WO2023136154A1 - 送電装置、受電装置、無線電力伝送システム、送電装置の制御方法、受電装置の制御方法およびプログラム - Google Patents

送電装置、受電装置、無線電力伝送システム、送電装置の制御方法、受電装置の制御方法およびプログラム Download PDF

Info

Publication number
WO2023136154A1
WO2023136154A1 PCT/JP2022/048455 JP2022048455W WO2023136154A1 WO 2023136154 A1 WO2023136154 A1 WO 2023136154A1 JP 2022048455 W JP2022048455 W JP 2022048455W WO 2023136154 A1 WO2023136154 A1 WO 2023136154A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
value
power transmission
power receiving
receiving device
Prior art date
Application number
PCT/JP2022/048455
Other languages
English (en)
French (fr)
Inventor
朋樹 平松
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2023136154A1 publication Critical patent/WO2023136154A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/30Circuit arrangements or systems for wireless supply or distribution of electric power using light, e.g. lasers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present disclosure relates to a power transmission device, a power reception device, a wireless power transmission system, a power transmission device control method, a power reception device control method, and a program.
  • Patent Literature 1 discloses a power transmitting device and a power receiving device conforming to the WPC standard.
  • Patent Literature 2 discloses a method of detecting a foreign object and limiting power transmission/reception when a foreign object exists in the vicinity of a power transmitting/receiving device. Furthermore, in Patent Document 3, a high-frequency signal is applied to a power transmission coil of a wireless power transmission system for a certain period of time, the Q value (Quality factor) is measured from the time change of the voltage inside the power transmission coil, and foreign matter is detected by the change in the Q value. Techniques for detecting are disclosed.
  • One of the methods for detecting foreign matter is to use power loss.
  • a reference value for power loss without foreign matter between the power transmission device and the power reception device is calculated in advance.
  • foreign matter detection may be performed, for example, by a different method each time the power loss is calculated. is desirable.
  • the present disclosure aims to suppress unnecessary power transmission stoppage that may occur when calculating a power loss reference value used for detecting an object different from a power receiving device and a power transmitting device.
  • a power transmitting device is a power transmitting device that wirelessly transmits power to a power receiving device, wherein a power loss between the power transmitting device and the power receiving device is determined based on a power loss between the power transmitting device and the power receiving device.
  • a first detection means for detecting whether or not a different object exists; an acquisition means for acquiring capability information related to the power reception device from the power reception device; a second detecting means for detecting whether or not an object different from the power transmitting device and the power receiving device exists based on the detection by the first detecting means based on the detection result by the second detecting means; calculating means for calculating a reference value of power loss when there is no object different from the power transmitting device and the power receiving device used in the above; and specifying means for specifying a timeout period for processing related to the calculation of the reference value by means, wherein the specifying means specifies a first timeout period as the timeout period when the power receiving device does not satisfy a predetermined condition. A value is selected, and when the power receiving device satisfies the predetermined condition, a second value greater than the first value is specified as the timeout period.
  • the present disclosure it is possible to suppress unnecessary stoppage of power transmission that may occur when calculating the power loss reference value used for detecting an object different from the power receiving device and the power transmitting device.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless power transmission system according to an embodiment
  • FIG. 3 is a block diagram showing an example internal configuration of a power receiving device according to the embodiment
  • FIG. It is a block diagram showing an example of an internal configuration of a power transmission device according to an embodiment.
  • 3 is a block diagram showing a functional configuration example of the power transmission device according to the embodiment
  • FIG. 4 is a flow chart showing an example of a basic processing procedure executed by the power transmission device according to the first embodiment
  • 7 is a flowchart illustrating an example of a procedure for selecting a timeout period by the power transmitting device in the first embodiment
  • 4A and 4B are diagrams for explaining an operation sequence by the power transmitting device and the power receiving device according to the first embodiment
  • FIG. 1 is a diagram illustrating a configuration example of a wireless power transmission system according to an embodiment
  • FIG. 3 is a block diagram showing an example internal configuration of a power receiving device according to the embodiment
  • FIG. It is a
  • FIG. 9 is a flowchart showing an example of a basic processing procedure executed by a power receiving device according to the second embodiment
  • FIG. 11 is a flowchart illustrating an example of a procedure for selecting a maximum transmission time interval of RP packets by a power receiving device in the second embodiment
  • FIG. 10 is a diagram for explaining an operation sequence by a power transmitting device and a power receiving device according to the second embodiment
  • FIG. 10 is a diagram for explaining a foreign matter detection method based on a power loss technique
  • FIG. 4 is a diagram for explaining a foreign matter detection method based on a Q-value measurement method in the time domain
  • FIG. 4 is a diagram for explaining a foreign matter detection method based on a Q-value measurement method in the time domain
  • FIG. 4 is a diagram for explaining a foreign matter detection method based on a Q-value measurement method in the time domain
  • FIG. 1 is a diagram showing a configuration example of a contactless charging system (wireless power transmission system) 100 according to this embodiment.
  • the contactless charging system according to this embodiment includes a power receiving device 101 and a power transmitting device 102, as shown in FIG.
  • the power receiving device 101 and the power transmitting device 102 are based on the WPC (Wireless Power Consortium) standard.
  • WPC Wireless Power Consortium
  • the power receiving device 101 is an electronic device that receives power from the power transmitting device 102 and charges an internal battery.
  • the power transmitting device 102 is an electronic device that wirelessly transmits power to the power receiving device 101 placed on the charging stand 103 .
  • placing on the charging base 103 is simply referred to as placing on the power transmission device 102 .
  • a range 104 indicates a range in which the power receiving apparatus 101 can receive power transmitted from the power transmitting apparatus 102 .
  • the power receiving device 101 and the power transmitting device 102 have a function of executing applications other than contactless charging.
  • an object different from the power transmission device 102 and the power reception device 101 and included in the power transmission range of the power transmission device 102 is referred to as a foreign object.
  • a foreign object is, for example, a clip, an IC card, or the like.
  • a foreign object is an object that is an integral part of the power receiving device 101, the power transmitting device 102, or the product in which they are incorporated, that can unintentionally generate heat when exposed to wireless power transmitted by the power transmitting antenna. Some objects do not hit foreign objects.
  • the power transmission range of the power transmission device 102 is a range in which power can be transmitted to the power reception device 101 using the power transmission coil.
  • the power receiving apparatus 101 and the power transmitting apparatus 102 do not have to be in contact with each other.
  • the state in which the power receiving apparatus 101 is in contact with the power transmitting apparatus 102 and is included in the power transmission possible range is also regarded as the state where the power receiving apparatus 101 is placed on the power transmitting apparatus 102 .
  • the power receiving apparatus 101 may be arranged on the side surface of the power transmitting apparatus 102 instead of being placed on the power transmitting apparatus 102 .
  • FIG. 2 is a block diagram showing an internal configuration example of the power receiving device 101 according to this embodiment.
  • FIG. 3 is a block diagram showing an internal configuration example of the power transmission device 102 according to this embodiment.
  • Power receiving device 101 includes control unit 200 , power receiving coil 201 , rectifying unit 202 , voltage control unit 203 , communication unit 204 , charging unit 205 , battery 206 , resonance capacitor 207 , switch 208 , memory 209 , and timer 210 .
  • the control unit 200 controls the entire power receiving apparatus 101 by executing a control program stored in the memory 209, for example.
  • the control unit 200 may perform control for executing applications other than wireless power transmission.
  • the control unit 200 includes one or more processors such as a CPU (Central Processing Unit) and an MPU (Micro Processing Unit).
  • the control unit 200 may be configured to include dedicated hardware for specific processing such as an application specific integrated circuit (ASIC).
  • the control unit 200 may include an array circuit such as an FPGA (Field Programmable Gate Array) compiled to execute predetermined processing.
  • the control unit 200 causes the memory 209 to store information that should be stored during execution of various processes. Also, the control unit 200 measures time using a timer 210 .
  • the power receiving coil 201 receives power from the power transmitting coil 303 of the power transmitting device 102 . Also, the receiving coil 201 is connected to a resonance capacitor 207 and resonates at a specific frequency F2.
  • the rectifying unit 202 converts the AC voltage and AC current from the power transmitting coil 303 that receives power via the power receiving coil 201 into a DC voltage and a DC current.
  • Voltage control unit 203 converts the level of the DC voltage input from rectifying unit 202 into a DC voltage level at which control unit 200, charging unit 205 and the like operate.
  • the communication unit 204 performs control communication based on the WPC standard with the power transmission device 102 by in-band communication.
  • the communication unit 204 demodulates the electromagnetic waves input from the power receiving coil 201 to acquire information transmitted from the power transmission apparatus 102, and load-modulates the electromagnetic waves to superimpose information to be transmitted to the power transmission apparatus 102 on the electromagnetic waves.
  • communication with the power transmission device 102 is performed. That is, the communication performed by the communication unit 204 is superimposed on the power transmission from the power transmission coil 303 of the power transmission device 102 .
  • the battery 206 supplies power necessary for control, power reception, and communication to the entire power receiving apparatus 101 . Also, the battery 206 stores electric power received via the power receiving coil 201 .
  • a switch 208 is a switch for short-circuiting the receiving coil 201 and the resonance capacitor 207 and is controlled by the control section 200 . When switch 208 is turned on, receiving coil 201 and resonance capacitor 207 form a series resonance circuit. At this time, current flows only through the closed circuit of power receiving coil 201 , resonance capacitor 207 and switch 208 , and current does not flow through rectifying section 202 and voltage control section 203 . When switch 208 is turned off, current flows through rectifying section 202 and voltage control section 203 via receiving coil 201 and resonance capacitor 207 .
  • the memory 209 stores various information as described above. Note that the memory 209 may store information obtained by a functional unit different from the control unit 200 .
  • the timer 210 measures time by, for example, a count-up timer that measures the elapsed time from the start time, a count-down timer that counts down from a set time, or the like.
  • Power transmission device 102 includes control unit 300 , power supply unit 301 , power transmission unit 302 , power transmission coil 303 , communication unit 304 , resonance capacitor 305 , switch 306 , memory 307 , and timer 308 .
  • the control unit 300 controls the entire power transmission device 102 by executing a control program stored in the memory 307, for example.
  • the control unit 300 may perform control for executing applications other than wireless power transmission.
  • the control unit 300 includes, for example, one or more processors such as CPU and MPU.
  • the control unit 300 may include hardware dedicated to specific processing, such as an application-specific integrated circuit (ASIC), or an array circuit such as an FPGA compiled to execute predetermined processing. good.
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the power supply unit 301 supplies power necessary for control, power transmission, and communication to the entire power transmission device 102 .
  • the power supply unit 301 is, for example, a commercial power supply or a battery.
  • the power transmission unit 302 converts the DC or AC power input from the power supply unit 301 into AC frequency power in the frequency band used for wireless power transmission, and outputs the AC frequency power to the power transmission coil 303 . to generate electromagnetic waves to receive power.
  • the frequency of the AC power generated by the power transmission unit 302 is approximately several hundred kHz (eg, 110 kHz to 205 kHz).
  • the power transmission unit 302 Based on an instruction from the control unit 300 , the power transmission unit 302 outputs AC frequency power to the power transmission coil 303 so that the power transmission coil 303 outputs an electromagnetic wave for power transmission to the power receiving apparatus 101 .
  • the power transmission unit 302 controls the intensity of the electromagnetic wave to be output by adjusting the voltage (transmission voltage) or current (transmission current) input to the power transmission coil 303 . Increasing the transmission voltage or transmission current increases the intensity of the electromagnetic wave, and decreasing the transmission voltage or transmission current decreases the intensity of the electromagnetic wave. Further, the power transmission unit 302 performs output control of AC frequency power so that power transmission from the power transmission coil 303 is started or stopped based on an instruction from the control unit 300 . Also, the power transmission coil 303 is connected to a resonance capacitor 305 and resonates at a specific frequency F1.
  • the communication unit 304 performs control communication based on the WPC standard with the power receiving device 101 by in-band communication.
  • the communication unit 304 modulates the electromagnetic wave output from the power transmission coil 303 and transmits information to the power receiving apparatus 101 .
  • the communication unit 304 also acquires information transmitted by the power receiving apparatus 101 by demodulating the electromagnetic wave that is output from the power transmitting coil 303 and modulated in the power receiving apparatus 101 . That is, the communication performed by the communication unit 304 is superimposed on the power transmission from the power transmission coil 303 .
  • a switch 306 is a switch for short-circuiting the power transmission coil 303 and the resonance capacitor 305 and is controlled by the control unit 300 .
  • switch 306 When switch 306 is turned on, power transmission coil 303 and resonance capacitor 305 form a series resonance circuit. At this time, current flows only through the closed circuit of the power transmission coil 303 , the resonance capacitor 305 and the switch 306 .
  • switch 306 When switch 306 is turned off, power is supplied from power transmission section 302 to power transmission coil 303 and resonance capacitor 305 .
  • the memory 307 stores various information as described above. Note that the memory 307 may store information obtained by a functional unit different from the control unit 300 .
  • the timer 308 measures time by, for example, a count-up timer that measures the elapsed time from the start time, a count-down timer that counts down from a set time, or the like.
  • FIG. 4 is a block diagram showing a functional configuration example of the control unit 300 of the power transmission device 102.
  • the power transmission device 102 has a communication processing unit 401 , a power transmission processing unit 402 , a foreign object detection processing unit 403 , and a time selection processing unit 404 .
  • the functions of these processing units are realized as programs that operate in the control unit 300 .
  • Each of these processing units is configured as an independent program, and operates in parallel while synchronizing the programs by event processing or the like.
  • the communication processing unit 401 controls communication with the power receiving device 101 based on the WPC standard via the communication unit 304 .
  • the power transmission processing unit 402 controls the power transmission unit 302 to control power transmission to the power receiving apparatus 101 .
  • the foreign object detection processing unit 403 detects a foreign object by measuring the power loss between the power transmitting device and the power receiving device and the Q value in the power transmitting coil 303 .
  • the foreign matter detection processing unit 403 executes a foreign matter detection method based on the power loss method expected in the WPC standard and a foreign matter detection method using the Q value.
  • the foreign object detection processing unit 403 may perform the foreign object detection process using another technique. For example, in the power transmitting device 102 having an NFC (Near Field Communication) communication function, foreign object detection processing may be performed using a counterpart device detection function based on the NFC standard.
  • NFC Near Field Communication
  • the foreign matter detection processing unit 403 can also perform foreign matter detection based on a Q-value measurement method in the time domain, which will be described later. Furthermore, the foreign object detection processing unit 403 can also detect that the state of the power transmission device 102 has changed as a function other than detecting a foreign object. For example, an increase or decrease in the number of power receiving devices on power transmitting device 102 can also be detected.
  • the time selection processing unit 404 selects a timeout time related to processing of the Calibration phase, which will be described later.
  • the timeout period is information as to whether or not the power receiving apparatus 101 can perform foreign object detection based on the Q value measurement method in the time domain, or the number of trials of foreign object detection based on the Q value measurement method in the time domain. etc. Details of the processing for selecting the timeout period will be described later.
  • This system performs wireless power transmission using the electromagnetic induction method for contactless charging based on the WPC standard.
  • the power receiving device 101 and the power transmitting device 102 perform wireless power transmission for contactless charging based on the WPC standard between the power receiving coil 201 of the power receiving device 101 and the power transmitting coil 303 of the power transmitting device 102 .
  • the wireless power transmission method is not limited to the method specified by the WPC standard, and other electromagnetic induction method, magnetic resonance method, electric field resonance method, microwave method, laser etc. may be used.
  • wireless power transmission is used for contactless charging, but wireless power transmission may be used for purposes other than contactless charging.
  • the amount of power guaranteed when the power receiving apparatus 101 receives power from the power transmitting apparatus 102 is defined by a value called Guaranteed Power (hereinafter referred to as "GP").
  • GP Guaranteed Power
  • the power transmitting device 102 outputs power of 15 watts to the load in the power receiving device 101.
  • Power is transmitted by controlling GP is determined by negotiation between the power receiving device 101 and the power transmitting device 102 .
  • the WPC standard also defines a method for the power transmission device 102 to detect the presence of an object (foreign object) that is not a power reception device around the power transmission device 102 (in the vicinity of the power reception antenna). More specifically, first, a method of detecting a foreign object (a foreign object detection method using the Q value) based on changes in the quality factor (Q value, Q-factor) of the power transmitting antenna (power transmitting coil) 303 in the power transmitting device 102 is defined. ing.
  • the WPC standard also defines a power loss method for detecting a foreign object based on the difference between the power transmitted by the power transmitting apparatus 102 and the power received by the power receiving apparatus 101 . A foreign object detection process using the Q value is performed before power transmission. Further, foreign object detection processing by the power loss method performs calibration processing, which will be described later, and is performed during power transmission (power transmission) based on the data. Details will be described later.
  • metal parts that can unintentionally generate heat when exposed to the wireless power transmitted by the transmitting coil 303 include, for example, the metal frame around the transmitter coil 303 or the receiver coil 201 .
  • a foreign object in the present embodiment is an object other than such metal parts, among metals that may generate heat when exposed to wireless power transmitted by the power transmission coil.
  • the foreign object is neither a power receiving device nor part of the product in which the power receiving device is embedded or a power transmitting device and the product in which the power transmitting device is embedded when exposed to the power signal transmitted from the power transmitting coil. It is an object that can generate heat. For example, clips, IC cards, etc. correspond to foreign matter.
  • the power receiving apparatus 101 and the power transmitting apparatus 102 perform communication for power transmission/reception control based on the WPC standard and communication for device authentication before executing power transmission.
  • communication for power transmission/reception control based on the WPC standard will be described.
  • the WPC standard defines multiple phases, including a Power Transfer phase in which power transfer is performed and a phase before the actual power transfer is performed.
  • the phases before power transmission include a Selection phase, a Ping phase, an Identification and Configuration phase, a Negotiation phase, and a Calibration phase.
  • the Identification and Configuration phase is hereinafter referred to as the I&C phase.
  • the power transmission device 102 intermittently transmits an Analog Ping to detect the presence of an object within the power transmission range (for example, the power reception device 101 or conductor piece is placed on the charging base 103). do.
  • the power transmission device 102 transmits a Digital Ping with higher power than the Analog Ping.
  • the power of the Digital Ping is sufficient to activate the control unit 200 of the power receiving device 101 placed on the power transmitting device 102 .
  • the power receiving apparatus 101 notifies the power transmitting apparatus 102 of the magnitude of the received voltage using the Signal Strength Packet.
  • the power transmission device 102 recognizes that the object detected in the Selection phase is the power reception device 101 by receiving a response from the power reception device 101 that received the Digital Ping.
  • the power transmission device 102 transitions to the I&C phase upon receiving the notification of the received voltage. Also, the power transmission device 102 measures the Q-Factor of the power transmission antenna (power transmission coil) before transmitting the Digital Ping. This measurement result is used when performing foreign matter detection processing using the Q value before sending the Digital Ping.
  • the power transmission device 102 identifies the power reception device 101 and acquires device configuration information (capability information) from the power reception device 101 . Therefore, the power receiving apparatus 101 transmits an ID Packet and a Configuration Packet.
  • the ID Packet contains identifier information as identification information of the power receiving apparatus 101
  • the Configuration Packet contains device configuration information (capability information) of the power receiving apparatus 101 .
  • the power transmitting device 102 that has received the ID Packet and Configuration Packet responds with an acknowledgment (ACK). Then, the I&C phase ends, and the next Negotiation phase is started.
  • the GP value is determined based on the GP value requested by the power receiving apparatus 101, the power transmission capability of the power transmitting apparatus 102, and the like.
  • the foreign object detection processing unit 403 of the power transmission device 102 executes foreign object detection processing using the Q value in accordance with a request from the power reception device 101 .
  • the WPC standard defines a method of once shifting to the Power Transfer phase, which will be described later, and then performing the same process as in the Negotiation phase again in response to a request from the power receiving apparatus 101 .
  • the phase that moves from the Power Transfer phase and performs these processes is called the Renegotiation phase.
  • the power receiving apparatus 101 In the calibration phase, based on the WPC standard, the power receiving apparatus 101 notifies the power transmitting apparatus 102 of a predetermined received power value (the received power value in the light load state/the received power value in the maximum load state). Make adjustments for power transmission.
  • the received power value notified to the power transmission device 102 is used for foreign object detection processing using the power loss method.
  • control is performed to continue power transmission and to stop power transmission due to an error or full charge.
  • the power transmitting device 102 and the power receiving device 101 perform communication for power transmission/reception control by in-band communication in which signals are superimposed using the same antenna (coil) as wireless power transmission based on the WPC standard. Note that the range in which in-band communication based on the WPC standard is possible between the power transmitting apparatus 102 and the power receiving apparatus 101 is substantially the same as the power transmission range.
  • the range 104 represents the range in which wireless power transmission and in-band communication can be performed by the power transmitting/receiving coils of the power transmitting device 102 and the power receiving device 101 .
  • FIG. 11 represents the transmitted power of the power transmitting apparatus 102 and the vertical axis represents the received power of the power receiving apparatus 101 .
  • the power transmitting apparatus 102 transmits Digital Ping to the power receiving apparatus 101 .
  • the power transmitting apparatus 102 receives the received power value Pr1 in the light load state received by the power receiving apparatus 101 as a Received Power Packet (mode 1) (hereinafter referred to as an RP packet (mode 1)) from the power receiving apparatus 101 .
  • mode 1 Received Power Packet
  • the power receiving device 101 does not supply the received power to the load (charging circuit, battery, etc.). Then, the power transmission device 102 stores the received power value Pr1 at the point 1100 in FIG. 11 and the transmitted power value Pt1 at that time. At this time, the power transmission device 102 recognizes that the power loss between the power transmission device 102 and the power reception device 101 when power is transmitted at the transmission power value Pt1 is Pt1 ⁇ Pr1(P loss1 ).
  • the power transmission device 102 receives the received power value Pr2 in the maximum load state received by the power reception device 101 as a Received Power Packet (mode 2) (hereinafter referred to as an RP packet (mode 2)) from the power reception device 101 .
  • the power receiving device 101 supplies the received power to the load.
  • the power transmission device 102 stores the received power value Pr2 at the point 1101 in FIG. 11 and the transmitted power value Pt2 at that time. At this time, the power transmission device 102 recognizes that the power loss between the power transmission device 102 and the power reception device 101 when power is transmitted at the transmission power value Pt2 is Pt2 ⁇ Pr2(P loss2 ).
  • the power transmission device 102 linearly interpolates the points 1100 and 1101 to create a straight line 1102 .
  • a straight line 1102 indicates the relationship between the transmitted power and the received power when there is no foreign object around the power transmitting apparatus 102 and the power receiving apparatus 101 . Therefore, the power transmission device 102 can predict the received power in a state where there is a high possibility that there is no foreign object from the transmitted power value and the straight line 1102 . For example, when the transmitted power value is Pt3, it can be predicted that the received power value is Pr3 from the point 1103 on the straight line 1102 indicating the transmitted power value Pt3. Note that the processing for creating this straight line is performed in the Calibration phase.
  • the power transmitting apparatus 102 receives a received power value Pr3′ from the power receiving apparatus 101 when the power transmitting apparatus 102 transmits power to the power receiving apparatus 101 at the transmitted power value Pt3.
  • This power value P loss _FO can be considered as the power loss consumed by the foreign object when the foreign object exists between the power transmitting device 102 and the power receiving device 101 . Therefore, it is determined that a foreign object exists when the power value P loss _FO estimated to be consumed by the foreign object exceeds a predetermined threshold value.
  • the power transmitting apparatus 102 After obtaining the straight line 1102 representing the reference value through the calibration process, the power transmitting apparatus 102 periodically receives the current received power value (Pr3') from the power receiving apparatus 101 in the Power Transfer phase.
  • the current received power value periodically transmitted by the power receiving apparatus 101 is transmitted to the power transmitting apparatus 102 as a Received Power Packet (mode 0) (hereinafter referred to as an RP packet (mode 0)).
  • the power transmission device 102 detects a foreign object based on the received power value stored in the RP packet (mode 0 ) and the straight line 1102 .
  • points 1100 and 1101 for obtaining a straight line 1102 representing the relationship between the transmitted power and the received power when there is no foreign object around the power transmitting apparatus 102 and the power receiving apparatus 101 are referred to as calibration data points in the present embodiment.
  • a line segment (straight line 1102) obtained by interpolating at least two calibration data points is expressed as a calibration curve.
  • a straight line 1106 connecting points 1100 and 1104 may be derived as a calibration curve 1105 .
  • foreign matter detection based on the Q-value measurement method in the time domain is performed to detect the absence of foreign matter, and to derive a correct calibration curve.
  • a waveform 1200 in FIG. 12A shows the time course of the value of the high-frequency voltage applied to the end of the power transmission coil 303 or the resonance capacitor 305 of the power transmission device 102 (hereinafter simply referred to as the voltage value of the power transmission coil).
  • the axis is time and the vertical axis is voltage value.
  • the example of FIG. 12A indicates that the application (power transmission) of the high-frequency voltage is stopped at time T0 .
  • Point 1201 is a point on the envelope of the high frequency voltage
  • (T 1 , A 1 ) at point 1201 representing the high frequency voltage at time T 1 indicates that the voltage value at time T 1 is A 1 .
  • point 1202 is also a point on the RF voltage envelope and represents the RF voltage at time T2 .
  • (T 2 , A 2 ) at point 1202 indicates that the voltage value at time T 2 is A 2 .
  • the quality factor (Q value) of the power transmission coil 303 is measured based on the time change of the voltage value after time T0 .
  • a waveform 1203 indicates the value of the high frequency voltage applied to the power transmission coil 303, and its frequency is between 120 kHz and 148.5 kHz used in the Qi standard. Points 1204 and 1205 are part of the voltage value envelope.
  • the power transmission processing unit 402 of the power transmission device 102 stops power transmission for a period from time T0 to T5 .
  • Foreign object detection processing unit 403 of power transmission device 102 uses voltage value A 3 (point 1204) at time T 3 , voltage value A 4 (point 1205) at time T 4 , and the operating frequency of the high-frequency voltage based on Equation 1 above. to measure the Q value.
  • the power transmission processing unit 402 of the power transmission device 102 resumes power transmission at time T5 .
  • the Q value Q-factor
  • the section from time T0 to T5 when power transmission is stopped is referred to as a stop time.
  • the Q value decreases. This is because energy loss occurs due to the presence of foreign matter. Therefore, focusing on the slope of the attenuation of the voltage value, the energy loss due to the foreign matter is greater when the foreign matter is present than when there is no foreign matter. , and the attenuation rate of the amplitude of the waveform becomes high.
  • the foreign matter detection method based on the Q-value measurement method in the time domain determines whether or not there is a foreign matter based on the attenuation state of the voltage value between the points 1204 and 1205 .
  • the stop time must be determined based on the characteristics of the power transmitting device 102 and the power receiving device 101 before measuring the Q value. For example, since the shortest downtime that can be realized differs depending on the capabilities of the switch 306 and the control unit 300 of the power transmission device 102, the downtime must be longer than the shortest downtime that can be realized. In addition, since the accuracy of foreign object detection differs even with the same stop time depending on the operating frequency and the amount of voltage drop, it is necessary to select a stop time that can maintain a predetermined accuracy. Furthermore, depending on the type of the power receiving device 101, it may not function normally if the received power drops for a certain period of time or longer. Therefore, the stop time must be longer than the longest stop time that the power receiving apparatus 101 can tolerate.
  • FIG. 5 is a flowchart showing an example of a basic processing procedure executed by the power transmission device 102 according to this embodiment.
  • This processing is implemented by executing a program read from the memory 307 by the control unit 300 of the power transmission device 102, for example. Further, this processing is performed in response to the power of the power transmission device 102 being turned on, in response to the user of the power transmission device 102 inputting an instruction to start the contactless charging application, or in response to the power transmission device 102 turning on the commercial power source. is connected to and receiving power. Moreover, this process may be started by other triggers.
  • the control unit 300 of the power transmission device 102 executes processing specified as the Selection phase and Ping phase of the WPC standard, and waits for an object to be placed on the power transmission device 102 .
  • the communication processing unit 401 of the power transmission device 102 repeatedly and intermittently transmits WPC standard Analog Ping (F701).
  • the control unit 300 of the power transmitting apparatus 102 detects that the Analog Ping changes (F703) and that an object has been placed (F704). Then, when it is detected that an object exists within the power transmission possible range, the phase shifts to the Ping phase, and the communication processing unit 401 of the power transmission device 102 transmits a WPC standard Digital Ping (F705).
  • the power receiving apparatus 101 detects by Digital Ping that it is placed on the power transmitting apparatus 102 (F706).
  • the control unit 300 of the power transmission device 102 determines that the detected object is the power reception device 101 and that the power reception device 101 is placed on the charging stand 103 when a predetermined response to the Digital Ping is received.
  • the communication processing unit 401 of the power transmitting apparatus 102 receives the identification information from the power receiving apparatus 101 through communication in the I&C phase defined by the WPC standard.
  • the identification information received from the power receiving device 101 via the ID Packet includes the Manufacturer Code and Basic Device ID as identifier information.
  • the capability information received from the power receiving apparatus 101 in the Configuration Packet includes an information element capable of specifying the compatible WPC standard version.
  • the capability information includes Maximum Power Value, which is a value specifying the maximum power that the power receiving apparatus 101 can supply to the load, and information indicating whether or not the power receiving apparatus 101 has the WPC standard Negotiation function.
  • the identification information and capability information of the power receiving apparatus 101 may be replaced by other information, or may include other information in addition to the above information. good.
  • the identification information may be any other identification information that can identify the individual power receiving device 101, such as a Wireless Power ID.
  • the power transmitting apparatus 102 may acquire the identification information and the capability information of the power receiving apparatus 101 by a method other than WPC standard I&C phase communication.
  • the control unit 300 of the power transmission apparatus 102 performs negotiation processing with the power receiving apparatus 101 through communication in the Negotiation phase defined by the WPC standard, and determines the GP value.
  • the power transmitting apparatus 102 may acquire information indicating that the power receiving apparatus 101 does not support the Negotiation phase in S502, for example. In such a case, the power transmission device 102 may not perform communication in the Negotiation phase, and may set the value of GP to a small value (previously defined in the WPC standard, for example).
  • the power receiving apparatus 101 in addition to the procedure for determining the GP, information regarding foreign object detection based on the Q-value measurement method in the time domain is exchanged with the power receiving apparatus 101 .
  • the power receiving apparatus 101 notifies supplementary information as to whether foreign object detection based on the Q-value measurement method in the time domain can be performed, or the power transmission apparatus 102 notifies foreign object detection based on the Q-value measurement method in the time domain.
  • the power receiving apparatus 101 is notified of the number of times.
  • the power transmitting apparatus 102 executes processing for selecting a calibration timeout period.
  • a detailed processing procedure for selecting the calibration timeout time will be described later.
  • the foreign object detection processing unit 403 of the power transmission device 102 executes the Calibration phase based on the selected timeout period.
  • the foreign object detection processing unit 403 of the power transmission device 102 derives the relationship between the transmitted power and the received power in the absence of a foreign object, as described above.
  • the foreign object detection processing unit 403 of the power transmitting apparatus 102 uses a predetermined received power value (including a received power value in a light load state and a received power value in a maximum load state) acquired from the power receiving apparatus 101 to Derive the Calibration curve. Note that when deriving the calibration curve, the foreign object detection processing unit 403 of the power transmission device 102 performs foreign object detection based on the Q-value measurement method in the time domain each time a predetermined received power value is acquired.
  • the foreign object detection processing unit 403 detects the received power for the number of trials for each predetermined received power value. Value acquisition and foreign object detection are performed. As a result, it is possible to avoid derivation of the calibration curve in a state in which foreign matter is present, and to suppress non-detection or erroneous detection of foreign matter.
  • the power transmission processing unit 402 of the power transmission apparatus 102 starts power transmission to the power receiving apparatus 101 in the Power Transfer phase.
  • power transmission is performed by the processing of the Power Transfer phase, it is not limited to this, and power transmission may be performed by a method other than the WPC standard.
  • the process returns to the Selection phase of S501.
  • the power transmitting apparatus 102 receives a WPC standard End Power Transfer from the power receiving apparatus 101, it forcibly terminates the processing in any processing phase according to the WPC standard, stops power transmission, and proceeds to the Selection phase of S501. return. Note that the end power transfer is transmitted from the power receiving apparatus 101 even when the power receiving apparatus 101 is fully charged, so the process returns to the selection phase of step S501.
  • the timeout period may be selected from predetermined candidates, or may be determined by calculation according to a specific rule.
  • the time selection processing unit 404 determines whether or not the power receiving apparatus 101 is a predetermined version of the Qi standard or higher.
  • whether or not the version is equal to or higher than a predetermined version can be determined from the version information in the capability information included in the Configuration Packet received from the power receiving apparatus 101 in the I&C phase.
  • determination may be made from information contained in another packet, or determination may be made based on information acquired using out-of-band communication such as Bluetooth (registered trademark) or NFC.
  • step S605 the time selection processing unit 404 of the power transmission apparatus 102 selects a predetermined value as the timeout period for processing in the calibration phase, and ends the processing.
  • this predetermined value is a reference value that is set by default.
  • the control unit 300 of the power transmission device 102 determines whether or not to perform foreign object detection based on the Q-value measurement method in the time domain.
  • the power receiving apparatus 101 notifies supplementary information as to whether foreign object detection based on the Q value measurement method in the time domain can be performed (F709). Therefore, based on this supplementary information, the control unit 300 determines whether or not to perform the foreign matter detection based on the Q-value measurement method in the time domain.
  • the determination may be made based on whether or not supplementary information has been received from the power receiving apparatus 101 as to whether or not the foreign object detection method based on the Q-value measurement method in the time domain is compatible. In this case, it may be determined that the power receiving apparatus 101 is operable by default by not receiving from the power receiving apparatus 101, or it may be determined that the power receiving apparatus 101 is not compatible with the foreign object detection method based on the Q-factor measurement method in the time domain by not receiving. and may decide not to implement it.
  • the control unit 300 of the power transmission device 102 determines whether or not to attempt foreign object detection based on the Q-value measurement method in the time domain a predetermined number of times or more.
  • the negotiation phase of S503 it is determined whether or not the number of trials determined by exchanging information with the power receiving apparatus 101 is equal to or greater than a predetermined number.
  • the process proceeds to S604.
  • the process proceeds to S605.
  • the time selection processing unit 404 of the power transmission apparatus 102 selects a value larger than the predetermined value defined in S605 as the timeout period related to the calibration phase process, and ends the process.
  • the value larger than the predetermined value is a fixed value predetermined as the Qi standard, but may be a variable value that increases in proportion to the number of trials, for example.
  • the timeout period is determined according to the processing time required to execute foreign object detection based on the Q-value measurement method in the time domain, the processing time required for the power receiving apparatus 101 to notify a predetermined received power value in an RP packet, and the like. be done.
  • identification information and capability information are exchanged between the power transmitting device 102 and the power receiving device 101 (F707).
  • the processing of the power transmission device 102 in F707 is the processing of S502 in FIG. In the example shown in FIG. 7, it is assumed that the power receiving apparatus 101 has a predetermined version or higher based on the capability information included in the configuration packet.
  • the power transmitting apparatus 102 and the power receiving apparatus 101 execute Negotiation phase communication (F708). It should be noted that GP is determined to be 15 watts in this Negotiation process.
  • the power transmitting apparatus 102 receives, as supplementary information from the power receiving apparatus 101, information indicating that foreign object detection based on the Q-value measurement method in the time domain can be performed (F709), and responds with ACK (F710). ).
  • the power transmitting apparatus 102 notifies the power receiving apparatus 101 of 7 times as information regarding the number of trials of foreign object detection based on the Q-value measurement method in the time domain (F711), starts the processing in FIG. 6, and selects a timeout period. (F712).
  • the information about the number of trials of foreign object detection based on the Q-value measurement method in the time domain is included in the response to the Generic Request packet transmitted from the power receiving device 101 and notified, but at another timing or packet. may notify you.
  • the process shifts to the Calibration phase, and the power transmitting apparatus 102 receives a Control Error packet (CE packet) having a positive Control Error Value from the power receiving apparatus 101 (F713). Then, the power transmission device 102 changes the power transmission output based on the Control Error Value. Subsequently, when the power transmitting apparatus 102 receives the RP packet (mode 1) indicating the received power value in the light load state from the power receiving apparatus 101 (F714), foreign object detection processing is performed based on the Q value measurement method in the time domain (F715). Since this is the first trial out of seven trials, the power transmission device 102 responds that it does not make a decision (F716).
  • CE packet Control Error packet
  • mode 1 indicating the received power value in the light load state from the power receiving apparatus 101
  • foreign object detection processing is performed based on the Q value measurement method in the time domain (F715). Since this is the first trial out of seven trials, the power transmission device 102 responds that it does not
  • the power transmitting apparatus 102 determines whether or not a timeout related to the processing of the Calibration phase has occurred. In the example of FIG. 7, it is assumed that it is determined that the selected timeout period has not elapsed (no timeout has occurred) (F717). Thereafter, the processes of F714 to F717 are repeated five more times between the power transmitting apparatus 102 and the power receiving apparatus 101.
  • FIG. 7 it is assumed that it is determined that the selected timeout period has not elapsed (no timeout has occurred)
  • the power transmitting apparatus 102 receives the RP packet (mode 1) from the power receiving apparatus 101 (F718), it performs foreign object detection processing based on the Q value measurement method in the time domain (F719). Since this is the seventh trial out of seven trials, the power transmission device 102 determines that there is no foreign object based on the results of the first to seventh foreign object determination processes. Then, the power transmission device 102 responds with ACK to the effect that it is accepted as the received power value Pr1 in the light load state used for deriving the calibration curve (F720). Note that when it is determined that a foreign object exists from the detection results of the foreign object detection process based on the Q-value measurement method in the time domain seven times, the calibration curve cannot be derived. Therefore, in such a case, the power transmitting apparatus 102 responds with NAK (negative acknowledgment) indicating that the received power value in the light load state cannot be accepted.
  • NAK negative acknowledgment
  • the power transmission device 102 determines whether a timeout related to the calibration phase processing has occurred. In the example of FIG. 7, it is assumed that it is determined that the selected timeout period has not elapsed (no timeout has occurred) (F721).
  • the same processing as F713 to F717 is performed for the RP packet (mode 2) indicating the received power value in the maximum load state (F722 to F726).
  • the power transmitting apparatus 102 upon receiving the RP packet (mode 2) from the power receiving apparatus 101 (F727), the power transmitting apparatus 102 performs foreign object detection processing based on the Q value measurement method in the time domain (F728). Since this is the seventh trial out of seven trials, the power transmission device 102 determines that there is no foreign object based on the results of the first to seventh foreign object determination processes.
  • the power transmitting apparatus 102 responds with an ACK indicating acceptance as the received power value Pr2 in the maximum load state used for deriving the calibration curve (F729). After completing the response, the power transmitting apparatus 102 determines whether or not a timeout related to the processing of the Calibration phase has occurred. Note that in the example of FIG. 7, if the timeout period is selected in S605, it is assumed that the timeout period has already passed. In the example of FIG. 7, the power transmitting apparatus 102 determines that a timeout has not occurred because the predetermined timeout period has elapsed but the selected timeout period has not elapsed (F730). Then, the Calibration phase ends. Thereafter, the power transfer phase is entered, and processing related to power transmission and reception is executed between the power transmission device 102 and the power reception device 101 (F731).
  • the power transmission device 102 can select a necessary and sufficient timeout period for executing the calibration process according to the content of the trial of the foreign object detection process. This makes it possible to derive a calibration curve with high accuracy, and realize a safer and more efficient wireless power transmission system.
  • the power transmission device which is the entity that derives the calibration curve, changes the timeout period related to the processing of the calibration phase to a larger value as necessary based on the content of the foreign object detection trial.
  • the timeout time is set to a value larger than the predetermined value, there is a problem that the time until power transmission/reception is started becomes long. Therefore, if control is possible so that desired calibration phase processing can be executed without changing the timeout period, such control is desirable.
  • a method of selecting the maximum transmission time interval of RP packets according to the content of a foreign object detection process on the power receiving device side and performing control will be described.
  • the power transmitting apparatus 102 does not perform processing for selecting the timeout period, and assumes that the value set in step S605 is fixed.
  • FIG. 8 is a flowchart illustrating an example of a basic processing procedure executed by the power receiving apparatus 101 according to this embodiment.
  • This process is implemented by executing a program read from the memory 209 by the control unit 200 of the power receiving apparatus 101, for example.
  • this process may be executed when the power receiving apparatus 101 is activated by power transmission from the battery 206 or the power transmitting apparatus 102 in response to the power of the power receiving apparatus 101 being turned on.
  • it may be executed in response to the user of the power receiving device 101 inputting an instruction to start the contactless charging application.
  • this process may be started by other triggers.
  • control unit 200 of the power receiving apparatus 101 executes processing defined as the Selection phase and the Ping phase of the WPC standard, and waits for its own apparatus to be placed on the power transmitting apparatus 102 (S801).
  • the control unit 200 of the power receiving device 101 detects that it is placed on the power transmitting device 102 by detecting the Digital Ping from the power transmitting device 102, for example.
  • the control unit 200 of the power reception device 101 identifies the power transmission device 102 to the power transmission device 102 through communication in the I&C phase defined by the WPC standard. Send information and capability information.
  • the power receiving apparatus 101 stores identification information in an ID Packet and transmits it, and stores capability information in a Configuration Packet and transmits it.
  • the control unit 200 of the power receiving apparatus 101 exchanges information with the power transmitting apparatus 102 through communication in the Negotiation phase defined by the WPC standard, and determines the GP. Furthermore, in S ⁇ b>803 , in addition to the procedure for determining the GP, information regarding foreign object detection based on the Q-value measurement method in the time domain is exchanged with the power transmitting apparatus 102 . For example, information such as the processing time required to execute foreign object detection based on the Q-value measurement method in the time domain and the processing time required to reach a predetermined received power value is included.
  • control unit 200 of the power receiving apparatus 101 executes processing for selecting the maximum transmission time interval of RP packets.
  • the details of the process of selecting the maximum transmission time interval of RP packets will be described later.
  • the control unit 200 of the power receiving apparatus 101 performs calibration phase communication according to the WPC standard.
  • the information such as the predetermined received power value necessary for deriving the calibration curve is transmitted to the power transmitting apparatus 102 .
  • the control unit 200 of the power receiving apparatus 101 starts receiving power through communication in the Power Transfer phase defined by the WPC standard.
  • the power receiving apparatus 101 transmits a WPC-standard End Power Transfer to the power transmitting apparatus 102 when an error occurs or when the battery reaches full charge. As a result, power transmission from the power transmission device 102 is stopped, and a series of processes for non-contact charging ends.
  • the control unit 200 of the power receiving apparatus 101 determines whether or not the power transmitting apparatus 102 is a predetermined version of the Qi standard or higher.
  • a Generic Request packet is transmitted to the power transmission device 102, and it is determined from the version information included in the response whether or not the version is equal to or higher than a predetermined version.
  • the determination may be made based on version information notified from the power transmitting apparatus 102 using another packet, or may be determined based on information acquired using out-of-band communication such as Bluetooth or NFC. .
  • version information may be acquired as capability information from the power transmission device 102 in the I&C phase, and determination may be made based on that information.
  • the process proceeds to S902. On the other hand, if the version is not equal to or higher than the predetermined version, the process proceeds to S905. In S905, the control unit 200 of the power receiving apparatus 101 selects a predetermined value as the maximum transmission time interval of RP packets, and ends the process. Note that this predetermined value is a reference value that is set by default.
  • the control unit 200 of the power receiving apparatus 101 determines whether or not to perform foreign object detection based on the Q-value measurement method in the time domain.
  • the determination of whether or not to implement foreign object detection is made based on whether or not the device itself can handle foreign object detection based on the Q-value measurement method in the time domain.
  • determination may be made based on whether or not a notification regarding the number of trials of foreign object detection based on the Q-value measurement method in the time domain has been received from the power transmitting device 102 . At this time, it may be determined that the power transmission device 102 is not compatible with the foreign object detection method based on the Q value measurement method in the time domain. It may be determined that it is not possible.
  • control unit 200 of the power receiving apparatus 101 determines whether or not to attempt foreign object detection based on the Q-value measurement method in the time domain a predetermined number of times or more. In this process, it is determined whether or not the number of trials notified from the power transmission device 102 in the Negotiation phase is equal to or greater than a predetermined number.
  • the control unit 200 of the power receiving apparatus selects a value smaller than the predetermined value defined in S905 as the maximum transmission time interval of RP packets, and ends the process.
  • the value smaller than the predetermined value may be, for example, a variable value that decreases in proportion to the number of trials.
  • the maximum transmission time interval is determined according to the processing time required to execute foreign object detection based on the Q-value measurement method in the time domain, the processing time required to reach a predetermined received power value, and the like.
  • F1001 to F1006 are the same as F701 to F706 in FIG.
  • version information including a value equal to or greater than a predetermined version is received from the power transmitting apparatus 102.
  • FIG. After that, the processes of F1008 to F1010 are performed, and the notification of the number of trial times of foreign object detection based on the Q value measurement method in the time domain is received from the power transmitting device (F1011).
  • the processing of F1008 to F1010 is the same as that of F708 to F710 in FIG.
  • the power receiving apparatus 101 Upon receiving the notification of the number of attempts from the power transmitting apparatus 102, the power receiving apparatus 101 starts selection processing of the maximum transmission time interval of RP packets (F1012).
  • calibration phase processing is started between the power transmitting apparatus 102 and the power receiving apparatus 101, and the power receiving apparatus 101 transmits a CE packet whose Control Error Value is a positive value to the power transmitting apparatus 102 (F1013).
  • the power receiving apparatus 101 transmits an RP packet (mode 1) indicating the received power value in the light load state to the power transmitting apparatus 102 (F1014). (F1015).
  • mode 1 the power receiving apparatus 101 receives a response not to judge from the power transmitting apparatus 102 (F1016).
  • the power transmitting apparatus 102 determines that a timeout related to the calibration phase processing has not occurred (F1017).
  • the power transmitting apparatus 102 and the power receiving apparatus 101 repeat the processing of F1014 to F1017 five more times.
  • the power receiving apparatus 101 receives a response to the effect that the determination is not made for the transmission of the previous RP packet, and then transmits the next RP packet so as not to exceed the maximum transmission time interval selected in F1012.
  • the power transmitting apparatus 102 performs foreign object detection processing based on the Q value measurement method in the time domain (F1019). Since this is the seventh trial out of seven trials, the power transmission device 102 determines that there is no foreign object based on the results of the first to seventh foreign object determination processes. Then, the power transmitting apparatus 102 responds with an ACK indicating acceptance as the received power value Pr1 in the light load state used for deriving the calibration curve (F1020). After completing the response, the power transmitting apparatus 102 determines whether or not a timeout related to the processing of the Calibration phase has occurred. In the example of FIG. 10, it is assumed that it is determined that the predetermined timeout period has not elapsed (F1021).
  • the power receiving apparatus 101 transmits a CE packet with a positive Control Error Value to the power transmitting apparatus 102 in order to set the received power value to the maximum load state (F1022).
  • the power receiving apparatus 101 designates a positive value of the Control Error Value, which is larger than that in the case where the foreign object detection based on the Q-value measurement method in the time domain is not tried multiple times.
  • the number of CE packet transmissions is increased as compared to the case where foreign object detection by the Q-factor method in the time domain is not attempted multiple times. As a result, it is possible to reach the desired received power value in a shorter time than in the case where foreign object detection based on the Q-value measurement method in the time domain is not attempted multiple times.
  • RP packets (mode 2) indicating the received power value in the maximum load state can be transmitted at shorter time intervals. Therefore, even if a value smaller than a predetermined value is selected as the maximum transmission time interval of RP packets, the calibration process can be continued while maintaining the interval. After that, the processing of F1023 to F1031 is the same as that of F723 to F731 in FIG. 7, so the explanation is omitted.
  • the power receiving apparatus 101 selects the maximum transmission time interval of RP packets according to the trial content of the foreign object detection process. As a result, it is possible to derive the calibration curve while improving foreign matter detection accuracy within a predetermined time-out period for the calibration process, thereby realizing a safer and more efficient wireless power transmission system.
  • the calibration process is immediately started.
  • the power receiving apparatus 101 may be notified of the selected timeout period.
  • the power transmitting apparatus 102 notifies the power receiving apparatus 101 of the number of trials of foreign object detection based on the Q-value measurement method in the time domain, a method of notifying the timeout period by including it in the response to the Generic Request packet transmitted from the power receiving apparatus 101. etc. can be considered.
  • the power receiving apparatus 101 controls the value of the Control Error Value included in the CE packet, the number of transmissions, and the transmission time interval of the RP packet according to the timeout period notified from the power transmitting apparatus 102, while suppressing the processing load. can be done systematically. Then, a safer and more efficient wireless power transmission system can be realized.
  • the calibration process is immediately started.
  • the power transmission device 102 may be notified. For example, it is conceivable to send a Specific Request packet containing information on the maximum transmission time interval before sending an RP packet, but it may be notified using another timing or packet. As a result, the power transmitting apparatus 102 can use the notified maximum transmission time interval as a timeout period until RP packet reception. Therefore, it is possible to determine whether or not a timeout related to the processing of the Calibration phase will occur at an earlier timing than performing timeout determination using a predetermined timeout period until reception of the RP packet.
  • the power transmission device 102 notifies the number of trials of foreign object detection based on the Q-value measurement method in the time domain, and the power reception device 101 unconditionally accepts the number of trials.
  • Device 101 may refuse to accept the number of attempts advertised. For example, when the number of trials notified from the power transmission device 102 is executed, the processing of the calibration phase may not be completed within the timeout period. In other words, there are cases where the RP packet transmission interval cannot be shortened. In this case, the power receiving apparatus 101 may use a Generic Request packet or the like to request the power transmitting apparatus 102 to re-notify the information on the number of trials in order to re-determine the number of trials.
  • the power receiving apparatus 101 may transmit an End Power Transfer to stop processing, and restart from the processing of the Selection phase.
  • the number of trials may be re-determined for the purpose of increasing the number of trials in order to improve foreign object detection accuracy.
  • the processing is completed within the timeout period related to the calibration phase processing.
  • the power transmission apparatus 102 stops power transmission, but the power transmission output may be suppressed without stopping power transmission, or the processing of the Selection phase may be restarted after power transmission is stopped. good.
  • the processing of the Selection phase may be restarted after power transmission is stopped.
  • the processing of the power transmitting device 102 according to the first embodiment and the processing of the power receiving device 101 according to the second embodiment may be combined.
  • the power transmitting apparatus 102 determines whether or not a timeout has occurred each time it receives an RP packet. . As a result, execution of unnecessary processing can be suppressed, and a highly efficient wireless power transmission system can be realized.
  • the power receiving device 101 and the power transmitting device 102 can have a function of executing applications other than wireless charging.
  • An example of the power receiving device 101 is an information processing terminal such as a smart phone, and an example of the power transmitting device 102 is an accessory device for charging the information processing terminal.
  • an information terminal device has a display unit (display) that displays information to a user, and is supplied with power received from a power receiving coil (antenna). Further, the electric power received from the power receiving coil is accumulated in a power storage unit (battery), and electric power is supplied from the battery to the display unit.
  • the power receiving device 101 may have a communication unit that communicates with another device other than the power transmitting device 102 .
  • the communication unit may support communication standards such as NFC communication and the fifth generation mobile communication system (5G). Further, in this case, the communication unit may perform communication by supplying power from the battery to the communication unit.
  • the power receiving device 101 may be a tablet terminal, a storage device such as a hard disk device and a memory device, or an information processing device such as a personal computer (PC). Also, the power receiving device 101 may be, for example, an imaging device (a camera, a video camera, or the like). Also, the power receiving device 101 may be an image input device such as a scanner, or may be an image output device such as a printer, a copier, or a projector. Also, the power receiving device 101 may be a robot, a medical device, or the like.
  • the power transmission device 102 can be a device for charging the devices described above.
  • the power transmission device 102 may be a smartphone.
  • the power receiving device 101 may be another smart phone or a wireless earphone.
  • the power receiving device 101 in this embodiment may be a vehicle such as an automobile.
  • an automobile which is the power receiving device 101, may receive power from a charger (power transmitting device 102) via a power transmitting antenna installed in a parking lot.
  • the automobile which is the power receiving device 101, may receive power from a charger (power transmitting device 102) via a power transmitting coil (antenna) embedded in the road.
  • the received power is supplied to the battery.
  • the power of the battery may be supplied to the driving unit (motor, electric unit) that drives the wheels, or may be used to drive sensors used for driving assistance or to drive the communication unit that communicates with external devices. good.
  • the power receiving device 101 may include a battery, a motor or sensor driven by the received power, and a communication unit that communicates with devices other than the power transmitting device 102 in addition to the wheels. .
  • the power receiving device 101 may have a housing section that houses a person.
  • sensors include sensors used to measure the distance between vehicles and the distance to other obstacles.
  • the communication unit may be compatible with, for example, the Global Positioning System (Global Positioning Satellite, GPS).
  • the communication unit may support a communication standard such as the fifth generation mobile communication system (5G).
  • the vehicle may be a bicycle or a motorcycle.
  • the power receiving device 101 is not limited to a vehicle, and may be a moving body, an aircraft, or the like having a driving unit that is driven by using power stored in a battery.
  • the power receiving device 101 in this embodiment may be an electric power tool, a home appliance, or the like.
  • These devices which are the power receiving device 101, may have a battery or a motor driven by received power stored in the battery. Also, these devices may have notification means for notifying the remaining amount of the battery.
  • these devices may have a communication unit that communicates with another device different from the power transmission device 102 .
  • the communication unit may support communication standards such as NFC and the fifth generation mobile communication system (5G).
  • the power transmission device 102 in the present embodiment may be an in-vehicle charger that transmits power to mobile information terminal devices such as smartphones and tablets that support wireless power transmission in the vehicle.
  • Such an on-board charger may be provided anywhere in the vehicle.
  • the in-vehicle charger may be installed in the console of the automobile, or may be installed in the instrument panel (instrument panel, dashboard), between the seats of passengers, on the ceiling, or on the door. However, it should not be installed in a place that interferes with driving.
  • the power transmission device 102 has been described as an in-vehicle charger, such a charger is not limited to being installed in a vehicle, and may be installed in a transport machine such as a train, an aircraft, or a ship. Chargers in this case may also be installed between passenger seats, on the ceiling, or on the door.
  • the power transmission device 102 may be a vehicle such as an automobile equipped with an in-vehicle charger.
  • the power transmission device 102 has a wheel and a battery, and uses power of the battery to supply power to the power reception device 101 through a power transmission circuit unit and a power transmission coil (antenna).
  • the present disclosure provides a program that implements one or more functions of the above-described embodiments to a system or device via a network or storage medium, and one or more processors in a computer of the system or device reads and executes the program. It can also be realized by processing to It can also be implemented by a circuit (for example, ASIC) that implements one or more functions.
  • a circuit for example, ASIC

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

受電装置が所定の条件を満たす場合は、電力損失の基準値の算出に係る処理のタイムアウト時間を、所定の条件を満たさない場合のタイムアウト時間よりも長い時間とする。

Description

送電装置、受電装置、無線電力伝送システム、送電装置の制御方法、受電装置の制御方法およびプログラム
 本開示は、送電装置、受電装置、無線電力伝送システム、送電装置の制御方法、受電装置の制御方法およびプログラムに関する。
 近年、無線電力伝送システムの技術開発が広く行われており、無線充電規格の標準化団体であるWireless Power Consortium(WPC)により規格(WPC規格)が策定されている。特許文献1には、WPC規格に準拠した送電装置および受電装置が開示されている。
 また、無線電力伝送システムでは、送電装置が電力を伝送可能な範囲に受電装置及び送電装置とは異なる物体(以下、異物という)が存在する場合に、その異物を検出して送受電を制御することが肝要になる。特許文献2には、送受電装置の近傍に異物が存在する場合に、その異物を検出して送受電を制限する手法が開示されている。さらに、特許文献3には、無線電力伝送システムの送電コイルにある期間高周波信号を印加し、送電コイル内部の電圧の時間変化からQ値(Quality factor)を測定し、Q値の変化によって異物を検出する技術が開示されている。
特開2015-56959号公報 特開2017-70074号公報 特開2018-45845号公報
 異物を検出する方法の一つして電力損失を用いる方法がある。まず、送電装置における送電電力と受電装置における受電電力との差分から、送電装置-受電装置間の異物がない電力損失の基準値を事前に算出しておく。そして、その後の送電中に算出した送電装置-受電装置間の電力損失に基づいて異物が存在するか否かを判定する。ここで、異物がない状態における電力損失の基準値を事前に算出する際に、異物が混入した状態での算出を避けるため、電力損失の算出毎に例えば別の方法で異物検出を実施することが望ましい。また、電力損失の基準値の算出の精度を向上させるため、電力損失の算出と算出毎の異物検出とを複数回試行することが考えられる。しかしながら、電力損失の基準値の算出に係る処理には所定のタイムアウト時間が設けられている。そのため、電力損失の基準値の算出と算出毎の異物検出とを複数回試行する場合、タイムアウト時間内に処理を完了することができず、意図しない送電停止が発生する可能性がある。
 本開示は前述の問題点に鑑み、受電装置及び送電装置とは異なる物体の検出に用いる電力損失の基準値を算出する際に生じうる、不要な送電停止を抑制できるようにすることを目的としている。
 本開示に係る送電装置は、受電装置に対して無線で電力を送電する送電装置であって、前記送電装置と前記受電装置との間の電力損失に基づいて、前記送電装置及び前記受電装置とは異なる物体が存在するか否かを検出する第1の検出手段と、前記受電装置から前記受電装置に係る能力情報を取得する取得手段と、前記送電を停止する期間に測定するQ-ファクターに基づいて、前記送電装置及び前記受電装置とは異なる物体が存在するか否かを検出する第2の検出手段と、前記第2の検出手段による検出結果に基づき、前記第1の検出手段による検出に用いる前記送電装置及び前記受電装置とは異なる物体が存在しない場合の電力損失の基準値を算出する算出手段と、前記取得手段によって取得された前記受電装置に係る能力情報に基づいて、前記算出手段による前記基準値の算出に係る処理のタイムアウト時間を特定する特定手段と、を有し、前記特定手段は、前記受電装置が所定の条件を満たしていない場合は、前記タイムアウト時間として第1の値を選択し、前記受電装置が前記所定の条件を満たしている場合は、前記タイムアウト時間として前記第1の値よりも大きい第2の値を特定することを特徴とする。
 本開示によれば、受電装置及び送電装置とは異なる物体の検出に用いる電力損失の基準値を算出する際に生じうる、不要な送電停止を抑制することができる。
実施形態に係る無線電力伝送システムの構成例を示す図である。 実施形態に係る受電装置の内部構成例を示すブロック図である。 実施形態に係る送電装置の内部構成例を示すブロック図である。 実施形態に係る送電装置の機能構成例を示すブロック図である。 第1の実施形態における送電装置が実行する基本的な処理手順の一例を示すフローチャートである。 第1の実施形態において、送電装置によるタイムアウト時間の選択処理手順の一例を示すフローチャートである。 第1の実施形態における送電装置および受電装置による動作シーケンスを説明するための図である。 第2の実施形態における受電装置が実行する基本的な処理手順の一例を示すフローチャートである。 第2の実施形態において、受電装置によるRPパケットの最大送信時間間隔の選択処理手順の一例を示すフローチャートである。 第2の実施形態における送電装置および受電装置による動作シーケンスを説明するための図である。 パワーロス手法に基づく異物検出方法を説明するための図である。 時間領域におけるQ値測定法に基づく異物検出方法を説明するための図である。 時間領域におけるQ値測定法に基づく異物検出方法を説明するための図である。
 (第1の実施形態)
 以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は本開示を限定するものでない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが本開示に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。
 (システムの構成)
 図1は、本実施形態に係る非接触充電システム(無線電力伝送システム)100の構成例を示す図である。本実施形態に係る非接触充電システムは、図1に示すように、受電装置101と送電装置102とを含んで構成される。ここで、受電装置101と送電装置102は、WPC(Wireless Power Consortium)規格に準拠しているものとする。
 受電装置101は、送電装置102から受電して内蔵バッテリに充電を行う電子機器である。送電装置102は、充電台103を介して載置された受電装置101に対して無線で送電する電子機器である。以下、充電台103に戴置されたことを単に送電装置102に載置されたと表現する。範囲104は、受電装置101が、送電装置102から送電された電力を受電可能な範囲を示している。なお、受電装置101と送電装置102は非接触充電以外のアプリケーションを実行する機能を有する。また、以下の説明においては、送電装置102の送電範囲に含まれる、送電装置102及び受電装置101とは異なる物体を、異物と記載する。異物は、例えば、クリップ、またはICカード等である。異物は、受電装置101や送電装置102、それらが組み込まれた製品に不可欠な部分の物体のうち、送電アンテナが送電する無線電力にさらされたときに意図せずに熱を発生する可能性のある物体は、異物には当たらない。
 また、以下の説明において「受電装置101が送電装置102上に載置される」ことは「受電装置101が送電装置102の送電可能範囲に含まれる状態」を表すものとする。送電装置102の送電可能範囲とは、送電コイルを使用して受電装置101に送電可能な範囲である。また、受電装置101が送電装置102上に載置される状態は、受電装置101と送電装置102とが接触していなくてもよい。例えば、受電装置101が送電装置102と非接触で送電可能範囲に含まれている状態も、「受電装置101が送電装置102上に載置された」状態とみなすものとする。また、受電装置101が送電装置102の上に置かれるのではなく、例えば送電装置102の側面に配置される構成でもよい。
 (装置の構成)
 続いて、本実施形態に係る受電装置101および送電装置102の構成について説明する。なお、以下で説明する構成は一例に過ぎず、説明される構成の一部(場合によっては全部が)他の同様の機能を果たす他の構成と置き換えられ又は省略されてもよく、さらなる構成が説明される構成に追加されてもよい。さらに、以下の説明で示される1つのブロックが複数のブロックに分割されてもよいし、複数のブロックが1つのブロックに統合されてもよい。
 図2は、本実施形態に係る受電装置101の内部構成例を示すブロック図である。また、図3は、本実施形態に係る送電装置102の内部構成例を示すブロック図である。受電装置101は、制御部200、受電コイル201、整流部202、電圧制御部203、通信部204、充電部205、バッテリ206、共振コンデンサ207、スイッチ208、メモリ209、およびタイマ210を有する。
 制御部200は、例えばメモリ209に記憶されている制御プログラムを実行することにより、受電装置101の全体を制御する。制御部200は、無線電力伝送以外のアプリケーションを実行するための制御を行ってもよい。制御部200は、例えばCPU(Central Processing Unit)やMPU(Micro Processing Unit)等の1つ以上のプロセッサを含んで構成される。なお、制御部200は、特定用途向け集積回路(ASIC:Application Specific Integrated Circuit)等の特定の処理に専用のハードウェアを含んで構成されていてもよい。また、制御部200は、所定の処理を実行するようにコンパイルされたFPGA(フィールドプログラマブルゲートアレイ)等のアレイ回路を含んで構成されてもよい。制御部200は、各種処理を実行中に記憶しておくべき情報をメモリ209に記憶させる。また、制御部200は、タイマ210を用いて時間を計測する。
 受電コイル201は、送電装置102の送電コイル303から電力を受電する。また、受電コイル201は共振コンデンサ207と接続され、特定の周波数F2で共振する。整流部202は、受電コイル201を介して受電した送電コイル303からの交流電圧および交流電流を直流電圧および直流電流に変換する。電圧制御部203は、整流部202から入力される直流電圧のレベルを、制御部200および充電部205などが動作する直流電圧のレベルに変換する。
 通信部204は、送電装置102との間で、インバンド(In-band)通信によって、WPC規格に基づく制御通信を行う。通信部204は、受電コイル201から入力された電磁波を復調して送電装置102から送信された情報を取得し、その電磁波を負荷変調することによって送電装置102へ送信すべき情報を電磁波に重畳することにより、送電装置102との間で通信を行う。すなわち、通信部204で行う通信は、送電装置102の送電コイル303からの送電に重畳されて行われる。
 バッテリ206は、受電装置101全体に対して、制御と受電と通信に必要な電力を供給する。また、バッテリ206は、受電コイル201を介して受電された電力を蓄電する。スイッチ208は受電コイル201と共振コンデンサ207を短絡するためのスイッチであり、制御部200によって制御される。スイッチ208がオンにされると、受電コイル201と共振コンデンサ207は直列共振回路を構成する。この時、受電コイル201と共振コンデンサ207とスイッチ208との閉回路にのみ電流が流れ、整流部202および電圧制御部203に電流は流れない。スイッチ208がオフにされると、受電コイル201および共振コンデンサ207を介して、整流部202および電圧制御部203に電流が流れる。
 メモリ209は、上述のように、各種情報を記憶する。なお、メモリ209は、制御部200と異なる機能部によって得られた情報を記憶してもよい。タイマ210は、例えば起動された時刻からの経過時間を計測するカウントアップタイマや、設定された時間からカウントダウンするカウントダウンタイマ等によって、計時を行う。
 次に、本実施形態に係る送電装置102の内部構成例について、図3を参照しながら説明する。送電装置102は、制御部300、電源部301、送電部302、送電コイル303、通信部304、共振コンデンサ305、スイッチ306、メモリ307、およびタイマ308を有する。
 制御部300は、例えばメモリ307に記憶されている制御プログラムを実行することにより、送電装置102の全体を制御する。制御部300は、無線電力伝送以外のアプリケーションを実行するための制御を行ってもよい。制御部300は、例えばCPUやMPU等の1つ以上のプロセッサを含んで構成される。なお、制御部300は、特定用途向け集積回路(ASIC)等の特定の処理に専用のハードウェアや、所定の処理を実行するようにコンパイルされたFPGA等のアレイ回路を含んで構成されてもよい。制御部300は、各種処理を実行中に記憶しておくべき情報をメモリ307に記憶させる。また、制御部300は、タイマ308を用いて時間を計測する。
 電源部301は、送電装置102全体に対して、制御と送電と通信に必要な電力を供給する。電源部301は、例えば、商用電源またはバッテリである。
 送電部302は、電源部301から入力される直流又は交流電力を、無線電力伝送に用いる周波数帯の交流周波数電力に変換し、その交流周波数電力を送電コイル303へ出力することによって、受電装置101に受電させるための電磁波を発生させる。なお、送電部302によって生成される交流電力の周波数は数百kHz(例えば、110kHz~205kHz)程度である。送電部302は、制御部300の指示に基づいて、受電装置101に送電を行うための電磁波を送電コイル303から出力させるように、交流周波数電力を送電コイル303へ出力する。また、送電部302は、送電コイル303に入力する電圧(送電電圧)または電流(送電電流)を調節することにより、出力させる電磁波の強度を制御する。送電電圧または送電電流を大きくすると電磁波の強度が強くなり、送電電圧または送電電流を小さくすると電磁波の強度が弱くなる。また、送電部302は、制御部300の指示に基づいて、送電コイル303からの送電が開始または停止されるように、交流周波数電力の出力制御を行う。また、送電コイル303は、共振コンデンサ305と接続され、特定の周波数F1で共振する。
 通信部304は、受電装置101との間で、インバンド通信によって、WPC規格に基づく制御通信を行う。通信部304は、送電コイル303から出力される電磁波を変調して、受電装置101へ情報を伝送する。また、通信部304は、送電コイル303から出力されて受電装置101において変調された電磁波を復調して受電装置101が送信した情報を取得する。すなわち、通信部304で行う通信は、送電コイル303からの送電に重畳されて行われる。
 スイッチ306は送電コイル303と共振コンデンサ305を短絡するためのスイッチであり、制御部300によって制御される。スイッチ306がオンにされると、送電コイル303と共振コンデンサ305は直列共振回路を構成する。この時、送電コイル303と共振コンデンサ305とスイッチ306との閉回路にのみ電流が流れる。スイッチ306がオフにされると、送電コイル303および共振コンデンサ305には、送電部302から電力が供給される。メモリ307は、上述のように、各種情報を記憶する。なお、メモリ307は、制御部300と異なる機能部によって得られた情報を記憶してもよい。タイマ308は、例えば起動された時刻からの経過時間を計測するカウントアップタイマや、設定された時間からカウントダウンするカウントダウンタイマ等によって、計時を行う。
 次に、図4を参照して、送電装置102の制御部300の機能について説明する。図4は、送電装置102の制御部300における機能構成例を示すブロック図である。送電装置102は、通信処理部401、送電処理部402、異物検出処理部403、および時間選択処理部404を有する。これらの各処理部は、制御部300において動作するプログラムとしてその機能が実現される。また、これらの各処理部は、それぞれが独立したプログラムとして構成され、イベント処理等によりプログラム間の同期をとりながら並行して動作する。
 通信処理部401は、通信部304を介したWPC規格に基づいた受電装置101との通信制御を行う。送電処理部402は、送電部302を制御し、受電装置101への送電を制御する。
 異物検出処理部403は、送電装置-受電装置間の電力損失や、送電コイル303におけるQ値を測定して異物を検出する。異物検出処理部403は、WPC規格で期待されているパワーロス手法による異物検出方法と、Q値を用いた異物検出方法とを実行する。また、異物検出処理部403は、その他の手法を用いて異物検出処理を行ってもよい。例えばNFC(Near Field Communication)通信機能を備える送電装置102においては、NFC規格による対向機検出機能を用いて異物検出処理を行ってもよい。また、異物検出処理部403は、上述した2つの異物検出方法とは別に、後述する時間領域におけるQ値測定法に基づく異物検出を行うこともできる。さらに、異物検出処理部403は、異物を検出する以外の機能として、送電装置102上の状態が変化したことを検出することもできる。例えば、送電装置102上の受電装置の数の増減も、検出することが可能である。
 時間選択処理部404は、後述するCalibrationフェーズの処理に係るタイムアウト時間を選択する。本実施形態において、タイムアウト時間は、受電装置101が時間領域におけるQ値測定法に基づく異物検出を実施可能であるか否かの情報や、時間領域におけるQ値測定法に基づく異物検出の試行回数等に基づき選択される。タイムアウト時間を選択する処理の詳細については後述する。
 本システムでは、WPC規格に基づいて、非接触充電のための電磁誘導方式を用いた無線電力伝送を行う。具体的には、受電装置101と送電装置102は、受電装置101の受電コイル201と送電装置102の送電コイル303との間で、WPC規格に基づく非接触充電のための無線電力伝送を行う。なお、本実施形態では、無線電力伝送方式(非接触電力伝送方法)は、WPC規格で規定された方式に限られず、他の電磁誘導方式、磁界共鳴方式、電界共鳴方式、マイクロ波方式、レーザー等を利用した方式であってもよい。
 また、本実施形態では、無線電力伝送が非接触充電に用いられるものとするが、非接触充電以外の用途で無線電力伝送が行われてもよい。
 WPC規格では、受電装置101が送電装置102から受電する際に保証される電力の大きさがGuaranteed Power(以下、「GP」と呼ぶ。)と呼ばれる値によって規定される。GPは、例えば受電装置101と送電装置102の位置関係が変動して受電コイル201と送電コイル303との間の送電効率が低下したとしても、充電用の回路等の受電装置101の負荷へ出力されることが保証される電力値を示す。例えばGPが15ワットの場合、受電コイル201と送電コイル303との位置関係が変動して送電効率が低下したとしても、送電装置102は、受電装置101内の負荷へ15ワットの電力を出力することができるように制御して送電を行う。GPは、受電装置101と送電装置102との交渉によって決定される。
 また、WPC規格では、送電装置102が、送電装置102の周囲に(受電アンテナ近傍に)受電装置ではない物体(異物)が存在することを検出する手法が規定されている。より詳細には、まず、送電装置102における送電アンテナ(送電コイル)303の品質係数(Q値、Q-ファクタ)の変化により異物を検出する方法(Q値を用いた異物検出方法)が規定されている。また、WPC規格では、送電装置102における送電電力と受電装置101における受電電力との差分により異物を検出するパワーロス手法も規定されている。Q値を用いた異物検出処理は、電力伝送前に実施される。また、パワーロス手法による異物検出処理は、後述するキャリブレーション処理を行い、そのデータを基に、電力伝送(送電)中に実施される。詳細については後述する。
 ここで、受電装置101(および受電装置101が組み込まれた製品)または送電装置102(および送電装置102が組み込まれた製品)を構成する必要不可欠な金属部品が存在する。このような必要不可欠な金属部品のうち、送電コイル303が送電する無線電力に晒された場合に意図せずに熱を発生する可能性のある金属部品が存在する。熱が発生する可能性のある金属部品には、例えば、送電コイル303または受電コイル201周辺の金属フレームが含まれる。本実施形態の異物とは、送電コイルが送電する無線電力に晒された場合に熱を発生する可能性のある金属のうち、このような金属部品を除く物体のことである。つまり、異物は、受電装置および受電装置が組み込まれた製品の一部または送電装置および送電装置が組み込まれた製品の一部のいずれでもなく、送電コイルから送電される電力信号に晒されたときに発熱しうる物体である。例えば、クリップ、ICカード等が異物に該当する。
 また、本実施形態に係る受電装置101と送電装置102は、電力伝送を実行する前に、WPC規格に基づく送受電制御のための通信と、機器認証のための通信とを行う。ここで、WPC規格に基づく送受電制御のための通信について説明する。
 WPC規格では、電力伝送が実行されるPower Transferフェーズと実際の電力伝送が行われる前のフェーズとを含んだ、複数のフェーズが規定され、各フェーズにおいて必要な送受電制御のための通信が行われる。電力伝送前のフェーズは、Selectionフェーズ、Pingフェーズ、Identification and Configurationフェーズ、Negotiationフェーズ、Calibrationフェーズを含む。なお、以下ではIdentification and ConfigurationフェーズをI&Cフェーズと呼ぶ。
 Selectionフェーズでは、送電装置102が、Analog Pingを間欠的に送信し、送電可能範囲内に物体が存在すること(例えば充電台103に受電装置101や導体片等が載置されたこと)を検知する。
 Pingフェーズでは、送電装置102が、Analog Pingより電力が大きいDigital Pingを送信する。Digital Pingの電力の大きさは、送電装置102の上に載置された受電装置101の制御部200が起動するのに十分な電力である。受電装置101は、受電電圧の大きさをSignal Strength Packetにより送電装置102へ通知する。このように、送電装置102は、そのDigital Pingを受信した受電装置101からの応答を受信することにより、Selectionフェーズにおいて検知された物体が受電装置101であることを認識する。
 送電装置102は、受電電圧の通知を受けると、I&Cフェーズに遷移する。また、送電装置102はDigital Pingを送信する前に、送電アンテナ(送電コイル)のQ-Factorを測定する。この測定結果は、Digital Pingを送信する前にQ値を用いた異物検出処理を実行する際に使用される。
 I&Cフェーズでは、送電装置102は、受電装置101を識別し、受電装置101から機器構成情報(能力情報)を取得する。そのため、受電装置101は、ID PacketおよびConfiguration Packetを送信する。ID Packetには受電装置101の識別情報として識別子の情報が含まれ、Configuration Packetには、受電装置101の機器構成情報(能力情報)が含まれる。ID PacketおよびConfiguration Packetを受信した送電装置102は、アクノリッジ(ACK、肯定応答)で応答する。そして、I&Cフェーズが終了し、次のNegotiationフェーズに移行する。
 Negotiationフェーズでは、受電装置101が要求するGPの値や送電装置102の送電能力等に基づいてGPの値が決定される。また、送電装置102の異物検出処理部403は、受電装置101からの要求に従って、Q値を用いた異物検出処理を実行する。また、WPC規格では、一旦後述のPower Transferフェーズに移行した後、受電装置101の要求によって再度Negotiationフェーズと同様の処理を行う方法が規定されている。以下、Power Transferフェーズから移行してこれらの処理を行うフェーズのことをRenegotiationフェーズと呼ぶ。
 Calibrationフェーズでは、WPC規格に基づいて、受電装置101が所定の受電電力値(軽負荷状態における受電電力値/最大負荷状態における受電電力値)を送電装置102へ通知し、送電装置102が効率よく送電するための調整を行う。送電装置102へ通知される受電電力値は、パワーロス手法による異物検出処理のために使用される。
 Power Transferフェーズでは、送電の継続、および、エラーや満充電による送電停止等のための制御が行われる。送電装置102と受電装置101は、これらの送受電制御のための通信を、WPC規格に基づいて無線電力伝送と同じアンテナ(コイル)を用いて信号を重畳するインバンド通信により行う。なお、送電装置102と受電装置101との間で、WPC規格に基づくインバンド通信が可能な範囲は、送電可能範囲とほぼ同様である。
 すなわち、図1において、範囲104は、送電装置102と受電装置101の送受電コイルにより無線電力伝送とインバンド通信が可能な範囲を表している。
 (異物検出方法)
 続いて、本実施形態における異物検出方法について詳細に説明する。なお、下記の(1)および(2)の異物検出方法以外に、WPC規格で規定されているQ値を用いた異物検出処理が、PingフェーズおよびNegotiationフェーズで行われる。
 (1)パワーロス手法に基づく異物検出方法
 WPC規格で規定されているパワーロス手法に基づく異物検出方法について、図11を用いて説明する。図11の横軸は送電装置102の送電電力を表し、縦軸は受電装置101の受電電力を表す。まず、送電装置102が受電装置101に対してDigital Pingを送電する。そして、送電装置102は、受電装置101が受電した軽負荷状態における受電電力値Pr1を、Received Power Packet(mode1)(以下、RPパケット(mode1))として受電装置101から受信する。このとき、受電装置101は、受電した電力を負荷(充電回路とバッテリなど)に供給しない。そして、送電装置102は、図11の点1100にある受電電力値Pr1とその時の送電電力値Pt1とを記憶する。この時、送電装置102は、送電電力値Pt1で送電した時の送電装置102と受電装置101との間の電力損失はPt1-Pr1(Ploss1)であると認識する。
 次に、送電装置102は、受電装置101が受電した最大負荷状態における受電電力値Pr2を、Received Power Packet(mode2)(以下、RPパケット(mode2))として受電装置101から受信する。この時、受電装置101は、受電した電力を負荷に供給する。
 そして、送電装置102は、図11の点1101にある受電電力値Pr2とその時の送電電力値Pt2とを記憶する。この時、送電装置102は、送電電力値Pt2で送電した時の送電装置102と受電装置101との間の電力損失はPt2-Pr2(Ploss2)であると認識する。
 そして、キャリブレーション処理により、送電装置102は点1100と点1101を直線補間し、直線1102を作成する。直線1102は、送電装置102と受電装置101の周辺に異物が存在しない状態における送電電力と受電電力との関係を示している。よって、送電装置102は送電電力値と直線1102とから異物がない可能性が高い状態における受電電力を予想することができる。例えば、送電電力値がPt3の場合は、送電電力値がPt3を示す直線1102上の点1103から、受電電力値はPr3であると予想することができる。なお、この直線を作成する処理は、Calibrationフェーズで行われる。
 ここで、送電装置102が送電電力値Pt3で受電装置101に対して送電した場合に、送電装置102が受電装置101から受電電力値Pr3’を受信したとする。送電装置102は異物が存在しない状態における受電電力値Pr3から実際に受電装置101から受信した受電電力値Pr3’を引いた値Pr3-Pr3’(=Ploss_FO)を算出する。
 この電力値Ploss_FOは、送電装置102と受電装置101との間に異物が存在する場合に、その異物で消費される電力損失と考えることができる。よって、異物で消費されたと推定される電力値Ploss_FOがあらかじめ決められた閾値を超えた場合に、異物が存在すると判断する。
 あるいは、送電装置102は、事前に、異物が存在しない状態における受電電力値Pr3から、送電装置102と受電装置101との間の電力損失Pt3-Pr3(Ploss3)を求めておく。そして、送電装置102は、異物が存在する状態において受電装置から受電した受電電力値Pr3’から、異物が存在する状態での送電装置102と受電装置101との間の電力損失Pt3-Pr3’(Ploss3’)を求める。そして、Ploss3’-Ploss3(=Ploss_FO)を用いて、異物で消費されたと推定される電力値Ploss_FOを求めてもよい。以上述べたように、異物で消費された推定される電力値Ploss_FOの求め方としては、Pr3-Pr3’(=Ploss_FO)として求めてもよいし、Ploss3’-Ploss3(=Ploss_FO)として求めてもよい。
 キャリブレーション処理により基準値を表す直線1102を取得した後、Power Transferフェーズで送電装置102は受電装置101から定期的に現在の受電電力値(Pr3’)を受信する。受電装置101が定期的に送信する現在の受電電力値はReceived Power Packet(mode0)(以下、RPパケット(mode0))として送電装置102に送信される。送電装置102は、RPパケット(mode0)に格納されている受電電力値と、直線1102とに基づいて異物検出を行う。なお、送電装置102と受電装置101の周辺に異物が存在しない状態における送電電力と受電電力の関係である直線1102を取得するための点1100および点1101を、本実施形態ではキャリブレーションデータポイントと表現する。また、少なくとも2つのキャリブレーションデータポイントを補間して取得される線分(直線1102)をCalibrationカーブと表現する。
 ここでCalibrationカーブを導出する際に異物が存在すると、例えば、点1100と点1104とを結んだ直線1106をCalibrationカーブ1105として導出してしまう場合がある。また、点1107と点1104とを結んだ直線1108の場合も同様である。
 そこで、本実施形態では、以下に説明する、時間領域におけるQ値測定法に基づく異物検出を行って異物がないことを検出し、正しいCalibrationカーブを導出するようにする。
 (2)時間領域におけるQ値測定法に基づく異物検出方法
 以下、時間領域におけるQ値測定法に基づく異物検出方法について、図12A、図12Bを参照しながら説明する。図12Aにおける波形1200は、送電装置102の送電コイル303もしくは共振コンデンサ305の端部に印可される高周波電圧の値(以降、単に送電コイルの電圧値と言う)の時間経過を示しており、横軸は時間、縦軸は電圧値である。図12Aの例では、時間Tにおいて高周波電圧の印加(送電)は停止されたことを示している。点1201は、高周波電圧の包絡線上の一点であり、時間Tにおける高周波電圧を表している点1201における(T、A)は、時間Tにおける電圧値がAであることを示す。同様に、点1202も高周波電圧の包絡線上の一点であり、時間Tにおける高周波電圧を表している。点1202における(T、A)は、時間Tにおける電圧値がAであることを示す。送電コイル303の品質係数(Q値)は、時間T以降の電圧値の時間変化に基づいて測定される。具体的には、Q値は、電圧値の包絡線である点1201および点1202の時間、電圧値、および、高周波電圧の周波数f(以降、動作周波数という)に基づいて、以下の式1により算出される。
Q=πf(T-T)/ln(A/A)    ・・・(式1)
 次に、本実施形態で送電装置102が時間領域でQ値を測定するための処理について、図12Bを参照しながら説明する。波形1203は、送電コイル303に印加される高周波電圧の値を示しており、その周波数はQi規格で使用される120kHzから148.5kHzの間である。また、点1204および点1205は、電圧値の包絡線の一部である。
 例えば、送電装置102の送電処理部402は、時間TからTの区間、送電を停止するものとする。送電装置102の異物検出処理部403は、時間Tにおける電圧値A(点1204)、時間Tにおける電圧値A(点1205)および高周波電圧の動作周波数から、上述の式1に基づいてQ値を測定する。なお、送電装置102の送電処理部402は、時間Tにおいて送電を再開する。このように、Q値(Q-ファクタ)は、送電装置102が送電を瞬断し、時間経過と電圧値と動作周波数とに基づいて測定される。以降、送電を停止する時間TからTの区間を停止時間と呼ぶ。
 送電装置102と受電装置101の近傍に異物が存在する場合には、このQ値が低下する。これは、異物が存在する場合には、異物によってエネルギーの損失が発生するためである。よって、電圧値の減衰の傾きに着目すると、異物が無い時よりも、異物が有る時の方が、異物によるエネルギーの損失が発生するため、点1204と点1205を結ぶ直線の傾きが急になり、波形の振幅の減衰率が高くなる。つまり、時間領域におけるQ値測定法に基づく異物検出方法は、この点1204と点1205との間の電圧値の減衰状態に基づいて異物の有無の判定を行うものである。また、実際に異物の有無を判定する上では、この減衰状態を表す何らかの数値の比較によって判定することが可能となる。例えば、上述したQ値を用いて判定を行うことができる。なお、電圧値の代わりに電流値の波形減衰を用いてもよい。
 停止時間は、Q値を測定する前に送電装置102と受電装置101の特性を踏まえ決定しておく必要がある。例えば、送電装置102のスイッチ306や制御部300の能力によって実現できる最短の停止時間が異なるため、停止時間は実現できる最短の停止時間より長くなくてはならない。また、動作周波数や電圧値の降下量によって同じ停止時間でも異物検出の精度が異なるため、所定の制度を維持することのできる停止時間を選択する必要がある。さらに、受電装置101の種類によっては、一定時間以上受電電力が低下すると正常に機能できない場合もある。そのため、停止時間は受電装置101が許容できる最長の停止時間よりも長くなくてはならない。
 (送電装置102による基本的な処理の流れ)
 続いて、送電装置102が実行する基本的な処理の流れの例について説明する。図5は、本実施形態における送電装置102が実行する基本的な処理手順の一例を示すフローチャートである。本処理は、例えば送電装置102の制御部300がメモリ307から読み出したプログラムを実行することによって実現される。また、本処理は、送電装置102の電源がオンとされたことに応じて、送電装置102のユーザが非接触充電アプリケーションの開始指示を入力したことに応じて、又は、送電装置102が商用電源に接続され電力供給を受けていることに応じて実行される。また、他の契機によって本処理が開始されてもよい。
 まず、S501において、送電装置102の制御部300は、WPC規格のSelectionフェーズとPingフェーズとして規定されている処理を実行し、物体が送電装置102上に載置されるのを待ち受ける。
 ここで、図7を参照しながら、S501において行われるSelectionフェーズとPingフェーズとして規定されている処理について説明する。送電装置102の通信処理部401は、Selectionフェーズにおいて、WPC規格のAnalog Pingを繰り返し間欠送信する(F701)。送電装置102の制御部300は、受電装置101が載置されることにより(F702)、Analog Pingに変化が生じ(F703)、これにより物体が載置されたことを検知する(F704)。そして、送電可能範囲内に物体が存在することを検出した場合にPingフェーズへ移行し、送電装置102の通信処理部401は、WPC規格のDigital Pingを送信する(F705)。受電装置101は、Digital Pingにより、自装置が送電装置102に載置されたことを検知する(F706)。送電装置102の制御部300は、そのDigital Pingに対する所定の応答があった場合に、検出された物体が受電装置101であり、受電装置101が充電台103に載置されたと判定する。
 S501で受電装置101が載置されたことを検出すると、次に、S502において、送電装置102の通信処理部401は、WPC規格で規定されたI&Cフェーズの通信により、受電装置101から識別情報と能力情報とを取得する。ここで、ID Packetにより受電装置101から受信する識別情報には、識別子の情報としてManufacturer CodeとBasic Device IDとが含まれる。また、Configuration Packetにより受電装置101から受信する能力情報には、対応しているWPC規格のバージョンを特定可能な情報要素が含まれる。さらに能力情報には、受電装置101が負荷に供給できる最大電力を特定する値であるMaximum Power Valueと、WPC規格のNegotiation機能を有するか否かを示す情報とが含まれる。
 なお、S502で取得する情報として上述した情報は一例であり、受電装置101の識別情報及び能力情報は、他の情報によって代替されてもよいし、上述の情報に加えて他の情報を含んでもよい。例えば、識別情報は、Wireless Power ID等の、受電装置101の個体を識別可能な任意の他の識別情報であってもよい。また、送電装置102は、WPC規格のI&Cフェーズの通信以外の方法で受電装置101の識別情報と能力情報を取得してもよい。
 続いて、S503において、送電装置102の制御部300は、WPC規格で規定されたNegotiationフェーズの通信により、受電装置101との間でNegotiation処理を実行し、GPの値を決定する。なお、S503では、WPC規格のNegotiationフェーズの通信に限らず、GPを決定する他の手順が実行されてもよい。また、送電装置102は、例えばS502において受電装置101がNegotiationフェーズに対応していないことを示す情報を取得する場合がある。そのような場合に、送電装置102はNegotiationフェーズの通信を行わず、GPの値を(例えばWPC規格で予め規定された)小さな値としてもよい。さらに、Negotiationフェーズでは、GPを決定する手順の他に、時間領域におけるQ値測定法に基づく異物検出に関する情報を受電装置101との間で交換する。例えば、受電装置101が時間領域におけるQ値測定法に基づく異物検出を実施可能であるか否かの補足情報を通知したり、送電装置102が時間領域におけるQ値測定法に基づく異物検出の試行回数を受電装置101に通知したりする。
 次に、S504において、送電装置102は、Calibrationのタイムアウト時間を選択する処理を実行する。なお、Calibrationのタイムアウト時間を選択する詳細な処理手順については後述する。
 次に、S505において、送電装置102の異物検出処理部403は、選択したタイムアウト時間に基づいて、Calibrationフェーズを実行する。Calibrationフェーズでは、送電装置102の異物検出処理部403は、前述したように、異物がない状態における、送電電力に対する受電電力の関係を導出する。具体的には、送電装置102の異物検出処理部403は、受電装置101から取得した所定の受電電力値(軽負荷状態における受電電力値、最大負荷状態における受電電力値を含む)を用いて、Calibrationカーブを導出する。なお、Calibrationカーブを導出する際、送電装置102の異物検出処理部403は、各所定の受電電力値の取得毎に時間領域におけるQ値測定法に基づく異物検出を行う。
 また、Negotiationフェーズにて、時間領域におけるQ値測定法に基づく異物検出を複数回試行することを決定した場合は、異物検出処理部403は、各所定の受電電力値に関して試行回数分の受電電力値の取得と異物検出とを行う。これにより、異物が混入した状態でのCalibrationカーブの導出を回避し、異物の未検出や誤検出を抑制することができる。
 次に、S506において、送電装置102の送電処理部402は、Power Transferフェーズにより受電装置101に対して送電を開始する。なお、送電は、Power Transferフェーズの処理により行われるが、これに限られず、WPC規格以外の方法で送電が行われてもよい。
 ここで、送電装置102の制御部300は、受電装置101が送電装置102上に載置されていないと判断した場合、処理をS501のSelectionフェーズに戻す。なお、送電装置102は、WPC規格のEnd Power Transferを受電装置101から受信した場合、WPC規格に従って、どの処理フェーズにおいてもその処理を強制終了し、送電を停止した上で、S501のSelectionフェーズに戻る。なお、満充電となった場合にも受電装置101からEnd Power Transferが送信されるため、S501のSelectionフェーズに戻る。
 次に、図6を参照しながら、送電装置102がS504で実行するCalibrationのタイムアウト時間の選択処理の流れの例について説明する。以下では選択する場合を例に説明するが、タイムアウト時間は、あらかじめ定められた候補の中から選択されてもよいし、特定の規則に従い算出して決められてもよい。
 まず、S601において、時間選択処理部404は、受電装置101がQi規格の所定のバージョン以上であるか否かを判定する。ここで、所定のバージョン以上であるか否かは、I&Cフェーズで受電装置101から受信したConfiguration Packetに含まれる能力情報の中のバージョン情報から判定することができる。一方で、例えば、別のパケットに含まれる情報から判定してもよいし、Bluetooth(登録商標)やNFC等のアウトバンド通信を用いて取得した情報に基づき判定してもよい。
 S601の判定の結果、受電装置101が所定のバージョン以上である場合は、処理をS602へ進める。一方、受電装置101が所定のバージョン以上でないと判定した場合は、処理をS605へ進める。S605において、送電装置102の時間選択処理部404は、Calibrationフェーズの処理に係るタイムアウト時間として所定の値を選択し、処理を終了する。なお、この所定の値とは、デフォルトで設定されている基準値である。
 一方で、S602において、送電装置102の制御部300は、時間領域におけるQ値測定法に基づく異物検出を実施するか否かを判定する。ここで、S503のNegotiationフェーズにおいて、図7に示すように、受電装置101から時間領域におけるQ値測定法に基づく異物検出が実施可能であるか否かの補足情報が通知される(F709)。そこで、制御部300はこの補足情報を基に時間領域におけるQ値測定法に基づく異物検出を実施するか否かを判定する。なお、例えば、受電装置101から時間領域におけるQ値測定法に基づく異物検出方法に対応可能であるか否かの補足情報を受信したか否かによって判定してもよい。この場合、受電装置101から受信しないことをもってデフォルトで実施可能であると判定してもよいし、受信しないことをもって受電装置101が時間領域におけるQ値測定法に基づく異物検出方法に非対応と判断し、実施しないと判定してもよい。
 S602の判定の結果、時間領域におけるQ値測定法に基づく異物検出が実施可能である場合は、処理をS603へ進める。一方、時間領域におけるQ値測定法に基づく異物検出が実施不可能である場合は、処理をS605へ進める。
 S603において、送電装置102の制御部300は、時間領域におけるQ値測定法に基づく異物検出を所定回数以上試行するか否かを判定する。この処理では、S503のNegotiationフェーズにて、受電装置101との間での情報のやり取りで決定した試行回数が所定回数以上であるか否かを判定する。一方で、例えば、送電装置102内に定義されたデフォルトの試行回数等に基づいて所定の回数以上であるか否かを判定してもよい。S603の判定の結果、所定回数以上試行する場合は、処理をS604へ進める。一方、所定回数以上試行しない場合は、処理をS605へ進める。
 S604において、送電装置102の時間選択処理部404は、Calibrationフェーズの処理に係るタイムアウト時間としてS605で定める所定の値よりも大きい値を選択し、処理を終了する。なお、所定の値よりも大きい値は、Qi規格として事前に定められた固定値であるが、例えば、試行回数に比例して大きくなるような可変値であってもよい。
 また、時間領域におけるQ値測定法に基づく異物検出の実行に要する処理時間や、所定の受電電力値を受電装置101がRPパケットにて通知するまでに要する処理時間等に応じてタイムアウト時間が決定される。
 (システムで実行される処理の流れ)
 次に、送電装置102が上述の処理を実行する場合の動作シーケンスについて、図7を参照しながら説明する。なお、初期状態として、受電装置101は送電装置102に載置されておらず、送電装置102は受電装置101の要求するGPでの送電を実行可能な程度の十分な送電能力を有しているものとする。また、図7に示す例では、S603で判定基準となる所定回数を5回であるものとして説明を行うが、一例に過ぎず、別の値であってもよい。また、F701~F706は、前述のS501で説明した手順である。
 I&Cフェーズでは、送電装置102と受電装置101との間で、識別情報および能力情報を交換する(F707)。F707での送電装置102の処理は、図5のS502の処理である。なお、図7に示す例では、Configuration Packetに含まれる能力情報から受電装置101は所定のバージョン以上であるものとする。
 次に、送電装置102と受電装置101は、Negotiationフェーズの通信を実行する(F708)。なお、このNegotiation処理では、GP=15ワットと決定されるものとする。GPが決定されると、送電装置102は受電装置101から補足情報として時間領域におけるQ値測定法に基づく異物検出が実施可能である旨の情報を受信し(F709)、ACKを応答する(F710)。
 続いて、送電装置102は、時間領域におけるQ値測定法に基づく異物検出の試行回数に関する情報として7回を受電装置101に通知し(F711)、図6の処理を開始し、タイムアウト時間を選択する(F712)。なお、本実施形態において、時間領域におけるQ値測定法に基づく異物検出の試行回数に関する情報は、受電装置101から送信されるGeneric Requestパケットに対する応答に含めて通知するが、別のタイミングやパケットで通知してもよい。
 その後、Calibrationフェーズに移行し、送電装置102は受電装置101からControl Error Valueが正の値であるControl Errorパケット(CEパケット)を受信する(F713)。そして、送電装置102は、Control Error Valueに基づいて送電出力を変更する。続いて、送電装置102は受電装置101から軽負荷状態の受電電力値を示すRPパケット(mode1)を受信すると(F714)、時間領域におけるQ値測定法に基づく異物検出処理を行う(F715)。試行回数7回に対して1回目の試行であるため、送電装置102は判断しない旨を応答する(F716)。応答を完了すると、送電装置102はCalibrationフェーズの処理に係るタイムアウトが発生していないか否かを判定する。図7の例では、選択したタイムアウト時間を経過していない(タイムアウトが発生していない)と判定したものとする(F717)。その後、送電装置102と受電装置101との間で、F714~F717の処理をさらに5回繰り返す。
 続いて、送電装置102は受電装置101からRPパケット(mode1)を受信すると(F718)、時間領域におけるQ値測定法に基づく異物検出処理を行う(F719)。試行回数7回に対して7回目の試行であるため、送電装置102は、1~7回目の異物判定処理の結果から異物がないものと判断する。そして、送電装置102は、Calibrationカーブを導出するために用いる軽負荷状態の受電電力値Pr1として受け入れる旨のACKを応答する(F720)。なお、7回の時間領域におけるQ値測定法に基づく異物検出処理の検出結果から、異物が存在すると判断した場合には、Calibrationカーブを導出することができない。そのため、このような場合は、送電装置102は、軽負荷状態の受電電力値として受け入れることができない旨のNAK(否定応答)を応答する。
 送電装置102は応答を完了すると、Calibrationフェーズの処理に係るタイムアウトが発生していないか否かを判定する。図7の例では、選択したタイムアウト時間を経過していない(タイムアウトが発生していない)と判定したものとする(F721)。
 続いて、送電装置102と受電装置101の間で、最大負荷状態の受電電力値を示すRPパケット(mode2)に関して、F713~F717と同様の処理を行う(F722~F726)。続いて、送電装置102は受電装置101からRPパケット(mode2)を受信すると(F727)、時間領域におけるQ値測定法に基づく異物検出処理を行う(F728)。試行回数7回に対して7回目の試行であるため、送電装置102は、1~7回目の異物判定処理の結果から異物がないものと判断する。そして、送電装置102は、Calibrationカーブを導出するために用いる最大負荷状態における受電電力値Pr2として受け入れる旨のACKを応答する(F729)。送電装置102は応答を完了すると、Calibrationフェーズの処理に係るタイムアウトが発生していないか否かを判定する。なお、図7の例では、仮にS605でタイムアウト時間を選択した場合は、タイムアウト時間が既に経過しているものとする。図7の例では、送電装置102は、所定のタイムアウト時間は経過しているが、選択したタイムアウト時間は経過していないため、タイムアウトは発生していないと判定する(F730)。そして、Calibrationフェーズを終了する。その後、Power Transferフェーズに移行し、送電装置102と受電装置101との間で、送受電に係る処理を実行する(F731)。
 以上のように本実施形態によれば、送電装置102は、異物検出処理の試行内容に応じて、Calibration処理を実施するに必要十分なタイムアウト時間を選択できるようにした。これにより、精度よくCalibrationカーブを導出することが可能となり、より安全で効率の高い無線電力伝送システムを実現することができる。
 (第2の実施形態)
 第1の実施形態では、Calibrationカーブを導出する主体である送電装置が、異物検出の試行内容に基づき、Calibrationフェーズの処理に係るタイムアウト時間を必要に応じて大きい値に変更するようにした。一方、タイムアウト時間を所定の値より大きい値とする場合、送受電を開始するまでの時間が長くなるという課題が存在する。したがって、タイムアウト時間を変更せずに所望のCalibrationフェーズの処理を実行できるように制御可能であるならば、そのような制御を行うことが望ましい。本実施形態では、その一例として、受電装置側で異物検出処理の試行内容に応じてRPパケットの最大送信時間間隔を選択し、制御を行う方法を説明する。なお、送電装置および受電装置の内部構成等は第1の実施形態と同様であるため、説明は省略する。以下、第1の実施形態と異なる点について説明する。また、本実施形態では、送電装置102は、タイムアウト時間の選択処理を行わず、S605で設定する値で固定されているものとする。
 (受電装置による処理の流れ)
 図8は、本実施形態における受電装置101が実行する基本的な処理手順の一例を示すフローチャートである。本処理は、例えば受電装置101の制御部200がメモリ209から読み出したプログラムを実行することによって実現される。また、本処理は、受電装置101の電源がオンとされたことに応じてバッテリ206または送電装置102からの送電により受電装置101が起動したことに応じて実行されてもよい。または受電装置101のユーザが非接触充電アプリケーションの開始指示を入力したことに応じて実行されてもよい。また、他の契機によって本処理が開始されてもよい。
 S801において、受電装置101の制御部200は、WPC規格のSelectionフェーズとPingフェーズとして規定される処理を実行し、自装置が送電装置102に載置されるのを待つ(S801)。受電装置101の制御部200は、例えば、送電装置102からのDigital Pingを検出することによって、送電装置102に載置されたことを検出する。
 S501で自装置が送電装置102に載置されたことを検出すると、次に、S802において、受電装置101の制御部200は、WPC規格で規定されたI&Cフェーズの通信により、送電装置102へ識別情報と能力情報とを送信する。このとき、受電装置101は、ID Packetに識別情報を格納して送信し、Configuration Packetに能力情報を格納して送信する。
 続いて、S803において、受電装置101の制御部200は、WPC規格で規定されたNegotiationフェーズの通信により送電装置102と情報のやり取りを行い、GPを決定する。さらに、S803では、GPを決定する手順の他に、時間領域におけるQ値測定法に基づく異物検出に関する情報を送電装置102との間で交換する。例えば、時間領域におけるQ値測定法に基づく異物検出の実行に要する処理時間や、所定の受電電力値へ到達させるまでに要する処理時間等の情報が含まれる。
 そして、S804において、受電装置101の制御部200は、RPパケットの最大送信時間間隔の選択処理を実行する。RPパケットの最大送信時間間隔の選択処理の詳細については後述する。
 次に、S805において、受電装置101の制御部200は、WPC規格のCalibrationフェーズの通信を行う。この処理では、前述したように、Calibrationカーブの導出に必要な所定の受電電力値の情報などを送電装置102に送信する。そして、S806において、受電装置101の制御部200は、WPC規格で規定されたPower Transferフェーズの通信により、受電を開始する。その後、受電装置101は、エラーが発生した場合や満充電に達した場合に、WPC規格のEnd Power Transferを送電装置102に送信する。これにより送電装置102からの送電が停止され、非接触充電のための一連の処理が終了となる。
 次に、図9を参照しながら、受電装置101がS804で実行するRPパケットの最大送信時間間隔の選択処理の流れの例について説明する。
 まず、S901において、受電装置101の制御部200は、送電装置102がQi規格の所定のバージョン以上であるか否かを判定する。この処理では、まず、送電装置102に対してGeneric Requestパケットを送信し、その応答に含まれるバージョン情報から所定のバージョン以上であるか否かを判定する。一方で、例えば、送電装置102から別のパケットを用いて通知されたバージョン情報に基づき判定してもよいし、BluetoothやNFC等のアウトバンド通信を用いて取得した情報に基づき判定してもよい。また、I&Cフェーズにて送電装置102から能力情報としてバージョン情報を取得し、その情報に基づいて判定してもよい。
 S901の判定の結果、所定のバージョン以上である場合は、処理をS902へ進める。一方、所定のバージョン以上でない場合は、処理をS905へ進める。S905において、受電装置101の制御部200は、RPパケットの最大送信時間間隔として所定の値を選択し、処理を終了する。なお、この所定の値とは、デフォルトで設定されている基準値である。
 一方で、S902において、受電装置101の制御部200は、時間領域におけるQ値測定法に基づく異物検出を実施するか否かを判定する。ここで、異物検出を実施するか否かの判定は、自身が時間領域におけるQ値測定法に基づく異物検出に対応可能であるか否かを基に行われる。一方で、例えば、送電装置102から時間領域におけるQ値測定法に基づく異物検出の試行回数に関する通知を受信したか否かにより判定してもよい。この時、送電装置102から受信しないことをもって実施可能であると判定してもよいし、受信しないことをもって送電装置102が時間領域におけるQ値測定法に基づく異物検出方法に非対応であるとして実施可能でないと判定してもよい。S902の判定の結果、時間領域におけるQ値測定法に基づく異物検出が実施可能である場合は、処理をS903へ進める。一方、時間領域におけるQ値測定法に基づく異物検出が実施可能ではない場合は、処理をS905へ進める。
 S903において、受電装置101の制御部200は、時間領域におけるQ値測定法に基づく異物検出を所定回数以上試行するか否かを判定する。この処理では、Negotiationフェーズにて送電装置102から通知された試行回数が所定回数以上か否かを判定する。
 一方、例えば、送電装置102から時間領域におけるQ値測定法に基づく異物検出の試行回数に関する通知を受信したか否かにより判定してもよい。この時、送電装置102から受信しないことをもって所定回数以上試行すると判定してもよいし、受信しないことをもって試行回数は所定の回数未満であると判定してもよい。S903の判定の結果、所定回数以上試行する場合は、処理をS904へ進める。一方、所定回数以上試行しない場合は、処理をS905へ進める。
 S904において、受電装置の制御部200は、RPパケットの最大送信時間間隔として、S905で定める所定の値よりも小さい値を選択し、処理を終了する。なお、所定の値よりも小さい値は、例えば、試行回数に比例して小さくなるような可変値であってもよい。また、時間領域におけるQ値測定法に基づく異物検出の実行に要する処理時間や、所定の受電電力値へ到達させるまでに要する処理時間等に応じて最大送信時間間隔が決定される。
 (システムで実行される処理の流れ)
 次に、受電装置101が上述の処理を実行する場合の動作シーケンスについて、図10を参照しながら説明する。F1001~F1006は、図7のF701~F706と同様である。本実施形態では、例えばF1007のI&Cフェーズで、F707の処理の他に、送電装置102から所定のバージョン以上の値を含むバージョン情報を受信するものとする。その後、F1008~F1010の処理が行われ、送電装置102から時間領域におけるQ値測定法に基づく異物検出の試行回数の通知を受信する(F1011)。F1008~F1010の処理は、図7のF708~F710と同様である。
 送電装置102から試行回数の通知を受けると、受電装置101は、RPパケットの最大送信時間間隔の選択処理を開始する(F1012)。受電装置101は、送電装置102のバージョンが所定値以上、時間領域におけるQ値測定法に基づく異物検出が可能、且つ、試行回数が所定回数(=5回)以上であることから、RPパケットの最大送信時間間隔として所定の値よりも小さい値を選択する。その後、送電装置102と受電装置101の間でCalibrationフェーズの処理を開始し、受電装置101は送電装置102にControl Error Valueが正の値であるCEパケットを送信する(F1013)。
 続いて、受電装置101は、送電装置102に軽負荷状態の受電電力値を示すRPパケット(mode1)を送信し(F1014)、送電装置102は、時間領域におけるQ値測定法に基づく異物検出処理を行う(F1015)。ここでは、試行回数7回に対して1回目の試行であるため、受電装置101は、送電装置102から判断しない旨の応答を受信する(F1016)。応答を完了すると、図10の例では、送電装置102はCalibrationフェーズの処理に係るタイムアウトが発生していないと判定したものとする(F1017)。その後、送電装置102と受電装置101は、F1014~F1017の処理をさらに5回繰り返す。このとき、受電装置101は、前回RPパケットの送信に対する判断しない旨の応答を受信してから、F1012にて選択した最大送信時間間隔を超えないように次のRPパケットを送信する。
 続いて、受電装置101は送電装置102にRPパケット(mode1)を送信すると(F1018)、送電装置102は時間領域におけるQ値測定法に基づく異物検出処理を行う(F1019)。試行回数7回に対して7回目の試行であるため、送電装置102は、1~7回目の異物判定処理の結果から異物がないものと判断する。そして、送電装置102は、Calibrationカーブを導出するために用いる軽負荷状態の受電電力値Pr1として受け入れる旨のACKを応答する(F1020)。送電装置102は応答を完了すると、Calibrationフェーズの処理に係るタイムアウトが発生していないか否かを判定する。図10の例では、所定のタイムアウト時間を経過していないと判定したものとする(F1021)。
 続いて、受電装置101は最大負荷状態の受電電力値とするため、送電装置102にControl Error Valueが正の値であるCEパケットを送信する(F1022)。このとき、受電装置101はControl Error Valueの正の値として、時間領域におけるQ値測定法に基づく異物検出を複数回試行しない場合と比較して大きな値を指定する。また、CEパケットの送信回数を、時間領域におけるQ値測定法による異物検出を複数回試行しない場合と比較して増加させる。これにより、時間領域におけるQ値測定法に基づく異物検出を複数回試行しない場合よりも短い時間で所望の受電電力値へ到達させることが可能となる。
 すなわち、最大負荷状態の受電電力値を示すRPパケット(mode2)を、より短い時間間隔で送信することができる。このため、RPパケットの最大送信時間間隔として所定の値よりも小さい値を選択した場合も間隔を保ちながらCalibration処理を継続することができる。以降、F1023~F1031の処理は、図7のF723~F731と同様のため、説明を省略する。
 以上のように本実施形態によれば、受電装置101は、異物検出処理の試行内容に応じて、RPパケットの最大送信時間間隔を選択するようにした。これにより、Calibration処理に係る所定のタイムアウト時間内で、異物検出精度を向上させながらCalibrationカーブを導出することが可能となり、より安全で効率の高い無線電力伝送システムを実現することができる。
 (その他の実施形態)
 第1の実施形態では、送電装置102はタイムアウト時間の選択処理によりタイムアウト時間を選択した後に、即座にCalibration処理を開始するようにしたが、選択したタイムアウト時間を受電装置101に通知してもよい。例えば、送電装置102から受電装置101に時間領域におけるQ値測定法に基づく異物検出の試行回数を通知した後、受電装置101から送信されるGeneric Requestパケットの応答に含めてタイムアウト時間を通知する方法などが考えられる。なお、別のタイミングやパケットを用いて通知してもよい。これにより、受電装置101は送電装置102から通知されたタイムアウト時間に応じて、CEパケットに含めるControl Error Valueの値や送信回数、RPパケットの送信時間間隔の制御を、処理負荷を抑制しつつ効率的に行うことができる。そして、より安全で効率の高い無線電力伝送システムを実現することができる。
 第2の実施形態では、受電装置101はRPパケットの最大送信時間間隔の選択処理により最大送信時間間隔を選択した後、即座にCalibration処理を開始するようにしたが、選択した最大送信時間間隔を送電装置102に通知してもよい。例えば、RPパケットを送信する前にSpecific Requestパケットに最大送信時間間隔の情報を含めて送信する方法などが考えられるが、別のタイミングやパケットを用いて通知してもよい。これにより、送電装置102は通知された最大送信時間間隔をRPパケット受信までのタイムアウト時間として利用することが可能となる。そのため、所定のRPパケット受信までのタイムアウト時間を用いてタイムアウト判定を行うよりも早いタイミングでCalibrationフェーズの処理に係るタイムアウトが発生するか否かを判定することができる。
 第1および第2の実施形態では、送電装置102から時間領域におけるQ値測定法に基づく異物検出の試行回数を通知し、受電装置101が無条件でこの試行回数を受け入れるようにしたが、受電装置101は通知される試行回数の受け入れを拒否してもよい。例えば、送電装置102から通知された試行回数を実行した場合にタイムアウト時間内でCalibrationフェーズの処理を終わらせることができない場合がある。つまり、RPパケットの送信間隔を短くすることができない場合等がある。この場合、受電装置101は試行回数を再決定するため、試行回数に関する情報を再度通知するようGeneric Requestパケット等を用いて送電装置102に要求してもよい。また、受電装置101は、End Power Transferを送信して処理を停止し、Selectionフェーズの処理から再度開始するようにしてもよい。また、Calibrationフェーズの処理に係るタイムアウト時間内に十分に収まることが予想される場合などでは、異物検出精度を向上させるため、試行回数を増加させることを目的に試行回数を再決定してもよい。
 第1および第2の実施形態では、Calibrationフェーズの処理に係るタイムアウト時間内に処理が完了する場合について説明した。一方で、タイムアウトが発生した場合には、送電装置102は送電を停止するが、送電を停止せずに送電出力を抑制してもよいし、送電停止後にSelectionフェーズの処理を再度開始してもよい。Selectionフェーズの処理を再度開始する場合には、タイムアウト時間を前回選択した値よりも更に大きい値としたり、時間領域におけるQ値測定法に基づく異物検出の試行回数を減らしたりして、Calibrationフェーズの処理を実行する。これにより、より確実にタイムアウト時間内にCalibrationフェーズの処理を完了、すなわち、Calibrationカーブを導出することが可能となり、より安全で効率の高い無線電力伝送システムを実現することができる。また、第1の実施形態に係る送電装置102の処理と、第2の実施形態に係る受電装置101の処理とを組み合わせてもよい。
 第1および第2の実施形態では、送電装置102はタイムアウトが発生しているか否かを、RPパケットを受信する毎に判定したが、複数回の受信毎や所定の期間毎に行ってもよい。これにより、不要な処理の実行を抑制し、効率の高い無線電力伝送システムを実現することができる。
 なお、受電装置101と送電装置102は無線充電以外のアプリケーションを実行する機能を有しうる。受電装置101の一例はスマートフォン等の情報処理端末であり、送電装置102の一例はその情報処理端末を充電するためのアクセサリ機器である。例えば、情報端末機器は、受電コイル(アンテナ)から受けた電力が供給される、情報をユーザに表示する表示部(ディスプレイ)を有している。また、受電コイルから受けた電力は蓄電部(バッテリ)に蓄積され、そのバッテリから表示部に電力が供給される。この場合、受電装置101は、送電装置102とは異なる他の装置と通信する通信部を有していてもよい。通信部は、NFC通信や、第5世代移動通信システム(5G)などの通信規格に対応していてもよい。またこの場合、バッテリから通信部に電力が供給されることにより、通信部が通信を行ってもよい。また、受電装置101は、タブレット端末、あるいは、ハードディスク装置及びメモリ装置などの記憶装置であってもよいし、パーソナルコンピュータ(PC)などの情報処理装置であってもよい。また、受電装置101は、例えば、撮像装置(カメラやビデオカメラ等)であってもよい。また、受電装置101は、スキャナ等の画像入力装置であってもよいし、プリンタ、コピー機、プロジェクタ等の画像出力装置であってもよい。また、受電装置101は、ロボット、医療機器等であってもよい。送電装置102は、上述した機器を充電するための装置でありうる。
 また、送電装置102がスマートフォンであってもよい。この場合、受電装置101は別のスマートフォンでもよいし、無線イヤホンであってもよい。
 また、本実施形態における受電装置101が自動車などの車両であってもよい。例えば、受電装置101である自動車は、駐車場に設置された送電アンテナを介して充電器(送電装置102)から電力を受けとるものであってもよい。また、受電装置101である自動車は、道路に埋め込まれた送電コイル(アンテナ)を介して充電器(送電装置102)から電力を受けとるものでもよい。このような自動車は、受電した電力はバッテリに供給される。バッテリの電力は、車輪を駆動する発動部(モータ、電動部)に供給されてもよいし、運転補助に用いられるセンサの駆動や外部装置との通信を行う通信部の駆動に用いられてもよい。つまり、この場合、受電装置101は、車輪の他、バッテリや、受電した電力を用いて駆動するモータやセンサ、さらには送電装置102以外の装置と通信を行う通信部を有していていもよい。さらに、受電装置101は、人を収容する収容部を有していてもよい。例えば、センサとしては、車間距離や他の障害物との距離を測るために使用されるセンサなどがある。通信部は、例えば、全地球測位システム(Global Positioning System、Global Positioning Satellite、GPS)に対応していてもよい。また、通信部は、第5世代移動通信システム(5G)などの通信規格に対応していてもよい。また、車両としては、自転車や自動二輪車であってもよい。また、受電装置101は、車両に限定されず、バッテリに蓄積された電力を使用して駆動する発動部を有する移動体及び飛行体等であってもよい。
 また、本実施形態における受電装置101は、電動工具、家電製品などでもよい。受電装置101であるこれらの機器は、バッテリの他、バッテリに蓄積された受電電力によって駆動するモータを有していてもよい。また、これらの機器は、バッテリの残量などを通知する通知手段を有していてもよい。また、これらの機器は、送電装置102とは異なる他の装置と通信する通信部を有していてもよい。通信部は、NFCや、第5世代移動通信システム(5G)などの通信規格に対応していてもよい。
 また、本実施形態における送電装置102は、自動車の車両内で、無線電力伝送に対応するスマートフォンやタブレットなどの携帯情報端末機器に対して送電を行う車載用充電器であってもよい。このような車載用充電器は、自動車内のどこに設けられていてもよい。例えば、車載用充電器は、自動車のコンソールに設置されてもよいし、インストルメントパネル(インパネ、ダッシュボード)や、乗客の座席間の位置や天井、ドアに設置されてもよい。ただし、運転に支障をきたすような場所に設置されないほうがよい。また、送電装置102が車載用充電器の例で説明したが、このような充電器が、車両に配置されるものに限らず、電車や航空機、船舶等の輸送機に設置されてもよい。この場合の充電器も、乗客の座席間の位置や天井、ドアに設置されてもよい。
 また、車載用充電器を備えた自動車等の車両が、送電装置102であってもよい。この場合、送電装置102は、車輪と、バッテリとを有し、バッテリの電力を用いて、送電回路部や送電コイル(アンテナ)により受電装置101に電力を供給する。
 本開示は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
 本願は、2022年1月14日提出の日本国特許出願特願2022-004544を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。

Claims (15)

  1.  受電装置に対して無線で電力を送電する送電装置であって、
     前記送電装置と前記受電装置との間の電力損失に基づいて、前記送電装置及び前記受電装置とは異なる物体が存在するか否かを検出する第1の検出手段と、
     前記受電装置から前記受電装置に係る能力情報を取得する取得手段と、
     前記送電を停止する期間に測定するQ-ファクターに基づいて、前記送電装置及び前記受電装置とは異なる物体が存在するか否かを検出する第2の検出手段と、
     前記第2の検出手段による検出結果に基づき、前記第1の検出手段による検出に用いる前記送電装置及び前記受電装置とは異なる物体が存在しない場合の電力損失の基準値を算出する算出手段と、
     前記取得手段によって取得された前記受電装置に係る能力情報に基づいて、前記算出手段による前記基準値の算出に係る処理のタイムアウト時間を特定する特定手段と、
     を有し、
     前記特定手段は、前記受電装置が所定の条件を満たしていない場合は、前記タイムアウト時間として第1の値を選択し、前記受電装置が前記所定の条件を満たしている場合は、
     前記タイムアウト時間として前記第1の値よりも大きい第2の値を特定することを特徴とする送電装置。
  2.  前記特定手段は、前記第2の値として、前記第2の検出手段による検出の処理の試行回数に応じた値を特定することを特徴とする請求項1に記載の送電装置。
  3.  前記算出手段は、前記第2の検出手段による複数回の検出結果に基づき、前記基準値を算出することを特徴とする請求項1または2に記載の送電装置。
  4.  前記所定の条件は、前記受電装置が特定の規格の所定のバージョン以上であること、および前記受電装置が前記第2の検出手段による処理に対応可能であることを含むことを特徴とする請求項1乃至3の何れか1項に記載の送電装置。
  5.  前記特定手段によりタイムアウト時間を特定した後、前記算出手段による前記基準値の算出を行う前に、前記受電装置に前記特定手段により特定されたタイムアウト時間を通知する通知手段をさらに有することを特徴とする請求項1または2に記載の送電装置。
  6.  前記特定手段により特定されたタイムアウト時間が経過するまでに前記算出手段により前記基準値を算出できなかった場合に、前記受電装置への電力の送電を停止または抑制するよう制御する制御手段をさらに有することを特徴とする請求項1乃至5の何れか1項に記載の送電装置。
  7.  送電装置と受電装置との間の電力損失に基づいて、前記送電装置及び前記受電装置とは異なる物体が存在するか否かを検出する第1の検出処理と、送電を停止する期間に測定するQ-ファクターに基づいて、前記送電装置及び前記受電装置とは異なる物体が存在するか否かを検出する第2の検出処理とを行う送電装置から無線で電力を受電する受電装置であって、
     前記送電装置から前記送電装置に係る能力情報を取得する取得手段と、
     前記送電装置において、前記第2の検出処理による検出結果に基づき、前記第1の検出処理による検出に用いる前記送電装置及び前記受電装置とは異なる物体が存在しない場合の電力損失の基準値を算出するための受電電力値の情報を前記送電装置に送信する送信手段と、
     前記取得手段によって取得された前記送電装置に係る能力情報に基づいて、前記送信手段により前記受電電力値の情報を送信するために要する最大の送信時間を特定する特定手段と、
     を有し、
     前記特定手段は、前記送電装置と前記受電装置との間で所定の条件を満たしていない場合は、前記最大の送信時間として第1の値を特定し、前記送電装置と前記受電装置との間で前記所定の条件を満たしている場合は、前記最大の送信時間として前記第1の値よりも小さい第2の値を特定することを特徴とする受電装置。
  8.  前記特定手段は、前記第2の値として、前記第2の検出処理の試行回数に応じた値を特定することを特徴とする請求項7に記載の受電装置。
  9.  前記所定の条件は、前記送電装置が特定の規格の所定のバージョン以上であり、かつ前記受電装置が前記送電装置による前記第2の検出処理に対応可能であることを含むことを特徴とする請求項7または8に記載の受電装置。
  10.  前記送信手段は、さらに前記特定手段により特定された最大の送信時間の情報を前記送電装置に送信することを特徴とする請求項7乃至9の何れか1項に記載の受電装置。
  11.  請求項1乃至6の何れか1項に記載の送電装置と、請求項7乃至10の何れか1項に記載の受電装置とを有することを特徴とする無線電力伝送システム。
  12.  受電装置に対して無線で電力を送電する送電装置の制御方法であって、
     前記送電装置と前記受電装置との間の電力損失に基づいて、前記送電装置及び前記受電装置とは異なる物体が存在するか否かを検出する第1の検出工程と、
     前記受電装置から前記受電装置に係る能力情報を取得する取得工程と、
     前記送電を停止する期間に測定するQ-ファクターに基づいて、前記送電装置及び前記受電装置とは異なる物体が存在するか否かを検出する第2の検出工程と、
     前記第2の検出工程における検出結果に基づき、前記第1の検出工程による検出に用いる前記送電装置及び前記受電装置とは異なる物体が存在しない場合の電力損失の基準値を算出する算出工程と、
     前記取得工程において取得された前記受電装置に係る能力情報に基づいて、前記算出工程による前記基準値の算出に係る処理のタイムアウト時間を特定する特定工程と、
     を有し、
     前記特定工程においては、前記受電装置が所定の条件を満たしていない場合は、前記タイムアウト時間として第1の値を選択し、前記受電装置が前記所定の条件を満たしている場合は、前記タイムアウト時間として前記第1の値よりも大きい第2の値を特定することを特徴とする送電装置の制御方法。
  13.  送電装置と受電装置との間の電力損失に基づいて、前記送電装置及び前記受電装置とは異なる物体が存在するか否かを検出する第1の検出処理と、送電を停止する期間に測定するQ-ファクターに基づいて、前記送電装置及び前記受電装置とは異なる物体が存在するか否かを検出する第2の検出処理とを行う送電装置から無線で電力を受電する受電装置の制御方法であって、
     前記送電装置から前記送電装置に係る能力情報を取得する取得工程と、
     前記送電装置において、前記第2の検出処理による検出結果に基づき、前記第1の検出処理による検出に用いる前記送電装置及び前記受電装置とは異なる物体が存在しない場合の電力損失の基準値を算出するための受電電力値の情報を前記送電装置に送信する送信工程と、
     前記取得工程において取得された前記送電装置に係る能力情報に基づいて、前記送信工程により前記受電電力値の情報を送信するために要する最大の送信時間を特定する特定工程と、
     を有し、
     前記特定工程においては、前記送電装置と前記受電装置との間で所定の条件を満たしていない場合は、前記最大の送信時間として第1の値を特定し、前記送電装置と前記受電装置との間で前記所定の条件を満たしている場合は、前記最大の送信時間として前記第1の値よりも小さい第2の値を特定することを特徴とする受電装置の制御方法。
  14.  コンピュータに、請求項1乃至6の何れか1項に記載の送電装置として実行させることを特徴とするプログラム。
  15.  コンピュータに、請求項7乃至10の何れか1項に記載の受電装置として実行させることを特徴とするプログラム。
PCT/JP2022/048455 2022-01-14 2022-12-28 送電装置、受電装置、無線電力伝送システム、送電装置の制御方法、受電装置の制御方法およびプログラム WO2023136154A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-004544 2022-01-14
JP2022004544A JP2023103805A (ja) 2022-01-14 2022-01-14 送電装置、受電装置および無線電力伝送システム

Publications (1)

Publication Number Publication Date
WO2023136154A1 true WO2023136154A1 (ja) 2023-07-20

Family

ID=87279152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048455 WO2023136154A1 (ja) 2022-01-14 2022-12-28 送電装置、受電装置、無線電力伝送システム、送電装置の制御方法、受電装置の制御方法およびプログラム

Country Status (2)

Country Link
JP (1) JP2023103805A (ja)
WO (1) WO2023136154A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021502047A (ja) * 2017-11-02 2021-01-21 エルジー イノテック カンパニー リミテッド 無線充電方法およびそのための装置
WO2021161776A1 (ja) * 2020-02-13 2021-08-19 キヤノン株式会社 受電装置および送電装置、ならびにそれらの制御方法およびプログラム
WO2021199774A1 (ja) * 2020-03-31 2021-10-07 キヤノン株式会社 送電装置および受電装置、それらの制御方法、プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021502047A (ja) * 2017-11-02 2021-01-21 エルジー イノテック カンパニー リミテッド 無線充電方法およびそのための装置
WO2021161776A1 (ja) * 2020-02-13 2021-08-19 キヤノン株式会社 受電装置および送電装置、ならびにそれらの制御方法およびプログラム
WO2021199774A1 (ja) * 2020-03-31 2021-10-07 キヤノン株式会社 送電装置および受電装置、それらの制御方法、プログラム

Also Published As

Publication number Publication date
JP2023103805A (ja) 2023-07-27

Similar Documents

Publication Publication Date Title
JP2014075934A (ja) 給電装置、給電方法及びコンピュータプログラム
JP2018143031A (ja) 給電装置及び電子機器及びそれらの制御方法及びプログラム、並びに無線電力伝送システム
WO2021261053A1 (ja) 送電装置、送電装置の制御方法、およびプログラム
WO2021199774A1 (ja) 送電装置および受電装置、それらの制御方法、プログラム
US20210175756A1 (en) Power receiving apparatus, power transmitting apparatus, method for controlling same, and computer-readable medium
WO2021039115A1 (ja) 送電装置、送電装置の制御方法及びプログラム
WO2023136154A1 (ja) 送電装置、受電装置、無線電力伝送システム、送電装置の制御方法、受電装置の制御方法およびプログラム
WO2022264760A1 (ja) 送電装置、受電装置、制御方法、および、プログラム
WO2022185994A1 (ja) 受電装置、受電装置の制御方法、及び、プログラム
WO2022255094A1 (ja) 送電装置および受電装置
EP4293873A1 (en) Power transmission device, control method of power transmission device, and program
WO2023042679A1 (ja) 送電装置および受電装置
WO2023276580A1 (ja) 送電装置、受電装置、無線電力伝送の方法、及び、プログラム
WO2023199593A1 (ja) 受電装置およびその制御方法、送電装置およびその制御方法、プログラムおよび記憶媒体
WO2023106030A1 (ja) 受電装置、送電装置、無線電力伝送方法、および、プログラム
WO2023002835A1 (ja) 受電装置、受電装置の制御方法およびプログラム
WO2022264878A1 (ja) 送電装置、受電装置、制御方法、および、プログラム
WO2023112622A1 (ja) 受電装置、受電装置の制御方法およびプログラム
JP2014225984A (ja) 電子機器、制御方法、プログラム及び記録媒体
WO2022185995A1 (ja) 送電装置、送電装置の制御方法、及び、プログラム
WO2023090126A1 (ja) 受電装置、無線電力伝送システムおよび受電装置の制御方法
WO2021261052A1 (ja) 送電装置、送電装置の制御方法、およびプログラム
WO2023176283A1 (ja) 通信装置、通信装置の制御方法およびプログラム
JP7493370B2 (ja) 送電装置およびその制御方法、プログラム
US20230246491A1 (en) Power transmission apparatus, control method for power transmission apparatus, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920670

Country of ref document: EP

Kind code of ref document: A1