WO2023134607A1 - 边链路传输方法及装置、存储介质、终端设备 - Google Patents

边链路传输方法及装置、存储介质、终端设备 Download PDF

Info

Publication number
WO2023134607A1
WO2023134607A1 PCT/CN2023/071180 CN2023071180W WO2023134607A1 WO 2023134607 A1 WO2023134607 A1 WO 2023134607A1 CN 2023071180 W CN2023071180 W CN 2023071180W WO 2023134607 A1 WO2023134607 A1 WO 2023134607A1
Authority
WO
WIPO (PCT)
Prior art keywords
side link
transmission power
link data
transmission
network standards
Prior art date
Application number
PCT/CN2023/071180
Other languages
English (en)
French (fr)
Inventor
张萌
陈咪咪
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Publication of WO2023134607A1 publication Critical patent/WO2023134607A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communication technologies, and in particular to a side link transmission method and device, a storage medium, and a terminal device.
  • future terminal equipment may support side link transmission of two network standards simultaneously on one carrier (carrier componnet, or serving cell), such as New Wireless (New Radio, NR) side link transmission and Long Term Evolution (Long Term Evolution, LTE) side link transmission.
  • carrier carrier componnet, or serving cell
  • Embodiments of the present invention provide a side link transmission method and device, a storage medium, and a terminal device, capable of realizing power allocation for side link transmission of two network standards simultaneously transmitted on the same carrier.
  • an embodiment of the present invention provides a side link transmission method
  • the side link transmission method includes: side link data of two network standards needs to be transmitted simultaneously and supports simultaneous transmission on a single carrier
  • calculate the maximum transmission power of the current carrier assign the first transmission power to one of the side link data of the two network standards, and calculate the maximum transmission power according to the maximum transmission power and the determined
  • the difference of the first transmission power is used as the maximum power value to allocate the second transmission power to the other side link data of the two network standards; transmit the side link data of the two network standards according to the first transmission power one of the link data, and transmit the other of the side link data of the two network standards according to the second transmission power.
  • the side link data of the two network standards includes traditional network side link data and new wireless side link data
  • the traditional network side link data includes LTE side link data
  • the first transmission power is allocated to one of the side link data of the two network standards, and the difference between the maximum transmission power and the first transmission power is used as the maximum power value for the side link data of the two network standards.
  • Allocating the second transmission power for the side link data of the two network standards includes: allocating the first transmission power for the side link data of the traditional network, and according to the maximum transmission power and the first transmission power The difference value of is used as the maximum power value to allocate the second transmission power for the new wireless side link data.
  • the first transmission power is allocated to one of the side link data of the two network standards, and the difference between the maximum transmission power and the first transmission power is used as the maximum power value for the side link data of the two network standards.
  • Allocating the second transmission power for the side link data of the two network standards includes: allocating the first transmission power for the new wireless side link data, and according to the maximum transmission power and the first transmission power The difference value of is used as the maximum power value to allocate the second transmission power for the traditional network side link data.
  • the side link transmission method further includes: reporting capability indication information, where the capability indication information is used to indicate the capability of simultaneously transmitting side link data of the two network standards on a single carrier.
  • the side link transmission method further includes: when the side link data of the two network standards overlap in time and does not support simultaneous transmission of the side links of the two network standards on a single carrier data, one of the side link data of the two network standards is discarded.
  • the embodiment of the present invention also discloses a side link transmission device.
  • the side link transmission device includes: a maximum power determination module, which is used to simultaneously transmit side link data of two network standards and support a single carrier When transmitting side link data of two network standards at the same time, calculate the maximum transmission power of the current carrier; the power allocation module is used to allocate the first transmission power to one of the side link data of the two network standards, and According to the difference between the maximum transmission power and the first transmission power as the maximum power value, allocate a second transmission power to the other side link data of the two network standards; the transmission module is configured to: Transmitting one of the side link data of the two network standards at the first transmission power, and transmitting the other of the side link data of the two network standards according to the second transmission power.
  • the power allocation module allocates the first transmission power for the traditional network side link data, and uses the difference between the maximum transmission power and the first transmission power as the maximum power value for the new wireless side link data Allocate a second transmission power.
  • the power allocation module allocates the first transmission power for the new wireless side link data, and uses the difference between the maximum transmission power and the first transmission power as the maximum power value for the traditional network side link data Allocate a second transmission power.
  • the embodiment of the present invention also discloses a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of the side link transmission method are executed.
  • the embodiment of the present invention also discloses a terminal, including a memory and a processor, the memory stores a computer program that can run on the processor, and the processor executes the computer program when running the computer program.
  • a terminal including a memory and a processor, the memory stores a computer program that can run on the processor, and the processor executes the computer program when running the computer program.
  • the terminal device supports simultaneous transmission of side link data of two network standards on a single carrier, one of the data will be allocated preferentially.
  • the first transmission power correspondingly, the available power of the current carrier is reduced to the difference between the maximum transmission power and the first transmission power, then the second transmission power can be allocated to another type of data based on the maximum power value, thereby realizing
  • the power allocation of the side link data of the two network standards avoids data conflicts, ensures the transmission of at least one side link data, and improves the communication experience.
  • FIG. 1 is a flow chart of a side link transmission method provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a side link transmission device provided by an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of a hardware structure of a side link transmission device provided by an embodiment of the present invention.
  • the communication systems to which the embodiments of the present application are applicable include, but are not limited to, long term evolution (long term evolution, LTE) systems, fifth generation (5th-generation, 5G) systems, NR systems, and future evolution systems or multiple communication fusion systems.
  • the 5G system may be a non-standalone (NSA) 5G system or a standalone (standalone, SA) 5G system.
  • NSA non-standalone
  • SA standalone 5G system.
  • the technical solution of the present application is also applicable to different network architectures, including but not limited to relay network architecture, dual-link architecture, Vehicle-to-Everything (vehicle-to-everything communication) architecture and other architectures.
  • This application mainly relates to terminal devices and communication between terminal devices. in:
  • the terminal equipment (terminal equipment) in the embodiment of the present application may refer to various forms of access terminals, subscriber units, subscriber stations, mobile stations, mobile stations (mobile station, MS), remote stations, remote terminals, mobile equipment, user Terminal, wireless communication device, user agent or user device.
  • the terminal equipment can also be a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in the future 5G network or future evolution of the public land mobile network (Public Land Mobile Network, PLMN)
  • PLMN Public Land Mobile Network
  • a terminal device may also be called a user equipment (User Equipment, UE), a terminal, and the like.
  • the network device in the embodiment of the present application may also be called an access network device, for example, it may be a base station (base station, BS) (also called a base station device), and the network device is a type of network device deployed on a wireless access network (Radio Access Network, RAN) is a device used to provide wireless communication functions.
  • base station base station
  • RAN Radio Access Network
  • equipment that provides base station functions in the second-generation (2nd-generation, 2G) network includes base transceiver stations (BTS), and equipment that provides base station functions in the third-generation (3rd-generation, 3G) network includes Node B (NodeB), the equipment that provides base station functions in the fourth-generation (4th-generation, 4G) network includes evolved Node B (evolved NodeB, eNB), in wireless local area networks (wireless local area networks, WLAN),
  • the device that provides base station functions is the access point (access point, AP), the device that provides base station functions in NR, the next generation base station node (next generation node base station, gNB), and the node B (ng-eNB) that continues to evolve,
  • gNB and terminal devices use NR technology for communication
  • ng-eNB and terminal devices use Evolved Universal Terrestrial Radio Access (E-UTRA) technology for communication.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • the terminal device supports simultaneous transmission of side link data of two network standards on a single carrier, one of the data will be allocated preferentially.
  • the first transmission power correspondingly, the available power of the current carrier is reduced to the difference between the maximum transmission power and the first transmission power, then the second transmission power can be allocated to another type of data based on the maximum power value, thereby realizing
  • the power allocation of the side link data of the two network standards avoids data conflicts, ensures the transmission of at least one side link data, and improves the communication experience.
  • FIG. 1 is a flow chart of a side link transmission method according to an embodiment of the present invention.
  • the side link transmission method in the embodiment of the present invention can be used in a terminal device, that is, each step of the side link transmission method can be performed by the terminal device, or the side link transmission method can be performed by a chip or a chip module in the terminal device.
  • the terminal device in the embodiment of the present invention may be a transmitting terminal device (Tx UE), that is, a terminal device that sends side link data.
  • Tx UE transmitting terminal device
  • the side link transmission method may include the following steps:
  • Step 101 When the side link data of two network standards needs to be transmitted simultaneously and supports simultaneous transmission of side link data of two network standards on a single carrier, calculate the maximum transmit power of the current carrier;
  • Step 102 Allocate the first transmission power for one of the side link data of the two network standards, and use the difference between the maximum transmission power and the first transmission power as the maximum power value for the two types of side link data.
  • the other side link data of the network standard allocates the second transmission power;
  • Step 103 Transmit one of the side link data of the two network standards according to the first transmission power, and transmit the other of the side link data of the two network standards according to the second transmission power .
  • the side link transmission method may be implemented in the form of a software program, and the software program runs in a processor integrated in a chip or a chip module.
  • the method may also be implemented by combining software with hardware, which is not limited in this application.
  • the terminal device may be in a dual-connectivity (Dual-connectivity, DC) state with network devices of two network standards.
  • DC Dual-connectivity
  • the terminal device is in a carrier aggregation (Carrier Aggregation, CA) scenario, and carrier aggregation in this scenario is aggregation of carriers of two network standards.
  • CA Carrier Aggregation
  • the terminal device may have the ability to simultaneously transmit side link data of two network standards on a single carrier, specifically, the two networks may be simultaneously transmitted in a Frequency-Division Multiplexing (FDM) manner.
  • FDM Frequency-Division Multiplexing
  • the side link data referred to in the embodiment of the present invention may be a reference signal (Reference Signal, RS) of the side link, or a channel of the side link.
  • RS Reference Signal
  • the side link data of the two network standards includes traditional network side link data and new wireless side link data
  • the traditional network side link data includes LTE side link data
  • side link data of two network standards are LTE side link data and NR side link data, that is, LTE side link data and NR side link data can be transmitted on the same carrier at the same time.
  • the maximum transmit power P CMAX,c of the current carrier may be determined, where c represents the serial number of the carrier (component carrier).
  • PCMAX,c may be the maximum power reduction (Maximum Power Reduction, MPR) determined by the terminal device according to the maximum output power parameter of each carrier pre-configured by the upper layer, and according to information such as transmission bandwidth and modulation order, and additional
  • MPR Maximum Power Reduction
  • A-MPR Additional-Maximum Power Reduction
  • A-MPR is related to the transmission bandwidth and specific resource Block (Resource Block, RB) allocation and other information related.
  • the first transmission power can be assigned to one of the side link data of the two network standards, and the difference between the maximum transmission power and the first transmission power
  • the second transmission power is allocated to the other side link data of the two network standards as the maximum power value.
  • the sum of the first transmission power and the second transmission power does not exceed the maximum transmission power of the current carrier.
  • step 103 one kind of side link data of the two network standards is transmitted according to the first transmission power, and the other kind of data is transmitted according to the second transmission power.
  • the LTE side link data may be transmitted preferentially, that is, the first transmission power is allocated to the LTE side link data first.
  • the first transmission power may refer to power P LTE required for transmitting LTE side link data.
  • the transmission power of the current carrier is limited. After the first transmission power is allocated, the remaining transmission power of the current carrier is the difference between the maximum transmission power P CMAX,c and the first transmission power P LTE . Then P CMAX,c -P LTE may be used as the maximum power value to allocate the second transmission power for the NR side link data. In other words, the maximum value of the second transmission power is P CMAX,c -P LTE .
  • the LTE side link data is transmitted with the first transmission power P LTE
  • the NR side link data is transmitted with the second transmission power.
  • the first transmission power P LTE may be the transmission power of the LTE Physical Sidelink Shared Channel (Physical Sidelink Shared Channel, PSSCH), or the transmission power of the LTE Physical Sidelink Control Channel (Physical Sidelink Control Channel, PSCCH), Or the transmit power of LTE (Physical Sidelink Discovery Channel, PSDCH).
  • the transmission channel corresponding to the second transmission power may be NR PSSCH, or NR PSCCH, or NR Physical Sidelink Feedback Channel (Physical Sidelink Feedback Channel, PSFCH), or NR Synchronization Signal Block/PBCH, SSB).
  • the specific value of the first transmission power P LTE may be determined according to a calculation method specified in a communication standard protocol, which is not limited in this embodiment of the present invention.
  • the embodiments of the present invention can give priority to ensuring reliable transmission of LTE side link data.
  • the NR side link data may be transmitted preferentially, that is, the first transmission power is allocated to the NR side link data first.
  • the first transmission power may refer to power P NR required to transmit NR side link data.
  • the transmit power of the current carrier is limited. After the first transmission power is allocated, the remaining transmit power of the current carrier is the difference between the maximum transmit power P CMAX,c and the first transmit power P NR .
  • the second transmission power may be allocated to the LTE side link data by using P CMAX,c -P NR as the maximum power value. In other words, the maximum value of the second transmission power is P CMAX,c -P NR .
  • the NR side-link data is transmitted with the first transmission power P NR
  • the LTE side-link data is transmitted with the second transmission power.
  • the first transmission power P NR may be the transmission power of the NR PSSCH, or the transmission power of the NR PSCCH, or the transmission power of the NR PSFCH, or the transmission power of the NR SSB.
  • the transmission channel corresponding to the second transmission power may be the LTE PSSCH, or the LTE PSCCH, or the LTE PSDCH.
  • the specific value of the first transmission power P NR may be determined according to a calculation method specified in a communication standard protocol, which is not limited in this embodiment of the present invention.
  • the embodiments of the present invention can give priority to ensuring reliable transmission of NR side link data.
  • the side link data of the two network standards includes traditional network side link data and new wireless side link data.
  • Traditional network side link data can be LTE side link data
  • traditional network side link data can also be first generation mobile communication technology (1st generation mobile networks or 4th generation wireless systems, 1G) side link data, 2G side link data Road data, 3G side link data, etc.
  • the new wireless side link data may be 5G side link data, 6G side link data, and side link data in a future evolution system or a variety of communication convergence systems.
  • the terminal device may report capability indication information to the network device, and may also report indication information to the receiving terminal device, so as to indicate that side link data of the two network standards are simultaneously transmitted on a single carrier Ability.
  • the receiving terminal device refers to a terminal device that receives side link data.
  • the terminal device may report capability indication information to the network device through radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the terminal device may report indication information to the receiving terminal device through Sidelink Control Information (SCI).
  • SCI Sidelink Control Information
  • MAC Media Access Control
  • CE Control Element
  • the side link data of the two network standards overlaps in time and does not support simultaneous transmission of the side link data of the two network standards on a single carrier, discard One kind of data in the side link data of the two network standards.
  • the time overlap of the side link data of the two network standards means that the sending time of the side link data of the two network standards overlaps at least one symbol (symbol).
  • the traditional network side link data can be directly discarded, and the new wireless side link data can also be directly discarded.
  • the LTE side link data may be discarded, and the NR side link data may also be discarded directly.
  • the embodiment of the present invention is aimed at the scheme of simultaneously transmitting data of two network standards on the same carrier in a side link communication scenario. It is completely different from the existing non-side link communication scheme that needs to transmit data of two network standards on two carriers. In the existing non-side link communication, there is no way to transmit the data of two network standards on one carrier. Assigned solution. That is to say, compared with the existing non-side link communication, the technical problem solved by the embodiment of the present invention is a new problem in a new scenario.
  • the side link transmission device 20 may include:
  • the maximum power determination module 201 is configured to calculate the maximum transmission power of the current carrier when side link data of two network standards need to be transmitted simultaneously and support simultaneous transmission of side link data of two network standards on a single carrier;
  • the power allocation module 202 is configured to allocate a first transmission power to one of the side link data of the two network standards, and use the difference between the maximum transmission power and the first transmission power as the maximum power value of The other of the side link data of the two network standards allocates the second transmission power;
  • a transmission module 203 configured to transmit one of the side link data of the two network standards according to the first transmission power, and transmit one of the side link data of the two network standards according to the second transmission power another.
  • the embodiments of the present invention can realize power allocation for side link data of two network standards, avoid data conflicts, ensure transmission of at least one side link data, and improve communication experience.
  • the power allocation module 202 allocates the first transmission power for the traditional network side link data, and uses the difference between the maximum transmission power and the first transmission power as the maximum power value for the new wireless side chain allocating the second transmission power to the channel data.
  • the power allocation module 202 allocates the first transmission power for the new wireless side link data, and uses the difference between the maximum transmission power and the first transmission power as the maximum power value for the traditional network side chain allocating the second transmission power to the channel data.
  • the above-mentioned side link transmission device may correspond to a chip with a side link transmission function in the terminal device, such as an SOC (System-On-a-Chip, system on chip), a baseband chip, etc.; or correspond to a terminal device Including chip modules with side link transmission functions; or corresponding to chip modules with data processing function chips, or corresponding to terminal equipment.
  • SOC System-On-a-Chip, system on chip
  • baseband chip etc.
  • chip modules with side link transmission functions or corresponding to chip modules with data processing function chips, or corresponding to terminal equipment.
  • each module/unit contained in the product may be a software module/unit, or a hardware module/unit, or may be partly a software module/unit and partly a hardware module/unit.
  • each module/unit contained therein may be realized by hardware such as a circuit, or at least some modules/units may be realized by a software program, and the software program Running on the integrated processor inside the chip, the remaining (if any) modules/units can be realized by means of hardware such as circuits; They are all realized by means of hardware such as circuits, and different modules/units can be located in the same component (such as chips, circuit modules, etc.) or different components of the chip module, or at least some modules/units can be realized by means of software programs, The software program runs on the processor integrated in the chip module, and the remaining (if any) modules/units can be realized by hardware such as circuits; /Units can be realized by means of hardware such as circuits
  • the embodiment of the present application also provides a schematic diagram of a hardware structure of a communication device.
  • the device includes a processor 301 , a memory 302 and a transceiver 303 .
  • the processor 301 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, a specific application integrated circuit (application-specific integrated circuit, ASIC), or one or more devices used to control the execution of the program program of this application. integrated circuit.
  • the processor 301 may also include multiple CPUs, and the processor 301 may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, or processing cores for processing data such as computer program instructions.
  • Memory 302 can be ROM or other types of static storage devices that can store static information and instructions, RAM or other types of dynamic storage devices that can store information and instructions, and can also be an electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), read-only disc (compactdisc read-only memory, CD-ROM) or other optical disc storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), disk storage
  • the medium or other magnetic storage devices, or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and can be accessed by a computer, is not limited in this embodiment of the present application.
  • the memory 302 may exist independently (in this case, the memory 302 may be located outside the device or within the device), or may be integrated with the processor 301 . Wherein, the memory 302 may contain computer program codes.
  • the processor 301 is configured to execute computer program codes stored in the memory 302, so as to implement the method provided by the embodiment of the present application.
  • the processor 301, the memory 302 and the transceiver 303 are connected through a bus.
  • the transceiver 303 is used to communicate with other devices or a communication network.
  • the transceiver 303 may include a transmitter and a receiver.
  • the device in the transceiver 303 for implementing the receiving function may be regarded as a receiver, and the receiver is configured to perform the receiving step in the embodiment of the present application.
  • the device in the transceiver 303 for implementing the sending function may be regarded as a transmitter, and the transmitter is used to perform the sending step in the embodiment of the present application.
  • the processor 301 is used to control and manage the actions of the terminal device.
  • the processor 301 is used to support the terminal device to execute the diagram. Step 101, step 102, and step 103 in 1, and/or actions performed by the terminal device in other processes described in the embodiments of this application.
  • the processor 301 may communicate with other network entities through the transceiver 303, for example, communicate with the above-mentioned network devices.
  • the memory 302 is used to store program codes and data of the terminal device. When the processor runs the computer program, it can control the transceiver 303 to send one or more of RRC signaling, MAC CE signaling and SCI.
  • the embodiment of the present invention also discloses a storage medium.
  • the storage medium is a computer-readable storage medium on which a computer program is stored. When the computer program runs, the steps of the aforementioned method can be executed.
  • the storage medium may include ROM, RAM, magnetic or optical disks, and the like.
  • the storage medium may also include a non-volatile memory (non-volatile) or a non-transitory (non-transitory) memory, and the like.
  • the embodiment of the present invention also discloses a terminal device.
  • the terminal device may include a memory and a processor, and a computer program that can run on the processor is stored in the memory.
  • the processor runs the computer program, it can execute the steps of the aforementioned method.
  • the user equipment includes, but is not limited to, terminal equipment such as mobile phones, computers, and tablet computers.
  • Multiple appearing in the embodiments of the present application means two or more.
  • connection in the embodiment of the present application refers to various connection modes such as direct connection or indirect connection to realize communication between devices, which is not limited in the embodiment of the present application.
  • the above-mentioned embodiments may be implemented in whole or in part by software, hardware, firmware or other arbitrary combinations.
  • the above-described embodiments may be implemented in whole or in part in the form of computer program products.
  • the computer program product comprises one or more computer instructions or computer programs.
  • the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Wired or wireless transmission to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center that includes one or more sets of available media.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed methods, devices and systems can be implemented in other ways.
  • the device embodiments described above are only illustrative; for example, the division of the units is only a logical function division, and there may be other division methods in actual implementation; for example, multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware, or in the form of hardware plus software functional units.
  • the above-mentioned integrated units implemented in the form of software functional units may be stored in a computer-readable storage medium.
  • the above-mentioned software functional units are stored in a storage medium, and include several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) to execute some steps of the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种边链路传输方法及装置、存储介质、终端设备,边链路传输方法包括:在两种网络制式的边链路数据需要同时传输且支持在单个载波上同时传输两种网络制式的边链路数据时,计算当前载波的最大发射功率;为所述两种网络制式的边链路数据中一种分配第一传输功率,并根据所述最大发射功率与所述第一传输功率的差值作为功率最大值为所述两种网络制式的边链路数据中另一种分配第二传输功率;按照所述第一传输功率传输所述两种网络制式的边链路数据中一种,以及按照所述第二传输功率传输所述两种网络制式的边链路数据中另一种。通过本发明技术方案能够实现针对同一载波同时传输两种网络制式的边链路传输的功率分配。

Description

边链路传输方法及装置、存储介质、终端设备
本申请要求2022年1月11日提交中国专利局、申请号为202210028319.X、发明名称为“边链路传输方法及装置、存储介质、终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种边链路传输方法及装置、存储介质、终端设备。
背景技术
在边链路(SideLink,SL)传输场景中,未来的终端设备有可能在一个载波(carrier componnet,或者称为serving cell)上同时支持两种网络制式的边链路传输,例如新无线(New Radio,NR)的边链路传输以及长期演进(Long Term Evolution,LTE)的边链路传输。
因此,亟需一个针对同一载波同时传输两种网络制式的边链路传输的功率分配方案。
发明内容
本发明实施例提供一种边链路传输方法及装置、存储介质、终端设备,能够实现针对同一载波同时传输两种网络制式的边链路传输的功率分配。
为解决上述技术问题,第一方面,本发明实施例提供一种边链路传输方法,边链路传输方法包括:在两种网络制式的边链路数据需要同时传输且支持在单个载波上同时传输两种网络制式的边链路数据时,计算当前载波的最大发射功率;为所述两种网络制式的边链路数据中一种分配第一传输功率,并根据所述最大发射功率与所述第一传 输功率的差值作为功率最大值为所述两种网络制式的边链路数据中另一种分配第二传输功率;按照所述第一传输功率传输所述两种网络制式的边链路数据中一种,以及按照所述第二传输功率传输所述两种网络制式的边链路数据中另一种。
可选的,所述两种网络制式的边链路数据包括传统网络边链路数据和新无线边链路数据,所述传统网络边链路数据包括LTE边链路数据。
可选的,所述为所述两种网络制式的边链路数据中一种分配第一传输功率,并据所述最大发射功率与所述第一传输功率的差值作为功率最大值为所述两种网络制式的边链路数据中另一种分配第二传输功率包括:为所述传统网络边链路数据分配第一传输功率,并根据所述最大发射功率与所述第一传输功率的差值作为功率最大值为所述新无线边链路数据分配第二传输功率。
可选的,所述为所述两种网络制式的边链路数据中一种分配第一传输功率,并据所述最大发射功率与所述第一传输功率的差值作为功率最大值为所述两种网络制式的边链路数据中另一种分配第二传输功率包括:为所述新无线边链路数据分配第一传输功率,并根据所述最大发射功率与所述第一传输功率的差值作为功率最大值为所述传统网络边链路数据分配第二传输功率。
可选的,所述边链路传输方法还包括:上报能力指示信息,所述能力指示信息用于指示在单个载波上同时传输所述两种网络制式的边链路数据的能力。
可选的,所述边链路传输方法还包括:在所述两种网络制式的边链路数据在时间上发生重叠且不支持在单个载波上同时传输所述两种网络制式的边链路数据时,丢弃所述两种网络制式的边链路数据中一种数据。
第二方面,本发明实施例还公开一种边链路传输装置,边链路传 输装置包括:最大功率确定模块,用于在两种网络制式的边链路数据需要同时传输且支持在单个载波上同时传输两种网络制式的边链路数据时,计算当前载波的最大发射功率;功率分配模块,用于为所述两种网络制式的边链路数据中一种分配第一传输功率,并根据所述最大发射功率与所述第一传输功率的差值作为功率最大值为所述两种网络制式的边链路数据中另一种分配第二传输功率;传输模块,用于按照所述第一传输功率传输所述两种网络制式的边链路数据中一种,以及按照所述第二传输功率传输所述两种网络制式的边链路数据中另一种。
可选的,所述功率分配模块为传统网络边链路数据分配第一传输功率,并根据所述最大发射功率与所述第一传输功率的差值作为功率最大值为新无线边链路数据分配第二传输功率。
可选的,所述功率分配模块为新无线边链路数据分配第一传输功率,并根据所述最大发射功率与所述第一传输功率的差值作为功率最大值为传统网络边链路数据分配第二传输功率。
第三方面,本发明实施例还公开一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器运行时执行所述边链路传输方法的步骤。
第四方面,本发明实施例还公开一种终端,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行所述边链路传输方法的步骤
与现有技术相比,本发明实施例的技术方案具有以下有益效果:
本发明技术方案中,在两种网络制式的边链路数据同时传输的情况下,如果终端设备支持在单个载波上同时传输两种网络制式的边链路数据,则优先为其中一种数据分配第一传输功率,相应地,当前载波可用功率降低为最大发射功率与所述第一传输功率的差值,那么可以依此为功率最大值为另一种数据分配第二传输功率,从而实现了对 两种网络制式边链路数据的功率分配,避免数据冲突,保证了至少一种边链路数据的传输,提升通信体验。
附图说明
图1是本发明实施例提供的一种边链路传输方法的流程图;
图2是本发明实施例提供的一种边链路传输装置的结构示意图;
图3是本发明实施例提供的一种边链路传输装置的硬件结构示意图。
具体实施方式
本申请实施例适用的通信系统包括但不限于长期演进(long term evolution,LTE)系统、第五代(5th-generation,5G)系统、NR系统,以及未来演进系统或者多种通信融合系统。其中,5G系统可以为非独立组网(non-standalone,NSA)的5G系统或独立组网(standalone,SA)的5G系统。本申请技术方案也适用于不同的网络架构,包括但不限于中继网络架构、双链接架构、Vehicle-to-Everything(车辆到任何物体的通信)架构等架构。
本申请主要涉及终端设备和终端设备之间的通信。其中:
本申请实施例中的终端设备(terminal equipment)可以指各种形式的接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。终端设备也可以称为用户设备(User Equipment,UE)、终端等。
本申请实施例中的网络设备也可以称为接入网设备,例如,可以为基站(base station,BS)(也可称为基站设备),网络设备是一种部署在无线接入网(Radio Access Network,RAN)用以提供无线通信功能的装置。例如在第二代(2nd-generation,2G)网络中提供基站功能的设备包括基地无线收发站(base transceiver station,BTS),第三代(3rd-generation,3G)网络中提供基站功能的设备包括节点B(NodeB),在第四代(4th-generation,4G)网络中提供基站功能的设备包括演进的节点B(evolved NodeB,eNB),在无线局域网络(wireless local area networks,WLAN)中,提供基站功能的设备为接入点(access point,AP),NR中的提供基站功能的设备下一代基站节点(next generation node base station,gNB),以及继续演进的节点B(ng-eNB),其中gNB和终端设备之间采用NR技术进行通信,ng-eNB和终端设备之间采用演进的通用地面无线电接入(Evolved Universal Terrestrial Radio Access,E-UTRA)技术进行通信,gNB和ng-eNB均可连接到5G核心网。本申请实施例中的网络设备还包含在未来新的通信系统中提供基站功能的设备等。
如背景技术中所述,亟需一个针对同一载波同时传输两种网络制式的边链路传输的功率分配方案
本发明技术方案中,在两种网络制式的边链路数据同时传输的情况下,如果终端设备支持在单个载波上同时传输两种网络制式的边链路数据,则优先为其中一种数据分配第一传输功率,相应地,当前载波可用功率降低为最大发射功率与所述第一传输功率的差值,那么可以依此为功率最大值为另一种数据分配第二传输功率,从而实现了对两种网络制式边链路数据的功率分配,避免数据冲突,保证了至少一种边链路数据的传输,提升通信体验。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
图1是本发明实施例一种边链路传输方法的流程图。
本发明实施例的边链路传输方法可以用于终端设备之中,也就是说,可以由终端设备执行边链路传输方法的各个步骤,也可以由终端设备中的芯片或芯片模组执行边链路传输方法的各个步骤。本发明实施例中的终端设备可以是发送终端设备(Tx UE),也即发送边链路数据的终端设备。
具体地,边链路传输方法可以包括以下步骤:
步骤101:在两种网络制式的边链路数据需要同时传输且支持在单个载波上同时传输两种网络制式的边链路数据时,计算当前载波的最大发射功率;
步骤102:为所述两种网络制式的边链路数据中一种分配第一传输功率,并根据所述最大发射功率与所述第一传输功率的差值作为功率最大值为所述两种网络制式的边链路数据中另一种分配第二传输功率;
步骤103:按照所述第一传输功率传输所述两种网络制式的边链路数据中一种,以及按照所述第二传输功率传输所述两种网络制式的边链路数据中另一种。
需要指出的是,本实施例中各个步骤的序号并不代表对各个步骤的执行顺序的限定。
可以理解的是,在具体实施中,所述边链路传输方法可以采用软件程序的方式实现,该软件程序运行于芯片或芯片模组内部集成的处理器中。该方法也可以采用软件结合硬件的方式实现,本申请不作限制。
本发明实施例中,终端设备可以与两种网络制式的网络设备处于双连接(Dual-connectivity,DC)状态。或者,终端设备处于载波聚合(Carrier Aggregation,CA)场景,该场景下的载波聚合为两种网络制式的载波的聚合。在这种情况下,终端设备能够传输两种网络制式下的边链路数据。
本实施例中,终端设备可以具有支持在单个载波上同时传输两种网络制式的边链路数据的能力,具体可以以频分复用(Frequency-Division Multiplexing,FDM)的方式同时传输两种网络制式的边链路数据。
本发明实施例中所称边链路数据可以是边链路的参考信号(Reference Signal,RS),或者边链路的信道。
在一个非限制性的实施例中,两种网络制式的边链路数据包括传统网络边链路数据和新无线边链路数据,所述传统网络边链路数据包括LTE边链路数据。例如两种网络制式的边链路数据为LTE边链路数据和NR边链路数据,也即可以在同一载波上同时传输LTE边链路数据和NR边链路数据。
在步骤101的具体实施中,可以确定当前载波的最大发射功率P CMAX,c,其中,c表示载波(component carrier)的编号。具体地,P CMAX,c可以是终端设备根据高层预先配置的每个载波的最大输出功率参数、以及根据传输带宽和调制阶数等信息确定的最大功率回退(Maximum Power Reduction,MPR)、额外的最大功率回退(Additional-Maximum Power Reduction,A-MPR)等功率回退参数计算得到,其中MPR与传输带宽(以资源块为单位)和调制方式相关,A-MPR与传输带宽、具体资源块(Resource Block,RB)分配等信息相关。
在步骤102的具体实施中,为了保证数据的可靠传输,可以为两种网络制式的边链路数据中一种分配第一传输功率,并以最大发射功率与所述第一传输功率的差值作为功率最大值为所述两种网络制式的边链路数据中另一种分配第二传输功率。
具体地,第一传输功率和第二传输功率之和不超过当前载波的最大发射功率。
进而在步骤103的具体实施中,按照所述第一传输功率传输两种网络制式的边链路数据中的一种数据,以及按照第二传输功率传输另 一种数据。
在一种具体实施方式中,可以优先传输LTE边链路数据,也即先为LTE边链路数据分配第一传输功率。
本实施例中,第一传输功率可以是指传输LTE边链路数据所需的功率P LTE。而当前载波的发射功率是有限的,在分配第一传输功率之后,当前载波剩余的发射功率为最大发射功率P CMAX,c与第一传输功率P LTE的差值。那么可以以P CMAX,c-P LTE作为功率最大值为NR边链路数据分配第二传输功率。换言之,第二传输功率的最大值为P CMAX,c-P LTE
相应地,以第一传输功率P LTE传输LTE边链路数据,以第二传输功率传输NR边链路数据。
具体地,第一传输功率P LTE可以是LTE物理边链路共享信道(Physical Sidelink Shared Channel,PSSCH)的发射功率,或者LTE物理边链路控制信道(Physical Sidelink Control Channel,PSCCH)的发射功率,或者LTE(Physical Sidelink Discovery Channel,PSDCH)的发射功率。第二传输功率所对应的发射信道可以是NR PSSCH,或者NR PSCCH,或者NR物理边链路反馈信道(Physical Sidelink Feedback Channel,PSFCH),或者NR同步广播块(Synchronization Signal Block/PBCH,SSB)。
需要说明的是,第一传输功率P LTE的具体数值可以根据通信标准协议规定的计算方式来确定,本发明实施例对此不作限制。
本发明实施例能够优先保证LTE边链路数据的可靠传输。
在另一种具体实施方式中,可以优先传输NR边链路数据,也即先为NR边链路数据分配第一传输功率。
本实施例中,第一传输功率可以是指传输NR边链路数据所需的功率P NR。而当前载波的发射功率是有限的,在分配第一传输功率之后,当前载波剩余的发射功率为最大发射功率P CMAX,c与第一传输功 率P NR的差值。那么可以以P CMAX,c-P NR作为功率最大值为LTE边链路数据分配第二传输功率。换言之,第二传输功率的最大值为P CMAX,c-P NR
相应地,以第一传输功率P NR传输NR边链路数据,以第二传输功率传输LTE边链路数据。
具体地,第一传输功率P NR可以是NR PSSCH的发射功率,或者是NR PSCCH的发射功率,或者是NR PSFCH的发射功率,或者是NR SSB的发射功率。第二传输功率所对应的发射信道可以是LTE PSSCH,或者LTE PSCCH,或者LTE PSDCH。
需要说明的是,第一传输功率P NR的具体数值可以根据通信标准协议规定的计算方式来确定,本发明实施例对此不作限制。
本发明实施例能够优先保证NR边链路数据的可靠传输。
在一个非限制性的实施例中,两种网络制式的边链路数据包括传统网络边链路数据和新无线边链路数据。传统网络边链路数据可以是LTE边链路数据,传统网络边链路数据也可以是第一代移动通信技术(1st generation mobile networks or 4th generation wireless systems,1G)边链路数据、2G边链路数据、3G边链路数据等。新无线边链路数据可以是5G边链路数据、6G边链路数据以及未来演进系统或者多种通信融合系统中的边链路数据。
在一个非限制性的实施例中,终端设备可以向网络设备上报能力指示信息,也可以向接收终端设备汇报指示信息,以指示在单个载波上同时传输所述两种网络制式的边链路数据的能力。其中,接收终端设备是指接收边链路数据的终端设备。
具体地,终端设备可以通过无线资源控制(Radio Resource Control,RRC)信令向网络设备上报能力指示信息。终端设备可以通过边链路控制信息(Sidelink Control Information,SCI)向接收终端设备汇报指示信息。
需要说明的是,也可以采用其他任意可实施的信令,例如媒体接入控制(Media Access Control,MAC)控制元(Control Element,CE)发送上述能力制式信息,本发明实施例对此不作限制。
进一步地,在传输边链路数据时,还需要保证所有载波上任意时刻终端设备的总发射功率不超过终端设备的最大发射功率
在一个非限制性的实施例中,在所述两种网络制式的边链路数据在时间上发生重叠且不支持在单个载波上同时传输所述两种网络制式的边链路数据时,丢弃所述两种网络制式的边链路数据中一种数据。
本实施例中,两种网络制式的边链路数据在时间上发生重叠是指两种网络制式的边链路数据的发送时间在至少一个符号(symbol)上发生重叠,在这种情况下,如果终端设备不支持在单个载波上同时传输两种网络制式的边链路数据,那么为了保证数据的可靠传输,可以直接丢弃传统网络边链路数据,也可以直接丢弃新无线边链路数据。例如可以丢弃LTE边链路数据,也可以直接丢弃NR边链路数据。
本发明实施例针对的是边链路通信场景中,在同一个载波上同时传输两种网络制式的数据的方案。与现有非边链路通信需要在两个载波上传输两种网络制式的数据的方案完全不同,现有非边链路通信中不存在如何在一个载波上对两种网络制式的数据进行功率分配的解决方案。也就是说,与现有非边链路通信相比,本发明实施例所解决的技术问题是新场景下的新问题。
请参照图2,本发明实施例还公开了一种边链路传输装置20。边链路传输装置20可以包括:
最大功率确定模块201,用于在两种网络制式的边链路数据需要同时传输且支持在单个载波上同时传输两种网络制式的边链路数据时,计算当前载波的最大发射功率;
功率分配模块202,用于为所述两种网络制式的边链路数据中一 种分配第一传输功率,并根据所述最大发射功率与所述第一传输功率的差值作为功率最大值为所述两种网络制式的边链路数据中另一种分配第二传输功率;
传输模块203,用于按照所述第一传输功率传输所述两种网络制式的边链路数据中一种,以及按照所述第二传输功率传输所述两种网络制式的边链路数据中另一种。
本发明实施例能够实现对两种网络制式边链路数据的功率分配,避免数据冲突,保证了至少一种边链路数据的传输,提升通信体验。
进一步地,功率分配模块202为所述传统网络边链路数据分配第一传输功率,并根据所述最大发射功率与所述第一传输功率的差值作为功率最大值为所述新无线边链路数据分配第二传输功率。
进一步地,功率分配模块202为所述新无线边链路数据分配第一传输功率,并根据所述最大发射功率与所述第一传输功率的差值作为功率最大值为所述传统网络边链路数据分配第二传输功率。
关于所述边链路传输装置20的工作原理、工作方式的更多内容,可以参照前述实施例的相关描述,这里不再赘述。
在具体实施中,上述边链路传输装置可以对应于终端设备中具有边链路传输功能的芯片,例如SOC(System-On-a-Chip,片上系统)、基带芯片等;或者对应于终端设备中包括具边链路传输功能的芯片模组;或者对应于具有数据处理功能芯片的芯片模组,或者对应于终端设备。
关于上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果 有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
请参照图3,本申请实施例还提供了一种通信装置的硬件结构示意图。该装置包括处理器301、存储器302和收发器303。
处理器301可以是一个通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。处理器301也可以包括多个CPU,并且处理器301可以是一个单核(single-CPU)处理器,也可以是多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器302可以是ROM或可存储静态信息和指令的其他类型的静态存储设备、RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compactdisc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形 式的期望的程序代码并能够由计算机存取的任何其他介质,本申请实施例对此不作任何限制。存储器302可以是独立存在(此时,存储器302可以位于该装置外,也可以位于该装置内),也可以和处理器301集成在一起。其中,存储器302中可以包含计算机程序代码。处理器301用于执行存储器302中存储的计算机程序代码,从而实现本申请实施例提供的方法。
处理器301、存储器302和收发器303通过总线相连接。收发器303用于与其他设备或通信网络通信。可选的,收发器303可以包括发射机和接收机。收发器303中用于实现接收功能的器件可以视为接收机,接收机用于执行本申请实施例中的接收的步骤。收发器303中用于实现发送功能的器件可以视为发射机,发射机用于执行本申请实施例中的发送的步骤。
当图3所示的结构示意图用于示意上述实施例中所涉及的终端设备的结构时,处理器301用于对终端设备的动作进行控制管理,例如,处理器301用于支持终端设备执行图1中的步骤101、步骤102和步骤103,和/或本申请实施例中所描述的其他过程中的终端设备执行的动作。处理器301可以通过收发器303与其他网络实体通信,例如,与上述网络设备通信。存储器302用于存储终端设备的程序代码和数据。所述处理器运行所述计算机程序时可以控制所述收发器303发送RRC信令、MAC CE信令和SCI中的一个或多个。
本发明实施例还公开了一种存储介质,所述存储介质为计算机可读存储介质,其上存储有计算机程序,所述计算机程序运行时可以执行前述方法的步骤。所述存储介质可以包括ROM、RAM、磁盘或光盘等。所述存储介质还可以包括非挥发性存储器(non-volatile)或者非瞬态(non-transitory)存储器等。
本发明实施例还公开了一种终端设备,所述终端设备可以包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序。所述处理器运行所述计算机程序时可以执行前述方法的步骤。 所述用户设备包括但不限于手机、计算机、平板电脑等终端设备。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/“,表示前后关联对象是一种“或”的关系。
本申请实施例中出现的“多个”是指两个或两个以上。
本申请实施例中出现的第一、第二等描述,仅作示意与区分描述对象之用,没有次序之分,也不表示本申请实施例中对设备个数的特别限定,不能构成对本申请实施例的任何限制。
本申请实施例中出现的“连接”是指直接连接或者间接连接等各种连接方式,以实现设备间的通信,本申请实施例对此不做任何限定。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法、装置和系统,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的;例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式;例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的部分步骤。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (11)

  1. 一种边链路传输方法,其特征在于,包括:
    在两种网络制式的边链路数据需要同时传输且支持在单个载波上同时传输两种网络制式的边链路数据时,计算当前载波的最大发射功率;
    为所述两种网络制式的边链路数据中一种分配第一传输功率,并根据所述最大发射功率与所述第一传输功率的差值作为功率最大值为所述两种网络制式的边链路数据中另一种分配第二传输功率;
    按照所述第一传输功率传输所述两种网络制式的边链路数据中一种,以及按照所述第二传输功率传输所述两种网络制式的边链路数据中另一种。
  2. 根据权利要求1所述的边链路传输方法,其特征在于,所述两种网络制式的边链路数据包括传统网络边链路数据和新无线边链路数据,所述传统网络边链路数据包括LTE边链路数据。
  3. 根据权利要求2所述的边链路传输方法,其特征在于,所述为所述两种网络制式的边链路数据中一种分配第一传输功率,并据所述最大发射功率与所述第一传输功率的差值作为功率最大值为所述两种网络制式的边链路数据中另一种分配第二传输功率包括:
    为所述传统网络边链路数据分配第一传输功率,并根据所述最大发射功率与所述第一传输功率的差值作为功率最大值为所述新无线边链路数据分配第二传输功率。
  4. 根据权利要求2所述的边链路传输方法,其特征在于,所述为所述两种网络制式的边链路数据中一种分配第一传输功率,并据所述最大发射功率与所述第一传输功率的差值作为功率最大值为所述两种网络制式的边链路数据中另一种分配第二传输功率包括:
    为所述新无线边链路数据分配第一传输功率,并根据所述最大发射功率与所述第一传输功率的差值作为功率最大值为所述传统网络边链路数据分配第二传输功率。
  5. 根据权利要求1所述的边链路传输方法,其特征在于,还包括:
    上报能力指示信息,所述能力指示信息用于指示在单个载波上同时传输所述两种网络制式的边链路数据的能力。
  6. 根据权利要求1所述的边链路传输方法,其特征在于,还包括:
    在所述两种网络制式的边链路数据在时间上发生重叠且不支持在单个载波上同时传输所述两种网络制式的边链路数据时,丢弃所述两种网络制式的边链路数据中一种数据。
  7. 一种边链路传输装置,其特征在于,包括:
    最大功率确定模块,用于在两种网络制式的边链路数据需要同时传输且支持在单个载波上同时传输两种网络制式的边链路数据时,计算当前载波的最大发射功率;
    功率分配模块,用于为所述两种网络制式的边链路数据中一种分配第一传输功率,并根据所述最大发射功率与所述第一传输功率的差值作为功率最大值为所述两种网络制式的边链路数据中另一种分配第二传输功率;
    传输模块,用于按照所述第一传输功率传输所述两种网络制式的边链路数据中一种,以及按照所述第二传输功率传输所述两种网络制式的边链路数据中另一种。
  8. 根据权利要求7所述的边链路传输装置,其特征在于,所述功率分配模块为传统网络边链路数据分配第一传输功率,并根据所述最大发射功率与所述第一传输功率的差值作为功率最大值为新无线边链路数据分配第二传输功率。
  9. 根据权利要求7所述的边链路传输装置,其特征在于,所述功率 分配模块为新无线边链路数据分配第一传输功率,并根据所述最大发射功率与所述第一传输功率的差值作为功率最大值为传统网络边链路数据分配第二传输功率。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器运行时执行权利要求1至6中任一项所述边链路传输方法的步骤。
  11. 一种终端,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,其特征在于,所述处理器运行所述计算机程序时执行权利要求1至6中任一项所述边链路传输方法的步骤。
PCT/CN2023/071180 2022-01-11 2023-01-09 边链路传输方法及装置、存储介质、终端设备 WO2023134607A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210028319.X 2022-01-11
CN202210028319.XA CN116471655A (zh) 2022-01-11 2022-01-11 边链路传输方法及装置、存储介质、终端设备

Publications (1)

Publication Number Publication Date
WO2023134607A1 true WO2023134607A1 (zh) 2023-07-20

Family

ID=87177530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071180 WO2023134607A1 (zh) 2022-01-11 2023-01-09 边链路传输方法及装置、存储介质、终端设备

Country Status (2)

Country Link
CN (1) CN116471655A (zh)
WO (1) WO2023134607A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112740787A (zh) * 2018-11-01 2021-04-30 Oppo广东移动通信有限公司 用户设备及其无线通信的方法
CN112771938A (zh) * 2018-11-01 2021-05-07 Oppo广东移动通信有限公司 用户设备及其无线通信方法
CN113545138A (zh) * 2019-01-09 2021-10-22 三星电子株式会社 无线通信系统中分配发送功率的方法和装置
US11172451B1 (en) * 2020-08-06 2021-11-09 At&T Intellectual Property I, L.P. Uplink power control mechanism for dual connectivity networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112740787A (zh) * 2018-11-01 2021-04-30 Oppo广东移动通信有限公司 用户设备及其无线通信的方法
CN112771938A (zh) * 2018-11-01 2021-05-07 Oppo广东移动通信有限公司 用户设备及其无线通信方法
CN113545138A (zh) * 2019-01-09 2021-10-22 三星电子株式会社 无线通信系统中分配发送功率的方法和装置
US11172451B1 (en) * 2020-08-06 2021-11-09 At&T Intellectual Property I, L.P. Uplink power control mechanism for dual connectivity networks

Also Published As

Publication number Publication date
CN116471655A (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
US20230262771A1 (en) Electronic device for wireless communication system, method and storage medium
WO2020143692A1 (zh) 通信方法和通信装置
WO2018228548A1 (zh) 上行资源的授权方法、装置及系统
KR101813822B1 (ko) D2d 발견 신호의 송신 방법과 송신 장치
WO2021026977A1 (zh) Ue能力信息的上报方法及设备
EP3565159B1 (en) Data processing method and apparatus
US9622115B2 (en) Channel negotiation method, device, and system
JP7193609B2 (ja) データ送信方法及び関連する装置
WO2019062746A1 (zh) 通信方法、装置和系统
CN114788403A (zh) 通信方法、设备及系统
WO2020156184A1 (zh) 获取系统信息的方法及装置
WO2020048500A1 (zh) 一种上行传输方法和装置
WO2020199609A1 (zh) 一种通信方法及设备
TW201735711A (zh) 基於設備到設備的通訊方法和終端
WO2020199034A1 (zh) 用于中继通信的方法和装置
WO2023134607A1 (zh) 边链路传输方法及装置、存储介质、终端设备
CN116530202A (zh) 用于双连接的方法和装置
WO2022228277A1 (zh) 通信方法、装置及系统
WO2023134606A1 (zh) 数据传输方法及装置、存储介质、终端设备、网络设备
WO2024022486A1 (zh) 通信方法及装置、存储介质、网络设备、终端设备
WO2023035502A1 (zh) Psfch功率确定方法及装置、计算机可读存储介质、终端设备
WO2024103229A1 (zh) 通信方法、电子设备及存储介质
EP4319460A1 (en) Communication method, apparatus and system
WO2022237640A1 (zh) 一种资源确定方法及装置
WO2024008096A1 (zh) 通信方法与装置、终端设备、网络设备和芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23739949

Country of ref document: EP

Kind code of ref document: A1