WO2023138094A1 - 用于空调器自清洁的方法及装置、空调器 - Google Patents

用于空调器自清洁的方法及装置、空调器 Download PDF

Info

Publication number
WO2023138094A1
WO2023138094A1 PCT/CN2022/122141 CN2022122141W WO2023138094A1 WO 2023138094 A1 WO2023138094 A1 WO 2023138094A1 CN 2022122141 W CN2022122141 W CN 2022122141W WO 2023138094 A1 WO2023138094 A1 WO 2023138094A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
frequency
temperature
evaporator
air conditioner
Prior art date
Application number
PCT/CN2022/122141
Other languages
English (en)
French (fr)
Inventor
程惠鹏
王祯祯
肖克强
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023138094A1 publication Critical patent/WO2023138094A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of smart home appliances, for example, to a method and device for self-cleaning of an air conditioner, and an air conditioner.
  • An existing self-cleaning control method for an air conditioner includes the following steps: controlling the air conditioner to enter a self-cleaning mode; detecting the current outdoor ambient temperature Tout or the current outer coil temperature Touter, and the current indoor ambient temperature Tin, and setting the first preset temperature T of the inner coil 1 and the second preset temperature T of the inner coil 2 of the inner coil according to the current outdoor ambient temperature Tout or the current temperature T of the outer coil Touter, and the current indoor ambient temperature T.
  • the cooling rate of the inner coil is ⁇ , and the frequency of the compressor and the opening of the electronic expansion valve are adjusted according to the cooling rate of the inner coil.
  • Embodiments of the present disclosure provide a method and device for self-cleaning of an air conditioner, and an air conditioner, so as to prevent the sound of thermal expansion and contraction of the air conditioner during the self-cleaning process.
  • the method includes:
  • the frequency of the compressor and the discharge temperature are adjusted according to K, so that K is in the first preset temperature difference interval.
  • the device includes a processor and a memory storing program instructions, and the processor is configured to execute the above-mentioned method for self-cleaning an air conditioner when executing the program instructions.
  • the air conditioner includes: the above-mentioned device for self-cleaning of an air conditioner.
  • the frequency of the compressor and the exhaust temperature are adjusted according to the temperature difference K between the evaporator coil and the evaporator fins, so as to prevent the temperature of the refrigerant in the evaporator from falling or rising too fast, and then keep the temperature difference between the evaporator coil and the evaporator fins within the first preset temperature difference range, and avoid the excessive temperature difference between the evaporator coil and the evaporator fins, which will cause thermal expansion and cooling.
  • Fig. 1 is a partial structural schematic diagram of an air conditioner provided by an embodiment of the present disclosure
  • Fig. 2 is a partial structural schematic diagram of another air conditioner provided by an embodiment of the present disclosure.
  • Fig. 3 is a schematic diagram of a method for self-cleaning of an air conditioner provided by an embodiment of the present disclosure
  • Fig. 4 is a schematic diagram of another method for self-cleaning of an air conditioner provided by an embodiment of the present disclosure
  • Fig. 5 is a schematic diagram of another method for self-cleaning of an air conditioner provided by an embodiment of the present disclosure
  • Fig. 6 is a schematic diagram of another method for self-cleaning of an air conditioner provided by an embodiment of the present disclosure.
  • Fig. 7 is a schematic diagram of another method for self-cleaning of an air conditioner provided by an embodiment of the present disclosure.
  • Fig. 8 is a schematic diagram of a self-cleaning device for an air conditioner provided by an embodiment of the present disclosure.
  • A/B means: A or B.
  • a and/or B means: A or B, or, A and B, these three relationships.
  • correspondence may refer to an association relationship or a binding relationship, and the correspondence between A and B means that there is an association relationship or a binding relationship between A and B.
  • an embodiment of the present disclosure provides an air conditioner, including an evaporator 5 , a cross-flow fan 6 , an evaporator temperature sensor 4 , a fan 6 , an electric auxiliary heating device 2 , a stepping motor 3 , and a guide plate 7 .
  • the evaporator is provided with an air inlet 1 above.
  • the evaporator temperature sensor 4 is arranged on the fin of the evaporator 5 .
  • the electric auxiliary heating device 2 is arranged below the evaporator 5 .
  • the fan 6 is arranged below the electric auxiliary heating device 2 .
  • the stepper motor 3 is connected with the guide plate 7 and arranged below the evaporator 5 and the fan 6 .
  • the evaporator 5 includes a distribution pipeline 7 , an evaporator coil temperature sensor 8 and a liquid inlet and outlet pipe 9 .
  • the evaporator coil temperature sensor 8 is arranged on one side of the distribution pipeline 7 and is used for detecting the temperature of the evaporator coil.
  • the shunt pipeline 7 communicates with the liquid inlet and outlet pipes 9 .
  • an embodiment of the present disclosure provides a method for self-cleaning of an air conditioner, including:
  • the air conditioner determines the temperature difference K between the evaporator coil and the evaporator fins.
  • the air conditioner adjusts the frequency of the compressor and the discharge temperature according to K, so that K is in the first preset temperature difference interval.
  • the air conditioner self-cleaning method can adjust the frequency of the compressor and the exhaust temperature according to the temperature difference K between the evaporator coil and the evaporator fin during the self-cleaning process of the air conditioner, so as to prevent the temperature of the refrigerant in the evaporator from falling or rising too fast, and then keep the temperature difference between the evaporator coil and the evaporator fin within the first preset temperature difference interval, and avoid the excessive temperature difference between the evaporator coil and the evaporator fin, which will cause thermal expansion and cold contraction.
  • the air conditioner adjusts the frequency of the compressor and the discharge temperature according to K, including: when K is in the second preset temperature difference interval (- ⁇ , K 1 ], the air conditioner increases the frequency of the compressor and keeps the discharge temperature of the compressor constant. Or, when K is in the first preset temperature difference interval (K 1 , K 2 ], the air conditioner keeps the frequency of the compressor constant and the discharge temperature of the compressor constant. Or, when K is in the third preset temperature difference interval (K 2 , + ⁇ ), the air conditioner reduces the compressor frequency and discharge temperature according to K. Among them, K 1 ⁇ K 2 .
  • the frequency of the compressor and the exhaust temperature can be better adjusted according to the temperature difference K between the evaporator coil and the evaporator fins, so as to better prevent the temperature of the refrigerant in the evaporator from dropping or rising too fast, and then keep the temperature difference between the evaporator coil and the evaporator fins within the first preset temperature difference interval, and avoid the sound of thermal expansion and cooling caused by the excessive temperature difference between the evaporator coil and evaporator fins.
  • the air conditioner increases the frequency of the compressor, including: when K is in the second preset temperature difference interval (- ⁇ , K 1 ], the air conditioner adjusts the speed v at the first frequency f1 Increase the frequency of the compressor.
  • controlling the frequency of the compressor to decrease at the first frequency adjustment speed can better adjust the frequency of the compressor and the exhaust temperature according to the temperature difference K between the evaporator coil and the evaporator fins, thereby better preventing the temperature of the refrigerant in the evaporator from falling or rising too fast, and then keeping the temperature difference between the evaporator coil and the evaporator fins within the first preset temperature difference interval, and avoiding the sound of heat expansion and cold contraction caused by an excessive temperature difference between the evaporator coil and evaporator fins.
  • the air conditioner reduces the frequency of the compressor and the discharge temperature according to K, including: when K is in the fourth preset temperature difference interval (K 2 , K 3 ], the air conditioner adjusts the speed v at the first frequency f1 Reduce the frequency of the compressor and adjust the speed v at the first temperature T1 Reduce compressor discharge temperature. Or, when K is in the fifth preset temperature difference interval (K 3 , K 4 ], the air conditioner adjusts the speed v at the second frequency f2 Reduce the frequency of the compressor and adjust the speed v at the second temperature T2 Reduce compressor discharge temperature.
  • the air conditioner adjusts the speed v at the third frequency f3 Reduce the frequency of the compressor and adjust the speed v at the third temperature T3 Reduce compressor discharge temperature.
  • the frequency of the compressor and the exhaust temperature are controlled to decrease at different speeds according to the K value, and the frequency of the compressor and the exhaust temperature can be better adjusted according to the temperature difference K between the evaporator coil and the evaporator fins, so as to better prevent the temperature of the refrigerant in the evaporator from falling or rising too fast, and then keep the temperature difference between the evaporator coil and the evaporator fins within the first preset temperature difference interval, and avoid excessive temperature differences between the evaporator coil and the evaporator fins. Big lead to thermal expansion and contraction sound.
  • the value range of K 1 is [-1°C, 1°C].
  • the value of K 1 may be -1°C, 0°C or 1°C.
  • the intervals between the first preset temperature difference interval and the second preset temperature difference interval can be better determined, thereby better adjusting the frequency of the compressor and the discharge temperature according to the temperature difference K between the evaporator coil and the evaporator fins, thereby better preventing the temperature of the refrigerant in the evaporator from dropping or rising too fast, and then keeping the temperature difference between the evaporator coil and the evaporator fins within the first preset temperature difference interval, and avoiding the sound of thermal expansion and cooling due to the excessive temperature difference between the evaporator coil and evaporator fins.
  • the value range of K2 is [2°C, 4°C].
  • the value of K 2 may be 2°C, 3°C or 4°C.
  • the interval ranges of the first preset temperature difference interval, the third preset temperature difference interval, and the fourth preset temperature difference interval can be better determined, thereby better adjusting the compressor frequency and exhaust temperature according to the temperature difference K between the evaporator coil and the evaporator fins, thereby better preventing the refrigerant temperature in the evaporator from dropping or rising too fast, and then keeping the temperature difference between the evaporator coil and the evaporator fins within the first preset temperature difference interval, avoiding thermal expansion due to excessive temperature differences between the evaporator coil and evaporator fins Cold contraction.
  • the value range of K 3 is [5°C, 7°C]. Specifically, the value of K 3 may be 5°C, 6°C or 7°C.
  • the ranges of the fourth preset temperature difference interval and the fifth preset temperature difference interval can be better determined, thereby better controlling the frequency of the compressor and the discharge temperature to decrease at different speeds according to the K value, better adjusting the frequency of the compressor and the discharge temperature according to the temperature difference K between the evaporator coil and the evaporator fin, thereby better preventing the temperature of the refrigerant in the evaporator from falling or rising too fast, and then keeping the temperature difference between the evaporator coil and the evaporator fin within the first preset temperature difference interval, avoiding the evaporator coil and evaporator.
  • the temperature difference of the fins of the device is too large, resulting in the sound of thermal expansion and cold contraction.
  • the value range of K4 is [8°C, 10°C]. Specifically, the value of K 4 may be 8°C, 9°C or 10°C.
  • the ranges of the fifth preset temperature difference interval and the sixth preset temperature difference interval can be better determined, so that the frequency of the compressor and the discharge temperature can be controlled to decrease at different speeds according to the K value, and the frequency of the compressor and the discharge temperature can be better adjusted according to the temperature difference K between the evaporator coil and the evaporator fin, so as to better prevent the temperature of the refrigerant in the evaporator from falling or rising too fast, and then keep the temperature difference between the evaporator coil and the evaporator fin within the first preset temperature difference interval, avoiding the evaporator coil and evaporator.
  • the temperature difference of the fins of the device is too large, resulting in the sound of thermal expansion and cold contraction.
  • the value range of v f1 is [1Hz/10s, 2Hz/10s].
  • the value of v f1 may be 1 Hz/10s, 1.5 Hz/10s or 2 Hz/10s.
  • the first frequency adjustment speed can be better determined, so that the frequency of the compressor can be lowered at different speeds according to the K value, and the frequency of the compressor and the exhaust temperature can be adjusted better according to the temperature difference K between the evaporator coil and the evaporator fin, so as to better prevent the temperature of the refrigerant in the evaporator from falling or rising too fast, and then keep the temperature difference between the evaporator coil and the evaporator fin within the first preset temperature difference range, and avoid excessive temperature differences between the evaporator coil and evaporator fins.
  • the value range of v f2 is [2Hz/10s, 3Hz/10s].
  • the value of v f2 may be 2Hz/10s, 2.5Hz/10s or 2Hz/10s.
  • the second frequency adjustment speed can be better determined, so that the frequency of the compressor can be lowered at different speeds according to the K value, and the frequency of the compressor and the exhaust temperature can be adjusted better according to the temperature difference K between the evaporator coil and the evaporator fins, so as to better prevent the temperature of the refrigerant in the evaporator from falling or rising too fast, and then keep the temperature difference between the evaporator coil and the evaporator fins within the first preset temperature difference range, and avoid excessive temperature differences between the evaporator coil and evaporator fins. abbreviated.
  • the value range of v f3 is [3Hz/10s, 4Hz/10s].
  • the value of v f3 may be 3Hz/10s, 3.5Hz/10s or 4Hz/10s.
  • the third frequency adjustment speed can be better determined, so that the frequency of the compressor can be lowered at different speeds according to the K value, and the frequency of the compressor and the exhaust temperature can be adjusted better according to the temperature difference K between the evaporator coil and the evaporator fins, so as to better prevent the temperature of the refrigerant in the evaporator from falling or rising too fast, and then keep the temperature difference between the evaporator coil and the evaporator fins within the first preset temperature difference range, and avoid thermal expansion and cooling due to excessive temperature differences between the evaporator coil and evaporator fins abbreviated.
  • the value range of v T1 is [1°C/10s, 2°C/10s].
  • the value of v T1 may be 1°C/10s, 1.5°C/10s or 2°C/10s.
  • the first temperature adjustment speed can be better determined, thereby better controlling the discharge temperature of the compressor to decrease at different speeds according to the K value, and better adjusting the frequency and discharge temperature of the compressor according to the temperature difference K between the evaporator coil and the evaporator fin, thereby better preventing the temperature of the refrigerant in the evaporator from falling or rising too fast, and then keeping the temperature difference between the evaporator coil and the evaporator fin within the first preset temperature difference interval, avoiding thermal expansion caused by an excessive temperature difference between the evaporator coil and the evaporator fin Cold contraction.
  • the value range of v T2 is [2°C/10s, 3°C/10s].
  • the value of v T2 may be 2°C/10s, 2.5°C/10s or 3°C/10s.
  • the second temperature adjustment speed can be better determined, thereby better controlling the discharge temperature of the compressor to decrease at different speeds according to the K value, and better adjusting the frequency and discharge temperature of the compressor according to the temperature difference K between the evaporator coil and the evaporator fins, so as to better prevent the refrigerant temperature in the evaporator from falling or rising too fast, and then keep the temperature difference between the evaporator coil and the evaporator fins within the first preset temperature difference range, and avoid thermal expansion and cooling due to excessive temperature differences between the evaporator coil and evaporator fins abbreviated.
  • the value range of v T3 is [3°C/10s, 4°C/10s].
  • the value of v T3 may be 3°C/10s, 3.5°C/10s or 4°C/10s.
  • the third temperature adjustment speed can be better determined, thereby better controlling the discharge temperature of the compressor to decrease at different speeds according to the K value, and better adjusting the frequency and discharge temperature of the compressor according to the temperature difference K between the evaporator coil and the evaporator fins, so as to better prevent the refrigerant temperature in the evaporator from falling or rising too fast, and then keep the temperature difference between the evaporator coil and the evaporator fins within the first preset temperature difference range, and avoid excessive temperature differences between the evaporator coil and evaporator fins. abbreviated.
  • an embodiment of the present disclosure provides another method for self-cleaning of an air conditioner, including:
  • the air conditioner determines the temperature difference K between the evaporator coil and the evaporator fins.
  • the air conditioner adjusts the frequency of the compressor and the discharge temperature according to K, so that K is in the first preset temperature difference interval.
  • the air conditioner determines the temperature change speed S of the evaporator coil.
  • the air conditioner adjusts the frequency of the compressor and the discharge temperature according to S, so that S is in the first preset temperature change speed range.
  • the air conditioner self-cleaning method can adjust the frequency of the compressor and the exhaust temperature according to the temperature difference K between the evaporator coil and the evaporator fin during the self-cleaning process of the air conditioner, thereby preventing the temperature of the refrigerant in the evaporator from falling or rising too fast, so that the temperature difference between the evaporator coil and the evaporator fin can be kept within the first preset temperature difference interval, and the excessive temperature difference between the evaporator coil and the evaporator fin can be avoided.
  • the frequency of the compressor and the exhaust temperature are adjusted according to the temperature change speed S of the evaporator coil, so as to prevent the temperature of the refrigerant in the evaporator from falling or rising too fast, so that the temperature change speed of the evaporator coil remains within the first preset temperature change speed range, which can better avoid the sound of thermal expansion and cold contraction caused by excessive temperature change of the evaporator coil.
  • the air conditioner adjusts the frequency of the compressor and the exhaust temperature according to S, including: when S is in the second preset temperature change speed range (0, S 1 ], the air conditioner increases the frequency of the compressor and keeps the discharge temperature of the compressor constant. Or, when S is in the first preset temperature change speed interval (S 1 , S 2 ], the air conditioner keeps the frequency of the compressor constant and the discharge temperature of the compressor constant. Or, when S is in the third preset temperature change speed interval (S 2 , + ⁇ ), the air conditioner adjusts the compressor frequency and discharge temperature according to S. Among them, S 1 ⁇ S 2 .
  • the frequency of the compressor and the exhaust gas temperature are adjusted according to the temperature change speed S of the evaporator coil, so as to prevent the temperature of the refrigerant in the evaporator from falling or rising too fast, so that the temperature change speed of the evaporator coil remains within the first preset temperature change speed range, and better avoid the sound of thermal expansion and contraction caused by excessive temperature change of the evaporator coil.
  • the air conditioner increases the frequency of the compressor, including: when S is in the second preset temperature change speed range (0, S 1 ], the air conditioner adjusts the speed v at the fourth frequency f4 Increase the frequency of the compressor.
  • the frequency of the compressor is controlled to decrease at the first frequency adjustment speed, and the frequency of the compressor and the exhaust temperature can be better adjusted according to the speed S of the temperature change of the evaporator coil, so as to better prevent the temperature of the refrigerant in the evaporator from falling or rising too fast, and then keep the temperature change speed of the evaporator coil within the first preset temperature change speed range, and can better avoid the sound of thermal expansion and contraction caused by excessive temperature change of the evaporator coil.
  • the air conditioner reduces the frequency of the compressor and the discharge temperature according to S, including: when S is in the fourth preset temperature change speed range (S 2 , S 3 ], the air conditioner adjusts the speed v at the fourth frequency f4 Reduce the frequency of the compressor and adjust the speed v at the fourth temperature T4 Reduce compressor discharge temperature. Or, when S is in the fifth preset temperature change speed interval (S 3 , S 4 ], the air conditioner adjusts the speed v at the fifth frequency f5 Reduce the frequency of the compressor and adjust the speed v at the fifth temperature T5 Reduce compressor discharge temperature.
  • the air conditioner adjusts the speed v at the sixth frequency f6 Reduce the frequency of the compressor and adjust the speed v at the sixth temperature T6 Reduce compressor discharge temperature.
  • the frequency of the compressor and the exhaust temperature can be better adjusted according to the temperature change speed S of the evaporator coil, thereby preventing the temperature of the refrigerant in the evaporator from falling or rising too fast, so that the temperature change speed of the evaporator coil is kept within the first preset temperature change speed range, and better avoiding the thermal expansion and cold contraction sound caused by the excessive temperature change speed of the evaporator coil.
  • the value range of S 1 is [0.5°C/3s, 2°C/3s].
  • the value of S 1 may be 0.5°C/3s, 1°C/3s or 2°C/3s.
  • the interval ranges of the first preset temperature change speed interval and the second preset temperature change speed interval can be better determined, thereby better avoiding thermal expansion and contraction sounds caused by excessive temperature change speed of the evaporator coil.
  • the value range of S 2 is [3°C/3s, 5°C/3s]. Specifically, the value of S 2 may be 3°C/3s, 4°C/3s or 5°C/3s. In this way, by limiting the value of S2 , the ranges of the first preset temperature change speed interval, the third preset temperature change speed interval, and the fourth preset temperature change speed interval can be better determined, thereby better avoiding the sound of heat expansion and cold contraction caused by excessive temperature change speed of the evaporator coil.
  • the value range of S 3 is [6°C/3s, 8°C/3s]. Specifically, the value of S 3 may be 6°C/3s, 7°C/3s or 8°C/3s. In this way, by limiting the value of S3 , the interval ranges of the fourth preset temperature change speed interval and the fifth preset temperature change speed interval can be better determined, so as to better avoid the thermal expansion and contraction sound caused by the excessive temperature change speed of the evaporator coil.
  • the value range of S 4 is [9°C/3s, 11°C/3s]. Specifically, the value of S 4 may be 9°C/3s, 10°C/3s or 11°C/3s. In this way, by limiting the value of S4 , the ranges of the fifth preset temperature change speed interval and the sixth preset temperature change speed interval can be better determined, thereby better avoiding thermal expansion and contraction sounds caused by excessive temperature change speed of the evaporator coil.
  • the value range of v f4 is [1Hz/10s, 2Hz/10s].
  • the value of v f4 may be 1 Hz/10s, 1.5 Hz/10s or 2 Hz/10s.
  • the fourth frequency adjustment speed can be better determined, so that the frequency of the compressor can be better adjusted according to the temperature change speed of the evaporator coil, thereby better avoiding thermal expansion and cold contraction sounds caused by excessive temperature change of the evaporator coil.
  • the value range of v f5 is [2Hz/10s, 3Hz/10s].
  • the value of v f5 may be 2Hz/10s, 2.5Hz/10s or 2Hz/10s.
  • the fifth frequency adjustment speed can be better determined, so that the frequency of the compressor can be better adjusted according to the temperature change speed of the evaporator coil, and then the sound of thermal expansion and contraction caused by excessive temperature change of the evaporator coil can be better avoided.
  • the value range of v f6 is [3Hz/10s, 4Hz/10s].
  • the value of v f6 may be 3Hz/10s, 3.5Hz/10s or 4Hz/10s.
  • the sixth frequency adjustment speed can be better determined, so as to better adjust the frequency of the compressor according to the temperature change speed of the evaporator coil, thereby better avoiding thermal expansion and cold contraction sounds caused by excessive temperature change of the evaporator coil.
  • the value range of v T4 is [1°C/10s, 2°C/10s].
  • the value of v T4 may be 1°C/10s, 1.5°C/10s or 2°C/10s.
  • the fourth temperature adjustment speed can be better determined, so that the discharge temperature of the compressor can be better adjusted according to the temperature change speed of the evaporator coil, thereby better avoiding the sound of heat expansion and cold contraction caused by excessive temperature change of the evaporator coil.
  • the value range of v T5 is [2°C/10s, 3°C/10s].
  • the value of v T5 may be 2°C/10s, 2.5°C/10s or 3°C/10s.
  • the fifth temperature adjustment speed can be better determined, so that the discharge temperature of the compressor can be better adjusted according to the temperature change speed of the evaporator coil, thereby better avoiding the thermal expansion and cold contraction sound caused by the excessive speed of the evaporator coil temperature change.
  • the value range of v T6 is [3°C/10s, 4°C/10s].
  • the value of v T6 may be 3°C/10s, 3.5°C/10s or 4°C/10s.
  • the sixth temperature adjustment speed can be better determined, so that the discharge temperature of the compressor can be better adjusted according to the temperature change speed of the evaporator coil, and thus the sound of thermal expansion and contraction caused by excessive temperature change of the evaporator coil can be better avoided.
  • an embodiment of the present disclosure provides another method for self-cleaning of an air conditioner, including:
  • the air conditioner determines the temperature difference K between the evaporator coil and the evaporator fins.
  • the air conditioner adjusts the frequency of the compressor and the exhaust temperature according to K, and the air conditioner adjusts the wind speed of the external fan according to K, so that K is in the first preset temperature difference interval.
  • the frequency of the compressor, the exhaust temperature, and the wind speed of the external fan can be adjusted according to the temperature difference K between the evaporator coil and the evaporator fins, thereby preventing the temperature of the refrigerant in the evaporator from falling or rising too fast, so that the temperature difference between the evaporator coil and the evaporator fins can be kept within the first preset temperature difference interval, and the excessive temperature difference between the evaporator coil and the evaporator fins can prevent thermal expansion and cold contraction.
  • the air conditioner adjusts the wind speed of the external fan according to K, including: when K is in the second preset temperature difference interval (- ⁇ , K 1 ] or the first preset temperature difference interval (K 1 , K 2 ], the air conditioner keeps the wind speed of the external fan constant. Or, when K is in the third preset temperature difference interval (K 2 , + ⁇ ), the air conditioner reduces the wind speed of the external fan to the first preset wind speed v 1 .
  • the frequency of the compressor, the exhaust temperature, and the wind speed of the external fan can be better adjusted according to the temperature difference K between the evaporator coil and the evaporator fins, so as to prevent the temperature of the refrigerant in the evaporator from falling or rising too fast, so that the temperature difference between the evaporator coil and the evaporator fins can be kept within the first preset temperature difference interval, and the sound of thermal expansion and contraction can be avoided due to the excessive temperature difference between the evaporator coil and evaporator fins.
  • the value range of v 1 is [10r/min, 50r/min]. Specifically, the value of v 1 may be 10r/min, 20r/min, 30r/min, 40r/min or 50r/min. In this way, by limiting the value of v1 , the first preset wind speed can be better determined, so that the wind speed of the external fan can be better adjusted according to the temperature difference K between the evaporator coil and the evaporator fins, and the sound of thermal expansion and cooling caused by excessive temperature difference between the evaporator coil and the evaporator fins can be avoided.
  • an embodiment of the present disclosure provides another method for self-cleaning of an air conditioner, including:
  • the air conditioner determines the temperature difference K between the evaporator coil and the evaporator fins.
  • the air conditioner adjusts the frequency of the compressor and the discharge temperature according to K, so that K is in the first preset temperature difference interval.
  • the air conditioner determines the temperature change speed S of the evaporator coil.
  • the air conditioner adjusts the frequency of the compressor and the exhaust temperature according to S, and the air conditioner adjusts the wind speed of the external fan according to S, so that S is in the first preset temperature change speed range.
  • the frequency of the compressor and the discharge temperature can be adjusted according to the temperature difference K between the evaporator coil and the evaporator fin, thereby preventing the temperature of the refrigerant in the evaporator from falling or rising too fast, so that the temperature difference between the evaporator coil and the evaporator fin can be kept within the first preset temperature difference interval.
  • the air conditioner adjusts the wind speed of the external fan according to S, including: when S is in the second preset temperature change speed range (0, S 1 ] or the first preset temperature change speed range (S 1 , S 2 ], the air conditioner keeps the wind speed of the external fan constant. Or, when S is in the third preset temperature change speed interval (S 2 , + ⁇ ), the air conditioner reduces the wind speed of the external fan to the second preset wind speed v 2 .
  • the frequency of the compressor, the exhaust temperature, and the wind speed of the external fan can be better adjusted according to the temperature change speed of the evaporator coil, thereby preventing the temperature of the refrigerant in the evaporator from falling or rising too fast, so that the temperature change speed of the evaporator coil can be kept within the first preset temperature change speed range, and the sound of heat expansion and contraction caused by excessive temperature change of the evaporator coil can be avoided.
  • the value range of v 2 is [10r/min, 50r/min].
  • the value of v 2 may be 10r/min, 20r/min, 30r/min, 40r/min or 50r/min.
  • the second preset wind speed can be better determined, so that the wind speed of the external fan can be better adjusted according to the temperature change speed of the evaporator coil, and the sound of thermal expansion and contraction caused by excessive temperature change of the evaporator coil can be avoided.
  • an embodiment of the present disclosure provides another method for self-cleaning of an air conditioner, including:
  • the air conditioner determines the temperature difference K between the evaporator coil and the evaporator fins.
  • the air conditioner adjusts the frequency of the compressor and the exhaust temperature according to K, and the air conditioner adjusts the wind speed of the external fan according to K, so that K is in the first preset temperature difference interval.
  • the air conditioner determines the temperature change speed S of the evaporator coil.
  • the air conditioner adjusts the frequency of the compressor and the exhaust temperature according to S, and the air conditioner adjusts the wind speed of the external fan according to S, so that S is in the first preset temperature change speed range.
  • the frequency of the compressor, the exhaust temperature, and the wind speed of the external fan can be adjusted according to the temperature difference K between the evaporator coil and the evaporator fins, so as to prevent the temperature of the refrigerant in the evaporator from falling or rising too fast, so that the temperature difference between the evaporator coil and the evaporator fins can be kept within the first preset temperature difference range.
  • the frequency of the compressor, the exhaust temperature, and the wind speed of the external fan are adjusted according to the temperature change speed S of the evaporator coil, so as to prevent the temperature of the refrigerant in the evaporator from falling or rising too fast, so that the temperature change speed of the evaporator coil remains within the first preset temperature change speed range.
  • the excessive temperature difference between the evaporator coil and the evaporator fin can better avoid the sound of thermal expansion and contraction.
  • an embodiment of the present disclosure provides a self-cleaning device for an air conditioner, including a processor (processor) 100 and a memory (memory) 101 .
  • the device may also include a communication interface (Communication Interface) 102 and a bus 103.
  • Communication interface 102 may be used for information transfer.
  • the processor 100 can call the logic instructions in the memory 101 to execute the method for self-cleaning of the air conditioner in the above embodiments.
  • the above logic instructions in the memory 101 may be implemented in the form of software functional units and may be stored in a computer-readable storage medium when sold or used as an independent product.
  • the memory 101 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 100 executes the program instructions/modules stored in the memory 101 to execute functional applications and data processing, ie to implement the method for self-cleaning of the air conditioner in the above embodiments.
  • the memory 101 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal device, and the like.
  • the memory 101 may include a high-speed random access memory, and may also include a non-volatile memory.
  • An embodiment of the present disclosure provides an air conditioner, including the above-mentioned device for self-cleaning the air conditioner.
  • An embodiment of the present disclosure provides a computer-readable storage medium, which stores computer-executable instructions, and the computer-executable instructions are configured to execute the above-mentioned method for self-cleaning of an air conditioner.
  • An embodiment of the present disclosure provides a computer program product, the computer program product includes a computer program stored on a computer-readable storage medium, the computer program includes program instructions, and when the program instructions are executed by a computer, the computer is made to execute the above-mentioned method for self-cleaning of an air conditioner.
  • the above-mentioned computer-readable storage medium may be a transitory computer-readable storage medium, or a non-transitory computer-readable storage medium.
  • the technical solutions of the embodiments of the present disclosure may be embodied in the form of software products, the computer software products are stored in a storage medium, and include one or more instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) to execute all or part of the steps of the method described in the embodiments of the present disclosure.
  • the aforementioned storage medium can be a non-transitory storage medium, including: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc and other media that can store program codes, and can also be transient storage media.
  • the term “and/or” as used in this application is meant to include any and all possible combinations of one or more of the associated listed ones.
  • the term “comprise” and its variants “comprises” and/or comprising (comprising) and the like refer to the presence of stated features, integers, steps, operations, elements, and/or components, but do not exclude the existence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups of these.
  • an element defined by the phrase “comprising a " does not exclude the presence of additional identical elements in the process, method or apparatus comprising said element.
  • each embodiment may focus on the differences from other embodiments, and reference may be made to each other for the same and similar parts of the various embodiments.
  • the relevant part can refer to the description of the method part.
  • the disclosed methods and products can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may be only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or integrated into another system, or some features may be ignored or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • each functional unit in the embodiments of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • each block in the flowchart or block diagram may represent a module, program segment, or a portion of code that includes one or more executable instructions for implementing specified logical functions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请涉及智能家电技术领域,公开一种用于空调器自清洁的方法,包括:确定蒸发器盘管和蒸发器翅片的温差K;根据K调节压缩机的频率和排气温度,以使K处于第一预设温差区间。该方法在空调器进行自清洁过程中,根据蒸发器盘管和蒸发器翅片的温差K调节压缩机的频率和排气温度,从而防止蒸发器内冷媒温度下降或上升速度过快,进而使蒸发器盘管和蒸发器翅片的温差保持在第一预设温差区间内,避免蒸发器盘管和蒸发器翅片的温度差异过大导致发出热胀冷缩音。本申请还公开一种用于空调器自清洁的装置及空调器。

Description

用于空调器自清洁的方法及装置、空调器
本申请基于申请号为202210061334.4、申请日为2022年1月19日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及智能家电技术领域,例如涉及一种用于空调器自清洁的方法及装置、空调器。
背景技术
目前,为了解决人工清洗空调器造成的清洗周期长、人工成本高等问题,空调器进行自清洁以代替人工清洗的需求随之而来。
现有一种空调的自清洁控制方法,包括如下步骤:控制空调进入自清洁模式;检测当前室外环境温度T外或当前外盘管温度T外盘,以及当前室内环境温度T内,并根据当前室外环境温度T外或当前外盘管温度T外盘,以及当前室内环境温度T内设置内盘管第一预设温度T内盘1和内盘管第二预设温度T内盘2,内盘管温度T内盘按照内盘管第一预设温度T内盘1运行后,控制内风机停止运转,计算内盘管降温速率α,根据内盘管降温速率α调节压缩机频率以及电子膨胀阀的开度;当内盘管温度T内盘达到内盘管第一预设温度T内盘1后,内盘管温度T内盘继续按照内盘管第二预设温度T内盘2运行,并控制外风机停止运转并控制电子膨胀阀的开度调至最大,计算内盘管升温速率β,根据内盘管升温速率β调节内风机的转速。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
空调器进行自清洁过程中,易发出热胀冷缩音。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于空调器自清洁的方法及装置、空调器,以避免空调器进行自清洁过程中发出热胀冷缩音。
在一些实施例中,所述方法包括:
确定蒸发器盘管和蒸发器翅片的温差K;
根据K调节压缩机的频率和排气温度,以使K处于第一预设温差区间。
在一些实施例中,所述装置包括处理器和存储有程序指令的存储器,所述处理器被配置为在运行所述程序指令时,执行上述的用于空调器自清洁的方法。
在一些实施例中,所述空调器包括:上述的用于空调器自清洁的装置。
本公开实施例提供的用于空调器自清洁的方法及装置、空调器,可以实现以下技术效果:
在空调器进行自清洁过程中,根据蒸发器盘管和蒸发器翅片的温差K调节压缩机的频率和排气温度,从而防止蒸发器内冷媒温度下降或上升速度过快,进而使蒸发器盘管和蒸发器翅片的温差保持在第一预设温差区间内,避免蒸发器盘管和蒸发器翅片的温度差异过大导致发出热胀冷缩音。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一个空调器的部分结构示意图;
图2是本公开实施例提供的另一个空调器的部分结构示意图;
图3是本公开实施例提供的一个用于空调器自清洁的方法的示意图;
图4是本公开实施例提供的另一个用于空调器自清洁的方法的示意图;
图5是本公开实施例提供的另一个用于空调器自清洁的方法的示意图;
图6是本公开实施例提供的另一个用于空调器自清洁的方法的示意图;
图7是本公开实施例提供的另一个用于空调器自清洁的方法的示意图;
图8是本公开实施例提供的一个用于空调器自清洁的装置的示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。 然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
术语“对应”可以指的是一种关联关系或绑定关系,A与B相对应指的是A与B之间是一种关联关系或绑定关系。
结合图1、图2所示,本公开实施例提供一种空调器,包括蒸发器5、贯流风扇6、蒸发器温度传感器4、风机6、电辅热装置2、步进电机3、导板7。蒸发器,上方设置有进风处1。蒸发器温度传感器4,设置于蒸发器5的翅片上。电辅热装置2,设置于蒸发器5下方。风机6,设置于电辅热装置2下方。步进电机3,与导板7连接,设置于蒸发器5和风机6下方。
可选地,蒸发器5包括分流管路7、蒸发器盘管温度传感器8和进出液管9。蒸发器盘管温度传感器8,设置于分流管路7的一侧,用于检测蒸发器盘管温度。分流管路7,与进出液管9连通。
结合图3所示,本公开实施例提供一种用于空调器自清洁的方法,包括:
S301,空调器确定蒸发器盘管和蒸发器翅片的温差K。
S302,空调器根据K调节压缩机的频率和排气温度,以使K处于第一预设温差区间。
采用本公开实施例提供的用于空调器自清洁的方法,能在空调器进行自清洁过程中,根据蒸发器盘管和蒸发器翅片的温差K调节压缩机的频率和排气温度,从而防止蒸发器内冷媒温度下降或上升速度过快,进而使蒸发器盘管和蒸发器翅片的温差保持在第一预设温差区间内,避免蒸发器盘管和蒸发器翅片的温度差异过大导致发出热胀冷缩音。
可选地,空调器根据K调节压缩机的频率和排气温度,包括:在K处于第二预设温差区间(-∞,K 1]的情况下,空调器提高压缩机的频率且保持压缩机的排气温度不变。或者,在K处于第一预设温差区间(K 1,K 2]的情况下,空调器保持压缩机的频率不变且保持压缩机的排气温度不变。或者,在K处于第三预设温差区间(K 2,+∞)的情况下,空调器根据K 降低压缩机的频率和排气温度。其中,K 1<K 2。这样,能更好地根据蒸发器盘管和蒸发器翅片的温差K的大小调节压缩机的频率和排气温度,从而更好地防止蒸发器内冷媒温度下降或上升速度过快,进而使蒸发器盘管和蒸发器翅片的温差保持在第一预设温差区间内,避免蒸发器盘管和蒸发器翅片的温度差异过大导致发出热胀冷缩音。
可选地,在K处于第二预设温差区间(-∞,K 1]的情况下,空调器提高压缩机的频率,包括:在K处于第二预设温差区间(-∞,K 1]的情况下,空调器以第一频率调节速度v f1提高压缩机的频率。这样,控制压缩机的频率以第一频率调节速度降低,能更好地根据蒸发器盘管和蒸发器翅片的温差K的大小调节压缩机的频率和排气温度,从而更好地防止蒸发器内冷媒温度下降或上升速度过快,进而使蒸发器盘管和蒸发器翅片的温差保持在第一预设温差区间内,避免蒸发器盘管和蒸发器翅片的温度差异过大导致发出热胀冷缩音。
可选地,空调器根据K降低压缩机的频率和排气温度,包括:在K处于第四预设温差区间(K 2,K 3]的情况下,空调器以第一频率调节速度v f1降低压缩机的频率且以第一温度调节速度v T1降低压缩机的排气温度。或者,在K处于第五预设温差区间(K 3,K 4]的情况下,空调器以第二频率调节速度v f2降低压缩机的频率且以第二温度调节速度v T2降低压缩机的排气温度。或者,在K处于第六预设温差区间(K 4,+∞)的情况下,空调器以第三频率调节速度v f3降低压缩机的频率且以第三温度调节速度v T3降低压缩机的排气温度。其中,K 2<K 3<K 4,v f1≤v f2≤v f3,v T1≤v T2≤v T3。这样,在蒸发器盘管和蒸发器翅片的温差处于第三预设温差区间的情况下,根据K值控制压缩机的频率和排气温度以不同的速度降低,能更好地根据蒸发器盘管和蒸发器翅片的温差K的大小调节压缩机的频率和排气温度,从而更好地防止蒸发器内冷媒温度下降或上升速度过快,进而使蒸发器盘管和蒸发器翅片的温差保持在第一预设温差区间内,避免蒸发器盘管和蒸发器翅片的温度差异过大导致发出热胀冷缩音。
可选地,K 1的取值范围为[-1℃,1℃]。具体地,K 1的取值可以是-1℃、0℃或1℃。这样,通过限定K 1的取值,可以更好地确定第一预设温差区间和第二预设温差区间的区间范围,从而更好地根据蒸发器盘管和蒸发器翅片的温差K的大小调节压缩机的频率和排气温度,从而更好地防止蒸发器内冷媒温度下降或上升速度过快,进而使蒸发器盘管和蒸发器翅片的温差保持在第一预设温差区间内,避免蒸发器盘管和蒸发器翅片的温度差异过大导致发出热胀冷缩音。
可选地,K 2的取值范围为[2℃,4℃]。具体地,K 2的取值可以是2℃、3℃或4℃。这样,通过限定K 2的取值,可以更好地确定第一预设温差区间、第三预设温差区间、第四预设温差区间的区间范围,从而更好地根据蒸发器盘管和蒸发器翅片的温差K的大小调节压 缩机的频率和排气温度,从而更好地防止蒸发器内冷媒温度下降或上升速度过快,进而使蒸发器盘管和蒸发器翅片的温差保持在第一预设温差区间内,避免蒸发器盘管和蒸发器翅片的温度差异过大导致发出热胀冷缩音。
可选地,K 3的取值范围为[5℃,7℃]。具体地,K 3的取值可以是5℃、6℃或7℃。这样,通过限定K 3的取值,可以更好地确定第四预设温差区间、第五预设温差区间的区间范围,从而更好地根据K值控制压缩机的频率和排气温度以不同的速度降低,更好地根据蒸发器盘管和蒸发器翅片的温差K的大小调节压缩机的频率和排气温度,从而更好地防止蒸发器内冷媒温度下降或上升速度过快,进而使蒸发器盘管和蒸发器翅片的温差保持在第一预设温差区间内,避免蒸发器盘管和蒸发器翅片的温度差异过大导致发出热胀冷缩音。
可选地,K 4的取值范围为[8℃,10℃]。具体地,K 4的取值可以是8℃、9℃或10℃。这样,通过限定K 3的取值,可以更好地确定第五预设温差区间、第六预设温差区间的区间范围,从而更好地根据K值控制压缩机的频率和排气温度以不同的速度降低,更好地根据蒸发器盘管和蒸发器翅片的温差K的大小调节压缩机的频率和排气温度,从而更好地防止蒸发器内冷媒温度下降或上升速度过快,进而使蒸发器盘管和蒸发器翅片的温差保持在第一预设温差区间内,避免蒸发器盘管和蒸发器翅片的温度差异过大导致发出热胀冷缩音。
可选地,v f1的取值范围为[1Hz/10s,2Hz/10s]。具体地,v f1的取值可以是1Hz/10s、1.5Hz/10s或2Hz/10s。这样,通过限定v f1的取值,可以更好地确定第一频率调节速度,从而更好地根据K值控制压缩机的频率以不同的速度降低,更好地根据蒸发器盘管和蒸发器翅片的温差K的大小调节压缩机的频率和排气温度,从而更好地防止蒸发器内冷媒温度下降或上升速度过快,进而使蒸发器盘管和蒸发器翅片的温差保持在第一预设温差区间内,避免蒸发器盘管和蒸发器翅片的温度差异过大导致发出热胀冷缩音。
可选地,v f2的取值范围为[2Hz/10s,3Hz/10s]。具体地,v f2的取值可以是2Hz/10s、2.5Hz/10s或2Hz/10s。这样,通过限定v f2的取值,可以更好地确定第二频率调节速度,从而更好地根据K值控制压缩机的频率以不同的速度降低,更好地根据蒸发器盘管和蒸发器翅片的温差K的大小调节压缩机的频率和排气温度,从而更好地防止蒸发器内冷媒温度下降或上升速度过快,进而使蒸发器盘管和蒸发器翅片的温差保持在第一预设温差区间内,避免蒸发器盘管和蒸发器翅片的温度差异过大导致发出热胀冷缩音。
可选地,v f3的取值范围为[3Hz/10s,4Hz/10s]。具体地,v f3的取值可以是3Hz/10s、3.5Hz/10s或4Hz/10s。这样,通过限定v f3的取值,可以更好地确定第三频率调节速度,从而更好地根据K值控制压缩机的频率以不同的速度降低,更好地根据蒸发器盘管和蒸发器翅片的温差K的大小调节压缩机的频率和排气温度,从而更好地防止蒸发器内冷媒温度下 降或上升速度过快,进而使蒸发器盘管和蒸发器翅片的温差保持在第一预设温差区间内,避免蒸发器盘管和蒸发器翅片的温度差异过大导致发出热胀冷缩音。
可选地,v T1的取值范围为[1℃/10s,2℃/10s]。具体地,v T1的取值可以是1℃/10s、1.5℃/10s或2℃/10s。这样,通过限定v T1的取值,可以更好地确定第一温度调节速度,从而更好地根据K值控制压缩机的排气温度以不同的速度降低,更好地根据蒸发器盘管和蒸发器翅片的温差K的大小调节压缩机的频率和排气温度,从而更好地防止蒸发器内冷媒温度下降或上升速度过快,进而使蒸发器盘管和蒸发器翅片的温差保持在第一预设温差区间内,避免蒸发器盘管和蒸发器翅片的温度差异过大导致发出热胀冷缩音。
可选地,v T2的取值范围为[2℃/10s,3℃/10s]。具体地,v T2的取值可以是2℃/10s、2.5℃/10s或3℃/10s。这样,通过限定v T2取值,可以更好地确定第二温度调节速度,从而更好地根据K值控制压缩机的排气温度以不同的速度降低,更好地根据蒸发器盘管和蒸发器翅片的温差K的大小调节压缩机的频率和排气温度,从而更好地防止蒸发器内冷媒温度下降或上升速度过快,进而使蒸发器盘管和蒸发器翅片的温差保持在第一预设温差区间内,避免蒸发器盘管和蒸发器翅片的温度差异过大导致发出热胀冷缩音。
可选地,v T3的取值范围为[3℃/10s,4℃/10s]。具体地,v T3的取值可以是3℃/10s、3.5℃/10s或4℃/10s。这样,通过限定v T3取值,可以更好地确定第三温度调节速度,从而更好地根据K值控制压缩机的排气温度以不同的速度降低,更好地根据蒸发器盘管和蒸发器翅片的温差K的大小调节压缩机的频率和排气温度,从而更好地防止蒸发器内冷媒温度下降或上升速度过快,进而使蒸发器盘管和蒸发器翅片的温差保持在第一预设温差区间内,避免蒸发器盘管和蒸发器翅片的温度差异过大导致发出热胀冷缩音。
结合图4所示,本公开实施例提供另一种用于空调器自清洁的方法,包括:
S401,空调器确定蒸发器盘管和蒸发器翅片的温差K。
S402,空调器根据K调节压缩机的频率和排气温度,以使K处于第一预设温差区间。
S403,空调器确定蒸发器盘管温度变化速度S。
S404,空调器根据S调节压缩机的频率和排气温度,以使S处于第一预设温度变化速度区间。
采用本公开实施例提供的用于空调器自清洁的方法,能在空调器进行自清洁过程中,根据蒸发器盘管和蒸发器翅片的温差K调节压缩机的频率和排气温度,从而防止蒸发器内冷媒温度下降或上升速度过快,从而使蒸发器盘管和蒸发器翅片的温差保持在第一预设温差区间内,能更好地避免蒸发器盘管和蒸发器翅片的温度差异过大导致发出热胀冷缩音。并且,根据蒸发器盘管温度变化速度S调节压缩机的频率和排气温度,从而防止蒸发器内 冷媒温度下降或上升速度过快,从而使蒸发器盘管温度变化速度保持在第一预设温度变化速度区间内,能更好地避免蒸发器盘管温度变化速度过大导致发出热胀冷缩音。
可选地,空调器根据S调节压缩机的频率和排气温度,包括:在S处于第二预设温度变化速度区间(0,S 1]的情况下,空调器提高压缩机的频率且保持压缩机的排气温度不变。或者,在S处于第一预设温度变化速度区间(S 1,S 2]的情况下,空调器保持压缩机的频率不变且保持压缩机的排气温度不变。或者,在S处于第三预设温度变化速度区间(S 2,+∞)的情况下,空调器根据S调节压缩机的频率和排气温度。其中,S 1<S 2。这样,根据蒸发器盘管温度变化速度S的大小调节压缩机的频率和排气温度,从而防止蒸发器内冷媒温度下降或上升速度过快,从而使蒸发器盘管温度变化速度保持在第一预设温度变化速度区间内,更好地避免蒸发器盘管温度变化速度过大导致发出热胀冷缩音。
可选地,在S处于第二预设温度变化速度区间(0,S 1]的情况下,空调器提高压缩机的频率,包括:在S处于第二预设温度变化速度区间(0,S 1]的情况下,空调器以第四频率调节速度v f4提高压缩机的频率。这样,控制压缩机的频率以第一频率调节速度降低,能更好地根据蒸发器盘管温度变化速度S的大小调节压缩机的频率和排气温度,从而更好地防止蒸发器内冷媒温度下降或上升速度过快,进而使蒸发器盘管温度变化速度保持在第一预设温度变化速度区间内,能更好地避免蒸发器盘管温度变化速度过大导致发出热胀冷缩音。
可选地,空调器根据S降低压缩机的频率和排气温度,包括:在S处于第四预设温度变化速度区间(S 2,S 3]的情况下,空调器以第四频率调节速度v f4降低压缩机的频率且以第四温度调节速度v T4降低压缩机的排气温度。或者,在S处于第五预设温度变化速度区间(S 3,S 4]的情况下,空调器以第五频率调节速度v f5降低压缩机的频率且以第五温度调节速度v T5降低压缩机的排气温度。或者,在S处于第六预设温度变化速度区间(S 4,+∞)的情况下,空调器以第六频率调节速度v f6降低压缩机的频率且以第六温度调节速度v T6降低压缩机的排气温度。其中,S 2<S 3<S 4,v f4≤v f5<v f6,v T4≤v T5≤v T6。这样,在蒸发器盘管温度变化速度的大小处于第三预设温度变化速度区间的情况下,能更好地根据蒸发器盘管温度变化速度S调节压缩机的频率和排气温度,从而防止蒸发器内冷媒温度下降或上升速度过快,从而使蒸发器盘管温度变化速度保持在第一预设温度变化速度区间内,更好地避免蒸发器盘管温度变化速度过大导致发出热胀冷缩音。
可选地,S 1的取值范围为[0.5℃/3s,2℃/3s]。具体地,S 1的取值可以是0.5℃/3s、1℃/3s或2℃/3s。这样,通过限定S 1的取值,可以更好地确定第一预设温度变化速度区间和第二预设温度变化速度区间的区间范围,从而更好地避免蒸发器盘管温度变化速度过大导致发出热胀冷缩音。
可选地,S 2的取值范围为[3℃/3s,5℃/3s]。具体地,S 2的取值可以是3℃/3s、4℃/3s或5℃/3s。这样,通过限定S 2的取值,可以更好地确定第一预设温度变化速度区间、第三预设温度变化速度区间、第四预设温度变化速度区间的区间范围,从而更好地避免蒸发器盘管温度变化速度过大导致发出热胀冷缩音。
可选地,S 3的取值范围为[6℃/3s,8℃/3s]。具体地,S 3的取值可以是6℃/3s、7℃/3s或8℃/3s。这样,通过限定S 3的取值,可以更好地确定第四预设温度变化速度区间、第五预设温度变化速度区间的区间范围,从而更好地避免蒸发器盘管温度变化速度过大导致发出热胀冷缩音。
可选地,S 4的取值范围为[9℃/3s,11℃/3s]。具体地,S 4的取值可以是9℃/3s、10℃/3s或11℃/3s。这样,通过限定S 4的取值,可以更好地确定第五预设温度变化速度区间、第六预设温度变化速度区间的区间范围,从而更好地避免蒸发器盘管温度变化速度过大导致发出热胀冷缩音。
可选地,v f4的取值范围为[1Hz/10s,2Hz/10s]。具体地,v f4的取值可以是1Hz/10s、1.5Hz/10s或2Hz/10s。这样,通过限定v f4的取值,可以更好地确定第四频率调节速度,从而更好地根据蒸发器盘管温度变化速度调节压缩机的频率,进而更好地避免蒸发器盘管温度变化速度过大导致发出热胀冷缩音。
可选地,v f5的取值范围为[2Hz/10s,3Hz/10s]。具体地,v f5的取值可以是2Hz/10s、2.5Hz/10s或2Hz/10s。这样,通过限定v f5的取值,可以更好地确定第五频率调节速度,从而更好地根据蒸发器盘管温度变化速度调节压缩机的频率,进而更好地避免蒸发器盘管温度变化速度过大导致发出热胀冷缩音。
可选地,v f6的取值范围为[3Hz/10s,4Hz/10s]。具体地,v f6的取值可以是3Hz/10s、3.5Hz/10s或4Hz/10s。这样,通过限定v f6的取值,可以更好地确定第六频率调节速度,从而更好地根据蒸发器盘管温度变化速度调节压缩机的频率,进而更好地避免蒸发器盘管温度变化速度过大导致发出热胀冷缩音。
可选地,v T4的取值范围为[1℃/10s,2℃/10s]。具体地,v T4的取值可以是1℃/10s、1.5℃/10s或2℃/10s。这样,通过限定v T4的取值,可以更好地确定第四温度调节速度,从而更好地根据蒸发器盘管温度变化速度调节压缩机的排气温度,进而更好地避免蒸发器盘管温度变化速度过大导致发出热胀冷缩音。
可选地,v T5的取值范围为[2℃/10s,3℃/10s]。具体地,v T5的取值可以是2℃/10s、2.5℃/10s或3℃/10s。这样,通过限定v T5的取值,可以更好地确定第五温度调节速度,从而更好地根据蒸发器盘管温度变化速度调节压缩机的排气温度,进而更好地避免蒸发器盘管温 度变化速度过大导致发出热胀冷缩音。
可选地,v T6的取值范围为[3℃/10s,4℃/10s]。具体地,v T6的取值可以是3℃/10s、3.5℃/10s或4℃/10s。这样,通过限定v T6的取值,可以更好地确定第六温度调节速度,从而更好地根据蒸发器盘管温度变化速度调节压缩机的排气温度,进而更好地避免蒸发器盘管温度变化速度过大导致发出热胀冷缩音。
结合图5所示,本公开实施例提供另一种用于空调器自清洁的方法,包括:
S501,空调器确定蒸发器盘管和蒸发器翅片的温差K。
S502,空调器根据K调节压缩机的频率和排气温度,并,空调器根据K调节外风机风速,以使K处于第一预设温差区间。
采用本公开实施例提供的用于空调器自清洁的方法,能在空调器进行自清洁过程中,根据蒸发器盘管和蒸发器翅片的温差K调节压缩机的频率、排气温度、外风机风速,从而防止蒸发器内冷媒温度下降或上升速度过快,从而使蒸发器盘管和蒸发器翅片的温差保持在第一预设温差区间内,避免蒸发器盘管和蒸发器翅片的温度差异过大导致发出热胀冷缩音。
可选地,空调器根据K调节外风机风速,包括:在K处于第二预设温差区间(-∞,K 1]或第一预设温差区间(K 1,K 2]的情况下,空调器保持外风机风速不变。或者,在K处于第三预设温差区间(K 2,+∞)的情况下,空调器降低外风机风速至第一预设风速v 1。这样,更好地根据蒸发器盘管和蒸发器翅片的温差K的大小调节压缩机的频率、排气温度、外风机风速,从而防止蒸发器内冷媒温度下降或上升速度过快,从而使蒸发器盘管和蒸发器翅片的温差保持在第一预设温差区间内,避免蒸发器盘管和蒸发器翅片的温度差异过大导致发出热胀冷缩音。
可选地,v 1的取值范围为[10r/min,50r/min]。具体地,v 1的取值可以是10r/min、20r/min、30r/min、40r/min或50r/min。这样,通过限定v 1的取值,可以更好地确定第一预设风速,从而更好地根据蒸发器盘管和蒸发器翅片的温差K调节外风机风速,避免蒸发器盘管和蒸发器翅片的温度差异过大导致发出热胀冷缩音。
结合图6所示,本公开实施例提供另一种用于空调器自清洁的方法,包括:
S601,空调器确定蒸发器盘管和蒸发器翅片的温差K。
S602,空调器根据K调节压缩机的频率和排气温度,以使K处于第一预设温差区间。
S603,空调器确定蒸发器盘管温度变化速度S。
S604,空调器根据S调节压缩机的频率和排气温度,并,空调器根据S调节外风机风速,以使S处于第一预设温度变化速度区间。
采用本公开实施例提供的用于空调器自清洁的方法,能在空调器进行自清洁过程中,根据蒸发器盘管和蒸发器翅片的温差K调节压缩机的频率和排气温度,从而防止蒸发器内冷媒温度下降或上升速度过快,从而使蒸发器盘管和蒸发器翅片的温差保持在第一预设温差区间内。并且,根据蒸发器盘管温度变化速度S调节压缩机的频率、排气温度、外风机风速,从而防止蒸发器内冷媒温度下降或上升速度过快,从而使蒸发器盘管温度变化速度保持在第一预设温度变化速度区间内。这样,能更好地避免蒸发器盘管和蒸发器翅片的温度差异过大导致发出热胀冷缩音。
可选地,空调器根据S调节外风机风速,包括:在S处于第二预设温度变化速度区间(0,S 1]或第一预设温度变化速度区间(S 1,S 2]的情况下,空调器保持外风机风速不变。或者,在S处于第三预设温度变化速度区间(S 2,+∞)的情况下,空调器降低外风机风速至第二预设风速v 2。这样,更好地根据蒸发器盘管温度变化速度的大小调节压缩机的频率、排气温度、外风机风速,从而防止蒸发器内冷媒温度下降或上升速度过快,从而使蒸发器盘管温度变化速度保持在第一预设温度变化速度区间内,避免蒸发器盘管温度变化速度过大导致发出热胀冷缩音。
可选地,v 2的取值范围为[10r/min,50r/min]。具体地,v 2的取值可以是10r/min、20r/min、30r/min、40r/min或50r/min。这样,通过限定v 2的取值,可以更好地确定第二预设风速,从而更好地根据蒸发器盘管温度变化速度调节外风机风速,避免蒸发器盘管温度变化速度过大导致发出热胀冷缩音。
结合图7所示,本公开实施例提供另一种用于空调器自清洁的方法,包括:
S701,空调器确定蒸发器盘管和蒸发器翅片的温差K。
S702,空调器根据K调节压缩机的频率和排气温度,并,空调器根据K调节外风机风速,以使K处于第一预设温差区间。
S703,空调器确定蒸发器盘管温度变化速度S。
S704,空调器根据S调节压缩机的频率和排气温度,并,空调器根据S调节外风机风速,以使S处于第一预设温度变化速度区间。
采用本公开实施例提供的用于空调器自清洁的方法,能在空调器进行自清洁过程中,根据蒸发器盘管和蒸发器翅片的温差K调节压缩机的频率、排气温度、外风机风速,从而防止蒸发器内冷媒温度下降或上升速度过快,从而使蒸发器盘管和蒸发器翅片的温差保持在第一预设温差区间内。并且,根据蒸发器盘管温度变化速度S调节压缩机的频率、排气温度、外风机风速,从而防止蒸发器内冷媒温度下降或上升速度过快,从而使蒸发器盘管温度变化速度保持在第一预设温度变化速度区间内。这样,能更好地避免蒸发器盘管和蒸 发器翅片的温度差异过大导致发出热胀冷缩音。
结合图8所示,本公开实施例提供一种用于空调器自清洁的装置,包括处理器(processor)100和存储器(memory)101。可选地,该装置还可以包括通信接口(Communication Interface)102和总线103。其中,处理器100、通信接口102、存储器101可以通过总线103完成相互间的通信。通信接口102可以用于信息传输。处理器100可以调用存储器101中的逻辑指令,以执行上述实施例的用于空调器自清洁的方法。
此外,上述的存储器101中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器101作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器100通过运行存储在存储器101中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述实施例中用于空调器自清洁的方法。
存储器101可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器101可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种空调器,包含上述的用于空调器自清洁的装置。
本公开实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述用于空调器自清洁的方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述用于空调器自清洁的方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代 表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (10)

  1. 一种用于空调器自清洁的方法,其特征在于,包括:
    确定蒸发器盘管和蒸发器翅片的温差K;
    根据K调节压缩机的频率和排气温度,以使K处于第一预设温差区间。
  2. 根据权利要求1所述的方法,其特征在于,所述根据K调节压缩机的频率和排气温度,包括:
    在K处于第二预设温差区间(-∞,K 1]的情况下,提高压缩机的频率且保持压缩机的排气温度不变;或者,
    在K处于第一预设温差区间(K 1,K 2]的情况下,保持压缩机的频率不变且保持压缩机的排气温度不变;或者,
    在K处于第三预设温差区间(K 2,+∞)的情况下,根据K降低压缩机的频率和排气温度;
    其中,K 1<K 2
  3. 根据权利要求2所述的方法,其特征在于,所述在K处于第二预设温差区间(-∞,K 1]的情况下,提高压缩机的频率,包括:
    在K处于第二预设温差区间(-∞,K 1]的情况下,以第一频率调节速度v f1提高压缩机的频率。
  4. 根据权利要求2所述的方法,其特征在于,所述根据K降低压缩机的频率和排气温度,包括:
    在K处于第四预设温差区间(K 2,K 3]的情况下,以第一频率调节速度v f1降低压缩机的频率且以第一温度调节速度v T1降低压缩机的排气温度;或者,
    在K处于第五预设温差区间(K 3,K 4]的情况下,以第二频率调节速度v f2降低压缩机的频率且以第二温度调节速度v T2降低压缩机的排气温度;或者,
    在K处于第六预设温差区间(K 4,+∞)的情况下,以第三频率调节速度v f3降低压缩机的频率且以第三温度调节速度v T3降低压缩机的排气温度;
    其中,K 2<K 3<K 4,v f1≤v f2≤v f3,v T1≤v T2≤v T3
  5. 根据权利要求1至4任一项所述的方法,其特征在于,还包括:
    确定蒸发器盘管温度变化速度S;
    根据S调节压缩机的频率和排气温度,以使S处于第一预设温度变化速度区间。
  6. 根据权利要求5所述的方法,其特征在于,所述根据S调节压缩机的频率和排气温度,包括:
    在S处于第二预设温度变化速度区间(0,S 1]的情况下,提高压缩机的频率且保持压缩机的排气温度不变;或者,
    在S处于第一预设温度变化速度区间(S 1,S 2]的情况下,保持压缩机的频率不变且保持压缩机的排气温度不变;或者,
    在S处于第三预设温度变化速度区间(S 2,+∞)的情况下,根据S降低压缩机的频率和排气温度;
    其中,S 1<S 2
  7. 根据权利要求6所述的方法,其特征在于,所述在S处于第二预设温度变化速度区间(0,S 1]的情况下,提高压缩机的频率,包括:
    在S处于第二预设温度变化速度区间(0,S 1]的情况下,以第四频率调节速度v f4提高压缩机的频率。
  8. 根据权利要求6所述的方法,其特征在于,所述根据S降低压缩机的频率和排气温度,包括:
    在S处于第四预设温度变化速度区间(S 2,S 3]的情况下,以第四频率调节速度v f4降低压缩机的频率且以第四温度调节速度v T4降低压缩机的排气温度;或者,
    在S处于第五预设温度变化速度区间(S 3,S 4]的情况下,以第五频率调节速度v f5降低压缩机的频率且以第五温度调节速度v T5降低压缩机的排气温度;或者,
    在S处于第六预设温度变化速度区间(S 4,+∞)的情况下,以第六频率调节速度v f6降低压缩机的频率且以第六温度调节速度v T6降低压缩机的排气温度;
    其中,S 2<S 3<S 4,v f4≤v f5<v f6,v T4≤v T5≤v T6
  9. 一种用于空调器自清洁的装置,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在运行所述程序指令时,执行如权利要求1至8任一项所述的用于空调器自清洁的方法。
  10. 一种空调器,其特征在于,包括如权利要求9所述的用于空调器自清洁的装置。
PCT/CN2022/122141 2022-01-19 2022-09-28 用于空调器自清洁的方法及装置、空调器 WO2023138094A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210061334.4A CN116499097A (zh) 2022-01-19 2022-01-19 用于空调器自清洁的方法及装置、空调器
CN202210061334.4 2022-01-19

Publications (1)

Publication Number Publication Date
WO2023138094A1 true WO2023138094A1 (zh) 2023-07-27

Family

ID=87317123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122141 WO2023138094A1 (zh) 2022-01-19 2022-09-28 用于空调器自清洁的方法及装置、空调器

Country Status (2)

Country Link
CN (1) CN116499097A (zh)
WO (1) WO2023138094A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151364A (ja) * 2008-12-25 2010-07-08 Panasonic Corp 空気調和機
CN204478589U (zh) * 2015-02-02 2015-07-15 宁波德业科技集团有限公司 一种空调蒸发器
CN107525221A (zh) * 2017-07-31 2017-12-29 青岛海尔空调器有限总公司 一种空调自清洁的控制方法及装置
CN110207313A (zh) * 2019-06-26 2019-09-06 广东美的制冷设备有限公司 空调器及其空调控制方法、控制装置和可读存储介质
WO2020149676A1 (ko) * 2019-01-16 2020-07-23 엘지전자 주식회사 공기조화기 및 그 제어방법
CN111457555A (zh) * 2020-04-20 2020-07-28 宁波奥克斯电气股份有限公司 空调内机、空调及自清洁方法
CN112254301A (zh) * 2020-09-30 2021-01-22 青岛海尔空调器有限总公司 用于空调控制的方法、装置及空调
CN113944982A (zh) * 2021-11-26 2022-01-18 宁波奥克斯电气股份有限公司 一种空调器的控制方法、空调器和可读存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151364A (ja) * 2008-12-25 2010-07-08 Panasonic Corp 空気調和機
CN204478589U (zh) * 2015-02-02 2015-07-15 宁波德业科技集团有限公司 一种空调蒸发器
CN107525221A (zh) * 2017-07-31 2017-12-29 青岛海尔空调器有限总公司 一种空调自清洁的控制方法及装置
WO2020149676A1 (ko) * 2019-01-16 2020-07-23 엘지전자 주식회사 공기조화기 및 그 제어방법
CN110207313A (zh) * 2019-06-26 2019-09-06 广东美的制冷设备有限公司 空调器及其空调控制方法、控制装置和可读存储介质
CN111457555A (zh) * 2020-04-20 2020-07-28 宁波奥克斯电气股份有限公司 空调内机、空调及自清洁方法
CN112254301A (zh) * 2020-09-30 2021-01-22 青岛海尔空调器有限总公司 用于空调控制的方法、装置及空调
CN113944982A (zh) * 2021-11-26 2022-01-18 宁波奥克斯电气股份有限公司 一种空调器的控制方法、空调器和可读存储介质

Also Published As

Publication number Publication date
CN116499097A (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
CN105091230B (zh) 双贯流空调器及其风机控制装置和风机控制方法
WO2021223764A1 (zh) 用于双蒸发器空调系统控制的方法及装置、空调器
CN112283893B (zh) 用于控制空调的方法、装置和空调
WO2023273333A1 (zh) 用于双蒸发器空调控制的方法、装置和双蒸发器空调
CN103868297B (zh) 一种热泵型机组
WO2020151180A1 (zh) 空调电子膨胀阀的控制方法及空调器
WO2023159918A1 (zh) 空调分流的控制方法、控制系统、电子设备和存储介质
JPH08114347A (ja) フリークーリング管理装置
US20220090803A1 (en) Integrated space conditioning and water heating systems and methods thereto
WO2023124011A1 (zh) 用于控制电子膨胀阀的方法及装置、空调、存储介质
WO2022237345A1 (zh) 用于空调控制的方法、装置和空调
US10139144B2 (en) Air conditioning apparatus
WO2023138094A1 (zh) 用于空调器自清洁的方法及装置、空调器
CN204438340U (zh) 热交换盘管及空气调节机
CN109405164A (zh) 设备及其风管机控制方法和装置
WO2022134530A1 (zh) 用于双蒸发器空调的控制方法及装置、双蒸发器空调
WO2020001091A1 (zh) 一种风机转速的控制方法、装置及计算机可读存储介质
WO2023179041A1 (zh) 用于控制变频除湿机的方法及装置、电子设备、存储介质
WO2024041302A1 (zh) 用于控制多联机空调器的方法及装置、多联机空调器
CN110470022B (zh) 用于空调除霜的控制方法及装置、空调
WO2023207162A1 (zh) 用于空调器清洁控制的方法及装置、空调器、存储介质
CN110470023B (zh) 用于空调除霜的控制方法及装置、空调
WO2022121286A1 (zh) 用于空调的控制方法、控制装置和空调室内机
CN116182369A (zh) 用于控制空调出风温度的方法及装置、空调、存储介质
WO2022247327A1 (zh) 用于空调控制的方法、装置和空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921521

Country of ref document: EP

Kind code of ref document: A1