WO2023035502A1 - Psfch功率确定方法及装置、计算机可读存储介质、终端设备 - Google Patents

Psfch功率确定方法及装置、计算机可读存储介质、终端设备 Download PDF

Info

Publication number
WO2023035502A1
WO2023035502A1 PCT/CN2021/142784 CN2021142784W WO2023035502A1 WO 2023035502 A1 WO2023035502 A1 WO 2023035502A1 CN 2021142784 W CN2021142784 W CN 2021142784W WO 2023035502 A1 WO2023035502 A1 WO 2023035502A1
Authority
WO
WIPO (PCT)
Prior art keywords
psfch
power
resource
priority
psfchs
Prior art date
Application number
PCT/CN2021/142784
Other languages
English (en)
French (fr)
Inventor
张萌
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Publication of WO2023035502A1 publication Critical patent/WO2023035502A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient

Definitions

  • the present invention relates to the field of communication technologies, and in particular to a method and device for determining PSFCH power, a computer-readable storage medium, and terminal equipment.
  • the main function of the physical direct link feedback channel (Physical Sidelink Feedback Channel, PSFCH) of the existing side link communication (Sidelink) is to carry the hybrid automatic retransmission corresponding to the physical direct link shared channel (Pysical Sidelink Share Channel, PSSCH) Request (Hybrid Automatic Repeat reQuest, HARQ) confirmation (Acknowledge, ACK) information, and currently only supports 1 bit.
  • PSFCH Physical Sidelink Feedback Channel
  • PSSCH Physical Sidelink Share Channel
  • HARQ Hybrid Automatic Repeat reQuest, HARQ
  • PSFCH Physical Broadband Channel
  • enhancing the information carried by the PSFCH means that the number of resource blocks (Resource Block, RB) occupied by the existing PSFCH needs to be increased to multiple, which will have an impact on the power allocation scheme of the PSFCH.
  • Resource Block RB
  • the present invention provides a method and device for determining PSFCH power, and provides a solution for power allocation for PSFCH when PSFCH carries more information.
  • an embodiment of the present invention provides a method for determining PSFCH power.
  • the method for determining PSFCH power includes: determining the priority of each PSFCH; The power of the PSFCH resource.
  • the determining the priority of each PSFCH includes: determining the maximum value of the priority of the PSSCH carried by each PSFCH resource as the priority of the PSFCH resource.
  • the determining the power of each PSFCH resource at least according to the first total number of resource blocks occupied by PSFCHs of each priority includes: if the high-layer parameters are obtained, using the high-layer parameters to calculate the power of a single PSFCH resource; Calculating the sum of the power of the single PSFCH resource and the value of the first total number in the log domain as the first power; according to the relationship between the total number of PSFCHs scheduled for transmission and the upper limit value of the PSFCH that can be sent at the same time, and scheduling The relationship between the power of the transmitted PSFCH and the first power determines the power of each PSFCH resource.
  • the high-level parameters include first high-level parameters and second high-level parameters
  • N _sch, Tx, psfch represent the total number of PSFCHs scheduled for transmission
  • N _max, psfch represents the upper limit value of the PSFCH that can be transmitted simultaneously
  • P PSFCH, k represents the power of the PSFCH resource whose index is k
  • M i,k represents the number of resource blocks occupied by PSFCH resources with index k of priority i
  • P CMAX represents the transmission power of N _sch, Tx, psfch PSFCH, N Tx, psfch
  • P PSFCH,k (i) indicates the power of the PSFCH resource whose priority is i and whose index is k
  • M i indicates the number of PSFCHs whose priority is i.
  • P PSFCH,k (i) P CMAX -10log 10 (N Tx,psfch ),
  • PCMAX represents the transmission power of N Tx,psfch PSFCHs
  • N Tx,psfch represents the total number of PSFCHs actually transmitted
  • N Tx,psfch is selected according to the ascending order of PSFCH priorities.
  • the number of resource blocks occupied by each PSFCH is multiple.
  • the embodiment of the present invention also discloses a PSFCH power determination device, which includes: a priority determination module, used to determine the priority of each PSFCH; a power determination module, used at least according to the resources occupied by the PSFCH of each priority The first total number of blocks determines the power of each PSFCH resource.
  • the embodiment of the present invention also discloses a computer-readable storage medium, on which a computer program is stored, and when the computer program is run by a processor, the steps of the PSFCH power determination method are executed.
  • the embodiment of the present invention also discloses a terminal device, including a memory and a processor, the memory stores a computer program that can run on the processor, and the processor executes the PSFCH when running the computer program Steps in the power determination method.
  • the priority of each PSFCH is determined; and the power of each PSFCH resource is determined at least according to the first total number of resource blocks occupied by PSFCHs of each priority. Since the number of resource blocks occupied by PSFCH will affect the power of PSFCH resources, when determining the power, it is necessary to take the first total number of resource blocks occupied by PSFCHs of each priority as a consideration factor to ensure the power of PSFCH resources The accuracy of the allocation, thereby ensuring the reliability of PSFCH transmission.
  • the maximum value of the priority of the PSSCH carried by each PSFCH resource as the priority of the PSFCH resource.
  • the maximum value can be selected as the priority of the PSFCH to ensure that the PSSCH with a higher priority can be transmitted first.
  • Fig. 1 is a flow chart of a method for determining PSFCH power in an embodiment of the present invention
  • Fig. 2 is an interactive flowchart of a method for determining PSFCH power in an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a device for determining PSFCH power in an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a hardware structure of an apparatus for determining PSFCH power in an embodiment of the present invention.
  • the communication systems to which the embodiments of the present application are applicable include, but are not limited to, long term evolution (long term evolution, LTE) systems, fifth generation (5th-generation, 5G) systems, NR systems, and future evolution systems or multiple communication fusion systems.
  • the 5G system may be a non-standalone (NSA) 5G system or a standalone (standalone, SA) 5G system.
  • NSA non-standalone
  • SA standalone 5G system.
  • the technical solution of the present application is also applicable to different network architectures, including but not limited to relay network architecture, dual-link architecture, Vehicle-to-Everything (vehicle-to-everything communication) architecture and other architectures.
  • This application mainly relates to end-device and side-link communication between end-device. in:
  • the terminal equipment (terminal equipment) in the embodiment of the present application may refer to various forms of access terminals, subscriber units, subscriber stations, mobile stations, mobile stations (mobile station, MS), remote stations, remote terminals, mobile equipment, user Terminal, wireless communication device, user agent or user device.
  • the terminal device can also be a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in the future 5G network or future evolution of the public land mobile network (Public Land Mobile Network, PLMN)
  • PLMN Public Land Mobile Network
  • a terminal device may also be called a user equipment (User Equipment, UE), a terminal, and the like.
  • enhancing the information carried by PSFCH means that the number of resource blocks (Resource Block, RB) occupied by the existing PSFCH needs to be increased to multiple, which will have an impact on the power allocation scheme of PSFCH.
  • Resource Block RB
  • the technical solution of the present invention provides a method for determining PSFCH power. Since the number of resource blocks occupied by PSFCH will affect the power of PSFCH resources, when determining the power, it is necessary to determine the power of the resource blocks occupied by PSFCH of each priority. A total number is considered as a consideration factor to ensure the accuracy of PSFCH resource power allocation, thereby ensuring the reliability of PSFCH transmission.
  • the method provided by the present application includes:
  • Step 101 determining the priority of each PSFCH
  • Step 102 Determine the power of each PSFCH resource at least according to the first total number of resource blocks occupied by PSFCHs of various priorities.
  • the method for determining PSFCH power may be implemented in the form of a software program, and the software program runs in a processor integrated in a chip or a chip module.
  • the method for determining PSFCH power may be used for a sending end device in sidelink communication (sidelink), that is, a terminal device sending PSFCH.
  • sidelink sidelink
  • the number of PSFCHs, the resources occupied by the PSFCHs, the PSSCHs carried by the PSFCHs, and the priority of each PSSCH may be pre-configured by the network side device or the sending user equipment.
  • the number of resource blocks occupied by the PSFCH is one or more
  • the number of PSSCHs carried by the PSFCH is one or more.
  • the maximum value of the priority in the PSSCH corresponding to the HARQ-ACK bit carried by each PSFCH resource is determined as the priority of the PSFCH resource.
  • each PSSCH since there are multiple PSSCHs corresponding to the HARQ-ACK bits carried by each PSFCH resource, and each PSSCH has a corresponding priority (priority), then there are multiple PSFCH corresponding priorities.
  • the maximum value of the priorities of multiple PSSCHs may be selected as the priority of the PSFCH. In this way, it can be ensured that the PSFCH has a higher priority, so that it can be sent out preferentially during transmission, and the reliability of the transmission of the PSSCH with a higher priority can be ensured.
  • the minimum value of the priority of the PSSCH corresponding to the HARQ-ACK bit carried by each PSFCH resource can be selected as the priority of the PSFCH resource; or, the PSSCH corresponding to the HARQ-ACK bit carried by each PSFCH resource can also be randomly selected
  • the value of the priority of is used as the priority of the PSFCH resource, which is not limited in this embodiment of the present invention.
  • the terminal device determines the power of the PSFCH resource in different ways according to whether the network side configures high-layer parameters.
  • the terminal device can first use the high-level parameters to calculate the power of a single PSFCH resource; then calculate the sum of the power of a single PSFCH resource and the value of the first total in the log domain; The relationship between the upper limit value of the transmitted PSFCH and the relationship between the above sum and the power of the PSFCH scheduled for transmission determines the power of each PSFCH resource.
  • the high-layer parameters include a first high-layer parameter dl-P0-PSFCH and a second high-layer parameter dl-Alpha-PSFCH.
  • the first high-level parameter dl-P0-PSFCH can indicate the value of the parameter P 0,PSFCH , indicating that the power arriving at the base station is used as the configuration criterion of power (p0), and the second high-level parameter dl-Alpha-PSFCH can indicate the value of the parameter ⁇ PSFCH .
  • using the following formula to calculate the power of a single PSFCH resource includes:
  • P PSFCH,k P O,PSFCH +10log 10 (2 ⁇ ⁇ M k )+ ⁇ PSFCH ⁇ PL
  • P PSFCH,k represents the power of the PSFCH resource whose index is k
  • P O,PSFCH represents the value of the first high layer parameter
  • ⁇ PSFCH represents the value of the second high layer parameter
  • represents the subcarrier spacing and/or a cyclic prefix (Cyclic Prefix, CP) type
  • M k represents the number of resource blocks occupied by the PSFCH resource with index k
  • PL represents a path loss.
  • the value of ⁇ PSFCH is 1.
  • the UE When the UE is configured to monitor the physical downlink control channel ( When the Physical Downlink Control Channel, PDCCH) is used to detect the downlink control information (Downlink Control Information, DCI) with the format of 0_0, the reference signal (Reference Signal, RS) resource is used by the UE to determine the physical uplink shared by the DCI with the format of 0_0 Channel (Physical Uplink Shared Channel, PUSCH) transmission power resource; 2.
  • PDCCH Physical Downlink Control Channel
  • RS Reference Signal
  • the RS resource is corresponding to the UE used to obtain the Master Information Block (Master Information Block, MIB ) resources of a synchronization signal (Synchronzation Signal, SS)/physical broadcast channel (Physical Broadcast Channel, PBCH) block.
  • MIB Master Information Block
  • SS Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the high-level parameter dl-P0-PSFCH when providing the high-level parameter dl-P0-PSFCH, according to the relationship between the total number of PSFCHs scheduled for transmission and the upper limit of PSFCHs that can be sent simultaneously, and the first power and The relationship between the power of the PSFCH for scheduled transmission can be divided into the following four cases, specifically as follows.
  • M i,k represents the number of resource blocks occupied by PSFCH resources with index k and priority i.
  • the total number of PSFCHs scheduled for transmission is less than the upper limit of the UE being able to transmit PSFCHs at the same time, and the sum of the power of the PSFCH resource with index k and the first total number in the Log domain is less than or equal to N_sch, Tx, psfch
  • the power of the PSFCH resource with index k with priority i is equal to the power of the PSFCH resource with index k.
  • N _sch, Tx, psfch PSFCH transmission power PCMAX can be determined according to the communication standard protocol [8-1, TS38.101-1].
  • the UE autonomously determines N Tx, psfch PSFCH transmissions in ascending priority order according to communication standard protocol clause 16.2.4.2, so that M i is the number of PSFCHs with priority value i and K is defined as satisfying The maximum value of N, where P CMAX is determined according to the communication standard protocol [8-1, TS38.101-1], used to transmit all PSFCHs assigned priority values 1, 2..., K, if any if.
  • the UE autonomously determines N Tx, psfch PSFCH transmissions in ascending priority order according to communication standard protocol clause 16.2.4.2, so that M i is the number of PSFCHs with priority value i and K is defined as satisfying The maximum value of N, where P CMAX is determined according to the communication standard protocol [8-1, TS38.101-1], used to transmit all PSFCHs assigned priority values 1, 2..., K, if any if.
  • N and M in may be pre-configured by the base station.
  • N may represent the number of PSFCH priority levels
  • M may represent the number of PSFCH indexes.
  • the priority is determined as i directly according to the transmission power of N_sch , Tx, psfch PSFCHs and the number of PSFCHs actually transmitted in the log domain
  • the power of the PSFCH resource whose index is k The details are as follows.
  • the UE autonomously determines N Tx, psfch PSFCH transmissions in ascending priority order according to the communication standard protocol clause 16.2.4.2, so that N Tx, psfch ⁇ 1, wherein PCMAX is based on the communication standard protocol [8-1, TS38.101-1] determined N Tx,psfch PSFCH transmission power.
  • FIG. 2 shows an exemplary interaction process between a network device and a terminal device.
  • the network side device configures high layer parameters for the user and sends them to the terminal device 1 .
  • the terminal device 1 here refers to a device that needs to send PSFCH.
  • the high layer parameter may specifically be the first high layer parameter dl-P0-PSFCH, or may be the second high layer parameter dl-Alpha-PSFCH.
  • High layer parameters may also include the number of PSFCHs, resources occupied by PSFCHs, PSSCHs carried by PSFCHs, and the priority of each PSSCH.
  • step 202 the terminal device 1 calculates the power of each PSFCH resource.
  • terminal device 1 sends PSFCH to terminal device 2 .
  • the largest device 2 here refers to the most terminal device that needs to receive PSFCH.
  • the communication mode between the terminal device 1 and the terminal device 2 is side link communication.
  • FIG. 3 shows a PSFCH power determining device, and the PSFCH power determining device 30 may include:
  • a priority determination module 301 configured to determine the priority of each PSFCH
  • a power determining module 302 configured to determine the power of each PSFCH resource at least according to the first total number of resource blocks occupied by PSFCHs of various priorities.
  • the above-mentioned PSFCH power determination device may correspond to a chip with PSFCH power determination function in the terminal equipment, such as SOC (System-On-a-Chip, system on chip), baseband chip, etc.; A chip module with a PSFCH power determination function; or corresponding to a chip module with a chip with a data processing function, or corresponding to a terminal device.
  • SOC System-On-a-Chip, system on chip
  • baseband chip etc.
  • a chip module with a PSFCH power determination function or corresponding to a chip module with a chip with a data processing function, or corresponding to a terminal device.
  • each module/unit contained in the product may be a software module/unit, or a hardware module/unit, or may be partly a software module/unit and partly a hardware module/unit.
  • each module/unit contained therein may be realized by hardware such as a circuit, or at least some modules/units may be realized by a software program, and the software program Running on the integrated processor inside the chip, the remaining (if any) modules/units can be realized by means of hardware such as circuits; They are all realized by means of hardware such as circuits, and different modules/units can be located in the same component (such as chips, circuit modules, etc.) or different components of the chip module, or at least some modules/units can be realized by means of software programs, The software program runs on the processor integrated in the chip module, and the remaining (if any) modules/units can be realized by hardware such as circuits; /Units can be realized by means of hardware such as circuits
  • the embodiment of the present application also provides a schematic diagram of a hardware structure of an apparatus for determining PSFCH power.
  • the device includes a processor 401 , a memory 402 and a transceiver 403 .
  • the processor 401 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, a specific application integrated circuit (application-specific integrated circuit, ASIC), or one or more devices used to control the execution of the program program of this application. integrated circuit.
  • the processor 601 may also include multiple CPUs, and the processor 401 may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, or processing cores for processing data such as computer program instructions.
  • Memory 402 can be ROM or other types of static storage devices that can store static information and instructions, RAM or other types of dynamic storage devices that can store information and instructions, and can also be an electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), read-only disc (compactdisc read-only memory, CD-ROM) or other optical disc storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), disk storage
  • the medium or other magnetic storage devices, or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and can be accessed by a computer, is not limited in this embodiment of the present application.
  • the memory 402 may exist independently (in this case, the memory 402 may be located outside the device or within the device), or may be integrated with the processor 401 . Wherein, the memory 402 may contain computer program codes.
  • the processor 401 is configured to execute the computer program code stored in the memory 402, so as to implement the method provided by the embodiment of the present application.
  • the processor 401, the memory 402 and the transceiver 403 are connected through a bus.
  • Transceiver 403 is used to communicate with other devices or a communication network.
  • the transceiver 403 may include a transmitter and a receiver.
  • the device in the transceiver 403 for implementing the receiving function may be regarded as a receiver, and the receiver is configured to perform the receiving step in the embodiment of the present application.
  • the device in the transceiver 403 for implementing the sending function may be regarded as a transmitter, and the transmitter is used to perform the sending step in the embodiment of the present application.
  • the processor 401 is used to control and manage the actions of the terminal device, for example, the processor 401 is used to support the terminal device to execute the diagram Step 101 and step 102 in 1, or step 202 and step 203 in FIG. 2 , and/or actions performed by the terminal device in other processes described in the embodiments of this application.
  • the processor 401 may communicate with other network entities through the transceiver 403, for example, communicate with the aforementioned network devices and other terminal devices.
  • the memory 402 is used to store program codes and data of the terminal device.
  • the processor 401 is used to control and manage the actions of the network device, for example, the processor 401 is used to support the network device to execute the diagram. Step 201 in 2, and/or actions performed by the network device in other processes described in the embodiments of this application.
  • the processor 401 may communicate with other network entities through the transceiver 403, for example, communicate with the above-mentioned terminal equipment.
  • the memory 402 is used to store program codes and data of the network device.
  • the embodiment of the present invention also discloses a storage medium, the storage medium is a computer-readable storage medium, and a computer program is stored thereon, and the PSFCH power determination shown in FIG. 1 or FIG. 2 can be performed when the computer program is running. method steps.
  • the embodiment of the present invention also discloses a terminal device.
  • the terminal device may include a memory and a processor, and a computer program that can run on the processor is stored in the memory.
  • the processor runs the computer program, it may execute the steps of the method for determining PSFCH power shown in FIG. 1 or FIG. 2 .
  • the user equipment includes, but is not limited to, terminal equipment such as mobile phones, computers, and tablet computers.
  • the network side (network) in this embodiment of the present invention may refer to a communication network that provides communication services for terminals, including a base station of a radio access network, a base station controller of a radio access network, and a core network side equipment.
  • Multiple appearing in the embodiments of the present application means two or more.
  • connection in the embodiment of the present application refers to various connection methods such as direct connection or indirect connection to realize communication between devices, which is not limited in the embodiment of the present application.
  • the processor may be a central processing unit (CPU for short), and the processor may also be other general-purpose processors, digital signal processors (digital signal processor, DSP for short) , application specific integrated circuit (ASIC for short), off-the-shelf programmable gate array (field programmable gate array, FPGA for short) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, referred to as ROM), programmable read-only memory (programmable ROM, referred to as PROM), erasable programmable read-only memory (erasable PROM, referred to as EPROM) , Electrically Erasable Programmable Read-Only Memory (electrically EPROM, referred to as EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous Dynamic random access memory
  • SDRAM synchronous Dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM Synchronously connect dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the above-mentioned embodiments may be implemented in whole or in part by software, hardware, firmware or other arbitrary combinations.
  • the above-described embodiments may be implemented in whole or in part in the form of computer program products.
  • the computer program product comprises one or more computer instructions or computer programs.
  • the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Wired or wireless transmission to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed methods, devices and systems can be implemented in other ways.
  • the device embodiments described above are only illustrative; for example, the division of the units is only a logical function division, and there may be other division methods in actual implementation; for example, multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware, or in the form of hardware plus software functional units.
  • the above-mentioned integrated units implemented in the form of software functional units may be stored in a computer-readable storage medium.
  • the above-mentioned software functional units are stored in a storage medium, and include several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) to execute some steps of the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种PSFCH功率确定方法及装置、计算机可读存储介质、终端设备,PSFCH功率确定方法包括:确定各个PSFCH的优先级;至少根据各个优先级的PSFCH所占的资源块的第一总数确定每个PSFCH资源的功率。本发明提供在PSFCH承载更多信息时为PSFCH进行功率分配的解决方案。

Description

PSFCH功率确定方法及装置、计算机可读存储介质、终端设备
本申请要求2021年9月10日提交中国专利局、申请号为202111064474.9、发明名称为“PSFCH功率确定方法及装置、计算机可读存储介质、终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种PSFCH功率确定方法及装置、计算机可读存储介质、终端设备。
背景技术
现有侧边链路通信(Sidelink)的物理直接链路反馈信道(Physical Sidelink Feedback Channel,PSFCH)的主要功能是承载物理直接链路共享信道(Pysical Sidelink Share Channel,PSSCH)对应的混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)确认(Acknowledge,ACK)信息,且目前仅支持1比特。
未来有可能会对PSFCH承载的信息做增强,例如承载的信息比特数会更多,承载的内容也会更加多样化,例如,可以承载抢占(Preemption)或者信道状态信息(Channel State Information,CSI)等信息。
但是,对PSFCH承载的信息做增强意味着需要将现有PSFCH所占的资源块(Resource Block,RB)数目增加至多个,这会对PSFCH的功率分配方案产生影响。
发明内容
本发明提供一种PSFCH功率确定方法及装置,提供在PSFCH承载更多信息时为PSFCH进行功率分配的解决方案。
为解决上述技术问题,本发明实施例提供一种PSFCH功率确定方法,PSFCH功率确定方法包括:确定各个PSFCH的优先级;至少根据各个优先级的PSFCH所占的资源块的第一总数确定每个PSFCH资源的功率。
可选的,所述确定各个PSFCH的优先级包括:确定每个PSFCH资源所承载的PSSCH的优先级的最大值,以作为所述PSFCH资源的优先级。
可选的,所述至少根据各个优先级的PSFCH所占的资源块的第一总数确定每个PSFCH资源的功率包括:如果获取到高层参数,则利用所述高层参数计算单个PSFCH资源的功率;计算所述单个PSFCH资源的功率与所述第一总数在log域的数值之和,以作为第一功率;根据被调度传输的PSFCH的总数与能够同时发送PSFCH的上限值的关系,以及调度传输的PSFCH的功率与所述第一功率之间的关系确定每个PSFCH资源的功率。
可选的,所述高层参数包括第一高层参数和第二高层参数,利用以下公式计算单个PSFCH资源的功率包括:P PSFCH,k=P O,PSFCH+10log 10(2 μ×M k)+α PSFCH×PL,其中,P PSFCH,k表示索引为k的PSFCH资源的功率,P O,PSFCH表示所述第一高层参数的值,α PSFCH表示所述第二高层参数的值,μ表示子载波间隔,M k表示索引为k的PSFCH资源所占的资源块的数量,PL表示路损。
可选的,采用以下公式确定每个PSFCH资源的功率:
如果N _sch,Tx,psfch<N _max,psfch,并且满足
Figure PCTCN2021142784-appb-000001
则N Tx,psfch=N _sch,Tx,psfch,P PSFCH,k(i)=P PSFCH,k
如果N _sch,Tx,psfch<N _max,psfch,并且不满足
Figure PCTCN2021142784-appb-000002
则选择数量为N Tx,psfch的PSFCH,并确定优先级为i的索引为k的PSFCH资源的功率P PSFCH,k(i)为P PSFCH,k(i)=min(P CMAX-10log 10(N Tx,psfch),P PSFCH,k),选择的N Tx,psfch满足
Figure PCTCN2021142784-appb-000003
如果N _sch,Tx,psfch>N _max,psfch,则自主选择数量为N _max,psfch的PSFCH,在按照优先级升序的次序满足
Figure PCTCN2021142784-appb-000004
时,确定N Tx,psfch=N _sch,Tx,psfch,P PSFCH,k(i)=P PSFCH,k
如果N _sch,Tx,psfch>N _max,psfch,则自主选择数量为N _max,psfch的PSFCH,在按照优先级升序的次序不满足
Figure PCTCN2021142784-appb-000005
时,则选择数量为N Tx,psfch的PSFCH,并确定优先级为i的索引为k的PSFCH资源的功率P PSFCH,k(i)为P PSFCH,k(i)=min(P CMAX-10log 10(N Tx,psfch),P PSFCH,k),选择的N Tx,psfch满足
Figure PCTCN2021142784-appb-000006
其中,N _sch,Tx,psfch表示所述被调度传输的PSFCH的总数,N _max,psfch表示所述能够同时发送PSFCH的上限值,P PSFCH,k表示索引为k的PSFCH资源的功率,
Figure PCTCN2021142784-appb-000007
表示所述第一总数,M i,k表示优先级为i的索引为k的PSFCH资源所占的资源块的数量,P CMAX表示N _sch,Tx,psfch个PSFCH的传输功率,N Tx,psfch表示实际传输的PSFCH的数量,P PSFCH,k(i)表示优先级为i的索引为k的PSFCH资源的功率,M i表示优先级为i 的PSFCH的数量。
可选的,如果无法获取到高层参数,则采用以下公式计算优先级为i的索引为k的PSFCH资源的功率:P PSFCH,k(i)=P CMAX-10log 10(N Tx,psfch),
其中,P CMAX表示N Tx,psfch个PSFCH的传输功率,N Tx,psfch表示实际传输的PSFCH的总数,N Tx,psfch是按照PSFCH的优先级的升序选择的。
可选的,每个PSFCH所占的资源块的数量为多个。
本发明实施例还公开了一种PSFCH功率确定装置,所述装置包括:优先级确定模块,用于确定各个PSFCH的优先级;功率确定模块,用于至少根据各个优先级的PSFCH所占的资源块的第一总数确定每个PSFCH资源的功率。
本发明实施例还公开了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器运行时执行所述PSFCH功率确定方法的步骤。
本发明实施例还公开了一种终端设备,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行所述PSFCH功率确定方法的步骤。
与现有技术相比,本发明实施例的技术方案具有以下有益效果:
本发明技术方案中,确定各个PSFCH的优先级;至少根据各个优先级的PSFCH所占的资源块的第一总数确定每个PSFCH资源的功率。由于PSFCH所占的资源块数量会对PSFCH资源的功率产生影响,因此在确定功率时,需要将各个优先级的PSFCH所占的资源块的第一总数作为考量因素进行考量,以保证PSFCH资源功率分配的准确性,进而保证PSFCH传输的可靠性。
进一步地,确定每个PSFCH资源所承载的PSSCH的优先级的最 大值,以作为所述PSFCH资源的优先级。本发明技术方案中,由于PSFCH资源承载的PSSCH的数量为多个,每个PSSCH具有优先级,那么可以从中选取最大值作为PSFCH的优先级,以保证具有较高优先级的PSSCH能够优先传输。
附图说明
图1是本发明实施例中一种PSFCH功率确定方法的流程图;
图2是本发明实施例中一种PSFCH功率确定方法的交互流程图;
图3是本发明实施例中一种PSFCH功率确定装置的结构示意图;
图4本发明实施例中一种PSFCH功率确定装置的硬件结构示意图。
具体实施方式
本申请实施例适用的通信系统包括但不限于长期演进(long term evolution,LTE)系统、第五代(5th-generation,5G)系统、NR系统,以及未来演进系统或者多种通信融合系统。其中,5G系统可以为非独立组网(non-standalone,NSA)的5G系统或独立组网(standalone,SA)的5G系统。本申请技术方案也适用于不同的网络架构,包括但不限于中继网络架构、双链接架构、Vehicle-to-Everything(车辆到任何物体的通信)架构等架构。
本申请主要涉及终端设备和终端设备之间的侧边链路通信。其中:
本申请实施例中的终端设备(terminal equipment)可以指各种形式的接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant, PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。终端设备也可以称为用户设备(User Equipment,UE)、终端等。
如背景技术中所述,对PSFCH承载的信息做增强意味着需要将现有PSFCH所占的资源块(Resource Block,RB)数目增加至多个,这会对PSFCH的功率分配方案产生影响。
本发明技术方案提供了一种PSFCH功率确定方法,由于PSFCH所占的资源块数量会对PSFCH资源的功率产生影响,因此在确定功率时,需要将各个优先级的PSFCH所占的资源块的第一总数作为考量因素进行考量,以保证PSFCH资源功率分配的准确性,进而保证PSFCH传输的可靠性。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
参见图1,本申请提供的方法包括:
步骤101:确定各个PSFCH的优先级;
步骤102:至少根据各个优先级的PSFCH所占的资源块的第一总数确定每个PSFCH资源的功率。
需要指出的是,本实施例中各个步骤的序号并不代表对各个步骤的执行顺序的限定。
可以理解的是,在具体实施中,所述PSFCH功率确定方法可以采用软件程序的方式实现,该软件程序运行于芯片或芯片模组内部集成的处理器中。
本实施例中,PSFCH功率确定方法可以用于侧边链路通信(sidelink)中的发送端设备,也即发送PSFCH的终端设备。
本实施例中,PSFCH的数量、PSFCH占用的资源、PSFCH承载的PSSCH以及各个PSSCH的优先级可以是由网络侧设备或者发送用户设备预先配置好的。具体地,PSFCH占用的资源块的数量为1个或者多个,PSFCH承载的PSSCH的数量为1个或者多个。
在步骤101的具体实施中,确定每个PSFCH资源所承载HARQ-ACK比特所对应的PSSCH中优先级的最大值,以作为所述PSFCH资源的优先级。
具体地,由于每个PSFCH资源所承载HARQ-ACK比特对应的PSSCH的数量有多个,每个PSSCH都具有对应的优先级(priority),那么PSFCH对应的优先级有多个。在这种情况下,可以选取多个PSSCH的优先级的最大值作为PSFCH的优先级。这样的话,能够保证PSFCH具有较高的优先级,从而在发送时能够优先发送出去,保证具有较高优先级的PSSCH发送的可靠性。
需要说明的是,在实际的应用场景中,也可以采用其他的方式确定PSFCH的优先级。例如可以选取每个PSFCH资源所承载HARQ-ACK比特对应的PSSCH的优先级的最小值,以作为PSFCH资源的优先级;或者,也可以随机选取每个PSFCH资源所承载HARQ-ACK比特对应的PSSCH的优先级的值,以作为PSFCH资源的优先级,本发明实施例对此不作限制。
在步骤102的具体实施中,根据网络侧是否配置高层参数,终端设备采用不同的方式确定PSFCH资源的功率。
当高层参数提供时,终端设备可以先利用高层参数计算单个PSFCH资源的功率;再计算单个PSFCH资源的功率与第一总数在log域的数值之和;根据被调度传输的PSFCH的总数与能够同时发送PSFCH的上限值的关系,以及上述和与调度传输的PSFCH的功率之间的关系确定每个PSFCH资源的功率。
具体地,高层参数包括第一高层参数dl-P0-PSFCH和第二高层参 数dl-Alpha-PSFCH。第一高层参数dl-P0-PSFCH能够指示参数P O,PSFCH的值,表示以到达基站的功率作为功率(p0)的配置准则,第二高层参数dl-Alpha-PSFCH能够指示参数α PSFCH的值。
在一个具体实施例中,利用以下公式计算单个PSFCH资源的功率包括:
P PSFCH,k=P O,PSFCH+10log 10(2 μ×M k)+α PSFCH×PL
(1)其中,P PSFCH,k表示索引为k的PSFCH资源的功率,P O,PSFCH表示所述第一高层参数的值,α PSFCH表示所述第二高层参数的值,μ表示子载波间隔和/或循环前缀(Cyclic Prefix,CP)类型,M k表示索引为k的PSFCH资源所占的资源块的数量,PL表示路损。
需要说明的是,第二高层参数dl-Alpha-PSFCH未提供时,α PSFCH的值为1。PL的取值可以参照通信标准协议条款7.1.1的记载来确定:PL=PL b,f,c(q d),以下两种情况例外,1.当UE被配置为监视物理下行控制信道(Physical Downlink Control Channel,PDCCH)以检测格式为0_0的下行控制信息(Downlink Control Information,DCI)时,参考信号(Reference Signal,RS)资源是UE用于确定由格式为0_0的DCI调度的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输功率的资源;2.当UE未配置为监视PDCCH以检测DCI格式0-0时,RS资源是对应于UE用于获取主信息块(Master Information Block,MIB)的同步信号(Synchronzation Signal,SS)/物理广播信道(Physical Broadcast Channel,PBCH)块的资源。
在本发明一个非限制性的实施例中,在提供高层参数dl-P0-PSFCH时,根据被调度传输的PSFCH的总数与能够同时发送PSFCH的上限值的关系,以及所述第一功率与调度传输的PSFCH的功率之间的关系可以分为以下四种情况,具体如下。
情况1、N _sch,Tx,psfch<N _max,psfch,并且满足
Figure PCTCN2021142784-appb-000008
那么N Tx,psfch=N _sch,Tx,psfch,P PSFCH,k(i)=P PSFCH,k
其中,M i,k表示索引为k优先级为i的PSFCH资源所占的资源块的数量。
也就是说,在被调度传输的PSFCH的总数小于UE能够同时发送PSFCH的上限值,且索引为k的PSFCH资源的功率与第一总数在Log域的和小于等于N _sch,Tx,psfch个PSFCH的传输功率时,优先级为i的索引为k的PSFCH资源的功率等于索引为k的PSFCH资源的功率。
需要说明的是,可以根据通信标准协议[8-1,TS38.101-1]确定N _sch,Tx,psfch个PSFCH传输功率P CMAX
情况2、N _sch,Tx,psfch<N _max,psfch,并且不满足
Figure PCTCN2021142784-appb-000009
那么UE选择数量为N Tx,psfch的PSFCH,并确定优先级为i的索引为k的PSFCH资源的功率P PSFCH,k(i)为P PSFCH,k(i)=min(P CMAX-10log 10(N Tx,psfch),P PSFCH,k),选择的N Tx,psfch满足
Figure PCTCN2021142784-appb-000010
本实施例中,UE按照通信标准协议条款16.2.4.2以优先级升序顺序自主确定N Tx,psfch个PSFCH传输,使得
Figure PCTCN2021142784-appb-000011
M i是优先级值为i的PSFCH的数量且K定义为满足
Figure PCTCN2021142784-appb-000012
的最大的N值,其中P CMAX是根据通信标准协议[8-1,TS38.101-1]确定的,用于传输所有分配了优先级值1,2...,K的PSFCH,如果有的话。
情况3、N _sch,Tx,psfch>N _max,psfch,则UE自主选择数量为N _max,psfch的PSFCH,在按照优先级升序的次序满足
Figure PCTCN2021142784-appb-000013
时,确定N Tx,psfch=N _sch,Tx,psfch,P PSFCH,k(i)=P PSFCH,k
情况4、N _sch,Tx,psfch>N _max,psfch,那么UE选择数量为N _max,psfch的PSFCH,在按照优先级升序的次序不满足
Figure PCTCN2021142784-appb-000014
时,则选择数量为N Tx,psfch的PSFCH,并确定优先级为i的索引为k的PSFCH资源的功率P PSFCH,k(i)为P PSFCH,k(i)=min(P CMAX-10log 10(N Tx,psfch),P PSFCH,k),选择的N Tx,psfch满足
Figure PCTCN2021142784-appb-000015
本实施例中,UE按照通信标准协议条款16.2.4.2以优先级升序顺序自主确定N Tx,psfch个PSFCH传输,使得
Figure PCTCN2021142784-appb-000016
M i是优先级值为i的PSFCH的数量且K定义为满足
Figure PCTCN2021142784-appb-000017
的最大的N值,其中P CMAX是根据通信标准协议[8-1,TS38.101-1]确定的,用于传输所有分配了优先级值1,2...,K的PSFCH,如果有的话。
在上述几种情况的功率计算公式中,
Figure PCTCN2021142784-appb-000018
中的参数N和M可以是由基站预先配置的。N可以表示PSFCH的优先级的等级数量,M可以表示PSFCH的索引的数量。
在本发明另一个非限制性的实施例中,在未提供高层参数时,直接根据N _sch,Tx,psfch个PSFCH的传输功率以及实际传输的PSFCH的数量在log域的值确定优先级为i的索引为k的PSFCH资源的功率。具体情况如下所述。
情况5、高层参数dl-P0-PSFCH未提供时,P PSFCH,k(i)=P CMAX-10log 10(N Tx,psfch)。
本实施例中,UE按照通信标准协议条款16.2.4.2以优先级升序顺序自主确定N Tx,psfch个PSFCH传输,使得N Tx,psfch≥1,其中P CMAX是根据通信标准协议[8-1,TS38.101-1]确定的N Tx,psfch个PSFCH传输功率。
请参照图2,图2示出了网络设备以及终端设备之间的一种示例性的交互流程。
在步骤201中,网络侧设备为用户配置高层参数并发送至终端设备1。此处的终端设备1是指需要发送PSFCH的设备。
具体地,高层参数具体可以是第一高层参数dl-P0-PSFCH,也可以是第二高层参数dl-Alpha-PSFCH。高层参数还可以包括PSFCH的数量、PSFCH占用的资源、PSFCH承载的PSSCH以及各个PSSCH的优先级等。
在步骤202中,终端设备1计算每个PSFCH资源的功率。
在步骤203中,终端设备1将PSFCH发送给终端设备2。此处 的最大设备2是指需要接收PSFCH的最终端设备。
具体地,终端设备1和终端设备2之间的通信方式为侧边链路通信。
关于本申请实施例的更多具体实现方式,请参照前述实施例,此处不再赘述。
请参照图3,图3示出了一种PSFCH功率确定装置,PSFCH功率确定装置30可以包括:
优先级确定模块301,用于确定各个PSFCH的优先级;
功率确定模块302,用于至少根据各个优先级的PSFCH所占的资源块的第一总数确定每个PSFCH资源的功率。
在具体实施中,上述PSFCH功率确定装置可以对应于终端设备中具有PSFCH功率确定功能的芯片,例如SOC(System-On-a-Chip,片上系统)、基带芯片等;或者对应于终端设备中包括具有PSFCH功率确定功能的芯片模组;或者对应于具有数据处理功能芯片的芯片模组,或者对应于终端设备。
关于所述PSFCH功率确定装置30的工作原理、工作方式的更多内容,可以参照图1至图2中的相关描述,这里不再赘述。
关于上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分 模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
请参照图4,本申请实施例还提供了一种PSFCH功率确定装置的硬件结构示意图。该装置包括处理器401、存储器402和收发器403。
处理器401可以是一个通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。处理器601也可以包括多个CPU,并且处理器401可以是一个单核(single-CPU)处理器,也可以是多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器402可以是ROM或可存储静态信息和指令的其他类型的静态存储设备、RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compactdisc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,本申请实施例对此不作任何限制。存储器402可以是独立存在(此时,存储器402可以位于该装置外,也可以位于该装置内),也可以和处理器401集成在一起。其中,存储器402中可以包含计算机程序代码。处理器 401用于执行存储器402中存储的计算机程序代码,从而实现本申请实施例提供的方法。
处理器401、存储器402和收发器403通过总线相连接。收发器403用于与其他设备或通信网络通信。可选的,收发器403可以包括发射机和接收机。收发器403中用于实现接收功能的器件可以视为接收机,接收机用于执行本申请实施例中的接收的步骤。收发器403中用于实现发送功能的器件可以视为发射机,发射机用于执行本申请实施例中的发送的步骤。
当图4所示的结构示意图用于示意上述实施例中所涉及的终端设备的结构时,处理器401用于对终端设备的动作进行控制管理,例如,处理器401用于支持终端设备执行图1中的步骤101和步骤102,或者图2中的步骤202和步骤203,和/或本申请实施例中所描述的其他过程中的终端设备执行的动作。处理器401可以通过收发器403与其他网络实体通信,例如,与上述网络设备和其他终端设备通信。存储器402用于存储终端设备的程序代码和数据。
当图4所示的结构示意图用于示意上述实施例中所涉及的网络设备的结构时,处理器401用于对网络设备的动作进行控制管理,例如,处理器401用于支持网络设备执行图2中的步骤201,和/或本申请实施例中所描述的其他过程中的网络设备执行的动作。处理器401可以通过收发器403与其他网络实体通信,例如,与上述终端设备通信。存储器402用于存储网络设备的程序代码和数据。
本发明实施例还公开了一种存储介质,所述存储介质为计算机可读存储介质,其上存储有计算机程序,所述计算机程序运行时可以执行图1或图2中所示的PSFCH功率确定方法的步骤。
本发明实施例还公开了一种终端设备,所述终端设备可以包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序。所述处理器运行所述计算机程序时可以执行图1或图2中所示的PSFCH功率确定方法的步骤。所述用户设备包括但不限于手机、 计算机、平板电脑等终端设备。
本发明实施例中的网络侧(network)可以是指为终端提供通信服务的通信网络,包含无线接入网的基站,还可以包含无线接入网的基站控制器,还可以包含核心网侧的设备。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/“,表示前后关联对象是一种“或”的关系。
本申请实施例中出现的“多个”是指两个或两个以上。
本申请实施例中出现的第一、第二等描述,仅作示意与区分描述对象之用,没有次序之分,也不表示本申请实施例中对设备个数的特别限定,不能构成对本申请实施例的任何限制。
本申请实施例中出现的“连接”是指直接连接或者间接连接等各种连接方式,以实现设备间的通信,本申请实施例对此不做任何限定。
应理解,本申请实施例中,所述处理器可以为中央处理单元(central processing unit,简称CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,简称DSP)、专用集成电路(application specific integrated circuit,简称ASIC)、现成可编程门阵列(field programmable gate array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,简称ROM)、可编程只读存储器(programmable ROM,简称PROM)、可擦除可编程只读存储器(erasable PROM,简称EPROM)、电可擦除可编程只读存储器(electrically EPROM,简称EEPROM)或闪存。易失性存储器 可以是随机存取存储器(random access memory,简称RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,简称RAM)可用,例如静态随机存取存储器(static RAM,简称SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,简称SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,简称DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,简称ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,简称SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,简称DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法、装置和系统,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的;例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式;例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的部分步骤。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (10)

  1. 一种PSFCH功率确定方法,其特征在于,包括:
    确定各个PSFCH的优先级;
    至少根据各个优先级的PSFCH所占的资源块的第一总数确定每个PSFCH资源的功率。
  2. 根据权利要求1所述的PSFCH功率确定方法,其特征在于,所述确定各个PSFCH的优先级包括:
    确定每个PSFCH资源所承载的PSSCH的优先级的最大值,以作为所述PSFCH资源的优先级。
  3. 根据权利要求1所述的PSFCH功率确定方法,其特征在于,所述至少根据各个优先级的PSFCH所占的资源块的第一总数确定每个PSFCH资源的功率包括:
    如果获取到高层参数,则利用所述高层参数计算单个PSFCH资源的功率;
    计算所述单个PSFCH资源的功率与所述第一总数在log域的数值之和,以作为第一功率;
    根据被调度传输的PSFCH的总数与能够同时发送PSFCH的上限值的关系,以及调度传输的PSFCH的功率与所述第一功率之间的关系确定每个PSFCH资源的功率。
  4. 根据权利要求3所述的PSFCH功率确定方法,其特征在于,所述高层参数包括第一高层参数和第二高层参数,利用以下公式计算单个PSFCH资源的功率包括:
    P PSFCH,k=P O,PSFCH+10 log 10(2 μ×M k)+α PSFCH×PL,
    其中,P PSFCH,k表示索引为k的PSFCH资源的功率,P O,PSFCH表示所述第一高层参数的值,α PSFCH表示所述第二高层参数的值,μ表示 子载波间隔,M k表示索引为k的PSFCH资源所占的资源块的数量,PL表示路损。
  5. 根据权利要求3所述的PSFCH功率确定方法,其特征在于,采用以下公式确定每个PSFCH资源的功率:
    如果N _sch,Tx,psfch<N _max,psfch,并且满足
    Figure PCTCN2021142784-appb-100001
    则N Tx,psfch=N _sch,Tx,psfch,P PSFCH,k(i)=P PSFCH,k
    如果N _sch,Tx,psfch<N _max,psfch,并且不满足
    Figure PCTCN2021142784-appb-100002
    则选择数量为N Tx,psfch的PSFCH,并确定优先级为i的索引为k的PSFCH资源的功率P PSFCH,k(i)为P PSFCH,k(i)=min(P CMAX-10 log 10(N Tx,psfch),P PSFCH,k),选择的N Tx,psfch满足
    Figure PCTCN2021142784-appb-100003
    如果N _sch,Tx,psfch>N _max,psfch,则自主选择数量为N _max,psfch的PSFCH,在按照优先级升序的次序满足
    Figure PCTCN2021142784-appb-100004
    时,确定N Tx,psfch=N _sch,Tx,psfch,P PSFCH,k(i)=P PSFCH,k
    如果N _sch,Tx,psfch>N _max,psfch,则自主选择数量为N _max,psfch的PSFCH,在按照优先级升序的次序不满足
    Figure PCTCN2021142784-appb-100005
    时,则选择数量为N Tx,psfch的PSFCH,并确定优先级为i的索引为k的PSFCH资源的功率P PSFCH,k(i)为P PSFCH,k(i)=min(P CMAX-10 log 10(N Tx,psfch),P PSFCH,k),选择的N Tx,psfch满足
    Figure PCTCN2021142784-appb-100006
    其中,N _sch,Tx,psfch表示所述被调度传输的PSFCH的总数,N _max,psfch表示所述能够同时发送PSFCH的上限值,P PSFCH,k表示索引为k的PSFCH资源的功率,
    Figure PCTCN2021142784-appb-100007
    表示所述第一总数,M i,k表示优先级为i的索引为k的PSFCH资源所占的资源块的数量,P CMAX表示N _sch,Tx,psfch个PSFCH的传输功率,N Tx,psfch表示实际传输的PSFCH的数量,P PSFCH,k(i)表示优先级为i的索引为k的PSFCH资源的功率,M i表示优先级为i的PSFCH的数量。
  6. 根据权利要求1所述的PSFCH功率确定方法,其特征在于,如果无法获取到高层参数,则采用以下公式计算优先级为i的索引为k的PSFCH资源的功率:P PSFCH,k(i)=P CMAX-10 log 10(N Tx,psfch),
    其中,P CMAX表示N Tx,psfch个PSFCH的传输功率,N Tx,psfch表示实际传输的PSFCH的总数,N Tx,psfch是按照PSFCH的优先级的升序选择的。
  7. 根据权利要求1至6任一项所述的PSFCH功率确定方法,其特征在于,每个PSFCH所占的资源块的数量为多个。
  8. 一种PSFCH功率确定装置,其特征在于,包括:
    优先级确定模块,用于确定各个PSFCH的优先级;
    功率确定模块,用于至少根据各个优先级的PSFCH所占的资源块的第一总数确定每个PSFCH资源的功率。
  9. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器运行时执行权利要求1至7中任一项所述PSFCH功率确定方法的步骤。
  10. 一种终端设备,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,其特征在于,所述处理器运行所述计算机程序时执行权利要求1至7中任一项所述PSFCH功率确定方法的步骤。
PCT/CN2021/142784 2021-09-10 2021-12-30 Psfch功率确定方法及装置、计算机可读存储介质、终端设备 WO2023035502A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111064474.9 2021-09-10
CN202111064474.9A CN115802492A (zh) 2021-09-10 2021-09-10 Psfch功率确定方法及装置、计算机可读存储介质、终端设备

Publications (1)

Publication Number Publication Date
WO2023035502A1 true WO2023035502A1 (zh) 2023-03-16

Family

ID=85417233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142784 WO2023035502A1 (zh) 2021-09-10 2021-12-30 Psfch功率确定方法及装置、计算机可读存储介质、终端设备

Country Status (2)

Country Link
CN (1) CN115802492A (zh)
WO (1) WO2023035502A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021067876A1 (en) * 2019-10-04 2021-04-08 Qualcomm Incorporated Physical sidelink feedback channel, psfch, negotiation
CN112752294A (zh) * 2019-10-31 2021-05-04 华硕电脑股份有限公司 无线通信系统中传送装置间侧链路报告的方法和设备
CN112997565A (zh) * 2018-09-25 2021-06-18 Idac控股公司 用于单播和/或多播链路建立和维持的l2过程

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112997565A (zh) * 2018-09-25 2021-06-18 Idac控股公司 用于单播和/或多播链路建立和维持的l2过程
WO2021067876A1 (en) * 2019-10-04 2021-04-08 Qualcomm Incorporated Physical sidelink feedback channel, psfch, negotiation
CN112752294A (zh) * 2019-10-31 2021-05-04 华硕电脑股份有限公司 无线通信系统中传送装置间侧链路报告的方法和设备

Also Published As

Publication number Publication date
CN115802492A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
JP6526701B2 (ja) ワイヤレス通信におけるスケジューリング割当てのコンテンツおよび送信
WO2019096060A1 (zh) 上行控制信息传输方法和设备
RU2596151C2 (ru) Разработка временных характеристик планирования для системы tdd
US10904903B2 (en) Scheduling UEs with mixed TTI length
JP2015502687A (ja) 無線通信における肯定応答タイミングの選択
JP2022551321A (ja) 通信方法及び装置
JP2021516458A (ja) アップリンク制御情報の伝送方法及び装置
KR102422609B1 (ko) 연속적인 자원 할당의 표시
US20230014182A1 (en) Harq information transmission method and apparatus
JP2016530781A (ja) キャリアアグリゲーションベースの無線通信システムにおける通信方法(communication method in wireless communication system on basis of carrier aggregation)
WO2020143611A1 (zh) 数据传输方法、网络侧设备及终端
TWI759507B (zh) 回饋應答訊息的傳輸方法、裝置及系統
WO2019028916A1 (zh) 数据传输方法和装置
WO2021012997A1 (zh) 一种信息传输方法、装置及通信设备
US20220232541A1 (en) Wireless communication method, terminal device, and network device
US11304202B2 (en) Method for transmitting uplink control information, and related product
WO2020151585A1 (zh) 数据传输的方法和装置
WO2020143529A1 (zh) 一种调度处理方法、装置及设备
WO2021056583A1 (zh) 一种上行传输方法及装置
KR20220124716A (ko) 데이터 전송 방법, 단말 장치 및 저장 매체
WO2023035502A1 (zh) Psfch功率确定方法及装置、计算机可读存储介质、终端设备
CN112640344B (zh) 用于nr-u上的自包含突发的混合harq反馈方案
WO2020156002A1 (zh) 通信方法及通信装置
WO2021056595A1 (zh) 一种通信方法及装置
WO2020088517A1 (zh) 数据传输方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21956671

Country of ref document: EP

Kind code of ref document: A1