WO2023137880A1 - 一种高强度丝蛋白纳米纤维水凝胶的制备方法 - Google Patents

一种高强度丝蛋白纳米纤维水凝胶的制备方法 Download PDF

Info

Publication number
WO2023137880A1
WO2023137880A1 PCT/CN2022/086039 CN2022086039W WO2023137880A1 WO 2023137880 A1 WO2023137880 A1 WO 2023137880A1 CN 2022086039 W CN2022086039 W CN 2022086039W WO 2023137880 A1 WO2023137880 A1 WO 2023137880A1
Authority
WO
WIPO (PCT)
Prior art keywords
silk protein
formic acid
aqueous solution
nanofiber
nanofibers
Prior art date
Application number
PCT/CN2022/086039
Other languages
English (en)
French (fr)
Inventor
吕强
张筱旖
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023137880A1 publication Critical patent/WO2023137880A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/095Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof

Definitions

  • the invention belongs to the technical field of high-strength biological materials, and in particular relates to a preparation method of high-strength silk protein nanofiber hydrogel.
  • High-strength materials Due to its excellent performance and wide application, high-strength materials have always been a research hotspot in the field of materials.
  • High-strength materials that exist in nature are mainly optimized through micro-nano-scale multilevel assembly and non-covalent interactions.
  • high-strength natural materials such as chitosan and cellulose are dissolved and reconstructed to meet the application requirements in different fields.
  • most of the reconstructed materials will lose their good mechanical properties, which greatly limits their applications. How to realize the multi-level assembly of materials at the micro-nano scale during the reconstruction process becomes the key to improving their mechanical properties.
  • Gel materials have become a research hotspot in regenerative medicine due to their similarity to the human tissue environment.
  • gels prepared from natural biomaterials have lower mechanical properties and are difficult to meet application requirements.
  • High-strength hydrogels have always been a difficulty in biomaterial research.
  • silk has been prepared into different forms such as fibers, membranes, hydrogels, scaffolds, and microspheres, and is widely used in the fields of tissue engineering, flexible electronic devices, and drug delivery.
  • the mechanical properties of silk protein hydrogels are too low to meet the requirements of multiple applications, especially for the repair of supporting tissues such as cartilage.
  • the object of the present invention is to provide a method for preparing high-strength silk protein nanofiber hydrogel, and the nanofiber hydrogel prepared by the method provided by the present invention has excellent compressive modulus and breaking strength.
  • the invention provides a preparation method of high-strength silk protein nanofiber hydrogel, comprising:
  • the formic acid and the aqueous solution in the silk protein nanofiber formic acid solution are replaced to obtain a high-strength silk protein nanofiber hydrogel.
  • the replacement time is 2 to 72 hours.
  • the mass concentration of the silk protein nanofiber formic acid solution is 5-30%.
  • the replacement method includes:
  • the dialysis bag or semi-permeable membrane silk protein is impenetrable, but formic acid and aqueous solution are permeable.
  • the replacement after the replacement, it also includes:
  • the replaced product is soaked in the aqueous solution, and the aqueous solution is changed repeatedly until the pH value of the replaced aqueous solution is 6-8.
  • the volume ratio of the aqueous solution to formic acid is above 3:1.
  • the preparation method of the silk protein nanofiber formic acid solution comprises:
  • the temperature of the dissolution is 4-80° C.; the time of the dissolution is 0.1-24 hours.
  • the aqueous solution comprises:
  • the ions are magnesium ions, calcium ions and/or copper ions.
  • the preparation method of the silk protein nanofiber freeze-dried powder comprises:
  • the mass concentration of the high fibroin nanofiber aqueous solution is 0.01-4%.
  • the preparation method of the high fibroin nanofiber aqueous solution comprises:
  • the high-crystalline silk protein nanofibers used in the method provided by the present invention have a beta-sheet crystal structure and good stability, and can still maintain their original secondary structure and nanofiber morphology when dissolved in formic acid.
  • the interaction between the nanofibers is optimized through the regulation and control of the concentration of silk protein in the formic acid system, and then the formic acid and water are replaced by a specific dialysis bag or a semi-permeable membrane.
  • a high-strength silk protein nanofiber hydrogel is obtained.
  • the formic acid solvent system is used to realize the interaction of silk protein nanofibers, and then the formic acid is replaced by water through a semi-permeable membrane or a dialysis bag to retain the interaction between fibers, and a high-strength silk protein nanofiber hydrogel is obtained.
  • Formic acid is used as a solvent to dissolve silk protein nanofibers to reduce charge repulsion, promote reassembly between nanofibers, and obtain silk protein films with excellent mechanical properties.
  • Formic acid is used as a solvent to dissolve silk protein nanofibers to reduce charge repulsion, promote reassembly between nanofibers, and obtain silk protein films with excellent mechanical properties.
  • the present invention realizes the transfer of silk protein nanofibers in a formic acid system to an aqueous phase environment without destroying the interaction of silk protein nanofibers to obtain high-strength silk protein nanofiber hydrogels.
  • Fig. 1 is the atomic force microscope picture of silk protein nanofibers prepared in Example 1 of the present invention dissolved in water (a figure) and formic acid (b figure) respectively;
  • Fig. 2 is the silk protein nanofiber hydrogel prepared in Example 1 of the present invention (figure a) and digital photos thereof in different states such as compression (figure b), bending (figure c), stretching (figure d), before compression (figure e), and after compression of 60% (figure f);
  • Fig. 3 is the microstructure figure (observed by cold field emission scanning electron microscope) of the silk protein nanofiber hydrogel prepared in Example 1 of the present invention
  • Fig. 4 is the stress-strain graph of the silk protein nanofiber hydrogel compression and tension prepared in Example 1 of the present invention
  • Fig. 5 is an infrared spectrogram of the silk protein nanofiber hydrogel prepared in Example 1 of the present invention.
  • the invention provides a preparation method of high-strength silk protein nanofiber hydrogel, comprising:
  • the formic acid and the aqueous solution in the silk protein nanofiber formic acid solution are replaced to obtain the high-strength silk protein nanofiber hydrogel.
  • the mass concentration of the silk protein nanofiber formic acid solution is preferably 5-30%, more preferably 10-25%, most preferably 15-20%, most preferably 5%, 10%, 15% or 20%.
  • the preparation method of the silk protein nanofiber formic acid solution preferably includes:
  • the silk protein nanofiber freeze-dried powder was dissolved in formic acid to obtain silk protein nanofiber formic acid solution (SNF-FA).
  • the preparation method of the silk protein nanofiber freeze-dried powder preferably includes:
  • the aqueous solution of the high-crystalline silk protein nanofiber is freeze-dried to obtain the freeze-dried powder of the silk protein nanofiber.
  • the mass concentration of the high fibroin nanofiber aqueous solution is preferably 0.01-4%, more preferably 0.05-3%, more preferably 0.1-2%, more preferably 0.5-1.5%, most preferably 1% or 2%.
  • the crystallinity of the high fibroin nanofibers in the high fibroin nanofiber aqueous solution is preferably ⁇ 40%, the diameter is preferably 10-30 nm, more preferably 15-25 nm, most preferably 20 nm; the length is preferably 200-2000 nm, more preferably 500-1500 nm, more preferably 800-1200 nm, most preferably 1000 nm.
  • the preparation method of the high fibroin nanofiber aqueous solution preferably includes:
  • the preparation method of the silk protein aqueous solution preferably includes:
  • the silk is degummed and dried, then dissolved in a lithium bromide solution and dialyzed to obtain an aqueous silk protein solution.
  • Na 2 CO 3 aqueous solution is preferably used for the degumming; the ratio of the silk, water and Na 2 CO 3 is preferably (4-6) g: (1-3) L: (4-5) g, more preferably (4.5-5.5) g: (1.5-2.5) L: (4.2-4.5) g, most preferably 5 g: 2 L: 4.24 g.
  • the drying is preferably drying.
  • the concentration of the lithium bromide solution is preferably 9-10 mol/L, more preferably 9.1-9.5 mol/L, most preferably 9.2-9.3 mol/L.
  • the ratio of the dried product to the lithium bromide solution is preferably (2.5-3.5) g: (8-12) mL, more preferably (2.6-2.8) g: (9-11) mL, most preferably 2.7 g: 10 mL.
  • the dialysis time is preferably 2-4 days, more preferably 3 days.
  • the first concentration preferably concentrates the mass concentration of the silk protein aqueous solution to 8-12%, more preferably 9-11%, and most preferably 10%;
  • the second concentration preferably concentrates the mass concentration of the silk protein aqueous solution after the first concentration to 16-24%, more preferably 18-22%, and most preferably 20%;
  • the dilution is preferably diluted with water, preferably the mass concentration of the silk protein aqueous solution after the second concentration is diluted to 0.01-4%, more preferably 0.05-3% , more preferably 0.1 to 2%, more preferably 0.5 to 1.5%, most preferably 1%.
  • the dissolution temperature is preferably 4-80°C, more preferably 10-70°C, more preferably 20-60°C, more preferably 30-50°C, most preferably 40°C, most preferably 4°C, 10°C, 20°C, 40°C or 60°C;
  • the dissolution time is preferably 0.1-24 hours, more preferably 0.5-20 hours, more preferably 1-15 hours, more preferably 5-12 hours, most preferably 8-10 hours, most preferably 0.5 hours, 1 hour, 4 hours, 12 hours or 24 hours.
  • the aqueous solution preferably includes: pure water or an aqueous solution containing ions; the pure water is preferably deionized water; the ions are preferably selected from magnesium ions, calcium ions and/or copper ions.
  • the aqueous solution in order to ensure the rapid precipitation of formic acid during the replacement process, the aqueous solution enters the rapidly solidified silk protein to form a gel.
  • the volume ratio of the aqueous solution to formic acid is preferably greater than 3:1, more preferably (3-8):1, more preferably (4-6):1, and most preferably 5:1.
  • the replacement time is preferably 2 to 72 hours, more preferably 4 to 70 hours, more preferably 10 to 60 hours, more preferably 20 to 50 hours, more preferably 30 to 40 hours, most preferably 2 hours, 8 hours, 24 hours or 48 hours.
  • the replacement method preferably includes:
  • the dialysis bag or semipermeable membrane is impermeable to silk protein, but permeable to formic acid and aqueous solution;
  • the molecular weight cut-off of the dialysis bag or semipermeable membrane is preferably 3000-10000, more preferably 5000-8000, and most preferably 6000.
  • the internal formic acid is replaced with the aqueous solution through the dialysis bag or the semipermeable membrane, so that the formic acid is precipitated from the dialysis bag or the semipermeable membrane, and water enters to obtain the silk protein nanofiber hydrogel.
  • the aqueous solution in the replacement process is preferably replaced with fresh solutions multiple times, that is, after one replacement, the fresh aqueous solution is replaced again.
  • the number of times for replacing the aqueous solution is preferably 2 or more, more preferably 2 to 8 times, more preferably 4 to 6 times, and most preferably 5 times; the time interval for replacing the aqueous solution is preferably 5 to 15 hours, more preferably 8 to 12 hours, and most preferably 10 hours.
  • the replaced product is soaked in the aqueous solution, and the aqueous solution is changed repeatedly until the pH value of the replaced aqueous solution is 6-8.
  • the replaced solid silk protein hydrogel is preferably taken out from the dialysis bag or semipermeable membrane, soaked in an aqueous solution to remove residual formic acid; during the soaking process, the aqueous solution is preferably changed repeatedly until the pH value of the changed aqueous solution (soaked aqueous solution) reaches 6-8, and the final high-strength silk protein nanofiber hydrogel is obtained.
  • the number of repeated changing of the water solution is preferably more than 2 times, more preferably 2-8 times, more preferably 3-6 times, most preferably 4-5 times.
  • the repeated changing of the water solution preferably makes the pH of the changed water solution (soaked water solution) 6.8-7.2, more preferably 7.
  • the present invention provides a high-strength silk protein nanofiber hydrogel prepared by the method described in the above technical solution.
  • the high-strength silk protein nanofiber hydrogel can be prepared into products of different shapes, such as strips or stars, through molds or processing methods.
  • the invention adjusts and optimizes the interaction between nanofibers by controlling the concentration of silk protein in the formic acid system, and then uses a specific dialysis bag or a semipermeable membrane to replace formic acid and water, and obtains high-strength silk protein nanofiber hydrogel on the basis of retaining the interaction of silk protein nanofibers.
  • the formic acid solvent system is used to realize the interaction of silk protein nanofibers, and then the formic acid is replaced by water through a semi-permeable membrane or a dialysis bag to retain the interaction between fibers, and a high-strength silk protein nanofiber hydrogel is obtained.
  • the preparation method of the 1% silk protein nanofiber aqueous solution is as follows:
  • the formic acid solution of silk protein nanofibers with a mass concentration of 20% was placed in a dialysis bag with a molecular weight cut-off of 3500 (Yuanye Company, model SP132594), and then placed in deionized water with a volume 5 times the volume of formic acid for solvent replacement.
  • the aqueous solution containing precipitated formic acid was replaced with fresh deionized water every 8 hours for a total of 3 times, and a solid silk protein nanofiber hydrogel was formed inside the dialysis bag;
  • the above solid silk protein hydrogel was taken out, soaked in deionized water to remove residual formic acid, and the water was changed once an hour. After changing the water 3 times, the pH value of the water was measured to be 6.8 to obtain the final hydrogel.
  • Figure 1 is an atomic force microscope image of silk protein nanofibers prepared in Example 1 of the present invention dissolved in water (a) and formic acid (b) respectively; as can be seen from Figure 1: silk fibroin in formic acid solution in aqueous solution all presents the appearance of nanofibers; the length of nanofibers in aqueous solution is distributed in 200-1000nm, while the length of nanofibers in formic acid is reduced to 50-200nm, and the shorter fiber length provides more opportunities for interaction between fibers.
  • Figure 2 is the silk protein nanofiber hydrogel (a) prepared in Example 1 of the present invention and its digital photos (b-f) in different states such as compression, bending, and stretching. It can be seen that the hydrogel can be processed into different shapes, and maintains a complete shape under compression, bending, and stretching, indicating that it has good processability and mechanical properties.
  • Figure 3 is a microstructure diagram of the silk protein nanofiber hydrogel prepared in Example 1 of the present invention; it can be seen from Figure 3 that the gel maintains a uniform porous structure, and the shape of the nanofibers is no longer obvious, indicating that the fibers are reassembled and tightly combined.
  • FIG 4 shows the stress-strain curves for the compression and tension of the silk protein nanofiber hydrogel prepared in Example 1 of the present invention. It can be seen from Figure 4 that the silk protein nanofiber hydrogel prepared in Example 1 of the present invention has excellent mechanical properties, and its compression modulus and breaking strength reach 5.88MPa and 1.55MPa respectively.
  • Fig. 5 is the infrared spectrogram of the silk protein nanofiber hydrogel (SNF20) prepared in Example 1 of the present invention.
  • the comparison is the infrared spectrogram of the silk protein nanofiber hydrogel (SNF-FA, obtained by dissolving the silk protein nanofiber freeze-dried powder in formic acid) in the same concentration of formic acid solution and the infrared spectrogram of the traditional silk protein nanofiber hydrogel (SNF2, after the silk protein aqueous solution is concentrated once and twice, diluted to 2 wt% with deionized water, and obtained by sealing and incubation). It can be seen from Fig.
  • the silk protein nanofiber aqueous solution with a mass concentration of 2% (the preparation method is the same as that in Example 1, the difference from Example 1 is that it is diluted with deionized water to a mass concentration of 2%) is lyophilized to obtain a silk protein nanofiber freeze-dried powder;
  • the solid silk protein hydrogel was taken out, soaked in deionized water to remove residual formic acid, and the water was changed every 2 hours. After changing the water 4 times, the pH value of the water was measured to be 7.2 to obtain the final hydrogel.
  • Example 2 According to the method of Example 1, the mechanical properties of the hydrogel prepared in Example 2 of the present invention were tested. The test results showed that the compressive modulus and breaking strength of the silk protein nanofiber hydrogel prepared in Example 2 reached 1.71 MPa and 0.9 MPa, respectively.
  • the above solid silk protein hydrogel was taken out, soaked in deionized water to remove residual formic acid, and the water was changed every 4 hours. After changing the water 6 times, the pH value of the water was measured to be 7, and the final hydrogel was obtained.
  • Example 3 of the present invention According to the method of Example 1, the mechanical properties of the product prepared in Example 3 of the present invention were tested. The test results showed that the compressive modulus and breaking strength of the silk protein nanofiber hydrogel prepared in Example 3 reached 3.22 MPa and 1.3 MPa, respectively.
  • the above solid silk protein hydrogel was taken out, soaked in deionized water to remove residual formic acid, and the water was changed every 3 hours. After changing the water 4 times, the pH value of the water was measured to be 7.2 to obtain the final hydrogel.
  • Example 4 According to the method of Example 1, the mechanical properties of the hydrogel prepared in Example 4 of the present invention were tested. The test results showed that the compressive modulus and breaking strength of the silk protein nanofiber hydrogel prepared in Example 4 reached 1.06 MPa and 0.7 MPa, respectively.
  • the silk protein nanofiber formic acid solution with a mass concentration of 15% was placed in a semipermeable membrane with a molecular weight cut-off of 5000 (Yuanye Company, model SP131192), and then placed in water containing copper ions (copper ion concentration: 100mmol/L) whose volume was 8 times the volume of formic acid, and solvent replacement was performed.
  • the aqueous solution containing precipitated formic acid was replaced with fresh water containing copper ions every 3 hours. A total of 8 replacements were performed to form a solid silk protein nanofiber hydrogel inside the dialysis bag;
  • the above solid silk protein hydrogel was taken out, soaked in deionized water to remove residual formic acid, and the water was changed every 2 hours. After changing the water 6 times, the pH value of the water was measured to be 7, and the final hydrogel was obtained.
  • Example 5 According to the method of Example 1, the mechanical properties of the hydrogel prepared in Example 5 of the present invention were tested. The test results showed that the compressive modulus and breaking strength of the silk protein nanofiber hydrogel prepared in Example 5 reached 3.86 MPa and 1.5 MPa, respectively.
  • the method provided by the invention uses formic acid to reduce charge repulsion, optimizes non-covalent interaction, and then realizes the replacement of formic acid and water through a dialysis bag or a semipermeable membrane.
  • the method of obtaining a high-strength hydrogel provides an experimental basis for the mechanical regulation of other materials, and can be widely used in the field of high-strength gel preparation.
  • the invention regulates the interaction between the silk protein nanofibers by dissolving the concentration of the silk protein nanofibers in formic acid, and then replaces the formic acid with water through a dialysis bag or a semipermeable membrane to obtain a high-strength silk protein hydrogel material.
  • the method provided by the present invention to reduce charge repulsion by formic acid, optimize nanofiber interaction, and then replace formic acid and water to obtain hydrogel on the basis of maintaining nanofiber interaction can be widely used in the field of high-strength material preparation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明提供了一种高强度丝蛋白纳米纤维凝胶的制备方法,将高晶丝蛋白纳米纤维水溶液冻干溶解于甲酸溶液中,随后将溶液装载入透析袋或半透膜中,通过水溶液置换甲酸,获得高强度丝蛋白纳米纤维水凝胶。本发明提供的方法通过将高晶丝蛋白纳米纤维溶解在甲酸中,在保持纳米纤维原有二级结构和纳米纤维形貌的基础上,降低纤维之间的静电斥力,并获得高浓度丝蛋白纳米纤维甲酸溶液,从而增强丝蛋白纳米纤维之间的相互作用,随后通过水和甲酸的溶剂置换,去除甲酸,利用上述浓度丝蛋白纳米纤维在水相中的凝胶化作用使得纤维之间的相互作用固定,最终获得的水凝胶材料力学性能得到极大提升。

Description

一种高强度丝蛋白纳米纤维水凝胶的制备方法
本申请要求于2022年01月18日提交中国专利局、申请号为202210054185.9、发明名称为“一种高强度丝蛋白纳米纤维水凝胶的制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于高强度生物材料技术领域,尤其涉及一种高强度丝蛋白纳米纤维水凝胶的制备方法。
背景技术
高强度材料由于其优异的性能和广泛的应用一直是材料领域研究的热点。自然界存在的高强度材料主要通过微米-纳米尺寸的多级组装和非共价作用实现性能的优化。考虑到天然生物材料的优异生物相容性,壳聚糖、纤维素等高强度天然材料被溶解重构以满足不同领域的应用需求,然而,绝大多数重构的材料会丧失其良好的力学性能,极大限制其应用。如何在重构过程中实现材料在微纳尺度的多级组装成为改善其力学性能的关键。
凝胶材料由于同人体组织环境的相似性,已成为再生医学的研究热点,然而同其它形态材料相比,天然生物材料制备的凝胶力学性能更低,难以满足应用需求,高强度水凝胶一直是生物材料研究的难点。蚕丝作为一种典型的天然高强度材料,已被制备成纤维、膜、水凝胶、支架和微球等不同形式,广泛应用于组织工程、柔性电子器件和药物递送等领域。然而,同其它天然材料面临的问题相似,丝蛋白水凝胶的力学性能太低,无法满足多个应用的要求,特别是软骨等具有支撑作用组织修复的需求。
近年来,研究者通过改变浓度、化学交联、添加其它成分等方法来提高丝蛋白凝胶的力学性能,然而其制备工艺相对复杂、力学性能提升有限,亟需新的思路和方法来突破现有技术瓶颈。发明人在前期研究中,已开发出具有丰富beta-sheet结构的丝蛋白纳米纤维,并成功用于多孔海绵以及凝胶的制备。然而,由于上述丝蛋白纳米纤维表面富含负电荷,电荷斥力导致纤维之间难以进一步组装和作用,所获得凝胶力学性能极差。
发明内容
有鉴于此,本发明的目的在于提供一种高强度丝蛋白纳米纤维水凝胶的制备方法,本发明提供的方法制备的纳米纤维水凝胶具有优异的压缩模量和断裂强度。
本发明提供了一种高强度丝蛋白纳米纤维水凝胶的制备方法,包括:
将丝蛋白纳米纤维甲酸溶液中的甲酸和水溶液进行置换,得到高强度丝蛋白纳米纤维水凝胶。
优选的,所述置换的时间为2~72小时。
优选的,所述丝蛋白纳米纤维甲酸溶液的质量浓度为5~30%。
优选的,所述置换的方法包括:
将丝蛋白纳米纤维甲酸溶液放入透析袋或者半透膜中,将透析袋或者半透膜放入水溶液中,进行甲酸和水溶液的置换;
所述透析袋或者半透膜丝蛋白无法透过,甲酸和水溶液能够透过。
优选的,所述置换后还包括:
将置换后的产物在水溶液中浸泡,重复换水溶液,直至换后水溶液的pH值为6~8。
优选的,所述置换过程中水溶液和甲酸的体积比在3:1以上。
优选的,所述丝蛋白纳米纤维甲酸溶液的制备方法包括:
将丝蛋白纳米纤维冻干粉溶解于甲酸中,得到丝蛋白纳米纤维甲酸溶液;
所述溶解的温度为4~80℃;所述溶解的时间为0.1~24小时。
优选的,所述水溶液包括:
纯水或含有离子的水溶液,
所述离子为镁离子、钙离子和/或铜离子。
优选的,所述丝蛋白纳米纤维冻干粉的制备方法包括:
将高晶丝蛋白纳米纤维水溶液冻干,得到丝蛋白纳米纤维冻干粉;
所述高晶丝蛋白纳米纤维水溶液的质量浓度为0.01~4%。
优选的,所述高晶丝蛋白纳米纤维水溶液的制备方法包括:
将丝蛋白水溶液依次进行一次浓缩、二次浓缩后稀释,密封孵育,得到高晶丝蛋白纳米纤维水溶液。
本发明提供的方法采用的高晶丝蛋白纳米纤维具有beta-sheet的结晶结构及良好的稳定性,溶解在甲酸中仍能保持其原有二级结构和纳米纤维形貌,通过甲酸体系中丝蛋白浓度调控优化纳米纤维之间的相互作用,然后利用特定透析袋或半透膜将甲酸和水相互置换,在保留丝蛋白纳米纤维相互作用的基础上,获得高强度的丝蛋白纳米纤维水凝胶。本发明首先利用甲酸溶剂体系实现丝蛋白纳米纤维的相互作用,随后通过半透膜或透析袋将甲酸置换成水,以保留纤维之间的相互作用,获得高强度的丝蛋白纳米纤维水凝胶,其压缩模量和断裂强度分别达到5.88MPa和1.55MPa,并且在常温常压下进行,制备方法简单易行。
利用甲酸作为溶剂溶解丝蛋白纳米纤维,以降低电荷斥力,促进纳米纤维之间的再组装,获得力学性能优异的丝蛋白薄膜,然而,如何将在甲酸体系中已经相互作用的丝蛋白纳米纤维体系转移到水相体系,制备高强度水凝胶缺乏可行方法,本发明在不破坏丝蛋白纳米纤维相互作用的基础上,实现甲酸体系中丝蛋白纳米纤维向水相环境的转移,获得高强度的丝蛋白纳米纤维水凝胶。
附图说明
图1为本发明实施例1制备的丝蛋白纳米纤维分别溶解在水中(a图)和甲酸中(b图)的原子力显微镜图片;
图2为本发明实施例1制备的丝蛋白纳米纤维水凝胶(a图)及其在压缩(b图)、弯曲(c图)、拉伸(d图)、压缩前(e图)、压缩60%后(f图)等不同状态下的数码照片;
图3为本发明实施例1制备的丝蛋白纳米纤维水凝胶的微观结构图(采用冷场发射扫描电子显微镜观察);
图4为本发明实施例1制备的丝蛋白纳米纤维水凝胶压缩和拉伸的应力应变曲线图;
图5为本发明实施例1制备的丝蛋白纳米纤维水凝胶红外光谱图。
具体实施方式
本发明提供了一种高强度丝蛋白纳米纤维水凝胶的制备方法,包括:
将丝蛋白纳米纤维甲酸溶液中的甲酸和水溶液进行置换,得到高强度丝蛋 白纳米纤维水凝胶。
在本发明中,所述丝蛋白纳米纤维甲酸溶液的质量浓度优选为5~30%,更优选为10~25%,最优选为15~20%,最最优选为5%、10%、15%或20%。
在本发明中,所述丝蛋白纳米纤维甲酸溶液的制备方法优选包括:
将丝蛋白纳米纤维冻干粉溶解于甲酸中,得到丝蛋白纳米纤维甲酸溶液(SNF-FA)。
在本发明中,所述丝蛋白纳米纤维冻干粉的制备方法优选包括:
将高晶丝蛋白纳米纤维水溶液冻干,得到丝蛋白纳米纤维冻干粉。
在本发明中,所述高晶丝蛋白纳米纤维水溶液的质量浓度优选为0.01~4%,更优选为0.05~3%,更优选为0.1~2%,更优选为0.5~1.5%,最优选为1%或2%。
在本发明中,所述高晶丝蛋白纳米纤维水溶液中的高晶丝蛋白纳米纤维的结晶度优选≥40%,直径优选为10~30nm,更优选为15~25nm,最优选为20nm;长度优选为200~2000nm,更优选为500~1500nm,更优选为800~1200nm,最优选为1000nm。
在本发明中,所述高晶丝蛋白纳米纤维水溶液的制备方法优选包括:
将丝蛋白水溶液依次进行一次浓缩、二次浓缩后稀释,密封孵育,得到高晶丝蛋白纳米纤维水溶液。
在本发明中,所述丝蛋白水溶液的制备方法优选包括:
将蚕丝脱胶后干燥,然后在溴化锂溶液中溶解、透析,得到丝蛋白水溶液。
在本发明中,所述脱胶优选采用Na 2CO 3水溶液;所述蚕丝、水和Na 2CO 3的用量比例优选为(4~6)g:(1~3)L:(4~5)g,更优选为(4.5~5.5)g:(1.5~2.5)L:(4.2~4.5)g,最优选为5g:2L:4.24g。
在本发明中,所述干燥优选为烘干。
在本发明中,所述溴化锂溶液的浓度优选为9~10mol/L,更优选为9.1~9.5mol/L,最优选为9.2~9.3mol/L。
在本发明中,所述干燥后的产物和溴化锂溶液的用量比例优选为(2.5~3.5)g:(8~12)mL,更优选为(2.6~2.8)g:(9~11)mL,最优选为2.7g:10mL。
在本发明中,所述透析的时间优选为2~4天,更优选为3天。
在本发明中,所述一次浓缩优选将丝蛋白水溶液的质量浓度浓缩至8~12%,更优选为9~11%,最优选为10%;所述第二浓缩优选将一次浓缩后的丝蛋白水溶液质量浓度浓缩至16~24%,更优选为18~22%,最优选为20%;所述稀释优选为加水稀释,优选将二次浓缩后的丝蛋白水溶液的质量浓度加水稀释至0.01~4%,更优选为0.05~3%,更优选为0.1~2%,更优选为0.5~1.5%,最优选为1%。
在本发明中,所述溶解的温度优选为4~80℃,更优选为10~70℃,更优选为20~60℃,更优选为30~50℃,最优选为40℃,最最优选为4℃、10℃、20℃、40℃或60℃;所述溶解的时间优选为0.1~24小时,更优选为0.5~20小时,更优选为1~15小时,更优选为5~12小时,最优选为8~10小时,最最优选为0.5小时、1小时、4小时、12小时或24小时。
在本发明中,所述水溶液优选包括:纯水或含有离子的水溶液;所述纯水优选为去离子水;所述离子优选选自镁离子、钙离子和/或铜离子。
在本发明中,所述置换过程中为保证甲酸能够快速析出,水溶液进入快速固化丝蛋白形成凝胶,所述水溶液和甲酸的体积比优选大于3:1,更优选为(3~8):1,更优选为(4~6):1,最优选为5:1。
在本发明中,所述置换过程中为保证甲酸充分析出,置换的时间优选为2~72小时,更优选为4~70小时,更优选为10~60小时,更优选为20~50小时,更优选为30~40小,最优选为2小时、8小时、24小时或48小时。
在本发明中,所述置换的方法优选包括:
将丝蛋白纳米纤维甲酸溶液放入透析袋或者半透膜中,将透析袋或者半透膜放入水溶液中,进行甲酸和水溶液的置换。
在本发明中,所述透析袋或者半透膜丝蛋白无法透过,甲酸和水溶液能够透过;所述透析袋或半透膜的截留分子量优选为3000~10000,更优选为5000~8000,最优选为6000。
在本发明中,通过透析袋或半透膜将内部的甲酸同水溶液进行置换,使甲酸从透析袋或半透膜析出,水进入,得到丝蛋白纳米纤维水凝胶。
在本发明中,为保证甲酸充分析出,置换过程中的水溶液优选用新鲜溶液多次替换,即一次置换后替换新鲜的水溶液再次进行置换,所述替换水溶液的 次数优选为2次以上,更优选为2~8次,更优选为4~6次,最优选为5次;所述替换水溶液的时间间隔优选为5~15小时,更优选为8~12小时,最优选为10小时。
在本发明中,所述置换完成后优选还包括:
将置换后的产物在水溶液中浸泡,重复换水溶液,直至换后水溶液的pH值为6~8。
在本发明中,优选将置换后的固态丝蛋白水凝胶从透析袋或半透膜中取出,在水溶液中浸泡,去除残留的甲酸;所述浸泡过程中优选重复换水溶液,直至换后水溶液(浸泡后的水溶液)的pH值达到6~8,获得最终的高强度丝蛋白纳米纤维水凝胶。
在本发明中,所述重复换水溶液的次数优选为2次以上,更优选为2~8次,更优选为3~6次,最优选为4~5次。
在本发明中,所述重复换水溶液优选使换后的水溶液(浸泡后的水溶液)的pH值为6.8~7.2,更优选为7。
本发明提供了一种上述技术方案所述的方法制备得到的高强度丝蛋白纳米纤维水凝胶,所述高强度丝蛋白纳米纤维水凝胶可通过模具或加工方法制备成不同形状的产品,如长条状或星状。
本发明通过甲酸体系中丝蛋白浓度调控优化纳米纤维之间的相互作用,然后利用特定透析袋或半透膜将甲酸和水相互置换,在保留丝蛋白纳米纤维相互作用的基础上,获得高强度的丝蛋白纳米纤维水凝胶。本发明首先利用甲酸溶剂体系实现丝蛋白纳米纤维的相互作用,随后通过半透膜或透析袋将甲酸置换成水,以保留纤维之间的相互作用,获得高强度的丝蛋白纳米纤维水凝胶,其压缩模量和断裂强度分别达到5.88MPa和1.55MPa,并且在常温常压下进行,制备方法简单易行。
实施例1
将质量浓度为1%丝蛋白纳米纤维水溶液冻干,得到丝蛋白纳米纤维冻干粉;所述1%丝蛋白纳米纤维水溶液的制备方法为:
将蚕丝用Na 2CO 3水溶液脱胶(5g蚕丝:2L水:4.24g Na 2CO 3)后烘干,以(2.7g:10mL)的浴比于9.3mol/L的溴化锂溶液中溶解,取出透析3天,获 得丝蛋白水溶液,然后将丝蛋白水溶液依次进行一次浓缩、二次浓缩后至质量浓度为20%,用去离子水稀释至质量浓度为1%,密封孵育;
将丝蛋白纳米纤维冻干粉于60℃在甲酸中溶解0.5h,获得质量浓度为20%的丝蛋白纳米纤维甲酸溶液;
将质量浓度为20%的丝蛋白纳米纤维甲酸溶液放置于截留分子量为3500的透析袋(源叶公司,型号SP132594)中,随后放入体积为甲酸体积5倍的去离子水中,进行溶剂置换,每8小时用新鲜去离子替换外部含有析出甲酸的水溶液,共置换3次,在透析袋内部形成固态丝蛋白纳米纤维水凝胶;
将上述固态丝蛋白水凝胶取出,放置于去离子水中浸泡,去除残留的甲酸,每小时换水1次,换水3次后,测量水的pH值为6.8,获得最终水凝胶。
图1为本发明实施例1制备的丝蛋白纳米纤维分别溶解在水(a)中和甲酸(b)中的原子力显微镜图片;从图1可以看出:在水溶液中甲酸溶液中丝素蛋白都呈现出纳米纤维的形貌;水溶液中纳米纤维长度分布在200~1000nm,而甲酸中纳米纤维长度减小到50~200nm,更短的纤维长度为纤维间相互作用提供了更多的机会。
图2为本发明实施例1制备的丝蛋白纳米纤维水凝胶(a)及其在压缩、弯曲、拉伸等不同状态下的数码照片(b~f),可以看到水凝胶可以加工成不同形状,在压缩、弯曲以及拉伸状态下均保持完整形态,表明其具有良好的可加工性和力学性能。
图3为本发明实施例1制备的丝蛋白纳米纤维水凝胶的微观结构图;从图3可以看出,凝胶保持均匀的多孔结构,纳米纤维形态已不明显,表明纤维发生再组装,且结合紧密。
对实施例1制备的高强度丝蛋白纳米纤维水凝胶的压缩模量和断裂强度进行测试:
在25±0.5℃,60±5%的相对湿度下,使用万能试验机(Instron 5967,样品高度:10mm;压缩速度:5mm/min)进行压缩测试;使用万能试验机(Instron3365,样品长度:10mm;拉伸速度:10mm/min)进行拉伸测试。
检测结果如图4,图4为本发明实施例1制备的丝蛋白纳米纤维水凝胶压缩和拉伸的应力应变曲线图,从图4可以看出,本发明实施例1制备的丝蛋白 纳米纤维水凝胶力学性能优异,其压缩模量和断裂强度分别达到5.88MPa和1.55MPa。
图5为本发明实施例1制备的丝蛋白纳米纤维水凝胶(SNF20)的红外光谱图,对照分别为相同浓度甲酸溶液中丝蛋白纤维(SNF-FA,将丝蛋白纳米纤维冻干粉溶解于甲酸中获得)的红外光谱图以及传统丝蛋白纳米纤维水凝胶(SNF2,丝蛋白水溶液依次进行一次浓缩、二次浓缩后,用去离子水稀释至2wt%,密封孵育获得)的红外光谱图;从图5可以看出,传统高晶丝蛋白纳米纤维水凝胶中1168cm -1和1064cm -1两处的吸收峰为1064cm -1强1168cm -1弱,而甲酸溶液和本发明制备的丝蛋白纳米纤维水凝胶中1168cm -1和1064cm -1两处的吸收峰则均为1064cm -1弱1168cm -1强,表明在甲酸溶液中纳米纤维之间形成了良好的相互作用,且此相互作用在本发明实施例制备的水凝胶中完好保留。
实施例2
将质量浓度为2%丝蛋白纳米纤维水溶液(制备方法同实施例1,与实施例1的区别在于,用去离子水稀释至质量浓度为2%)冻干,得到丝蛋白纳米纤维冻干粉;
将丝蛋白纳米纤维冻干粉于20℃在甲酸中溶解4h,获得质量浓度为10%的丝蛋白纳米纤维甲酸溶液;
将质量浓度为10%的丝蛋白纳米纤维甲酸溶液放置于截留分子量为5000的半透膜(源叶公司,型号SP131192)中,随后放入体积为甲酸体积3倍的去离子水中,进行溶剂置换,每4小时用新鲜去离子水替换外部含有析出甲酸的水溶液,共置换4次,在透析袋内部形成固态丝蛋白纳米纤维水凝胶;
将上述固态丝蛋白水凝胶取出,放置于去离子水中浸泡,去除残留的甲酸,每2小时换水1次,换水4次后,测量水的pH值为7.2,获得最终水凝胶。
按照实施例1的方法,对本发明实施例2制备的水凝胶进行力学性能检测,检测结果为,实施例2制备的丝蛋白纳米纤维水凝胶压缩模量和断裂强度分别达到1.71MPa和0.9MPa。
实施例3
将质量浓度为1%丝蛋白纳米纤维水溶液(制备方法同实施例1)冻干, 得到丝蛋白纳米纤维冻干粉;
将丝蛋白纳米纤维冻干粉于4℃在甲酸中溶解24h,获得质量浓度为15%的丝蛋白纳米纤维甲酸溶液;
将质量浓度为15%的丝蛋白纳米纤维甲酸溶液放置于截留分子量为10000的透析袋(源叶公司,型号SP131270)中,随后放入体积为甲酸体积8倍的含有镁离子的水(镁离子浓度为100mmol/L)中,进行溶剂置换,每12小时用新鲜含镁离子的水替换外部含有析出甲酸的水溶液,共置换4次,在透析袋内部形成固态丝蛋白纳米纤维水凝胶;
将上述固态丝蛋白水凝胶取出,放置于去离子水中浸泡,去除残留的甲酸,每4小时换水1次,换水6次后,测量水pH值为7,获得最终水凝胶。
按照实施例1的方法,对本发明实施例3制备的产品进行力学性能检测,检测结果为,实施例3制备的丝蛋白纳米纤维水凝胶压缩模量和断裂强度分别达到3.22MPa和1.3MPa。
实施例4
将质量浓度为2%丝蛋白纳米纤维水溶液(制备方法同实施例2)冻干,获得丝蛋白纳米纤维冻干粉;
将丝蛋白纳米纤维冻干粉于40℃在甲酸中溶解4h,获得质量浓度为5%的丝蛋白纳米纤维甲酸溶液;
将质量浓度为5%的丝蛋白纳米纤维甲酸溶液放置于截留分子量为3500的半透膜(源叶公司,型号SP132594)中,随后放入体积为甲酸体积3倍的含有钙离子的水(钙离子浓度为100mmol/L)中,进行溶剂置换,每半小时用新鲜含钙离子的水替换外部含有析出甲酸的水溶液,共置换8次,在透析袋内部形成固态丝蛋白纳米纤维水凝胶;
将上述固态丝蛋白水凝胶取出,放置于去离子水中浸泡,去除残留的甲酸,每3小时换水1次,换水4次后,测量水pH值为7.2,获得最终水凝胶。
按照实施例1的方法,对本发明实施例4制备的水凝胶进行力学性能检测,检测结果为,实施例4制备的丝蛋白纳米纤维水凝胶压缩模量和断裂强度分别达到1.06MPa和0.7MPa。
实施例5
将质量浓度为2%丝蛋白纳米纤维水溶液(制备方法同实施例2)冻干,得到丝蛋白纳米纤维冻干粉;
将丝蛋白纳米纤维冻干粉于10℃在甲酸中溶解12h,获得质量浓度为15%的丝蛋白纳米纤维甲酸溶液;
将质量浓度为15%的丝蛋白纳米纤维甲酸溶液放置于截留分子量为5000的半透膜(源叶公司,型号SP131192)中,随后放入体积为甲酸体积8倍的含有铜离子的水(铜离子浓度为100mmol/L)中,进行溶剂置换,每3小时用新鲜含铜离子的水替换外部含有析出甲酸的水溶液,共置换8次,在透析袋内部形成固态丝蛋白纳米纤维水凝胶;
将上述固态丝蛋白水凝胶取出,放置于去离子水中浸泡,去除残留的甲酸,每2小时换水1次,换水6次后,测量水pH值为7,获得最终水凝胶。
按照实施例1的方法,对本发明实施例5制备的水凝胶进行力学性能检测,检测结果为,实施例5制备的丝蛋白纳米纤维水凝胶压缩模量和断裂强度分别达到3.86MPa和1.5MPa。
本发明提供的方法通过甲酸降低电荷斥力、优化非共价作用,随后通过透析袋或半透膜实现甲酸和水的置换,获得高强度水凝胶的方法为其他材料的力学调控提供实验依据,可在高强度凝胶制备领域取得广泛应用。
本发明通过溶解在甲酸中丝蛋白纳米纤维的浓度来调控丝蛋白纳米纤维间相互作用,随后通过透析袋或半透膜将甲酸用水进行置换,获得高强度的丝蛋白水凝胶材料。本发明提供的通过甲酸降低电荷斥力、优化纳米纤维相互作用,随后通过甲酸和水的置换,在保持纳米纤维相互作用的基础上获得水凝胶的方法可在高强度材料制备领域取得广泛应用。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种高强度丝蛋白纳米纤维水凝胶的制备方法,包括:
    将丝蛋白纳米纤维甲酸溶液中的甲酸和水溶液进行置换,得到高强度丝蛋白纳米纤维水凝胶。
  2. 根据权利要求1所述的方法,其特征在于,所述置换的时间为2~72小时。
  3. 根据权利要求1所述的方法,其特征在于,所述丝蛋白纳米纤维甲酸溶液的质量浓度为5~30%。
  4. 根据权利要求1所述的方法,其特征在于,所述置换的方法包括:
    将丝蛋白纳米纤维甲酸溶液放入透析袋或者半透膜中,将透析袋或者半透膜放入水溶液中,进行甲酸和水溶液的置换;
    所述透析袋或者半透膜丝蛋白无法透过,甲酸和水溶液能够透过。
  5. 根据权利要求1所述的方法,其特征在于,所述置换后还包括:
    将置换后的产物在水溶液中浸泡,重复换水溶液,直至换后水溶液的pH值为6~8。
  6. 根据权利要求1所述的方法,其特征在于,所述置换过程中水溶液和甲酸的体积比在3:1以上。
  7. 根据权利要求1所述的方法,其特征在于,所述丝蛋白纳米纤维甲酸溶液的制备方法包括:
    将丝蛋白纳米纤维冻干粉溶解于甲酸中,得到丝蛋白纳米纤维甲酸溶液;
    所述溶解的温度为4~80℃;所述溶解的时间为0.1~24小时。
  8. 根据权利要求1所述的方法,其特征在于,所述水溶液包括:
    纯水或含有离子的水溶液,
    所述离子为镁离子、钙离子和/或铜离子。
  9. 根据权利要求7所述的方法,其特征在于,所述丝蛋白纳米纤维冻干粉的制备方法包括:
    将高晶丝蛋白纳米纤维水溶液冻干,得到丝蛋白纳米纤维冻干粉;
    所述高晶丝蛋白纳米纤维水溶液的质量浓度为0.01~4%。
  10. 根据权利要求9所述的方法,其特征在于,所述高晶丝蛋白纳米纤维 水溶液的制备方法包括:
    将丝蛋白水溶液依次进行一次浓缩、二次浓缩后稀释,密封孵育,得到高晶丝蛋白纳米纤维水溶液。
PCT/CN2022/086039 2022-01-18 2022-04-11 一种高强度丝蛋白纳米纤维水凝胶的制备方法 WO2023137880A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210054185.9 2022-01-18
CN202210054185.9A CN114395141B (zh) 2022-01-18 2022-01-18 一种高强度丝蛋白纳米纤维水凝胶的制备方法

Publications (1)

Publication Number Publication Date
WO2023137880A1 true WO2023137880A1 (zh) 2023-07-27

Family

ID=81230315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086039 WO2023137880A1 (zh) 2022-01-18 2022-04-11 一种高强度丝蛋白纳米纤维水凝胶的制备方法

Country Status (2)

Country Link
CN (1) CN114395141B (zh)
WO (1) WO2023137880A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116640451A (zh) * 2023-01-20 2023-08-25 上海科技大学 丝蛋白离子导体膜的制备方法及丝蛋白离子导体膜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015093857A (ja) * 2013-11-13 2015-05-18 国立大学法人信州大学 水不溶性シルクタンパク質
CN106139246A (zh) * 2016-08-19 2016-11-23 苏州大学 一种再生丝蛋白纤维支架及其制备方法
CN106310380A (zh) * 2016-08-19 2017-01-11 苏州大学 一种纳米纤维化丝素蛋白凝胶及其制备方法
CN107080860A (zh) * 2017-05-02 2017-08-22 丝纳特(苏州)生物科技有限公司 一种丝蛋白海绵及其制备方法
CN107118384A (zh) * 2017-05-02 2017-09-01 丝纳特(苏州)生物科技有限公司 一种丝蛋白海绵及其制备方法
CN112876711A (zh) * 2021-01-20 2021-06-01 苏州大学 一种高强度丝蛋白纳米纤维膜及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10533037B2 (en) * 2014-03-27 2020-01-14 Simatech Incorporation Freeze-dried powder of high molecular weight silk fibroin, preparation method therefor and use thereof
CN109096501B (zh) * 2018-07-16 2022-11-01 武汉纺织大学 一种丝素三维多孔支架及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015093857A (ja) * 2013-11-13 2015-05-18 国立大学法人信州大学 水不溶性シルクタンパク質
CN106139246A (zh) * 2016-08-19 2016-11-23 苏州大学 一种再生丝蛋白纤维支架及其制备方法
CN106310380A (zh) * 2016-08-19 2017-01-11 苏州大学 一种纳米纤维化丝素蛋白凝胶及其制备方法
CN107080860A (zh) * 2017-05-02 2017-08-22 丝纳特(苏州)生物科技有限公司 一种丝蛋白海绵及其制备方法
CN107118384A (zh) * 2017-05-02 2017-09-01 丝纳特(苏州)生物科技有限公司 一种丝蛋白海绵及其制备方法
CN112876711A (zh) * 2021-01-20 2021-06-01 苏州大学 一种高强度丝蛋白纳米纤维膜及其制备方法

Also Published As

Publication number Publication date
CN114395141B (zh) 2023-09-12
CN114395141A (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
Liu et al. Thixotropic silk nanofibril-based hydrogel with extracellular matrix-like structure
WO2023137880A1 (zh) 一种高强度丝蛋白纳米纤维水凝胶的制备方法
CN111821514A (zh) 一种丝素丝胶蛋白复合膜及其制备方法
CN109529117B (zh) 一种活性丝素蛋白生物组织工程支架的溶喷制备方法
WO2020259486A1 (zh) 一种具有自愈合功能的丝胶水凝胶及其制备方法和应用
CN111962210B (zh) 一种聚己内酯/甲基丙烯酰化弹性蛋白纳米纤维复合膜及其制备方法和应用
CN108822335B (zh) 一种复合膜及其制备方法和应用
CN107325303B (zh) 一种无脱胶蚕丝纤维溶液、制备方法及其用途
Huang et al. Facile construction of mechanically tough collagen fibers reinforced by chitin nanofibers as cell alignment templates
CN114249982B (zh) 高强高模蚕丝材料的制备方法及应用
CN110028685B (zh) 一种丝素/壳聚糖/多孔氧化石墨烯复合三维支架的制备方法
CN110028703A (zh) 一种纳米生物质基高强度高透明度大幅面复合膜的制备方法
CN110106634B (zh) 一种角蛋白peo复合生物纳米纤维膜及其制备方法和创口贴
CN111671980B (zh) 一种仿生复合骨支架及其制备方法
CN110937595B (zh) 一种利用丝素低聚肽水相剥离石墨制备多肽-石墨烯复合材料的方法及其应用
CN108589040A (zh) 一种高吸水性壳聚糖面膜基布的制备方法
CN110448719B (zh) 一种促进凝血的丝素-多肽电纺膜及其制备方法
WO2022156100A1 (zh) 一种高强度丝蛋白纳米纤维膜及其制备方法
CN111592592A (zh) 人胎盘不同类型胶原蛋白选择性提取制备方法和使用
CN112773941B (zh) 一种壳聚糖微球-细菌纤维素复合材料及其制备和应用
CN115948862A (zh) 一种胶原蛋白纤维素纤维布料及其生产方法
CN110698555A (zh) 一种家蚕丝素蛋白溶液的制备及鉴定方法
CN113638221B (zh) 一种具有生物活性的聚丙烯腈纤维及其制备方法
CN115154648B (zh) 基于改性壳聚糖纤维的复合海绵止血材料的制备方法
CN1253216C (zh) 胶原基生物医用膜材料的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921313

Country of ref document: EP

Kind code of ref document: A1