WO2021142665A1 - 下行控制信息传输方法及装置、通信设备及存储介质 - Google Patents

下行控制信息传输方法及装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2021142665A1
WO2021142665A1 PCT/CN2020/072286 CN2020072286W WO2021142665A1 WO 2021142665 A1 WO2021142665 A1 WO 2021142665A1 CN 2020072286 W CN2020072286 W CN 2020072286W WO 2021142665 A1 WO2021142665 A1 WO 2021142665A1
Authority
WO
WIPO (PCT)
Prior art keywords
tbs value
relationship
tbs
mapping relationship
value
Prior art date
Application number
PCT/CN2020/072286
Other languages
English (en)
French (fr)
Inventor
牟勤
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202080000113.5A priority Critical patent/CN113475022B/zh
Priority to PCT/CN2020/072286 priority patent/WO2021142665A1/zh
Priority to US17/792,753 priority patent/US20230057205A1/en
Priority to EP20913171.3A priority patent/EP4092937A4/en
Publication of WO2021142665A1 publication Critical patent/WO2021142665A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0016Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy involving special memory structures, e.g. look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/362Modulation using more than one carrier, e.g. with quadrature carriers, separately amplitude modulated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of wireless communication but are not limited to the field of wireless communication, and in particular, to a method and device for transmitting Downlink Control Information (DCI), a communication device, and a storage medium.
  • DCI Downlink Control Information
  • MTC Machine Type Communication
  • NB-IoT Narrow Band Internet of Things
  • MTC Machine Type Communication
  • NB-IoT Narrow Band Internet of Things
  • these technologies have been widely used in smart cities, such as meter reading; smart agriculture, such as the collection of information such as temperature and humidity; smart transportation, such as shared bicycles and many other fields.
  • repeated transmission means that the same transmission content is transmitted in multiple time units. This time unit can be one subframe or multiple subframes.
  • MTC is mostly deployed in scenarios where it is not easy to charge or replace batteries, such as in the field or in the basement
  • the power saving of MTC and NB-IoT is a major feature of MTC and NB-IoT.
  • NB-IoT Mode coding strategy, MCS
  • TBS Transfer block size
  • NB-IoT equipment how to design the relationship between the number of resources and the TBS value, and how to meet the needs of further development of communication technology, such as meeting the needs of communication
  • the demand for capacity expansion or power consumption reduction, while being compatible with the existing technology, is an urgent problem to be solved by the existing technology.
  • the embodiments of the present application provide a DCI transmission method and device, communication equipment, and storage medium.
  • the first aspect of the embodiments of the present application provides a method for transmitting downlink control information DCI, including:
  • the first mapping relationship is: the corresponding relationship between the number of resources allocated to the first type of terminal and the transport block size TBS value; the first mapping relationship includes: A first correspondence between modulation and coding strategy MCS, and a second correspondence with respect to the second MCS;
  • the second correspondence relationship includes: a correspondence relationship that is selected from a second mapping relationship between the number of resources allocated to the second type of terminal and the transport block size TBS value and is different from the first correspondence relationship.
  • a second aspect of the embodiments of the present application provides a DCI transmission method, where the method includes:
  • the DCI is sent according to a first mapping relationship
  • the first mapping relationship is: the corresponding relationship between the number of resources configured to the first type of terminal and the TBS value of the transmission block size;
  • the first The mapping relationship includes: a first corresponding relationship for the first modulation and coding strategy MCS, and a second corresponding relationship for the second MCS;
  • the second correspondence relationship includes: a correspondence relationship that is selected from a second mapping relationship between the number of resources allocated to the second type of terminal and the transport block size TBS value and is different from the first correspondence relationship.
  • a third aspect of the embodiments of the present application provides a device for transmitting downlink control information DCI, which includes:
  • the sending module is configured to send DCI according to a first mapping relationship; wherein, the first mapping relationship is: the corresponding relationship between the number of resources configured to the terminal of the first type and the TBS value of the transmission block size; the first mapping The relationship includes: a first corresponding relationship for the first modulation and coding strategy MCS, and a second corresponding relationship for the second MCS;
  • the second correspondence relationship includes: a correspondence relationship that is selected from a second mapping relationship between the number of resources allocated to the second type of terminal and the transport block size TBS value and is different from the first correspondence relationship.
  • a third aspect of the embodiments of the present application provides a DCI transmission device, wherein the device includes:
  • the receiving module is configured to receive DCI; wherein the DCI is sent according to a first mapping relationship, and the first mapping relationship is: the correspondence between the number of resources configured for the first type of terminal and the transmission block size TBS value Relationship; the first mapping relationship includes: a first corresponding relationship for the first modulation and coding strategy MCS, and a second corresponding relationship for the second MCS;
  • the second correspondence relationship includes: a correspondence relationship that is selected from a second mapping relationship between the number of resources allocated to the second type of terminal and the transport block size TBS value and is different from the first correspondence relationship.
  • a fifth aspect of the embodiments of the present application provides a communication device, which includes:
  • the processor is respectively connected to the antenna and the memory, and is configured to control the antenna to send and receive wireless signals by executing an executable program stored on the memory, and can execute the DCI transmission method provided by any of the foregoing technical aspects.
  • the sixth aspect of the embodiments of the present application provides a non-transitory computer-readable storage medium, the non-transitory computer-readable storage medium stores an executable program, wherein the executable program is executed by a processor to realize the execution of the foregoing DCI transmission method provided by any technical aspect.
  • the TBS value in the first mapping relationship for the terminal of the second type will be selected to construct the second corresponding relationship for the terminal of the first type.
  • the second correspondence relationship constructs a first mapping relationship for the terminal of the first type.
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a DCI transmission method provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a DCI transmission method provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a DCI transmission device provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a DCI transmission apparatus provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a first type terminal provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a base station provided by an embodiment of the present application.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
  • the words "if” and “if” as used herein can be interpreted as “when” or “when” or “in response to certainty”.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology.
  • the wireless communication system may include several terminals 11 and several base stations 12.
  • the terminal 11 may be a device that provides voice and/or data connectivity to the user.
  • the terminal 11 can communicate with one or more core networks via a radio access network (Radio Access Network, RAN).
  • the terminal 11 can be an Internet of Things terminal, such as a sensor device, a mobile phone (or “cellular” phone), and
  • the computer of the Internet of Things terminal for example, may be a fixed, portable, pocket-sized, handheld, built-in computer or vehicle-mounted device.
  • station For example, station (Station, STA), subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point, remote terminal ( remote terminal), access terminal (access terminal), user device (user terminal), user agent (user agent), user equipment (user device), or user terminal (user equipment, UE).
  • the terminal 11 may also be a device of an unmanned aerial vehicle.
  • the terminal 11 may also be an in-vehicle device, for example, it may be a trip computer with a wireless communication function, or a wireless communication device connected to the trip computer.
  • the terminal 11 may also be a roadside device, for example, it may be a street lamp, signal lamp, or other roadside device with a wireless communication function.
  • the base station 12 may be a network side device in a wireless communication system.
  • the wireless communication system may be the 4th generation mobile communication (4G) system, also known as the Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system, Also known as new radio (NR) system or 5G NR system.
  • the wireless communication system may also be the next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network). Or, MTC system.
  • the base station 12 may be an evolved base station (eNB) used in a 4G system.
  • the base station 12 may also be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 12 adopts a centralized distributed architecture it usually includes a centralized unit (CU) and at least two distributed units (DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer protocol stack; distribution
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • the unit is provided with a physical (Physical, PHY) layer protocol stack, and the embodiment of the present disclosure does not limit the specific implementation manner of the base station 12.
  • a wireless connection can be established between the base station 12 and the terminal 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as The wireless air interface is a new air interface; or, the wireless air interface may also be a wireless air interface based on a 5G-based next-generation mobile communication network technology standard.
  • an E2E (End to End) connection may also be established between the terminals 11.
  • V2V vehicle to vehicle
  • V2I vehicle to Infrastructure
  • V2P vehicle to pedestrian
  • the above-mentioned wireless communication system may further include a network management device 13.
  • the network management device 13 may be a core network device in a wireless communication system.
  • the network management device 13 may be a mobility management entity (Mobility Management Entity) in an Evolved Packet Core (EPC) network. MME).
  • the network management device may also be other core network devices, such as Serving GateWay (SGW), Public Data Network GateWay (PGW), Policy and Charging Rules function unit (Policy and Charging Rules). Function, PCRF) or home subscriber network side device (Home Subscriber Server, HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network GateWay
  • Policy and Charging Rules function unit Policy and Charging Rules
  • Function PCRF
  • HSS home subscriber network side device
  • the implementation form of the network management device 13 is not limited in the embodiment of the present disclosure.
  • this embodiment provides a method for transmitting downlink control information DCI, including:
  • S110 Send DCI according to the first mapping relationship, where the first mapping relationship is:
  • the second correspondence relationship includes: a correspondence relationship that is selected from a second mapping relationship between the number of resources allocated to the second type of terminal and the transport block size TBS value and is different from the first correspondence relationship.
  • the DCI transmission method provided in the embodiment of the present application can be applied to a base station.
  • the DCI is sent on a Physical Downlink Control Information (PDCCH).
  • PDCCH Physical Downlink Control Information
  • the DCI includes an MCS domain; the MCS domain at least carries an MCS index, and the MCS index is used to indicate the MCS.
  • the MCS has a mapping relationship with TBS and the number of resources. In this way, by carrying the MCS index in the MCS domain, the indication of the number of MCS, TBS, and resources is realized, and the bit overhead of DCI is small.
  • the first mapping relationship includes: the corresponding relationship between MCS, resource quantity, and TBS value.
  • the MCS index carried in the MCS field can be used, and on the basis of adding the second MCS, the DCI Central Plains Some MCS domains complete the index indication of the second MCS, and at the same time realize the indication of the resource quantity and TBS value to the first type of terminal.
  • the general MCS index is equal to the index of the TBS value.
  • the base station can use the MCS index carried in the MCS field carried in the DCI to complete the MCS index indication on the one hand, and complete the TBS value index on the other hand. According to the corresponding relationship between the TBS value and the number of resources, the instruction of the number of resources is completed.
  • the DCI is sent according to the first mapping relationship.
  • the first mapping relationship is the corresponding relationship between the number of resources allocated to the first type of terminal and the TBS value
  • the second mapping relationship is the corresponding relationship between the number of resources allocated to the second type of terminal and the TBS value.
  • the second type of terminal is different from the first type of terminal, and the second type of terminal is a terminal whose energy storage is greater than that of the first type of terminal.
  • the second type of terminal may be a terminal with a transmission power greater than that of the first type of terminal.
  • the first type of terminal may be: Narrow Band-Internet of Things (NB-IoT) equipment.
  • the second type of terminal may be an ordinary terminal, for example, a Long Term Evolution (LTE) terminal.
  • LTE Long Term Evolution
  • the physical transmission rate corresponding to the first MCS is lower than the physical transmission rate of the second MCS.
  • the second MCS is a higher order modulation and decoding strategy than the first MCS.
  • the first MCS includes but is not limited to: Binary Phase Shift Keying (BPSK).
  • the second MCS includes but is not limited to Quadrature Amplitude Modulation (QAM), for example, the QAM is: 16QAM.
  • BPSK Binary Phase Shift Keying
  • QAM Quadrature Amplitude Modulation
  • the first mapping relationship includes a first correspondence relationship and a second correspondence relationship; the first correspondence relationship is for the first MCS, and the second correspondence relationship is for the second MCS.
  • the TBS value included in the second corresponding relationship corresponding to the second MCS comes from the second mapping relationship.
  • the number of resources includes, but is not limited to, the number of physical resource blocks (Physical Resource Block, PRB) or the number of subframes/slots/symbols.
  • PRB Physical Resource Block
  • the TBS Transport Block Size
  • Each TBS value in the set has a one-to-one correspondence with a specific TBS index and a specific number of resources.
  • the TBS index can be derived from the MCS index in the DCI according to a predefined relationship.
  • the number of resources is indicated by DCI.
  • the second mapping relationship for the second MCS is introduced in the first mapping relationship, and the TBS value used in the second mapping relationship is the second mapping relationship from the second type of terminal.
  • a TBS value adapted to the second MCS is introduced, which has strong compatibility with existing technologies and meets higher-order modulation and coding strategies. High transmission efficiency.
  • Table 1 is a schematic table of the first corresponding relationship of the first type of terminal:
  • Table 2 is a schematic table of the second mapping relationship of the second type of terminal.
  • each element in Table 2 exists independently, and these elements are exemplarily listed in the same table, but it does not mean that all elements in the table must exist at the same time as shown in the table.
  • the value of each element is not dependent on the value of any other element in Table 2. Therefore, those skilled in the art can understand that the value of each element in Table 2 is an independent embodiment.
  • Table 3 is a schematic table of the first corresponding relationship of the first type of terminal:
  • each element in Table 3 exists independently. These elements are exemplarily listed in the same table, but it does not mean that all elements in the table must be based on what is shown in the table. simultaneously exist. The value of each element in Table 3 does not depend on the value of any other element in Table 3. Therefore, those skilled in the art can understand that the value of each element in Table 3 is an independent embodiment.
  • I TBS is the TBS index.
  • N PRB and I SF respectively represent the number of resources.
  • N PRB and I SF have the corresponding relationship as shown in Table 4:
  • each corresponding relationship in Table 4 exists independently. These corresponding relationships are exemplarily listed in the same table, but it does not mean that all corresponding relationships in the table must According to the simultaneous existence shown in the table. Each of the corresponding relationships does not depend on any other corresponding relationships in Table 4. Therefore, those skilled in the art can understand that each corresponding relationship in Table 4 is an independent embodiment.
  • the I TBS from 14 to 26 in Table 2 is the corresponding relationship between the number of resources and the TBS value with the second mapping relationship more than the first mapping relationship.
  • Table 3 shows the first mapping relationship including the first corresponding relationship and the second corresponding relationship.
  • I TBS In Table 3, it is the first corresponding relationship that I TBS is 1 to 13.
  • the I TBS of 14 to 20 in Table 3 is the second corresponding relationship. Comparing Table 2 and Table 3, it can be seen that the second mapping relationship can be from 14 to 26 of I TBS , which is the second mapping relationship than the first mapping relationship.
  • at least the TBS value in the second correspondence can be derived from the TBS value included in the I TBS from 14 to 26.
  • the TBS index and the MCS index carried in the MCS domain have a preset correspondence relationship, for example, the MCS index is the same as the TBS index.
  • the TBS value mapped in the second correspondence is greater than the TBS value mapped in the first correspondence.
  • the second MCS is higher-order than the first MCS, and the number of resources in the second correspondence relationship is the same as that in the first correspondence relationship, and the corresponding TBS value is larger in the second correspondence relationship.
  • the TBS value corresponding to N in the first correspondence relationship and available to the terminal is smaller than the TBS value corresponding to the domain N in the second correspondence relationship and available to the terminal.
  • the TBS values contained in the second correspondence are all greater than 680 bits.
  • the minimum TBS value mapped in the second corresponding relationship is: a minimum TBS value selected from the second mapping relationship and greater than the maximum TBS value mapped in the first corresponding relationship.
  • the maximum TBS value corresponding to the resource quantity in the first correspondence relationship is 680 bits
  • the minimum TBS value corresponding to the resource quantity in the second correspondence relationship is the smallest TBS greater than 680 bits in the second mapping relationship. value. For example, if the minimum value greater than 680 bits is 744 bits, the 744 bits are the minimum TBS value mapped by the resource quantity in the second correspondence.
  • the maximum TBS value mapped in the second mapping relationship is: in the second mapping relationship, it is not greater than the first TBS value mapped in the first mapping relationship The maximum value of a predetermined multiple of.
  • the predetermined multiple of the first TBS value is a specific TBS value, which in the second mapping relationship is greater than the TBS value in the first correspondence relationship, and is less than or equal to multiple TBS values that are predetermined multiples of the first TBS value The maximum value in.
  • the second mapping relationship For example, in the TBS value mapped by the resource quantity, there are S multiple TBS values in the second mapping relationship that are greater than the TBS value in the first corresponding relationship and smaller than the specific TBS value.
  • the second mapping relationship The maximum value is used as the maximum TBS value in the second correspondence.
  • the predetermined multiple may be any predetermined positive integer, for example, 2 or 4, etc.
  • the product between the first TBS value and the predetermined multiple may be less than or equal to the maximum TBS value in the second mapping relationship. In this way, it can be ensured that the original TBS will not be introduced into the second mapping relationship. TBS value that does not exist in wireless communication systems.
  • the first TBS value is the second TBS value.
  • the first TBS value is the second TBS value.
  • the first TBS value is the same resource quantity in the first correspondence
  • the maximum TBS value of the mapping is the same resource quantity in the first correspondence The maximum TBS value of the mapping.
  • the first TBS value may be the maximum TBS value mapped by the resource quantity in the first correspondence.
  • the TBS value mapped in the second correspondence includes a minimum TBS value and a maximum TBS value
  • a resource quantity, the TBS value mapped in the second correspondence relationship further includes all TBS values that are located between the minimum TBS value and the maximum TBS value: all TBS values mapped to the corresponding resource quantity in the second mapping relationship .
  • the first mapping relationship formed can be as shown in Table 3 above.
  • the TBS value mapped in the second correspondence includes a minimum TBS value and a maximum TBS value
  • a resource quantity, and the TBS value mapped in the second correspondence relationship further includes: a part of the TBS that is located between the minimum TBS value and the maximum TBS value and that is mapped to the corresponding resource quantity in the second mapping relationship value.
  • the maximum TBS value and the minimum TBS value of a resource quantity in the second correspondence relationship have been determined, and at this time, between the maximum TBS value and the minimum TBS value, how much the resource quantity is mapped in the second mapping relationship TBS value.
  • the multiple TBS values may be added to the second correspondence relationship, or only part of them may be added to the second correspondence relationship as the TBS value of the resource quantity mapping.
  • the first mapping relationship formed can be shown in Table 5 below.
  • N PRB 1 and 2 in Table 5
  • the TBS value corresponding to I TBS 14 to 17 is introduced into the second correspondence; when N PRB is 3, I TBS is 14 to 16
  • the TBS value is introduced into the second correspondence. For details, see the TBS value with a dotted line in Table 5.
  • each element in Table 5 exists independently. These elements are exemplarily listed in the same table, but it does not mean that all elements in the table must be based on what is shown in the table. simultaneously exist. The value of each element in Table 5 does not depend on the value of any other element in Table 5. Therefore, those skilled in the art can understand that the value of each element in Table 5 is an independent embodiment.
  • the maximum TBS value mapped in the second mapping relationship according to the corresponding resource quantity and the second TBS value determines the TBS value included in the second correspondence relationship corresponding to the resource quantity.
  • the size relationship between the maximum TBS value and the predetermined multiple of the second TBS value is used to determine one or more TBS values included in the second correspondence relationship for the number of resources.
  • the magnitude relationship between the maximum TBS value mapped by the second mapping relationship and the predetermined multiple of the second TBS value of the corresponding resource quantity it is determined that the corresponding resource quantity is in the second
  • the TBS value contained in the corresponding relationship includes:
  • the third TBS value included in the second mapping relationship is used as the second correspondence relationship
  • the third TBS value is: the maximum TBS value in the second mapping relationship that is less than the predetermined multiple of the second TBS value.
  • the maximum TBS value in the second correspondence is smaller than the third TBS value.
  • the third TBS value is added to the second correspondence.
  • the maximum value of less than 1360 is 1352. If the second correspondence relationship is obtained in this way to form the first mapping relationship, it can be shown in Table 6 below.
  • each element in Table 6 exists independently. These elements are exemplarily listed in the same table, but it does not mean that all elements in the table must be based on what is shown in the table. simultaneously exist. The value of each element in Table 6 does not depend on the value of any other element in Table 6. Therefore, those skilled in the art can understand that the value of each element in Table 6 is an independent embodiment.
  • the TBS values with boxes are the TBS values newly introduced into the first mapping relationship to form the second corresponding relationship.
  • the TBS value of 1352 in bold is the third TBS value and is introduced into the second correspondence.
  • the magnitude relationship between the maximum TBS value mapped by the second mapping relationship and the predetermined multiple of the second TBS value of the corresponding resource quantity it is determined that the corresponding resource quantity is in the first
  • the TBS value contained in the two correspondence relationship also includes:
  • the maximum TBS value mapped by the second mapping relationship for a resource quantity is less than a predetermined multiple of the second TBS value
  • the corresponding resource quantity will be introduced from the second mapping relationship in the second correspondence relationship
  • the maximum TBS value of is modified to a third TBS value, where the third TBS value is: the maximum TBS value in the second mapping relationship that is less than the predetermined multiple of the second TBS value.
  • the maximum value of less than 1360 is 1352. If this method is adopted, the second corresponding relationship composition is obtained.
  • each element in Table 7 exists independently. These elements are exemplarily listed in the same table, but it does not mean that all elements in the table must be based on what is shown in the table. simultaneously exist. The value of each element in Table 7 does not depend on the value of any other element in Table 7. Therefore, those skilled in the art can understand that the value of each element in Table 7 is an independent embodiment.
  • the TBS value with a box is the TBS value newly introduced into the first mapping relationship to form the second corresponding relationship.
  • 1288 is the maximum TBS value less than 1360 that has been modified to 1532.
  • the magnitude relationship between the maximum TBS value mapped by the second mapping relationship and the predetermined multiple of the second TBS value of the corresponding resource quantity it is determined that the corresponding resource quantity is in the second
  • the TBS value contained in the corresponding relationship includes:
  • the third TBS value included in the second mapping relationship is As the TBS value mapped in the second correspondence;
  • the second mapping relationship When the number of resources is outside the preset range, when the maximum TBS value of a corresponding resource number mapped in the second mapping relationship is less than a predetermined multiple of the second TBS value, the second mapping relationship will be changed from all the resources in the second mapping relationship.
  • the maximum TBS value introduced in the second mapping relationship corresponding to the number of resources is modified to the third TBS value;
  • the third TBS value is: the maximum TBS value in the second mapping relationship that is less than the predetermined multiple of the second TBS value.
  • the remaining number of resources belongs to the second range.
  • the third TBS value is added above the previously determined maximum TBS value; if the resource quantity is outside the preset range, the previously determined maximum TBS value is directly modified The value is the third TBS value.
  • the resource quantity in the first mapping relationship, is different in the number of TBS values that can be supported and used by the first-type terminal included in the second mapping relationship.
  • Table 8 there is one resource in the first correspondence and the second correspondence.
  • the quantity corresponds to 20 TBS values.
  • the base station will not schedule TBS values that are not supported by the introduced terminal.
  • the terminal only supports receiving data packets with a TBS value of 1352 at most, so the base station will not use a TBS value greater than 1352 for data packet transmission.
  • the TBS value that the base station will not use is the TBS value that does not meet the scheduling use condition.
  • each element in Table 7 exists independently. These elements are exemplarily listed in the same table, but it does not mean that all elements in the table must be based on what is shown in the table. simultaneously exist. The value of each element in Table 7 does not depend on the value of any other element in Table 7. Therefore, those skilled in the art can understand that the value of each element in Table 7 is an independent embodiment.
  • the TBS value of a resource quantity mapped in the second mapping relationship meets the scheduling use condition; wherein, the TBS value that meets the scheduling use condition is in the data The value of TBS allowed during transmission.
  • each element in Table 9 exists independently. These elements are exemplarily listed in the same table, but it does not mean that all elements in the table must be based on what is shown in the table. simultaneously exist. The value of each element in Table 9 does not depend on the value of any other element in Table 9. Therefore, those skilled in the art can understand that the value of each element in Table 9 is an independent embodiment.
  • I _SF in Table 8 and Table 9 represents the number of resources.
  • this embodiment provides a DCI transmission method, where the method includes:
  • S210 Receive DCI; where the DCI is sent according to a first mapping relationship, and the first mapping relationship is: the corresponding relationship between the number of resources allocated to the first type of terminal and the TBS value of the transmission block size;
  • the first mapping relationship includes: a first corresponding relationship for the first modulation and coding strategy MCS, and a second corresponding relationship for the second MCS;
  • the second correspondence relationship includes: a correspondence relationship that is selected from a second mapping relationship between the number of resources allocated to the second type of terminal and the transport block size TBS value and is different from the first correspondence relationship.
  • the first type of terminal will receive the DCI.
  • the DCI base station transmits according to the first mapping relationship. It can be determined according to the MCS field in the DCI that the current DCI indicates the first mapping relationship in the first mapping relationship. Or the second correspondence, and further determine which correspondence between the first correspondence and the second correspondence.
  • the TBS value mapped in the second correspondence is greater than the TBS value mapped in the first correspondence.
  • the number of resources includes, but is not limited to, the number of physical resource blocks (Physical Resource Block, PRB) or the number of subframes/slots/symbols.
  • PRB Physical Resource Block
  • the TBS Transport Block Size
  • Each TBS value in the set has a one-to-one correspondence with a specific TBS index and a specific resource quantity.
  • the TBS index can be derived from the MCS index in the DCI according to a predefined relationship.
  • the number of resources is indicated by DCI.
  • the minimum TBS value mapped in the second mapping relationship is: selected from the second mapping relationship, and greater than the value mapped in the first mapping relationship The minimum TBS value of the maximum TBS value.
  • the maximum TBS value mapped in the second mapping relationship is: in the second mapping relationship, it is not greater than the first TBS value mapped in the first mapping relationship The maximum value of a predetermined multiple of.
  • the first TBS value is the second TBS value.
  • the first TBS value is in the same resource quantity.
  • the maximum TBS value mapped in the first correspondence when the same resource quantity, when the mapped TBS value in the first correspondence does not include the second TBS value, the first TBS value is in the same resource quantity. The maximum TBS value mapped in the first correspondence.
  • the TBS value mapped in the second correspondence includes a minimum TBS value and a maximum TBS value
  • a resource quantity, the TBS value mapped in the second correspondence relationship further includes all TBS values that are located between the minimum TBS value and the maximum TBS value: all TBS values mapped to the corresponding resource quantity in the second mapping relationship ;
  • a resource quantity, and the TBS value mapped in the second correspondence relationship further includes: a part of the TBS that is located between the minimum TBS value and the maximum TBS value and that is mapped to the corresponding resource quantity in the second mapping relationship value.
  • the maximum TBS value mapped in the second mapping relationship according to the corresponding resource quantity and the second TBS value determines the TBS value included in the second correspondence relationship corresponding to the resource quantity.
  • the magnitude relationship between the maximum TBS value mapped by the second mapping relationship and the predetermined multiple of the second TBS value of the corresponding resource quantity it is determined that the corresponding resource quantity is in the second
  • the TBS value contained in the corresponding relationship includes:
  • the third TBS value included in the second mapping relationship is used as the second correspondence relationship
  • the third TBS value is: the maximum TBS value in the second mapping relationship that is less than the predetermined multiple of the second TBS value.
  • the magnitude relationship between the maximum TBS value mapped by the second mapping relationship and the predetermined multiple of the second TBS value of the corresponding resource quantity it is determined that the corresponding resource quantity is in the second
  • the TBS value contained in the corresponding relationship also includes:
  • the maximum TBS value mapped by the second mapping relationship for a resource quantity is less than a predetermined multiple of the second TBS value
  • the corresponding resource quantity will be introduced from the second mapping relationship in the second correspondence relationship
  • the maximum TBS value of is modified to a third TBS value, where the third TBS value is: the maximum TBS value in the second mapping relationship that is less than the predetermined multiple of the second TBS value.
  • the magnitude relationship between the maximum TBS value mapped by the second mapping relationship and the predetermined multiple of the second TBS value of the corresponding resource quantity it is determined that the corresponding resource quantity is in the second
  • the TBS value contained in the corresponding relationship includes:
  • the third TBS value included in the second mapping relationship is As the TBS value mapped in the second correspondence;
  • the second mapping relationship When the number of resources is outside the preset range, when the maximum TBS value of a corresponding resource number mapped in the second mapping relationship is less than a predetermined multiple of the second TBS value, the second mapping relationship will be changed from all the resources in the second mapping relationship.
  • the maximum TBS value introduced in the second mapping relationship corresponding to the number of resources is modified to the third TBS value;
  • the third TBS value is: the maximum TBS value in the second mapping relationship that is less than the predetermined multiple of the second TBS value.
  • one or more TBS values mapped by at least part of the resource quantity in the second mapping relationship do not meet the scheduling use condition, wherein the one or more TBS values that meet the scheduling use condition
  • the TBS value is the TBS value allowed to be used during data transmission.
  • the TBS values mapped by one resource quantity in the second mapping relationship all satisfy the scheduling use condition
  • the TBS value that satisfies the scheduling use condition is a TBS value that is allowed to be used in the data transmission process.
  • this embodiment provides an apparatus for transmitting downlink control information DCI, which includes:
  • the sending module 41 is configured to send DCI according to a first mapping relationship; wherein, the first mapping relationship is: the corresponding relationship between the number of resources configured to the first-type terminal and the transmission block size TBS value; the first The mapping relationship includes: a first corresponding relationship for the first modulation and coding strategy MCS, and a second corresponding relationship for the second MCS;
  • the second correspondence relationship includes: a correspondence relationship that is selected from a second mapping relationship between the number of resources allocated to the second type of terminal and the transport block size TBS value and is different from the first correspondence relationship.
  • the sending module 41 may be a program module. After the program module is executed by the processor, the DCI can be sent according to the first mapping relationship.
  • the sending module 41 may be a combination of software and hardware; the combination of software and hardware, the combination of software and hardware, may include various programmable arrays; the programmable array includes, but is not limited to, complex Programmable array or field programmable array.
  • the sending module 41 may further include a pure hardware module.
  • the pure hardware module may include: an application specific integrated circuit.
  • the TBS value mapped in the second correspondence is greater than the TBS value mapped in the first correspondence.
  • the minimum TBS value mapped in the second mapping relationship is: selected from the second mapping relationship, and greater than the value mapped in the first mapping relationship The minimum TBS value of the maximum TBS value.
  • the maximum TBS value mapped in the second mapping relationship is: in the second mapping relationship, it is not greater than the first TBS value mapped in the first mapping relationship The maximum value of a predetermined multiple of.
  • the first TBS value is the second TBS value.
  • the first TBS value is in the same resource quantity.
  • the maximum TBS value mapped in the first correspondence when the same resource quantity, when the mapped TBS value in the first correspondence does not include the second TBS value, the first TBS value is in the same resource quantity. The maximum TBS value mapped in the first correspondence.
  • the TBS value mapped in the second correspondence includes a minimum TBS value and a maximum TBS value
  • a resource quantity, the TBS value mapped in the second correspondence relationship further includes all TBS values that are located between the minimum TBS value and the maximum TBS value: all TBS values mapped to the corresponding resource quantity in the second mapping relationship ;
  • a resource quantity, and the TBS value mapped in the second correspondence relationship further includes: a part of the TBS that is located between the minimum TBS value and the maximum TBS value and that is mapped to the corresponding resource quantity in the second mapping relationship value.
  • the maximum TBS value mapped in the second mapping relationship according to the corresponding resource quantity and the second TBS value determines the TBS value included in the second correspondence relationship corresponding to the resource quantity.
  • the magnitude relationship between the maximum TBS value mapped by the second mapping relationship and the predetermined multiple of the second TBS value of the corresponding resource quantity it is determined that the corresponding resource quantity is in the second
  • the TBS value contained in the corresponding relationship includes:
  • the third TBS value included in the second mapping relationship is used as the second correspondence relationship
  • the third TBS value is: the maximum TBS value in the second mapping relationship that is less than the predetermined multiple of the second TBS value.
  • the magnitude relationship between the maximum TBS value mapped by the second mapping relationship and the predetermined multiple of the second TBS value of the corresponding resource quantity it is determined that the corresponding resource quantity is in the second
  • the TBS value contained in the corresponding relationship also includes:
  • the maximum TBS value mapped by the second mapping relationship for a resource quantity is less than a predetermined multiple of the second TBS value
  • the corresponding resource quantity will be introduced from the second mapping relationship in the second correspondence relationship
  • the maximum TBS value of is modified to a third TBS value, where the third TBS value is: the maximum TBS value in the second mapping relationship that is less than the predetermined multiple of the second TBS value.
  • the magnitude relationship between the maximum TBS value mapped by the second mapping relationship and the predetermined multiple of the second TBS value of the corresponding resource quantity it is determined that the corresponding resource quantity is in the second
  • the TBS value contained in the corresponding relationship includes:
  • the third TBS value included in the second mapping relationship is As the TBS value mapped in the second correspondence;
  • the second mapping relationship When the number of resources is outside the preset range, when the maximum TBS value of a corresponding resource number mapped in the second mapping relationship is less than a predetermined multiple of the second TBS value, the second mapping relationship will be changed from all the resources in the second mapping relationship.
  • the maximum TBS value introduced in the second mapping relationship corresponding to the number of resources is modified to the third TBS value;
  • the third TBS value is: the maximum TBS value in the second mapping relationship that is less than the predetermined multiple of the second TBS value.
  • one or more TBS values mapped by at least part of the resource quantity in the second mapping relationship do not meet the scheduling use condition, wherein the one or more TBS values that meet the scheduling use condition
  • the TBS value is the TBS value allowed to be used during data transmission.
  • the TBS values mapped by one resource quantity in the second mapping relationship all satisfy the scheduling use condition
  • the TBS value that satisfies the scheduling use condition is a TBS value that is allowed to be used in the data transmission process.
  • this embodiment provides a DCI transmission device, where the device includes:
  • the receiving module 51 is configured to receive DCI; wherein, the DCI is sent according to a first mapping relationship, and the first mapping relationship is: between the number of resources configured for the first type of terminal and the TBS value of the transmission block size Corresponding relationship; the first mapping relationship includes: a first corresponding relationship for the first modulation and coding strategy MCS, and a second corresponding relationship for the second MCS;
  • the second correspondence relationship includes: a correspondence relationship selected from a second mapping relationship between the number of resources allocated to the second type of terminal and the transport block size TBS value and is different from the first correspondence relationship.
  • the receiving module 51 may be a program module, which can receive the DCI generated according to the first mapping relationship after being executed by the processor.
  • the receiving module 51 may be a combination of software and hardware; the combination of software and hardware modules, the combination of software and hardware modules may include various programmable arrays; the programmable arrays include, but are not limited to, complex Programmable array or field programmable array.
  • the receiving module 51 may further include a pure hardware module.
  • the pure hardware module may include: an application specific integrated circuit.
  • the TBS value mapped in the second correspondence is greater than the TBS value mapped in the first correspondence.
  • the minimum TBS value mapped in the second mapping relationship is: selected from the second mapping relationship, and greater than the value mapped in the first mapping relationship The minimum TBS value of the maximum TBS value.
  • the maximum TBS value mapped in the second mapping relationship is: in the second mapping relationship, it is not greater than the first TBS value mapped in the first mapping relationship The maximum value of a predetermined multiple of.
  • the first TBS value is the second TBS value.
  • the first TBS value is in the same resource quantity.
  • the maximum TBS value mapped in the first correspondence when the same resource quantity, when the mapped TBS value in the first correspondence does not include the second TBS value, the first TBS value is in the same resource quantity. The maximum TBS value mapped in the first correspondence.
  • the TBS value mapped in the second correspondence includes a minimum TBS value and a maximum TBS value
  • a resource quantity, the TBS value mapped in the second correspondence relationship further includes all TBS values that are located between the minimum TBS value and the maximum TBS value: all TBS values mapped to the corresponding resource quantity in the second mapping relationship ;
  • a resource quantity, and the TBS value mapped in the second correspondence relationship further includes: a part of the TBS that is located between the minimum TBS value and the maximum TBS value and that is mapped to the corresponding resource quantity in the second mapping relationship value.
  • the maximum TBS value mapped in the second mapping relationship according to the corresponding resource quantity and the second TBS value determines the TBS value included in the second correspondence relationship corresponding to the resource quantity.
  • the magnitude relationship between the maximum TBS value mapped by the second mapping relationship and the predetermined multiple of the second TBS value of the corresponding resource quantity it is determined that the corresponding resource quantity is in the second
  • the TBS value contained in the corresponding relationship includes:
  • the third TBS value included in the second mapping relationship is used as the second correspondence relationship
  • the third TBS value is: the maximum TBS value in the second mapping relationship that is less than the predetermined multiple of the second TBS value.
  • the magnitude relationship between the maximum TBS value mapped by the second mapping relationship and the predetermined multiple of the second TBS value of the corresponding resource quantity it is determined that the corresponding resource quantity is in the second
  • the TBS value contained in the corresponding relationship also includes:
  • the maximum TBS value mapped by the second mapping relationship for a resource quantity is less than a predetermined multiple of the second TBS value
  • the corresponding resource quantity will be introduced from the second mapping relationship in the second correspondence relationship
  • the maximum TBS value of is modified to a third TBS value, where the third TBS value is: the maximum TBS value in the second mapping relationship that is less than the predetermined multiple of the second TBS value.
  • the magnitude relationship between the maximum TBS value mapped by the second mapping relationship and the predetermined multiple of the second TBS value of the corresponding resource quantity it is determined that the corresponding resource quantity is in the second
  • the TBS value contained in the corresponding relationship includes:
  • the third TBS value included in the second mapping relationship is As the TBS value mapped in the second correspondence;
  • the second mapping relationship When the number of resources is outside the preset range, when the maximum TBS value of a corresponding resource number mapped in the second mapping relationship is less than a predetermined multiple of the second TBS value, the second mapping relationship will be changed from all the resources in the second mapping relationship.
  • the maximum TBS value introduced in the second mapping relationship corresponding to the number of resources is modified to the third TBS value;
  • the third TBS value is: the maximum TBS value in the second mapping relationship that is less than the predetermined multiple of the second TBS value.
  • one or more TBS values mapped by at least part of the resource quantity in the second mapping relationship do not meet the scheduling use condition, wherein the one or more TBS values that meet the scheduling use condition
  • the TBS value is the TBS value allowed to be used during data transmission.
  • the TBS values mapped by one resource quantity in the second mapping relationship all satisfy the scheduling use condition
  • the TBS value that satisfies the scheduling use condition is a TBS value that is allowed to be used in the data transmission process.
  • This embodiment is aimed at the NB-IoT device.
  • the TBS table is designed to be expanded so that it can accommodate the new MCS without increasing the overhead of DCI.
  • the newly introduced TBS value is the existing value in the current LTE TBS table.
  • the newly introduced minimum TBS value for supporting 16QAM is greater than the minimum value of the maximum TBS under this resource allocation in the previous standard version (release).
  • the specific method is that if in the TBS table for NB-IoT (the first mapping relationship in the form of a table), there is a TBS value greater than 680 bits under a certain resource allocation, then the minimum value greater than 680 is the minimum that supports 16QAM value. If there is no TBS larger than 680 bits, it is determined according to the LTE TBS table. That is, under the LTE TBS table, the minimum value under the equivalent resource amount that is greater than the maximum TBS under this resource allocation in the NB-IoT table is taken, for example, see Table 10.
  • each element in Table 10 exists independently, and these elements are exemplarily listed in the same table, but it does not mean that all elements in the table must exist at the same time as shown in the table.
  • the value of each element in Table 10 does not depend on the value of any other element in Table 10. Therefore, those skilled in the art can understand that the value of each element in the table 10 is an independent embodiment.
  • TBS 680 bits under a certain resource allocation
  • the newly introduced maximum value of TBS does not exceed the maximum value of 680 times. And it is the value supported by the current TBS.
  • the newly introduced maximum TBS value is the maximum existing TBS value that is greater than the current maximum TBS value and does not exceed twice the maximum TBS value under a certain resource allocation.
  • each element in Table 11 exists independently, and these elements are exemplarily listed in the same table, but it does not mean that all elements in the table must exist at the same time as shown in the table.
  • the value of each element in Table 11 does not depend on the value of any other element in Table 11. Therefore, those skilled in the art can understand that the value of each element in Table 11 is an independent embodiment.
  • the maximum TBS value that supports 16QAM can be changed to 1352, for example, As shown in Table 12 below.
  • each element in Table 12 exists independently, and these elements are exemplarily listed in the same table, but it does not mean that all elements in the table must exist at the same time as shown in the table.
  • the value of each element in Table 12 does not depend on the value of any other element in Table 12. Therefore, those skilled in the art can understand that the value of each element in the table 12 is an independent embodiment.
  • Method 1 Direct expansion, that is, direct expansion based on the LTE TBS table. According to the determined resource allocation, all TBSs that are greater than or equal to the minimum supported TBS and less than or equal to the maximum supported TBS will be introduced to the new TB.
  • the TBS marked in red in the table below is the newly introduced TBS that supports 16QAM.
  • the maximum TBS value that is not more than twice the 680 bits is 1352, so the value in the TBS table can also be further modified. There are two ways:
  • Method 2 The imported TBS table does not contain values that do not meet the requirements, as shown in Table 8.
  • This embodiment also provides a communication device, including:
  • the processor is respectively connected to the antenna and the memory, and is configured to control the antenna to send and receive wireless signals by executing an executable program stored on the memory, and can execute the DCI transmission method provided by any of the foregoing embodiments step.
  • the communication device provided in this embodiment may be the aforementioned terminal or base station.
  • the terminal can be a variety of human-borne terminals or vehicle-mounted terminals.
  • the base station may be various types of base stations, for example, 4G base stations or 5G base stations.
  • the antenna may be various types of antennas, for example, a mobile antenna such as a 3G antenna, a 4G antenna, or a 5G antenna; the antenna may also include a WiFi antenna or a wireless charging antenna.
  • a mobile antenna such as a 3G antenna, a 4G antenna, or a 5G antenna
  • the antenna may also include a WiFi antenna or a wireless charging antenna.
  • the memory may include various types of storage media.
  • the storage media is a non-transitory computer storage medium that can continue to memorize and store the information thereon after the communication device is powered off.
  • the processor may be connected to the antenna and the memory through a bus or the like, and is used to read the executable program stored on the memory, for example, through the DCI transmission method shown in FIG. 2 and/or FIG. 3.
  • the implementation of this application also provides a non-transitory computer-readable storage medium that stores an executable program, where the executable program is executed by a processor to implement any of the foregoing embodiments.
  • the steps of the DCI transmission method are, for example, at least one of the methods shown in FIG. 2 and/or FIG. 3.
  • the terminal 800 may specifically be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc. .
  • the terminal 800 may include one or more of the following components: a processing component 802, a memory 804, a power component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, a sensor component 814, And the communication component 816.
  • the processing component 802 generally controls the overall operations of the terminal 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the above-mentioned method.
  • the processing component 802 may include one or more modules to facilitate the interaction between the processing component 802 and other components.
  • the processing component 802 may include a multimedia module to facilitate the interaction between the multimedia component 808 and the processing component 802.
  • the memory 804 is configured to store various types of data to support operations in the device 800. Examples of these data include instructions for any application or method operated on the terminal 800, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable and Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable and Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic Disk Magnetic Disk or Optical Disk.
  • the power component 806 provides power to various components of the terminal 800.
  • the power component 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the terminal 800.
  • the multimedia component 808 includes a screen that provides an output interface between the terminal 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure related to the touch or slide operation.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC), and when the terminal 800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive external audio signals.
  • the received audio signal may be further stored in the memory 804 or transmitted via the communication component 816.
  • the audio component 810 further includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module.
  • the above-mentioned peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 814 includes one or more sensors for providing the terminal 800 with various status assessments.
  • the sensor component 814 can detect the on/off status of the device 800 and the relative positioning of components, such as the display and keypad of the terminal 800, and the sensor component 814 can also detect the position change of the terminal 800 or a component of the terminal 800 , The presence or absence of contact between the user and the terminal 800, the orientation or acceleration/deceleration of the terminal 800, and the temperature change of the terminal 800.
  • the sensor component 814 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the terminal 800 and other devices.
  • the terminal 800 can access a wireless network based on a communication standard, such as Wi-Fi, 2G, or 3G, or a combination thereof.
  • the communication component 816 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the terminal 800 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • non-transitory computer-readable storage medium including instructions, such as the memory 804 including instructions, which can be executed by the processor 820 of the terminal 800 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • the terminal may be used to implement the aforementioned DCI transmission method, for example, the DCI transmission method described in FIG. 2 and/or FIG. 6.
  • Fig. 7 is a block diagram showing a base station 900 according to an exemplary embodiment.
  • the base station 900 may be provided as a network side device.
  • the base station 900 includes a processing component 922, which further includes one or more processors, and a memory resource represented by a memory 932, for storing instructions that can be executed by the processing component 922, such as application programs.
  • the application program stored in the memory 932 may include one or more modules each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to execute the DCI transmission method provided in any of the foregoing embodiments of the method, for example, the method shown in FIG. 2 and/or FIG. 6.
  • the base station 900 may also include a power supply component 926 configured to perform power management of the base station 900, a wired or wireless network interface 950 configured to connect the base station 900 to the network, and an input output (I/O) interface 958.
  • the base station 900 can operate based on an operating system stored in the memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • the wireless network interface 950 includes but is not limited to the antenna of the aforementioned communication device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开一种下行控制信息传输方法及装置、通信设备及存储介质。所述下行控制信息传输方法,包括:按照第一映射关系,发送DCI;其中,所述第一映射关系为:配置给第一类终端的资源数量和传输块大小TBS值之间的对应关系;所述第一映射关系包含:针对第一调制与编码策略MCS的第一对应关系,及针对第二MCS的第二对应关系;其中,所述第二对应关系包含:从配置给第二类终端的资源数量与传输块大小TBS值之间的第二映射关系中选择的,且不同于所述第一对应关系的对应关系。

Description

下行控制信息传输方法及装置、通信设备及存储介质 技术领域
本申请实施例涉及无线通信领域但不限于无线通信领域,尤其涉及一种下行控制信息(Downlink Control Information,DCI)传输方法及装置、通信设备及存储介质。
背景技术
近年来,物联网蓬勃发展,为人类的生活和工作带来了诸多便利。其中机器类通信技术(Machine Type Communication,MTC)和窄带物联网技术(Narrow Band Internet of Things,NB-IoT)是蜂窝物联网技术的典型代表。目前这些技术已经广泛用于智慧城市,例如抄表;智慧农业,例如温度湿度等信息的采集;智慧交通例如共享单车等诸多领域。
由于MTC,NB-IoT大多数部署在地下室,并且由于设备的硬件限制导致其覆盖能力不如传统的LTE用户。因此,在MTC和NB-IoT中采用了重复传输以累积功率,进而达到覆盖增强的效果。简单来说,重复传输即在多个时间单位为传输相同的传输内容。这个时间单位可以是一个子帧,也可以是多个子帧。
另外,由于MTC大多部署在不容易充电或者更换电池的场景,比如野外,或者地下室中,因此对MTC,NB-IoT的功率节省是MTC,NB-IoT的一大特性。
在NB-IoT中(Modulation coding strategy,MCS)及传输块大小(Transfer block size,TBS),对于NB-IoT的下行,在DCI中有4比特的MCS域用于指示下行MCS的索引(I_MCS),利用MCS索引与TBS索引之间的关系可确定TBS的索引(I_TBS)。在下行中I_MCS=I_TBS.进一步, 利用TBS索引和所分配的资源量可进一步确定所传输的TBS的大小。但是随着技术发展,各种类型的终端设备都在发展,例如,NB-IoT设备,针对其的资源数量和TBS值之间如何设计,如何实现满足通信技术进一步发展的需求,例如满足通信的容量扩增或功耗降低的需求,同时与现有技术能够兼容,是现有技术亟待解决的问题。
发明内容
本申请实施例提供一种DCI传输方法及装置、通信设备及存储介质。
本申请实施例第一方面提供一种下行控制信息DCI传输方法,包括:
按照第一映射关系,发送DCI;其中,所述第一映射关系为:配置给第一类终端的资源数量和传输块大小TBS值之间的对应关系;所述第一映射关系包含:针对第一调制与编码策略MCS的第一对应关系,及针对第二MCS的第二对应关系;
其中,所述第二对应关系包含:从配置给第二类终端的资源数量与传输块大小TBS值之间的第二映射关系中选择的,且不同于所述第一对应关系的对应关系。
本申请实施例第二方面提供一种DCI传输方法,其中,所述方法包括:
接收DCI;其中,所述DCI是按照第一映射关系发送的,所述第一映射关系为:配置给第一类终端的资源数量和传输块大小TBS值之间的对应关系;所述第一映射关系包含:针对第一调制与编码策略MCS的第一对应关系,及针对第二MCS的第二对应关系;
其中,所述第二对应关系包含:从配置给第二类终端的资源数量与传输块大小TBS值之间的第二映射关系中选择的,且不同于所述第一对应关系的对应关系。
本申请实施例第三方面提供一种下行控制信息DCI传输装置,其中, 包括:
发送模块,用于按照第一映射关系,发送DCI;其中,所述第一映射关系为:配置给第一类终端的资源数量和传输块大小TBS值之间的对应关系;所述第一映射关系包含:针对第一调制与编码策略MCS的第一对应关系,及针对第二MCS的第二对应关系;
其中,所述第二对应关系包含:从配置给第二类终端的资源数量与传输块大小TBS值之间的第二映射关系中选择的,且不同于所述第一对应关系的对应关系。
本申请实施例第三方面提供一种DCI传输装置,其中,所述装置包括:
接收模块,被配置为接收DCI;其中,所述DCI是按照第一映射关系发送的,所述第一映射关系为:配置给第一类终端的资源数量和传输块大小TBS值之间的对应关系;所述第一映射关系包含:针对第一调制与编码策略MCS的第一对应关系,及针对第二MCS的第二对应关系;
其中,所述第二对应关系包含:从配置给第二类终端的资源数量与传输块大小TBS值之间的第二映射关系中选择的,且不同于所述第一对应关系的对应关系。
本申请实施例第五方面提供一种通信设备,其中,包括:
天线;
存储器;
处理器,分别与所述天线及存储器连接,配置为通过执行存储在所述存储器上的可执行程序,控制所述天线收发无线信号,并能够执行前述任意技术方面提供的DCI传输方法。
本申请实施例第六方面提供一种非临时性计算机可读存储介质,所述非临时性计算机可读存储介质存储有可执行程序,其中,所述可执行程序 被处理器执行时实现执行前述任意技术方面提供的DCI传输方法。
本申请实施例中针对第一类型终端在引入的第二MCS时,会从针对第二类终端的第一映射关系中的TBS值挑选来构建针对第一类型终端的第二对应关系,以与第二对应关系构建针对第一类型终端的第一映射关系。如此,构成的第一映射关系,一方面满足了第一类型终端多样化持续发展过程中引入编码效率高的第二MCS的通信需求,另一方面与现有的无线通信系统兼容性高,例如,不增加现有的DCI的信令开销。
附图说明
图1是本申请实施例提供的一种无线通信系统的结构示意图;
图2是本申请实施例提供的一种DCI传输方法的流程示意图;
图3是本申请实施例提供的一种DCI传输方法的流程示意图;
图4是本申请实施例提供的一种DCI传输装置的结构示意图;
图5是本申请实施例提供的一种DCI传输装置的结构示意图。
图6是本申请实施例提供的一种第一类终端的结构示意图;
图7是本申请实施例提供的一种基站的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清 楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个终端11以及若干个基站12。
其中,终端11可以是指向用户提供语音和/或数据连通性的设备。终端11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端11可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,UE)。或者,终端11也可以是无人飞行器的设备。或者,终端11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,终端11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。其中,该无线通信系统 可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,基站12可以是4G系统中采用的演进型基站(eNB)。或者,基站12也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和终端11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13 可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户网络侧设备(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
如图2所示,本实施例提供一种下行控制信息DCI传输方法,包括:
S110:按照第一映射关系,发送DCI;其中,所述第一映射关系为:
配置给第一类终端的资源数量和传输块大小TBS值之间的对应关系;所述第一映射关系包含:针对第一调制与编码策略MCS的第一对应关系,及针对第二MCS的第二对应关系;
其中,所述第二对应关系包含:从配置给第二类终端的资源数量与传输块大小TBS值之间的第二映射关系中选择的,且不同于所述第一对应关系的对应关系。
本申请实施例提供的DCI传输方法,可应用于基站中。
例如,在物理下行控制信道(Physical Downlink Control Information,PDCCH)上发送所述DCI。
所述DCI包含MCS域;所述MCS域至少携带有MCS索引,而MCS索引用于指示MCS。而MCS与TBS及资源数量具有映射关系。如此,通过MCS域中MCS索引的携带,实现了MCS、TBS及资源数量的指示,具有DCI的比特开销小的特点。
在本申请实施例中,第一映射关系中包括:MCS、资源数量及TBS值的对应关系,如此,可以通过MCS域中携带的MCS索引,在增加了 第二MCS的基础上,通过DCI中原有的MCS域完成对第二MCS的索引指示,且同时实现向第一类终端指示资源数量及TBS值。
例如,在下行传输中,一般MCS索引等于TBS值的索引,如此,基站可以通过DCI中携带的MCS域携带的MCS索引,一方面完成MCS索引的指示,另一方面完成TBS值的索引,进一步根据TBS值与资源数量的对应关系,完成资源数量的指示。
在本申请实施例中,所述DCI是根据第一映射关系发送的。第一映射关系为配置给第一类终端的资源数量与TBS值之间的对应关系,第二映射关系为配置给第二类终端的资源数量与TBS值之间的对应关系。
所述第二类终端和所述第一类终端不同,所述第二类终端为储能大于所述第一类终端的存储的终端。再例如,所述第二类终端可为发射功率大于所述第一类终端的发射功率的终端。
在一些实施例中,所述第一类终端可为:窄带-物联网(Narrow Band-Internet of Things,NB-IoT)设备。所述第二类终端可为普通终端,例如,长期演进(Long Term Evolution,LTE)终端。
所述第一MCS对应的物理传输速率低于所述第二MCS的物理传输速率。例如,第二MCS是比第一MCS更高阶的调制与解码策略。
例如,所述第一MCS包括但不限于:二进制相移键控(Binary Phase Shift Keying,BPSK)。例如,所述第二MCS包括但不限于正交振幅调整(Quadrature Amplitude Modulation,QAM),例如,所述QAM为:16QAM。
在本申请实施例中,所述第一映射关系包括第一对应关系和第二对应关系;所述第一对应关系针对第一MCS,而第二对应关系针对第二MCS。
此时,所述第二MCS对应的第二对应关系中所包含TBS值来自第二映射关系。
在本申请实施例中所述资源数量包括但不限于物理资源块(Physical Resource Block,PRB)的个数或子帧/时隙/符号个数。
终端可以使用的TBS(Transport Block Size,传输块大小)是协议规定的一组离散的正整数集合。集合内每个TBS值与一个特定的TBS索引与特定的资源数量一一对应。TBS索引可由DCI中的MCS索引根据预定义的关系推导而出。资源数量由DCI进行指示。
在本申请实施例中,在第一映射关系中引入了针对于第二MCS的第二对应关系,且第二对应关系中使用到的TBS值为来自第二类终端的第二映射关系。如此在无线通信系统中,不增加新的TBS值的情况下,为第二MCS引入了与其相适配的TBS值,具有与现有技术兼容性强,且满足更高阶的调制与编码策略下的高传输效率。
表1是第一类终端的第一对应关系的一个示意表:
Figure PCTCN2020072286-appb-000001
表1
在本公开实施例中,表1中的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。例如:I SF=7,I TBS=13时,则TBS值为2536。 但该元素的值,是不依赖于表1中任何其他元素值。因此本领域内技术人员可以理解,该表1中的每一个元素的取值都是一个独立的实施例。
表2是第二类终端的第二映射关系的示意表。
Figure PCTCN2020072286-appb-000002
表2
与表1类似,表2中的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。其中每一个元素的值,是不依赖于表2中任何其他元素值。因此本领域内技术人员可以理解,该表2中的每一个元素的取值都是一个独立的实施例。
表3是第一类终端的第一对应关系的一个示意表:
Figure PCTCN2020072286-appb-000003
表3
与表1和表2类似,表3中的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。表3中每一个元素的值,是不依赖于表3中任何其他元素值的。因此本领域内技术人员可以理解,该表3中的每一个元素的取值都是一个独立的实施例。
在表1和表2中I TBS为TBS索引。N PRB和I SF分别表示资源数量。N PRB和I SF具有如表4所示的的对应关系:
I SF N PRB
0 1
1 2
2 3
3 4
4 5
5 6
6 8
7 10
表4
与表1、表2、表3类似,表4中的每一个对应关系都是独立存在的,这些对应关系被示例性的列在同一张表格中,但是并不代表表格中的所有对应关系必须根据表格中所示的同时存在。其中每一个对应关系,是不依赖于表4中任何其他对应关系而存在的。因此本领域内技术人员可以理解,该表4中的每一个对应关系都是一个独立的实施例。
其中,表2中I TBS为14至26的为第二映射关系比第一映射关系多的资源数量与TBS值的对应关系。
表3中为包含第一对应关系和第二对应关系的第一映射关系。表3中I TBS为1至13为第一对应关系。表3中I TBS为14至20为第二对应关系。比对表2和表3可知:第二对应关系,可来自I TBS为14至26的为第二映射关系比第一映射关系。或者,至少第二对应关系中的TBS值可来自I TBS为14至26所包含的TBS值。
在一些实施例中,TBS索引与MCS域携带的MCS索引有预设的对应关系,比如MCS索引与TBS索引相同。
同一个资源数量,在所述第二对应关系所映射的TBS值大于在所述第一对应关系中所映射的TBS值。
第二MCS比第一MCS高阶,且第二对应关系中和第一对应关系中相同资源数量,对应的TBS值,在第二对应关系中大。
例如,假设当前资源数量都为N,在第一对应关系中与N对应的可供终端使用的TBS值是小于在第二对应关系中域N对应的可供终端使用 的TBS值。
例如,在第一对应关系中最大TBS值为680比特,则在第二对应关系中所包含TBS值均大于680比特。
具体地,在所述第二对应关系中所映射的最小TBS值为:从所述第二映射关系中选择的,且大于在所述第一对应关系中所映射最大TBS值的最小TBS值。
例如,在第一对应关系中该资源数量所对应的最大TBS值为680比特,此时在第二对应关系中该资源数量所对应的最小TBS值为第二映射关系中大于680比特的最小TBS值。例如,大于680比特的最小值为744比特,则该744比特即为第二对应关系中该资源数量所映射的最小TBS值。
在一些实施例中,同一个资源数量,在所述第二对应关系所映射的最大TBS值为:在所述第二映射关系中不大于在所述第一对应关系中映射的第一TBS值的预定倍数的最大值。
例如,第一TBS值的预定倍数为特定TBS值,在第二映射关系中比所述第一对应关系中的TBS值大,且小于或等于所述第一TBS值预定倍数的多个TBS值中的最大值。
例如,在该资源数量所映射的TBS值,在第二映射关系有S个大于第一对应关系中的TBS值,且小于特定TBS值的多个TBS值,此时,第二对应关系中的最大值作为所述第二对应关系中的最大TBS值。
在一些实施例中,所述预定倍数可为任意预先设定的正整数,例如,2或4等。
在本申请实施例中,第一TBS值与预定倍数之间的乘积可小于等于所述第二映射关系中最大TBS值即可,如此,可确保不会在第二对应关系中引入在原始的无线通信系统中不存在的TBS值。
在一些实施例中,
所述同一个资源数量,在所述第一对应关系中所映射TBS值包含第二TBS值时,所述第一TBS值为所述第二TBS值。
例如,若第一对应关系中所映射的TBS值包含预定的第二TBS值,则第一TBS值即为该第二TBS值。
所述同一个资源数量,在所述第一对应关系中所映射TBS值不包含所述第二TBS值时,所述第一TBS值为所述同一个资源数量在所述第一对应关系中映射的最大TBS值。
例如,在第一对应关系中所映射的TBS值均小于第二TBS值时,则第一TBS值可为该资源数量在第一对应关系中映射的最大TBS值。
在一些实施例中,一个资源数量,在所述第二对应关系所映射TBS值包含最小TBS值和最大TBS值;
一个资源数量,在所述第二对应关系所映射的TBS值还包括位于所述最小TBS值和所述最大TBS值之间:在所述第二映射关系中与对应资源数量映射的所有TBS值。
若从第二映射关系中抽取确定的最大TBS值和最小TBS值中所有TBS值构成第二对应关系形成的第一映射关系可如上表3所示。
在另一些实施例中,一个资源数量,在所述第二对应关系所映射TBS值包含最小TBS值和最大TBS值;
一个资源数量,在所述第二对应关系所映射的TBS值还包括:位于所述最小TBS值和所述最大TBS值之间,在所述第二映射关系中与对应资源数量映射的部分TBS值。
例如,已经确定了一个资源数量在第二对应关系中的最大TBS值和最小TBS值,而此时的最大TBS值和最小TBS值之间,在第二映射关系中该资源数量还映射有多个TBS值。在一些实施例中,可以将这多个 TBS值均添加到第二对应关系中,也可以仅是将部分添加到第二对应关系中,作为该资源数量映射的TBS值。
若从第二映射关系中抽取确定的最大TBS值和最小TBS值中部分TBS值构成第二对应关系形成的第一映射关系可如下表5所示。例如,将表5中针对N PRB是1和2时,I TBS是14至17所对应的TBS值引入到第二对应关系中;在N PRB是3时,I TBS是14至16所对应的TBS值引入到第二对应关系中,具体可参见表5中带虚线的TBS值。
Figure PCTCN2020072286-appb-000004
表5
与表1-表4类似,表5中的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。表5中每一个元素的值,是不依赖于表5中任何其他元素值的。因此本领域内技术人员可以理解,该表5中的每一个元素的取值都是一个独立的实施例。
在一些实施例中,在一个资源数量在所述第一对应关系中所映射TBS值包含第二TBS值时,根据对应资源数量在所述第二映射关系所映射的最大TBS值与第二TBS值的预定倍数之间的大小关系,确定对应所述资源数量在所述第二对应关系中所包含的TBS值。
例如,最大TBS值与第二TBS值的预定倍数之间的大小关系,来确定该资源数量在第二对应关系中所包含的一个或多个TBS值。
在一些实施例中,所述根据对应资源数量在所述第二映射关系所映射的最大TBS值与第二TBS值的预定倍数之间的大小关系,确定对应所述资源数量在所述第二对应关系中所包含的TBS值,包括:
在一个所述资源数量在所述第二映射关系所映射的最大TBS值小于第二TBS值的预定倍数时,将所述第二映射关系所包含的第三TBS值作为所述第二对应关系中所映射的TBS值;
其中,所述第三TBS值为:所述第二映射关系中小于所述预定倍数所述第二TBS值的最大TBS值。
在本申请实施例中,例如,根据前述的方式确定了第二对应关系中的最大TBS值小于第三TBS值,在本实施例中,会在第二对应关系中,将第三TBS值添加到该资源数量所映射的TBS值。例如,所述第二TBS值为680比特,预定倍数为2;则680*2=1360。而在表2中小于1360最大值为1352。若采用这种方式得到第二对应关系组成第一映射关系可如下表6所示。
Figure PCTCN2020072286-appb-000005
Figure PCTCN2020072286-appb-000006
表6
与表1-表5类似,表6中的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。表6中每一个元素的值,是不依赖于表6中任何其他元素值的。因此本领域内技术人员可以理解,该表6中的每一个元素的取值都是一个独立的实施例。
在表6中,具有带有方框的TBS值是新引入到第一映射关系中构成所述第二对应关系的TBS值。黑体的为1352的TBS值是所述第三TBS值,被引入到第二对应关系中。
在另一些实施例中,所述根据对应资源数量在所述第二映射关系所映射的最大TBS值与第二TBS值的预定倍数之间的大小关系,确定对应所述资源数量在所述第二对应关系中所包含的TBS值,还包括:
在一个所述资源数量在所述第二映射关系所映射的最大TBS值小于第二TBS值的预定倍数时,将在所述第二对应关系中从所述第二映射关系中引入对应资源数量的最大TBS值修改为第三TBS值,其中,所述第三TBS值为:所述第二映射关系中小于所述预定倍数所述第二TBS值的最大TBS值。
在这种方式下,相当于直接按照前述方式确定的一个资源数量对应 的最大TBS值修改为第三TBS值。
例如,所述第二TBS值为680比特,预定倍数为2;则680*2=1360。而在表7中小于1360最大值为1352。若采用这种方式得到第二对应关系组成。
Figure PCTCN2020072286-appb-000007
表7
与表1-表6类似,表7中的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。表7中每一个元素的值,是不依赖于表7中任何其他元素值的。因此本领域内技术人员可以理解,该表7中的每一个元素的取值都是一个独立的实施例。
在表7中,具有方框的TBS值是新引入到第一映射关系中构成所述第二对应关系的TBS值。而1288是被修改为1532的小于1360的最大TBS值。
在一些实施例中,所述根据对应资源数量在所述第二映射关系所映射的最大TBS值与第二TBS值的预定倍数之间的大小关系,确定对应所述资源数量在所述第二对应关系中所包含的TBS值,包括:
在资源数量位于预设范围内,在对应资源数量在所述第二映射关系所映射的最大TBS值小于第二TBS值的预定倍数时,将所述第二映射关系所包含的第三TBS值作为所述第二对应关系中所映射的TBS值;
或者,
在资源数量位于所述预设范围外,在一个对应资源数量在所述第二映射关系所映射的最大TBS值小于第二TBS值的预定倍数时,将在所述第二对应关系中从所述第二映射关系中引入对应资源数量的最大TBS值修改为第三TBS值;
其中,所述第三TBS值为:所述第二映射关系中小于所述预定倍数所述第二TBS值的最大TBS值。
例如,针对第一类终端设备支持的资源数量共有7种,这7种资源数量中的一种或多种资源数量所述预设范围,剩余的资源数量属于第二范围。
如果该资源数量位于预设范围内,在采用在之前确定的最大TBS值之上再增加所述第三TBS值;若果该资源数量位于预设范围外,就直接修改之前已确定的最大TBS值为第三TBS值。
在一些实施例中,在所述第一映射关系中,至少部分资源数量在所述第二对应关系所包含的第一类终端可支持使用的TBS值的个数以及是不同的。此时可以引入第一类终端不支持使用的TBS值使得第一映射关 系中在任一资源数量下的TBS总数是相同的,如表8所示,第一对应关系和第二对应关系中一个资源数量均对应20个TBS值。同时,基站不会调度引入的终端并不支持的TBS值。比如,表8中,终端最大只支持接收TBS值为1352的数据包,那么基站将不会使用大于1352的TBS值用于数据包的传输。而基站不会使用的TBS值即为签署不满足调度使用条件的TBS值。
Figure PCTCN2020072286-appb-000008
表8
与表1-表7类似,表7中的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根 据表格中所示的同时存在。表7中每一个元素的值,是不依赖于表7中任何其他元素值的。因此本领域内技术人员可以理解,该表7中的每一个元素的取值都是一个独立的实施例。
在一些实施例中,在所述第一映射关系中,一个资源数量在所述第二对应关系中所映射TBS值均满足调度使用条件;其中,满足所述调度使用条件的TBS值为在数据传输过程中允许使用的TBS值。
下表8是一个示例:
Figure PCTCN2020072286-appb-000009
表9
与表1-表8类似,表9中的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根 据表格中所示的同时存在。表9中每一个元素的值,是不依赖于表9中任何其他元素值的。因此本领域内技术人员可以理解,该表9中的每一个元素的取值都是一个独立的实施例。
参见表9可知:不同的资源数量在第一映射关系中所对应的TBS值的个数不同或相同。
表8和表9中I _SF表示的为资源数量。
如图3所示,本实施例提供一种DCI传输方法,其中,所述方法包括:
S210:接收DCI;其中,所述DCI是按照第一映射关系发送的,所述第一映射关系为:配置给第一类终端的资源数量和传输块大小TBS值之间的对应关系;所述第一映射关系包含:针对第一调制与编码策略MCS的第一对应关系,及针对第二MCS的第二对应关系;
其中,所述第二对应关系包含:从配置给第二类终端的资源数量与传输块大小TBS值之间的第二映射关系中选择的,且不同于所述第一对应关系的对应关系。
在本实施例中,第一类终端会接收到DCI,该DCI基站是根据第一映射关系发射的,可根据DCI中的MCS域确定当前DCI指示的是第一映射关系中的第一对应关系或第二对应关系,进一步地确定是第一对应关系和第二对应关系中哪一个对应关系。
在一些实施例中,同一个资源数量,在所述第二对应关系所映射的TBS值大于在所述第一对应关系中所映射的TBS值。
在本申请实施例中所述资源数量包括但不限于物理资源块(Physical Resource Block,PRB)的个数或子帧/时隙/符号个数。
终端可以使用的TBS(Transport Block Size,传输块大小)是协议规定的一组离散的正整数集合。集合内每个TBS值与一个特定的TBS索 引与特定的资源数量一一对应。TBS索引可由DCI中的MCS索引根据预定义的关系推导而出。资源数量由DCI进行指示。
在一些实施例中,同一个资源数量,在所述第二对应关系中所映射的最小TBS值为:从所述第二映射关系中选择的,且大于在所述第一对应关系中所映射最大TBS值的最小TBS值。
在一些实施例中,同一个资源数量,在所述第二对应关系所映射的最大TBS值为:在所述第二映射关系中不大于在所述第一对应关系中映射的第一TBS值的预定倍数的最大值。
在一些实施例中,所述同一个资源数量,在所述第一对应关系中所映射TBS值包含第二TBS值时,所述第一TBS值为所述第二TBS值。
在一些实施例中,所述同一个资源数量,在所述第一对应关系中所映射TBS值不包含所述第二TBS值时,所述第一TBS值为所述同一个资源数量在所述第一对应关系中映射的最大TBS值。
在一些实施例中,一个资源数量,在所述第二对应关系所映射TBS值包含最小TBS值和最大TBS值;
一个资源数量,在所述第二对应关系所映射的TBS值还包括位于所述最小TBS值和所述最大TBS值之间:在所述第二映射关系中与对应资源数量映射的所有TBS值;
或者,
一个资源数量,在所述第二对应关系所映射的TBS值还包括:位于所述最小TBS值和所述最大TBS值之间,在所述第二映射关系中与对应资源数量映射的部分TBS值。
在一些实施例中,在一个资源数量在所述第一对应关系中所映射TBS值包含第二TBS值时,根据对应资源数量在所述第二映射关系所映射的最大TBS值与第二TBS值的预定倍数之间的大小关系,确定对应所述资 源数量在所述第二对应关系中所包含的TBS值。
在一些实施例中,所述根据对应资源数量在所述第二映射关系所映射的最大TBS值与第二TBS值的预定倍数之间的大小关系,确定对应所述资源数量在所述第二对应关系中所包含的TBS值,包括:
在一个所述资源数量在所述第二映射关系所映射的最大TBS值小于第二TBS值的预定倍数时,将所述第二映射关系所包含的第三TBS值作为所述第二对应关系中所映射的TBS值;
其中,所述第三TBS值为:所述第二映射关系中小于所述预定倍数所述第二TBS值的最大TBS值。
在一些实施例中,所述根据对应资源数量在所述第二映射关系所映射的最大TBS值与第二TBS值的预定倍数之间的大小关系,确定对应所述资源数量在所述第二对应关系中所包含的TBS值,还包括:
在一个所述资源数量在所述第二映射关系所映射的最大TBS值小于第二TBS值的预定倍数时,将在所述第二对应关系中从所述第二映射关系中引入对应资源数量的最大TBS值修改为第三TBS值,其中,所述第三TBS值为:所述第二映射关系中小于所述预定倍数所述第二TBS值的最大TBS值。
在一些实施例中,所述根据对应资源数量在所述第二映射关系所映射的最大TBS值与第二TBS值的预定倍数之间的大小关系,确定对应所述资源数量在所述第二对应关系中所包含的TBS值,包括:
在资源数量位于预设范围内,在对应资源数量在所述第二映射关系所映射的最大TBS值小于第二TBS值的预定倍数时,将所述第二映射关系所包含的第三TBS值作为所述第二对应关系中所映射的TBS值;
或者,
在资源数量位于所述预设范围外,在一个对应资源数量在所述第二 映射关系所映射的最大TBS值小于第二TBS值的预定倍数时,将在所述第二对应关系中从所述第二映射关系中引入对应资源数量的最大TBS值修改为第三TBS值;
其中,所述第三TBS值为:所述第二映射关系中小于所述预定倍数所述第二TBS值的最大TBS值。
在一些实施例中,在所述第一映射关系中,至少部分资源数量在所述第二对应关系所映射的一个或多个TBS值不满足调度使用条件,其中,满足所述调度使用条件的TBS值为在数据传输过程中允许使用的TBS值。
在一些实施例中,在所述第一映射关系中,一个资源数量在所述第二对应关系中所映射TBS值均满足调度使用条件;
其中,满足所述调度使用条件的TBS值为在数据传输过程中允许使用的TBS值。
如图4所示,本实施例提供一种下行控制信息DCI传输装置,其中,包括:
发送模块41,用于按照第一映射关系,发送DCI;其中,所述第一映射关系为:配置给第一类终端的资源数量和传输块大小TBS值之间的对应关系;所述第一映射关系包含:针对第一调制与编码策略MCS的第一对应关系,及针对第二MCS的第二对应关系;
其中,所述第二对应关系包含:从配置给第二类终端的资源数量与传输块大小TBS值之间的第二映射关系中选择的,且不同于所述第一对应关系的对应关系。
在一些实施例中,所述发送模块41可为程序模块,所述程序模块被处理器执行之后能够实现根据第一映射关系发送DCI。
在一些实施例中,所述发送模块41可为软硬结合模块;所述软硬结 合模块,所述软硬结合模块可包括各种可编程阵列;所述可编程阵列包括但不限于复杂可编程阵列或现场可编程阵列。
在还有一些实施例中,所述发送模块41还可包括:纯硬件模块。所述纯硬件模块可包括:专用集成电路。
在一些实施例中,同一个资源数量,在所述第二对应关系所映射的TBS值大于在所述第一对应关系中所映射的TBS值。
在一些实施例中,同一个资源数量,在所述第二对应关系中所映射的最小TBS值为:从所述第二映射关系中选择的,且大于在所述第一对应关系中所映射最大TBS值的最小TBS值。
在一些实施例中,同一个资源数量,在所述第二对应关系所映射的最大TBS值为:在所述第二映射关系中不大于在所述第一对应关系中映射的第一TBS值的预定倍数的最大值。
在一些实施例中,所述同一个资源数量,在所述第一对应关系中所映射TBS值包含第二TBS值时,所述第一TBS值为所述第二TBS值。
在一些实施例中,所述同一个资源数量,在所述第一对应关系中所映射TBS值不包含所述第二TBS值时,所述第一TBS值为所述同一个资源数量在所述第一对应关系中映射的最大TBS值。
在一些实施例中,一个资源数量,在所述第二对应关系所映射TBS值包含最小TBS值和最大TBS值;
一个资源数量,在所述第二对应关系所映射的TBS值还包括位于所述最小TBS值和所述最大TBS值之间:在所述第二映射关系中与对应资源数量映射的所有TBS值;
或者,
一个资源数量,在所述第二对应关系所映射的TBS值还包括:位于所述最小TBS值和所述最大TBS值之间,在所述第二映射关系中与对应 资源数量映射的部分TBS值。
在一些实施例中,在一个资源数量在所述第一对应关系中所映射TBS值包含第二TBS值时,根据对应资源数量在所述第二映射关系所映射的最大TBS值与第二TBS值的预定倍数之间的大小关系,确定对应所述资源数量在所述第二对应关系中所包含的TBS值。
在一些实施例中,所述根据对应资源数量在所述第二映射关系所映射的最大TBS值与第二TBS值的预定倍数之间的大小关系,确定对应所述资源数量在所述第二对应关系中所包含的TBS值,包括:
在一个所述资源数量在所述第二映射关系所映射的最大TBS值小于第二TBS值的预定倍数时,将所述第二映射关系所包含的第三TBS值作为所述第二对应关系中所映射的TBS值;
其中,所述第三TBS值为:所述第二映射关系中小于所述预定倍数所述第二TBS值的最大TBS值。
在一些实施例中,所述根据对应资源数量在所述第二映射关系所映射的最大TBS值与第二TBS值的预定倍数之间的大小关系,确定对应所述资源数量在所述第二对应关系中所包含的TBS值,还包括:
在一个所述资源数量在所述第二映射关系所映射的最大TBS值小于第二TBS值的预定倍数时,将在所述第二对应关系中从所述第二映射关系中引入对应资源数量的最大TBS值修改为第三TBS值,其中,所述第三TBS值为:所述第二映射关系中小于所述预定倍数所述第二TBS值的最大TBS值。
在一些实施例中,所述根据对应资源数量在所述第二映射关系所映射的最大TBS值与第二TBS值的预定倍数之间的大小关系,确定对应所述资源数量在所述第二对应关系中所包含的TBS值,包括:
在资源数量位于预设范围内,在对应资源数量在所述第二映射关系 所映射的最大TBS值小于第二TBS值的预定倍数时,将所述第二映射关系所包含的第三TBS值作为所述第二对应关系中所映射的TBS值;
或者,
在资源数量位于所述预设范围外,在一个对应资源数量在所述第二映射关系所映射的最大TBS值小于第二TBS值的预定倍数时,将在所述第二对应关系中从所述第二映射关系中引入对应资源数量的最大TBS值修改为第三TBS值;
其中,所述第三TBS值为:所述第二映射关系中小于所述预定倍数所述第二TBS值的最大TBS值。
在一些实施例中,在所述第一映射关系中,至少部分资源数量在所述第二对应关系所映射的一个或多个TBS值不满足调度使用条件,其中,满足所述调度使用条件的TBS值为在数据传输过程中允许使用的TBS值。
在一些实施例中,在所述第一映射关系中,一个资源数量在所述第二对应关系中所映射TBS值均满足调度使用条件;
其中,满足所述调度使用条件的TBS值为在数据传输过程中允许使用的TBS值。
如图5所示,本实施例提供一种DCI传输装置,其中,所述装置包括:
接收模块51,被配置为接收DCI;其中,所述DCI是按照第一映射关系发送的,所述第一映射关系为:配置给第一类终端的资源数量和传输块大小TBS值之间的对应关系;所述第一映射关系包含:针对第一调制与编码策略MCS的第一对应关系,及针对第二MCS的第二对应关系;
其中,所述第二对应关系包含:从配置给第二类终端的资源数量与传输块大小TBS值之间的第二映射关系中选择的,且不同于所述第一对 应关系的对应关系。
在一些实施例中,所述接收模块51可为程序模块,所述程序模块被处理器执行之后能够接收根据第一映射关系生成的DCI。
在一些实施例中,所述接收模块51可为软硬结合模块;所述软硬结合模块,所述软硬结合模块可包括各种可编程阵列;所述可编程阵列包括但不限于复杂可编程阵列或现场可编程阵列。
在还有一些实施例中,所述接收模块51还可包括:纯硬件模块。所述纯硬件模块可包括:专用集成电路。
在一些实施例中,同一个资源数量,在所述第二对应关系所映射的TBS值大于在所述第一对应关系中所映射的TBS值。
在一些实施例中,同一个资源数量,在所述第二对应关系中所映射的最小TBS值为:从所述第二映射关系中选择的,且大于在所述第一对应关系中所映射最大TBS值的最小TBS值。
在一些实施例中,同一个资源数量,在所述第二对应关系所映射的最大TBS值为:在所述第二映射关系中不大于在所述第一对应关系中映射的第一TBS值的预定倍数的最大值。
在一些实施例中,所述同一个资源数量,在所述第一对应关系中所映射TBS值包含第二TBS值时,所述第一TBS值为所述第二TBS值。
在一些实施例中,所述同一个资源数量,在所述第一对应关系中所映射TBS值不包含所述第二TBS值时,所述第一TBS值为所述同一个资源数量在所述第一对应关系中映射的最大TBS值。
在一些实施例中,一个资源数量,在所述第二对应关系所映射TBS值包含最小TBS值和最大TBS值;
一个资源数量,在所述第二对应关系所映射的TBS值还包括位于所述最小TBS值和所述最大TBS值之间:在所述第二映射关系中与对应资 源数量映射的所有TBS值;
或者,
一个资源数量,在所述第二对应关系所映射的TBS值还包括:位于所述最小TBS值和所述最大TBS值之间,在所述第二映射关系中与对应资源数量映射的部分TBS值。
在一些实施例中,在一个资源数量在所述第一对应关系中所映射TBS值包含第二TBS值时,根据对应资源数量在所述第二映射关系所映射的最大TBS值与第二TBS值的预定倍数之间的大小关系,确定对应所述资源数量在所述第二对应关系中所包含的TBS值。
在一些实施例中,所述根据对应资源数量在所述第二映射关系所映射的最大TBS值与第二TBS值的预定倍数之间的大小关系,确定对应所述资源数量在所述第二对应关系中所包含的TBS值,包括:
在一个所述资源数量在所述第二映射关系所映射的最大TBS值小于第二TBS值的预定倍数时,将所述第二映射关系所包含的第三TBS值作为所述第二对应关系中所映射的TBS值;
其中,所述第三TBS值为:所述第二映射关系中小于所述预定倍数所述第二TBS值的最大TBS值。
在一些实施例中,所述根据对应资源数量在所述第二映射关系所映射的最大TBS值与第二TBS值的预定倍数之间的大小关系,确定对应所述资源数量在所述第二对应关系中所包含的TBS值,还包括:
在一个所述资源数量在所述第二映射关系所映射的最大TBS值小于第二TBS值的预定倍数时,将在所述第二对应关系中从所述第二映射关系中引入对应资源数量的最大TBS值修改为第三TBS值,其中,所述第三TBS值为:所述第二映射关系中小于所述预定倍数所述第二TBS值的最大TBS值。
在一些实施例中,所述根据对应资源数量在所述第二映射关系所映射的最大TBS值与第二TBS值的预定倍数之间的大小关系,确定对应所述资源数量在所述第二对应关系中所包含的TBS值,包括:
在资源数量位于预设范围内,在对应资源数量在所述第二映射关系所映射的最大TBS值小于第二TBS值的预定倍数时,将所述第二映射关系所包含的第三TBS值作为所述第二对应关系中所映射的TBS值;
或者,
在资源数量位于所述预设范围外,在一个对应资源数量在所述第二映射关系所映射的最大TBS值小于第二TBS值的预定倍数时,将在所述第二对应关系中从所述第二映射关系中引入对应资源数量的最大TBS值修改为第三TBS值;
其中,所述第三TBS值为:所述第二映射关系中小于所述预定倍数所述第二TBS值的最大TBS值。
在一些实施例中,在所述第一映射关系中,至少部分资源数量在所述第二对应关系所映射的一个或多个TBS值不满足调度使用条件,其中,满足所述调度使用条件的TBS值为在数据传输过程中允许使用的TBS值。
在一些实施例中,在所述第一映射关系中,一个资源数量在所述第二对应关系中所映射TBS值均满足调度使用条件;
其中,满足所述调度使用条件的TBS值为在数据传输过程中允许使用的TBS值。
本实施例针对NB-IoT设备,当引入新的MCS后,对TBS表格进行扩展设计,使其能够包容新的MCS,同时不增加DCI的开销。新引入的TBS值为目前LTE TBS表格中的现有值。
在相同的资源量下,新引入的支持16QAM最小TBS值为大于在之 前标准版本(release)中在此资源分配下的最大TBS的最小值。
具体的方法为,如果在针对NB-IoT的TBS表格中(表格形式的第一映射关系),在某个资源分配下存在大于680比特的TBS值,那么大于680的最小值为支持16QAM的最小值。如果不存在大于680比特的TBS则根据LTE TBS表格确定。即在LTE TBS表格下取等同资源量下的大于NB-IoT表格中在此资源分配下的最大TBS的最小值,例如,参见表10所示。
Figure PCTCN2020072286-appb-000010
表10
表10中的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。表10中每一个元素的值,是不依赖于表10中任何其他元素值的。因此本领域内技术人员可以理解,该表10中的每一个元素的取值都是一个独立的实施例。
在相同资源量下,新引入的支持16QA的最大TBS值的确定方法
对于目前NB-IoT表格中如果在某个资源分配下存在TBS=680比特,那么新引入的为TBS的最大值不超过680两倍的最大值。且为当前TBS所支持的值。
如果NB-IoT中不存在680比特,那么新引入的TBS最大值为某个资源分配下,大于当前最大TBS值且不超过最大TBS值两倍的最大现有TBS值。
因此在各个资源分配下的支持16QAM的最大TBS如下表11所示:
Figure PCTCN2020072286-appb-000011
Figure PCTCN2020072286-appb-000012
表11
表11中的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。表11中每一个元素的值,是不依赖于表11中任何其他元素值的。因此本领域内技术人员可以理解,该表11中的每一个元素的取值都是一个独立的实施例。
另外,考虑到,目前的LTE TBS表格中的不超过680两倍的最大值为1352,因此对于当前TBS表格中包含680比特的资源分配量,支持16QAM的最大TBS值可以变为1352,例如,如下表12所示。
Figure PCTCN2020072286-appb-000013
表12
表12中的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。表12中每一个元素的值,是不依赖于表12中任何其他元素值的。因此本领域内技术人员可以理解,该表12中的每一个元素的取值都是一个独立的实施例。
根据所确定所支持的最大值和最小值,在LTE TBS table确定需要引入多少个TBS值。
方式一:直接扩展,即在LTE TBS表格的基础上直接扩展,根据所确定的每个资源分配下大于等于所支持的最小TBS和小于等于所支持的最大TBS中的所有TBS都将引入到新的TB。如下表中标红的TBS为新引入的支持16QAM的TBS。
方式二:即在LTE TBS的基础上,根据所确定的每个资源分配下大 于等于所支持的最小TBS和小于等于所支持的最大TBS中抽取部分TBS。例如下表,对于I_SF=0~3(对应LTE TBS表格中N_PRB=1~4)时,只抽取4个TBS引入到新的TBS表中。
在目前LTE TBS表格中不大于680比特2倍的最大TBS值为1352,因此也可以对TBS表格中的值做进一步的修正。有以下两种方式,分别是:
方式一:在某个资源分配下,如果之前的TBS中包含680比特,同时根据LTE TBS扩展后的表格最大值未到1352,此时可添加TBS=1352进入TBS表格。
方式二:在某个资源分配下,如果之前的TBS中包含680比特,同时根据LTE TBS扩展后的表格最大值未到1352,此时可添加TBS值=1352进入TBS表格,此时可将最大的TBS修改为TBS值=1352。
方式三:方式一和方式二的结合。比如对于ISF=2,3,4(对应LTE TBS的N_PRB=3,4,5)采用方法二,对于I -SF=6,7采用方式二。
由于每个资源分配下可能引入的支持16QAM的TBS数目不一样,此时有两种处理方式。
方式一:最后引入的TBS表格根据引入的最大TBS index决定,只是在调度用户时,限制基站只能调度使用满足条件的TBS。最后在协议中引入如下TBS,引入对于当I _SF=0时引入的TBS索引最大,为TBS=20,因此在协议中将引入如下表格,即每个资源分配下都有包含TBS index=0~20的TBS值。只是基站不会使用超过1352的值,具体可参见表7。
方式二:引入的TBS表格中不包含不满足要求的值,如表8所示。
本实施例还提供一种通信设备,包括:
天线;
存储器;
处理器,分别与所述天线及存储器连接,用于通过执行存储在所述存储器上的可执行程序,控制所述天线收发无线信号,并能够执行前述任意实施例提供的所述DCI传输方法的步骤。
本实施例提供的通信设备可为前述的终端或基站。该终端可为各种人载终端或车载终端。所述基站可为各种类型的基站,例如,4G基站或5G基站等。
所述天线可为各种类型的天线、例如,3G天线、4G天线或5G天线等移动天线;所述天线还可包括:WiFi天线或无线充电天线等。
所述存储器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
所述处理器可以通过总线等与所述天线和所述存储器连接,用于读取所述存储器上存储的可执行程序,通过例如图2和/或图3所示的DCI传输方法等。
本申请实施还提供一种非临时性计算机可读存储介质,所述非临时性计算机可读存储介质存储有可执行程序,其中,所述可执行程序被处理器执行时实现前述任意实施例提供的所述DCI传输方法的步骤,例如,如图2和/或图3所示方法的至少其中之一。
参照图6所示终端800本实施例提供一种终端800,该终端具体可是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图6,终端800可以包括以下一个或多个组件:处理组件802,存储器804,电力组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制终端800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一 个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在设备800的操作。这些数据的示例包括用于在终端800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件806为终端800的各种组件提供电力。电力组件806可以包括电源管理系统,一个或多个电源,及其他与为终端800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述终端800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810 包括一个麦克风(MIC),当终端800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为终端800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如所述组件为终端800的显示器和小键盘,传感器组件814还可以检测终端800或终端800一个组件的位置改变,用户与终端800接触的存在或不存在,终端800方位或加速/减速和终端800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于终端800和其他设备之间有线或无线方式的通信。终端800可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,终端800可以被一个或多个应用专用集成电路 (ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由终端800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
该终端可以用于实现前述的DCI传输方法,例如,如图2和/或图6所述的DCI传输方法。
图7是根据一示例性实施例示出的一种基站900的框图。例如,基站900可以被提供为一网络侧设备。参照图7,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述任意实施例提供的DCI传输方法,例如,如图2和/或图6所示的方法。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
该无线网络接口950包括但不限于前述通信设备的天线。本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其 它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (30)

  1. 一种下行控制信息DCI传输方法,其中,包括:
    按照第一映射关系,发送DCI;其中,所述第一映射关系为:配置给第一类终端的资源数量和传输块大小TBS值之间的对应关系;所述第一映射关系包含:针对第一调制与编码策略MCS的第一对应关系,及针对第二MCS的第二对应关系;
    其中,所述第二对应关系包含:从配置给第二类终端的资源数量与传输块大小TBS值之间的第二映射关系中选择的,且不同于所述第一对应关系的对应关系。
  2. 根据权利要求1所述的方法,其中,
    同一个资源数量,在所述第二对应关系所映射的TBS值大于在所述第一对应关系中所映射的TBS值。
  3. 根据权利要求2所述的方法,其中,同一个资源数量,在所述第二对应关系中所映射的最小TBS值为:从所述第二映射关系中选择的,且大于在所述第一对应关系中所映射最大TBS值的最小TBS值。
  4. 根据权利要求1所述的方法,其中,同一个资源数量,在所述第二对应关系所映射的最大TBS值为:在所述第二映射关系中不大于在所述第一对应关系中映射的第一TBS值的预定倍数的最大值。
  5. 根据权利要求4所述的方法,其中,
    所述同一个资源数量,在所述第一对应关系中所映射TBS值包含第二TBS值时,所述第一TBS值为所述第二TBS值。
  6. 根据权利要求4所述的方法,其中,
    所述同一个资源数量,在所述第一对应关系中所映射TBS值不包含所述第二TBS值时,所述第一TBS值为所述同一个资源数量在所述第一对应关系中映射的最大TBS值。
  7. 根据权利要求1所述的方法,其中,
    一个资源数量,在所述第二对应关系所映射TBS值包含最小TBS值和最大TBS值;
    一个资源数量,在所述第二对应关系所映射的TBS值还包括位于所述最小TBS值和所述最大TBS值之间:在所述第二映射关系中与对应资源数量映射的所有TBS值;
    或者,
    一个资源数量,在所述第二对应关系所映射的TBS值还包括:位于所述最小TBS值和所述最大TBS值之间,在所述第二映射关系中与对应资源数量映射的部分TBS值。
  8. 根据权利要求7所述的方法,其中,在一个资源数量在所述第一对应关系中所映射TBS值包含第二TBS值时,根据对应资源数量在所述第二映射关系所映射的最大TBS值与第二TBS值的预定倍数之间的大小关系,确定对应所述资源数量在所述第二对应关系中所包含的TBS值。
  9. 根据权利要求8所述的方法,其中,所述根据对应资源数量在所述第二映射关系所映射的最大TBS值与第二TBS值的预定倍数之间的大小关系,确定对应所述资源数量在所述第二对应关系中所包含的TBS值,包括:
    在一个所述资源数量在所述第二映射关系所映射的最大TBS值小于第二TBS值的预定倍数时,将所述第二映射关系所包含的第三TBS值作为所述第二对应关系中所映射的TBS值;
    其中,所述第三TBS值为:所述第二映射关系中小于所述预定倍数所述第二TBS值的最大TBS值。
  10. 根据权利要求8所述的方法,其中,所述根据对应资源数量在所述第二映射关系所映射的最大TBS值与第二TBS值的预定倍数之间的 大小关系,确定对应所述资源数量在所述第二对应关系中所包含的TBS值,还包括:
    在一个所述资源数量在所述第二映射关系所映射的最大TBS值小于第二TBS值的预定倍数时,将在所述第二对应关系中从所述第二映射关系中引入对应资源数量的最大TBS值修改为第三TBS值,其中,所述第三TBS值为:所述第二映射关系中小于所述预定倍数所述第二TBS值的最大TBS值。
  11. 根据权利要求8所述的方法,其中,所述根据对应资源数量在所述第二映射关系所映射的最大TBS值与第二TBS值的预定倍数之间的大小关系,确定对应所述资源数量在所述第二对应关系中所包含的TBS值,包括:
    在资源数量位于预设范围内,在对应资源数量在所述第二映射关系所映射的最大TBS值小于第二TBS值的预定倍数时,将所述第二映射关系所包含的第三TBS值作为所述第二对应关系中所映射的TBS值;
    或者,
    在资源数量位于所述预设范围外,在一个对应资源数量在所述第二映射关系所映射的最大TBS值小于第二TBS值的预定倍数时,将在所述第二对应关系中从所述第二映射关系中引入对应资源数量的最大TBS值修改为第三TBS值;
    其中,所述第三TBS值为:所述第二映射关系中小于所述预定倍数所述第二TBS值的最大TBS值。
  12. 根据权利要求1至11任一项所述的方法,其中,在所述第一映射关系中,至少部分资源数量在所述第二对应关系所映射的一个或多个TBS值不满足调度使用条件,其中,满足所述调度使用条件的TBS值为在数据传输过程中允许使用的TBS值。
  13. 根据权利要求1至11任一项所述的方法,其中,在所述第一映射关系中,一个资源数量在所述第二对应关系中所映射TBS值均满足调度使用条件;
    其中,满足所述调度使用条件的TBS值为在数据传输过程中允许使用的TBS值。
  14. 一种DCI传输方法,其中,所述方法包括:
    接收DCI;其中,所述DCI是按照第一映射关系发送的,所述第一映射关系为:配置给第一类终端的资源数量和传输块大小TBS值之间的对应关系;所述第一映射关系包含:针对第一调制与编码策略MCS的第一对应关系,及针对第二MCS的第二对应关系;
    其中,所述第二对应关系包含 从配置给第二类终端的资源数量与传输块大小TBS值之间的第二映射关系中选择的,且不同于所述第一对应关系的对应关系。
  15. 根据权利要求14所述的方法,其中,
    同一个资源数量,在所述第二对应关系所映射的TBS值大于在所述第一对应关系中所映射的TBS值。
  16. 根据权利要求15所述的方法,其中,同一个资源数量,在所述第二对应关系中所映射的最小TBS值为:从所述第二映射关系中选择的,且大于在所述第一对应关系中所映射最大TBS值的最小TBS值。
  17. 根据权利要求14所述的方法,其中,同一个资源数量,在所述第二对应关系所映射的最大TBS值为:在所述第二映射关系中不大于在所述第一对应关系中映射的第一TBS值的预定倍数的最大值。
  18. 根据权利要求17所述的方法,其中,
    所述同一个资源数量,在所述第一对应关系中所映射TBS值包含第二TBS值时,所述第一TBS值为所述第二TBS值。
  19. 根据权利要求17所述的方法,其中,
    所述同一个资源数量,在所述第一对应关系中所映射TBS值不包含所述第二TBS值时,所述第一TBS值为所述同一个资源数量在所述第一对应关系中映射的最大TBS值。
  20. 根据权利要求14所述的方法,其中,
    一个资源数量,在所述第二对应关系所映射TBS值包含最小TBS值和最大TBS值;
    一个资源数量,在所述第二对应关系所映射的TBS值还包括位于所述最小TBS值和所述最大TBS值之间:在所述第二映射关系中与对应资源数量映射的所有TBS值;
    或者,
    一个资源数量,在所述第二对应关系所映射的TBS值还包括:位于所述最小TBS值和所述最大TBS值之间,在所述第二映射关系中与对应资源数量映射的部分TBS值。
  21. 根据权利要求20所述的方法,其中,在一个资源数量在所述第一对应关系中所映射TBS值包含第二TBS值时,根据对应资源数量在所述第二映射关系所映射的最大TBS值与第二TBS值的预定倍数之间的大小关系,确定对应所述资源数量在所述第二对应关系中所包含的TBS值。
  22. 根据权利要求21所述的方法,其中,所述根据对应资源数量在所述第二映射关系所映射的最大TBS值与第二TBS值的预定倍数之间的大小关系,确定对应所述资源数量在所述第二对应关系中所包含的TBS值,包括:
    在一个所述资源数量在所述第二映射关系所映射的最大TBS值小于第二TBS值的预定倍数时,将所述第二映射关系所包含的第三TBS值作为所述第二对应关系中所映射的TBS值;
    其中,所述第三TBS值为:所述第二映射关系中小于所述预定倍数所述第二TBS值的最大TBS值。
  23. 根据权利要求21所述的方法,其中,所述根据对应资源数量在所述第二映射关系所映射的最大TBS值与第二TBS值的预定倍数之间的大小关系,确定对应所述资源数量在所述第二对应关系中所包含的TBS值,还包括:
    在一个所述资源数量在所述第二映射关系所映射的最大TBS值小于第二TBS值的预定倍数时,将在所述第二对应关系中从所述第二映射关系中引入对应资源数量的最大TBS值修改为第三TBS值,其中,所述第三TBS值为:所述第二映射关系中小于所述预定倍数所述第二TBS值的最大TBS值。
  24. 根据权利要求20所述的方法,其中,所述根据对应资源数量在所述第二映射关系所映射的最大TBS值与第二TBS值的预定倍数之间的大小关系,确定对应所述资源数量在所述第二对应关系中所包含的TBS值,包括:
    在资源数量位于预设范围内,在对应资源数量在所述第二映射关系所映射的最大TBS值小于第二TBS值的预定倍数时,将所述第二映射关系所包含的第三TBS值作为所述第二对应关系中所映射的TBS值;
    或者,
    在资源数量位于所述预设范围外,在一个对应资源数量在所述第二映射关系所映射的最大TBS值小于第二TBS值的预定倍数时,将在所述第二对应关系中从所述第二映射关系中引入对应资源数量的最大TBS值修改为第三TBS值;
    其中,所述第三TBS值为:所述第二映射关系中小于所述预定倍数所述第二TBS值的最大TBS值。
  25. 根据权利要求13至24任一项所述的方法,其中,在所述第一映射关系中,至少部分资源数量在所述第二对应关系所映射的一个或多个TBS值不满足调度使用条件,其中,满足所述调度使用条件的TBS值为在数据传输过程中允许使用的TBS值。
  26. 根据权利要求13至24任一项所述的方法,其中,在所述第一映射关系中,一个资源数量在所述第二对应关系中所映射TBS值均满足调度使用条件;
    其中,满足所述调度使用条件的TBS值为在数据传输过程中允许使用的TBS值。
  27. 一种下行控制信息DCI传输装置,其中,包括:
    发送模块,用于按照第一映射关系,发送DCI;其中,所述第一映射关系为:配置给第一类终端的资源数量和传输块大小TBS值之间的对应关系;所述第一映射关系包含:针对第一调制与编码策略MCS的第一对应关系,及针对第二MCS的第二对应关系;
    其中,所述第二对应关系包含 从配置给第二类终端的资源数量与传输块大小TBS值之间的第二映射关系中选择的,且不同于所述第一对应关系的对应关系。
  28. 一种DCI传输装置,其中,所述装置包括:
    接收模块,被配置为接收DCI;其中,所述DCI是按照第一映射关系发送的,所述第一映射关系为:配置给第一类终端的资源数量和传输块大小TBS值之间的对应关系;所述第一映射关系包含:针对第一调制与编码策略MCS的第一对应关系,及针对第二MCS的第二对应关系;
    其中,所述第二对应关系包含:从配置给第二类终端的资源数量与传输块大小TBS值之间的第二映射关系中选择的,且不同于所述第一对应关系的对应关系。
  29. 一种通信设备,其中,包括:
    天线;
    存储器;
    处理器,分别与所述天线及存储器连接,配置为通过执行存储在所述存储器上的可执行程序,控制所述天线收发无线信号,并能够执行如权利要求1至13或14至26任一项所述随机接入方法的步骤。
  30. 一种非临时性计算机可读存储介质,所述非临时性计算机可读存储介质存储有可执行程序,其中,所述可执行程序被处理器执行时实现如权利要求1至13或14至26任一项所述随机接入方法的步骤。
PCT/CN2020/072286 2020-01-15 2020-01-15 下行控制信息传输方法及装置、通信设备及存储介质 WO2021142665A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080000113.5A CN113475022B (zh) 2020-01-15 2020-01-15 下行控制信息传输方法及装置、通信设备及存储介质
PCT/CN2020/072286 WO2021142665A1 (zh) 2020-01-15 2020-01-15 下行控制信息传输方法及装置、通信设备及存储介质
US17/792,753 US20230057205A1 (en) 2020-01-15 2020-01-15 Downlink control information transmission method, and communication device
EP20913171.3A EP4092937A4 (en) 2020-01-15 2020-01-15 DOWNLINK CONTROL INFORMATION TRANSMISSION METHOD AND APPARATUS, COMMUNICATION DEVICE AND STORAGE MEDIUM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072286 WO2021142665A1 (zh) 2020-01-15 2020-01-15 下行控制信息传输方法及装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021142665A1 true WO2021142665A1 (zh) 2021-07-22

Family

ID=76863485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072286 WO2021142665A1 (zh) 2020-01-15 2020-01-15 下行控制信息传输方法及装置、通信设备及存储介质

Country Status (4)

Country Link
US (1) US20230057205A1 (zh)
EP (1) EP4092937A4 (zh)
CN (1) CN113475022B (zh)
WO (1) WO2021142665A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150215913A1 (en) * 2014-01-30 2015-07-30 Telefonaktiebolaget L M Ericsson (Publ) Systems and methods utilizing an efficient tbs table design for 256qam in a cellular communications network
CN108282258A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种调制编码方式的处理方法、基站及终端设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098358A1 (ko) * 2012-12-18 2014-06-26 엘지전자 주식회사 데이터 수신 방법 및 장치
CN105992379B (zh) * 2015-03-02 2020-02-18 电信科学技术研究院 一种调度方法及终端
KR20190102002A (ko) * 2017-01-05 2019-09-02 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 데이터 전송 방법 및 통신 디바이스
CN109392022B (zh) * 2017-08-11 2022-04-05 华为技术有限公司 传输数据的方法、终端设备和网络设备
US11432279B2 (en) * 2018-04-13 2022-08-30 Lg Electronics Inc. Method for transmitting transport block by using downlink control information in wireless communication system and apparatus therefor
EP4002896A4 (en) * 2019-07-17 2022-08-03 Beijing Xiaomi Mobile Software Co., Ltd. INFORMATION DISPLAY AND DETERMINATION METHODS AND DEVICES, COMMUNICATION DEVICE AND STORAGE MEDIA

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150215913A1 (en) * 2014-01-30 2015-07-30 Telefonaktiebolaget L M Ericsson (Publ) Systems and methods utilizing an efficient tbs table design for 256qam in a cellular communications network
CN108282258A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种调制编码方式的处理方法、基站及终端设备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On new TBS table and DCI format for the support of two NPUSCH HARQ processes", 3GPP DRAFT; R1-1701890 - ON NEW TBS TABLE AND DCI FORMAT FOR THE SUPPORT OF TWO NPUSCH HARQ PROCESSES, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20170413 - 20170417, 12 February 2017 (2017-02-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051209053 *
HUAWEI, HISILICON: "On Cat-NB1 UE support of Rel-14 TBS table", 3GPP DRAFT; R1-1705119, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20170403 - 20170407, 2 April 2017 (2017-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051243250 *
QUALCOMM INCORPORATED: "Increased PUSCH spectral efficiency", 3GPP DRAFT; R1-1712803, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, Czechia; 20170821 - 20170825, 20 August 2017 (2017-08-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051315615 *
See also references of EP4092937A4 *

Also Published As

Publication number Publication date
CN113475022B (zh) 2024-02-06
CN113475022A (zh) 2021-10-01
EP4092937A4 (en) 2023-10-18
US20230057205A1 (en) 2023-02-23
EP4092937A1 (en) 2022-11-23

Similar Documents

Publication Publication Date Title
WO2020258329A1 (zh) 初始接入指示方法、装置及存储介质
WO2021007823A1 (zh) 信息指示、确定方法及装置、通信设备及存储介质
WO2020258335A1 (zh) 控制资源配置、确定方法及装置、通信设备及存储介质
CN114270986A (zh) 带宽资源复用方法及装置、通信设备及存储介质
WO2021087682A1 (zh) 下行控制信息dci下发方法及装置、通信设备及存储介质
WO2021159252A1 (zh) 传输调度方法、装置、通信设备及存储介质
US20230300722A1 (en) Information transmission method and apparatus
WO2021163930A1 (zh) 信息处理方法、装置、基站、终端及存储介质
WO2021142796A1 (zh) 通信处理方法、装置及计算机存储介质
CN112534914B (zh) 资源分配方法及装置、消息帧处理方法及装置、存储介质
WO2021003675A1 (zh) 信息处理方法、装置及计算机存储介质
WO2021092841A1 (zh) 下行控制信息传输方法及装置、通信设备及存储介质
WO2021142674A1 (zh) 下行控制信息传输方法及装置、通信设备及存储介质
WO2021142665A1 (zh) 下行控制信息传输方法及装置、通信设备及存储介质
WO2021007827A1 (zh) 信息指示、确定方法及装置、通信设备及存储介质
US20230300825A1 (en) Logic channel multiplexing method and apparatus, communication device, and storage medium
JP7483000B2 (ja) ダウンリンク制御情報の構成方法、装置、通信機器及び記憶媒体
WO2021109002A1 (zh) 信息处理方法、装置、基站、用户设备及存储介质
WO2021007791A1 (zh) 资源配置的方法及装置、通信设备及存储介质
WO2021163925A1 (zh) 数据传输方法、装置、通信设备及存储介质
RU2796639C1 (ru) Способ и устройство для передачи управляющей информации нисходящей линии связи (DCI), устройство связи и носитель информации
WO2021258264A1 (zh) Pucch的信息传输方法及装置、通信设备及存储介质
US20230396399A1 (en) Information transmission method, communication device and storage medium
RU2791870C1 (ru) Способ и устройство для индикации и определения информации, устройство связи и носитель информации
WO2022267039A1 (zh) Bwp指示方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020913171

Country of ref document: EP

Effective date: 20220816