WO2023134047A1 - 一种oct主机的成像质量检测方法及装置 - Google Patents

一种oct主机的成像质量检测方法及装置 Download PDF

Info

Publication number
WO2023134047A1
WO2023134047A1 PCT/CN2022/088018 CN2022088018W WO2023134047A1 WO 2023134047 A1 WO2023134047 A1 WO 2023134047A1 CN 2022088018 W CN2022088018 W CN 2022088018W WO 2023134047 A1 WO2023134047 A1 WO 2023134047A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
oct
inspection
resolution
standard
Prior art date
Application number
PCT/CN2022/088018
Other languages
English (en)
French (fr)
Inventor
耿科
蹇敦亮
李百灵
高峻
Original Assignee
广州永士达医疗科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州永士达医疗科技有限责任公司 filed Critical 广州永士达医疗科技有限责任公司
Publication of WO2023134047A1 publication Critical patent/WO2023134047A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10101Optical tomography; Optical coherence tomography [OCT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20024Filtering details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • G06T2207/20056Discrete and fast Fourier transform, [DFT, FFT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30168Image quality inspection

Definitions

  • the invention relates to the technical field of medical devices, in particular to a method and device for detecting the imaging quality of an OCT host.
  • OCT Optical Coherence Tomography
  • OCT is a method based on the principle of weak coherent light interference, which can perform three-dimensional tomographic scanning of biological tissues by detecting the back reflection or scattering signals of weak coherent light emitted by different tissues to the probe.
  • imaging the resolution of OCT equipment, image deformation, and image artifact interference are one of the key parameters of its imaging quality, which directly affect the imaging quality of OCT equipment and the diagnosis results of lesions.
  • the resolution of OCT equipment reflects the ability of OCT equipment to distinguish the fine structure of tissues. The higher the resolution, the clearer the fine structure of medical tissues can be observed.
  • Image deformation is the change in size and shape between the image formed by OCT equipment and the real detected tissue. The size and shape of tissue is an important indicator for medical tissue analysis, reflecting the severity of tissue lesions.
  • Image artifacts are the artifacts that appear in the imaging of objects that do not exist. Severe artifacts will cover the real image and interfere with medical judgment.
  • the three imaging indicators have a great influence on the application effect of OCT, so it is necessary to test the indicators before the equipment leaves the factory, so that the equipment that leaves the factory meets the use standards.
  • the embodiment of the present invention discloses an imaging quality detection method and device of an OCT host, which can quickly detect image quality problems that are easily generated by the OCT host during imaging, so as to improve the final image imaging quality.
  • the first aspect of the embodiment of the present invention discloses an imaging quality detection method of an OCT host, including:
  • the OCT image deformation detection device uses the OCT image deformation detection device to obtain the inspection standard sample image, and preprocess the inspection standard sample image to obtain a preprocessed image; wherein, the OCT image deformation detection device includes an OCT scanning probe, a support and a test standard sample;
  • the first inspection component includes a first standard thickness plate, a resolution plate and a white diffuse reflector, and the first standard thickness plate, the resolution plate and the white diffuse reflector are stacked sequentially from top to bottom.
  • the second inspection component includes a second standard thickness plate, a third standard thickness plate and a fourth standard thickness plate, and the second standard thickness plate, the third standard thickness plate and the fourth standard thickness plate are stacked sequentially from top to bottom Setting, the OCT host is connected to the OCT scanning probe, and the OCT scanning probe is used to collect the cross-sectional image of the resolution plate and collect the reflection image formed by the reflection of the third standard thickness plate;
  • Collect the OCT artifact image collect the image pixel value of the OCT artifact image according to the preset collection rules, and perform data processing on the image pixel value to obtain the pixel value and quantity of the artifact; determine the pixel value and the quantity of the artifact Whether the quantity meets the preset detection standard.
  • the test standard sample has an inner hole of a preset shape, and the preset shape includes a triangle, a quadrangle, a pentagon, a hexagon,
  • the light outlet end of the OCT scanning probe is fixed in the middle of the inner hole of the test standard sample through the support member.
  • detecting whether the preprocessed image is a deformed image according to the boundary includes:
  • the inspection standard image is a non-distorted image.
  • the comparison closed loop includes a first comparison closed loop and a second comparison closed loop, and the second comparison closed loop is located in the first comparison closed loop
  • the inspection standard image is defined as a non-deformed image.
  • the image pixel values of the OCT artifact images are collected according to the preset collection rules, and the image pixel values are processed to obtain the artifacts
  • the pixel value and number of including:
  • the acquisition line is a line segment formed between a center point in the OCT artifact image and a point on the boundary, and obtain an image pixel value of the OCT artifact image;
  • the judging whether the pixel value and quantity of the artifact meet the preset detection standard includes:
  • the first acquisition rule is to select a horizontal line of a first set length perpendicular to the resolution plate on the horizontal resolution inspection image, so
  • the second collection rule is to select the horizontal direction perpendicular to the third standard thickness plate of the second set length on the vertical resolution inspection image;
  • the selecting at least one first acquisition line on the lateral resolution inspection image based on the first acquisition rule includes:
  • the selecting at least one second acquisition line on the longitudinal resolution inspection image based on the second acquisition rule includes:
  • a second contrast line pattern that is equal to the second set length and perpendicular to the reflection image of the third standard thickness plate generated on the longitudinal resolution inspection image is a second acquisition line.
  • the calculating the lateral resolution score according to the first pixel value distribution curve includes:
  • the calculating the vertical resolution score according to the second pixel value distribution curve includes:
  • the second aspect of the embodiment of the present invention discloses an imaging quality detection device of an OCT host, including:
  • the first image acquisition module used to use the OCT image deformation detection device to obtain the inspection standard sample image, and preprocess the inspection standard sample image to obtain a preprocessed image; wherein the OCT image deformation detection device includes an OCT scanning probe, Supports and inspection standards;
  • Image deformation detection module used to obtain the boundary of the pre-processed image, and detect whether the pre-processed image is a deformed image according to the boundary;
  • the second image acquisition module used to generate a horizontal resolution inspection image and a vertical resolution inspection image respectively, wherein the horizontal resolution inspection image is acquired by the OCT host, the OCT scanning probe and the first inspection component, and the vertical resolution
  • the high-rate inspection images are collected by the OCT host, the OCT scanning probe, and the second inspection component.
  • the first inspection component includes a first standard thickness plate, a resolution plate and a white diffuse reflector, and the first standard thickness plate, the resolution plate and the white diffuse reflector are stacked sequentially from top to bottom.
  • the second inspection component includes a second standard thickness plate, a third standard thickness plate and a fourth standard thickness plate, and the second standard thickness plate, the third standard thickness plate and the fourth standard thickness plate are stacked sequentially from top to bottom Setting, the OCT host is connected to the OCT scanning probe, and the OCT scanning probe is used to collect the cross-sectional image of the resolution plate and collect the reflection image formed by the reflection of the third standard thickness plate;
  • An acquisition area selection module for selecting at least one first acquisition line on the horizontal resolution inspection image based on a first acquisition rule, and selecting at least one second acquisition line on the longitudinal resolution inspection image based on a second acquisition rule collection line;
  • Resolution scoring module used to select the first acquisition line and the second acquisition line respectively, generate the first pixel value distribution curve of the first acquisition line and the second pixel value distribution curve of the second acquisition line; according to the The horizontal resolution score is calculated according to the first pixel value distribution curve, and the vertical resolution score is calculated according to the second pixel value distribution curve;
  • Artifact collection module used to collect OCT artifact images, collect image pixel values of the OCT artifact images according to preset acquisition rules, perform data processing on image pixel values, and obtain pixel values and quantities of artifacts; Whether the pixel value and quantity of the artifacts meet the preset detection standard.
  • the test standard sample has an inner hole of a preset shape, and the preset shape includes a triangle, a quadrangle, a pentagon, a hexagon,
  • the light outlet end of the OCT scanning probe is fixed in the middle of the inner hole of the test standard sample through the support member.
  • detecting whether the preprocessed image is a deformed image according to the boundary includes:
  • the inspection standard image is a non-distorted image.
  • the comparison closed loop includes a first comparison closed loop and a second comparison closed loop, and the second comparison closed loop is located in the first comparison closed loop
  • the inspection standard image is defined as a non-deformed image.
  • the image pixel values of the OCT artifact images are collected according to the preset collection rules, and the image pixel values are processed to obtain the artifacts
  • the pixel value and number of including:
  • the acquisition line is a line segment formed between a center point in the OCT artifact image and a point on the boundary, and obtain an image pixel value of the OCT artifact image;
  • the judging whether the pixel value and quantity of the artifact meet the preset detection standard includes:
  • the first acquisition rule is to select a horizontal line of a first set length perpendicular to the resolution plate on the horizontal resolution inspection image, so The second collection rule is to select the horizontal direction perpendicular to the third standard thickness plate of the second set length on the vertical resolution inspection image;
  • the selecting at least one first acquisition line on the lateral resolution inspection image based on the first acquisition rule includes:
  • the selecting at least one second acquisition line on the longitudinal resolution inspection image based on the second acquisition rule includes:
  • a second contrast line pattern that is equal to the second set length and perpendicular to the reflection image of the third standard thickness plate generated on the longitudinal resolution inspection image is a second acquisition line.
  • the calculating the lateral resolution score according to the first pixel value distribution curve includes:
  • the calculating the vertical resolution score according to the second pixel value distribution curve includes:
  • the third aspect of the embodiment of the present invention discloses an imaging quality detection device for an OCT host, including: a memory storing executable program codes; a processor coupled to the memory; the processor calls all stored in the memory
  • the executable program code is used to execute the imaging quality detection method of the OCT host disclosed in the first aspect of the embodiment of the present invention.
  • the fourth aspect of the embodiment of the present invention discloses a computer-readable storage medium, which stores a computer program, wherein the computer program causes the computer to execute the imaging quality detection method of the OCT host disclosed in the first aspect of the embodiment of the present invention.
  • the inspection standard image, the horizontal resolution detection image, the vertical resolution detection image and the OCT artifact image are respectively collected through the corresponding OCT equipment, wherein the preprocessing image is obtained by preprocessing the inspection standard image, and the preprocessing
  • the process of processing can help to filter the noise in the target image, etc., and further detect whether the preprocessed image is a deformed image according to the boundary of the preprocessed image.
  • the qualified inspection of OCT equipment installation; embodiment horizontal resolution score and vertical resolution score are used to evaluate the index of horizontal resolution and vertical resolution, according to this horizontal resolution score and vertical resolution score can understand the horizontal direction of current OCT main frame Whether the resolution and the vertical resolution are qualified, this embodiment can detect the horizontal resolution and the vertical resolution respectively.
  • Accurate; artifact detection is realized by collecting OCT artifact images; the embodiment integrates image deformation, resolution and artifact detection of OCT tooling, which can better ensure the imaging quality of the OCT host.
  • FIG. 1 is a schematic flow diagram of an imaging quality detection method of an OCT host disclosed in an embodiment of the present invention
  • Fig. 2 is a schematic structural diagram of an OCT image deformation detection device according to an embodiment of the present invention
  • Fig. 3 is a schematic structural diagram of a schematic diagram of an installation structure for generating a horizontal resolution inspection image according to an embodiment of the present invention
  • Fig. 4 is a schematic structural diagram of generating a vertical resolution inspection image according to an embodiment of the present invention.
  • Fig. 5 is a schematic structural diagram of an OCT artifact image generated by an embodiment of the present invention.
  • FIG. 6 is an example diagram of a test standard sample image according to an embodiment of the present invention.
  • Fig. 7 is a schematic structural diagram of an imaging quality detection device of an OCT mainframe provided by an embodiment of the present invention.
  • Fig. 8 is a schematic structural diagram of an imaging quality detection device of an OCT mainframe provided by an embodiment of the present invention.
  • the embodiment of the present invention discloses an imaging quality detection method, device, equipment, and storage medium of an OCT host.
  • the embodiment collects target images, horizontal resolution detection images, vertical resolution detection images, and false images through corresponding OCT tooling, respectively.
  • the target image is preprocessed to obtain a preprocessed image.
  • the preprocessing process can help filter noise in the target image, etc., and further detect whether the preprocessed image is a deformed image according to the boundary of the preprocessed image.
  • the horizontal resolution Rate scoring and vertical resolution scoring can know whether the horizontal resolution and vertical resolution of the current OCT mainframe are qualified.
  • This embodiment can detect the horizontal resolution and vertical resolution respectively, which is easy to operate and easy to implement.
  • the acquisition line generates the pixel value distribution curve for scoring calculation, and the measurement is more accurate; the artifact detection is realized by collecting the artifact image; the embodiment integrates the detection of the image deformation, resolution and artifact of the OCT tooling, which can better Guarantee the imaging quality of the OCT host.
  • FIG. 1 is a schematic flowchart of an imaging quality detection method of an OCT host disclosed in an embodiment of the present invention.
  • the execution subject of the method described in the embodiment of the present invention is an execution subject composed of software or/and hardware, and the execution subject can receive relevant information through wired or/and wireless means, and can send certain instructions. Of course, it may also have certain processing functions and storage functions.
  • the execution subject can control multiple devices, such as a remote physical server or cloud server and related software, or a local host or server and related software that perform related operations on devices placed somewhere. In some scenarios, multiple storage devices can also be controlled, and the storage device and the device can be placed in the same place or in a different place.
  • Step 101 Use an OCT image deformation detection device to acquire a test standard sample image, and perform preprocessing on the test standard sample image to obtain a preprocessed image.
  • the OCT image deformation detection device includes an OCT scanning probe, a support and a test standard.
  • the OCT imaging device includes an OCT scanning probe 201, a ring 202 and a support 203, and the ring 202 is installed at a corresponding position in the middle of the OCT scanning probe 201, so that the OCT scanning probe 2012
  • the middle part of the OCT scanning probe 201 is bent, and the light outlet end of the OCT scanning probe 201 is installed on the support 203, and there is a set distance between the support 203 and the inspection standard sample 204, and the set distance range is 10-15mm .
  • the diameter of the ring is, for example, 50 mm.
  • the purpose of the ring is to bend the middle part of the probe, simulating the deformation of the OCT image when the probe may be bent in actual use.
  • it usually also includes an OCT host, and the OCT scanning probe 201 performs image acquisition on the standard sample.
  • the target image is also the image collected for the inspection standard sample.
  • the test standard sample 204 has an inner hole of a preset shape, and the preset shape includes a triangle, a quadrangle, a pentagon, a hexagon, and possibly other shapes, and the light outlet end of the OCT scanning probe passes through the The support is fixed in the middle of the inner hole of the test standard sample.
  • the inner hole of the inspection standard OCT scanning probe 201 is usually circular. Therefore, it can be seen in FIG. 6 , in the pattern shown in FIG. 6 , the square shaded area is the inspection standard sample image of the collected standard sample, and the circular area in the inspection standard sample image represents the inner hole of the OCT scanning probe.
  • the purpose of collecting the image of the inspection standard sample and performing subsequent processing is to detect whether the target image is deformed, that is, whether the actual size, shape and relative position of the detected target object are changed.
  • optical fiber scanning probes with different outer diameters such as optical fiber scanning probes with an outer diameter of 1.7 mm or optical fiber scanning probes with an outer diameter of 2.5 mm, are used to collect images of the inspection standard sample.
  • the inspection standard sample is scanned by the light scanning probe, and the image of the inspection standard sample can be displayed on the OCT host after the image is collected.
  • the optical fiber scanning probe insert the light outlet end of the OCT scanning probe into the detection standard sample to collect images of the detection standard sample.
  • a support is used to hold the probe at a position 15-20 mm away from the light outlet on the probe, and the support is, for example, a V-shaped groove. Then adjust whether the position of the test standard is appropriate, so that the image of the test standard is in the center.
  • the preprocessing may include converting the target image into a preset image format, performing filtering processing on the target image converted into the preset image format, obtaining feature pixels of the filtered target image, and based on the features The pixels are used to crop the target image into a target image with a preset size.
  • the target image is a preprocessed image after preprocessing.
  • preprocessing is performed on the collected test standard sample image to remove noise, etc., which is more convenient for subsequent observation and use.
  • the format of the inspection standard image is first converted, and the preset image format is pre-stored in the OCT host, such as jpg, etc., assuming that the currently collected inspection standard image is If it is not in jpg format, convert the image of the inspection standard sample to jpg format.
  • After converting the format of the test standard image further filter the target image, flow into the mean filter, use the matching filter to filter the test standard image, and remove some corresponding noise, so the image is clearer .
  • the inspection standard sample image is filtered, the feature pixels of the target image are further extracted.
  • the test standard image contains a test target image of a certain shape, such as a square pattern, an animal pattern, a circular pattern, etc., and the test standard image target pattern is usually adapted to the probe.
  • the feature pixels refer to the pixel features of the inspection standard image in the inspection standard image.
  • Obtaining the pixel features of the target image means obtaining the specific shape, size, and position of the target pattern in the test standard image, so that the test standard image can be cropped with reference to the specific position of the target pattern.
  • the size of the currently collected inspection standard image is 4mm*4mm
  • the preset size is 3mm*3mm
  • the size of the target pattern in the inspection standard image is actually only 2mm*2mm.
  • the collection is 3mm*3mm.
  • the test standard sample has an inner hole of a preset shape, and the preset shape includes a triangle, a quadrilateral, a pentagon, and a hexagon, and the light outlet end of the OCT scanning probe is fixed on the test surface through the support The middle of the bore of the standard.
  • Step 102 Obtain the boundary of the preprocessed image, and detect whether the preprocessed image is a deformed image according to the boundary.
  • the boundary of the pre-processed image is extracted.
  • the target pattern in the pre-processed image is a square pattern, and a junction will be formed between the area of the square pattern and the outside of the square pattern area, that is, the boundary. Due to the color in the area of the square pattern The appearance is usually different from the outside of the area, so the existing technology can be combined to easily extract the boundary of the target pattern by calculating the pixel value, and further compare and detect the boundary.
  • the target pattern is usually also included in the pre-processing image.
  • whether the image is detected to be deformed is to detect whether the target pattern in the pre-processing image is deformed.
  • Selecting the target detection point in the pre-processing image is to detect whether the target pattern is in the target pattern.
  • Select the target detection point. In order to ensure the accuracy of the results, multiple target detection points are selected.
  • the preset reference detection point is a set of data stored in the OCT host in advance, which is used as a comparison reference to compare with the target detection point, so as to know whether the position of the target detection point has shifted.
  • the preset reference detection points may be in the form of images, and the staff stores the group of images in the OCT host in advance, and when the pre-processed images are collected and processed, the preset references are displayed on the preset processed images detection points, so that the preset reference detection points can be visually compared with the target detection points.
  • the number of preset reference detection points is the same as the number of target detection points.
  • the coordinate position of the target detection point in the preprocessed image is known, and the preset reference detection point of the corresponding position is compared with the target detection point one by one. Therefore, it can be accurately known whether the target detection point has shifted.
  • detecting whether the preprocessed image is a deformed image according to the boundary includes: displaying a pre-stored standard comparison image, and a comparison closed loop is formed on the standard comparison image; comparing the inspection standard image Whether it is within the preset tolerance area formed by the comparison closed loop, when the inspection standard image is within the preset tolerance area formed by the comparison closed loop, define the inspection standard image as a non-deformed image .
  • the standard comparison image is stored in the OCT host in advance by the relevant staff.
  • the standard comparison image is equivalent to a virtual comparison card.
  • the standard comparison image is displayed on the pre-processed image, which can be more intuitive to compare whether there is a difference.
  • the comparison between the target detection point and the preset reference detection point is the preliminary detection of the deformation detection of the preprocessed image, assuming that the current target image has been detected to be deformed by setting the target detection point, then there is no need to perform subsequent steps, only When the target detection point is detected to be consistent with the preset reference detection point, it means that the current preprocessed image is a non-preliminary deformed image.
  • the Further deformation detection is performed.
  • the boundary of the pre-processed image is extracted.
  • the target pattern in the pre-processed image is a square pattern, and a junction will be formed between the area of the square pattern and the outside of the square pattern area, that is, the boundary. Due to the color in the area of the square pattern The appearance is usually different from the outside of the area, so the existing technology can be combined to easily extract the boundary of the target pattern by calculating the pixel value, and further compare and detect the boundary.
  • the comparison closed loop includes a first comparison closed loop and a second comparison closed loop, and the second comparison closed loop is located in the first comparison closed loop; correspondingly, the comparison described Whether the test standard sample image is within the preset tolerance range formed by the comparison closed loop, when the test standard sample image is within the preset tolerance range formed by the comparison closed loop, define the test standard sample image It is a non-deformed image, including: comparing whether the inspection standard image is within the preset tolerance range formed by the first comparison closed loop and the second comparison closed loop, and when the inspection standard image is in the first When the first comparison closed loop and the second comparison closed loop are within the preset tolerance range, the inspection standard image is defined as a non-deformed image.
  • the first comparison closed loop and the second comparison closed loop correspond to allowable tolerances of standard dimensions.
  • the inspection standard sample image is within the range formed by the first comparison closed loop and the second comparison closed loop, it indicates that the target image is qualified and is a non-deformed image.
  • Step 103 Generate a horizontal resolution inspection image and a vertical resolution inspection image respectively, wherein the horizontal resolution inspection image is acquired by the OCT host, the OCT scanning probe and the first inspection component, and the vertical resolution inspection image is obtained by the OCT
  • the host computer, the OCT scanning probe and the second inspection component collect and obtain.
  • the first inspection component includes a first standard thickness plate, a resolution plate and a white diffuse reflector, and the first standard thickness plate, the resolution plate and the white diffuse reflector are stacked sequentially from top to bottom.
  • the second inspection component includes a second standard thickness plate, a third standard thickness plate and a fourth standard thickness plate, and the second standard thickness plate, the third standard thickness plate and the fourth standard thickness plate are stacked sequentially from top to bottom It is set that the OCT host is connected with the OCT scanning probe, and the OCT scanning probe is used to collect the cross-sectional image of the resolution plate and the reflection image formed by the reflection of the third standard thickness plate.
  • the probe used in this implementation case is a probe applied to an OCT device of a lumen.
  • the drive unit in the main unit drives the probe to scan 360°circumferentially through the guide wire, and a cross-sectional image of a position in the lumen can be obtained.
  • the horizontal resolution inspection image is acquired by the OCT scanning probe, the OCT host and the first inspection component
  • the longitudinal resolution inspection image is acquired by the OCT scanning probe, the OCT host and the second inspection component
  • the first inspection component It includes a first standard thickness plate, a resolution plate and a white diffuse reflector, and the first standard thickness plate, resolution plate and white diffuse reflector are stacked sequentially from top to bottom
  • the second inspection component includes a second standard thickness plate, the third standard thickness plate and the fourth standard thickness plate, the second standard thickness plate, the third standard thickness plate and the fourth standard thickness plate are stacked sequentially from top to bottom
  • the OCT scanning probe and the OCT host connected the OCT scanning probe is used to collect the cross-sectional image of the resolution plate and the reflection image formed by the reflection of the third standard thickness plate.
  • Components used when collecting lateral resolution inspection images are shown in Figure 3, including OCT scanning probe 301, OCT host, first standard thickness plate 302, resolution plate 303 and white diffuse reflection member 304, the first standard thickness plate 302, the resolution plate 303 and the white diffuse reflector 304 are stacked sequentially from top to bottom.
  • the OCT scanning probe 601 is used to collect cross-sectional images of the resolution plate 303, and the OCT scanning probe 301 is connected to the OCT host.
  • Components used when collecting longitudinal resolution inspection images are shown in FIG. 4 , including a first OCT scanning probe 401, an OCT host, a second standard thickness plate 402, a third standard thickness plate 403 and a fourth standard thickness plate 404.
  • the first The second standard thickness plate 402, the third standard thickness plate 403 and the fourth standard thickness plate 404 are stacked sequentially from top to bottom, and the OCT scanning probe 401 is used to collect the third standard thickness plate 403 passing through the second standard thickness plate 402 and the reflection image formed by the reflection of the fourth standard thickness plate 404, and the OCT scanning probe 401 is connected to the OCT host.
  • the OCT imaging system generally includes an OCT host and an OCT scanning probe, and the OCT scanning probe performs image acquisition on the target site, and the acquired image is defined as an OCT medical image in this embodiment.
  • the inspection specification for the lateral resolution may be to inspect the OCT host and the fiber scanning probe as inspection objects.
  • the inspection tool may be a qualified fiber scanning probe.
  • the inspection tool is qualified.
  • it is usually necessary to use a test plate with a white diffuse reflection surface, a certain resolution, and a certain standard third standard thickness plate.
  • the white diffuse reflection part is also a white diffuse reflection surface, which can be made of standard alumina ceramic material, or white diffuse reflection paper.
  • the resolution board is a pattern of parallel lines with light and dark distribution at certain intervals, and is generally used as a carrier of transparent glass or plastic.
  • the pattern of light and dark parallel lines can be directly etched on a substrate such as white alumina ceramics, thereby replacing the white diffuse reflection surface and the resolution test plate.
  • the number of lines of the line pattern in the resolution board is not less than 5, so as to ensure the effective data volume of the collected image.
  • the standard thickness plate can be 300um standard third standard thickness plate, 600um standard third standard thickness plate, 1500 standard third standard thickness plate, because the OCT imaging equipment can image the scanning section as a whole, so it is necessary to scan the section with different thickness Check the horizontal resolution.
  • place a resolution board on the white diffuse reflection surface set a standard thickness board above the resolution board, and perform image acquisition and final lateral resolution under the thickness boards corresponding to different standards score.
  • the OCT image acquisition output is a striped image with light and dark distribution corresponding to the resolution board. By analyzing the striped image, the final horizontal line resolution score can be obtained.
  • the second standard thickness plate and the fourth standard thickness plate are transparent sheets.
  • the function of the transparent sheet is mainly to give support to the standard third standard thickness plate.
  • the standard third standard thickness plate to be tested is generally relatively thin, for example, a standard third standard thickness plate of 50 ⁇ m is used as the third standard thickness plate to be tested.
  • the transparent sheet and the standard third standard thickness plate can be placed in the air. The reason for the suspension is to reduce the influence of the reflected light on the lower surface on the measurement results.
  • the OCT image acquisition output is the image formed by the upper and lower reflective surfaces of the standard third standard thickness plate. By analyzing the two reflective surfaces, the final longitudinal resolution score can be obtained.
  • Step 104 Select at least one first acquisition line on the horizontal resolution inspection image based on a first acquisition rule, and select at least one second acquisition line on the longitudinal resolution inspection image based on a second acquisition rule.
  • the horizontal resolution inspection image and the longitudinal resolution inspection image are respectively collected based on the above collection standards, and then the first collection line and the second collection line are respectively collected according to the first collection rule and the second collection rule set in advance.
  • the first collection rule and the second collection rule are jointly set according to the object to be collected, the size of the inspection image, etc., and can usually be pre-stored by the staff in advance.
  • the first collection rule is to select a horizontal line of the first set length perpendicular to the resolution plate on the horizontal resolution inspection image
  • the second collection rule is to select a second set length on the vertical resolution inspection image is perpendicular to the transverse direction of the third standard thickness plate
  • selecting at least one first acquisition line on the transverse resolution inspection image based on the first acquisition rule includes: generating on the transverse resolution inspection image
  • the first comparison line pattern that is equal to the first set length and perpendicular to the cross-sectional pattern of the resolution plate is the first acquisition line; correspondingly, at least one line is selected on the longitudinal resolution inspection image based on the second acquisition rule
  • the second acquisition line includes: generating on the longitudinal resolution inspection image a length equal to a second setting.
  • Step 105 Select the first collection line and the second collection line respectively, and generate the first pixel value distribution curve of the first collection line and the second pixel value distribution curve of the second collection line;
  • the horizontal resolution score is calculated from the value distribution curve, and the vertical resolution score is calculated according to the second pixel value distribution curve.
  • the first collection line and the second collection line are selected respectively, and the first pixel value distribution curve of the first collection line and the second pixel value distribution curve of the second collection line are generated; according to the first pixel value distribution.
  • the horizontal resolution score is calculated according to the curve, and the vertical resolution score is calculated according to the second pixel value distribution curve.
  • Step 106 Collect the OCT artifact image, collect the image pixel values of the OCT artifact image according to the preset collection rules, and perform data processing on the image pixel values to obtain the pixel value and quantity of the artifact; determine the value of the artifact Whether the pixel value and quantity meet the preset detection standard.
  • the image pixel values of the OCT artifact images are collected according to the preset acquisition rules, and the image pixel values are processed to obtain the pixel values and quantities of the artifacts, including:
  • the set detection standard includes: rotating the acquisition line with the center point as the center of a circle at a preset rotation angle to obtain a plurality of relationship curves between pixel coordinates and pixel values of the acquisition lines; judging whether the relationship curve satisfies preset testing criteria.
  • the tooling for generating OCT artifact images includes a fourth probe 501 and a white diffuse reflection surface 502 . Specifically, detect whether the artifact is a line artifact or a ring artifact; when the artifact is a line artifact, determine whether the number of the line artifact is greater than a first inspection threshold and determine whether the Whether the brightness of the linear artifact is greater than the second inspection threshold; when the artifact image is a ring artifact, judge whether the distance between the ring artifact and the central point is greater than the inspection distance, and determine whether the ring artifact Whether the number of shadows is greater than the third inspection threshold, and judge whether the brightness of the ring artifact is greater than the fourth detection threshold.
  • FIG. 7 is a schematic structural diagram of an imaging quality detection device of an OCT host disclosed in an embodiment of the present invention.
  • the imaging quality detection device of the OCT mainframe may include: a first image acquisition module 701, an image deformation detection module 702, a second image acquisition module 703, an acquisition area selection module 704, a resolution scoring module 705 and a pseudo Shadow collection module 706. ,in:
  • the first image acquisition module 701 used to use the OCT image deformation detection device to obtain the inspection standard sample image, and preprocess the inspection standard sample image to obtain a preprocessed image; wherein, the OCT image deformation detection device includes an OCT scanning probe , supports and inspection standards.
  • Image deformation detection module 702 used to obtain the boundary of the pre-processed image, and detect whether the pre-processed image is a deformed image according to the boundary.
  • the second image acquisition module 703 used to generate a horizontal resolution inspection image and a vertical resolution inspection image respectively, wherein the horizontal resolution inspection image is acquired by the OCT host, the OCT scanning probe and the first inspection component, and the longitudinal resolution
  • the resolution inspection image is collected and obtained by the OCT host, the OCT scanning probe and the second inspection component.
  • the first inspection component includes a first standard thickness plate, a resolution plate and a white diffuse reflector, and the first standard thickness plate, the resolution plate and the white diffuse reflector are stacked sequentially from top to bottom.
  • the second inspection component includes a second standard thickness plate, a third standard thickness plate and a fourth standard thickness plate, and the second standard thickness plate, the third standard thickness plate and the fourth standard thickness plate are stacked sequentially from top to bottom It is set that the OCT host is connected with the OCT scanning probe, and the OCT scanning probe is used to collect the cross-sectional image of the resolution plate and the reflection image formed by the reflection of the third standard thickness plate.
  • the acquisition area selection module 704 for selecting at least one first acquisition line on the horizontal resolution inspection image based on the first acquisition rule, and selecting at least one first acquisition line on the longitudinal resolution inspection image based on the second acquisition rule Two acquisition lines.
  • the resolution scoring module 705 selects the first acquisition line and the second acquisition line respectively, and generates the first pixel value distribution curve of the first acquisition line and the second pixel value distribution curve of the second acquisition line; according to the The first pixel value distribution curve calculates the horizontal resolution score, and calculates the vertical resolution score according to the second pixel value distribution curve; artifact collection module 706: used to collect OCT artifact images, collect the described The image pixel value of the OCT artifact image, data processing is performed on the image pixel value to obtain the pixel value and quantity of the artifact; judging whether the pixel value and quantity of the artifact meet the preset detection standard.
  • FIG. 8 is a schematic structural diagram of an imaging quality detection device for an OCT host disclosed in an embodiment of the present invention.
  • the imaging quality testing equipment of the OCT host can be computers and servers, and of course, under certain circumstances, it can also be smart devices such as mobile phones, tablet computers, and monitoring terminals, as well as image acquisition devices with processing functions.
  • the imaging quality detection equipment of the OCT host may include:
  • a memory 801 storing executable program codes
  • processor 802 coupled to the memory 801;
  • the processor 802 invokes the executable program code stored in the memory 801 to execute some or all of the steps in the imaging quality inspection method of the OCT host computer in the first embodiment.
  • the embodiment of the present invention discloses a computer-readable storage medium, which stores a computer program, wherein the computer program causes the computer to execute part or all of the steps in the imaging quality detection method of the OCT host in Embodiment 1.
  • the embodiment of the present invention also discloses a computer program product, wherein, when the computer program product is run on the computer, the computer is made to execute some or all of the steps in the method for detecting the imaging quality of the OCT host in the first embodiment.
  • the embodiment of the present invention also discloses an application distribution platform, wherein the application distribution platform is used to distribute computer program products, wherein, when the computer program products are run on the computer, the computer is made to perform the imaging quality detection of the OCT host in the first embodiment Some or all of the steps in the method.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, located in one place, or distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-accessible memory.
  • the technical solution of the present invention or the part that contributes to the prior art, or all or part of the technical solution, can be embodied in the form of a software product, and the computer software product is stored in a memory , including several requests to make a computer device (which may be a personal computer, a server, or a network device, etc., specifically, a processor in the computer device) execute part or all of the steps of the method described in each embodiment of the present invention.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B based on A does not mean determining B only based on A, and B can also be determined based on A and/or other information.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • PROM Programmable Read Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • OTPROM One-time Programmable Read-Only Memory
  • EEPROM Electronically Erasable Rewritable Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种OCT主机的成像质量检测方法及装置,其通过对检验标样图像进行预处理获得预处理图像,进一步检测预处理图像是否为变形图像,针对检验标样图像变形检测,从而实现对OCT成像设备安装合格的检验;根据横向分辨率评分和纵向分辨率评分可以了解到当前OCT主机的横向分辨率和纵向分辨率是否合格,本实施例能够对横向分辨率和纵向分辨率分别进行检测,操作简便,容易实施,其基于对选取的采集线生成像素值分布曲线进行评分计算,测量更加的精准;通过采集伪影像实现对伪影检测;实施例集合了对OCT工装的图像变形、分辨率和伪影的检测,能够更好的保证OCT主机的成像质量。

Description

一种OCT主机的成像质量检测方法及装置 技术领域
本发明涉及医疗器械技术领域,具体涉及一种OCT主机的成像质量检测方法及装置。
背景技术
目前,光学干涉断层成像技术(Optical Coherence Tomography,OCT)是一种基于弱相干光干涉原理,通过检测不同组织对探头发射的弱相干光的背向反射或散射信号可对生物组织进行三维断层扫描成像。其中OCT设备的分辨率、图像变形情况、图像伪影干扰是其成像质量关键参数之一,直接影响着OCT设备对的成像质量及对病变的诊断结果。
技术问题
OCT设备的分辨率反映是OCT设备可以分辨组织微细结构的能力,分辨率越高,观察医学组织的微细结构越清晰。图像变形是OCT设备所成图像与真实检测组织在大小形状上发生的变化,组织的大小形状是医学组织分析的重要指标,反映了组织病变的严重程度。图像伪影是原在不存在的物体却在成像中出现的伪像,严重伪影会覆盖真实图像对医学判断产生干扰。三个成像指标对OCT的应用效果影响很大,所以需要在设备出厂前对指标进行检测,使出厂的设备均符合使用标准。
技术解决方案
针对所述缺陷,本发明实施例公开了一种OCT主机的成像质量检测方法及装置,其可以对OCT主机在成像时所容易产生的图像质量问题进行快速检测,以提高最终的图像成像质量。
本发明实施例第一方面公开了一种OCT主机的成像质量检测方法,包括:
使用OCT图像变形检测装置获取检验标样图像,对所述检验标样图像进行预处理以得到预处理图像;其中,所述OCT图像变形检测装置包括OCT扫描探头、支撑件和检验标样;
获取所述预处理图像的边界,根据所述边界检测所述预处理图像是否为变形图像;
分别生成横向分辨率检验图像和纵向分辨率检验图像,其中,所述横向分辨率检验图像通过OCT主机、OCT扫描探头以及第一检验组件采集获得,所述纵向分辨率检验图像通过OCT主机、OCT扫描探头以及第二检验组件采集获得。所述第一检验组件包括第一标准厚度板、分辨率板和白色漫反射件,所述第一标准厚度板、分辨率板和白色漫反射件从上到下依次层叠设置。所述第二检验组件包括第二标准厚度板、第三标准厚度板和第四标准厚度板,所述第二标准厚度板、第三标准厚度板和第四标准厚度板从上至下依次层叠设置,所述OCT主机与OCT扫描探头连接,所述OCT扫描探头用于采集分辨率板的截面图像以及采集所述第三标准厚度板反射形成的反射图像;
基于第一采集规则在所述横向分辨率检验图像上选取至少一条第一采集线,以及,基于第二采集规则在所述纵向分辨率检验图像上选取至少一条第二采集线;
分别选取第一采集线和第二采集线,生成所述第一采集线的第一像素值分布曲线以及所述第二采集线的第二像素值分布曲线;
根据所述第一像素值分布曲线计算横向分辨率评分,根据所述第二像素值分布曲线计算纵向分辨率评分;
采集OCT伪影图像,按照预设的采集规则采集所述OCT伪影图像的图像像素值,对图像像素值进行数据处理,得到伪影的像素值与数量;判断所述伪影的像素值与数量是否满足预设的检测标准。
作为一种可选的实施方式,在本发明实施例第一方面中,所述检验标样具有预设形状的内孔,所述预设形状包括三角形,四边形,五边形,六边形,所述OCT扫描探头的出光口端通过所述支撑件固定在所述检验标样的内孔中间。
作为一种可选的实施方式,在本发明实施例第一方面中,根据所述边界检测所述预处理图像是否为变形图像,包括:
显示预存的标准比对图像,所述标准比对图像上形成有比对闭环;
比对所述检验标样图像是否在所述比对闭环形成的预设公差区域范围内,当所述检验标样图像在所述比对闭环形成的预设公差区域范围内时,定义所述检验标样图像为非变形图像。
作为一种可选的实施方式,在本发明实施例第一方面中,所述比对闭环包括第一比对闭环和第二比对闭环,所述第二比对闭环位于第一比对闭环内;相应的,所述比对所述检验标样图像是否在所述比对闭环形成的预设公差区域范围内,当所述检验标样图像在所述比对闭环形成的预设公差区域范围内时,定义所述检验标样图像为非变形图像,包括:
比对所述检验标样图像是否在第一比对闭环与所述第二比对闭环所形成的预设公差区域范围内,并当所述检验标样图像在第一比对闭环与所述第二比对闭环所形成的预设公差区域范围内时,定义所述检验标样图像为非变形图像。
作为一种可选的实施方式,在本发明实施例第一方面中,所述按照预设的采集规则采集所述OCT伪影图像的图像像素值,对图像像素值进行数据处理,得到伪影的像素值与数量,包括:
在所述OCT伪影图像中选取一条采集线,所述采集线为OCT伪影图像中的中心点与边界上一个点之间形成的线段,得到所述OCT伪影图像的图像像素值;
对图像像素值进行数据处理,得到伪影的像素值与数量,并获取所述采集线的像素坐标与像素值的关系曲线;
相应的,所述判断所述伪影的像素值与数量是否满足预设的检测标准,包括:
将所述采集线以所述中心点为圆心以预设转动角度转动,获取多条所述采集线的像素坐标与像素值的关系曲线;
判断所述关系曲线是否满足预设的检测标准。
作为一种可选的实施方式,在本发明实施例第一方面中,所述第一采集规则为在横向分辨率检验图像上选取第一设定长度的垂直于分辨率板的横线,所述第二采集规则为在纵向分辨率检验图像上选取第二设定长度的垂直于第三标准厚度板的横向;
相应的,所述基于第一采集规则在所述横向分辨率检验图像上选取至少一条第一采集线,包括:
在所述横向分辨率检验图像上生成与第一设定长度相等且垂直于分辨率板的截面图案的第一对比线条图案为第一采集线;
相应的,所述基于第二采集规则在所述纵向分辨率检验图像上选取至少一条第二采集线,包括:
在所述纵向分辨率检验图像上生成与第二设定长度相等且垂直于第三标准厚度板的反射图像的第二对比线条图案为第二采集线。
作为一种可选的实施方式,在本发明实施例第一方面中,所述根据第一像素值分布曲线计算横向分辨率评分,包括:
对所述第一像素值分布曲线进行傅里叶变换得到频率分布图;
从所述频率分布图中得到与分辨率板的截面图案对应的空间频率的峰值强度作为横向分辨率评分;
所述根据所述第二像素值分布曲线计算纵向分辨率评分,包括:
获取第二像素值分布曲线中的第一个峰的峰值和第二个峰的峰值,以及获取第一个峰和第二个峰之间的峰谷的数值;
根据公式Score = sqrt((peak1-valley)*(peak2-valley))/valley计算所述纵向分辨率评分,其中,Score为纵向分辨率 评分,peak1为第一个峰的峰值,peak2为第二个峰的峰值,valley为峰谷的数值。
本发明实施例第二方面公开一种OCT主机的成像质量检测装置,包括:
第一图像获取模块:用于使用OCT图像变形检测装置获取检验标样图像,对所述检验标样图像进行预处理以得到预处理图像;其中,所述OCT图像变形检测装置包括OCT扫描探头、支撑件和检验标样;
图像变形检测模块:用于获取所述预处理图像的边界,根据所述边界检测所述预处理图像是否为变形图像;
第二图像获取模块:用于分别生成横向分辨率检验图像和纵向分辨率检验图像,其中,所述横向分辨率检验图像通过OCT主机、OCT扫描探头以及第一检验组件采集获得,所述纵向分辨率检验图像通过OCT主机、OCT扫描探头以及第二检验组件采集获得。所述第一检验组件包括第一标准厚度板、分辨率板和白色漫反射件,所述第一标准厚度板、分辨率板和白色漫反射件从上到下依次层叠设置。所述第二检验组件包括第二标准厚度板、第三标准厚度板和第四标准厚度板,所述第二标准厚度板、第三标准厚度板和第四标准厚度板从上至下依次层叠设置,所述OCT主机与OCT扫描探头连接,所述OCT扫描探头用于采集分辨率板的截面图像以及采集所述第三标准厚度板反射形成的反射图像;
采集区域选取模块:用于基于第一采集规则在所述横向分辨率检验图像上选取至少一条第一采集线,以及,基于第二采集规则在所述纵向分辨率检验图像上选取至少一条第二采集线;
分辨率评分模块:用于分别选取第一采集线和第二采集线,生成所述第一采集线的第一像素值分布曲线以及所述第二采集线的第二像素值分布曲线;根据所述第一像素值分布曲线计算横向分辨率评分,根据所述第二像素值分布曲线计算纵向分辨率评分;
伪影采集模块:用于采集OCT伪影图像,按照预设的采集规则采集所述OCT伪影图像的图像像素值,对图像像素值进行数据处理,得到伪影的像素值与数量;判断所述伪影的像素值与数量是否满足预设的检测标准。
作为一种可选的实施方式,在本发明实施例第二方面中,所述检验标样具有预设形状的内孔,所述预设形状包括三角形,四边形,五边形,六边形,所述OCT扫描探头的出光口端通过所述支撑件固定在所述检验标样的内孔中间。
作为一种可选的实施方式,在本发明实施例第二方面中,根据所述边界检测所述预处理图像是否为变形图像,包括:
显示预存的标准比对图像,所述标准比对图像上形成有比对闭环;
比对所述检验标样图像是否在所述比对闭环形成的预设公差区域范围内,当所述检验标样图像在所述比对闭环形成的预设公差区域范围内时,定义所述检验标样图像为非变形图像。
作为一种可选的实施方式,在本发明实施例第二方面中,所述比对闭环包括第一比对闭环和第二比对闭环,所述第二比对闭环位于第一比对闭环内;相应的,所述比对所述检验标样图像是否在所述比对闭环形成的预设公差区域范围内,当所述检验标样图像在所述比对闭环形成的预设公差区域范围内时,定义所述检验标样图像为非变形图像,包括:
比对所述检验标样图像是否在第一比对闭环与所述第二比对闭环所形成的预设公差区域范围内,并当所述检验标样图像在第一比对闭环与所述第二比对闭环所形成的预设公差区域范围内时,定义所述检验标样图像为非变形图像。
作为一种可选的实施方式,在本发明实施例第二方面中,所述按照预设的采集规则采集所述OCT伪影图像的图像像素值,对图像像素值进行数据处理,得到伪影的像素值与数量,包括:
在所述OCT伪影图像中选取一条采集线,所述采集线为OCT伪影图像中的中心点与边界上一个点之间形成的线段,得到所述OCT伪影图像的图像像素值;
对图像像素值进行数据处理,得到伪影的像素值与数量,并获取所述采集线的像素坐标与像素值的关系曲线;
相应的,所述判断所述伪影的像素值与数量是否满足预设的检测标准,包括:
将所述采集线以所述中心点为圆心以预设转动角度转动,获取多条所述采集线的像素坐标与像素值的关系曲线;
判断所述关系曲线是否满足预设的检测标准。
作为一种可选的实施方式,在本发明实施例第二方面中,所述第一采集规则为在横向分辨率检验图像上选取第一设定长度的垂直于分辨率板的横线,所述第二采集规则为在纵向分辨率检验图像上选取第二设定长度的垂直于第三标准厚度板的横向;
相应的,所述基于第一采集规则在所述横向分辨率检验图像上选取至少一条第一采集线,包括:
在所述横向分辨率检验图像上生成与第一设定长度相等且垂直于分辨率板的截面图案的第一对比线条图案为第一采集线;
相应的,所述基于第二采集规则在所述纵向分辨率检验图像上选取至少一条第二采集线,包括:
在所述纵向分辨率检验图像上生成与第二设定长度相等且垂直于第三标准厚度板的反射图像的第二对比线条图案为第二采集线。
作为一种可选的实施方式,在本发明实施例第二方面中,所述根据第一像素值分布曲线计算横向分辨率评分,包括:
对所述第一像素值分布曲线进行傅里叶变换得到频率分布图;
从所述频率分布图中得到与分辨率板的截面图案对应的空间频率的峰值强度作为横向分辨率评分;
所述根据所述第二像素值分布曲线计算纵向分辨率评分,包括:
获取第二像素值分布曲线中的第一个峰的峰值和第二个峰的峰值,以及获取第一个峰和第二个峰之间的峰谷的数值;
根据公式Score = sqrt((peak1-valley)*(peak2-valley))/valley计算所述纵向分辨率评分,其中,Score为纵向分辨率 评分,peak1为第一个峰的峰值,peak2为第二个峰的峰值,valley为峰谷的数值。
本发明实施例第三方面公开一种OCT主机的成像质量检测设备,包括:存储有可执行程序代码的存储器;与所述存储器耦合的处理器;所述处理器调用所述存储器中存储的所述可执行程序代码,用于执行本发明实施例第一方面公开的OCT主机的成像质量检测方法。
本发明实施例第四方面公开一种计算机可读存储介质,其存储计算机程序,其中,所述计算机程序使得计算机执行本发明实施例第一方面公开的OCT主机的成像质量检测方法。
有益效果
与现有技术相比,本发明实施例具有以下有益效果:
本发明实施例中通过对应的OCT设备分别采集检验标样图像、横向分辨率检测图像、纵向分辨率检测图像以及OCT伪影图像,其中,对检验标样图像进行预处理获得预处理图像,预处理的过程可以帮助过滤目标图像中的噪点等,根据预处理图像的边界进一步检测该预处理图像是否为变形图像,实施例中针对OCT设备采集标样的检验标样图像变形检测,从而实现对OCT设备安装合格的检验;实施例横向分辨率评分和纵向分辨率评分用于评价横向分辨率和纵向分辨率的指标,根据该横向分辨率评分和纵向分辨率评分可以了解到当前OCT主机的横向分辨率和纵向分辨率是否合格,本实施例能够对横向分辨率和纵向分辨率分别进行检测,操作简便,容易实施,其基于对选取的采集线生成像素值分布曲线进行评分计算,测量更加的精准;通过采集OCT伪影图像实现对伪影检测;实施例集合了对OCT工装的图像变形、分辨率和伪影的检测,能够更好的保证OCT主机的成像质量。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种OCT主机的成像质量检测方法的流程示意图;
图2是本发明实施例OCT图像变形检测装置的结构示意图;
图3是本发明实施例生成横向分辨率检验图像的安装结构示意图的结构示意图;
图4是本发明实施例生成纵向分辨率检验图像的结构示意图;
图5是本发明是实力实施例生成OCT伪影图像的结构示意图;
图6是本发明实施例的检验标样图像的示例图;
图7是本发明实施例提供的一种OCT主机的成像质量检测装置的结构示意图;
图8是本发明实施例提供的一种OCT主机的成像质量检测设备的结构示意图。
本发明的最佳实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书中的术语“第一”、“第二”、“第三”、“第四”等是用于区别不同的对象,而不是用于描述特定顺序。本发明实施例的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,示例性地,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明实施例公开了一种OCT主机的成像质量检测方法、装置、设备及存储介质,实施例通过对应的OCT工装分别采集目标图像、横向分辨率检测图像、纵向分辨率检测图像以及伪影像,其中,对目标图像进行预处理获得预处理图像,预处理的过程可以帮助过滤目标图像中的噪点等,根据预处理图像的边界进一步检测该预处理图像是否为变形图像,实施例中针对OCT成像设备采集标样的目标图像变形检测,从而实现对OCT成像设备安装师傅合格的检验;实施例横向分辨率评分和纵向分辨率评分用于评价横向分辨率和纵向分辨率的指标,根据该横向分辨率评分和纵向分辨率评分可以了解到当前OCT主机的横向分辨率和纵向分辨率是否合格,本实施例能够对横向分辨率和纵向分辨率分别进行检测,操作简便,容易实施,其基于对选取的采集线生成像素值分布曲线进行评分计算,测量更加的精准;通过采集伪影像实现对伪影检测;实施例集合了对OCT工装的图像变形、分辨率和伪影的检测,能够更好的保证OCT主机的成像质量。
下面分别进行详细说明。
实施例一
请参阅图1,图1是本发明实施例公开的一种OCT主机的成像质量检测方法的流程示意图。其中,本发明实施例所描述的方法的执行主体为由软件或/和硬件组成的执行主体,该执行主体可以通过有线或/和无线方式接收相关信息,并可以发送一定的指令。当然,其还可以具有一定的处理功能和存储功能。该执行主体可以控制多个设备,例如远程的物理服务器或云服务器以及相关软件,也可以是对某处安置的设备进行相关操作的本地主机或服务器以及相关软件等。在一些场景中,还可以控制多个存储设备,存储设备可以与设备放置于同一地方或不同地方。
步骤101:使用OCT图像变形检测装置获取检验标样图像,对所述检验标样图像进行预处理以得到预处理图像。
实施例中,应用在OCT图像变形检测装置,所述OCT图像变形检测装置包括OCT扫描探头、支撑件和检验标样。具体的,参照图2,所述OCT成像设备包括OCT扫描探头201、圆环202和支撑件203,所述圆环202安装在所述OCT扫描探头201的中部对应位置,以使OCT扫描探头2012的中部弯曲,所述OCT扫描探头201的出光口端安装在所述支撑件203上,所述支撑件203与检验标样204之间具有设定距离,所述设定距离范围为10-15mm。圆环的直径例如为50mm,圆环的目的使探头中部弯曲,模拟探头在实际使用用可能存在的弯曲情况时,OCT图像发生变形情况。除了上述结构,通常还包括OCT主机,由OCT扫描探头201对标样进行图像采集。目标图像也即是对检验标样采集的图像。所述检验标样204具有预设形状的内孔,所述预设形状包括三角形,四边形,五边形,六边形,还可能是其他形状,所述OCT扫描探头的出光口端通过所述支撑件固定在所述检验标样的内孔中间。检验标样OCT扫描探头201的内孔通常是圆形。因此可参见图6,图6中示出的图案中,四边形黑影区域为采集的标样的检验标样图像,检验标样图像中圆形区域表示OCT扫描探头的内孔。实施例中对检验标样图像进行采集并执行后续的处理是为了检测目标图像是否发生变形,也即是相对于被检测的目标物实际的大小、形状和相对位置是否发生改变。在采集图像时,具体也采用不同外径的光纤扫描探头,例如1.7mm外径的光纤扫描探头或者2.5mm外径的光纤扫描探头,对检验标样进行图像采集。通过光线扫描探头扫描检验标样,采集到检验标样图像之后可以在OCT主机上进行显示。在使用光纤扫描探头采集目标图像之前,先安装设定规格的光纤扫描探头,调整PL值使得在OCT主机在上呈现正常图像。安装光纤扫描探头时,将OCT扫描探头的出光口端插到检测标样中以对检测标样进行图像采集。为了保证探头的采集效果,在探头上距离出光口15-20mm的位置采用一个支撑件将该探头托起,支撑部例如是V形槽。之后调整检验标样的位置是否合适,使得检验标样的图像在居中位置。
实施例中,预处理可以包括将所述目标图像转换为预设图像格式、对转换成预设图像格式的目标图像进行滤波处理,获取滤波处理后的目标图像的特征像素点、基于所述特征像素点将所述目标图像裁剪为预设尺寸的目标图像。该目标图像为预处理后的预处理图像。
上述中,对采集的检验标样图像先进行预处理,以去除噪音等,更便于后续观察和使用。在预处理过程中,为了方便后续的比对和检测,先对检验标样图像的格式进行转换,在OCT主机中预存有预设图像格式,例如jpg等,假设当前采集的检验标样图像为非jpg格式,则将该检验标样图像转换为jpg格式。在对检验标样图像的格式进行转换之后,进一步对该目标图像进行滤波处理,流入均值滤波,使用匹配的滤波器对检验标样图像进行滤波后,去除相应的一些噪音,是的图像更清晰。检验标样图像滤波处理后,进一步提取目标图像的特征像素点。在检验标样图像中包含有一定形状的检验标样图像目标图案,例如方形图案、动物图案、圆形图案等等,该检验标样图像目标图案通常与探头适应。特征像素点是指检验标样图像中的检验标样图像的像素特征。获取目标图像的像素特征,也即是获取到检验标样图像中目标图案的具体形状、尺寸、位置,从而可以参考目标图案的具体位置等,对检验标样图像进行裁剪。例如当前采集的检验标样图像尺寸为4mm*4mm,预设尺寸为3mm*3mm,而检验标样图像中目标图案的大小其实仅有2mm*2mm,因此也即是可以对检验标样图像进行采集为3mm*3mm的。所述检验标样具有预设形状的内孔,所述预设形状包括三角形,四边形,五边形,六边形,所述OCT扫描探头的出光口端通过所述支撑件固定在所述检验标样的内孔中间。
而由于在OCT成像系统中,形成伪影的最终影响因素有多种,可能是主机的原因,也可能是探头的原因。针对于不同的原因,通常在对伪影进行检测时,针对的检测对象不同。实施例中为了在后续检测在该OCT成像系统中所采集的目标图像是否生成伪影,或者伪影数量是否满足标准,可以在设定条件下任意采集一张图像。而为了结果的更加可信,通常可以重复流程多次。
步骤102:获取所述预处理图像的边界,根据所述边界检测所述预处理图像是否为变形图像。
为了保证图像是否变形这一结果的精确性,对预处理图像进行变形检测。具体是提取预处理图像的边界,例如,预处理图像中的目标图案为方形图案,在方形图案的区域内与方形图案区域外部会形成交界,也即是边界,由于方形图案的区域内的色彩呈现与区域外通常不同,因此可以结合已有技术,通过像素值的计算等可以容易提取目标图案的边界,通过对边界进行进一步的比对和检测。
在预处理图像中通常还包含有目标图案,实施例中对图像检测是否变形也即是检测预处理图像中的目标图案是否产生变形,在预处理图像中选取目标检测点也即是在目标图案中选取目标检测点。为了保证结果的准确性,选取目标检测点的数量为多个。预设基准检测点是事先存储在OCT主机中的一组数据,其用于作为比较基准与目标检测点进行比较,从而知道目标检测点的位置是否发生偏移。示例性的,预设基准检测点可以是图像的形式,工作人员将该组图像事先存储在OCT主机中,当采集并处理得到预处理图像时,在预设处理图像上显示该预设基准检测点,从而可以直观对预设基准检测点与目标检测点进行比对。另一个示例中,也可以是将预设基准检测点存储为坐标数据的形式,预设基准检测点的数量与目标检测点的数量相同,当采集到检验标样图像并处理为预处理图像时,获取目标检测点,此时也即是选取了目标检测点的同时获知了目标检测点在预处理图像中的坐标位置,分别将对应位置的预设基准检测点与目标检测点一一比对从而可以精确得知目标检测点是否产生偏移。
更进一步的,根据所述边界检测所述预处理图像是否为变形图像,包括:显示预存的标准比对图像,所述标准比对图像上形成有比对闭环;比对所述检验标样图像是否在所述比对闭环形成的预设公差区域范围内,当所述检验标样图像在所述比对闭环形成的预设公差区域范围内时,定义所述检验标样图像为非变形图像。
标准比对图像是由相关工作人员事先存储至OCT主机中,标准比对图像相当于虚拟比对卡,将标准比对图像显示在预处理图像上,可以较为直观的比对是否存在差异。根据目标检测点与预设基准检测点的比对是对预处理图像的变形检测的初步检测,假设通过设置目标检测点已经检测到当前的目标图像有变形,则无需再进行后续的步骤,只有当检测到目标检测点与预设基准检测点一致时,也即是表明当前该预处理图像为非初步变形图像,此时为了保证图像是否变形这一结果的精确性,对该非初步变形图像进行进一步的变形检测。具体是提取预处理图像的边界,例如,预处理图像中的目标图案为方形图案,在方形图案的区域内与方形图案区域外部会形成交界,也即是边界,由于方形图案的区域内的色彩呈现与区域外通常不同,因此可以结合已有技术,通过像素值的计算等可以容易提取目标图案的边界,通过对边界进行进一步的比对和检测。
上述中,作为更优选的实施方式,比对闭环包括第一比对闭环和第二比对闭环,所述第二比对闭环位于第一比对闭环内;相应的,所述比对所述检验标样图像是否在所述比对闭环形成的预设公差区域范围内,当所述检验标样图像在所述比对闭环形成的预设公差区域范围内时,定义所述检验标样图像为非变形图像,包括:比对所述检验标样图像是否在第一比对闭环与所述第二比对闭环所形成的预设公差区域范围内,并当所述检验标样图像在第一比对闭环与所述第二比对闭环所形成的预设公差区域范围内时,定义所述检验标样图像为非变形图像。
上述中,一比对闭环和第二比对闭环是相对应于标准尺寸的允许公差。当检验标样图像在第一比对闭环和第二比对闭环组成的范围内时,表明目标图像合格,为非变形图像。
步骤103:分别生成横向分辨率检验图像和纵向分辨率检验图像,其中,所述横向分辨率检验图像通过OCT主机、OCT扫描探头以及第一检验组件采集获得,所述纵向分辨率检验图像通过OCT主机、OCT扫描探头以及第二检验组件采集获得。所述第一检验组件包括第一标准厚度板、分辨率板和白色漫反射件,所述第一标准厚度板、分辨率板和白色漫反射件从上到下依次层叠设置。所述第二检验组件包括第二标准厚度板、第三标准厚度板和第四标准厚度板,所述第二标准厚度板、第三标准厚度板和第四标准厚度板从上至下依次层叠设置,所述OCT主机与OCT扫描探头连接,所述OCT扫描探头用于采集分辨率板的截面图像以及采集所述第三标准厚度板反射形成的反射图像。
本实施案例中采用的探头为应用于管腔道OCT设备的探头。主机中的驱动单元通过导丝带动探头360°周向扫描,可以得到管腔道一个位置的截面图像。所述横向分辨率检验图像通过OCT扫描探头、OCT主机以及第一检验组件采集获得,所述纵向分辨率检验图像通过OCT扫描探头、OCT主机以及第二检验组件采集获得,所述第一检验组件包括第一标准厚度板、分辨率板和白色漫反射件,所述第一标准厚度板、分辨率板和白色漫反射件从上到下依次层叠设置,所述第二检验组件包括第二标准厚度板、第三标准厚度板和第四标准厚度板,所述第二标准厚度板、第三标准厚度板和第四标准厚度板从上至下依次层叠设置,所述OCT扫描探头与OCT主机连接,所述OCT扫描探头用于采集分辨率板的截面图像以及采集所述第三标准厚度板反射形成的反射图像。
采集横向分辨率检验图像时应用的组件参见图3所示,包括OCT扫描探头301、OCT主机、第一标准厚度板302、分辨率板303和白色漫反射件304,所述第一标准厚度板302、分辨率板303和白色漫反射件304从上到下依次层叠设置,所述OCT扫描探头601用于采集分辨率板303的截面图像,所述OCT扫描探头301与所述OCT主机连接。采集纵向分辨率检验图像时应用的组件参见图4所示,包括第OCT扫描探头401、OCT主机、第二标准厚度板402、第三标准厚度板403和第四标准厚度板404,所述第二标准厚度板402、第三标准厚度板403和第四标准厚度板404从上至下依次层叠设置,所述OCT扫描探头401用于采集所述第三标准厚度板403经过第二标准厚度板402和第四标准厚度板404反射形成的反射图像,所述OCT扫描探头401与OCT主机连接。在该OCT成像系统中通常就包括OCT主机和OCT扫描探头,由OCT扫描探头对目标部位进行图像采集,采集的图像则在本实施例中定义为OCT医学图像。
例如,对于横向分辨率的检验规范可能是对OCT主机、光纤扫描探头作为检验对象进行检验,当检验OCT主机时,检验工具可能是合格的光纤扫描探头,检验光纤扫描探头时,检验工具是合格的OCT主机。检验中,通常需要使用到白色漫反射面、有一定分辨率的测试板,一定标准的第三标准厚度板。白色漫反射件也是白色漫反射面,可以采用标准的氧化铝陶瓷材质的标准漫反射面,或者用白色漫反射纸。分辨率板为具有一定间隔的明暗分布的平行线条图案,一般以透明玻璃或塑料作为载体。更有效的,可以将明暗平行线条图案直接刻蚀在例如白色氧化铝陶瓷的基底上,从而代替白色漫反射面和分辨率测试板。本实例中,分辨率板中线条图案的线条数不少于5条,以保证采集图像的有效数据量。标准厚度板可以是300um标准第三标准厚度板、600um标准第三标准厚度板、1500标准第三标准厚度板,因为OCT成像设备是可以对扫描截面整体成像,所以需要对截面上不同厚度面上对横向分辨率进行检测。示例性的,对横向分辨率进行检验时,在白色漫反射面上放置分辨率板,在分辨率板上方设置标准厚度板,分别对应于不同标准的厚度板下进行图像采集和最终横向分辨率评分。横向分辨率检测中OCT图像采集输出为与分辨率板对应的明暗分布的条纹状图像,通过对条纹状图像进行分析,可以得到最终的横线分辨率评分。
而对应于纵向分辨率的检验,用两块一定厚度的透明片夹着待测厚度的标准第三标准厚度板。也即是,第二标准厚度板和第四标准厚度板为透明片。透明片的作用主要是给予标准第三标准厚度板支撑的作用。待测标准第三标准厚度板一般比较薄,例如采用50um的标准第三标准厚度板作为待测第三标准厚度板。透明片和标准第三标准厚度板可以采用悬空放置,悬空的原因是为了减少下表面的反射光对测量结果的影响。纵向分辨率检测中OCT图像采集输出为标准第三标准厚度板的上下两个反射面所形成的图像,通过对两个反射面进行分析,可以得到最终的纵向分辨率评分。
步骤104:基于第一采集规则在所述横向分辨率检验图像上选取至少一条第一采集线,以及,基于第二采集规则在所述纵向分辨率检验图像上选取至少一条第二采集线。
实施例中基于上述采集的标准分别采集到横向分辨率检验图像和纵向分辨率检验图像,之后根据提前设置的第一采集规则和第二采集规则分别采集第一采集线和第二采集线。其中,第一采集规则和第二采集规则是根据要采集的对象、检验图像的尺寸等共同设置,通常可由工作人员提前预存。
所述第一采集规则为在横向分辨率检验图像上选取第一设定长度的垂直于分辨率板的横线,所述第二采集规则为在纵向分辨率检验图像上选取第二设定长度的垂直于第三标准厚度板的横向;相应的,所述基于第一采集规则在所述横向分辨率检验图像上选取至少一条第一采集线,包括:在所述横向分辨率检验图像上生成与第一设定长度相等且垂直于分辨率板的截面图案的第一对比线条图案为第一采集线;相应的,所述基于第二采集规则在所述纵向分辨率检验图像上选取至少一条第二采集线,包括:在所述纵向分辨率检验图像上生成与第二设定长。
步骤105:分别选取第一采集线和第二采集线,生成所述第一采集线的第一像素值分布曲线以及所述第二采集线的第二像素值分布曲线;根据所述第一像素值分布曲线计算横向分辨率评分,根据所述第二像素值分布曲线计算纵向分辨率评分。
具体的,分别选取第一采集线和第二采集线,生成所述第一采集线的第一像素值分布曲线以及所述第二采集线的第二像素值分布曲线;根据所述第一像素值分布。曲线计算横向分辨率评分,根据所述第二像素值分布曲线计算纵向分辨率评分。
步骤106:采集OCT伪影图像,按照预设的采集规则采集所述OCT伪影图像的图像像素值,对图像像素值进行数据处理,得到伪影的像素值与数量;判断所述伪影的像素值与数量是否满足预设的检测标准。
上述按照预设的采集规则采集所述OCT伪影图像的图像像素值,对图像像素值进行数据处理,得到伪影的像素值与数量,包括:
在所述OCT伪影图像中选取一条采集线,所述采集线为OCT伪影图像中的中心点与边界上一个点之间形成的线段,得到所述OCT伪影图像的图像像素值;对图像像素值进行数据处理,得到伪影的像素值与数量,并获取所述采集线的像素坐标与像素值的关系曲线;相应的,所述判断所述伪影的像素值与数量是否满足预设的检测标准,包括:将所述采集线以所述中心点为圆心以预设转动角度转动,获取多条所述采集线的像素坐标与像素值的关系曲线;判断所述关系曲线是否满足预设的检测标准。
如图5所示,生成OCT伪影图像的工装包括第四探头501、和白色漫反射面502。具体的,检测所述伪影像是否为线状伪影或环形伪影;当所述伪影像为线状伪影时,判断所述线状伪影的数量是否大于第一检验阈值以及判断所述线状伪影的亮度是否大于第二检验阈值;当所述伪影像为环状伪影时,判断所述环状伪影与中心点之间的距离是否大于检验距离、判断所述环状伪影的数量是否大于第三检验阈值,并判断所述环状伪影的亮度是否大于第四检测阈值。
实施例二
请参阅图7,图7是本发明实施例公开的OCT主机的成像质量检测装置的结构示意图。如图7所示,该OCT主机的成像质量检测装置可以包括:第一图像获取模块701、图像变形检测模块702、第二图像获取模块703、采集区域选取模块704、分辨率评分模块705和伪影采集模块706。,其中:
第一图像获取模块701:用于使用OCT图像变形检测装置获取检验标样图像,对所述检验标样图像进行预处理以得到预处理图像;其中,所述OCT图像变形检测装置包括OCT扫描探头、支撑件和检验标样。图像变形检测模块702:用于获取所述预处理图像的边界,根据所述边界检测所述预处理图像是否为变形图像。第二图像获取模块703:用于分别生成横向分辨率检验图像和纵向分辨率检验图像,其中,所述横向分辨率检验图像通过OCT主机、OCT扫描探头以及第一检验组件采集获得,所述纵向分辨率检验图像通过OCT主机、OCT扫描探头以及第二检验组件采集获得。所述第一检验组件包括第一标准厚度板、分辨率板和白色漫反射件,所述第一标准厚度板、分辨率板和白色漫反射件从上到下依次层叠设置。所述第二检验组件包括第二标准厚度板、第三标准厚度板和第四标准厚度板,所述第二标准厚度板、第三标准厚度板和第四标准厚度板从上至下依次层叠设置,所述OCT主机与OCT扫描探头连接,所述OCT扫描探头用于采集分辨率板的截面图像以及采集所述第三标准厚度板反射形成的反射图像。采集区域选取模块704:用于基于第一采集规则在所述横向分辨率检验图像上选取至少一条第一采集线,以及,基于第二采集规则在所述纵向分辨率检验图像上选取至少一条第二采集线。分辨率评分模块705,分别选取第一采集线和第二采集线,生成所述第一采集线的第一像素值分布曲线以及所述第二采集线的第二像素值分布曲线;根据所述第一像素值分布曲线计算横向分辨率评分,根据所述第二像素值分布曲线计算纵向分辨率评分;伪影采集模块706:用于采集OCT伪影图像,按照预设的采集规则采集所述OCT伪影图像的图像像素值,对图像像素值进行数据处理,得到伪影的像素值与数量;判断所述伪影的像素值与数量是否满足预设的检测标准。
实施例三
请参阅图8,图8是本发明实施例公开的一种OCT主机的成像质量检测设备的结构示意图。OCT主机的成像质量检测设备可以是计算机以及服务器等,当然,在一定情况下,还可以是手机、平板电脑以及监控终端等智能设备,以及具有处理功能的图像采集装置。如图8所示,该OCT主机的成像质量检测设备可以包括:
存储有可执行程序代码的存储器801;
与存储器801耦合的处理器802;
其中,处理器802调用存储器801中存储的可执行程序代码,执行实施例一中的OCT主机的成像质量检测方法中的部分或全部步骤。
本发明实施例公开一种计算机可读存储介质,其存储计算机程序,其中,该计算机程序使得计算机执行实施例一中的OCT主机的成像质量检测方法中的部分或全部步骤。
本发明实施例还公开一种计算机程序产品,其中,当计算机程序产品在计算机上运行时,使得计算机执行实施例一中的OCT主机的成像质量检测方法中的部分或全部步骤。
本发明实施例还公开一种应用发布平台,其中,应用发布平台用于发布计算机程序产品,其中,当计算机程序产品在计算机上运行时,使得计算机执行实施例一中的OCT主机的成像质量检测方法中的部分或全部步骤。
在本发明的各种实施例中,应理解,所述各过程的序号的大小并不意味着执行顺序的必然先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物单元,即可位于一个地方,或者也可以分布到多个网络单元上。可根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。所述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元若以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可获取的存储器中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或者部分,可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干请求用以使得一台计算机设备(可以为个人计算机、服务器或者网络设备等,具体可以是计算机设备中的处理器)执行本发明的各个实施例所述方法的部分或全部步骤。
在本发明所提供的实施例中,应理解,“与A对应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其他信息确定B。
本领域普通技术人员可以理解所述实施例的各种方法中的部分或全部步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质包括只读存储器(Read-Only Memory,ROM)、随机存储器(Random Access Memory,RAM)、可编程只读存储器(Programmable Read-only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、一次可编程只读存储器(One-time Programmable Read-Only Memory,OTPROM)、电子抹除式可复写只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
以上对本发明实施例公开的OCT主机的成像质量检测方法、装置、电子设备及存储介质进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (1)

  1. 一种OCT主机的成像质量检测方法,其特征在于,包括:
    使用OCT图像变形检测装置获取检验标样图像,对所述检验标样图像进行预处理以得到预处理图像;其中,所述OCT图像变形检测装置包括OCT扫描探头、支撑件和检验标样;
    获取所述预处理图像的边界,根据所述边界检测所述预处理图像是否为变形图像;
    分别生成横向分辨率检验图像和纵向分辨率检验图像,其中,所述横向分辨率检验图像通过OCT主机、OCT扫描探头以及第一检验组件采集获得,所述纵向分辨率检验图像通过OCT主机、OCT扫描探头以及第二检验组件采集获得。所述第一检验组件包括第一标准厚度板、分辨率板和白色漫反射件,所述第一标准厚度板、分辨率板和白色漫反射件从上到下依次层叠设置。所述第二检验组件包括第二标准厚度板、第三标准厚度板和第四标准厚度板,所述第二标准厚度板、第三标准厚度板和第四标准厚度板从上至下依次层叠设置,所述OCT主机与OCT扫描探头连接,所述OCT扫描探头用于采集分辨率板的截面图像以及采集所述第三标准厚度板反射形成的反射图像;
    基于第一采集规则在所述横向分辨率检验图像上选取至少一条第一采集线,以及,基于第二采集规则在所述纵向分辨率检验图像上选取至少一条第二采集线;
    分别选取第一采集线和第二采集线,生成所述第一采集线的第一像素值分布曲线以及所述第二采集线的第二像素值分布曲线;
    根据所述第一像素值分布曲线计算横向分辨率评分,根据所述第二像素值分布曲线计算纵向分辨率评分;
    采集OCT伪影图像,按照预设的采集规则采集所述OCT伪影图像的图像像素值,对图像像素值进行数据处理,得到伪影的像素值与数量;判断所述伪影的像素值与数量是否满足预设的检测标准。
    2.根据权利要求1所述的成像质量检测方法,其特征在于,所述检验标样具有预设形状的内孔,所述预设形状包括三角形,四边形,五边形,六边形,所述OCT扫描探头的出光口端通过所述支撑件固定在所述检验标样的内孔中间。
    3.根据权利要求1所述的成像质量检测方法,其特征在于,根据所述边界检测所述预处理图像是否为变形图像,包括:
    显示预存的标准比对图像,所述标准比对图像上形成有比对闭环;
    比对所述检验标样图像是否在所述比对闭环形成的预设公差区域范围内,当所述检验标样图像在所述比对闭环形成的预设公差区域范围内时,定义所述检验标样图像为非变形图像。
    4.根据权利要求3所述的成像质量检测方法,其特征在于,所述比对闭环包括第一比对闭环和第二比对闭环,所述第二比对闭环位于第一比对闭环内;相应的,所述比对所述检验标样图像是否在所述比对闭环形成的预设公差区域范围内,当所述检验标样图像在所述比对闭环形成的预设公差区域范围内时,定义所述检验标样图像为非变形图像,包括:
    比对所述检验标样图像是否在第一比对闭环与所述第二比对闭环所形成的预设公差区域范围内,并当所述检验标样图像在第一比对闭环与所述第二比对闭环所形成的预设公差区域范围内时,定义所述检验标样图像为非变形图像。
    5.根据权利要求1所述的成像质量检测方法,其特征在于,所述按照预设的采集规则采集所述OCT伪影图像的图像像素值,对图像像素值进行数据处理,得到伪影的像素值与数量,包括:
    在所述OCT伪影图像中选取一条采集线,所述采集线为OCT伪影图像中的中心点与边界上一个点之间形成的线段,得到所述OCT伪影图像的图像像素值;
    对图像像素值进行数据处理,得到伪影的像素值与数量,并获取所述采集线的像素坐标与像素值的关系曲线;
    相应的,所述判断所述伪影的像素值与数量是否满足预设的检测标准,包括:
    将所述采集线以所述中心点为圆心以预设转动角度转动,获取多条所述采集线的像素坐标与像素值的关系曲线;
    判断所述关系曲线是否满足预设的检测标准。
    6.根据权利要求1所述的成像质量检测方法,其特征在于,所述第一采集规则为在横向分辨率检验图像上选取第一设定长度的垂直于分辨率板的横线,所述第二采集规则为在纵向分辨率检验图像上选取第二设定长度的垂直于第三标准厚度板的横向;
    相应的,所述基于第一采集规则在所述横向分辨率检验图像上选取至少一条第一采集线,包括:
    在所述横向分辨率检验图像上生成与第一设定长度相等且垂直于分辨率板的截面图案的第一对比线条图案为第一采集线;
    相应的,所述基于第二采集规则在所述纵向分辨率检验图像上选取至少一条第二采集线,包括:
    在所述纵向分辨率检验图像上生成与第二设定长度相等且垂直于第三标准厚度板的反射图像的第二对比线条图案为第二采集线。
    7.根据权利要求6所述的成像质量检测方法,其特征在于,所述根据所述第一像素值分布曲线计算横向分辨率评分,包括:
    对所述第一像素值分布曲线进行傅里叶变换得到频率分布图;
    从所述频率分布图中得到与分辨率板的截面图案对应的空间频率的峰值强度作为横向分辨率评分;
    所述根据所述第二像素值分布曲线计算纵向分辨率评分,包括:
    获取第二像素值分布曲线中的第一个峰的峰值和第二个峰的峰值,以及获取第一个峰和第二个峰之间的峰谷的数值;
    根据公式Score = sqrt((peak1-valley)*(peak2-valley))/valley计算所述纵向分辨率评分,其中,Score为纵向分辨率 评分,peak1为第一个峰的峰值,peak2为第二个峰的峰值,valley为峰谷的数值。
    8. 一种OCT主机的成像质量检测装置,其特征在于,包括:
    第一图像获取模块:用于使用OCT图像变形检测装置获取检验标样图像,对所述检验标样图像进行预处理以得到预处理图像;其中,所述OCT图像变形检测装置包括OCT扫描探头、支撑件和检验标样;
    图像变形检测模块:用于获取所述预处理图像的边界,根据所述边界检测所述预处理图像是否为变形图像;
    第二图像获取模块:用于分别生成横向分辨率检验图像和纵向分辨率检验图像,其中,所述横向分辨率检验图像通过OCT主机、OCT扫描探头以及第一检验组件采集获得,所述纵向分辨率检验图像通过OCT主机、OCT扫描探头以及第二检验组件采集获得。所述第一检验组件包括第一标准厚度板、分辨率板和白色漫反射件,所述第一标准厚度板、分辨率板和白色漫反射件从上到下依次层叠设置。所述第二检验组件包括第二标准厚度板、第三标准厚度板和第四标准厚度板,所述第二标准厚度板、第三标准厚度板和第四标准厚度板从上至下依次层叠设置,所述OCT主机与OCT扫描探头连接,所述OCT扫描探头用于采集分辨率板的截面图像以及采集所述第三标准厚度板反射形成的反射图像;
    采集区域选取模块:用于基于第一采集规则在所述横向分辨率检验图像上选取至少一条第一采集线,以及,基于第二采集规则在所述纵向分辨率检验图像上选取至少一条第二采集线;
    分辨率评分模块:用于分别选取第一采集线和第二采集线,生成所述第一采集线的第一像素值分布曲线以及所述第二采集线的第二像素值分布曲线;根据所述第一像素值分布曲线计算横向分辨率评分,根据所述第二像素值分布曲线计算纵向分辨率评分;
    伪影采集模块:用于采集OCT伪影图像,按照预设的采集规则采集所述OCT伪影图像的图像像素值,对图像像素值进行数据处理,得到伪影的像素值与数量;判断所述伪影的像素值与数量是否满足预设的检测标准。
    9.一种OCT主机的成像质量检测设备,其特征在于,包括:存储有可执行程序代码的存储器;与所述存储器耦合的处理器;所述处理器调用所述存储器中存储的所述可执行程序代码,用于执行权利要求1至7任一项所述的OCT主机的成像质量检测方法。
    10.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储计算机程序,其中,所述计算机程序使得计算机执行权利要求1至7任一项所述的OCT主机的成像质量检测方法。
PCT/CN2022/088018 2022-01-12 2022-04-20 一种oct主机的成像质量检测方法及装置 WO2023134047A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210029325.7 2022-01-12
CN202210029325.7A CN114066889B (zh) 2022-01-12 2022-01-12 一种oct主机的成像质量检测方法及装置

Publications (1)

Publication Number Publication Date
WO2023134047A1 true WO2023134047A1 (zh) 2023-07-20

Family

ID=80230811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088018 WO2023134047A1 (zh) 2022-01-12 2022-04-20 一种oct主机的成像质量检测方法及装置

Country Status (2)

Country Link
CN (1) CN114066889B (zh)
WO (1) WO2023134047A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114066889B (zh) * 2022-01-12 2022-04-29 广州永士达医疗科技有限责任公司 一种oct主机的成像质量检测方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120265061A1 (en) * 2011-04-13 2012-10-18 St. Jude Medical, Inc. High speed elastographic property mapping of lumens utilizing micropalpation delivered from an oct-equipped catheter tip
US20130003074A1 (en) * 2011-06-29 2013-01-03 Canon Kabushiki Kaisha Optical coherence tomographic imaging apparatus, optical coherence tomographic imaging method, program for executing the optical coherence tomographic imaging method, and storage medium having the program stored thereon
CN103269439A (zh) * 2013-05-21 2013-08-28 杭州电子科技大学 一种oct影像质量客观无参考型评价方法
CN103932682A (zh) * 2014-05-07 2014-07-23 中国计量科学研究院 一种用于oct设备成像性能评价的三维分辨率板及其使用方法
CN106880340A (zh) * 2017-03-09 2017-06-23 广州永士达医疗科技有限责任公司 一种oct设备成像性能评价装置及其使用方法
US20180365868A1 (en) * 2017-06-14 2018-12-20 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and computer-readable storage medium
US20210161376A1 (en) * 2018-06-13 2021-06-03 Topcon Corporation Ophthalmic device, control method therefor, and recording medium
CN114066889A (zh) * 2022-01-12 2022-02-18 广州永士达医疗科技有限责任公司 一种oct主机的成像质量检测方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8520974B2 (en) * 2008-01-11 2013-08-27 Shimadzu Corporation Image processing method, an apparatus therefor and a tomographic apparatus for removing artifacts from a sectional image
EP4057215A1 (en) * 2013-10-22 2022-09-14 Eyenuk, Inc. Systems and methods for automated analysis of retinal images
KR101664432B1 (ko) * 2014-02-12 2016-10-10 삼성전자주식회사 단층 영상 장치 및 그에 따른 단층 영상 디스플레이 방법
US9629553B2 (en) * 2014-12-19 2017-04-25 Volcano Corporation Seam elimination and motion compensation in imaging data
CN109509178B (zh) * 2018-10-24 2021-09-10 苏州大学 一种基于改进的U-net网络的OCT图像脉络膜分割方法
EP4139881A1 (en) * 2020-05-18 2023-03-01 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for image optimization
CN111710012B (zh) * 2020-06-12 2023-04-14 浙江大学 一种基于两维复合配准的octa成像方法与装置
CN113520317A (zh) * 2021-07-05 2021-10-22 汤姆飞思(香港)有限公司 基于oct的子宫内膜检测分析方法、装置、设备及存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120265061A1 (en) * 2011-04-13 2012-10-18 St. Jude Medical, Inc. High speed elastographic property mapping of lumens utilizing micropalpation delivered from an oct-equipped catheter tip
US20130003074A1 (en) * 2011-06-29 2013-01-03 Canon Kabushiki Kaisha Optical coherence tomographic imaging apparatus, optical coherence tomographic imaging method, program for executing the optical coherence tomographic imaging method, and storage medium having the program stored thereon
CN103269439A (zh) * 2013-05-21 2013-08-28 杭州电子科技大学 一种oct影像质量客观无参考型评价方法
CN103932682A (zh) * 2014-05-07 2014-07-23 中国计量科学研究院 一种用于oct设备成像性能评价的三维分辨率板及其使用方法
CN106880340A (zh) * 2017-03-09 2017-06-23 广州永士达医疗科技有限责任公司 一种oct设备成像性能评价装置及其使用方法
US20180365868A1 (en) * 2017-06-14 2018-12-20 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and computer-readable storage medium
US20210161376A1 (en) * 2018-06-13 2021-06-03 Topcon Corporation Ophthalmic device, control method therefor, and recording medium
CN114066889A (zh) * 2022-01-12 2022-02-18 广州永士达医疗科技有限责任公司 一种oct主机的成像质量检测方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SUN, JINFU ET AL.: "Artifacts in Optical Coherence Tomography Angiography", RECENT ADVANCES IN OPHTHALMOLOGY, vol. 41, no. 1, 31 January 2021 (2021-01-31), pages 79 - 83, XP009547737 *
ZAGO, ELDER IAROSSI ET AL.: "An assessment of the quality of optical coherence tomography image acquisition", THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, vol. 36, no. 6, 30 June 2020 (2020-06-30), pages 1013 - 1020, XP037126400, DOI: 10.1007/s10554-020-01795-8 *

Also Published As

Publication number Publication date
CN114066889A (zh) 2022-02-18
CN114066889B (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
JP6447637B2 (ja) 表面欠陥検出装置、表面欠陥検出方法、及び鋼材の製造方法
CN103356241B (zh) 二维超声设备成像质量评估系统
KR101489030B1 (ko) 광학적 모양 및 위치 측정을 위한 구조-광 시스템의 정확한 이미지 획득 방법
JP6394514B2 (ja) 表面欠陥検出方法、表面欠陥検出装置、及び鋼材の製造方法
EP1913874B1 (en) Ultrasound diagnostic apparatus and method for measuring a size of a target object
CN104964982B (zh) 基于oct复信号的玻璃表面真伪缺陷识别方法及系统
KR20120088773A (ko) 검사 장치, 3차원 형상 측정 장치, 구조물의 제조 방법
KR102580984B1 (ko) 화상 처리 방법, 프로그램 및 기록 매체
JP2013134666A (ja) 二値画像生成装置、分類装置、二値画像生成方法および分類方法
WO2023134047A1 (zh) 一种oct主机的成像质量检测方法及装置
CN107389316B (zh) 显示面板测试装置和显示面板测试方法
JP2001099632A (ja) Ccdカメラによる正反射式表面性状測定方法及びその装置
JP3324699B2 (ja) 繊維の径分布測定方法および装置
US11168976B2 (en) Measuring device for examining a specimen and method for determining a topographic map of a specimen
JP2004004088A (ja) 物体の表面形状を測定するための方法及び装置
JP4515036B2 (ja) 側方照明により三次元の縁部の位置を求める方法
CN117058106A (zh) 基于随机森林的柔性玻璃平面度及表面缺陷的测量方法
JP2509772B2 (ja) 光コネクタの端面検査装置
CN114305340B (zh) 一种应用于oct主机的分辨率检测方法及装置
JP2010179004A (ja) 毛髪診断システム
CN111316090A (zh) 透明或半透明材料微观缺陷检测系统及方法
CN114271791B (zh) 一种oct成像系统的伪影检测方法及装置
CN114445353B (zh) 一种oct图像变形检测方法及装置
CN115683323B (zh) 一种发声设备的声功率测量系统及方法
JP7382290B2 (ja) 画像処理方法、プログラムおよび記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919689

Country of ref document: EP

Kind code of ref document: A1