的数据;
    或者
    分别处理不同所述预编码时域单元。
  20. 根据权利要求18所述的方法,其中,所述方法还包括:
    合并处理所述不同所述预编码时域单元中的全部所述预编码时域单元上所承载的数据;
    或者,
    合并处理所述不同所述预编码时域单元中的采用相同预编码矩阵的连 续分布的部分所述预编码时域单元上所承载的数据。
  21. 根据权利要求12至15任一项所述的方法,其中,
    所述复数个预编码资源单元为复数个所述预编码频域单元,且所述复数个预编码频域单元为在相同时域资源上的一个或多个频域资源;且所述复数个预编码频域单元采用相同的预编码矩阵;
    或者,
    所述复数个预编码资源单元为复数个所述预编码频域单元,且所述复数个预编码频域单元为在不同时域资源上的一个或多个频域资源;且所述复数个预编码频域单元采用相同的预编码矩阵。
  22. 根据权利要求21所述的方法,其中,所述方法还包括:
    当不同所述预编码频域单元上所承载的数据使用不同的预编码矩阵编码时,分别处理不同所述预编码频域单元上所承载的数据;
    或者,
    在相同时域上,不同所述预编码频域单元中的至少部分所述预编码频域单元上所承载的数据使用相同的预编码矩阵编码,合并处理采用相同的预编码矩阵的至少部分所述预编码频域单元上所承载的数据。
  23. 根据权利要求11至19任一项所述的方法,其中,所述方法还包括:确定预编码资源单元中所包含的所述频域资源和/或时域资源;
    其中,所述预编码资源单元中所包含的所述频域资源和/或时域资源是根据通信协议确定;
    或者,
    其中,所述预编码资源单元中所包含的所述频域资源和/或时域资源是根据数据被重复传输的次数M确定。
  24. 根据权利要求22或23所述的方法,其中,所述方法还包括:
    当不同所述预编码频域单元上所承载的数据使用不同的预编码矩阵编 码时,分别处理不同所述预编码频域单元上所承载的数据;
    或者,
    在相同时域上,当不同所述预编码频域单元中的至少部分所述预编码频域单元上所承载的数据使用相同的预编码矩阵编码时,合并处理采用相同的预编码矩阵的至少部分所述预编码频域单元上所承载的数据;
    或者,
    分别处理不同所述预编码频域单元上所承载的数据。
  25. 根据权利要求23所述的方法,其中,所述方法还包括:
    合并处理所述不同所述预编码频域单元中的全部所述预编码频域单元上所承载的数据;
    或者,
    合并处理所述不同所述预编码频域单元中的采用相同预编码矩阵的连续分布的部分所述预编码频域单元上所承载的数据。
  26. 根据权利要求13所述的方法,其中,所述M为所述N的正整数倍。
  27. 根据权利要求12至26任一项所述的方法,其中,所述方法还包括:
    合并处理采用相同预编码矩阵的预编码资源单元。
  28. 根据权利要求11至26任一项所述的方法,其中,所述方法还包括:分别处理采用不相同预编码矩阵的预编码资源单元。
  29. 一种数据传输装置,其中,所述装置包括第一确定模块和承载模块;其中,
    所述第一确定模块,被配置为确定待传输的数据;
    所述承载模块,被配置为将所述数据承载在复数个预编码资源单元上;其中,用于承载所述数据的复数个所述预编码资源单元采用相同的或不同 的预编码矩阵;其中,所述复数个预编码资源单元包括:复数个预编码时域单元和/或复数个预编码频域单元。
  30. 一种数据传输装置,其中,所述装置包括接收模块和第二确定模块;其中,
    所述接收模块,被配置为接收承载在复数个预编码资源单元上的数据;
    所述第二确定模块,被配置为确定所述复数个预编码资源单元采用的预编码矩阵;其中,用于承载所述数据的复数个所述预编码资源单元采用相同的或不同的预编码矩阵;其中,所述复数个预编码资源单元包括:复数个预编码时域单元和/或复数个预编码频域单元。
  31. 一种通信设备,其中,包括:
    天线;
    存储器;
    处理器,分别与所述天线及存储器连接,被配置为通执行存储在所述存储器上的计算机可执行指令,控制所述天线的收发,并能够实现权利要求1至11或者12至28任一项提供的方法。
  32. 一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令被处理器执行后能够实现权利要求1至11或者12至28任一项提供的方法。
PCT/CN2020/075868 2020-02-19 2020-02-19 数据传输方法、装置、通信设备及存储介质 WO2021163925A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/075868 WO2021163925A1 (zh) 2020-02-19 2020-02-19 数据传输方法、装置、通信设备及存储介质
EP20919861.3A EP4109778A4 (en) 2020-02-19 2020-02-19 DATA TRANSMISSION METHOD AND APPARATUS, COMMUNICATION DEVICE AND STORAGE MEDIUM
CN202080000294.1A CN113544977B (zh) 2020-02-19 2020-02-19 数据传输方法、装置、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/075868 WO2021163925A1 (zh) 2020-02-19 2020-02-19 数据传输方法、装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021163925A1 true WO2021163925A1 (zh) 2021-08-26

Family

ID=77390341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075868 WO2021163925A1 (zh) 2020-02-19 2020-02-19 数据传输方法、装置、通信设备及存储介质

Country Status (3)

Country Link
EP (1) EP4109778A4 (zh)
CN (1) CN113544977B (zh)
WO (1) WO2021163925A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108811101A (zh) * 2017-05-04 2018-11-13 电信科学技术研究院 一种预编码矩阵指示方法、终端和网络侧设备
CN108900229A (zh) * 2018-01-12 2018-11-27 华为技术有限公司 通信的方法、网络设备和终端设备
WO2019029480A1 (en) * 2017-08-09 2019-02-14 Intel IP Corporation METHOD AND APPARATUS FOR PRECODEUR DETERMINATION AND PRECODING MATRIX INDICATOR INDICATION (PMI) FOR UPLINK TRANSMISSION
CN109565360A (zh) * 2018-11-08 2019-04-02 北京小米移动软件有限公司 信息发送方法、接收方法、装置及存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11190241B2 (en) * 2015-08-06 2021-11-30 Telefonaktiebolaget Lm Ericsson (Publ) Precoding diversity in time domain
CN108880644B (zh) * 2017-07-26 2019-06-11 华为技术有限公司 用于数据传输的方法、装置和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108811101A (zh) * 2017-05-04 2018-11-13 电信科学技术研究院 一种预编码矩阵指示方法、终端和网络侧设备
WO2019029480A1 (en) * 2017-08-09 2019-02-14 Intel IP Corporation METHOD AND APPARATUS FOR PRECODEUR DETERMINATION AND PRECODING MATRIX INDICATOR INDICATION (PMI) FOR UPLINK TRANSMISSION
CN108900229A (zh) * 2018-01-12 2018-11-27 华为技术有限公司 通信的方法、网络设备和终端设备
CN109565360A (zh) * 2018-11-08 2019-04-02 北京小米移动软件有限公司 信息发送方法、接收方法、装置及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "PDSCH definition for MTC", 3GPP DRAFT; R1-156412 PDSCH DEFINITION FOR MTC, vol. RAN WG1, 7 November 2015 (2015-11-07), Anaheim, USA, pages 1 - 7, XP051022301 *

Also Published As

Publication number Publication date
EP4109778A4 (en) 2023-11-15
CN113544977B (zh) 2023-11-07
EP4109778A1 (en) 2022-12-28
CN113544977A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
WO2021258375A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2021163936A1 (zh) 通信处理方法、装置及计算机存储介质
WO2021007823A1 (zh) 信息指示、确定方法及装置、通信设备及存储介质
WO2021237445A1 (zh) 寻呼控制消息传输方法、装置及通信设备
CN112075113B (zh) 资源配置方法、装置、通信设备和存储介质
WO2021087682A1 (zh) 下行控制信息dci下发方法及装置、通信设备及存储介质
WO2021159252A1 (zh) 传输调度方法、装置、通信设备及存储介质
WO2021163930A1 (zh) 信息处理方法、装置、基站、终端及存储介质
WO2021142796A1 (zh) 通信处理方法、装置及计算机存储介质
CN112534914B (zh) 资源分配方法及装置、消息帧处理方法及装置、存储介质
WO2021179314A1 (zh) 下行传输发送方法、下行传输接收方法、装置和通信设备
WO2021163925A1 (zh) 数据传输方法、装置、通信设备及存储介质
EP4228182A1 (en) Pucch resource determination method and apparatus
WO2022151387A1 (zh) 信息动态指示方法及装置、网络设备、用户设备及存储介质
WO2021142674A1 (zh) 下行控制信息传输方法及装置、通信设备及存储介质
JP7483000B2 (ja) ダウンリンク制御情報の構成方法、装置、通信機器及び記憶媒体
WO2021007791A1 (zh) 资源配置的方法及装置、通信设备及存储介质
WO2021007827A1 (zh) 信息指示、确定方法及装置、通信设备及存储介质
WO2021142665A1 (zh) 下行控制信息传输方法及装置、通信设备及存储介质
WO2023155106A1 (zh) 信道状态指示反馈信息传输方法、通信设备和存储介质
CN110999338B (zh) 多tb交替传输处理方法及装置、通信设备及存储介质
WO2024092477A1 (zh) 天线端口的信息的指示方法、装置、通信设备及存储介质
WO2022198589A1 (zh) 降低干扰的方法及装置、通信设备和存储介质
US20230396399A1 (en) Information transmission method, communication device and storage medium
WO2022126527A1 (zh) 传输pucch的方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020919861

Country of ref document: EP

Effective date: 20220919