WO2023134404A1 - 一种聚碳酸酯组合物及其制备方法和应用 - Google Patents

一种聚碳酸酯组合物及其制备方法和应用 Download PDF

Info

Publication number
WO2023134404A1
WO2023134404A1 PCT/CN2022/140186 CN2022140186W WO2023134404A1 WO 2023134404 A1 WO2023134404 A1 WO 2023134404A1 CN 2022140186 W CN2022140186 W CN 2022140186W WO 2023134404 A1 WO2023134404 A1 WO 2023134404A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate
polycarbonate composition
micron
composition according
parts
Prior art date
Application number
PCT/CN2022/140186
Other languages
English (en)
French (fr)
Inventor
杨燕
李明昆
刘贤文
彭民乐
吴俊�
丁超
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Publication of WO2023134404A1 publication Critical patent/WO2023134404A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic

Definitions

  • the invention belongs to the technical field of engineering plastics, and in particular relates to a polycarbonate composition and a preparation method and application thereof.
  • PC Polycarbonate
  • rare earth oxide tin oxide has been used in polycarbonate products due to its excellent photoelectric performance and good infrared blocking effect, with a blocking rate of about 90% for infrared.
  • an existing patent discloses a method for preparing a high-transmittance infrared-blocking polycarbonate color masterbatch.
  • the color masterbatch uses indium-cesium co-doped tin oxide powder as an infrared-blocking material, and at the same time cooperates with a lubricant to enhance the polycarbonate color.
  • the infrared blocking ability of the product has high cost, poor stability, poor weather resistance, and large color difference during the extrusion process.
  • the substance is harmful to the human body and the environment.
  • the purpose of the present invention is to overcome the defects or deficiencies of high cost, poor stability, poor weather resistance and harmful to human body and environment in the infrared blocking materials used in polycarbonate products in the prior art, and provide a polycarbonate composition.
  • the polycarbonate composition provided by the invention uses specific porous ceramics as the infrared blocking functional material, which not only has good infrared blocking performance, good heat insulation effect, low cost, good stability, and environmental protection; it also has good weather resistance performance.
  • Another object of the present invention is to provide a preparation method of the above polycarbonate composition.
  • Another object of the present invention is to provide the application of the above-mentioned polycarbonate composition in the preparation of solar panels, automobiles, household appliances, and IT products.
  • a polycarbonate composition comprising the following components in parts by weight:
  • the oil absorption value of the micron-scale porous ceramics after being ablated at 600° C. for 40 minutes is no higher than 30 g/100 g.
  • nano-ceramic materials have good light transmittance and infrared barrier rate, good stability, non-toxic and environmental protection, and are a better infrared barrier material.
  • the nano-ceramic material cannot be evenly distributed in the matrix, and there is a problem of low heat insulation rate; The reflective ability is weak, easy to fade or poor weather resistance.
  • micron-sized porous ceramics with a specific oil absorption value not only has better dispersibility, but also due to the existence of pores and a small oil absorption value, it can not only weaken the heat radiation during heat transfer, so that the ceramic material has a lower It has high thermal conductivity and small specific heat, and has good reflection and scattering effect on infrared light, so as to effectively block infrared light; in addition, low oil absorption value can also endow polycarbonate composition with better weather resistance performance, not easy to fade.
  • the polycarbonate composition provided by the present invention uses specific porous ceramics as the infrared barrier functional material, which not only has good infrared barrier performance, good heat insulation effect, low cost, good stability, and environmental protection; it also has better Weather resistance.
  • the oil absorption value is determined according to the following procedure: add dibutyl phthalate (DBP, di-n-butyl phthalate) dropwise to 100g of ceramic powder (ceramic powder after ablation at 600°C for 40 minutes), And mix with a spatula at any time.
  • DBP dibutyl phthalate
  • ceramic powder ceramic powder after ablation at 600°C for 40 minutes
  • DBP dibutyl phthalate
  • Polycarbonates conventional in the art can be used in the present invention.
  • the polycarbonate composition is bisphenol A polycarbonate.
  • the polycarbonate has a weight average molecular weight of 10,000-40,000.
  • the specific surface area of the micron-scale porous ceramic is 30-100 m 2 /g. Under the specific surface area, the infrared blocking performance of the polycarbonate composition can be further improved without affecting the weather resistance performance.
  • Specific surface area test method GB_T 39713-2020 fine ceramic powder specific surface area test method gas adsorption BET method.
  • the micron-scale porous ceramic has an oil absorption value of 8-30 g/100 g after being ablated at 600° C. for 40 minutes.
  • the average particle diameter of the micron-scale porous ceramic is 2-15 ⁇ m.
  • the average particle size test method adopts: ISO 13320-2009 Particle Size Measurement-Laser Diffraction Method Test.
  • the other additives are one or more of stabilizers, flame retardants, anti-dripping agents, lubricants, fillers or antibacterial agents; the parts by weight of the other additives are 0 to 55 parts; more preferably 5.6 to 52.4 parts.
  • the stabilizer is one or more of hindered phenolic antioxidants, hindered amine antioxidants, and phosphate antioxidants; the parts by weight of the stabilizer are 0.1 to 0.4 parts .
  • the hindered phenolic antioxidant is alkylated monohydric phenol or polyphenol, diene alkylated polyphenol, butylated p-cresol, alkylated hydroquinone, azacyclic polyphenol, One or more of alkylene-bisphenol or benzyl compounds.
  • the hindered amine antioxidant is tetrakis-[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid]pentaerythritol ester, ⁇ -(3,5-di-tert Butyl-4-hydroxyphenyl) octadecyl propionate, ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl) methyl propionate, 1,3,5-(3,5 -Di-tert-butyl-4-hydroxyphenyl)-s-triazine-2,4,6(1H,3H,5H)trione or triethylene glycol ether-bis(3-tert-butyl-4-hydroxy- One or more of methyl phenyl) propionate.
  • the phosphate antioxidant is one or more of triphenyl phosphite, dimethylphenylphosphonate, trimethyl phosphate or organic phosphite.
  • the flame retardant is one or more of phosphoric acid ester flame retardants, sulfonate flame retardants, silicon flame retardants or brominated polycarbon; the weight of the flame retardant The number of parts is 0.1 to 15 parts.
  • the phosphate flame retardant is tris(2,4-di-tert-butylphenyl)phosphite, tris-(2,6-dimethylphenyl)phosphite, didecyl Octyl pentaerythritol bisphosphite, 2,6-di-tert-butylphenol, 1,3,5-trimethyl-2,4,6-(3,5-di-tert-butyl-4-hydroxybenzyl base) phenol, bis(2,4-di-tert-butyl) pentaerythritol diphosphite, triethylene glycol bis[ethylene glycol bis-tert-butyl-4-hydroxy-5-methylphenyl)propane Ester] or one or more of triethylene glycol bis-beta alcohol bis-tert-butyl-4-hydroxyl-5-methylphenyl) propionate or tri-nonylphenyl phosphite.
  • the sulfonate flame retardant is one or more of perfluorobutane sulfonate, diphenyl sulfone sulfonate or benzene sulfonate.
  • the silicon-based flame retardant is one or more of polysiloxane, oligomeric silsesquioxane or phenyl silicone oil.
  • the polycarbon bromide is one or more of potassium perfluorobutanesulfonate, potassium diphenylsulfonesulfonate or sodium benzenesulfonate.
  • the anti-dripping agent is polytetrafluoroethylene-based anti-dripping agent; the weight part of the anti-dripping agent is 0.2-1 part.
  • the lubricant is one or more of PETS, silicone or olefin wax; the weight part of the lubricant is 0.1-1 part.
  • the filler is one or more of talc powder, mica powder, kaolin, wollastonite or silicon dioxide; the weight part of the filler is 5-30 parts.
  • the antibacterial agent is silver ion antibacterial agent, anilide antibacterial agent, imidazole antibacterial agent, thiazole antibacterial agent, isothiazolone derivative antibacterial agent, quaternary ammonium salt antibacterial agent, biquat antibacterial agent
  • silver ion antibacterial agent anilide antibacterial agent, imidazole antibacterial agent, thiazole antibacterial agent, isothiazolone derivative antibacterial agent, quaternary ammonium salt antibacterial agent, biquat antibacterial agent
  • One or more of antibacterial agents or phenolic antibacterial agents are 0.1 to 5 parts.
  • the preparation method of the above-mentioned polycarbonate composition comprises the following steps: uniformly mixing each component to obtain a mixture, then melting and extruding the mixture, and granulating to obtain the polycarbonate composition.
  • the preparation method of the polycarbonate composition comprises the following steps: polycarbonate, micron-scale porous ceramics and other additives (if any) are mixed in a high mixer; then in a twin-screw extruder
  • the polycarbonate composition is obtained by melt extrusion and granulation; the aspect ratio of the twin-screw extruder is 30:1-75:1, the screw temperature is 270-290° C., and the rotation speed is 300-600 rpm.
  • the present invention has the following beneficial effects:
  • the polycarbonate composition provided by the invention uses specific micron-scale porous ceramics as the infrared blocking functional material, which not only has good infrared blocking performance, good heat insulation effect, low cost, good stability, and environmental protection; it also has good weather resistance performance.
  • Polycarbonate 1 FN2200, Idemitsu, bisphenol A polycarbonate, with a weight average molecular weight of 28,000;
  • Polycarbonate 2 FN1500, Idemitsu, bisphenol A polycarbonate, with a weight average molecular weight of 10,000;
  • Polycarbonate 3 1300 03NP, LG Chem, bisphenol A polycarbonate, weight average molecular weight 40000;
  • Polycarbonate 4 FB2560, Saber Chemical, bisphenol A polycarbonate, with a weight average molecular weight of 50,000;
  • Polycarbonate 5 1300 10NP, LG Chem, bisphenol A polycarbonate, weight average molecular weight 29000;
  • Micron-scale porous ceramics 1 Hulk bioceramic powder, Chengjia Textile Co., Ltd., after ablation at 600°C for 40 minutes, the oil absorption value is 15g/100g, the average particle size is 4 ⁇ m, and the specific surface area is 50m 2 /g;
  • Micron-sized porous ceramics 2 antimony oxide ceramics, Xiamen Nano Technology, after ablation at 600°C for 40 minutes, the oil absorption value is 10g/100g, the average particle size is 2 ⁇ m, and the specific surface area is 40m 2 /g.
  • Micron-sized porous ceramics 3 Al 2 O 3 ceramic powder, Donghai Fucai mineral products, after ablation at 600°C for 40 minutes, the oil absorption value is 30g/100g, the average particle size is 4 ⁇ m, and the specific surface area is 40m 2 /g;
  • Micron-scale porous ceramic 4 XZ-TC56, Hefei Xiangzheng Chemical Technology Co., Ltd., after ablation at 600°C for 40 minutes, the oil absorption value is 30g/100g, the average particle size is 2 ⁇ m, and the specific surface area is 43m 2 /g;
  • Micron-sized porous ceramics 5 Al 2 O 3 ceramic powder, Shenzhen Changrui, after ablation at 600°C for 40 minutes, the oil absorption value is 30g/100g, the average particle size is 15 ⁇ m, and the specific surface area is 30m 2 /g;
  • Micron-scale porous ceramic 6 xz-tc01-3, Hefei Xiangzheng Chemical Technology Co., Ltd., after ablation at 600°C for 40 minutes, the oil absorption value is 12g/100g, the average particle size is 0.8 ⁇ m, and the specific surface area is 38m 2 /g ;
  • Micron-scale porous ceramics 7 Ceramic microbeads, Saint Laite, after ablation at 600°C for 40 minutes, the oil absorption value is 30g/100g, the average particle size is 4 ⁇ m, and the specific surface area is 30m 2 /g;
  • Micron-scale porous ceramics 8 Ceramic powder, Jiangsu Lianrui New Materials Co., Ltd., after ablation at 600°C for 40 minutes, the oil absorption value is 12g/100g, the average particle size is 2 ⁇ m, and the specific surface area is 100m 2 /g;
  • Micron-scale porous ceramics 9 T3Y-020AP, Shandong National Porcelain material, after ablation at 600°C for 40 minutes, the oil absorption value is 14g/100g, the average particle size is 2 ⁇ m, and the specific surface area is 10m 2 /g;
  • Micron-scale porous ceramics 10 nano-BAO-05, Xinyuan Chemical Co., Ltd., after ablation at 600°C for 40 minutes, the oil absorption value is 70g/100g, the average particle size is 4 average particles, and the specific surface area is 50m 2 /g;
  • Micron-sized ceramics aluminum silicate ceramics, Lingshou County Jianshi Mineral Powder Factory, after ablation at 600°C for 40 minutes, the oil absorption value is 8g/100g, the average particle size is 4 ⁇ m, and the specific surface area is 35m 2 /g;
  • Nanoscale porous ceramics XZ-ZR601, Hefei Xiangzheng Chemical Technology Co., Ltd., after ablation at 600°C for 40 minutes, the oil absorption value is 15g/100g, the average particle size is 300nm, and the specific surface area is 36m 2 /g;
  • additives stabilizer, UV-234, commercially available.
  • Infrared ray blocking test (infrared ray blocking rate, %): the sample is made into a sheet with a thickness of 1mm, and the 780-1650nm infrared light wavelength range is scanned with an I, ambda950 type ultraviolet-visible infrared spectrophotometer, and its infrared ray blocking rate is tested.
  • Heat insulation test (temperature difference ⁇ T, °C): make the sample into a sample of 100mm*100mm*2mm, place it in a thermal aging box, adopt the condition of 100°C, test it after 24 hours, and calculate the temperature of the sample inside and outside the xenon lamp aging box Poor, recorded as ⁇ T, the smaller the ⁇ T, the better the heat insulation performance.
  • the sample is made into a sample of 100mm*100mm*2mm, placed in a xenon lamp aging box, under the same conditions as ASTM 4892-2-2014 in the heat insulation test, the irradiation intensity is 0.51W/m 2 , the blackboard temperature is 65°C, and the light is 102min /18min dark, after aging for 1000 hours, test the color difference ⁇ E.
  • L means lightness
  • a means the difference between red and green
  • b means the difference between blue and yellow
  • ⁇ L, ⁇ a, ⁇ b correspond to the difference of the index (L, a, b) before and after aging, respectively.
  • This embodiment provides a series of polycarbonate compositions, and the dosage of each component in the formula is shown in Table 1.
  • Example 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Polycarbonate 1 100 100 100 / / / / 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
  • This comparative example provides a series of polycarbonate compositions, the formulations of which are shown in Table 2.
  • Comparative example 1 Comparative example 2 Comparative example 3 Comparative example 4 Polycarbonate 1 100 100 100 100 100 100 100 100 100 100 Micron Porous Ceramics10 / 10 / / Micron ceramic (non-porous) / / 10 / nanoporous ceramics / / / 10 Other additives 0.3 0.3 0.3 0.3 0.3
  • Example 1 95% 5 0.5
  • Example 2 94% 6
  • Example 3 95% 5
  • Example 4 91% 8
  • Example 5 89% 8
  • Example 6 93% 6 2.5
  • Example 7 92% 7 2.9
  • Example 8 89% 8 3.0
  • Example 9 89% 8 3.2
  • Example 10 88% 9 3.0
  • Example 11 86% 10 3.3
  • Example 12 80% 11 3.2
  • Example 13 93% 5
  • Example 14 92% 5 3.5
  • Example 15 90% 12 3.7 Comparative example 1 9% 20 3.9 Comparative example 2 15% 15 3.7 Comparative example 3 20% twenty two 4.5 Comparative example 4 twenty four% twenty one 4.8
  • the polycarbonate composition provided by each embodiment of the present invention has a blocking rate of 80% or more for infrared rays, and has a relatively high infrared blocking effect; after the heat insulation test, the temperature difference is not higher than 12 ° C, The heat insulation effect is good; and after the xenon lamp weathering aging treatment, the color difference is not higher than 3.7, has good weather resistance, and is not easy to fade.
  • the infrared blocking rate is low, the heat insulation effect is poor, and the color difference is large.
  • the oil absorption value of the micron-scale porous ceramics added in Comparative Example 2 is too high, and there are also the problems of good infrared rejection rate, poor heat insulation performance, and large color difference; in Comparative Example 3, non-porous micron-scale ceramics are added, and the infrared rejection rate and insulation The improvement in thermal performance is small, and the color difference of xenon lamp aging is further increased (compared to Comparative Example 1). In Comparative Example 4, nano-scale ceramics are added, and the infrared blocking rate is not high, the heat insulation is not good, and the xenon lamp aging performance is very poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种聚碳酸酯组合物及其制备方法和应用。该聚碳酸酯组合物包括聚碳酸酯、微米级多孔陶瓷等组分。该聚碳酸酯组合物以特定的多孔陶瓷作为红外阻隔功能性材料,不仅具有较好的红外阻隔性能、隔热效果好,成本低,稳定性佳,环保;还具有较好的耐候性能。

Description

一种聚碳酸酯组合物及其制备方法和应用 技术领域
本发明属于工程塑料技术领域,具体涉及一种聚碳酸酯组合物及其制备方法和应用。
背景技术
聚碳酸酯(PC)由于具有较高的机械强度和较好的耐冲击韧性等性能,广泛应用于阳光板、汽车、家电、IT产品等领域中。而随着社会对节能和环保要求的不断提高,对这些领域的产品提出了更高的隔热要求。并且由于普通玻璃对太阳光的透过不具有选择性,在有充足可见光透过的同时,太阳光中红外光具有明显的热效应,容易导致环境温度升高特别是导致室内温度升高。延长降温电器的使用时间虽然可以降低室内温度,但也大大加剧了能源负担。
近年,稀土氧化物类氧化锡由于其优异的光电性能,红外阻隔效果好,对红外的阻隔率约90%,被用于聚碳酸酯产品中。例如已有专利公开了一种高透红外阻隔聚碳酸酯色母粒的制备方法,该色母粒以铟铯共掺杂氧化锡粉体作为红外阻隔材料,同时配合润滑剂来提升聚碳酸酯产品的红外阻隔能力。但该方式成本高,稳定性差,存在耐候性能差,且挤出加工过程色差大,此外该物质对人体和环境有害。
因此,开发一种具有较好红外阻隔效果,且成本低、稳定性佳、环保的聚碳酸酯产品具有重要的研究意义。
发明内容
本发明的目的在于克服现有技术中的聚碳酸酯产品所用的红外阻隔材料存在成本高,稳定性差,耐候性能差且对人体和环境有害的缺陷或不足,提供一种聚碳酸酯组合物。本发明提供的聚碳酸酯组合物以特定的多孔陶瓷作为红外阻隔功能性材料,不仅具有较好的红外阻隔性能、隔热效果好,成本低,稳定性佳,环保;还具有较好的耐候性能。
本发明的另一目的在于提供上述聚碳酸酯组合物的制备方法。
本发明的另一目的在于提供上述聚碳酸酯组合物在制备阳光板、汽车、家用电器、IT产品中的应用。
为实现上述发明目的,本发明采用如下技术方案:
一种聚碳酸酯组合物,包括如下重量份数的组分:
聚碳酸酯  100份,
微米级多孔陶瓷  5~20份,
所述微米级多孔陶瓷经600℃烧蚀40分钟后的吸油值不高于30g/100g。
研究发现,纳米陶瓷材料具有较好的良好的透光率和红外线阻隔率,且稳定性好,无毒环保,是一种较佳的红外阻隔材料。但将其添加至聚碳酸酯中时,由于分散性问题,纳米陶瓷材料无法均匀分布在基体中,存在隔热率低的问题;或者分散良好,隔热率较高的情况下,由于对光的反射能力弱,容易褪色或耐候性差。
经进一步研究发现,选用特定吸油值的微米级多孔陶瓷,不仅具有较好的分散性,且由于多孔的存在及吸油值较小,不仅可削弱热量传递时热辐射,从而使陶瓷材料具有较低的热传导率及较小的比热,还对红外光具有较好的反射与散射效果,从而达到对红外线进行有效阻隔;另外,较低的吸油值还可赋予聚碳酸酯组合物较好的耐候性能,不易褪色。
即本发明提供的聚碳酸酯组合物以特定的多孔陶瓷作为红外阻隔功能性材料,不仅具有较好的红外阻隔性能、隔热效果好,成本低,稳定性佳,环保;还具有较好的耐候性能。
吸油值按照如下过程测定得到:在100g的陶瓷粉(经600℃烧蚀40分钟后的陶瓷粉)中,把邻苯二甲酸二丁酯(DBP,di-n-butyl phthalate)逐滴加入,并随时用刮刀混合,刚开始加入DBP时,仍处在松散状态,随着DBP的连续加入,可使全部粉体粘结在一起成球形,若继续再加DBP,体系就会变稀,此时所用的DBP量即为粉体的吸油量。此操作过程要求在4min~6min内完成。
本领域常规的聚碳酸酯均可用于本发明中。
优选地,所述聚碳酸酯组合物为双酚A型聚碳酸酯。
优选地,所述聚碳酸酯的重均分子量为10000~40000。
优选地,所述微米级多孔陶瓷的比表面积为30~100m 2/g。在该比表面积下,可进一步提升聚碳酸酯组合物的红外线阻隔性能,且不影响耐候性能。
比表面积测试方法:GB_T 39713-2020精细陶瓷粉体比表面积试验方法气 体吸附BET法。
优选地,所述微米级多孔陶瓷经600℃烧蚀40分钟后的吸油值为8~30g/100g。
优选地,所述微米级多孔陶瓷的平均粒径为2~15μm。
平均粒径测试方法,采用:ISO 13320-2009粒度测定-激光衍射法测试。
本领域其它常规的助剂也可以添加至本发明的聚碳酸酯组合物中,以赋予或提升对应的性能。
更为优选地,所述其它助剂为稳定剂、阻燃剂、抗滴落剂、润滑剂、填料或抗菌剂的一种或几种;所述其它助剂的重量份数为0~55份;进一步优选为5.6~52.4份。
进一步优选地,所述稳定剂为受阻酚类抗氧剂、受阻胺类抗氧剂、磷酸酯类抗氧剂中的一种或几种;所述稳定剂的重量份数为0.1~0.4份。
更进一步优选地,所述受阻酚类抗氧剂为烷基化一元酚或者多元酚、二烯烷基化多元酚、丁基化对甲酚、烷基化氢醌、氮杂环多酚、亚烷基-双酚或苄基化合物中的一种或几种。
更进一步优选地,所述受阻胺类抗氧剂为四-[3-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇脂、β-(3,5-二叔丁基-4-羟基苯基)丙酸十八碳醇脂、β-(3,5-二叔丁基-4-羟基苯基)丙酸甲脂、1,3,5-(3,5-二叔丁基-4-羟基苯基)均三嗪-2,4,6(1H,3H,5H)三酮或和三乙二醇醚-二(3-叔丁基-4-羟基-甲基苯基)丙酸酯中的一种或几种。
更进一步优选地,所述磷酸酯类抗氧剂为亚磷酸三苯酯、二甲基苯膦酸酯,磷酸三甲酯或有机亚磷酸酯中的一种或几种。
进一步优选地,所述阻燃剂为磷酸酯类阻燃剂、磺酸盐类阻燃剂、硅类阻燃剂或溴化聚碳中的一种或几种;所述阻燃剂的重量份数为0.1~15份。
更进一步优选地,所述磷酸酯类阻燃剂为三(2,4-二叔丁基苯基)亚磷酸酯、亚磷酸三-(2,6-二甲基苯基)酯、双十八烷基季戊四醇双亚磷酸酯、2,6-二叔丁基苯酚、1,3,5-三甲基-2,4,6-(3,5-二叔丁基-4-羟基苯甲基)苯酚、双(2,4-二叔丁基)季戊四醇二亚磷酸酯、二缩三乙二醇双[乙二醇双亚叔丁基-4-羟基-5-甲基苯基)丙酸酯]或三甘醇双β醇双β双叔丁基-4-羟基-5-甲基苯基)丙酸酯或亚磷酸三-壬基苯基酯中的一种或几种。
更进一步优选地,所述磺酸盐类阻燃剂为全氟丁基磺酸盐、二苯砜磺酸盐或苯磺酸盐中的一种或几种。
更进一步优选地,所述硅类阻燃剂为聚硅氧烷、低聚倍半硅氧烷或苯基硅油中的一种或几种。
更进一步优选地,所述溴化聚碳为全氟丁基磺酸钾、二苯砜磺酸钾或苯磺酸钠中的一种或几种。
进一步优选地,所述抗滴落剂为聚四氟乙烯类抗滴落剂;所述抗滴落剂的重量份数为0.2~1份。
进一步优选地,所述润滑剂为PETS、硅酮或烯烃蜡中的一种或几种;所述润滑剂的重量份数为0.1~1份。
进一步优选地,所述填料为滑石粉、云母粉、高岭土、硅灰石或二氧化硅中的一种或几种;所述填料的重量份数为5~30份。
进一步优选地,所述抗菌剂为银离子类抗菌剂、酰基苯胺类抗菌剂、咪唑类抗菌剂、噻唑类抗菌剂、异噻唑酮衍生物抗菌剂、季铵盐类抗菌剂、双呱类抗菌剂或酚类抗菌剂中的一种或几种;所述抗菌剂的重量份数为0.1~5份。
上述聚碳酸酯组合物的制备方法,包括如下步骤:将各组分混合均匀得混合料,然后将混合料熔融挤出,造粒即得所述聚碳酸酯组合物。
优选地,所述聚碳酸酯组合物的制备方法,包括如下步骤:将聚碳酸酯、微米级多孔陶瓷和其它助剂(如有)在高混机中混合;然后在双螺杆挤出机中熔融挤出,造粒即得所述聚碳酸酯组合物;双螺杆挤出机的长径比30:1~75:1,螺杆温度270~290℃,转速为300~600转/min。
上述聚碳酸酯组合物在制备阳光板、汽车、家用电器、IT产品中的应用也在本发明的保护范围内。
与现有技术相比,本发明具有如下有益效果:
本发明提供的聚碳酸酯组合物以特定的微米级多孔陶瓷作为红外阻隔功能性材料,不仅具有较好的红外阻隔性能、隔热效果好,成本低,稳定性佳,环保;还具有较好的耐候性能。
具体实施方式
下面结合实施例进一步阐述本发明。这些实施例仅用于说明本发明而不用于 限制本发明的范围。下例实施例中未注明具体条件的实验方法,通常按照本领域常规条件或按照制造厂商建议的条件;所使用的原料、试剂等,如无特殊说明,均为可从常规市场等商业途径得到的原料和试剂。本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。
本发明各实施例及对比例选用的部分试剂说明如下:
聚碳酸酯1:FN2200,日本出光,双酚A型聚碳酸酯,重均分子量为28000;
聚碳酸酯2:FN1500,日本出光,双酚A型聚碳酸酯,重均分子量为10000;
聚碳酸酯3:1300 03NP,LG化学,双酚A型聚碳酸酯,重均分子量为40000;
聚碳酸酯4:FB2560,沙伯化学,双酚A型聚碳酸酯,重均分子量为50000;
聚碳酸酯5:1300 10NP,LG化学,双酚A型聚碳酸酯,重均分子量为29000;
微米级多孔陶瓷1:Hulk生物陶瓷粉,诚佳科纺股份有限公司,经600℃烧蚀40分钟后的吸油值为15g/100g,平均粒径为4μm,比表面积为50m 2/g;
微米级多孔陶瓷2:氧化锑陶瓷,厦门纳诺科技,经600℃烧蚀40分钟后的吸油值10g/100g,平均粒径为2μm,比表面积为40m 2/g。
微米级多孔陶瓷3:Al 2O 3陶瓷粉,东海富彩矿物制品,经600℃烧蚀40分钟后的吸油值为30g/100g,平均粒径为4μm,比表面积为40m 2/g;
微米级多孔陶瓷4:XZ-TC56,合肥翔正化学科技有限公司,经600℃烧蚀40分钟后的吸油值为30g/100g,平均粒径为2μm,比表面积为43m 2/g;
微米级多孔陶瓷5:Al 2O 3陶瓷粉,深圳长瑞,经600℃烧蚀40分钟后的吸油值为30g/100g,平均粒径为15μm,比表面积为30m 2/g;
微米级多孔陶瓷6:xz-tc01-3,合肥翔正化学科技有限公司,经600℃烧蚀40分钟后的吸油值为12g/100g,平均粒径为0.8μm,比表面积为38m 2/g;
微米级多孔陶瓷7:陶瓷微珠,圣莱特,经600℃烧蚀40分钟后的吸油值为30g/100g,平均粒径为4μm,比表面积为30m 2/g;
微米级多孔陶瓷8:陶瓷粉,江苏联瑞新材料股份,经600℃烧蚀40分钟后的吸油值为12g/100g,平均粒径为2μm,比表面积为100m 2/g;
微米级多孔陶瓷9:T3Y-020AP,山东国瓷材料,经600℃烧蚀40分钟后的吸油值为14g/100g,平均粒径为2μm,比表面积为10m 2/g;
微米级多孔陶瓷10:纳米BAO-05,鑫源化工有限公司,经600℃烧蚀40 分钟后的吸油值为70g/100g,平均粒径为4均粒,比表面积为50m 2/g;
微米级陶瓷(无孔):硅酸铝陶瓷,灵寿县健石矿物粉体厂,经600℃烧蚀40分钟后的吸油值为8g/100g,平均粒径为4μm,比表面积为35m 2/g;
纳米级多孔陶瓷:XZ-ZR601,合肥翔正化学科技有限公司,经600℃烧蚀40分钟后的吸油值为15g/100g,平均粒径为300nm,比表面积为36m 2/g;
其它助剂:稳定剂,UV-234,市售。
本发明各实施例和对比例的聚碳酸酯组合物通过如下过程制备得到:
按要求称取好各原料,在高混机中混合得到混匀物料;将混匀物料投入双螺杆挤出机,通过混炼、熔融、均化后挤出造粒,冷却,得到聚碳酸酯组合物,其中螺筒温度270~290℃,双螺杆挤出机的长径比为40:1,转速为300转/min。
本发明各实施例及对比例的聚碳酸酯组合物按如下测试方法进行测试:
(1)阻隔性能
红外线阻隔测试(红外线阻隔率,%):将样品制成1mm厚的片材,用I,ambda950型紫外-可见红外分光光度计扫描780-1650nm红外光波长范围,测试其红外线阻隔率。
隔热测试(温差△T,℃):将样品制成100mm*100mm*2mm的试样,置于热老化箱中,采用100℃条件,放置24小时后测试,计算氙灯老化箱内外的样板温度差,记为△T,△T越小隔热性能越好。
(2)耐候性能
将样品制成100mm*100mm*2mm的样,置于氙灯老化箱中,采用隔热测试中ASTM 4892-2-2014同条件下,辐照强度0.51W/m 2,黑板温度65℃,102min光照/18min黑暗,老化1000小时后,测试色差ΔE。
Figure PCTCN2022140186-appb-000001
L表示明度,a表示红绿色差,b表示蓝黄色差
ΔL、Δa、Δb分别对应指标(L、a、b)在老化前后的差值。
实施例1~15
本实施例提供一系列聚碳酸酯组合物,其配方中各组分的用量如表1。
表1 实施例1~15的配方(份)
实施例 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
聚碳酸酯1 100 100 100 / / / / 100 100 100 100 100 100 100 100
聚碳酸酯2 / / / 100 / / / / / / / / / / /
聚碳酸酯3 / / / / 100 / / / / / / / / / /
聚碳酸酯4 / / / / / 100 / / / / / / / / /
聚碳酸酯5 / / / / / / 100 / / / / / / / /
微米级多孔陶瓷1 10 5 20 10 10 10 10 / / / / / / / /
微米级多孔陶瓷2 / / / / / / / 10 / / / / / / /
微米级多孔陶瓷3 / / / / / / / / 10 / / / / / /
微米级多孔陶瓷4 / / / / / / / / / 10 / / / / /
微米级多孔陶瓷5 / / / / / / / / / / 10 / / / /
微米级多孔陶瓷6 / / / / / / / / / / / 10 / / /
微米级多孔陶瓷7 / / / / / / / / / / / / 10 / /
微米级多孔陶瓷8 / / / / / / / / / / / / / 10 /
微米级多孔陶瓷9 / / / / / / / / / / / / / / 10
其它助剂 0.3 0.4 0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
对比例1~4
本对比例提供一系列聚碳酸酯组合物,其配方如表2。
表2 对比例1~4的配方(份)
组分 对比例1 对比例2 对比例3 对比例4
聚碳酸酯1 100 100 100 100
微米级多孔陶瓷10 / 10 / /
微米级陶瓷(无孔) / / 10 /
纳米级多孔陶瓷 / / / 10
其它助剂 0.3 0.3 0.3 0.3
按前述的性能测试方法对各实施例和对比例所提供的聚碳酸酯组合物的性能进行测试,结果如表3。
表.3 实施例1~17和对比例1~5提供的聚碳酸酯组合物的性能测试结果
  红外线阻隔率 温差△T 色差ΔE
实施例1 95% 5 0.5
实施例2 94% 6 0.8
实施例3 95% 5 1.2
实施例4 91% 8 1.8
实施例5 89% 8 2.0
实施例6 93% 6 2.5
实施例7 92% 7 2.9
实施例8 89% 8 3.0
实施例9 89% 8 3.2
实施例10 88% 9 3.0
实施例11 86% 10 3.3
实施例12 80% 11 3.2
实施例13 93% 5 3.2
实施例14 92% 5 3.5
实施例15 90% 12 3.7
对比例1 9% 20 3.9
对比例2 15% 15 3.7
对比例3 20% 22 4.5
对比例4 24% 21 4.8
由上述测试结果可知,本发明各实施例提供的聚碳酸酯组合物对红外线的阻隔率在80%及以上,具有较高的红外线阻隔效果;经隔热测试处理后温差不高于12℃,隔热效果好;且经氙灯耐候老化处理后,色差不高于3.7,具有较好的耐候性,不易褪色。而对比例1未添加陶瓷,其红外线阻隔率低,隔热效果较差,色差大。对比例2添加的微米级多孔陶瓷的吸油值过高,同样存在红外线阻隔率较好,隔热性能差,色差大的问题;对比例3添加的是无孔微米级陶瓷,红外线阻隔率和隔热性提升不大,氙灯老化色差进一步增大(相对于对比例1)。对比例4添加的是纳米级陶瓷,红外线阻隔率不高,隔热性不佳,氙灯老化性很差。
本领域的普通技术人员将会意识到,这里的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

Claims (10)

  1. 一种聚碳酸酯组合物,其特征在于,包括如下重量份数的组分:
    聚碳酸酯  100份,
    微米级多孔陶瓷  5~20份,
    所述微米级多孔陶瓷经600℃烧蚀40分钟后的吸油值不高于30g/100g。
  2. 根据权利要求1所述聚碳酸酯组合物,其特征在于,所述聚碳酸酯为双酚A型聚碳酸酯。
  3. 根据权利要求1所述聚碳酸酯组合物,其特征在于,所述聚碳酸酯的重均分子量10000~40000。
  4. 根据权利要求1所述聚碳酸酯组合物,其特征在于,所述微米级多孔陶瓷的比表面积为30~100m 2/g。
  5. 根据权利要求1所述聚碳酸酯组合物,其特征在于,所述微米级多孔陶瓷经600℃烧蚀40分钟后的吸油值为8~30g/100g。
  6. 根据权利要求1所述聚碳酸酯组合物,其特征在于,所述微米级多孔陶瓷的平均粒径为2~15μm。
  7. 根据权利要求1所述聚碳酸酯组合物,其特征在于,所述聚碳酸酯组合物还包括其它助剂;所述其它助剂的重量份数为0~55份。
  8. 根据权利要求7所述聚碳酸酯组合物,其特征在于,所述其它助剂为稳定剂、阻燃剂、抗滴落剂、润滑剂、填料或抗菌剂的一种或几种。
  9. 权利要求1~8任一所述聚碳酸酯组合物的制备方法,其特征在于,包括如下步骤:将各组分混合均匀得混合料,然后将混合料熔融挤出,造粒即得所述聚碳酸酯组合物。
  10. 权利要求1~8任一所述聚碳酸酯组合物在制备阳光板、汽车、家用电器、IT产品中的应用。
PCT/CN2022/140186 2022-01-14 2022-12-20 一种聚碳酸酯组合物及其制备方法和应用 WO2023134404A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210044978.2 2022-01-14
CN202210044978.2A CN114806122A (zh) 2022-01-14 2022-01-14 一种聚碳酸酯组合物及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023134404A1 true WO2023134404A1 (zh) 2023-07-20

Family

ID=82527825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140186 WO2023134404A1 (zh) 2022-01-14 2022-12-20 一种聚碳酸酯组合物及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114806122A (zh)
WO (1) WO2023134404A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114806122A (zh) * 2022-01-14 2022-07-29 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107163541A (zh) * 2017-07-11 2017-09-15 王钧艺 一种姿势习惯训练器聚碳酸酯专用料
CN107722588A (zh) * 2017-09-30 2018-02-23 四川力智久创知识产权运营有限公司 一种电缆用聚碳酸酯改性材料及其制备方法
CN112852139A (zh) * 2021-01-14 2021-05-28 上海锦湖日丽塑料有限公司 一种低烟密度pc/abs组合物及其制备方法
KR102309499B1 (ko) * 2021-03-25 2021-10-06 주식회사 풀담 차열기능을 갖는 폴리프로필렌 용기
CN114456571A (zh) * 2022-03-08 2022-05-10 金发科技股份有限公司 一种聚碳酸酯材料及其制备方法
CN114532354A (zh) * 2022-01-14 2022-05-27 金发科技股份有限公司 一种抗菌复合物、抗菌聚碳酸酯材料及其制备方法和应用
CN114591617A (zh) * 2022-03-08 2022-06-07 金发科技股份有限公司 一种聚碳酸酯材料及其制备方法和应用
CN114806122A (zh) * 2022-01-14 2022-07-29 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法和应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1024175A4 (en) * 1997-09-30 2001-03-14 Ngk Insulators Ltd PLASTIC / CERAMIC COMPOSITE MATERIAL AND MANUFACTURING METHOD THEREOF
DE10325777A1 (de) * 2003-06-05 2004-12-23 Makroform Gmbh Lichtdurchlässiger Körper enthaltend IR-reflektierende Teilchen
ITVR20060035A1 (it) * 2006-02-20 2007-08-21 Z G Camini Inox S R L Procedimento per la preparazione di un materiale ceramico poroso ad alta resistenza termica
CN102690508B (zh) * 2012-03-26 2015-03-25 深圳市科聚新材料有限公司 一种不透光透红外线聚碳酸酯材料及制备方法
CN107484400A (zh) * 2017-03-03 2017-12-15 倪进焕 一种具有高导热散热及吸波功能的复合材料及其制备方法和用途
WO2020126189A1 (en) * 2018-12-19 2020-06-25 Mep Europe B.V. Polycarbonate composition for laser direct structuring
CN110452590A (zh) * 2019-08-20 2019-11-15 东莞市晶工节能研发有限公司 一种散热材料及其制备方法与应用
CN111592747A (zh) * 2020-05-11 2020-08-28 东莞市百励兴新材料有限公司 一种陶瓷微粉母粒和具有陶瓷质感的聚合物复合材料及两者的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107163541A (zh) * 2017-07-11 2017-09-15 王钧艺 一种姿势习惯训练器聚碳酸酯专用料
CN107722588A (zh) * 2017-09-30 2018-02-23 四川力智久创知识产权运营有限公司 一种电缆用聚碳酸酯改性材料及其制备方法
CN112852139A (zh) * 2021-01-14 2021-05-28 上海锦湖日丽塑料有限公司 一种低烟密度pc/abs组合物及其制备方法
KR102309499B1 (ko) * 2021-03-25 2021-10-06 주식회사 풀담 차열기능을 갖는 폴리프로필렌 용기
CN114532354A (zh) * 2022-01-14 2022-05-27 金发科技股份有限公司 一种抗菌复合物、抗菌聚碳酸酯材料及其制备方法和应用
CN114806122A (zh) * 2022-01-14 2022-07-29 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法和应用
CN114456571A (zh) * 2022-03-08 2022-05-10 金发科技股份有限公司 一种聚碳酸酯材料及其制备方法
CN114591617A (zh) * 2022-03-08 2022-06-07 金发科技股份有限公司 一种聚碳酸酯材料及其制备方法和应用

Also Published As

Publication number Publication date
CN114806122A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
CN103172918B (zh) 一种低烟无卤阻燃电缆料及其制备方法
CN104559149A (zh) 一种碳素复合高导热塑料材料及其制备方法
CN108102213B (zh) 一种阻燃聚丙烯组合物及其制备方法和应用
WO2023134404A1 (zh) 一种聚碳酸酯组合物及其制备方法和应用
EP1646683B1 (en) Fire-retarded polycarbonate resin composition
CN106167584A (zh) 一种包覆二氧化钛增强抗紫外老化性能的密封条
CN114031859A (zh) 一种用于生鲜产品储运的高耐寒抗uv智慧周转框的高分子改性材料
CN105017599A (zh) 一种聚乙烯土工膜用高浓度炭黑色母
CN105153681A (zh) 一种新型防虫防霉室外用电力电缆护套料及其制备方法
CN104846474A (zh) 一种阻燃抗静电pet/ptt复合纤维
CN107286461A (zh) 一种抗菌耐候阻燃v0级聚丙烯材料及其制备方法
WO2016010253A1 (ko) 보온 및 단열성이 개선된 농업용 필름 조성물 및 이로부터 제조된 농업용 필름
KR101731279B1 (ko) 고난연성과 윤활성을 갖는 마스터배치와 이를 이용한 폴리올레핀 가요관과 그 제조방법
CN105367860A (zh) 一种用于电力电缆的绝缘材料及其制备方法
KR100997052B1 (ko) 폴리프로필렌용 난연 가요전선관 마스터벳치 조성물
CN104292594A (zh) 一种抗紫外电缆料及其制备方法
CN106046569A (zh) 一种添加树脂包覆氮化铝导热增强的密封胶条
CN106009321A (zh) 一种提高热稳定性的开关柜用三元乙丙橡胶密封条
CN112409698A (zh) 纳米改性增强增韧抗菌无规共聚聚丙烯专用料及其制备方法
CN104845276A (zh) 一种阻燃性pet/ptt合金及其制备方法
TWI491670B (zh) 具備紅外線吸收功能且具有高可見光穿透率之聚碳酸酯組合物
CN107857948A (zh) 一种改性asa聚合组合物
CN103709650A (zh) 具有抗菌功能的聚酯色母粒
CN103509328A (zh) 一种无卤磷-氮膨胀型阻燃橡胶电缆料
CN104845158A (zh) 阻燃改性pet/ptt材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920035

Country of ref document: EP

Kind code of ref document: A1