WO2023136422A1 - L-히스티딘 생산능이 향상된 에스케리치아 속 변이주 및 이를 이용한 l-히스티딘의 생산 방법 - Google Patents

L-히스티딘 생산능이 향상된 에스케리치아 속 변이주 및 이를 이용한 l-히스티딘의 생산 방법 Download PDF

Info

Publication number
WO2023136422A1
WO2023136422A1 PCT/KR2022/013164 KR2022013164W WO2023136422A1 WO 2023136422 A1 WO2023136422 A1 WO 2023136422A1 KR 2022013164 W KR2022013164 W KR 2022013164W WO 2023136422 A1 WO2023136422 A1 WO 2023136422A1
Authority
WO
WIPO (PCT)
Prior art keywords
histidine
poxb
escherichia
mutant
strain
Prior art date
Application number
PCT/KR2022/013164
Other languages
English (en)
French (fr)
Inventor
한종윤
양철민
조영일
Original Assignee
대상 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대상 주식회사 filed Critical 대상 주식회사
Publication of WO2023136422A1 publication Critical patent/WO2023136422A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/24Proline; Hydroxyproline; Histidine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/04Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with a disulfide as acceptor (1.2.4)
    • C12Y102/04001Pyruvate dehydrogenase (acetyl-transferring) (1.2.4.1)

Definitions

  • the present invention relates to a mutant strain of the genus Escherichia with improved L-histidine-producing ability and a method for producing L-histidine using the same.
  • L-Histidine is an essential amino acid that is not synthesized in the human or animal body and must be supplied from the outside, and is generally produced by fermentation using microorganisms such as bacteria or yeast.
  • microorganisms such as bacteria or yeast.
  • a wild-type strain obtained in nature or a mutant strain modified to improve L-histidine-producing ability may be used.
  • genetic recombination technology was applied to microorganisms such as Escherichia coli and Corynebacterium, which are widely used in the production of L-amino acids and other useful substances.
  • Various recombinant strains or mutant strains and L-histidine production methods using the same are being developed.
  • Korean Patent Registration Nos. 10-1904666 and 10-2004917 disclose a method of increasing histidine production by inducing genetic mutations in enzymes or transport proteins involved in the histidine biosynthetic pathway to enhance or weaken the activity of the corresponding protein. has been initiated. In addition, a method of adjusting the expression level of a substance acting on histidine production or optimizing the metabolic flow is also used.
  • Patent Document 1 Korean Patent Registration No. 10-1904666
  • Patent Document 2 Korea Patent Registration No. 10-2004917
  • An object of the present invention is to provide a mutant strain of the genus Escherichia with improved L-histidine production ability.
  • an object of the present invention is to provide a method for producing L-histidine using the mutant strain.
  • acetic acid was used to suppress the production of acetic acid produced as a by-product in the L-histidine biosynthesis process and to enhance the metabolic flow.
  • the present invention was completed by confirming that acetic acid production decreased and L-histidine production increased simultaneously when the expression of the poxB gene encoding pyruvate dehydrogenase involved in production was attenuated or suppressed.
  • One aspect of the present invention provides an Escherichia genus mutant with improved L-histidine production ability due to attenuation of pyruvate dehydrogenase activity.
  • pyruvate dehydrogenase refers to an enzyme that catalyzes an oxidative reaction to generate acetyl-CoA and carbon dioxide from pyruvate produced last in the energy target process.
  • activation is weakened means that the expression level of genes encoding proteins such as target enzymes, transcription factors, and transport proteins is reduced compared to the original microorganism, that is, the wild-type strain or the strain before modification. Attenuation of this activity occurs when the activity of the protein itself is reduced compared to the activity of the protein originally possessed by the microorganism through nucleotide substitution, insertion, deletion, or a combination encoding the gene, and inhibition of expression or translation of the gene encoding it For example, if the overall level of protein activity in the cell is lower than that of the wild-type strain or the strain before modification, a combination thereof is also included.
  • the attenuation of the activity of pyruvate dehydrogenase may be by inducing site-specific mutation in a gene or promoter encoding pyruvate dehydrogenase.
  • the attenuation of the activity of pyruvate dehydrogenase may be caused by insertion, substitution, deletion, or a combination thereof in part or all of a gene or promoter encoding pyruvate dehydrogenase.
  • promoter refers to a specific region of DNA that regulates the transcription of a gene, including a binding site for RNA polymerase that initiates mRNA transcription of a gene of interest, and is generally the starting point of transcription. It is located upstream based on .
  • Prokaryotes in prokaryotes are defined as sites around the start of transcription where RNA polymerase binds, and are generally composed of two short nucleotide sequences separated by -10 and -35 base pairs forward from the start of transcription. .
  • Promoter mutation in the present invention is improved to have higher activity than wild-type promoter, mutation in the promoter region located upstream of the transcription start point, more specifically, mutation in part or all by insertion, substitution, deletion, or a combination thereof can increase the expression of genes located downstream.
  • “Some” used in the present invention means not all of the amino acid sequence, base sequence or polynucleotide sequence, and may be 1 to 300, preferably 1 to 100, more preferably 1 to 50, It is not limited to this.
  • the gene encoding the pyruvate dehydrogenase may be represented by the nucleotide sequence of SEQ ID NO: 1.
  • the gene encoding the pyruvate dehydrogenase may be represented by the amino acid sequence of SEQ ID NO: 2.
  • Attenuation of pyruvate dehydrogenase activity may be achieved by continuous or discontinuous substitution of 1 to 100 bases, preferably 1 to 10 bases, in the nucleotide sequence of the gene encoding pyruvate dehydrogenase.
  • “Improved productivity” used in the present invention means that the productivity of L-histidine is increased compared to the parent strain.
  • the parent strain refers to a wild-type or mutant strain subject to mutation, and includes a subject subject to direct mutation or transformed into a recombinant vector.
  • the parent strain may be a wild-type strain of Escherichia genus or a strain of the genus Escherichia mutated from the wild-type strain.
  • the parent strain is Escherichia coli ( Escherichia coli ), Escherichia Alberti ( Escherichia albertii ), Escherichia blattae ( Escherichia blattae ), Escherichia fergusonii ( Escherichia fergusonii ) , Escherichia Hermanni ( Escherichia hermannii ) and Escherichia vulneris ( Escherichia vulneris ) It may be one or more selected from the group consisting of.
  • E. coli DS9H strain (KCTC18430P) was used.
  • the mutant strain may be Escherichia coli, that is, Escherichia coli.
  • the poxB gene encoding pyruvate dehydrogenase of Escherichia coli was disrupted to obtain a poxB deficient mutant strain.
  • This mutant strain exhibits increased L-histidine production ability with reduced acetic acid production compared to the parent strain because the metabolic flow for L-histidine production is enhanced due to the deletion of the poxB gene.
  • % or more, specifically, 5 to 40% (preferably 10 to 30%) can be increased to produce 8 to 20 g of L-histidine per liter of the strain culture medium, preferably 8.5 to 15 g of L-histidine can produce
  • poxB-deficient mutants can maintain a high level of histidine production with reduced production of by-products compared to the parent strain, even when the galP gene encoding a transport protein involved in supplying the carbon source required for histidine biosynthesis is introduced.
  • the galP gene may be derived from a strain of the genus Escherichia. More specifically, the galP gene is Escherichia coli, Escherichia albertii , Escherichia blattae , Escherichia fergusonii , Escherichia Hermann It may be derived from one strain selected from the group consisting of Escherichia hermannii and Escherichia vulneris , but is not limited thereto.
  • the galP gene may be represented by the nucleotide sequence of SEQ ID NO: 3 or the amino acid sequence of SEQ ID NO: 4.
  • the mutant strain of the genus Escherichia can be implemented through a recombinant vector containing a mutant in which the poxB gene encoding pyruvate dehydrogenase is mutated in the parent strain.
  • mutant refers to a variant in which part or all of the poxB gene encoding pyruvate dehydrogenase involved in L-histidine biosynthesis is inserted, substituted, deleted, or a combination thereof.
  • vector is an expression vector capable of expressing a target protein in a suitable host cell, and refers to a gene product containing essential regulatory elements operably linked to express a gene insert.
  • operably linked means that a gene requiring expression and its regulatory sequence are functionally linked to each other to enable gene expression
  • regulatory element refers to a promoter for performing transcription and regulating transcription. sequences encoding suitable mRNA ribosome binding sites, and sequences that control termination of transcription and translation.
  • vectors include, but are not limited to, plasmid vectors, cosmid vectors, bacteriophage vectors, viral vectors, and the like.
  • the “recombinant vector” used in the present invention can be replicated independently of the genome of the host cell or can be incorporated into the genome itself.
  • the "suitable host cell” is capable of replicating the vector and may include an origin of replication, which is a specific nucleotide sequence at which replication is initiated.
  • a suitable vector introduction technique is selected according to the host cell, and the desired gene can be expressed in the host cell.
  • vector introduction can be performed by electroporation, heat-shock, calcium phosphate (CaPO4) precipitation, calcium chloride (CaCl2) precipitation, microinjection, polyethylene glycol (PEG) method, DEAE- It may be performed by a dextran method, a cationic liposome method, a lithium acetate-DMSO method, or a combination thereof.
  • the transformed gene may be included without limitation, whether it is inserted into the chromosome of the host cell or located outside the chromosome, as long as it can be expressed in the host cell.
  • mutant strain of the genus Escherichia can be implemented through a method of inactivating the poxB gene encoding pyruvate dehydrogenase.
  • the gene inactivation method can be performed through a known method.
  • the CaCl2 method (Cohen, S.N. et al., Proc. Natl. Acac. Sci. USA, 9:2110-2114 (1973))
  • the Hanhan method (Cohen, S.N. et al., Proc. Natl. Acac Sci.USA, 9:2110-2114 (1973) and Hanahan, D., J. Mol. Biol., 166:557-580 (1983)
  • the electroporation method Dower, W.J. et al., Nucleic. Acids Res., 16:6127-6145 (1988) and the like, but are not limited thereto.
  • Host cells in the present invention include cells transfected, transformed, or infected with the recombinant vector or polynucleotide of the present invention in vivo or in vitro.
  • the host cell containing the recombinant vector of the present invention is a recombinant host cell, recombinant cell or recombinant microorganism.
  • the vector used in the present invention may include a selection marker.
  • the selection marker is for selecting transformants (host cells) transformed with the vector, and is selected in a medium treated with the selection marker. Since only cells expressing the marker can survive, selection of transformed cells is possible.
  • Representative examples of the selectable marker include kanamycin, streptomycin, and chloramphenicol, but are not limited thereto.
  • Genes inserted into the recombinant vector for transformation of the present invention may be substituted into a host cell such as a microorganism of the genus Escherichia by homologous recombination crossing.
  • the host cell may be an Escherichia genus strain, for example, E. coli.
  • another aspect of the present invention is a) culturing the Escherichia genus mutant in a medium; and b) recovering L-histidine from the mutant strain or a culture medium in which the mutant strain is cultured.
  • the culture may be performed according to appropriate media and culture conditions known in the art, and those skilled in the art can easily adjust and use the media and culture conditions.
  • the medium may be a liquid medium, but is not limited thereto.
  • the culture method may include, for example, batch culture, continuous culture, fed-batch culture, or a combination culture thereof, but is not limited thereto.
  • the medium must meet the requirements of a particular strain in an appropriate way, and can be appropriately modified by a person skilled in the art.
  • Carbon sources that can be used include sugars and carbohydrates such as glucose, sucrose, lactose, fructose, maltose, starch and cellulose, oils and fats such as soybean oil, sunflower oil, castor oil, coconut oil, palmitic acid, stearic acid, These include fatty acids such as linoleic acid, alcohols such as glycerol and ethanol, and organic acids such as acetic acid. These materials may be used individually or as a mixture, but are not limited thereto.
  • Nitrogen sources that can be used include peptone, yeast extract, broth, malt extract, corn steep liquor, soybean meal and urea or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate. Nitrogen sources may also be used individually or as a mixture, but are not limited thereto. Sources of phosphorus that may be used include, but are not limited to, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts.
  • the culture medium may contain metal salts such as magnesium sulfate or iron sulfate necessary for growth, but is not limited thereto.
  • essential growth substances such as amino acids and vitamins may be included. Precursors suitable for the culture medium may also be used. The medium or individual components may be added in a batchwise or continuous manner by a method suitable for the culture medium during the culture process, but is not limited thereto.
  • the pH of the culture medium can be adjusted by adding compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid and sulfuric acid to the microbial culture medium in an appropriate manner during cultivation.
  • the formation of bubbles can be suppressed by using an antifoaming agent such as a fatty acid polyglycol ester during cultivation.
  • oxygen or oxygen-containing gas eg, air
  • the temperature of the culture medium may be usually 20 ° C to 45 ° C, for example, 25 ° C to 40 ° C.
  • the culturing period may be continued until useful substances are obtained in a desired yield, and may be, for example, 10 to 160 hours.
  • the step of recovering L-histidine from the cultured mutant and the medium in which the mutant is cultured is L-histidine produced from the medium using a suitable method known in the art according to the culture method.
  • a suitable method known in the art according to the culture method can be collected or retrieved.
  • centrifugation, filtration, extraction, spraying, drying, evaporation, precipitation, crystallization, electrophoresis, fractionation (eg ammonium sulfate precipitation), chromatography (eg ion exchange, affinity, hydrophobicity and Size exclusion) may be used, but is not limited thereto.
  • the culture medium in the step of recovering histidine, is centrifuged at low speed to remove biomass, and the obtained supernatant may be separated through ion exchange chromatography.
  • the recovering L-histidine may include a process of purifying L-histidine.
  • the metabolic flow is enhanced, thereby reducing by-product production and improving the production yield of L-histidine.
  • Antibiotics kanamycin and ampicillin were used as products of Sigma.
  • DNA sequencing analysis was performed by requesting Macrogen Co., Ltd.
  • a one-step inactivation method (Warner et al., PNAS, 6:6640-6645 (2000)) was used to disrupt the poxB gene in the chromosome of E. coli DS9H strain (KCTC18430P).
  • E. coli DS9H genomic DNA was used as a template to prepare a pair of poxB_HF-F and poxB_HF-R primers, and a pair of poxB_HR-F and poxB_HR-R primers. Each was used to amplify the poxB_HF and poxB_HR fragments, respectively, through PCR amplification.
  • a cassette fragment was obtained from the pKD13 plasmid through PCR amplification using a primer pair FRT(poxB_HF)-F and FRT(poxB_HR)-R.
  • the total volume of the reaction was 50 ⁇ l and reacted at 95 ° C for 5 minutes, followed by a total of 30 times at 95 ° C for 30 seconds, 58 ° C for 30 seconds, and 72 ° C for 1 minute / kb, followed by 72 It was held for 5 minutes at °C and 10 minutes at 12 °C. Subsequently, PCR amplification was performed under the same conditions.
  • the three PCR fragments obtained in this way were linked into one fragment using overlapping PCR using the poxB_HF-F and poxB_HR-R primer pairs as templates.
  • DNA fragments linked together were introduced into E. coli DS9H strain containing the pKD46 plasmid by electroporation (Tauch et al., FEMS Microbiology letters 123 (1994) 343-347).
  • PCR was performed on the kanamycin-resistant cell lines using the poxB-CF and poxB-CR primer pairs to identify strains into which the kanamycin cassette was introduced.
  • the antibiotic (kanamycin) resistance gene was removed from the strains for which the introduction was confirmed.
  • whether the antibiotic was removed was confirmed by examining growth on LB plates without and with antibiotic (kanamycin) added, respectively. It was confirmed using the fact that the strains from which the antibiotic gene was removed grew on the LB plate medium, but did not grow on the LB plate medium to which the antibiotic (kanamycin, 50 mg/L) was added.
  • the sequence was confirmed using the poxB-CF and poxB-CR primer pairs, and a poxB-deficient mutant (DS9H-1) was obtained.
  • Primer name Primer sequence (5'-3') sequence number poxB_HF-F AGCAATAACGTTCCGGTTGTC 5 poxB_HF-R GGTTCCATCTCCTGAATGTG 6 FRT(poxB_HF)-F CATTCAGGAGATGGAGAACCGTGTAGGCTGGAGCTGCTTC 7 FRT(poxB_HR)-R GACGGGAAATGCCACCCTTTACATGAGAATTAATTCCGGGG 8 poxB_HR-F AAAGGGTGGCATTTCCCGTCA 9 poxB_HR-R TTCAAACAGATAGTTATGCGCGG 10 poxB-CF AAGAGAAATTCTTCACCCCAG 11 poxB-CR GGTTTGATTTTCATCGCCACT 12
  • the poxB gene disruption and the galP gene encoding the galactose:H+ symporter involved in intracellular glucose uptake were introduced into the mutant strain. produced.
  • the galP gene was amplified by PCR from E. coli DS9H (KCTC18430P) genomic DNA using galP-F and galP-R primer pairs and pfu premix (bioneer). As PCR conditions, the total volume of the reaction was 50 ⁇ l and reacted at 95 ° C for 5 minutes, followed by 30 times at 95 ° C for 30 seconds, 58 ° C for 30 seconds, and 72 ° C for 1 minute / kb, followed by 72 It was held for 5 minutes at °C and 10 minutes at 12 °C. Subsequently, PCR amplification was performed under the same conditions.
  • a one-step inactivation method (Warner et al., PNAS, 6:6640-6645 (2000)) was used for poxB disruption and galP introduction into the chromosome of E. coli DS9H strain.
  • Trc-galP a Trc-galP fragment was obtained from the pTRC99A-galP plasmid through PCR amplification using galP+FRT-F and galP+poxB_HR-R primer pairs. Using these four PCR fragments as templates, they were linked into one fragment by overlapping PCR using the poxB_HF-F and poxB_HR-R primer pairs. DNA fragments linked together were introduced into E. coli DS9H strain containing the pKD46 plasmid by electroporation (Tauch et al., FEMS Microbiology letters 123 (1994) 343-347).
  • Example 2 the same procedure as in Example 1 was performed to obtain a mutant strain (DS9H-2) in which poxB was deleted and galP was introduced.
  • Primer name Primer sequence (5'-3') sequence number poxB_HF-F AGCAATAACGTTCCGGTTGTC 5 poxB_HF-R GGTTCTCCATCTCCTGAATGTG 6 FRT(poxB_HF)-F CATTCAGGAGATGGAGAACCGTGTAGGCTGGAGCTGCTTC 7 FRT(galP)-R ATCAATTCGCGCTAACTCACACATGAGAATTAATTCCGGGG 17 galP+FRT-F CCCGGAATTAATTCTCATGTGTGAGTTAGCGCGAATTGATCTG 18 galP+poxB_HR-R GACGGGAAATGCCACCCTTTTTAATCGTGAGCGCCTATTTCG 19 poxB_HR-F AAAGGGTGGCATTTCCCGTCA 9 poxB_HR-R TTCAAACAGATAGTTATGCGCGG 10 poxB-CF AAGAGAAATTCTTCACCCCAG 11 poxB-CR GGTTTGATTTTCATCGCCACT 12
  • mutant strain DS9H-1 exhibited a 12% increase in L-histidine production and an 80% decrease in the production of acetic acid, a by-product, compared to the parent strain due to the deletion of the poxB gene.
  • mutant DS9H-2 increased L-histidine production by about 21% and 11% compared to the parent strain and DS9H-1, respectively, and decreased acetic acid production by 72% compared to the parent strain due to the introduction of galP along with the poxB defect, resulting in DS9H found to be similar to -1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 L-히스티딘 생산능이 향상된 에스케리치아 속 변이주 및 이를 이용한 L-히스티딘의 생산 방법에 관한 것으로, 상기 에스케리치아 속 변이주는 피루브산 탈수소효소를 암호화하는 유전자의 활성이 약화됨으로써 대사흐름이 강화되어 부산물 생성 감소와 함께 L-히스티딘의 생산 수율을 향상시킬 수 있다.

Description

L-히스티딘 생산능이 향상된 에스케리치아 속 변이주 및 이를 이용한 L-히스티딘의 생산 방법
본 발명은 L-히스티딘 생산능이 향상된 에스케리치아 속 변이주 및 이를 이용한 L-히스티딘의 생산 방법에 관한 것이다.
L-히스티딘(Histidine)은 사람이나 동물 체내에서 합성되지 않는 필수아미노산으로서 외부에서 공급되어야 하며, 일반적으로 세균이나 효모와 같은 미생물을 이용한 발효에 의해 생산된다. L-히스티딘 생산은 자연상태에서 수득된 야생형 균주나 이의 L-히스티딘 생산능이 향상되도록 변형된 변이주를 이용할 수 있다. 최근에는 L-히스티딘의 생산 효율을 개선시키기 위해 L-아미노산 및 기타 유용물질 생산에 많이 이용되는 대장균, 코리네박테리움 등의 미생물을 대상으로 유전자 재조합 기술을 적용하여 우수한 L-히스티딘 생산능을 갖는 다양한 재조합 균주 또는 변이주 및 이를 이용한 L-히스티딘 생산 방법이 개발되고 있다.
한국등록특허 제10-1904666호 및 제10-2004917호에는 히스티딘 생합성 경로에 관여하는 효소나 수송 단백질을 대상으로 유전자 변이를 유도함으로써 해당 단백질의 활성을 강화시키거나 약화시켜 히스티딘 생산량을 증대시키는 방법이 개시되어 있다. 이외에도, 히스티딘 생산에 작용하는 물질의 발현량을 조절하거나 대사흐름을 최적화하는 방법 또한 이용되고 있다.
이와 같이 직간접적으로 연관된L-히스티딘 생산성을 증가시키는 다양한 방법이 개발되고 있으나, L-히스티딘 생산에 효소, 전사인자, 수송 단백질 등 단백질의 종류가 수십여 종에 이르기 때문에 이러한 단백질의 활성 변화에 따른 L-히스티딘 생산능 증가 여부에 관해 여전히 많은 연구가 필요한 실정이다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국등록특허 제10-1904666호
(특허문헌 2) 한국등록특허 제10-2004917호
본 발명은 L-히스티딘 생산능이 향상된 에스케리치아(Escherichia) 속 변이주를 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 변이주를 이용한 L-히스티딘의 생산 방법을 제공하는 것을 목적으로 한다.
본 발명자들은 에스케리치아 속 균주를 이용하여 L-히스티딘 생산능이 향상된 새로운 변이주를 개발하기 위해 연구한 결과, L-히스티딘 생합성 과정에서 부산물로 생산되는 아세트산의 생산을 억제하고 대사흐름을 강화하기 위해 아세트산 생성에 관여하는 피루브산 탈수소효소를 암호화하는 poxB 유전자의 발현을 약화 또는 억제한 경우 아세트산 생산 감소와 동시에 L-히스티딘 생산량이 증가함을 확인함으로써 본 발명을 완성하였다.
본 발명의 일 양상은 피루브산 탈수소효소의 활성이 약화되어 L-히스티딘 생산능이 향상된 에스케리치아 속 변이주를 제공한다.
본 발명에서 사용된 “피루브산 탈수소효소(pyruvate dehydrogenase)”는 에너지 대상 과정에서 마지막으로 생산된 피루브산을 아세틸-CoA와 이산화탄소로 생성하는 산화적 반응을 촉매하는 효소를 의미한다.
본 발명에서 사용된 “활성이 약화”는 목적하는 효소, 전사 인자, 수송 단백질 등의 단백질을 암호화하는 유전자의 발현량이 본래의 미생물, 즉 야생형 균주 또는 변형 전의 균주에 비하여 감소하는 것을 의미한다. 이러한 활성의 약화는 유전자를 암호화하는 뉴클레오티드 치환, 삽입, 결실 또는 이들의 조합을 통하여 단백질 자체의 활성이 본래 미생물이 가지고 있는 단백질의 활성에 비해 감소한 경우와, 이를 암호화하는 유전자의 발현 저해 또는 번역 저해 등으로 세포 내에서 전체적인 단백질 활성 정도가 야생형 균주 또는 변형 전의 균주에 비하여 낮은 경우, 이들의 조합 역시 포함한다.
본 발명의 일 구체예에 따르면, 상기 피루브산 탈수소효소의 활성 약화는 피루브산 탈수소효소를 암호화하는 유전자 또는 프로모터에 위치 특이적 변이를 유발하는 것일 수 있다.
보다 구체적으로, 상기 피루브산 탈수소효소의 활성 약화는 피루브산 탈수소효소를 암호화하는 유전자 또는 프로모터의 일부 또는 전부가 삽입, 치환, 결실 또는 이들이 조합으로 된 것일 수 있다.
본 발명에서 사용된 “프로모터”는 목적하는 유전자의 mRNA 전사를 개시하는 RNA 중합효소(polymerase)에 대한 결합부위를 포함하여 유전자의 전사를 조절하는 DNA의 특정 부위를 의미하며, 일반적으로 전사 개시점을 기준으로 상위(upstream)에 위치한다. 원핵생물에서의 프로모터는 RNA 중합효소가 결합하는 전사 개시점 주변의 부위로 정의되며, 일반적으로 전사 개시점으로부터 앞쪽으로 -10 영역과 -35 영역의 염기쌍이 떨어져 있는 두 개의 짧은 염기서열로 구성된다. 본 발명에서의 프로모터 변이는 야생형 프로모터에 비해 높은 활성을 가지도록 개량하는 것으로, 전사 개시점의 상위에 위치한 프로모터 영역 안에서 변이, 보다 구체적으로 일부 또는 전부가 삽입, 치환, 결실 또는 이들의 조합으로 변이를 유발함으로써 하위(downstream)에 위치한 유전자의 발현을 증가시킬 수 있다.
본 발명에서 사용된 “일부”는 아미노산 서열, 염기서열 또는 폴리뉴클레오티드 서열의 전부가 아닌 것을 의미하며, 1 내지 300개, 바람직하게는 1 내지 100개, 보다 바람직하게는 1 내지 50개일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 구체예에 따르면, 상기 피루브산 탈수소효소를 암호화하는 유전자는 서열번호 1의 염기서열로 표시되는 것일 수 있다.
또한, 본 발명의 일 구체예에 따르면, 상기 피루브산 탈수소효소를 암호화하는 유전자는 서열번호 2의 아미노산 서열로 표시되는 것일 수 있다.
예를 들면, 피루브산 탈수소효소의 활성 약화는 피루브산 탈수소효소를 암호화하는 유전자의 염기서열 중 1 내지 100개의 염기, 바람직하게는 1 내지 10개의 염기가 연속적으로 또는 비연속적으로 치환된 것일 수 있다.
본 발명에서 사용된 “생산능이 향상된”은 모균주에 비해 L-히스티딘의 생산성이 증가된 것을 의미한다. 상기 모균주는 변이의 대상이 되는 야생형 또는 변이주를 의미하며, 직접 변이의 대상이 되거나 재조합된 벡터 등으로 형질전환되는 대상을 포함한다. 본 발명에 있어서, 모균주는 야생형 에스케리치아 속 균주 또는 야생형으로부터 변이된 에스케리치아 속 균주일 수 있다.
본 발명의 일 구체예에 따르면, 상기 모균주는 에스케리치아 콜라이(Escherichia coli), 에스케리치아 알베르티(Escherichia albertii), 에스케리치아 블라태(Escherichia blattae), 에스케리치아 퍼구소니(Escherichia fergusonii), 에스케리치아 헤르만니(Escherichia hermannii) 및 에스케리치아 불네리스(Escherichia vulneris)로 이루어지는 군에서 선택된 1종 이상인 것일 수 있다.
본 발명의 일 실시예에서는 E. coli DS9H 균주 (KCTC18430P)를 사용하였다.
본 발명의 일 구체예에 따르면, 상기 변이주는 에스케리치아 콜라이, 즉 대장균인 것일 수 있다.
본 발명의 일 실시예에 따르면, 대장균의 피루브산 탈수소효소를 암호화하는 poxB 유전자를 파쇄하여 poxB 결손 변이주를 획득하였다. 이러한 변이주는 poxB 유전자가 결손됨으로써 L-히스티딘 생산에 대한 대사흐름이 강화되어 모균주에 비해 감소된 아세트산 생산과 함께 증가된 L-히스티딘 생산능을 나타내며, 특히 모균주에 비해 L-히스티딘 생산량이 5% 이상, 구체적으로는 5 내지 40% (바람직하게는 10 내지 30%) 증가되어 균주 배양액 1 ℓ 당 8 ~ 20 g의 L-히스티딘을 생산할 수 있으며, 바람직하게는 8.5 ~ 15 g의 L-히스티딘을 생산할 수 있다.
이러한 poxB 결손 변이주는 히스티딘 생합성에 필요한 탄소원을 공급하는데 관여하는 수송 단백질을 암호화하는 galP 유전자를 도입하더라도 여전히 모균주에 비해 부산물의 생산이 감소되면서 높은 수준의 히스티딘 생산량을 유지할 수 있다.
상기 galP 유전자는 에스케리치아 속 균주에서 유래된 것일 수 있다. 보다 구체적으로, 상기 galP 유전자는 에스케리치아 콜라이(Escherichia coli), 에스케리치아 알베르티(Escherichia albertii), 에스케리치아 블라태(Escherichia blattae), 에스케리치아 퍼구소니(Escherichia fergusonii), 에스케리치아 헤르만니(Escherichia hermannii) 및 에스케리치아 불네리스(Escherichia vulneris)로 이루어지는 군에서 선택된 1종의 균주에서 유래된 것일 수 있으며, 있으며, 이에 한정되는 것은 아니다.
상기 galP 유전자는 서열번호 3의 염기서열로 표시되거나, 또는 서열번호 4의 아미노산 서열로 표시되는 것일 수 있다.
본 발명의 일 구체예에 따른 에스케리치아 속 변이주는 모균주에 피루브산 탈수소효소를 암호화하는 poxB 유전자가 변이된 변이체를 포함하는 재조합 벡터를 통해 구현될 수 있다.
본 발명에서 사용된 “변이체”는 L-히스티딘의 생합성에 관여하는 피루브산 탈수소효소를 암호화하는 poxB 유전자의 일부 또는 전부가 삽입, 치환, 결실 또는 이들이 조합으로 된 변이체를 의미한다.
본 발명에서 사용된 “벡터”는 적당한 숙주세포에서 목적 단백질을 발현할 수 있는 발현 벡터로서 유전자 삽입물이 발현되도록 작동 가능하게 연결된(operably linked) 필수적인 조절요소를 포함하는 유전자 제조물을 의미한다. 여기서, “작동 가능하게 연결된”은 발현이 필요한 유전자와 이의 조절 서열이 서로 기능적으로 결합되어 유전자 발현을 가능케 하는 방식으로 연결된 것을 의미하고, “조절요소”는 전사를 수행하기 위한 프로모터, 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 암호화하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함한다. 이러한 벡터는 플라스미드 벡터, 코즈미드 벡터, 박테리오파아지 벡터, 바이러스 벡터 등을 포함하나, 이에 한정되는 것은 아니다.
본 발명에서 사용된 “재조합 벡터”는 적합한 숙주세포 내로 형질전환된 후, 숙주세포의 게놈과 무관하게 복제 가능하거나 게놈 그 자체에 봉합될 수 있다. 이때, 상기 "적합한 숙주세포"는 벡터가 복제 가능한 것으로서 복제가 개시되는 특정 염기서열인 복제 원점을 포함할 수 있다.
상기 형질전환은 숙주세포에 따라 적합한 벡터 도입 기술이 선택되어 목적하는 유전자를 숙주세포 내에서 발현시킬 수 있다. 예를 들면, 벡터 도입은 전기천공법(electroporation), 열 충격(heat-shock), 인산칼슘(CaPO4) 침전, 염화칼슘(CaCl2) 침전, 미세주입법(microinjection), 폴리에틸렌글리콜(PEG)법, DEAE-덱스트란법, 양이온 리포좀법, 초산 리튬-DMSO법, 또는 이들의 조합에 의해 수행될 수 있다. 형질전환된 유전자는 숙주세포 내에서 발현될 수 있으면 숙주세포의 염색체 내 삽입 또는 염색체 외에 위치하고 있는 것이든 제한하지 않고 포함될 수 있다.
또한, 본 발명의 일 구체예에 따른 에스케리치아 속 변이주는 피루브산 탈수소효소를 암호화하는 poxB 유전자를 불활성화하는 방법을 통해 구현될 수 있다.
상기 유전자 불활성화 방법은 공지된 방법을 통하여 실시할 수 있다. 예를 들면, CaCl₂ 방법 (Cohen, S.N. et al., Proc. Natl. Acac. Sci. USA, 9:2110-2114(1973)), 하나한 방법 (Cohen, S.N. et al., Proc. Natl. Acac. Sci. USA, 9:2110-2114(1973); 및 Hanahan, D., J. Mol. Biol., 166:557-580(1983)) 및 전기천공방법 (Dower, W.J. et al., Nucleic. Acids Res., 16:6127-6145(1988)) 등이 있으며, 이에 한정되는 것은 아니다.
이러한 유전자 불활성화 방법을 통해 형질전환된 균주 또는 숙주세포를 얻을 수 있다.
본 발명에서의 숙주세포는 생체내 또는 시험관내에서 본 발명의 재조합 벡터 또는 폴리뉴클레오티드로 형질감염, 형질전환, 또는 감염된 세포를 포함한다. 본 발명의 재조합 벡터를 포함하는 숙주세포는 재조합 숙주세포, 재조합 세포 또는 재조합 미생물이다.
또한, 본 발명에서 이용하는 벡터는 선택 마커(selection marker)를 포함할 수 있는데, 상기 선택 마커는 벡터로 형질전환된 형질전환체 (숙주세포)를 선별하기 위한 것으로서 상기 선택 마커가 처리된 배지에서 선택 마커를 발현하는 세포만 생존할 수 있기 때문에, 형질전환 된 세포의 선별이 가능하다. 상기 선택 마커는 대표적인 예로 카나마이신, 스트렙토마이신, 클로람페니콜 등이 있으나, 이에 한정되는 것은 아니다.
본 발명의 형질전환용 재조합 벡터 내에 삽입된 유전자들은 상동 재조합 교차로 인하여 에스케리치아 속 미생물과 같은 숙주세포 내로 치환될 수 있다.
본 발명의 일 구체예에 따르면, 상기 숙주세포는 에스케리치아 속 균주일 수 있으며, 예를 들면 대장균일 수 있다.
또한, 본 발명의 다른 일 양상은 a) 상기 에스케리치아 속 변이주를 배지에서 배양하는 단계; 및 b) 상기 변이주 또는 변이주가 배양된 배지로부터 L-히스티딘을 회수하는 단계를 포함하는 L-히스티딘의 생산 방법을 제공한다.
상기 배양은 당업계에 알려진 적절한 배지와 배양 조건에 따라 이루어질 수 있으며, 통상의 기술자라면 배지 및 배양 조건을 용이하게 조정하여 사용할 수 있다. 구체적으로, 상기 배지는 액체 배지일 수 있으나, 이에 한정되는 것은 아니다. 배양 방법은 예를 들면, 회분식 배양(batch culture), 연속식 배양(continuous culture), 유가식 배양(fed-batch culture) 또는 이들의 조합 배양을 포함할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 구체예에 따르면, 상기 배지는 적절한 방식으로 특정 균주의 요건을 충족해야 하며, 통상의 기술자에 의해 적절하게 변형될 수 있다.
본 발명의 일 구체예에 따르면, 배지에 다양한 탄소원, 질소원 및 미량원소 성분을 포함할 수 있다. 사용될 수 있는 탄소원으로는 글루코스, 수크로스, 락토스, 프락토스, 말토스, 전분, 셀룰로스와 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 아세트산과 같은 유기산이 포함된다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있으나, 이에 한정되는 것은 아니다. 사용될 수 있는 질소원으로는 펩톤, 효모 추출물, 육즙, 맥아 추출물, 옥수수 침지액, 대두밀 및 요소 또는 무기 화합물, 예를 들면 황산 암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄이 포함될 수 있다. 질소원 또한 개별적으로 또는 혼합물로서 사용할 수 있으나 이에 한정되는 것은 아니다. 사용될 수 있는 인의 공급원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염이 포함될 수 있으며, 이에 한정되는 것은 아니다. 또한, 배양 배지는 성장에 필요한 황산마그네슘 또는 황산철과 같은 금속염을 함유할 수 있으며, 이에 한정되는 것은 아니다. 그 외에, 아미노산 및 비타민과 같은 필수 성장 물질이 포함될 수 있다. 또한 배양 배지에 적절한 전구체들이 사용될 수 있다. 상기 배지 또는 개별 성분은 배양과정에서 배양액에 적절한 방식에 의해 회분식으로 또는 연속식으로 첨가될 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 구체예에 따르면, 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산 및 황산과 같은 화합물을 미생물 배양액에 적절한 방식으로 첨가하여 배양액의 pH를 조정할 수 있다. 또한, 배양 중에 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 추가적으로, 배양액의 호기 상태를 유지하기 위하여, 배양액 내로 산소 또는 산소-함유 기체 (예, 공기)를 주입할 수 있다. 배양액의 온도는 통상 20℃ 내지 45℃, 예를 들면 25℃ 내지 40℃일 수 있다. 배양기간은 유용물질이 원하는 생산량으로 수득될 때까지 계속될 수 있으며, 예를 들면 10 내지 160 시간일 수 있다.
본 발명의 일 구체예에 따르면, 상기 배양된 변이주 및 변이주가 배양된 배지에서 L-히스티딘을 회수하는 단계는 배양 방법에 따라 당해 분야에 공지된 적합한 방법을 이용하여 배지로부터 생산된 L-히스티딘을 수집 또는 회수할 수 있다. 예를 들면 원심분리, 여과, 추출, 분무, 건조, 증발, 침전, 결정화, 전기영동, 분별용해 (예를 들면, 암모늄 설페이트 침전), 크로마토그래피 (예를 들면, 이온 교환, 친화성, 소수성 및 크기배제) 등의 방법을 사용할 수 있으나, 이에 한정되는 것은 않는다.
본 발명의 일 구체예에 따르면, 히스티딘을 회수하는 단계는 배양 배지를 저속 원심분리하여 바이오매스를 제거하고 얻어진 상등액을 이온교환 크로마토그래피를 통하여 분리할 수 있다.
본 발명의 일 구체예에 따르면, 상기 L-히스티딘을 회수하는 단계는 L-히스티딘을 정제하는 공정을 포함할 수 있다.
본 발명에 따른 에스케리치아 속 변이주는 피루브산 탈수소효소를 암호화하는 유전자의 활성이 약화됨으로써 대사흐름이 강화되어 부산물 생성 감소와 함께 L-히스티딘의 생산 수율을 향상시킬 수 있다.
이하, 본 발명을 보다 상세하게 설명한다. 그러나, 이러한 설명은 본 발명의 이해를 돕기 위하여 예시적으로 제시된 것일 뿐, 본 발명의 범위가 이러한 예시적인 설명에 의하여 제한되는 것은 아니다.
실시예 1. poxB 유전자가 결손된 히스티딘 생산능 향상 변이주의 제조
부산물 생성을 감소시키기 위해 피루브산 탈수소효소(pyruvate dehydrogenase)를 암호화하는 poxB 유전자를 결손시킨 변이주를 제작하였다.
여기서 poxB 유전자가 결손된 E. coli DS9H 균주는 증류수 1 L에 트립톤 10.0 g, NaCl 10.0 g, 효모 추출물 5.0 g 및 암피실린 100 mg/L 조성의 LB 배지 상에서 37℃의 온도로 배양하였다.
항생제 카나마이신(kanamycin)과 암피실린(ampicillin)은 시그마(Sigma)사의 제품을 사용하였다.
DNA 시퀀싱 분석은 마크로젠(주)에 의뢰하여 분석하였다.
E. coli DS9H 균주 (KCTC18430P)의 염색체에서 poxB 유전자를 파쇄하기 위해 원스텝 불화성화 방법 (Warner et al., PNAS, 6:6640-6645(2000))을 이용하였다. 먼저 상동 재조합(homologous recombination)을 위한 poxB 유전자의 앞쪽과 뒤쪽 단편을 얻기 위해, E. coli DS9H genomic DNA를 주형으로 하여 poxB_HF-F 및 poxB_HF-R 프라이머 쌍, poxB_HR-F 및 poxB_HR-R 프라이머 쌍을 각각 사용하여 PCR 증폭을 통해 각각 poxB_HF와 poxB_HR 단편을 증폭하였다. 그리고 카나마이신 항생제 마커 및 FRT가 포함된 카세트를 얻기 위해, pKD13 플라스미드로부터 FRT(poxB_HF)-F 및 FRT(poxB_HR)-R 프라이머 쌍을 사용하여 PCR 증폭을 통해 카세트 단편을 얻었다. PCR 수행 조건으로는 반응물의 총 부피를 50 ㎕로 하여 95℃에서 5분간 반응한 후 95℃에서 30초, 58℃에서 30초, 72℃에서 1분/kb으로 총 30회 실시하였고, 이후 72℃에서 5분 및 12℃에서 10분간 유지하였다. 이후 PCR 증폭에서도 동일한 조건으로 실시하였다. 이러한 방법으로 획득한 3개의 PCR 단편들을 주형으로 하여 poxB_HF-F 및 poxB_HR-R 프라이머 쌍을 사용하여 overlapping PCR을 이용하여 하나의 단편으로 연결시켰다. 하나로 연결된 DNA 단편을 pKD46 플라스미드를 가지고 있는 E. coli DS9H 균주에 전기천공법 (Tauch et al., FEMS Microbiology letters 123 (1994) 343-347)으로 도입하였다.
이후 카나마이신 내성을 보이는 세포주들을 대상으로 poxB-CF 및 poxB-CR 프라이머 쌍을 사용하여 PCR을 수행하여 카나마이신 카세트가 도입된 균주들을 확인하였다. 도입이 확인된 균주들을 대상으로 항생제 (카나마이신) 내성 유전자를 제거하는 과정을 수행하였다. 카나마이신 카세트 도입이 확인된 균주에 pCP20 플라스미드를 도입하여 FLP 재조합을 유도한 후, 항생제 (카나마이신) 첨가 및 미첨가된 LB 평판배지들에서 각각 생장 여부를 통해 항생제 제거 여부를 확인하였다. 항생제 유전자가 제거된 균주들은 LB 평판배지에서 생장하는 반면, 항생제 (카나마이신, 50 mg/L)가 첨가된 LB 평판배지에서는 생장하지 못함을 이용하여 확인하였다. 그리고 최종적으로 poxB-CF 및 poxB-CR 프라이머 쌍을 사용하여 서열을 확인하였고, poxB가 결손된 변이주 (DS9H-1)를 획득하였다.
여기서 사용된 프라이서 서열은 하기 표 1과 같다.
프라이머 명칭 프라이머 서열 (5'-3') 서열번호
poxB_HF-F AGCAATAACGTTCCGGTTGTC 5
poxB_HF-R GGTTCTCCATCTCCTGAATGTG 6
FRT(poxB_HF)-F CATTCAGGAGATGGAGAACCGTGTAGGCTGGAGCTGCTTC 7
FRT(poxB_HR)-R GACGGGAAATGCCACCCTTTACATGAGAATTAATTCCGGGG 8
poxB_HR-F AAAGGGTGGCATTTCCCGTCA 9
poxB_HR-R TTCAAACAGATAGTTATGCGCGG 10
poxB-CF AAGAGAAATTCTTCACCCCAG 11
poxB-CR GGTTTGATTTTCATCGCCACT 12
실시예 2. poxB 유전자가 결손되고 galP 유전자가 도입된 히스티딘 생산능 향상 변이주의 제조
실시예 1에서 제조된 변이주의 히스티딘 생산능을 더욱 향상시키기 위해, poxB 유전자 파쇄와 함께 세포내 글루코스 흡수에 관여하는 갈락토오스:H+ 동반운반체(Galactose:H+ symporter)를 암호화하는 galP 유전자가 도입된 변이주를 제작하였다.
2-1. 플라스미드 제작
E. coli DS9H (KCTC18430P) genomic DNA로부터 galP-F 및 galP-R 프라이머 쌍과 pfu premix (bioneer)를 사용하여 galP 유전자를 PCR 증폭하였다. PCR 수행 조건으로는 반응물의 총 부피를 50 ㎕로 하여 95℃에서 5분간 반응한 후 95℃에서 30초, 58℃에서 30초, 72℃에서 1분/kb으로 총 30회 실시하였고, 이후 72℃에서 5분 및 12℃에서 10분간 유지하였다. 이후 PCR 증폭에서도 동일한 조건으로 실시하였다. 그리고 증폭한 PCR 단편과 pTRC99A 플라스미드 (GE Healthcare)에 NcoI 및 HindIII (NEB) 제한효소를 처리하고 T4 ligase (Takara)를 사용하여 pTRC99A-galP 플라스미드를 제작하였다. 최종적으로 pTRC99A-CF 및 pTRC99A-CR 프라이머를 사용하여 서열을 확인하였다.
여기서 사용된 프라이서 서열은 하기 표 2와 같다.
프라이머 명칭 프라이머 서열(5'-3') 서열번호
galP-F ATATCCATGGATGCCTGACGCTAAAAAACAG 13
galP-R ATATAAGCTTTTAATCGTGAGCGCCTATTTCG 14
pTRC99A-CF ATATTCTGAAATGAGCTGTTGACAA 15
pTRC99A-CR TACTGCCGCCAGGCAAATTC 16
2-2. 변이주 제조
E. coli DS9H 균주의 염색체에 poxB 파쇄 및 galP 도입을 위해 원스텝 불화성화 방법 (Warner et al., PNAS, 6:6640-6645(2000))을 이용하였다. 먼저 상동 재조합을 위한 poxB 유전자 앞쪽과 뒤쪽 단편을 얻기 위해, E. coli DS9H genomic DNA를 주형으로 하여 poxB_HF-F 및 poxB_HF-R 프라이머 쌍, poxB_HR-F 및 poxB_HR-R 프라이머 쌍을 각각 사용하여 PCR 증폭을 통해 각각 poxB_HF와 poxB_HR 단편을 증폭하였다. 그리고 카나마이신 항생제 마커 및 FRT가 포함된 카세트를 얻기 위해, pKD13 플라스미드로부터 FRT(poxB_HF)-F 및 FRT(galP)-R 프라이머 쌍을 사용하여 PCR 증폭을 통해 카세트 단편을 얻었다. 마지막으로 Trc-galP를 얻기 위해서, pTRC99A-galP 플라스미드로부터 galP+FRT-F 및 galP+poxB_HR-R 프라이머 쌍을 사용하여 PCR 증폭을 통해 Trc-galP 단편을 얻었다. 이러한 4개의 PCR 단편들을 주형으로 하여 poxB_HF-F 및 poxB_HR-R 프라이머 쌍을 사용하여 overlapping PCR을 이용하여 하나의 단편으로 연결시켰다. 하나로 연결된 DNA 단편을 pKD46 플라스미드를 가지고 있는 E. coli DS9H 균주에 전기천공법 (Tauch et al., FEMS Microbiology letters 123 (1994) 343-347)으로 도입하였다.
이후에서는 실시예 1과 동일하게 수행하여, poxB가 결손되고 galP가 도입된 변이주 (DS9H-2)를 획득하였다.
여기서 사용된 프라이서 서열은 하기 표 3과 같다.
프라이머 명칭 프라이머 서열 (5'-3') 서열번호
poxB_HF-F AGCAATAACGTTCCGGTTGTC 5
poxB_HF-R GGTTCTCCATCTCCTGAATGTG 6
FRT(poxB_HF)-F CATTCAGGAGATGGAGAACCGTGTAGGCTGGAGCTGCTTC 7
FRT(galP)-R ATCAATTCGCGCTAACTCACACATGAGAATTAATTCCGGGG 17
galP+FRT-F CCCGGAATTAATTCTCATGTGTGAGTTAGCGCGAATTGATCTG 18
galP+poxB_HR-R GACGGGAAATGCCACCCTTTTTAATCGTGAGCGCCTATTTCG 19
poxB_HR-F AAAGGGTGGCATTTCCCGTCA 9
poxB_HR-R TTCAAACAGATAGTTATGCGCGG 10
poxB-CF AAGAGAAATTCTTCACCCCAG 11
poxB-CR GGTTTGATTTTCATCGCCACT 12
실험예 1. 모균주와 변이주의 L-히스티딘 생산성 비교
모균주 E. coli DS9H 균주와 실시예 1 및 2에서 제조된 변이주 DS9H-1 균주 및 DS9H-2 균주의 L-히스티딘 생산성을 비교하였다.
하기 표 4와 같은 조성의 배지 10 ml를 함유한 100 ml 플라스크에 각각의 균주를 1%씩 접종하고, 34℃, 200 rpm의 조건으로 72시간 진탕 배양하였다. 배양 종료 후 HPLC (Agilent)를 사용하여 배지 내 히스티딘 생산량을 측정하였고, 그 결과를 하기 표 5에 나타내었다.
성분 농도
포도당 8%
황산마그네슘 0.1%
황산암모늄 2.0%
MSG 0.1%
일인산칼륨 0.1%
효모추출물 0.1%
황산칼륨 0.02%
티아민-HCl 20 ppm
니코틴산 10 ppm
황산철 5 ppm
황산아연 5 ppm
황산망간 5 ppm
탄산칼슘 (별도 멸균) 0.5%
균주 L-히스티딘 (g/L) 아세트산 (g/L)
모균주 (DS9H) 7.8 2.5
변이주 (DS9H-1) 8.8 0.5
변이주 (DS9H-2) 9.5 0.7
상기 표 5에 나타낸 바와 같이, 변이주 DS9H-1는 poxB 유전자가 결손됨으로써 모균주에 비해 L-히스티딘 생산량이 약 12% 증가하고, 부산물인 아세트산 생산량이 80% 감소한 것으로 확인되었다.
또한, 변이주 DS9H-2는 poxB 결손과 함께 galP가 도입됨으로써 L-히스티딘 생산량이 모균주 및 DS9H-1에 비해 각각 약 21% 및 11% 증가하고, 아세트산 생산량이 모균주에 비해 72% 감소하여 DS9H-1와 유사한 것으로 확인되었다.
이러한 결과는 poxB 유전자 파쇄가 부산물 생산을 감소시켜 결과적으로 균주의 L-히스티딘 생산성을 향상시킨다는 것을 시사한다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (4)

  1. 피루브산 탈수소효소(pyruvate dehydrogenase)의 활성이 약화되어 L-히스티딘 생산능이 향상된 에스케리치아(Escherichia) 속 변이주.
  2. 청구항 1에 있어서,
    상기 피루브산 탈수소효소의 활성 약화는 피루브산 탈수소효소를 암호화하는 유전자 또는 프로모터의 일부 또는 전부가 삽입, 치환, 결실 또는 이들이 조합으로 된 것인 에스케리치아 속 변이주.
  3. 청구항 1에 있어서,
    상기 변이주는 대장균인 것인 에스케리치아 속 변이주.
  4. a) 청구항 1 내지 3 중 어느 한 항의 변이주를 배지에서 배양하는 단계; 및
    b) 상기 변이주 또는 변이주가 배양된 배지로부터 L-히스티딘을 회수하는 단계를 포함하는 L-히스티딘의 생산 방법.
PCT/KR2022/013164 2022-01-11 2022-09-02 L-히스티딘 생산능이 향상된 에스케리치아 속 변이주 및 이를 이용한 l-히스티딘의 생산 방법 WO2023136422A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0004002 2022-01-11
KR1020220004002A KR20230108790A (ko) 2022-01-11 2022-01-11 L-히스티딘 생산능이 향상된 에스케리치아 속 변이주 및 이를 이용한 l-히스티딘의 생산 방법

Publications (1)

Publication Number Publication Date
WO2023136422A1 true WO2023136422A1 (ko) 2023-07-20

Family

ID=87279264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013164 WO2023136422A1 (ko) 2022-01-11 2022-09-02 L-히스티딘 생산능이 향상된 에스케리치아 속 변이주 및 이를 이용한 l-히스티딘의 생산 방법

Country Status (2)

Country Link
KR (1) KR20230108790A (ko)
WO (1) WO2023136422A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030017554A1 (en) * 2000-11-15 2003-01-23 Mechthild Rieping Process for the fermentative preparation of L-amino acids using strains of the enterobacteriaceae family
KR20160113377A (ko) * 2015-03-18 2016-09-29 씨제이제일제당 (주) 피루브산 디하이드로게나아제 변이체, 이를 포함하는 미생물 및 이를 이용한 l-아미노산 생산 방법
WO2021126961A1 (en) * 2019-12-16 2021-06-24 Ginkgo Bioworks, Inc. Enhanced production of histidine, purine pathway metabolites, and plasmid dna

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101904666B1 (ko) 2017-08-02 2018-11-29 씨제이제일제당 (주) Atp 포스포리보실기 전이효소 변이체 및 이를 이용한 l-히스티딘 생산방법
KR102004917B1 (ko) 2017-10-31 2019-07-30 광운대학교 산학협력단 애플리케이션 사용내역 정보에 기초하여 조명을 제어하는 장치 및 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030017554A1 (en) * 2000-11-15 2003-01-23 Mechthild Rieping Process for the fermentative preparation of L-amino acids using strains of the enterobacteriaceae family
KR20160113377A (ko) * 2015-03-18 2016-09-29 씨제이제일제당 (주) 피루브산 디하이드로게나아제 변이체, 이를 포함하는 미생물 및 이를 이용한 l-아미노산 생산 방법
WO2021126961A1 (en) * 2019-12-16 2021-06-24 Ginkgo Bioworks, Inc. Enhanced production of histidine, purine pathway metabolites, and plasmid dna

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. BUCHHOLZ, A. SCHWENTNER, B. BRUNNENKAN, C. GABRIS, S. GRIMM, R. GERSTMEIR, R. TAKORS, B. J. EIKMANNS, B. BLOMBACH: "Platform Engineering of Corynebacterium glutamicum with Reduced Pyruvate Dehydrogenase Complex Activity for Improved Production of L-Lysine, L-Valine, and 2-Ketoisovalerate", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 79, no. 18, 15 September 2013 (2013-09-15), US , pages 5566 - 5575, XP055313010, ISSN: 0099-2240, DOI: 10.1128/AEM.01741-13 *
MOXLEY W. CHRIS, EITEMAN MARK A.: "Pyruvate Production by Escherichia coli by Use of Pyruvate Dehydrogenase Variants", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 87, no. 13, 11 June 2021 (2021-06-11), US , pages e00487 - 21, XP093079324, ISSN: 0099-2240, DOI: 10.1128/AEM.00487-21 *

Also Published As

Publication number Publication date
KR20230108790A (ko) 2023-07-19

Similar Documents

Publication Publication Date Title
KR101261147B1 (ko) L-아미노산의 생산능이 향상된 미생물 및 이를 이용하여 l-아미노산을 생산하는 방법
WO2021162189A1 (ko) L-글루탐산 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-글루탐산의 생산 방법
WO2022191357A1 (ko) L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법
WO2022050527A1 (ko) L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법
WO2023136422A1 (ko) L-히스티딘 생산능이 향상된 에스케리치아 속 변이주 및 이를 이용한 l-히스티딘의 생산 방법
WO2022071638A1 (ko) L-시트룰린 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-시트룰린의 생산 방법
WO2023136421A1 (ko) L-히스티딘 생산능이 향상된 에스케리치아 속 변이주 및 이를 이용한 l-히스티딘의 생산 방법
WO2022191358A1 (ko) L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법
WO2023106543A1 (ko) L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법
WO2023063547A1 (ko) L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법
WO2022231054A1 (ko) L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법
WO2022231049A1 (ko) L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법
WO2024019215A1 (ko) L-아르기닌 또는 l-시트룰린 생산능이 향상된 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌 또는 l-시트룰린의 생산 방법
WO2022050524A1 (ko) L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법
WO2024019216A1 (ko) L-아르기닌 또는 l-시트룰린 생산능이 향상된 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌 또는 l-시트룰린의 생산 방법
WO2017065457A1 (ko) L-쓰레오닌 생산능을 가지는 미생물 및 그를 이용하여 l-쓰레오닌을 생산하는 방법
WO2022231056A1 (ko) L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법
KR102668767B1 (ko) L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법
WO2022231055A1 (ko) L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법
WO2022196919A1 (ko) L-시트룰린 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-시트룰린의 생산 방법
WO2023158030A1 (ko) 징크 바인딩 디하이드로게나제 신규 변이체 및 이를 이용한 l-방향족 아미노산 생산 방법
KR20220126610A (ko) L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법
KR20220148694A (ko) L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법
WO2018151347A1 (ko) L-쓰레오닌 생산능을 가지는 미생물 및 그를 이용하여 l-쓰레오닌을 생산하는 방법
KR20220149379A (ko) L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920755

Country of ref document: EP

Kind code of ref document: A1