WO2023134174A1 - 一种物料无热干化系统、压滤机控制方法及压滤机 - Google Patents

一种物料无热干化系统、压滤机控制方法及压滤机 Download PDF

Info

Publication number
WO2023134174A1
WO2023134174A1 PCT/CN2022/115567 CN2022115567W WO2023134174A1 WO 2023134174 A1 WO2023134174 A1 WO 2023134174A1 CN 2022115567 W CN2022115567 W CN 2022115567W WO 2023134174 A1 WO2023134174 A1 WO 2023134174A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
mold
water
hydraulic cylinder
assembly
Prior art date
Application number
PCT/CN2022/115567
Other languages
English (en)
French (fr)
Inventor
王骏
蔡晶弟
顾建锋
方学兴
刘和平
Original Assignee
安永环保科技(江苏)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210047102.3A external-priority patent/CN114259765A/zh
Priority claimed from CN202221092799.8U external-priority patent/CN217163334U/zh
Priority claimed from CN202221365762.8U external-priority patent/CN217645911U/zh
Application filed by 安永环保科技(江苏)有限公司 filed Critical 安永环保科技(江苏)有限公司
Publication of WO2023134174A1 publication Critical patent/WO2023134174A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D25/00Filters formed by clamping together several filtering elements or parts of such elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D25/00Filters formed by clamping together several filtering elements or parts of such elements
    • B01D25/12Filter presses, i.e. of the plate or plate and frame type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D25/00Filters formed by clamping together several filtering elements or parts of such elements
    • B01D25/12Filter presses, i.e. of the plate or plate and frame type
    • B01D25/21Plate and frame presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D25/00Filters formed by clamping together several filtering elements or parts of such elements
    • B01D25/32Removal of the filter cakes
    • B01D25/34Removal of the filter cakes by moving, e.g. rotating, the filter elements

Definitions

  • the present application relates to the field of filter press equipment, in particular to a heatless material drying system, a filter press control method and a filter press.
  • Filter press is a device for solid-liquid separation, widely used in chemical, petroleum, coal mining, pharmaceutical, food, municipal and other industries.
  • Existing filter presses are generally equipped with a thrust plate at the front/rear end of the frame, a compression plate at the rear/front end, and a set of filter plates are arranged between the thrust plate and the compression plate, and the filter plate passes through the filter plate.
  • the left and right handles are connected to the guide rails on the main beam of the frame.
  • the oil cylinder group pushes the compression plate to make the filter plate groups close together.
  • the pull plate trolley pulls the filter plate down Separation between, so reciprocating motion to achieve solid-liquid separation.
  • the application provides a material athermal drying system, a filter press control method, and a filter press.
  • the application provides a material heatless drying system, including: a pressing device, including a guide device and a filter plate assembly that slides along the guide device; a feeding device, including a feed pipe connected to the filter plate assembly And the water inlet pipe; the drive device, including the driving mechanism that drives the movement of the pressing device; the pressure balance device, including the electromagnetic valve, the feed pressure sensor connected to the feed pipe and the squeeze pressure sensor connected to the water inlet pipe; wherein, When the filter plate assembly slides to the preset position, the driving mechanism stops working, and the corresponding electromagnetic valve performs gain and loss electric action, and the pressure equalizing device switches to the equal pressure mode.
  • the drive mechanism includes a sliding assembly and a support seat connected to the sliding assembly, and the support seat is connected to a first hydraulic cylinder, a second hydraulic cylinder, and a third hydraulic cylinder; wherein, The axis of the first hydraulic cylinder and the axis of the third hydraulic cylinder are respectively parallel to the moving direction of the sliding assembly, and the first hydraulic cylinder and the third hydraulic cylinder are used to drive the support base to slide along the The component moves in a moving direction; the second hydraulic cylinder is arranged on the sliding component to drive the support base to move in a direction perpendicular to the moving direction of the sliding component.
  • the first hydraulic cylinder is a rapid advance hydraulic cylinder, which consumes less oil and does not need to provide excessive thrust, but can achieve rapid advance
  • the first hydraulic cylinder can drive the third hydraulic cylinder to quickly move back and forth along the moving direction of the sliding assembly, which shortens the stroke of the third hydraulic cylinder and reduces the use of hydraulic oil before the filter press is compacted.
  • a plurality of third hydraulic cylinders can be provided for cooperation, which can provide sufficient working pressure for the filter press.
  • the second hydraulic cylinder drives the third hydraulic cylinder to move up and down in a direction perpendicular to the moving direction of the sliding assembly, and the working position of the third hydraulic cylinder can be adjusted to meet different working requirements.
  • the system also includes a pressure equalizing device and a feed pipe and a water inlet pipe
  • the pressure equalizing device includes: a feed pressure sensor connected to the feed pipe, a feed pressure sensor connected to the water inlet pipe The connected squeeze pressure sensor and the hydraulic station that provides hydraulic pressure for the third hydraulic cylinder, and the third hydraulic cylinder is connected with a proportional pressure valve.
  • the pressure equalizing device also includes a controller connected to the feed pressure sensor, the squeeze pressure sensor and the proportional pressure valve, and the controller is used to adjust the pressure of the first proportional pressure valve during dehydration. The pressure of three hydraulic cylinders.
  • the feeding and pressing will not be carried out at the same time, but both the feeding pressure and the pressing pressure will act on the filter chamber.
  • install pressure sensors on the feed pipe and squeeze liquid pipeline respectively and measure the pressure of the feed pipe and squeeze liquid pipeline to obtain the working pressure of the filter chamber.
  • the device controls the proportional pressure valve to automatically adjust the working pressure of the third hydraulic cylinder without adding a booster cylinder.
  • the structure is simple, the work is reliable, the cost is low, and the failure rate is also greatly reduced.
  • P in takes the feed pressure
  • P 0 is the preload pressure
  • K is the proportional coefficient
  • the higher pressure value is used as the working pressure P of the filter chamber, and the controller outputs a pressure signal P out according to the P input , and the output signal controls Relief pressure of the proportional pressure valve.
  • the pressure of the third hydraulic cylinder is lower than KPIN +P 0 , start the hydraulic oil pump to add pressure to the third hydraulic cylinder until the pressure of the third hydraulic cylinder is equal to KPIN +P 0 . It can not only effectively avoid material leakage caused by the automatic opening of the filter plate, but also avoid excessive pressure on the frame of the filter plate when there is no pressure in the filter chamber.
  • the support seat is connected with a filter plate
  • the filter plate includes material molds and water molds with the same size and shape, and the material molds and water molds are arranged alternately one to one, and the inlet
  • the feed pipe is connected to the material mold, and the water inlet pipe is connected to the water mold
  • the material athermal drying system also includes a thrust plate arranged in parallel with the support seat, and the filter plate assembly is located on the Between the thrust plate and the support seat, the outer end surface of the water mold is provided with a diaphragm rubber.
  • the filter chamber is set in a stacked sandwich shape, which can maximize the use of the working space, press and filter more materials, and work more efficiently.
  • the thrust plate is the limit plate of the filter chamber to prevent the filter chamber from Moving backward
  • the support seat fixedly connected with the third hydraulic cylinder is the brake plate of the filter chamber, which is responsible for squeezing the filter chamber.
  • the system also includes a main feed pipe and a press main pipe.
  • the water inlet pipe communicates with the pressing main pipe, and the feeding main pipe and the pressing main pipe are arranged up and down.
  • the feed main pipe and the press main pipe of the filter press are fixed on the side plate on the same side of the frame, and the feed main pipe and the press main pipe are arranged up and down to reduce the overall volume of the filter press, thereby reducing the occupied area of the filter press area.
  • the feeding supervisor and pressing supervisor of this structure are directly fixed on the side plate, which not only reduces the fixing bracket, but also reduces the production cost, without on-site production, and can be directly shipped with the vehicle.
  • the system also includes a feed main pipe and a pressing main pipe, the support seat is connected with a filter plate assembly, and the filter plate assembly includes a material mold and a water mold with the same size and shape, and the material mold The mold and the water mold are arranged alternately one to one, the feed pipe is connected to the material mold, and the water inlet pipe is connected to the water mold; wherein, each material mold communicates with the feed main pipe through a corresponding feed pipe , each water mold communicates with the pressing main pipe through the corresponding water inlet pipe, and the feeding main pipe is arranged above the pressing main pipe.
  • the filter chamber is set in a stacked sandwich shape, which can maximize the use of the working space, press filter more materials, and work more efficiently.
  • the feeding main pipe and the pressing main pipe are fixed on the side plate on the same side of the frame, and the feeding main pipe and the pressing main pipe are arranged up and down to reduce the overall volume of the filter press, thereby reducing the occupied area of the filter press.
  • the further solution also includes a discharge mechanism for the material film, the discharge mechanism includes a slurry channel arranged in the material film separator, and the slurry channel is formed on both sides of the material film separator.
  • the top of the flip is made of elastic material and becomes a complete elastic structure, which enhances the feeding time.
  • the load capacity of elastic deformation reduces the weariness and prolongs the service life.
  • the flip part is bent and deformed as a whole when impacted by the slurry, which can increase the opening and closing angle of the flip part, thereby improving feeding efficiency.
  • the material athermal drying system further includes a thrust plate arranged parallel to the support seat, the filter plate assembly is located between the thrust plate and the support seat, the The outer end surface of the water mold is provided with diaphragm rubber.
  • the thrust plate is the limiting plate of the filter chamber to prevent the filter chamber from moving backward
  • the support seat fixedly connected with the third hydraulic cylinder is the brake plate of the filter chamber, which is responsible for squeezing the filter chamber.
  • the outer end surface of the water mold is provided with a diaphragm rubber, and the diaphragm rubber bulges outward under the action of water pressure and squeezes the medium to be filtered on the material mold, so as to implement a second filter press.
  • the material mold includes a filter plate and a filter plate frame;
  • the filter plate frame includes an outer frame arranged on the edge of the filter plate and thicker than the filter plate, arranged on the inner peripheral surface of the outer frame, and a filter plate
  • part or all of the inner frame is set as a synthetic resin cast body, and the rest of the filter plate of the material mold is set as a rigid metal body, which can reduce the pressure on the premise of not reducing the pressure performance of the filter plate of the material mold.
  • the overall weight not only makes the processing and installation of the mold filter plate more convenient, but also saves metal materials.
  • the lightweight mold filter plate can also save the infrastructure of the plant and reduce the cost comprehensively.
  • the further solution also includes a water return device, the water return device includes: a water receiving tray assembly, including multiple sets of water receiving trays nested in sequence; a telescopic assembly, connected to the multiple sets of water receiving trays Between at least two groups of water receiving trays in the tray, the telescopic movement of the telescopic assembly drives the water receiving tray assembly to adjust the relative position between the water receiving trays along the telescopic direction of the telescopic assembly.
  • the overall expansion and contraction of the water receiving tray assembly is realized through the nested sets of multiple sets of water receiving trays and telescopic components.
  • the direction of the thrust plate slides, and after reaching the predetermined position, the overall mold clamping of the filter press is carried out.
  • the water tray assembly is driven to shrink by the driving mechanism, and slides towards the support seat until it reaches the predetermined storage position of the water tray assembly, and then presses the filter Machine mold opening. It can divert and collect the liquid overflowed from the filter press. It occupies a small space and is easy to arrange, and it can be moved for easy cleaning and storage.
  • the telescopic assembly includes a plurality of telescopic units, and each telescopic unit is connected between the at least two groups of water receiving trays.
  • At least two groups of water receiving trays are connected to form a telescopic unit, so as to realize the overall expansion and contraction of the water receiving tray assembly, occupying a small space for easy arrangement, and being movable for easy cleaning and storage.
  • a sealing strip is provided at the junction of adjacent water trays in the water tray assembly.
  • the water receiving tray assembly of the present application has a good diversion and collection effect on the liquid overflowing from the filter press.
  • the water return device further includes: a water receiving bracket and a driving assembly arranged on the water receiving bracket, the driving assembly is connected to the water receiving tray assembly and/or the telescopic assembly .
  • the driving assembly includes: a motor, arranged on the base; a sprocket, coupled to the motor; a bearing, the sprocket is coupled to the motor through the bearing; a chain, arranged on the sprocket , and the chain is connected to the water tray assembly and/or the telescopic assembly.
  • the driving assembly can provide driving force to the telescoping assembly of the water tray, and drive the telescopic assembly to expand and contract.
  • the power of the motor is transmitted to the telescopic assembly by means of sprocket chain transmission to realize the telescopic work, and the structure is simple and reliable.
  • the present application also provides a filter press control method, which includes the following steps: system detection before mold closing: detecting whether all motors of the hydraulic station are in remote positions. Mold closing execution: the first hydraulic cylinder works to push the support seat to move toward the thrust plate; the second hydraulic cylinder works to push the support seat to move in a direction perpendicular to the moving direction of the sliding assembly; the third hydraulic cylinder works to push The support seat moves toward the thrust plate; after the filter cloth is set on the surface of the material mold, the thrust plate, material mold, water mold, and support seat are closely fitted to realize mold closing.
  • Balanced pressure control pressure dehydration, the material enters the material mold from the feed pipe, and reaches the filter chamber formed by the material mold and the water mold. At this time, the pressure of the feed pipe increases, and the feed pressure sensor transmits information to the controller, and the controller passes Control the proportional pressure valve so that the pressure of the third hydraulic cylinder increases.
  • P out KP in + P 0 , P in takes the feed pressure, and K is the proportional coefficient;
  • the water after pressing and filtering is discharged from the lower part of the material mold and the water mold; extrusion dehydration, after the pressure dehydration reaches the set condition, stop feeding, input the squeeze liquid from the squeeze liquid pipeline to the water mold, when the pressure in the squeeze liquid pipeline When rising, the squeeze pressure sensor sends information to the controller, and the controller controls the proportional pressure valve to increase the pressure of the third hydraulic cylinder.
  • the stroke of the third hydraulic cylinder is shortened and the use of hydraulic oil is reduced through the cooperative work of the three hydraulic cylinders.
  • the pressure of the third hydraulic cylinder is lower than KPIN +P 0 , start the hydraulic oil pump to add pressure to the third hydraulic cylinder until the pressure of the third hydraulic cylinder is equal to KPIN +P 0 . It can not only effectively avoid material leakage caused by the automatic opening of the filter plate, but also avoid excessive pressure on the frame of the filter plate when there is no pressure in the filter chamber.
  • the present application also provides a filter press, including the above-mentioned material heatless drying system.
  • the filter press has the advantages of the above-mentioned material heat-free drying system, the consumption of hydraulic oil is relatively small, and the oil filling time is short.
  • the present application also provides a filter press, which works by adopting the filter press control method as described above.
  • the filter press can automatically control the pressure, which can effectively avoid material leakage caused by the automatic opening of the filter plate, and prevent the frame of the filter plate from being subjected to excessive pressure when there is no pressure in the filter chamber.
  • the heat-free drying system of the material in this application can stabilize the internal working pressure of the filter plate assembly of the filter press and reduce the probability of fatigue damage of the filter plate assembly. At the same time, the stroke of the third hydraulic cylinder is shortened, and the use of hydraulic oil in the driving process is reduced. .
  • the non-heat drying system of this application realizes intelligent pressure control, which can effectively avoid material leakage caused by the automatic opening of the filter plate, and prevent the frame of the filter plate from being subjected to excessive pressure when there is no pressure in the filter chamber.
  • the heat-free material drying system of this application sets the filter chamber in a stacked sandwich shape, which can maximize the use of the working space, filter more materials, and work more efficiently.
  • the non-heat drying system for materials in this application can monitor the working status in real time to avoid safety accidents.
  • the heat-free material drying system of this application, the lightweight material mold filter plate design can save the basic construction of the factory building, and reduce the cost comprehensively.
  • the flip part is a complete elastic structure, and when it is impacted by the slurry, the overall bending deformation can increase the opening and closing angle of the flip part, thereby improving the feeding efficiency.
  • the non-heat drying system of this application can divert and collect the liquid overflowing from the filter press. It occupies a small space and is easy to arrange, and it can be moved for easy cleaning and storage.
  • the control method of this application ensures that the pressure of the third hydraulic cylinder is always equal to KP in + P 0 through the signal feedback of the two sensors and the automatic adjustment of the output pressure of the controller. It can ensure the pressure balance in the working process of the third hydraulic cylinder, ensure the stability and consistency of the filter press work, and also reduce the failure and improve the life of the filter press.
  • the filter press of this application solves the technical problems of large consumption of hydraulic oil and long filling time of the filter press.
  • the pressure can be controlled automatically, which can effectively avoid material leakage caused by the automatic opening of the filter plate, and prevent the frame of the filter plate from being subjected to excessive pressure when there is no pressure in the filter chamber.
  • Fig. 1 is a schematic structural diagram of Embodiment 1 of the heatless drying system for materials of the present application;
  • Fig. 2 is a schematic cross-sectional structure diagram of Embodiment 1 of the heatless drying system for materials of the present application;
  • Fig. 3 is a schematic diagram of an enlarged structure at A in Fig. 2;
  • Fig. 4 is a structural schematic diagram of the material mold of the material heatless drying system
  • Fig. 5 is a schematic structural diagram of Embodiment 2 of the heatless drying system for materials of the present application;
  • Fig. 6 is a structural schematic diagram of the pressure balancing device of the present application.
  • Fig. 7 is the structural representation of the first angle of filter press of the present application.
  • Fig. 8 is a schematic cross-sectional structure diagram of the first angle of the filter press of the present application.
  • Fig. 9 is a structural schematic diagram of the water return device of the filter press of the present application.
  • Fig. 10 is the structural representation of the second angle of the filter press of the present application.
  • Fig. 11 is a schematic cross-sectional structural diagram of the filter press of the present application at a second angle.
  • Squeezing supervisor 61. Water inlet pipe; 7. Pressure balance device; 71. Controller; 711. Feed pressure sensor; 712. Squeeze pressure sensor; 72. Driving mechanism; 721. Filter plate assembly; 722 , master cylinder; 73, hydraulic station; 730, proportional pressure valve.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
  • the material heatless drying system 1 includes a pressing device, a feeding device, a mold opening device, a pressure equalizing device 7 , and a water return device 4 .
  • the pressing device includes a guide rail 151 and a filter plate assembly that slides along the guide rail 151,
  • the feeding device includes a feeding pipe 51 and a water inlet pipe 61 connected to the filter plate 198 assembly.
  • the mold opening device includes a driving mechanism 72 for driving the pressing device, and the pressure balancing device 7 includes an electromagnetic valve, a feed pressure sensor 711 connected to the feed pipe 51 and a squeeze pressure sensor 712 connected to the water inlet pipe 61 .
  • the water return device 4 includes a water receiving pan assembly 41 for guiding the residual liquid flowing out of the squeezing device.
  • a heatless drying system 1 for filter press materials includes a driving mechanism 72.
  • the driving mechanism 72 includes a sliding assembly 15 and a support seat 11 connected to the sliding assembly 15.
  • the support seat 11 is connected with The first hydraulic cylinder 12 , the second hydraulic cylinder 16 and the third hydraulic cylinder 13 .
  • the cylinder body of the first hydraulic cylinder 12 is fixed on the base 14, and the piston rod 131 of the first hydraulic cylinder 12 is connected with the slide assembly 15.
  • the first hydraulic cylinder 12 of the present embodiment is a fast-propelling hydraulic cylinder, and there is no need to provide an excessively large hydraulic cylinder. thrust, but capable of rapid propulsion.
  • the sliding assembly 15 includes a guide rail 151 and a slider, and the guide rail 151 extends along the telescopic direction of the piston rod 131 of the first hydraulic cylinder 12 .
  • the guide rail 151 is arranged on the upper surface of the side plate 17 of the filter press.
  • guide rails 151 are provided on both the left side board and the right side board to provide stable guidance for the back and forth movement of the hydraulic cylinder support base 11 .
  • the guide rail 151 can also be used as the guide rail 151 of the filter plate assembly of the filter press.
  • the slider is slidably disposed on the guide rail 151 .
  • the piston rod 131 of the first hydraulic cylinder 12 is connected to the slider, and the first hydraulic cylinder 12 drives the slider to slide along the guide rail 151 .
  • the second hydraulic cylinder 16 is disposed on the upper surface of the slider, and the piston rod 131 of the second hydraulic cylinder 16 can expand and contract in a direction perpendicular to the direction of expansion and contraction of the first hydraulic cylinder 12 .
  • the hydraulic cylinder support base 11 is connected to the second hydraulic cylinder 16, and the second hydraulic cylinder 16 can drive the support base 11 to lift.
  • the hydraulic cylinder support base 11 and the base 14 are arranged parallel to each other.
  • the first hydraulic cylinder 12 can drive the hydraulic cylinder support base 11 to move back and forth by the slide block, and the second hydraulic cylinder 16 can drive the hydraulic cylinder support base 11 to lift.
  • the third hydraulic cylinder 13 is disposed on the hydraulic cylinder support base 11 .
  • the cylinder body of the third hydraulic cylinder 13 passes through the support seat 11 and is installed in the support seat 11 .
  • the expansion and contraction direction of the piston rod 131 of the third hydraulic cylinder 13 is the same as the expansion and contraction direction of the piston rod 131 of the first hydraulic cylinder 12.
  • One end of the base 14 is provided with a thrust plate 110 , and the filter plate assembly is disposed between the pressing plate 10 and the thrust plate 110 .
  • the axis of the first hydraulic cylinder 12 and the axis of the third hydraulic cylinder 13 are respectively parallel to the moving direction of the sliding assembly 15, and the first hydraulic cylinder 12 and the third hydraulic cylinder 13 are used to drive the support base 11 to slide along the The assembly 15 moves in a moving direction; the second hydraulic cylinder 16 is used to drive the support base 11 to move in a direction perpendicular to the sliding assembly 15 moving direction.
  • the base 14 includes a partition 141 and a through hole 142 formed between the partition 141, and a push rod 133 is fixed on the cylinder body of the third hydraulic cylinder 13, and the push rod 133 is arranged on the third hydraulic cylinder 13 away from the pressing plate 10 side.
  • the push rod 133 can be inserted into the through hole 142 of the base 14 .
  • the piston rod 131 of the first hydraulic cylinder 12 is stretched out to push the sliding assembly 15, the hydraulic cylinder support seat 11, and the third hydraulic cylinder.
  • the cylinder 13 , the ejector rod 133 and the pressing plate 10 advance rapidly and stop after reaching the preset position, and the ejector rod 133 moves out of the through hole 142 of the base 14 .
  • the piston rod 131 of the second hydraulic cylinder 16 stretches out to push the support seat 11, the third hydraulic cylinder 13, the push rod 133 and the pressing plate 10 to rise to a predetermined height, and the axis of the push rod 133 is separated from the horizontal distance of the corresponding base 14.
  • Plate 141 is substantially flush.
  • the piston rod 131 of the third hydraulic cylinder 13 is stretched out to push the pressing plate 10 forward with a relatively large thrust to realize the pressing of the filter plate assembly.
  • the push rod 133 abuts against the partition plate 141 of the base 14 to provide supporting force for the third hydraulic cylinder 13 .
  • the piston rod 131 of the third hydraulic cylinder 13 retracts to drive the pressing plate 10 back.
  • the piston rod 131 of the second hydraulic cylinder 16 retracts, driving the hydraulic cylinder support seat 11, the third hydraulic cylinder 13, the ejector rod 133 and the pressing plate 10 to descend, and the ejector rod 133 descends to the axis corresponding to the through hole 142 of the base 14 Location.
  • the piston rod 131 of the first hydraulic cylinder 12 retracts, driving the slider, the support seat 11, the third hydraulic cylinder 13, the push rod 133 and the pressing plate 10 to retreat, and the push rod 133 is inserted into the through hole 142 of the base 14 to complete the reset .
  • Both the third hydraulic cylinder 13 and the ejector rod 133 are plural in number.
  • a push rod 133 is arranged on the cylinder body of each third hydraulic cylinder 13 .
  • Multiple third hydraulic cylinders 13 are arranged on the hydraulic cylinder support base 11 in a rectangular array.
  • a plurality of third hydraulic cylinders 13 cooperate to provide thrust for the pressing plate 10 to increase the working pressure of the filter press.
  • Increase the working pressure of the filter press by increasing the number of the third hydraulic cylinder 13, instead of increasing the working pressure of the single third hydraulic cylinder 13 to increase the working pressure of the filter press, the sealing effect of the third hydraulic cylinder 13 can be reduced. Damage to the parts and increase the life of the press.
  • the push rod 133 is a hollow structure to reduce the weight of the push rod 133 .
  • the filter plate assembly includes material molds 19 and water molds 18 of the same size and shape, the material molds 19 and water molds 18 are alternately arranged one to one, and the feed pipe 51 is connected with the material molds 19 for feeding
  • the water pipe 61 is connected with the water mold 18 .
  • the material heatless drying system 1 includes a thrust plate 110 arranged parallel to the support base 11 , the filter plate assembly is located between the thrust plate 110 and the support base 11 , and the outer end surface of the water mold 18 is provided with a diaphragm rubber.
  • material mold 19 is provided with feed inlet 193, and material film is also provided with discharge mechanism, and discharge mechanism comprises the slurry channel 195 that is arranged on the material film dividing plate 141, and slurry channel 195 is arranged on respectively.
  • discharge port 194 formed on both sides of the material film separator 141 and the flip cover 191 arranged on the discharge port 194 are made of elastic material, and the flip cover 191 covers the discharge port 194 .
  • a filter chamber 192 is formed between the material mold 19 and the water mold 18, the slurry enters the slurry passage 195 through the feed port 193, and the flip cover 191 is washed through the discharge port 194 to enter the filter chamber 192, and the slurry in the filter chamber 192
  • the material is preliminarily press-filtered to filter part of the water, and then the water mold 18 is filled with water, and the filter chamber 192 is further press-filtered to filter the water through the gradual expansion of the water mold 18, and finally the mud material forms a cake.
  • material mold 19 comprises filter plate 198, filter plate frame;
  • At least a part of the inner frame 196 is a synthetic resin cast body, and the rest of the material mold is a rigid metal body.
  • FIG. 5 is a schematic structural diagram of Embodiment 2 of the material heatless drying system 1 of the present application. Different from Embodiment 1, this embodiment only has one set of hydraulic cylinders, that is, the third hydraulic cylinder 13 .
  • the material heatless drying system 1 of this embodiment includes a base 14 , two side plates 17 spaced apart and fixed on the left and right sides of the base 14 , a plurality of third hydraulic cylinders 13 and a pressing plate 10 .
  • the third hydraulic cylinder 13 includes an oil cylinder outer cylinder, a piston rod 131 installed on the oil cylinder outer cylinder, and a plurality of fixed structures 132 are arranged on the base 14 corresponding to each oil cylinder outer cylinder, and the rear end surface of the fixed structure 132 and the oil cylinder outer cylinder Fixed connection.
  • a support seat 11 is installed between the side plates 17 of the two frames 2.
  • the support seat 11 has a plurality of front mounting holes which are sleeved on the front end of the outer cylinder of the oil cylinder.
  • the piston rod 131 passes through the front mounting holes and is fixedly connected to the press Tight board 10.
  • a rear fixing plate is arranged on the base 14, and a plurality of connection structures for fixedly connecting the two are arranged between the support base 11 and the rear fixing plate.
  • All oil cylinders in this embodiment are main oil cylinders, thereby improving the extrusion performance of the pressing plate 10, and sharing the load weight of the oil cylinders through the support seat 11, the frame side plate 17, the rear fixing plate and the base 14, and reducing the pressure of the oil cylinder.
  • the burden of the oil cylinder seat, in addition, the support seat 11 and the base 14 form two installation positions for the oil cylinder, so that the installation firmness of the oil cylinder is more reliable.
  • Figure 6 discloses a structure of a pressure balancing device 7, including a chamber filter press, a master cylinder 722 connected to it, that is, the third hydraulic cylinder 13, a filter plate assembly, a feed pipe 51 and a water inlet pipe. 61.
  • the hydraulic station 73 that provides hydraulic pressure to the main cylinder 722, the feed pipe 51 is provided with a feed pressure sensor 711, the squeeze liquid pipeline is provided with a squeeze pressure sensor 712, the outlet of the hydraulic station 73 is connected to a proportional pressure valve 730, and the chamber filter press
  • a controller 71 is arranged outside, and the feed pressure sensor 711 , the squeezing pressure sensor 712 and the proportional pressure valve 730 are all connected to the controller 71 .
  • the feeding and squeezing will not be carried out at the same time, but both the feeding pressure and the squeezing pressure will act on the filter chamber 192, so in this embodiment, the feeding pipe 51 and the squeezing liquid pipe are respectively Install a pressure sensor to measure the pressure of the feed pipe 51 and the squeeze liquid pipeline, and the working pressure of the filter chamber 192 can be obtained. After the pressure signals of the two sensors are compared by the controller 71, the value with the higher pressure is used as the filter chamber 192.
  • the filter plate 198 includes material molds 19 and water molds 18 with the same size and shape. The material molds 19 and water molds 18 are alternately arranged one to one.
  • a pair of thrust plates 110 and The compression plate 10 and the thrust plate 110 are fixedly connected with the body of the chamber filter press, the compression plate 10 is fixedly connected with the main cylinder 722, and the material mold 19 and the water mold 18 are located between the thrust plate 110 and the compression plate 10 .
  • the filter chamber 192 is set in a stacked sandwich shape, which can maximize the use of the working space, press and filter more materials, and work more efficiently.
  • the thrust plate 110 is the limit plate of the filter chamber 192 to prevent the filter chamber 192 from moving backwards.
  • the pressing plate 10 fixedly connected with the master cylinder 722 is the brake plate of the filter chamber 192 and is responsible for squeezing the filter chamber 192 .
  • the outer end face of water mold 18 is provided with diaphragm rubber. Diaphragm rubber isolates the filter cake from the water mold 18, prevents filter residue from entering the water mold 18, blocks the water mold 18, causes the water mold 18 to be unable to use normally, and makes the water mold 18 easier to clean.
  • the squeeze liquid is input from the water inlet pipe 61, and the controller 71 controls the proportional pressure valve 730 according to the information of the squeeze pressure sensor 712, so that the pressure of the third hydraulic cylinder 13
  • the first hydraulic cylinder 12 works to push the support seat 11 to move toward the thrust plate 110 .
  • the second hydraulic cylinder 16 works to push the supporting base 11 to move in a direction perpendicular to the moving direction of the sliding assembly 15 .
  • the third hydraulic cylinder 13 works to push the support base 11 to move toward the thrust plate 110 .
  • Mold closing after the filter cloth is arranged on the surface of the material mold 19, the thrust plate 110, the material mold 19, the water mold 18, and the support seat 11 are closely fitted to realize the mold closing.
  • the moisture after the material is press-filtered is discharged from the lower part of the material mold 19 and the water mold 18.
  • Squeeze dehydration After the pressure dehydration reaches the set conditions, stop feeding, input the squeezed liquid from the squeezed liquid pipeline to the water mold 18, when the pressure in the squeezed liquid pipeline rises, the squeezed pressure sensor 712 transmits the information to the controller 71.
  • P out KP in + P 0
  • P in takes the squeeze pressure.
  • the squeeze liquid pushes the diaphragm rubber on the surface of the water mold 18 to squeeze the filter cake, so that the residual liquid in the filter cake continues to be discharged.
  • Mold opening and unloading close the squeeze liquid pipeline, return the third hydraulic cylinder 13, pull the support seat 11, open the material mold 19 and water mold 18, and unload the dry filter cake to complete the filter press process.
  • FIG. 7 and FIG. 8 a schematic structural diagram of a filter press of the present application.
  • the filter press includes a base 3 and a frame 2 fixed on the base 3, and the material non-heat drying system 1 is fixed on the base 3 and the support.
  • the main feed pipe 5 and the feed pipe 51 communicating with the main feed pipe 5 are fixedly installed on the frame 2 , and the feed pipe 51 communicates with the feed port 193 of the material mold 19 .
  • the filter press also includes a water return device 4, the water return device 4 includes a water receiving bracket 43, a track 44 fixed on the water receiving bracket 43 and a drive assembly 42, and the bottom of the water receiving bracket 43 is installed with The legs 45 and the water tray assembly 41 are slidably connected to the track 44 and connected to the drive assembly 42 through the telescopic assembly.
  • the water receiving tray assembly 41 includes multiple sets of water receiving trays nested in sequence, the telescopic assembly is connected between at least two sets of water receiving trays among the multiple sets of water receiving trays, and the telescopic movement of the telescopic assembly drives the water receiving tray assembly 41 Adjust the relative position between the water receiving trays along the telescopic direction of the telescopic assembly.
  • the telescopic assembly includes a plurality of telescopic units, and each telescopic unit is connected between the at least two groups of water receiving trays. Sealing strips are provided at joints of adjacent water receiving trays in the water receiving tray assembly 41 .
  • the telescopic assembly is a scissor-type telescopic assembly, and one end abuts against the fixed end of the water tray assembly 41 , that is, the outermost water tray of the water tray assembly 41 .
  • the other end of the telescopic assembly abuts against the movable end of the water tray assembly 41 , that is, the innermost water tray of the water tray assembly 41 .
  • the innermost water receiving tray of the water receiving tray assembly 41 moves away from the fixed end of the water receiving tray assembly 41 , so that the water receiving tray assembly 41 is extended.
  • each telescopic unit When the telescopic assembly is in the process of stretching, each telescopic unit is gradually elongated, and the distance between the fixed points of the telescopic unit fixed on the two water trays is enlarged. Simultaneously, the other two sides of the rhombic outer contour of the telescopic unit The distance between each follow-up point is shortened, so as to realize the expansion of a single telescopic unit. Similarly, when the telescopic assembly is in the process of shrinking, each telescopic unit is gradually shortened, and the distance between the fixed points of the telescopic unit fixed on the two water trays is shortened. Simultaneously, the rhombic outer contour of the telescopic unit The distance between the other two follow-up points is extended, so as to realize the contraction of a single telescopic unit.
  • the water return device 4 also includes: a driving assembly 42, which is arranged on the base 3, and the driving assembly 42 is connected to the water receiving tray assembly 41 and/or the telescopic assembly, and is used to drive the water receiving tray assembly 41 to expand and contract .
  • the driving assembly 42 includes: a motor, arranged on the base 3; a sprocket, coupled to the motor; a bearing, the sprocket is coupled to the motor through the bearing; a chain, arranged on the sprocket , and the chain is connected to the water tray assembly 41 and/or the telescopic assembly.
  • Most of the existing water-receiving flaps of the filter press include two sets of flap mechanisms arranged symmetrically. It is in a closed state; and when the water removal treatment of the filter press is completed, the rotating drive assembly 42 drives the symmetrically arranged flap mechanism to turn downwards and open.
  • the water receiving flap of the filter press in this setting state has many disadvantages. When the water receiving flap is opened, a relatively high working space is required, which brings unfavorable factors to the installation arrangement of the filter press water return device 4 and easily leads to uneven installation. Or the deviation of the installation position will cause vibration or noise.
  • Most of the rotary drive components 42 use hydraulic drive sources, which need to be continuously replenished during the mold clamping process.
  • the water receiving flap will automatically open as the hydraulic pressure drops. Not only that, because the water-receiving flap requires a relatively large rotational force during the flapping process, the rotating drive assembly 42 needs to use a high-power drive device, which will undoubtedly have a certain negative impact on the site layout.
  • the overall expansion and contraction of the water return device 4 is realized by nesting multiple sets of water receiving trays and telescopic components.
  • the push plate 110 slides in the direction, and after reaching the predetermined position, the overall mold clamping of the filter press is carried out.
  • the drive mechanism 72 drives the water return device 4 to shrink, and slides in the direction of the oil cylinder seat until it reaches the predetermined storage position of the return water device 4, and then proceeds Die opening for filter press.
  • FIG. 11 discloses another embodiment of the filter press.
  • the difference from the fifth embodiment is that it also includes a squeezing main pipe 6 and a water inlet pipe 61 communicating with the squeezing main pipe 6 , one end of the water inlet pipe 61 communicates with the squeezing main pipe 6 and the other end communicates with the water mold 18 .
  • a water mold 18 is installed between two adjacent material molds 19, and a filter cloth is installed on the material mold 19, and the filter cloth extends to both sides of the material mold 19, and the two side walls of the diaphragm are provided with a diaphragm, and the diaphragm passes under the action of water pressure.
  • a feed main pipe 5 and a pressing main pipe 6 are installed on the same side of the frame 2.
  • the feeding main pipe 5 transports the medium to be filtered into the feed mold 19, and the pressing main pipe 6 is used for conveying water.
  • Each material mold 19 communicates with the feed main pipe 5 through a corresponding feed pipe 51
  • each water mold 18 communicates with the pressing main pipe 6 through a corresponding water inlet pipe 61 .
  • Embodiment 6 The difference from Embodiment 6 is that the feed main pipe 5 and the pressing main pipe 6 of this filter press are fixed on the side plate 17 on the same side of the frame 2, and the feeding main pipe 5 and the pressing main pipe 6 are arranged up and down to reduce the overall volume of the filter press , thereby reducing the area occupied by the filter press.
  • the feeding main pipe 5 and the pressing main pipe 6 are directly fixed on the base 3, which not only reduces the number of fixing brackets, but also reduces the manufacturing cost. No on-site production is required, and it can be shipped directly with the car.
  • This embodiment discloses a method for controlling a filter press, comprising the following steps:
  • System detection before mold closing detect whether all the motors of the hydraulic station are in the remote position
  • Mold clamping execution the first hydraulic cylinder 12 works to push the support seat 11 to move toward the thrust plate 110; the second hydraulic cylinder 16 works to push the support seat 11 to move in a direction perpendicular to the moving direction of the sliding assembly 15;
  • the three hydraulic cylinders 13 work to push the support seat 11 to move towards the thrust plate 110; after the filter cloth is set on the surface of the material mold 19, the thrust plate 110, the material mold 19, the water mold 18, and the support seat 11 are closely fitted to realize mold closing ;
  • Feeding Whether the hydraulic system has completed the pressure balance. If it has not entered the state of the balance pressure completion, the system cannot perform the feeding operation; check whether the return valve is closed in place; check whether the water receiving plate is in place; check whether the liquid level of the material tank meets the feeding conditions . Feed pump motor starts.
  • Balanced pressure control pressure dehydration
  • the material enters the material mold 19 from the feed pipe 51, and reaches the filter chamber 192 formed by the material mold 19 and the water mold 18.
  • the pressure of the feed pipe 51 increases, and the feed pressure sensor 711 transmits the information
  • the controller 71 increases the pressure of the third hydraulic cylinder 13 by controlling the proportional pressure valve 730. From the beginning to the end, the hydraulic pressure of the third hydraulic cylinder 13 satisfies the following relationship:
  • P out KP in + P 0 , P in is the feed pressure, K is the proportional coefficient;
  • the water after the material is press-filtered is discharged from the lower part of the material mold 19 and the water mold 18;
  • the squeezed pressure sensor 712 transmits the information to the controller 71.
  • the high-pressure backwater valve is slowly opened according to the process requirements until it reaches the maximum position; when the pressing pressure drops below the allowable value of the system, the diaphragm pump starts; the backwater timing is performed according to the system setting time, and the backwater action ends when the timing is reached.
  • the high-pressure return valve and the diaphragm pump are started according to the state of the return process.
  • Mold opening and unloading close the squeeze liquid pipeline, return the third hydraulic cylinder 13, pull the support seat 11, open the material mold 19 and water mold 18, and dry
  • the filter cake is discharged to complete the filter press process.

Abstract

本申请公开了一种物料无热干化系统、压滤机控制方法及压滤机,物料无热干化系统包括:压榨装置,包括导向装置和沿导向装置滑移的滤板组件;进料装置,包括与滤板组件连接的进料管和进水管;驱动装置,包括驱动压榨装置运动的驱动机构;衡压装置,包括电磁阀门、与所述进料管连接的进料压力传感器和与所述进水管连接的压榨压力传感器;其中,当所述滤板组件滑移至预设位置时驱动机构停止工作,对应电磁阀门进行得失电动作,所述衡压装置切换进入衡压模式。本申请压滤机可以进行智能衡压控制,减少液压油使用的同时还能提供足够的工作压力。

Description

一种物料无热干化系统、压滤机控制方法及压滤机 技术领域
本申请涉及压滤设备领域,尤其涉及一种物料无热干化系统、压滤机控制方法及压滤机。
背景技术
压滤机是实现固液分离的设备,广泛使用于化工、石油、媒矿、制药、食品、市政等行业。现有的压滤机一般都是在机架的前/后端设置止推板,后/前端设置压紧板,在止推板与压紧板之间设置一组滤板,滤板通过其左右两侧手柄与机架主梁上的导轨连接,在压滤机工作过程中,油缸组推动压紧板使滤板组之间靠紧,压滤完成后在拉板小车拉动作用下滤板之间分离,如此往复运动实现固液的分离。现有的压滤机在工作过程中油缸压力不能智能调节,造成这种加压方法使滤板组件的边框受力在每个工作周期都会经历大小循环的变化过程,容易造成边框疲劳破坏,也限制了滤室的最大工作压力不能太高。
基于以上问题,有必要研发出新的压滤机,以稳定压滤机滤板组件内部工作压力。
发明内容
为了实现压滤机滤板组件内部衡压、降低滤板组件疲劳破坏的几率,本申请提供了一种物料无热干化系统、压滤机控制方法及压滤机。
第一方面,本申请提供的一种物料无热干化系统,包括:压榨装置,包括导向装置和沿导向装置滑移的滤板组件;进料装置,包括与滤板组件连接的进料管和进水管;驱动装置,包括驱动压榨装置运动的驱动机构;衡压装置,包括电磁阀门、与所述进料管连接的进料压力传感器和与所述进水管连接的压榨压力传感器;其中,当所述滤板组件滑移至预设位置时驱动机构停止工作,对应电磁阀门进行得失电动作,所述衡压装置切换进入衡压模式。
结合第一方面,进一步的方案,所述驱动机构包括滑动组件和与所述滑动组件连接的支撑座,所述支撑座连接有第一液压缸、第二液压缸和第三液压缸;其中,所述第一液压缸的轴线和所述第三液压缸的轴线分别与滑动组件的移动方向平行,所述第一液压缸和所述第三液压缸用于驱动所述支撑座沿所述滑动组件移动方向移动;所述第二液压缸设置于所述滑动组件上用于驱动所述支撑座沿与所述滑动组件移动方向相垂直的方向移动。
通过采用上述技术方案,压滤机压紧时,初期不需要过大的压力,所以第一液压缸为快速推进液压缸,用油量小,不需要提供过大的推力,但能够实现快速推进,第一液压缸可以带动第三液压缸沿着滑动组件移动方向快速前后移动,缩短了第三液压缸的行程,减少压滤机压紧前液压油的使用。本方案可以设置多个第三液压缸配合,能够为压滤机提供足够的工作压力。第二液压缸带动第三液压缸在与所述滑动组件移动方向相垂直的方向升降,可以调节第三液压缸的工作位置以适应不同的工作需求。
结合第一方面,进一步的方案,该系统还包括衡压装置和与进料管、进水管,所述衡压装置包括:与所述进料管连接的进料压力传感器、与所述进水管连接的压榨压力传感器和为所述第三液压缸提供液压的液压站,所述第三液压缸连接比例压力阀。此外,所述衡压装置还包括与所述进料压力传感器、压榨压力传感器和所述比例压力阀均连接的控制器,所述控制器用于在脱水工作时通过控制比例压力阀调节所述第三液压缸的压力。
通过采用上述技术方案,根据厢式压滤机的工作特性,进料和压榨不会同时进行,但进料压力和压榨压力都会作用在滤室上。通过采用上述技术方案,分别在进料管和压榨液管道上安装压力传感器,测量进料管和压榨液管道的压力,可以得出滤室工作压力的大小,根据传感器反馈的压力信息,通过控制器控制比例压力阀自动调节第三液压缸的工作压力,不用增加增压缸,结构简单,工作可靠,造价低,故障率也大幅下降。
结合第一方面,进一步的方案,所述衡压装置配置为:在压力脱水时,所述控制器根据进料压力传感器信息控制比例压力阀,使得自始至终,第三液压缸的液压满足以下关系:P =KP +P 0,其中,P 为控制器 输出压力,也即第三液压缸的工作压力,此时P 取进料压力,P 0为预紧压力,K为比例系数;在挤压脱水时,当压力脱水达到设定条件后,从进水管中输入压榨液,所述控制器根据压榨压力传感器信息控制比例压力阀,使得自始至终,第三液压缸的液压满足以下关系:P =KP +P 0,其中,此时P 取压榨压力。
通过采用上述技术方案,两个传感器的压力信号经控制器比较后,把压力大的一个值作为滤室工作压力P ,并由控制器依据P 输出一个压力信号P ,该输出信号控制比例压力阀的溢流压力。当油泵向第三液压缸供油时,确保了第三液压缸工作压强=滤室工作压强*系数+预紧压强,如第三液压缸的压强大于KP +P 0,则比例压力阀溢流,使第三液压缸的压强始终等于KP +P 0。如第三液压缸压强低于KP +P 0,则启动液压油泵,向第三液压缸补压,直到第三液压缸压强等于KP +P 0。既能有效避免滤板自动打开造成漏料,又不至于使滤板边框在滤室无压力时承受过大的压强。
结合第一方面,进一步的方案,所述支撑座连接有滤板,所述滤板包括大小、形状一致的料模和水模,所述料模和水模一比一交替设置,所述进料管与所述料模连接,所述进水管与所述水模连接;所述物料无热干化系统还包括与所述支撑座平行设置的止推板,所述滤板组件位于所述止推板和支撑座之间,所述水模的外端面设有隔膜胶皮。
通过采用上述技术方案,将滤室设置为层叠三明治状,可以最大程度上利用工作空间,压滤更多的物料,工作效率更高,而止推板为滤室的限位板,防止滤室往后移动,与第三液压缸固定连接的支撑座为滤室的制动板,负责对滤室进行挤压。
结合第一方面,进一步的方案,该系统还包括进料主管和压榨主管,每个所述料模通过对应的所述进料管与所述进料主管连通,每个所述水模通过对应的所述进水管与所述压榨主管连通,所述进料主管设和所述压榨主管上下布置。
通过采用上述技术方案,本压滤机进料主管与压榨主管固定于机架同一侧的侧板上,进料主管与压榨主管上下布置,减少压滤机整体体积,从而减少压滤机占地面积。本结构进料主管与压榨主管直接固定于侧板上,减少了固定支架的同时也减少制作成本,无需现场制作,可直接随车发货。
结合第一方面,进一步的方案,该系统还包括进料主管和压榨主管,所述支撑座连接有滤板组件,所述滤板组件包括大小、形状一致的料模和水模,所述料模和水模一比一交替设置,所述进料管与所述料模连接,所述进水管与所述水模连接;其中,每个料模通过对应的进料管与进料主管连通,每个水模通过对应的进水管与压榨主管连通,所述进料主管设在压榨主管的上方。
通过采用上述技术方案,将滤室设置为层叠三明治状,可以最大程度上利用工作空间,压滤更多的物料,工作效率更高。进料主管与压榨主管固定于机架同一侧的侧板上,进料主管与压榨主管上下布置,减少压滤机整体体积,从而减少压滤机占用面积。
结合第一方面,进一步的方案,还包括料膜的出料机构,所述出料机构包括设置在料膜隔板内的浆料通道、浆料通道分别在料膜隔板的两面上形成的出料口、设置在出料口的翻盖;所述翻盖为弹性材质,所述翻盖覆盖所述出料口。
通过采用上述技术方案,通过安装座和料膜隔板对基部的夹持作用,在能够固定翻盖的前提下,使得翻盖部的顶部全部为弹性材质,成为完整的弹性结构,增强了进料时发生弹性形变的负荷能力,降低了易损耗性,延长使用寿命。并且,翻盖部作为完整的弹性结构,在被浆料冲击时在整体上的弯曲变形,可以增大翻盖部的开合角度,从而提高进料效率。
结合第一方面,进一步的方案,所述物料无热干化系统还包括与所述支撑座平行设置的止推板,所述滤板组件位于所述止推板和支撑座之间,所述水模的外端面设有隔膜胶皮。
通过采用上述技术方案,止推板为滤室的限位板,防止滤室往后移动,与第三液压缸固定连接的支撑座为滤室的制动板,负责对滤室进行挤压。水模外端面设有隔膜胶皮,隔膜胶皮通过水压的作用下向外鼓起并挤压料模上的待过滤介质,从而实施二次压滤。
结合第一方面,进一步的方案,所述料模包括滤板、滤板边框;所述滤板边框包括设置在滤板边缘并且厚度大于滤板的外框、设置在外框体内围面上以及滤板表面上的内框;所述内框的厚度由外至内逐渐减小;所述内框至少一部分为合成树脂类浇注体,料模的其余部分为刚性金属体。
通过采用上述技术方案,将内框部分或全部设为合成树脂类浇注体,将料模滤板的其余部分都设置为刚性金属体,能够在不降低料模滤板受压性能的前提下减轻整体重量,不仅使得料模滤板的加工、安装更为方便,而且能节省金属用料,另外,轻质化的料模滤板还能节省厂房基础建设,综合降低了成本。
结合第一方面,进一步的方案,还包括回水装置,所述回水装置包括:接水盘组件,包括依次嵌套设置的多组接水盘;伸缩组件,连接于所述多组接水盘中的至少两组接水盘之间,所述伸缩组件的伸缩运动带动所述接水盘组件沿所述伸缩组件的伸缩方向调节接水盘之间的相对位置。
通过采用上述技术方案,通过嵌套设置的多组接水盘和伸缩组件实现接水盘组件整体的伸缩,在压滤机的滤板组合模前,通过驱动机构带动接水盘组件伸展,向止推板的方向滑动,到达预定位置后,进行压滤机的整体合模。压滤机完成合模压榨作业后,在压滤机开模之前,通过驱动机构带动接水盘组件收缩,向支撑座的方向滑动,直至到达接水盘组件的预定收纳位置,然后进行压滤机的开模。可以对压滤机溢出的液体进行导流收集,占用空间小便于布置,可移动便于清理和收纳。
结合第一方面,进一步的方案,所述伸缩组件包括多个伸缩单元,每个伸缩单元连接于所述至少两组接水盘之间。
通过采用上述技术方案,通过至少两组接水盘连接形成伸缩单元,实现接水盘组件整体的伸缩,占用空间小便于布置,可移动便于清理和收纳。
结合第一方面,进一步的方案,所述接水盘组件中相邻接水盘的连接处设置有密封条。
通过采用上述技术方案,用于在接水盘组件对压滤机中溢出的液体进行导流、收集的过程中,防止溢出的液体通过相邻接水盘的连接处的缝隙渗漏,从而保证本申请的接水盘组件对于压滤机中溢出的液体有着良好的导流、收集效果。
结合第一方面,进一步的方案,所述回水装置还包括:接水支架和设置于接水支架上的驱动组件,所述驱动组件连接于所述接水盘组件和/或所述伸缩组件。所述驱动组件包括:电机,设置于所述底座上;链轮,耦接于所述电机;轴承,所述链轮通过所述轴承耦接于所述电机;链条,设置于所述链轮,且所述链条连接于所述接水盘组件和/或所述伸缩组件。
通过采用上述技术方案,驱动组件可以对接水盘伸缩组件提供驱动力,驱动伸缩组件伸缩。采用链轮链条传动方式将电机的动力传递给伸缩组件实现伸缩工作,结构简单可靠。
第二方面,基于上述物料无热干化系统,本申请还提供了一种压滤机控制方法,包括以下步骤:合模前系统检测:检测液压站所有电机是否全部打在远程位置。合模执行:第一液压缸工作,推动支撑座向止推板方向移动;第二液压缸工作,推动支撑座沿与所述滑动组件移动方向相垂直的方向移动;第三液压缸工作,推动支撑座向止推板方向移动;在料模表面设置滤布后,止推板、料模、水模、支撑座紧密贴合实现合模。衡压控制:压力脱水,物料从进料管进入料模,到达料模和水模形成的滤室,此时进料管压力升高,进料压力传感器将信息传送到控制器,控制器通过控制比例压力阀,使第三液压缸的压力随着提高,自始至终,第三液压缸的液压满足以下关系:P =KP +P 0,P 取进料压力,K为比例系数;物料压滤后的水分从料模和水模的下部排出;挤压脱水,压力脱水达到设定条件后,停止进料,从压榨液管道中输入压榨液到水模,当压榨液管道中的压力升高时,压榨压力传感器将信息传送到控制器,控制器通过控制比例压力阀,使第三液压缸的压力随着提高,自始至终,第三液压缸的液压满足以下关系:P =KP +P 0,P 取压榨压力,K为比例系数;压榨液推动水模表面的隔膜胶皮,挤压滤饼,使滤饼中的残液继续排出。开模及卸料:关闭压榨液管道,第三液压缸返回,拉动支撑座,打开料模和水模,将干燥的滤饼卸出,完成压滤过程。
通过采用上述技术方案,工作时,通过三个液压缸协同工作,缩短了第三液压缸的行程,减少液压油 的使用。当油泵向第三液压缸供油时,确保了第三液压缸工作压强=滤室工作压强*系数+预紧压强,如第三液压缸的压强大于KP +P 0,则比例压力阀溢流,使第三液压缸的压强始终等于KP +P 0。如第三液压缸压强低于KP +P 0,则启动液压油泵,向第三液压缸补压,直到第三液压缸压强等于KP +P 0。既能有效避免滤板自动打开造成漏料,又不至于使滤板边框在滤室无压力时承受过大的压强。
第三方面,本申请还提供了一种压滤机,包括如上所述的物料无热干化系统。
通过采用上述技术方案,压滤机具有上述物料无热干化系统所述的优点,液压油的用量相对小、充油时间短。
第四方面,本申请还提供了一种压滤机,采用如上所述的压滤机控制方法工作。
通过采用上述技术方案,压滤机可以自动控压,既能有效避免滤板自动打开造成漏料,又不至于使滤板边框在滤室无压力时承受过大的压强。
综上所述,本申请具有以下至少一种有益技术效果:
1、本申请物料无热干化系统,可以稳定压滤机滤板组件内部工作压力降低滤板组件疲劳破坏的几率,同时缩短了第三液压缸的行程,减少了驱动过程中液压油的使用。
2、本申请物料无热干化系统,实现智能控压,既能有效避免滤板自动打开造成漏料,又不至于使滤板边框在滤室无压力时承受过大的压强。
3、本申请物料无热干化系统,将滤室设置为层叠三明治状,可以最大程度上利用工作空间,压滤更多的物料,工作效率更高。
4、本申请物料无热干化系统,可以实时监控工作状态,避免出现安全事故。
5、本申请物料无热干化系统,轻质化的料模滤板设计能节省厂房基础建设,综合降低了成本。
6、本申请物料无热干化系统,翻盖部作为完整的弹性结构,在被浆料冲击时在整体上的弯曲变形,可以增大翻盖部的开合角度,从而提高进料效率。
7、本申请物料无热干化系统,可以对压滤机溢出的液体进行导流收集,占用空间小便于布置,可移动便于清理和收纳。
8、本申请控制方法,通过两个传感器信号反馈和控制器的自动调整输出压力,确保了第三液压缸的压强始终等于KP +P 0。可以保证第三液压缸工作过程的压力平衡,保证了压滤工作的稳定性和一致性,也降低了故障提升了压滤机的寿命。
9、本申请压滤机,解决了压滤机液压油的用量大、充油时间长的技术问题。可以自动控压,既能有效避免滤板自动打开造成漏料,又不至于使滤板边框在滤室无压力时承受过大的压强。
附图说明
图1是本申请物料无热干化系统实施例一的结构示意图;
图2是本申请物料无热干化系统实施例一剖面结构示意图;
图3是图2中A处放大结构示意图;
图4是本物料无热干化系统的料模的结构示意图;
图5是本申请物料无热干化系统实施例二的结构示意图;
图6是本申请衡压装置结构示意图;
图7是本申请压滤机第一角度的结构示意图;
图8是本申请压滤机第一角度的剖面结构示意图;
图9本申请压滤机的回水装置结构示意图;
图10是本申请压滤机第二角度的结构示意图;
图11是本申请压滤机第二角度的剖面结构示意图。
附图标记:1、物料无热干化系统;10、压紧板;11、支撑座;110、止推板;12、第一液压缸;13、 第三液压缸;131、活塞杆;132、固定结构;133、顶杆;14、基座;141、隔板;142、通孔;15、滑动组件;151、导轨;16、第二液压缸;17、侧板;18、水模;19、料模;191、翻盖;192、滤室;193、进料口;194、出料口;195、浆料通道;196、内框;197、外框;198、滤板;2、机架;21、孔道;3、底座;4、回水装置;41、接水盘组件;42、驱动组件;43、接水支架;44、轨道;45、支脚;5、进料主管;51、进料管;6、压榨主管;61、进水管;7、衡压装置;71、控制器;711、进料压力传感器;712、压榨压力传感器;72、驱动机构;721、滤板组件;722、主缸;73、液压站;730、比例压力阀。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明做进一步详细说明。通常在此处附图中描述和示出的本发明实施例的组件可以各种不同的配置来布置和设计。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。在本申请的描述中,需要理解的是,术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例中的特征可以相互组合。
实施例一:
请参阅图1至图4所示,本申请物料无热干化系统1实施例一的结构示意图。物料无热干化系统1包括压榨装置、进料装置、开模装置、衡压装置7、回水装置4。压榨装置包括导轨151和沿导轨151滑移的滤板组件,
进料装置包括与滤板198组件连接的进料管51和进水管61。开模装置包括驱动压榨装置运动的驱动机构72,衡压装置7包括电磁阀门、与所述进料管51连接的进料压力传感器711和与所述进水管61连接的压榨压力传感器712。回水装置4包括用于对压榨装置流出的残液进行导流的接水盘组件41。当所述滤板198组件滑移至预设位置时驱动机构72停止工作,对应电磁阀门进行得失电动作,所述衡压装置7切换进入衡压模式。
请参阅图1所示,一种压滤机物料无热干化系统1,包括驱动机构72,驱动机构72包括滑动组件15和与所述滑动组件15连接的支撑座11,支撑座11连接有第一液压缸12、第二液压缸16和第三液压缸13。第一液压缸12的缸体固定在基座14上,第一液压缸12的活塞杆131与滑动组件15连接,本实施例的第一液压缸12为快速推进液压缸,不需要提供过大的推力,但能够实现快速推进。滑动组件15包括导轨151和滑块,导轨151沿第一液压缸12的活塞杆131的伸缩方向延伸。本实施例中,导轨151设置于压滤机的侧板17的上表面。可选地,在左侧板和右侧板上均设有导轨151,为液压缸支撑座11的前后移动提供稳定的导向。导轨151还可作为压滤机的滤板组件的导轨151使用。滑块可滑动的设置于导轨151上。第一液压缸12的活塞杆131连接滑块,第一液压缸12带动滑块沿导轨151滑动。
第二液压缸16设置于滑块的上表面,第二液压缸16的活塞杆131能够沿与第一液压缸12伸缩方向垂直的方向伸缩。液压缸支撑座11连接第二液压缸16,第二液压缸16能够带动支撑座11进行升降。液压缸支撑座11与基座14相互平行设置。第一液压缸12通过滑块能够带动液压缸支撑座11前后移动,第二液 压缸16能够带动液压缸支撑座11进行升降。
第三液压缸13设置于液压缸支撑座11上。本实施例中,第三液压缸13的缸体穿过支撑座11安装在支撑座11中。第三液压缸13的活塞杆131的伸缩方向与第一液压缸12的活塞杆131伸缩方向相同,第三液压缸13连接压滤机的压紧板10,在物料无热干化系统1远离基座14的一端设有止推板110,滤板组件设置于压紧板10和止推板110之间。
第一液压缸12的轴线和第三液压缸13的轴线分别与滑动组件15的移动方向平行,第一液压缸12和所述第三液压缸13用于驱动所述支撑座11沿所述滑动组件15移动方向移动;第二液压缸16用于驱动所述支撑座11沿与滑动组件15移动方向相垂直的方向移动。
基座14包括隔板141和隔板141之间形成的通孔142,第三液压缸13的缸体上固定有顶杆133,顶杆133设置于第三液压缸13的远离压紧板10的一侧。顶杆133能够插入基座14的通孔142内。本实施例的驱动结构,在压滤机压紧过程中,初期不需要过大的压力,第一液压缸12的活塞杆131伸出,推动滑动组件15、液压缸支撑座11、第三液压缸13、顶杆133和压紧板10快速前进,达到预设位置后停止,顶杆133移出基座14的通孔142。第二液压缸16的活塞杆131伸出,推动支撑座11、第三液压缸13、顶杆133和压紧板10上升预设高度,顶杆133的轴线与对应的基座14的水平隔板141基本平齐。第三液压缸13的活塞杆131伸出,以较大的推力推动压紧板10前进,实现滤板组件的压紧。第三液压缸13推动压紧板10前进时,顶杆133抵住基座14的隔板141,为第三液压缸13提供支撑力。压滤机的滤板组件需要分离时,第三液压缸13的活塞杆131收回,带动压紧板10后退。第二液压缸16的活塞杆131收回,带动液压缸支撑座11、第三液压缸13、顶杆133和压紧板10下降,顶杆133下降至轴线对应基座14的通孔142的轴线位置。第一液压缸12的活塞杆131收回,带动滑块、支撑座11、第三液压缸13、顶杆133和压紧板10后退,顶杆133插入基座14的通孔142中,完成复位。
第三液压缸13和顶杆133的数量均为多个。每个第三液压缸13的缸体上设置一个顶杆133。多个第三液压缸13以矩形阵列的形式设置在液压缸支撑座11上。多个第三液压缸13配合共同为压紧板10提供推力,以增大压滤机的工作压力。通过增加第三液压缸13的数量增大压滤机的工作压力,而不是通过增大单个第三液压缸13的工作压力以提高压滤机的工作压力,可以降低第三液压缸13对密封件的损伤,提高压力机的寿命。根据本申请一个可选的技术方案,顶杆133为空心结构,以减轻顶杆133的重量。
请参阅图2所示,滤板组件包括大小、形状一致的料模19和水模18,所述料模19和水模18一比一交替设置,进料管51与料模19连接,进水管61与水模18连接。物料无热干化系统1包括与支撑座11平行设置的止推板110,滤板组件位于止推板110和支撑座11之间,水模18的外端面设有隔膜胶皮。
请参阅图3所示,料模19设有进料口193,料膜还设有出料机构,出料机构包括设置在料膜隔板141内的浆料通道195、浆料通道195分别在料膜隔板141的两面上形成的出料口194、设置在出料口194的翻盖191,翻盖191为弹性材质,翻盖191覆盖出料口194。在料模19和水模18之间形成滤室192,浆料通过进料口193进入浆料通道195,并通过出料口194冲开翻盖191进入到滤室192,在滤室192内浆料被初步压滤过滤部分水分,然后水模18注水,通过水模18的逐步膨胀对滤室192进一步压滤过滤水分,最终泥浆料形成料饼。
请参阅图4所示,料模19包括滤板198、滤板边框;滤板边框包括设置在滤板198边缘并且厚度大于滤板198的外框197、设置在外框197体内围面上以及滤板198表面上的内框196,内框196的厚度由外至内逐渐减小。内框196至少一部分为合成树脂类浇注体,料模的其余部分为刚性金属体。
实施例二:
请参阅图5所示,本申请物料无热干化系统1实施例二的结构示意图。与实施例一不同的是,本实施例只设有一组液压缸,也就是第三液压缸13。本实施例的物料无热干化系统1包括基座14、两个间隔开并且固定在基座14左右两侧的侧板17、多个第三液压缸13以及压紧板10。第三液压缸13包括油缸外筒、 安装在油缸外筒上的活塞杆131,基座14上对应每个油缸外筒均设有多个固定结构132,固定结构132和油缸外筒的后端面固定连接。两个机架2的侧板17之间安装有支撑座11,支撑座11具有多个套接在油缸外筒前端上的前安装孔,活塞杆131穿过前安装孔并固定连接所述压紧板10。基座14上设有后固定板,支撑座11和后固定板之间设有多个固定连接两者的连接结构。
本实施例所有的油缸均为主油缸,从而提高压紧板10的挤压性能,并且通过支撑座11、机架侧板17、后固定板以及基座14共同分摊油缸的负载重量,减轻了油缸座的负担,此外,支撑座11、基座14形成了对油缸的两处安装位置,使得油缸的安装牢固性更为可靠。
实施例三:
请参阅图6所示,公开了一种衡压装置7结构,包括厢式压滤机、与其配套连接的主缸722也即第三液压缸13、滤板组件、进料管51和进水管61、为主缸722提供液压的液压站73,进料管51设置进料压力传感器711,压榨液管道设置压榨压力传感器712,液压站73的出口连接比例压力阀730,厢式压滤机的外部设有一控制器71,进料压力传感器711、压榨压力传感器712和比例压力阀730均与控制器71相连接。根据厢式压滤机的工作特性,进料和压榨不会同时进行,但进料压力和压榨压力都会作用在滤室192上,因此本实施例分别在进料管51和压榨液管道上分别安装压力传感器,测量进料管51和压榨液管道的压力,可以得出滤室192工作压力的大小,两个传感器的压力信号经控制器71比较后,把压力大的一个值作为滤室192工作压力P ,并按下式控制比例压力阀730的输出压力P ,P =KP +P 0,式中k为滤板198面积与主缸722截面积之比值,也可以取滤室192与主缸722截面积之比,P 0为预紧压强,P 为滤室192工作压强,P 为主缸722工作压强,确保了主缸722工作压强=滤室192工作压强*系数+预紧压强,工作时,当油泵向主缸722供油时,确保了主缸722工作压强=滤室192工作压强*系数+预紧压强,如主缸722的压强大于KP +P 0,则比例压力阀730溢流,使主缸722的压强始终等于KP +P 0。如主缸722压强低于KP +P 0,则启动液压油泵,向主缸722补压,直到主缸722压强等于KP +P 0。既能有效避免滤板198自动打开造成漏料,又不至于使滤板边框在滤室192无压力时承受过大的压力。滤板198包括大小形状一致的料模19和水模18,料模19和水模18一比一交替设置,厢式压滤机的两侧在竖直方向上设有一对止推板110和压紧板10,止推板110与厢式压滤机的机体固定连接,压紧板10与主缸722固定连接,料模19和水模18位于止推板110和压紧板10之间。将滤室192设置为层叠三明治状,可以最大程度上利用工作空间,压滤更多的物料,工作效率更高,而止推板110为滤室192的限位板,防止滤室192往后移动,与主缸722固定连接的压紧板10为滤室192的制动板,负责对滤室192进行挤压。水模18的外端面设有隔膜胶皮。隔膜胶皮将滤饼和水模18隔离,防止滤渣进入到水模18中,堵塞水模18,造成水模18无法正常使用,更能使水模18方便清洗。
本实施例的工作原理如下:在压力脱水时,所述控制器71根据进料压力传感器711信息控制比例压力阀730,使得自始至终,第三液压缸13的液压满足以下关系:P =KP +P 0,其中,P出为控制器71输出压力,也即第三液压缸13的工作压力,此时P 取进料压力,P 0为预紧压力,K为比例系数。在挤压脱水时,当压力脱水达到设定条件后,从进水管61中输入压榨液,所述控制器71根据压榨压力传感器712信息控制比例压力阀730,使得自始至终,第三液压缸13的液压满足以下关系:P =KP +P 0,其中,此时P 取压榨压力。
本实施例的工作过程如下:
第一液压缸12工作,推动支撑座11向止推板110方向移动。第二液压缸16工作,推动支撑座11沿与所述滑动组件15移动方向相垂直的方向移动。第三液压缸13工作,推动支撑座11向止推板110方向移动。
合模:在料模19表面设置滤布后,止推板110、料模19、水模18、支撑座11紧密贴合实现合模。
压力脱水:物料从进料管51进入料模19,到达料模19和水模18形成的滤室192,此时进料管51压 力升高,进料压力传感器711将信息传送到控制器71,控制器71通过控制比例压力阀730,使第三液压缸13的压力随着提高,自始至终,第三液压缸13的液压满足以下关系:P =KP +P 0,P 取进料压力;
物料压滤后的水分从料模19和水模18的下部排出。
挤压脱水:压力脱水达到设定条件后,停止进料,从压榨液管道中输入压榨液到水模18,当压榨液管道中的压力升高时,压榨压力传感器712将信息传送到控制器71,控制器71通过控制比例压力阀730,使第三液压缸13的压力随着提高,自始至终,第三液压缸13的液压满足以下关系:P =KP +P 0,P 取压榨压力。压榨液推动水模18表面的隔膜胶皮,挤压滤饼,使滤饼中的残液继续排出。
开模及卸料:关闭压榨液管道,第三液压缸13返回,拉动支撑座11,打开料模19和水模18,将干燥的滤饼卸出,完成压滤过程。
实施例四:
请参阅图7和图8所示,本申请的一种压滤机结构示意图。压滤机包括底座3和底座3上固定的机架2,物料无热干化系统1固定在底座3和支架上。在机架2上还固定安装有进料主管5和与进料主管5连通的进料管51,进料管51与料模19的进料口193连通。
实施例五:
请参阅图9和图10所示,公开了压滤机的另一实施例。与实施例四不同的是,压滤机还包括回水装置4,回水装置4包括接水支架43和固定于接水支架43上的轨道44和驱动组件42,接水支架43底部安装有支脚45,接水盘组件41滑动连接于轨道44上通过伸缩组件与驱动组件42连接。接水盘组件41包括依次嵌套设置的多组接水盘,伸缩组件连接于所述多组接水盘中的至少两组接水盘之间,伸缩组件的伸缩运动带动接水盘组件41沿伸缩组件的伸缩方向调节接水盘之间的相对位置。伸缩组件包括多个伸缩单元,每个伸缩单元连接于所述至少两组接水盘之间。接水盘组件41中相邻接水盘的连接处设置有密封条。
伸缩组件为剪叉式伸缩组件,一端抵接于接水盘组件41的固定端,即接水盘组件41的最外层接水盘。伸缩组件的另一端抵接于接水盘组件41的活动端,即接水盘组件41的最内层接水盘。随着伸缩组件的伸缩运动,接水盘组件41的最内层接水盘朝着远离接水盘组件41的固定端的方向移动,从而使得接水盘组件41延展开。当伸缩组件处于伸展的过程中,每个伸缩单元逐渐被拉长,伸缩单元固定于两个接水盘上的固定点的距离被拉大,与此同步的,伸缩单元菱形外轮廓的另外两个随动点之间的距离被拉近,从而实现单个伸缩单元的伸展。同理,当伸缩组件处于收缩的过程中,每个伸缩单元逐渐被拉短,伸缩单元固定于两个接水盘上的固定点的距离被拉小,与此同步的,伸缩单元菱形外轮廓的另外两个随动点之间的距离被拉远,从而实现单个伸缩单元的收缩。
回水装置4还包括:驱动组件42,设置于所述底座3上,驱动组件42连接于所述接水盘组件41和/或所述伸缩组件,用于驱动接水盘组件41扩展和收缩。驱动组件42包括:电机,设置于所述底座3上;链轮,耦接于所述电机;轴承,所述链轮通过所述轴承耦接于所述电机;链条,设置于所述链轮,且所述链条连接于所述接水盘组件41和/或所述伸缩组件。
现有的压滤机接水翻板大多包括两组呈对称设置的翻板机构,在使用的过程中,当压滤机对待处理污泥进行压滤除水处理的过程中,接水翻板处于闭合的状态;而当压滤机除水处理完成后,通过旋转驱动组件42带动呈对称设置的翻板机构向下转动打开。这种设置状态的压滤机接水翻板存在诸多弊端,接水翻板打开时需要较高的作业空间,对压滤机回水装置4的安装布置带来了不利因素,容易导致安装不平或安装位置偏差而造成振动或噪音。旋转驱动组件42大多选用液压驱动源,在合模的过程中需要不断进行补压,一旦液压下降到低于一定阈值,接水翻板会随着液压下降而自动打开。不仅如此,由于接水翻板在翻板过程中需要较大的转动力,其旋转驱动组件42需要选用大功率的驱动装置,这无疑会对现场布置带来一定的负面影响。
本实施例通过嵌套设置的多组接水盘和伸缩组件实现回水装置4整体的伸缩,在压滤机的滤板198组 合模前,通过驱动机构72带动回水装置4伸展,向止推板110的方向滑动,到达预定位置后,进行压滤机的整体合模。直至压滤机完成合模压榨作业后,在压滤机开模之前,通过驱动机构72带动回水装置4收缩,向油缸座的方向滑动,直至到达回水装置4的预定收纳位置,然后进行压滤机的开模。
实施例六:
请参阅图11所示,公开了压滤机的又一实施例。与实施例五不同之处在于,还包括压榨主管6和与压榨主管6连通的进水管61,进水管61一端与压榨主管6连通另一端与水模18连通。相邻两个料模19之间安装有水模18,料模19上安装有滤布,滤布延伸到料模19两侧,隔膜的两侧壁设有隔膜,隔膜通过水压的作用下向外鼓起并挤压料模19上的待过滤介质。机架2同一侧边上安装有进料主管5和压榨主管6,进料主管5输送待过滤介质进入料模19内,压榨主管6用于输送水。每个料模19通过对应的进料管51与进料主管5连通,每个水模18通过对应的进水管61与压榨主管6连通。
实施例七:
与实施例六不同的是,本压滤机进料主管5与压榨主管6固定于机架2同一侧的侧板17上,进料主管5与压榨主管6上下布置,减少压滤机整体体积,从而减少压滤机占用面积。本结构进料主管5与压榨主管6直接固定于底座3上,减少了固定支架的同时也减少制作成本。无需现场制作,可直接随车发货。
实施例八:
本实施例公开了一种压滤机控制方法,包括以下步骤:
合模前系统检测:检测液压站所有电机是否全部打在远程位置;
合模执行:第一液压缸12工作,推动支撑座11向止推板110方向移动;第二液压缸16工作,推动支撑座11沿与所述滑动组件15移动方向相垂直的方向移动;第三液压缸13工作,推动支撑座11向止推板110方向移动;在料模19表面设置滤布后,止推板110、料模19、水模18、支撑座11紧密贴合实现合模;
进料:液压系统是否衡压完成,如未进入衡压完成状态系统无法执行进料操作;检测回料阀门是否关到位;检测接水板是否合到位;检测料罐液位是否满足进料条件。进料泵电机启动。
衡压控制:压力脱水,物料从进料管51进入料模19,到达料模19和水模18形成的滤室192,此时进料管51压力升高,进料压力传感器711将信息传送到控制器71,控制器71通过控制比例压力阀730,使第三液压缸13的压力随着提高,自始至终,第三液压缸13的液压满足以下关系:
P =KP +P 0,P 取进料压力,K为比例系数;
物料压滤后的水分从料模19和水模18的下部排出;
挤压脱水,压力脱水达到设定条件后,停止进料,从压榨液管道中输入压榨液到水模18,当压榨液管道中的压力升高时,压榨压力传感器712将信息传送到控制器71,控制器71通过控制比例压力阀730,使第三液压缸13的压力随着提高,自始至终,第三液压缸13的液压满足以下关系:P =KP +P 0,P 取压榨压力,K为比例系数;压榨液推动水模18表面的隔膜胶皮,挤压滤饼,使滤饼中的残液继续排出;
回水:高压回水阀门按工艺要求缓缓打开直至开到最大位置;当压榨压力降至系统允许值以下,隔膜泵启动;按系统设置时间进行回水计时,计时达到回水动作结束。高压回水阀门与隔膜泵按回水工艺状态进行启动。
开模及卸料:关闭压榨液管道,第三液压缸13返回,拉动支撑座11,打开料模19和水模18,将干燥
的滤饼卸出,完成压滤过程。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有多种变化、修改、替换和变型,这些变化、修改、替换和变型都落入要求保护的本发明范围内。

Claims (17)

  1. 一种物料无热干化系统(1),其特征在于,包括:
    压榨装置,包括导向装置和沿导向装置滑移的滤板组件;
    进料装置,包括与滤板组件连接的进料管(51)和进水管(61);
    驱动装置,包括驱动压榨装置运动的驱动机构(72);
    衡压装置(7),包括电磁阀门、与所述进料管(51)连接的进料压力传感器(711)和与所述进水管(61)连接的压榨压力传感器(712);
    其中,当所述滤板组件滑移至预设位置时驱动机构(72)停止工作,对应电磁阀门进行得失电动作,所述衡压装置(7)切换进入衡压模式。
  2. 根据权利要求1所述的一种物料无热干化系统(1),其特征在于,所述驱动机构(72)包括滑动组件(15)和与所述滑动组件(15)连接的支撑座(11),所述支撑座(11)连接有第一液压缸(12)、第二液压缸(16)和第三液压缸(13);
    其中,所述第一液压缸(12)的轴线和所述第三液压缸(13)的轴线分别与滑动组件(15)的移动方向平行,所述第一液压缸(12)和所述第三液压缸(13)用于驱动所述支撑座(11)沿所述滑动组件(15)移动方向移动;所述第二液压缸(16)设置于所述滑动组件(15)上用于驱动所述支撑座(11)沿与所述滑动组件(15)移动方向相垂直的方向移动。
  3. 根据权利要求2所述一种物料无热干化系统(1),其特征在于,所述衡压装置(7)还包括为所述第三液压缸(13)提供液压的液压站(73),所述第三液压缸(13)连接比例压力阀(730);
    此外,所述衡压装置(7)还包括与所述进料压力传感器(711)、压榨压力传感器(712)和所述比例压力阀(730)均连接的控制器(71),所述控制器(71)用于在脱水工作时通过控制比例压力阀(730)调节所述第三液压缸(13)的压力。
  4. 根据权利要求3所述一种物料无热干化系统(1),其特征在于,所述衡压装置(7)配置为:
    在压力脱水时,所述控制器(71)根据进料压力传感器(711)信息控制比例压力阀(730),使得自始至终,第三液压缸(13)的液压满足以下关系:P =KP +P 0,其中,P 为控制器(71)输出压力,也即第三液压缸(13)的工作压力,此时P 取进料压力,P 0为预紧压力,K为比例系数;
    在挤压脱水时,当压力脱水达到设定条件后,从进水管中输入压榨液,所述控制器(71)根据压榨压力传感器(712)信息控制比例压力阀(730),使得自始至终,第三液压缸(13)的液压满足以下关系:P =KP +P 0,其中,此时P 取压榨压力。
  5. 根据权利要求2所述一种物料无热干化系统(1),其特征在于,所述支撑座(11)连接滤板组件,所述滤板组件包括大小、形状一致的料模(19)和水模(18),所述料模(19)和水模(18)一比一交替设置,所述进料管(51)与所述料模(19)连接,所述进水管(61)与所述水模(18)连接;所述物料无热干化系统(1)还包括与所述支撑座(11)平行设置的止推板(110),所述滤板组件位于所述止推板(110)和支撑座(11)之间,所述水模(18)的外端面设有隔膜胶皮。
  6. 根据权利要求5所述一种物料无热干化系统(1),其特征在于,还包括进料主管(5)和压榨主管(6),每个所述料模(19)通过对应的所述进料管(51)与所述进料主管(5)连通,每个所述水模(18)通过对应的所述进水管(61)与所述压榨主管(6)连通,所述进料主管(5)和所述压榨主管(6)上下布置。
  7. 根据权利要求2所述一种物料无热干化系统(1),其特征在于,还包括进料主管(5)、进料管(51)、压榨主管(6)和进水管(61),所述支撑座(11)连接有滤板组件,所述滤板组件包括大小、形状一致的料模(19)和水模(18),所述料模(19)和水模(18)一比一交替设置,所述进料管(51)与所述料模(19)连接,所述进水管(61)与所述水模(18)连接;其中,每个料模(19)通过对应的进料管(51)与进料主管(5)连通,每个水模(18)通过对应的进水管(61)与压榨主管(6)连通,所述进料主管(5)和所述压榨主管(6)上下布置。
  8. 根据权利要求7所述一种物料无热干化系统(1),其特征在于,所述料膜(19)设有出料机构,所述出料机构包括设置在料膜隔板内的浆料通道(195)、浆料通道(195)分别在料膜隔板的两面上形成的出料口(194)、设置在出料口(194)的翻盖(191);所述翻盖(191)为弹性材质,所述翻盖(191)覆盖所述出料口(194)。
  9. 根据权利要求7所述一种物料无热干化系统(1),其特征在于,还包括与所述支撑座(11)平行设置的止推板(110),所述滤板组件位于所述止推板(110)和支撑座(11)之间,所述水模(18)的外端面设有隔膜胶皮。
  10. 根据权利要求7所述一种物料无热干化系统(1),其特征在于,所述料模(19)包括滤板(198)、滤板边框;所述滤板边框包括设置在滤板(198)边缘并且厚度大于滤板(198)的外框(197)、设置在外框(197)体内围面上以及滤板(198)表面上的内框(196);所述内框(196)的厚度由外至内逐渐减小;所述内框(196)至少一部分为合成树脂类浇注体,料模(19)的其余部分为刚性金属体。
  11. 根据权利要求2所述一种物料无热干化系统(1),其特征在于,还包括回水装置(4),所述回水装置(4)包括:
    接水盘组件,包括依次嵌套设置的多组接水盘;
    伸缩组件,连接于所述多组接水盘中的至少两组接水盘之间,所述伸缩组件的伸缩运动带动所述接水盘组件沿所述伸缩组件的伸缩方向调节接水盘之间的相对位置。
  12. 根据权利要求12所述一种物料无热干化系统(1),其特征在于,所述伸缩组件包括多个伸缩单元,每个伸缩单元连接于所述至少两组接水盘之间。
  13. 根据权利要求12所述一种物料无热干化系统(1),其特征在于,所述接水盘组件中相邻接水盘的连接处设置有密封条。
  14. 根据权利要求12所述一种物料无热干化系统(1),其特征在于,所述回水装置(4)还包括:接水支架(43)和设置于接水支架(43)上的驱动组件(42),所述驱动组件(42)连接于所述接水盘组件和/或所述伸缩组件,所述驱动组件(42)包括:
    电机,设置于所述接水支架(43)上;
    链轮,耦接于所述电机;
    轴承,所述链轮通过所述轴承耦接于所述电机;
    链条,设置于所述链轮,且所述链条连接于所述接水盘组件和/或所述伸缩组件。
  15. 一种压滤机控制方法,其特征在于,适用于权利要求5或6所述的物料无热干化系统,所述方法包括以下步骤:
    合模前系统检测:
    检测液压站所有电机是否全部打在远程位置;
    合模执行:
    第一液压缸(12)工作,推动支撑座(11)向止推板(110)方向移动;
    第二液压缸(16)工作,推动支撑座(11)沿与所述滑动组件(15)移动方向相垂直的方向移动;
    第三液压缸(13)工作,推动支撑座(11)向止推板(110)方向移动;
    在料模(19)表面设置滤布后,止推板(110)、料模(19)、水模(18)、支撑座(11)紧密贴合实现合模;
    衡压控制:
    压力脱水,物料从进料管(51)进入料模(19),到达料模(19)和水模(18)形成的滤室(192),此时进料管(51)压力升高,进料压力传感器(711)将信息传送到控制器(71),控制器(71)通过控制比例压力阀(730),使第三液压缸(13)的压力随着提高,自始至终,第三液压缸(13)的液压满足以下 关系:
    P =KP +P 0,P 取进料压力,K为比例系数;
    物料压滤后的水分从料模(19)和水模(18)的下部排出;
    挤压脱水,压力脱水达到设定条件后,停止进料,从压榨液管道中输入压榨液到水模(18),当压榨液管道中的压力升高时,压榨压力传感器(712)将信息传送到控制器(71),控制器(71)通过控制比例压力阀(730),使第三液压缸(13)的压力随着提高,自始至终,第三液压缸(13)的液压满足以下关系:P =KP +P 0,P 取压榨压力,K为比例系数;
    压榨液推动水模(18)表面的隔膜胶皮,挤压滤饼,使滤饼中的残液继续排出;
    开模及卸料:
    关闭压榨液管道,第三液压缸(13)返回,拉动支撑座(11),打开料模(19)和水模(18),将干燥的滤饼卸出,完成压滤过程。
  16. 一种压滤机,其特征在于,包括如权利要求1至15任一项所述的物料无热干化系统。
  17. 一种压滤机,其特征在于,采用权利要求16所述的压滤机控制方法工作。
PCT/CN2022/115567 2022-01-17 2022-08-29 一种物料无热干化系统、压滤机控制方法及压滤机 WO2023134174A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202210047102.3A CN114259765A (zh) 2022-01-17 2022-01-17 一种轻型料模滤板
CN202210047102.3 2022-01-17
CN202221092799.8 2022-05-09
CN202221092799.8U CN217163334U (zh) 2022-05-09 2022-05-09 一种料膜的出料机构
CN202221365762.8 2022-06-02
CN202221365762.8U CN217645911U (zh) 2022-06-02 2022-06-02 一种压滤机的挤压驱动装置

Publications (1)

Publication Number Publication Date
WO2023134174A1 true WO2023134174A1 (zh) 2023-07-20

Family

ID=87280084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115567 WO2023134174A1 (zh) 2022-01-17 2022-08-29 一种物料无热干化系统、压滤机控制方法及压滤机

Country Status (1)

Country Link
WO (1) WO2023134174A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105561645A (zh) * 2016-01-25 2016-05-11 佛山市金凯地过滤设备有限公司 一种齿状式保压压滤方法及设备
CN105864128A (zh) * 2016-05-27 2016-08-17 王军 一种压滤机自动平衡压力装置
CN108525359A (zh) * 2018-05-16 2018-09-14 杭州安永环保科技有限公司 一种压滤机衡压系统及衡压方法
CN113877258A (zh) * 2021-12-07 2022-01-04 杭州互歌科技发展有限公司 基于油缸位移控制的高压压滤机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105561645A (zh) * 2016-01-25 2016-05-11 佛山市金凯地过滤设备有限公司 一种齿状式保压压滤方法及设备
CN105864128A (zh) * 2016-05-27 2016-08-17 王军 一种压滤机自动平衡压力装置
CN108525359A (zh) * 2018-05-16 2018-09-14 杭州安永环保科技有限公司 一种压滤机衡压系统及衡压方法
CN113877258A (zh) * 2021-12-07 2022-01-04 杭州互歌科技发展有限公司 基于油缸位移控制的高压压滤机

Similar Documents

Publication Publication Date Title
CN203355412U (zh) 一种全自动立式隔膜板框压滤机
CN103185046B (zh) 一种交流伺服直驱增压式带油箱电动液压缸及其增压方法
CN108609466B (zh) 智能液体对重节能环保电梯
CN109912169B (zh) 压滤组件及压滤机
WO2023134174A1 (zh) 一种物料无热干化系统、压滤机控制方法及压滤机
CN104984573A (zh) 一种高效率压滤机
CN107050947A (zh) 一种深度脱水压滤装置
CN113683284B (zh) 一种污泥脱水设备用重型压滤机构及其工作方法
CN202163638U (zh) 翻转式双工位纸卷收卷机液压系统
CN101670202B (zh) 立式全自动压滤机
CN201078562Y (zh) 挤压式油脂输送装置
CN202460238U (zh) 污泥处理隔膜压滤机
CN114715972B (zh) 一种含油污水处理装置
CN113059070B (zh) 一种立式扣管机
CN201399274Y (zh) 一种循环拉板快开压滤机
CN211273698U (zh) 一种压滤机压紧松开装置
CN207085438U (zh) 深度脱水压滤装置
CN111395050B (zh) 带倒吸浆功能的纸制品成型机及成型方法
CN109849404B (zh) 一种用于粘稠物挤压脱水装置
CN103286973A (zh) 中药药渣挤渣机组
CN211951017U (zh) 一种用于纸浆模塑生产设备的一泵多缸节能液压装置
CN110217965A (zh) 一种立式多层污泥脱水装置
CN210218318U (zh) 一种砌块成型机液压系统
CN213413007U (zh) 一种压制装置
CN219848328U (zh) 一种立式压滤机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919811

Country of ref document: EP

Kind code of ref document: A1