WO2023133998A1 - 一种微柱凝胶卡、加样机构及方法 - Google Patents

一种微柱凝胶卡、加样机构及方法 Download PDF

Info

Publication number
WO2023133998A1
WO2023133998A1 PCT/CN2022/080452 CN2022080452W WO2023133998A1 WO 2023133998 A1 WO2023133998 A1 WO 2023133998A1 CN 2022080452 W CN2022080452 W CN 2022080452W WO 2023133998 A1 WO2023133998 A1 WO 2023133998A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
sample
sample loading
fixed plate
gel
Prior art date
Application number
PCT/CN2022/080452
Other languages
English (en)
French (fr)
Inventor
张传国
赖鹏飞
蔡晓祥
王学琴
郑凯
Original Assignee
深圳市爱康生物科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市爱康生物科技股份有限公司 filed Critical 深圳市爱康生物科技股份有限公司
Priority to EP22871110.7A priority Critical patent/EP4235182A4/en
Publication of WO2023133998A1 publication Critical patent/WO2023133998A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5023Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures with a sample being transported to, and subsequently stored in an absorbent for analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5021Test tubes specially adapted for centrifugation purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5025Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures for parallel transport of multiple samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0631Purification arrangements, e.g. solid phase extraction [SPE]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/069Absorbents; Gels to retain a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50857Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates using arrays or bundles of open capillaries for holding samples

Definitions

  • the invention relates to the field of medical equipment, in particular to a microcolumn gel card, a sample loading mechanism and a method.
  • Blood type detection technology has a history of more than 100 years, from the original slide method, paper method, test tube method and other classic methods, gradually developed to microtiter plate method, solid phase method, magnetized red blood cell method, and the gel that came out in 1990 Type detection method.
  • the micro-column gel method is the recommended method for international safe blood transfusion inspection.
  • the micro-column gel card is the core of the micro-column gel method. It is mainly used for blood type testing before surgery, blood transfusion, and neonatal hemolytic disease screening before pregnancy.
  • the current new card detection method has replaced the traditional blood detection method and has become a new, more convenient, more stable and more accurate detection method, which has been widely promoted.
  • Micro-column gel cards are generally formed by parallel connection of multiple micro-columns with special shapes. Above the column is the loading column and the funnel-shaped "reaction pool". There is a micro column at the lower end of the reaction pool. The micro column contains specific antibodies filled according to the detection needs of different projects and has certain physical properties. With non-dissolving gel particles with stable chemical properties, the added samples and reagents are first reacted in the reaction pool, and then read by the instrument after centrifugation.
  • the current micro-column gel cards generally have 6 or 8 columns, which are limited by the number of holes, and the detection speed is relatively slow when used with automatic instruments. Therefore, it is urgent to improve the micro-column gel cards.
  • the detection efficiency of batch experiments does not affect the accuracy of detection results.
  • the present invention provides a micro-column gel card, a sample loading mechanism and a method.
  • a micro-column gel card comprising a fixed plate and a plurality of columns arranged and fixed by the fixed plate, characterized in that the plurality of columns are respectively fixed on both sides of the fixed plate, and the tubes located on both sides of the fixed plate
  • the columns are arranged in a staggered position, and any one of the columns includes a sample loading chamber, a reaction chamber and a gel column, the gel column is used to load gel reagents, and the sample loading chamber is arranged above the gel column , the reaction chamber is connected between the sample addition chamber and the gel column, and the central axis of the sample addition chamber does not coincide with the gel column.
  • the pipe columns on both sides of the fixing plate are center-symmetrical. Its function is to ensure that the micro-column gel card can be placed in the automatic equipment without distinguishing the direction, and reduce the error rate in the actual operation process.
  • the center-to-center distances between any two adjacent pipe strings of the several pipe strings are equal, and are preferably 9 mm. Its function is: in this technical feature, the center distances of any two adjacent pipe strings are equal, that is, the center distance between adjacent pipe strings on the same side of the fixed plate and the center distance between adjacent pipe strings on different sides of the fixed plate The center distances are all equal, so that the central line between the three adjacent columns on both sides of the fixed plate forms an equilateral triangle. The displacement distance between different pipe strings maintains a specific relationship with the center distance of adjacent pipe strings, which simplifies logic control.
  • the gel column is internally tangent to the vertical projection of the sample loading chamber.
  • any two gel columns are parallel to each other and the frontal projections do not overlap. Its function is: any two gel columns are completely non-overlapping, ensuring that when the micro-column gel card is used in micro-column gel experiments, the interpretation interference between the mutual columns when the instrument interprets each gel column is reduced.
  • the opening of the sample loading chamber is provided with a film-coated column
  • the film-coated column is a ring-shaped convex structure
  • an inner ring step is provided on the inner wall of the film-coated column.
  • the sealing layer is sealingly connected with the film-covered column. Its function is: usually the sealing material (such as environmental protection glue) used in sealing has a certain degree of fluidity.
  • first reinforcing ribs are provided on the outside of the sample loading chamber of each column, and second reinforcing ribs are provided on the outside of the gel column of each column. Its function is: the setting of the first reinforcing rib and the second reinforcing rib is to make the structure of the microcolumn gel card more stable and not easily deformed.
  • the outer diameter of the sample loading chamber is 8-10mm
  • the outer diameter of the gel column is 2-4mm
  • the inner diameter of the gel column is 1-1.5mm
  • the depth of the reaction chamber is 3-6mm
  • the gel column The depth is 15-20mm. Its role is to effectively improve the reaction effect of samples/reagents in the reaction chamber by controlling the ratio of the pore diameter of the sample chamber and the gel column and the depth of the reaction chamber.
  • the depth of the reaction chamber is small, the inclination of the conical surface of the reaction chamber is small, and the sample/reagent is not easy to expand and disperse, which affects the reaction effect.
  • the number of pipe strings on both sides of the fixed plate is equal, the pipe string on one side of the fixed plate is set as the first pipe string group, and the pipe string on the other side is the second pipe string group, and the first pipe string
  • the dislocation distance between the group and the second pipe string group is half of the center-to-center distance of adjacent pipe strings. Its function is to make the columns on both sides misaligned at a distance of half the outer diameter of the sample chamber, and to ensure that there is no overlap between adjacent gel columns, it can greatly reduce the cost of the entire microcolumn gel card. Horizontal size, improve space utilization.
  • the fixed plate includes a lower card body and an upper card body, and the shortest distance between the edge of the sample chamber of the tube columns on both sides of the first column group and the second column group from the edge of the upper card body is 1- 3mm. Its function is: by limiting the distance between the edge of the sample chamber and the edge of the fixed plate of the column on both sides, while improving the space utilization rate, it is convenient for the gripper device of the automation equipment to grab the micro-column gel card.
  • the distance between the edge of the sample chamber of the side column and the edge of the fixed plate is too large, resulting in a large size of the entire micro-column gel card and low space utilization. Small, the gripper device of the automation equipment may have problems such as unstable gripping and falling when gripping the microcolumn gel card.
  • both the first string group and the second string group include N strings, where N is a natural number not less than 4, and N is an even number.
  • a sample loading mechanism is used to load the above-mentioned microcolumn gel card, the sample loading mechanism includes N/2 sample loading devices, and the distance between any two adjacent sample loading devices is equal to It is twice the center-to-center distance of adjacent pipe strings, and the sample loading mechanism has degrees of freedom of movement in X, Y, and Z directions.
  • sample loading method of the above-mentioned microcolumn gel card by the sample loading mechanism includes:
  • the sample loading mechanism moves to the top of the microcolumn gel card
  • any one of the sample feeding devices that the sample feeding mechanism moves to both sides is located at the side of the pipe string in the first or second pipe string group that is close to the edge of the fixed plate along the first direction or the second direction. Above the central axis position of the sample chamber;
  • the sample loading mechanism completes the sample loading of N/2 tubing strings in the first tubing string group or the second tubing string group through N/2 sample loading devices;
  • the sample adding mechanism moves horizontally to the first set direction by a distance between the centers of adjacent pipe strings to complete the sample addition to the remaining N/2 pipe strings in the first pipe string group or the second pipe string group;
  • the selection of the first setting direction is: when the first pipe string group or the second pipe string group that has completed adding samples is located near the edge of the fixed plate in the first direction of the fixed plate, the selected The above-mentioned setting direction is the second direction; when the pipe string close to the edge of the fixed plate in the first pipe string group or the second pipe string group that has completed sample addition is located in the second direction of the fixed plate, the set Set the direction as the first direction;
  • the sample loading mechanism selectively horizontally moves half or half of the distance between the centers of adjacent pipe columns in the second setting direction, and then, the sample loading mechanism moves closer to the second setting along the Y direction.
  • the pipe string group or the first pipe string group moves a set distance in the direction, so that the sample feeding device close to the edge of the fixed plate in the sample feeding mechanism is located above the central axis of the sample chamber of the corresponding pipe string, and the sample feeding mechanism completes the alignment. Sampling of the second string group or the N/2 strings in the first string group;
  • the sample loading mechanism moves horizontally toward the edge of the fixed plate by a distance between the centers of adjacent pipe strings in the third set direction, and completes the second pipe string group or the remaining N/2 pipe strings in the first pipe string group. Loading;
  • the selection of the third setting direction is: when the second pipe string group or the pipe string close to the edge of the fixed plate in the second pipe string group that has completed sample addition is located in the first direction of the fixed plate, the selected The above-mentioned setting direction is the second direction; when the pipe string near the edge of the fixed plate in the second pipe string group or the first pipe string group that has completed sample addition is located in the second direction of the fixed plate, the set Set the direction as the first direction.
  • the sample loading mechanism performs sample loading in the form of dislocation for the above-mentioned microcolumn gel card sample loading method, which can greatly avoid the interference of simultaneous sample loading between adjacent columns or possible cross-contamination problems.
  • a sample loading mechanism is used to add samples to the above-mentioned microcolumn gel card, the sample loading mechanism includes several sample loading devices, and the distribution arrangement of the several sample loading devices is similar to that of the microcolumn
  • the distribution and arrangement of the columns on the gel card is compatible, and the sample loading mechanism has degrees of freedom of movement in X, Y, and Z directions. Its function is that: the sample loading mechanism can complete the sample loading process of each column on the micro-column gel card at one time, greatly improving work efficiency.
  • the present invention provides a micro-column gel card, a sample loading mechanism and a method, wherein the micro-column gel card includes a fixed plate and a number of fixed plates fixed by the fixed plate. Tube columns, the plurality of tube columns are respectively fixed on both sides of the fixed plate, and the columns located on both sides of the fixed plate are arranged in a dislocation manner, and any one of the tube columns includes a sample adding chamber, a reaction chamber and a gel column , the gel column is used to load gel reagents, the sample loading chamber is arranged above the gel column, the reaction chamber is connected between the sample loading chamber and the gel column, and the sample loading chamber is connected to the gel column.
  • the central axes of the gel columns do not coincide.
  • the double-row column design can increase the number of columns to double the detection efficiency compared with the same type of single-row micro-column gel cards.
  • the misalignment design of the double-row column can ensure that the adjacent columns do not overlap, and reduce the mutual interference of each column during the interpretation of the experiment.
  • the eccentric design between the sample chamber and the gel column When adjusting the sample loading position of the sample loading mechanism, the operator only needs to adjust the sample loading position based on the central position of the sample loading chamber, which can ensure the consistency of the sample loading positions debugged by different operators to a certain extent.
  • Fig. 1 is a schematic structural view of the micro-column gel card of the present invention.
  • Fig. 2 is a front view of the microcolumn gel card of the present invention.
  • Fig. 3 is a left view of the microcolumn gel card of the present invention.
  • Fig. 4 is a bottom view of the microcolumn gel card of the present invention.
  • Fig. 5 is a schematic diagram of equal center-to-center distances of adjacent pipe strings in Embodiment 2 of the present invention.
  • Fig. 6 is a schematic diagram of the sample adding mechanism of the second embodiment of the present invention.
  • Fig. 7 is a flow chart of the sample adding method in the second embodiment of the present invention.
  • Fig. 8 is a flow chart of the sample adding method in the third embodiment of the present invention.
  • 1-lower card body 2-upper card body, 3-column, 301-sample chamber, 302-reaction chamber, 303-gel column, 4-coated column, 5-sample loading mechanism, 501- The first sample adding device, 502 - the second sample adding device, 503 - the third sample adding device, 504 - the fourth sample adding device, 6 - the first reinforcing rib, 7 - the second reinforcing rib.
  • a micro-column gel card includes a fixed plate and a plurality of columns 3 arranged and fixed by the fixed plate, and the plurality of columns are respectively fixed on both sides of the fixed plate, and are located at The columns on both sides of the fixed plate are arranged in a dislocation manner, and any one of the columns 3 includes a sample loading chamber 301, a reaction chamber 302 and a gel column 303, the gel column 303 is used for loading gel reagents, and the adding
  • the sample cavity 301 is arranged above the gel column 303, the reaction cavity 302 is connected between the sample loading cavity 301 and the gel column 303, and the central axes of the sample loading cavity 301 and the gel column 303 do not coincide .
  • the operator When debugging the sample loading position, the operator needs to take the center of the sample loading chamber as the reference and then perform appropriate offset steps so that the sample/reagent can be filled into the reaction chamber.
  • the specific offset It can only be adjusted based on the experience of the operator. Different operators cannot keep consistent presets for the offset, resulting in uneven sample loading positions debugged by different operators and poor consistency.
  • the sample injection chamber and the condensation The central axes of the gel columns do not coincide, that is, the sampling cavity of each column and the gel column are designed eccentrically, and the operator only needs to use the center position of the sampling cavity (that is, the sampling cavity) when debugging the sample loading position.
  • the central axis of ) is used as the reference to adjust the sample loading position, which can ensure the consistency of the sample loading positions adjusted by different operators to a certain extent.
  • the number of columns on both sides of the fixed plate is equal and eight, forming a double-row sixteen-hole micro-column gel card, and the columns on both sides of the fixed plate are centrally symmetrical
  • the vertical projection of the gel column and the sample chamber is internally tangent, and any two gel columns are parallel to each other and the front projections do not overlap.
  • the column on the side of the fixed plate is set as the first column group (As shown in Figure 4, the upper row is the first pipe string group), and the pipe string on the other side is the second pipe string group (as shown in Figure 4, the lower row is the first pipe string group), as shown in Figure 4
  • the eight pipe strings of the first pipe string group are set to be H1 ⁇ H8 respectively
  • the eight pipe strings of the second pipe string group are set to be M1 ⁇ M8 respectively
  • the center-to-center distance between any two adjacent pipe strings are equal
  • the dislocation distance between the first pipe string group and the second pipe string group is 1/2 of the center-to-center distance of adjacent pipe strings, in addition to ensuring that there is no overlap between adjacent gel columns, it can be compared Minimize the lateral size of the entire micro-column gel card to improve space utilization; the two sets of columns are in the form of central symmetry, ensuring that the micro-column gel card can be placed in the automated equipment without distinguishing directions, reducing the actual operation process.
  • the sample loading mechanism 5 has degrees of freedom of movement in X, Y, and Z directions, and the sample loading mechanism 5 includes four sample loading devices (as shown in FIG. 6 , it is a corresponding schematic diagram.
  • FIG. 6 is In order to illustrate the technical effect of this embodiment, the schematic diagram of the principle drawn does not represent the actual structural relationship), which are respectively the first sampling device 501, the second sampling device 502, the third sampling device 503 and the fourth sampling device 504 , the distance between any two adjacent sample loading devices is twice the center-to-center distance of adjacent columns, which is 2d, and the sample loading mechanism should be used for the double-row sixteen-hole microcolumn gel in this embodiment.
  • the sampling method of the card is shown in Figure 7:
  • the sample loading mechanism moves to any one of the sample loading devices on both sides, which is located in the tube in the first or second tube string group close to the edge of the fixed plate in the first or second direction. Above the central axis position of the sample chamber of the column;
  • the sample loading mechanism moves until the first sample loading device 501 is located above the central axis of the sample loading cavity of the H1 column of the first column group;
  • the sample loading mechanism completes the sample loading of the four columns H1, H3, H5 and H7 in the first column group through the first to fourth sample loading devices;
  • the sample loading mechanism moves horizontally to the first set direction by a distance d to complete the sample loading of the remaining four strings (i.e. H2, H4, H6 and H8 strings) of the first string group;
  • the selection of the first setting direction is: when the first pipe string group or the second pipe string group that has completed adding samples is located near the edge of the fixed plate in the first direction of the fixed plate, the selected The above-mentioned setting direction is the second direction; when the pipe string close to the edge of the fixed plate in the first pipe string group or the second pipe string group that has completed sample addition is located in the second direction of the fixed plate, the set Set the direction as the first direction;
  • the first direction is the left side of the fixing plate
  • the second direction is the right side of the fixing plate
  • the column near the edge of the fixed plate in the first column group that has completed the sample addition is the H1 column
  • the H1 column is located on the left side of the fixed plate, which is the first direction
  • the first setting direction is the opposite direction
  • the first setting direction is the second direction, which is the right side of the fixed plate
  • the sample feeding mechanism moves horizontally to the right side of the fixed plate/second direction by d distance, complete the addition of samples to the remaining four strings (i.e. H2, H4, H6 and H8 strings) of the first string group;
  • the sample loading mechanism selectively moves horizontally to the second set direction by a distance of 1/2 or 3/2 of d, and then, the sample loading mechanism approaches the second pipe string group along the Y direction Move a set distance, so that the sample feeding device close to the edge of the fixed plate in the sample feeding mechanism is located above the central axis of the sample chamber of the corresponding column, and the sample loading mechanism completes the second column group or the first column. Loading of N/2 columns in the group;
  • the first to fourth sampling devices are respectively located at H2, H4, H6 and H8 in the first pipe string group
  • the second pipe string group needs to be added next, and the sample feeding mechanism moves horizontally to the second setting direction for a distance of three-half d.
  • the sample feeding mechanism moves a set distance along the Y direction towards the direction close to the second pipe string group, the set distance in this embodiment is the distance between the centers of the H1 and M1 pipe strings in the Y direction Distance, so that the sample loading device near the edge of the fixed plate in the sample loading mechanism is located above the central axis position of the sample chamber of the corresponding column, that is, the first sample loading device 501 is located at the sample loading of the M1 column of the second column group above the central axis position of the cavity, and then, the sample loading mechanism completes the sample loading of the four strings M1, M3, M5 and M7 in the second string group;
  • the sample loading mechanism moves horizontally to the edge of the fixed plate for a distance of d along the third set direction, and completes the sample loading of the four strings of the second string group, including M2, M4, M6 and M8;
  • the selection of the third setting direction is: when the tube column close to the edge of the fixed plate in the second column group that has completed adding samples is located in the first direction of the fixed plate, the set direction is the second Two directions; when the second pipe string group or the first pipe string group close to the edge of the fixed plate are located in the second direction of the fixed plate, the set direction is the first direction .
  • the column near the edge of the fixed plate in the second column group that has completed the sample addition is the M1 column, and the M1 column is located on the left side of the fixed plate in the first direction. Therefore, the The third setting direction mentioned above is the opposite direction, and the third setting direction is the second direction, which is the right side of the fixed plate, then the sample feeding mechanism moves horizontally to the right side of the fixed plate/second direction for a distance of d, Finish adding samples to the remaining four columns of the second column group (ie M2, M4, M6 and M8 columns).
  • the sample loading mechanism applies the above-mentioned microcolumn gel card sample loading method in the form of dislocation, which can greatly avoid the interference or possible cross-contamination of simultaneous sample loading between adjacent columns question etc.
  • the center-to-center distances of any two adjacent pipe strings are equal, that is, the center distance between adjacent pipe strings on the same side of the fixed plate and the center distance between adjacent pipe strings on different sides of the fixed plate
  • the center distances are all equal, and the center line between the three adjacent columns on both sides of the fixed plate forms an equilateral triangle (as shown in Figure 5, it is a corresponding schematic diagram, it should be noted that Figure 5 is for illustrating the present embodiment The principle diagram drawn for the technical effect does not represent the actual structural relationship), as shown in Figure 4, the center distances between H1, M1 and M2 are equal, and the center distances between H1, H2 and M2 are also equal, and so on , which will not be described here one by one.
  • the displacement distance of the sampling device between different columns maintains a specific relationship with the outer diameter of the column sample chamber, which can simplify the logic.
  • Control that is, when the position of the micro-column gel card is shifted or when the sample loading device is out of sync, the offsets of all well positions are consistent, and the relative offset and offset range of the sample loading position are also consistent. That is, if the sample loading position is not readjusted, under the original set displacement distance, the position range of the sample injection point on each column reaction chamber relative to the reaction chamber remains consistent.
  • sample injection point of the sampling device on the reaction chamber of a column is still within the range of the reaction chamber, it can be inferred that the sample injection points of all the column are located within the range of the reaction chamber, and proper consideration may be given not to reposition the sample injection position. Adjustment, when it is necessary to adjust the sampling position, it is only necessary to use a certain column as the adjustment object of the sampling position. Specifically, as shown in the schematic diagram in Figure 5, for the sample injection points of the three columns shown in the figure, It should be points A1, B1 and C1.
  • the sample loading mechanism 5 has degrees of freedom of movement in X, Y, and Z directions, and the sample loading mechanism 5 includes four sample loading devices (as shown in FIG. 6 , it is a corresponding schematic diagram.
  • FIG. 6 is In order to illustrate the technical effect of this embodiment, the schematic diagram of the principle drawn does not represent the actual structural relationship), which are respectively the first sampling device 501, the second sampling device 502, the third sampling device 503 and the fourth sampling device 504 , the distance between any two adjacent sample loading devices is twice the center-to-center distance of adjacent columns, which is 2d, and the sample loading mechanism should be used for the double-row sixteen-hole microcolumn gel in this embodiment.
  • the sampling method of the card is shown in Figure 8:
  • the sample loading mechanism moves to any one of the sample loading devices on both sides, which is located in the tube in the first or second tube string group close to the edge of the fixed plate in the first direction or in the second direction. Above the central axis position of the sample chamber of the column;
  • the sample loading mechanism moves until the fourth sample loading device 504 is located above the central axis of the sample loading chamber of the H8 column of the first column group;
  • the sample loading mechanism completes the sample loading of the four columns of H2, H4, H6 and H8 in the first column group through the first to fourth sample adding devices;
  • the sample loading mechanism moves horizontally to the first set direction by a distance of d to complete the sample loading of the remaining four strings (i.e. H1, H3, H5 and H7 strings) of the first string group;
  • the selection of the first setting direction is: when the first pipe string group or the second pipe string group that has completed adding samples is located near the edge of the fixed plate in the first direction of the fixed plate, the selected The above-mentioned setting direction is the second direction; when the pipe string close to the edge of the fixed plate in the first pipe string group or the second pipe string group that has completed sample addition is located in the second direction of the fixed plate, the set Set the direction as the first direction;
  • the first direction is the left side of the fixing plate
  • the second direction is the right side of the fixing plate
  • the column near the edge of the fixed plate in the first column group that has completed adding samples is an H8 column
  • the H8 column is located on the right side of the fixed plate, which is the second direction
  • the first setting direction is the opposite direction
  • the first setting direction is the first direction, which is the left side of the fixed plate
  • the sample feeding mechanism moves horizontally to the left side of the fixed plate/first direction by d distance, complete the addition of samples to the remaining four strings (i.e. H1, H3, H5 and H7 strings) of the first string group;
  • the sample loading mechanism selectively moves horizontally to the second setting direction by a distance of 1/2 or 3/2 d, and then, the sample loading mechanism approaches the second pipe string group along the Y direction Move a set distance, so that the sample feeding device close to the edge of the fixed plate in the sample feeding mechanism is located above the central axis of the sample chamber of the corresponding column, and the sample loading mechanism completes the second column group or the first column. Loading of N/2 columns in the group;
  • the first to fourth sampling devices are respectively located at H1, H3, H5 and H7 in the first string group
  • the second pipe string group needs to be added next, and the sample feeding mechanism moves horizontally to the second set direction by a distance of half d.
  • the sample feeding mechanism moves a set distance along the Y direction towards the direction close to the second pipe string group, the set distance in this embodiment is the distance between the centers of the H1 and M1 pipe strings in the Y direction Distance, so that the sample loading device near the edge of the fixed plate in the sample loading mechanism is located above the central axis position of the sample chamber of the corresponding column, that is, the first sample loading device 501 is located at the sample loading of the M1 column of the second column group above the central axis position of the cavity, and then, the sample loading mechanism completes the sample loading of the four strings M1, M3, M5 and M7 in the second string group;
  • the sample feeding mechanism moves horizontally for a distance of d to the edge of the fixed plate along the third set direction, to complete the sample feeding of the four pipe strings of the second pipe string group, including M2, M4, M6 and M8;
  • the selection of the third setting direction is: when the tube column close to the edge of the fixed plate in the second column group that has completed adding samples is located in the first direction of the fixed plate, the set direction is the second Two directions; when the second pipe string group or the first pipe string group close to the edge of the fixed plate are located in the second direction of the fixed plate, the set direction is the first direction .
  • the column near the edge of the fixed plate in the second column group that has completed the sample addition is the M1 column, and the M1 column is located on the left side of the fixed plate in the first direction. Therefore, the The third setting direction mentioned above is the opposite direction, and the third setting direction is the second direction, which is the right side of the fixed plate, then the sample feeding mechanism moves horizontally to the right side of the fixed plate/second direction for a distance of d, Complete the addition of samples to the remaining four columns (i.e. M2, M4, M6 and M8 columns) of the second column group;
  • the sample loading mechanism may also first move to the position where the first sample loading device 501 is located above the central axis of the sample loading cavity of the M1 column or the M8 column of the second column group,
  • the sample adding method is analogous to Embodiment 2 and 3, all of which fall within the scope of protection of the present invention, and will not be repeated here.
  • the eight strings in the first string group are set to be H1-H8 respectively, and the eight strings in the second string group are set to be M1-M8 respectively.
  • the fixed plate includes a lower card body 1 and an upper card body 2, and the edge of the sample chamber on both sides of the first column group and the second column group is at a distance from the upper
  • the shortest distance from the edge of the card body is 1-3mm, that is, the shortest distance from the edge of the sample chamber of the M1, H1, M8 and H8 columns to the edge of the upper card body 2 is 1-3mm.
  • the gripper device of the automation equipment By limiting the distance between the edge of the sample chamber on both sides of the column and the edge of the fixed plate, while improving the space utilization rate, it is convenient for the gripper device of the automation equipment to grab the micro-column gel card.
  • the distance between the edge of the sample chamber and the edge of the fixed plate is too large, resulting in a large size of the entire microcolumn gel card and low space utilization. If the distance between the edge of the sample chamber and the edge of the fixed plate of the columns on both sides is too small, automation equipment There may be problems such as unstable grasping and falling when the grasping device grasps the microcolumn gel card.
  • the sample loading mechanism includes sixteen sample loading devices (not shown in the figure), and the distribution arrangement of the sixteen sample loading devices is similar to that of the double row ten on the microcolumn gel card.
  • the distribution and arrangement of the six pipe columns are suitable, and the sample loading mechanism has degrees of freedom of movement in X, Y, and Z directions.
  • the sample loading mechanism can complete the sample loading process of each column on the micro-column gel card at one time, greatly improving work efficiency.
  • the opening of the sample loading chamber is provided with a film-coated post 4
  • the film-coated post is a ring-shaped convex structure
  • an inner ring is provided on the inner wall of the film-coated post Steps (not shown in the figure)
  • the sealing layer is sealed and connected with the film-covered column.
  • the sealing material such as environmental protection glue
  • the sealing material used in sealing has a certain fluidity.
  • first reinforcement ribs 6 are provided on the outside of the sample loading chamber of each column, and second reinforcement ribs 7 are provided on the outside of the gel column of each column.
  • the outer diameter of the sample loading chamber 301 is 8-10 mm
  • the outer diameter of the gel column 303 is 2-4 mm
  • the inner diameter of the gel column is 1-1.5 mm
  • the depth of the reaction chamber 302 is 3 mm. -6mm
  • the depth of the gel column is 15-20mm.
  • the present invention is not limited to the above-mentioned embodiments, and all embodiments that use structures and methods similar to the present invention to achieve the object of the present invention are within the protection scope of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

一种微柱凝胶卡、加样机构及方法,其中微柱凝胶卡包括固定板和通过固定板排列固定的若干管柱(3),若干管柱(3)分别固定在固定板的两侧,且位于固定板两侧的管柱(3)呈错位排列,任意一个管柱(3)均包括加样腔(301)、反应腔(302)和凝胶柱(303),凝胶柱(303)用于装载凝胶试剂,加样腔(301)与凝胶柱(303)的中轴线不相重合,通过将管柱(3)进行双排错位设计,双排管柱(3)设计相较同类型单排微柱凝胶卡,提高管柱(3)数量以成倍提高检测效率,同时,双排管柱(3)的错位设计能确保各相邻管柱(3)之间不相重叠,降低各管柱(3)在实验判读过程中的相互干扰,另外,通过将加样腔(301)与凝胶柱(303)之间的偏心设计,便于加样位置的调试。

Description

一种微柱凝胶卡、加样机构及方法 技术领域
本发明涉及医疗器械领域,特别是一种微柱凝胶卡、加样机构及方法。
背景技术
血型检测技术已有100多年的历史,从最初的玻片法、纸片法、试管法等经典方法,逐步发展到微量滴定板法、固相法、磁化红细胞法、以及1990年问世的凝胶定型检测方法。
微柱凝胶法是国际安全输血检查的推荐方法,微柱凝胶卡作为微柱凝胶法的核心,主要运用在手术前、输血前血型检验及孕前孕中的新生儿溶血症筛查,当前新型的卡式检测法已代替了传统的血液检测方法,成为一种新的更方便、更稳定、更准确的检测方式,受到广泛的推广。
微柱凝胶卡一般由多根具有特殊形状的微型管柱平行相连而成。管柱上方是加样管柱和呈漏斗形状的“反应池”,反应池的下端有一个微型管柱,微型管柱中含有根据不同项目检测需要而灌装的特异性抗体和具有一定物理性状和化学性能稳定的非溶解性凝胶颗粒,所添加的样本和试剂先在反应池中进行反应,然后经离心后通过仪器进行判读。
目前的微柱凝胶卡普遍为6柱或者8柱,受限于孔柱的数量,与自动化仪器配套使用时检测速度相对较慢,因此亟需对微柱凝胶卡进行改进,在提升大批量实验的检测效率的同时不影响检测结果的准确性。
发明内容
本发明为了克服现有技术存在的不足,提供一种微柱凝胶卡、加样机构及方法。
本发明通过以下技术方案来实现:
一种微柱凝胶卡,包括固定板和通过固定板排列固定的若干管柱,其特征在于,所述若干管柱分别固定在所述固定板的两侧,且位于固定板两侧的管柱呈错位排列,所述任意一个管柱均包括加样腔、反应腔和凝胶柱,所述凝 胶柱用于装载凝胶试剂,所述加样腔设置在所述凝胶柱的上方,所述反应腔连接在加样腔和凝胶柱之间,所述加样腔与凝胶柱的中轴线不相重合。其作用在于:该技术方案中,分布在固定板两侧的管柱之间存在一定的错位关系,任意两个相邻的管柱均不相重叠,确保该微柱凝胶卡用于微柱凝胶实验时,降低仪器对各凝胶柱进行判读时相互管柱之间的判读干扰,加样腔与凝胶柱的中轴线不相重合,便于加样位置的调试。
进一步的,所述固定板两侧的管柱呈现中心对称的形式。其作用在于:确保微柱凝胶卡在自动化设备中可无需区分方向放置,降低实际操作过程中的出错率。
进一步的,所述若干管柱的任意两个相邻管柱的中心距均相等,且优选为9mm。其作用在于:该技术特征中,任意两个相邻管柱的中心距均相等,即固定板同侧的相邻管柱之间的中心距及固定板不同侧的相邻管柱之间的中心距均相等,使得固定板两侧相邻的三个管柱之间的中心连线形成等边三角形,目的是,当该微柱凝胶卡放置于自动化仪器中进行实验时,加样装置在不同管柱之间的位移距离与相邻管柱的中心距保持特定关系,简化逻辑控制。
进一步的,所述凝胶柱与加样腔的竖直方向投影呈内相切。
进一步的,任意两个凝胶柱相互平行且正面投影无重叠。其作用在于:任意两个凝胶柱均完全不重叠,确保该微柱凝胶卡用于微柱凝胶实验时,降低仪器对各凝胶柱进行判读时相互管柱之间的判读干扰。
进一步的,还包括密封层,所述加样腔的开口处设置有覆膜柱,所述覆膜柱为环状凸起结构,所述覆膜柱内侧壁上设置有内圈台阶,所述密封层与覆膜柱密封连接。其作用在于:通常密封时采用的密封材料(如环保胶)具有一定的流动性,通过在覆膜柱内侧壁上设置内圈台阶,能够确保密封材料有一定的流动空间,流向内圈台阶,而不会溢出加样腔外侧,从而确保密封层与覆膜柱之间的密封材料充足以良好粘合。
进一步的,各管柱的加样腔外侧均设置有第一加强筋,各管柱的凝胶柱外侧均设置有第二加强筋。其作用在于:第一加强筋和第二加强筋的设置是为了使该微柱凝胶卡结构更加稳固,不易形变。
进一步的,所述加样腔的外径为8-10mm,凝胶柱的外径为2-4mm, 凝胶柱的内径为1-1.5mm,反应腔的深度为3-6mm,凝胶柱的深度为15-20mm。其作用在于:通过对加样腔及凝胶柱的孔径比例及反应腔的深度控制,有效提升样本/试剂在反应腔中的反应效果,当加样腔及凝胶柱的孔径比例较大或反应腔的深度较小时,反应腔的锥面倾斜度较小,样本/试剂不容易扩展分散开,影响反应效果。
进一步的,所述固定板两侧的管柱数量相等,设定固定板一侧的管柱为第一管柱组,另一侧的管柱为第二管柱组,所述第一管柱组与第二管柱组之间的错位间距为相邻管柱的中心距的二分之一。其作用在于:使得两侧的管柱以半个加样腔外径的距离进行错位设置,在确保相邻凝胶柱之间无重叠外,能够较大程度的降低整个微柱凝胶卡的横向尺寸,提高空间利用率。
进一步的,所述固定板包括下部卡体和上部卡体,所述第一管柱组与第二管柱组两侧的管柱的加样腔边沿距离上部卡体边沿的最近距离为1-3mm。其作用在于:通过限定两侧管柱的加样腔边沿与固定板边沿的距离,在提高空间利用率的同时,便于自动化设备的抓手装置对该微柱凝胶卡进行抓取,若两侧管柱的加样腔边沿与固定板边沿的距离过大,导致整个微柱凝胶卡尺寸较大,空间利用率低,若两侧管柱的加样腔边沿与固定板边沿的距离过小,自动化设备的抓手装置在抓取该微柱凝胶卡时可能存在抓取不稳定、掉落等问题。
进一步的,所述第一管柱组和第二管柱组均包括N个管柱,其中,N为不小于4的自然数,且N为偶数。
进一步的,一种加样机构,用于对上述微柱凝胶卡进行加样,所述加样机构包括N/2个加样装置,任意两个相邻的加样装置之间的距离均为相邻管柱的中心距的两倍,所述加样机构具备X、Y、Z向运动自由度。
进一步的,所述加样机构对上述微柱凝胶卡的加样方法包括:
所述加样机构运动至所述微柱凝胶卡上方;
设定所述固定板边沿一侧为第一方向,另一侧为第二方向;
所述加样机构运动至两侧的加样装置中的任意一个加样装置位于所述第一管柱组或第二管柱组中靠近固定板边沿第一方向或第二方向的管柱的加样腔的中心轴线位置上方;
所述加样机构通过N/2个加样装置完成对第一管柱组或第二管柱组中 的N/2个管柱的加样;
所述加样机构往第一设定方向水平移动一个相邻管柱的中心距的距离,完成对第一管柱组或第二管柱组中的剩余N/2个管柱的加样;
所述第一设定方向的选择为:当已经完成加样的所述第一管柱组或第二管柱组中靠近固定板边沿的管柱位于所述固定板的第一方向时,所述设定方向为第二方向;当已经完成加样的所述第一管柱组或第二管柱组中靠近固定板边沿的管柱位于所述固定板的第二方向时,所述设定方向为第一方向;
所述加样机构往第二设定方向选择性地水平移动二分之一或二分之三个相邻管柱的中心距的距离,然后,所述加样机构沿Y方向往靠近第二管柱组或第一管柱组方向运动一个设定距离,使加样机构中靠近固定板边沿的加样装置位于对应管柱的加样腔的中心轴线位置上方,所述加样机构完成对第二管柱组或第一管柱组中的N/2个管柱的加样;
所述加样机构往固定板边沿第三设定方向水平移动一个相邻管柱的中心距的距离,完成对第二管柱组或第一管柱组中的剩余N/2个管柱的加样;
所述第三设定方向的选择为:当已经完成加样的所述第二管柱组或第一管柱组中靠近固定板边沿的管柱位于所述固定板的第一方向时,所述设定方向为第二方向;当已经完成加样的所述第二管柱组或第一管柱组中靠近固定板边沿的管柱位于所述固定板的第二方向时,所述设定方向为第一方向。
其作用在于:所述加样机构对上述微柱凝胶卡的加样方法以错位的形式进行加样,能够极大地避免相邻管柱间同时加样的干涉或可能的交叉污染问题等。
进一步的,一种加样机构,用于对上述微柱凝胶卡进行加样,所述加样机构包括若干个加样装置,所述若干个加样装置的分布排列形式与所述微柱凝胶卡上管柱的分布排列形式相适应,所述加样机构具备X、Y、Z向运动自由度。其作用在于:所述加样机构可一次性完成对上述微柱凝胶卡上各管柱的加样过程,极大地提高工作效率。
结合本发明的结构特点,与现有技术相比,本发明所提供的一种微柱凝胶卡、加样机构及方法,其中微柱凝胶卡包括固定板和通过固定板排列固定的若干管柱,所述若干管柱分别固定在所述固定板的两侧,且位于固定板两侧 的管柱呈错位排列,所述任意一个管柱均包括加样腔、反应腔和凝胶柱,所述凝胶柱用于装载凝胶试剂,所述加样腔设置在所述凝胶柱的上方,所述反应腔连接在加样腔和凝胶柱之间,所述加样腔与凝胶柱的中轴线不相重合,通过将管柱进行双排错位设计,双排管柱设计相较同类型单排微柱凝胶卡,提高管柱数量以成倍提高检测效率,同时,双排管柱的错位设计能确保各相邻管柱之间不相重叠,降低各管柱在实验判读过程中的相互干扰,另外,通过将加样腔与凝胶柱之间的偏心设计,使得操作人员在对加样机构进行加样位置调试时仅需以加样腔的中心位置为基准进行加样位置调试,能够在一定程度上确保不同操作人员调试的加样位置的一致性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为本发明所述的微柱凝胶卡的结构示意图。
图2为本发明所述的微柱凝胶卡的主视图。
图3为本发明所述的微柱凝胶卡的左视图。
图4为本发明所述的微柱凝胶卡的仰视图。
图5为本发明所述的实施例二的相邻管柱的中心距相等的示意图。
图6为本发明所述的实施例二的加样机构的示意图。
图7为本发明所述的实施例二的加样方法的流程图。
图8为本发明所述的实施例三的加样方法的流程图。
其中,1-下部卡体,2-上部卡体,3-管柱,301-加样腔,302-反应腔,303-凝胶柱,4-覆膜柱,5-加样机构,501-第一加样装置,502-第二加样装置,503-第三加样装置,504-第四加样装置,6-第一加强筋,7-第二加强筋。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本 发明的实施方式作进一步地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(如上、下、左、右、前、后等)仅用于解释在某一特定姿态下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应随之改变。
实施例一
如图1至图3所示,一种微柱凝胶卡,包括固定板和通过固定板排列固定的若干管柱3,所述若干管柱分别固定在所述固定板的两侧,且位于固定板两侧的管柱呈错位排列,所述任意一个管柱3均包括加样腔301、反应腔302和凝胶柱303,所述凝胶柱303用于装载凝胶试剂,所述加样腔301设置在所述凝胶柱303的上方,所述反应腔302连接在加样腔301和凝胶柱303之间,所述加样腔301与凝胶柱303的中轴线不相重合。
分布在固定板两侧的管柱之间存在一定的错位关系,任意两个相邻的管柱均不相重叠,确保该微柱凝胶卡用于微柱凝胶实验时,降低仪器对各凝胶柱进行判读时相互管柱之间的判读干扰,另外,在进行微柱凝胶实验时,需首先进行样本/试剂添加进行充分反应,为避免样本/试剂直接注入到凝胶柱,通常需要将样本/试剂注入到反应腔中进行充分反应后,再经过离心力作用下,经管壁沉降至凝胶柱中,然后进行结果判读,而现有微柱凝胶卡,加样腔与凝胶柱通常为同心设计,操作人员在进行加样位置调试时需以加样腔的中心为基准然后进行适当偏移步数,使得样本/试剂能够加注到反应腔中,而具体偏移量仅能依据操作人员经验进行调节,不同的操作人员对于偏移量的预设无法保持一致,导致不同操作人员调试的加样位置参差不齐,一致性差,该技术方案中,加样腔与凝胶柱的中轴线不相重合,即各管柱的加样腔与凝胶柱之间为偏心设计,操作人员在进行加样位置调试时仅需以加样腔的中心位置(即加样腔的中轴线)为基准进行加样位置调试,能够在一定程度上确保不同操作人员调试的加样位置的一致性。
实施例二
如图2和图4所示,在一实施例中,固定板两侧的管柱数量相等且均为八个,构成双排十六孔微柱凝胶卡,固定板两侧的管柱呈现中心对称的形式,凝胶柱与加样腔的竖直方向投影呈内相切,且任意两个凝胶柱相互平行且正面投影无重叠,设定固定板一侧的管柱为第一管柱组(图4所示位于上排的为第一管柱组),另一侧的管柱为第二管柱组(图4所示位于下排的为第一管柱组),如图4所示,设定第一管柱组的8个管柱分别依次为H1~H8,设定第二管柱组的8个管柱分别依次为M1~M8,任意两个相邻管柱的中心距均相等,所述第一管柱组与第二管柱组之间的错位间距为相邻管柱的中心距的二分之一,在确保相邻凝胶柱之间无重叠外,能够较大程度的降低整个微柱凝胶卡的横向尺寸,提高空间利用率;两组管柱呈现中心对称的形式,确保微柱凝胶卡在自动化设备中可无需区分方向放置,降低实际操作过程中的出错率,设定相邻管柱的中心距为d,如图4所示,H1与M1、H2与M2、H3与M3、H4与M4、H5与M5、H6与M6、H7与M7、H8与M8之间的错位距离均为相邻管柱的中心距的二分之一,即为d/2。
在该实施例中,加样机构5具备X、Y、Z向运动自由度,加样机构5包括四个加样装置(如图6所示为相应的示意图,需要说明的是,图6是为了说明本实施例技术效果而绘制的原理示意图,不代表实际的结构关系),分别为第一加样装置501、第二加样装置502、第三加样装置503和第四加样装置504,任意两个相邻的加样装置之间的距离均为相邻管柱的中心距的两倍,即为2d,所述加样机构该对该实施例中的双排十六孔微柱凝胶卡的加样方法如图7所示:
S1:所述加样机构运动至所述微柱凝胶卡上方;
S2:设定所述固定板边沿一侧为第一方向,另一侧为第二方向;
如图4所示,设定固定板左侧为第一方向,固定板右侧为第二方向;
S3:所述加样机构运动至两侧的加样装置中的任意一个加样装置位于所述第一管柱组或第二管柱组中靠近固定板边沿第一方向或第二方向的管柱的加样腔的中心轴线位置上方;
如图4所示,例如,在一实施方式中,所述加样机构运动至第一加样装置501位于所述第一管柱组的H1管柱的加样腔的中心轴线位置上方;
S4:所述加样机构通过第一至第四加样装置,完成对第一管柱组中的 H1、H3、H5和H7等四个管柱的加样;
S5:所述加样机构往第一设定方向水平移动d的距离,完成对第一管柱组的剩余四个管柱(即H2、H4、H6和H8管柱)的加样;
所述第一设定方向的选择为:当已经完成加样的所述第一管柱组或第二管柱组中靠近固定板边沿的管柱位于所述固定板的第一方向时,所述设定方向为第二方向;当已经完成加样的所述第一管柱组或第二管柱组中靠近固定板边沿的管柱位于所述固定板的第二方向时,所述设定方向为第一方向;
在该实施例中,第一方向为固定板左侧,第二方向为固定板右侧(当然,也可以设定固定板右侧为第一方向,固定板左侧为第二方向,均落入本发明的保护范围),已经完成加样的第一管柱组中靠近固定板边沿的管柱为H1管柱,该H1管柱位于所述固定板的左侧,为第一方向,因此,所述第一设定方向即为与之相反的方向,第一设定方向为第二方向,为固定板的右侧,则加样机构往固定板右侧/第二方向水平移动d的距离,完成对第一管柱组的剩余四个管柱(即H2、H4、H6和H8管柱)的加样;
S6:所述加样机构往第二设定方向选择性地水平移动二分之一或二分之三个d的距离,然后,所述加样机构沿Y方向往靠近第二管柱组方向运动一个设定距离,使加样机构中靠近固定板边沿的加样装置位于对应管柱的加样腔的中心轴线位置上方,所述加样机构完成对第二管柱组或第一管柱组中的N/2个管柱的加样;
在该实施例中,在完成对第一管柱组的八个管柱的加样时,此时第一至第四加样装置分别位于第一管柱组中的H2、H4、H6和H8这四个管柱的上方,接下来需进行第二管柱组的加样,则加样机构往第二设定方向水平移动二分之三个d的距离,此时的第二设定方向为固定板左侧,然后,所述加样机构沿Y方向往靠近第二管柱组方向运动一个设定距离,该实施例中的设定距离为H1和M1管柱中心在Y方向上的距离,使得加样机构中靠近固定板边沿的加样装置位于对应管柱的加样腔的中心轴线位置上方,即使得第一加样装置501位于第二管柱组的M1管柱的加样腔的中心轴线位置上方,然后,所述加样机构完成对第二管柱组中的M1、M3、M5和M7等四个管柱的加样;
S7:所述加样机构往固定板边沿第三设定方向水平移动一个d的距离, 完成对第二管柱组的M2、M4、M6和M8等四个管柱的加样;
所述第三设定方向的选择为:当已经完成加样的所述第二管柱组中靠近固定板边沿的管柱位于所述固定板的第一方向时,所述设定方向为第二方向;当已经完成加样的所述第二管柱组或第一管柱组中靠近固定板边沿的管柱位于所述固定板的第二方向时,所述设定方向为第一方向。
在该实施例中,已经完成加样的第二管柱组中靠近固定板边沿的管柱为M1管柱,该M1管柱位于所述固定板的左侧,为第一方向,因此,所述第三设定方向即为与之相反的方向,第三设定方向为第二方向,为固定板的右侧,则加样机构往固定板右侧/第二方向水平移动d的距离,完成对第二管柱组的剩余四个管柱(即M2、M4、M6和M8管柱)的加样。
在该实施例方案中,所述加样机构对上述微柱凝胶卡的加样方法以错位的形式进行加样,能够极大地避免相邻管柱间同时加样的干涉或可能的交叉污染问题等。
另外,在该实施例方案中,任意两个相邻管柱的中心距均相等,即固定板同侧的相邻管柱之间的中心距及固定板不同侧的相邻管柱之间的中心距均相等,固定板两侧相邻的三个管柱之间的中心连线形成等边三角形(如图5所示为相应的示意图,需要说明的是,图5是为了说明本实施例技术效果而绘制的原理示意图,不代表实际的结构关系),如图4所示,H1、M1与M2之间的中心距相等,H1、H2与M2之间的中心距也相等,以此类推,此处不作逐一赘述,当该微柱凝胶卡放置于自动化仪器中进行实验时,加样装置在不同管柱之间的位移距离与管柱加样腔外径保持特定关系,可以简化逻辑控制,即当该微柱凝胶卡放置位置发生位置偏移时或当加样装置发生失步时,所有孔位的偏移量一致,加样位置相对偏移量及偏移范围也一致,即如果加样位置不作重新调整,其在原设定的位移距离下,在各管柱反应腔上的注样点相对于反应腔的位置范围均保持一致,当微柱凝胶卡放置位置发生位置偏移,若加样装置在某管柱反应腔上的注样点仍然位于反应腔范围内,则可推断所有管柱的注样点均位于反应腔范围,可适当考虑不对加样位置进行重新调整,当需要对加样位置进行调整时,只需以某管柱为加样位置调整对象即可,具体地,如图5所示的示意图,对于图示三个管柱的注样点本应为A1、B1和C1点,当注样点位置偏移 至A2、B2和C2点时,A2、B2和C2点相对于其各自管柱的反应腔位置范围均一致,如图5所示,该偏移后的A2、B2和C2点相对于其各自管柱的反应腔位置范围大致为水平方向的15°角方向且相对于反应腔外壁的距离也一致,均落入各自管柱的反应腔位置范围而未超出。
实施例三
在该实施例中,加样机构5具备X、Y、Z向运动自由度,加样机构5包括四个加样装置(如图6所示为相应的示意图,需要说明的是,图6是为了说明本实施例技术效果而绘制的原理示意图,不代表实际的结构关系),分别为第一加样装置501、第二加样装置502、第三加样装置503和第四加样装置504,任意两个相邻的加样装置之间的距离均为相邻管柱的中心距的两倍,即为2d,所述加样机构该对该实施例中的双排十六孔微柱凝胶卡的加样方法如图8所示:
S8:所述加样机构运动至所述微柱凝胶卡上方;
S9:设定所述固定板边沿一侧为第一方向,另一侧为第二方向;
如图4所示,设定固定板左侧为第一方向,固定板右侧为第二方向;
S10:所述加样机构运动至两侧的加样装置中的任意一个加样装置位于所述第一管柱组或第二管柱组中靠近固定板边沿第一方向或第二方向的管柱的加样腔的中心轴线位置上方;
如图4和图5所示,在本实施例中,加样机构运动至第四加样装置504位于所述第一管柱组的H8管柱的加样腔的中心轴线位置上方;
S11:所述加样机构通过第一至第四加样装置,完成对第一管柱组中的H2、H4、H6和H8等四个管柱的加样;
S12:所述加样机构往第一设定方向水平移动d的距离,完成对第一管柱组的剩余四个管柱(即H1、H3、H5和H7管柱)的加样;
所述第一设定方向的选择为:当已经完成加样的所述第一管柱组或第二管柱组中靠近固定板边沿的管柱位于所述固定板的第一方向时,所述设定方向为第二方向;当已经完成加样的所述第一管柱组或第二管柱组中靠近固定板边沿的管柱位于所述固定板的第二方向时,所述设定方向为第一方向;
在该实施例中,第一方向为固定板左侧,第二方向为固定板右侧(当然,也可以设定固定板右侧为第一方向,固定板左侧为第二方向,均落入本发 明的保护范围),已经完成加样的第一管柱组中靠近固定板边沿的管柱为H8管柱,该H8管柱位于所述固定板的右侧,为第二方向,因此,所述第一设定方向即为与之相反的方向,第一设定方向为第一方向,为固定板的左侧,则加样机构往固定板左侧/第一方向水平移动d的距离,完成对第一管柱组的剩余四个管柱(即H1、H3、H5和H7管柱)的加样;
S13:所述加样机构往第二设定方向选择性地水平移动二分之一或二分之三个d的距离,然后,所述加样机构沿Y方向往靠近第二管柱组方向运动一个设定距离,使加样机构中靠近固定板边沿的加样装置位于对应管柱的加样腔的中心轴线位置上方,所述加样机构完成对第二管柱组或第一管柱组中的N/2个管柱的加样;
在该实施例中,在完成对第一管柱组的八个管柱的加样时,此时第一至第四加样装置分别位于第一管柱组中的H1、H3、H5和H7这四个管柱的上方,接下来需进行第二管柱组的加样,则加样机构往第二设定方向水平移动二分之一个d的距离,此时的第二设定方向为固定板左侧,然后,所述加样机构沿Y方向往靠近第二管柱组方向运动一个设定距离,该实施例中的设定距离为H1和M1管柱中心在Y方向上的距离,使得加样机构中靠近固定板边沿的加样装置位于对应管柱的加样腔的中心轴线位置上方,即使得第一加样装置501位于第二管柱组的M1管柱的加样腔的中心轴线位置上方,然后,所述加样机构完成对第二管柱组中的M1、M3、M5和M7等四个管柱的加样;
S14:所述加样机构往固定板边沿第三设定方向水平移动一个d的距离,完成对第二管柱组的M2、M4、M6和M8等四个管柱的加样;
所述第三设定方向的选择为:当已经完成加样的所述第二管柱组中靠近固定板边沿的管柱位于所述固定板的第一方向时,所述设定方向为第二方向;当已经完成加样的所述第二管柱组或第一管柱组中靠近固定板边沿的管柱位于所述固定板的第二方向时,所述设定方向为第一方向。
在该实施例中,已经完成加样的第二管柱组中靠近固定板边沿的管柱为M1管柱,该M1管柱位于所述固定板的左侧,为第一方向,因此,所述第三设定方向即为与之相反的方向,第三设定方向为第二方向,为固定板的右侧,则加样机构往固定板右侧/第二方向水平移动d的距离,完成对第二管柱组的剩 余四个管柱(即M2、M4、M6和M8管柱)的加样;
在S10的其他实施例中,所述加样机构也可以先运动至第一加样装置501位于所述第二管柱组的M1管柱或M8管柱的加样腔的中心轴线位置上方,其加样方法类比实施例二和三进行类推,均落入本发明的保护范围,此处不作赘述。
实施例四
如实施例二所述,设定第一管柱组的8个管柱分别依次为H1~H8,设定第二管柱组的8个管柱分别依次为M1~M8,在本实施例中,如图1至图3所示,所述固定板包括下部卡体1和上部卡体2,所述第一管柱组与第二管柱组两侧的管柱的加样腔边沿距离上部卡体边沿的最近距离为1-3mm,即M1、H1、M8和H8管柱的加样腔边沿距离上部卡体2边沿的最近距离为1-3mm。通过限定两侧管柱的加样腔边沿与固定板边沿的距离,在提高空间利用率的同时,便于自动化设备的抓手装置对该微柱凝胶卡进行抓取,若两侧管柱的加样腔边沿与固定板边沿的距离过大,导致整个微柱凝胶卡尺寸较大,空间利用率低,若两侧管柱的加样腔边沿与固定板边沿的距离过小,自动化设备的抓手装置在抓取该微柱凝胶卡时可能存在抓取不稳定、掉落等问题。
实施例五
在该实施例中,所述加样机构包括十六个加样装置(图中未示),所述十六个加样装置的分布排列形式与所述微柱凝胶卡上的双排十六个管柱的分布排列形式相适应,所述加样机构具备X、Y、Z向运动自由度。所述加样机构可一次性完成对上述微柱凝胶卡上各管柱的加样过程,极大地提高工作效率。
实施例六
在一实施例中,还包括密封层,所述加样腔的开口处设置有覆膜柱4,所述覆膜柱为环状凸起结构,所述覆膜柱内侧壁上设置有内圈台阶(图中未示),所述密封层与覆膜柱密封连接。通常密封时采用的密封材料(如环保胶)具有一定的流动性,通过在覆膜柱内侧壁上设置内圈台阶,能够确保密封材料有一定的流动空间,流向内圈台阶,而不会溢出加样腔外侧,从而确保密封层与覆膜柱之间的密封材料充足以良好粘合。
实施例七
在一实施例中,各管柱的加样腔外侧均设置有第一加强筋6,各管柱的凝胶柱外侧均设置有第二加强筋7。通过第一加强筋和第二加强筋的设置,使该微柱凝胶卡结构更加稳固,不易形变。
实施例八
在一实施例中,所述加样腔301的外径为8-10mm,凝胶柱303的外径为2-4mm,凝胶柱的内径为1-1.5mm,反应腔302的深度为3-6mm,凝胶柱的深度为15-20mm。通过对加样腔及凝胶柱的孔径比例及反应腔的深度控制,有效提升样本/试剂在反应腔中的反应效果,当加样腔及凝胶柱的孔径比例较大或反应腔的深度较小时,反应腔的锥面倾斜度较小,样本/试剂不容易扩展分散开,影响反应效果。
申请人声明,以上所述实施例仅表达了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,对于本行业的普通技术人员来说,在不脱离本发明构思和范围的前提下,还可以做出各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。
本发明并不限于上述实施方式,凡采用与本发明相似结构及其方法来实现本发明目的的所有实施方式均在本发明保护范围之内。

Claims (15)

  1. 一种微柱凝胶卡,包括固定板和通过固定板排列固定的若干管柱,其特征在于:所述若干管柱分别固定在所述固定板的两侧,且位于固定板两侧的管柱呈错位排列,所述任意一个管柱均包括加样腔、反应腔和凝胶柱,所述凝胶柱用于装载凝胶试剂,所述加样腔设置在所述凝胶柱的上方,所述反应腔连接在加样腔和凝胶柱之间,所述加样腔与凝胶柱的中轴线不相重合。
  2. 根据权利要求1所述的一种微柱凝胶卡,其特征在于:所述固定板两侧的管柱呈现中心对称的形式。
  3. 根据权利要求2所述的一种微柱凝胶卡,其特征在于:所述若干管柱的任意两个相邻管柱的中心距均相等。
  4. 根据权利要求3所述的一种微柱凝胶卡,其特征在于:所述若干管柱的任意两个相邻管柱的中心距均为9mm。
  5. 根据权利要求3所述的一种微柱凝胶卡,其特征在于:所述凝胶柱与加样腔的竖直方向投影呈内相切。
  6. 根据权利要求5任意一项所述的一种微柱凝胶卡,其特征在于:任意两个凝胶柱相互平行且正面投影无重叠。
  7. 根据权利要求1所述的一种微柱凝胶卡,其特征在于:还包括密封层,所述加样腔的开口处设置有覆膜柱,所述覆膜柱为环状凸起结构,所述覆膜柱内侧壁上设置有内圈台阶,所述密封层与覆膜柱密封连接。
  8. 根据权利要求1所述的一种微柱凝胶卡,其特征在于:所述若干管柱中各管柱的加样腔外侧均设置有第一加强筋,各管柱的凝胶柱外侧均设置有第二加强筋。
  9. 根据权利要求1所述的一种微柱凝胶卡,其特征在于:所述加样腔的外径为8-10mm,凝胶柱的外径为2-4mm,凝胶柱的内径为1-1.5mm,反应腔的深度为3-6mm,凝胶柱的深度为15-20mm。
  10. 根据权利要求6所述的一种微柱凝胶卡,其特征在于:所述固定板两侧的管柱数量相等,设定固定板一侧的管柱为第一管柱组,另一侧的管柱为第二管柱组,所述第一管柱组与第二管柱组之间的错位间距为相邻管柱的中心距的二分之一。
  11. 根据权利要求10所述的一种微柱凝胶卡,其特征在于:所述固定板包括下部卡体和上部卡体,所述第一管柱组与第二管柱组两侧的管柱的加样腔边沿距离上部卡体边沿的最近距离为1-3mm。
  12. 根据权利要求10或11所述的任意一项的一种微柱凝胶卡,其特征在于:所述第一管柱组和第二管柱组均包括N个管柱,其中,N为不小于4的自然数,且N为偶数。
  13. 一种加样机构,其特征在于:用于对权利要求12所述的微柱凝胶卡进行加样,所述加样机构包括N/2个加样装置,任意两个相邻的加样装置之间的距离均为相邻管柱的中心距的两倍,所述加样机构具备X、Y、Z向运动自由度。
  14. 一种加样方法,其特征在于:用于权利要求13所述的加样机构,包括:
    所述加样机构运动至所述微柱凝胶卡上方;
    设定所述固定板边沿一侧为第一方向,另一侧为第二方向;
    所述加样机构运动至两侧的加样装置中的任意一个加样装置位于所述第一管柱组或第二管柱组中靠近固定板边沿第一方向或第二方向的管柱的加样腔的中心轴线位置上方;
    所述加样机构通过N/2个加样装置完成对第一管柱组或第二管柱组中的N/2个管柱的加样;
    所述加样机构往第一设定方向水平移动一个相邻管柱的中心距的距离,完成对第一管柱组或第二管柱组中的剩余N/2个管柱的加样;
    所述第一设定方向的选择为:当已经完成加样的所述第一管柱组或第二管柱组中靠近固定板边沿的管柱位于所述固定板的第一方向时,所述设定方向为第二方向;当已经完成加样的所述第一管柱组或第二管柱组中靠近固定板边沿的管柱位于所述固定板的第二方向时,所述设定方向为第一方向;
    所述加样机构往第二设定方向选择性地水平移动二分之一或二分之三个相邻管柱的中心距的距离,然后,所述加样机构沿Y方向往靠近第二管柱组或第一管柱组方向运动一个设定距离,使加样机构中靠近固定板边沿的加样装置位于对应管柱的加样腔的中心轴线位置上方,所述加样机构完成对第二管柱组或第一管柱组中的N/2个管柱的加样;
    所述加样机构往固定板边沿第三设定方向水平移动一个相邻管柱的中心距的距离,完成对第二管柱组或第一管柱组中的剩余N/2个管柱的加样;
    所述第三设定方向的选择为:当已经完成加样的所述第二管柱组或第一管柱组中靠近固定板边沿的管柱位于所述固定板的第一方向时,所述设定方向为第二方向;当已经完成加样的所述第二管柱组或第一管柱组中靠近固定板边沿的管柱位于所述固定板的第二方向时,所述设定方向为第一方向。
  15. 一种加样机构,其特征在于:用于对权利要求1至11任意一项所述的一种微柱凝胶卡进行加样,所述加样机构包括若干个加样装置,所述若干个加样装置的分布排列形式与所述微柱凝胶卡上管柱的分布排列形式相适应,所述加样机构具备X、Y、Z向运动自由度。
PCT/CN2022/080452 2022-01-13 2022-03-11 一种微柱凝胶卡、加样机构及方法 WO2023133998A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22871110.7A EP4235182A4 (en) 2022-01-13 2022-03-11 MICROCOLUMN GEL CARD AND SAMPLE ADDITION MECHANISM AND PROCEDURE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210034981.6A CN114295852A (zh) 2022-01-13 2022-01-13 一种微柱凝胶卡、加样机构及方法
CN202210034981.6 2022-01-13

Publications (1)

Publication Number Publication Date
WO2023133998A1 true WO2023133998A1 (zh) 2023-07-20

Family

ID=80976963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080452 WO2023133998A1 (zh) 2022-01-13 2022-03-11 一种微柱凝胶卡、加样机构及方法

Country Status (3)

Country Link
EP (1) EP4235182A4 (zh)
CN (1) CN114295852A (zh)
WO (1) WO2023133998A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224318A (ja) * 2007-03-09 2008-09-25 Olympus Corp 多層型凝集判定容器
CN101493456A (zh) * 2008-01-17 2009-07-29 奥索临床诊断有限公司 在用于免疫诊断检验的卡形式中产生的稀释孔
CN102281949A (zh) * 2008-12-23 2011-12-14 新彼奥医疗系统公司 用于执行凝集化验的装置和分析系统
CN103063853A (zh) * 2011-10-20 2013-04-24 苏州市锦新医用塑料容器厂 一种血型试剂卡
CN103163310A (zh) * 2013-03-15 2013-06-19 东南大学 一种多通道微体积加样装置
CN203310840U (zh) * 2012-12-24 2013-11-27 上海血液生物医药有限责任公司 一种微柱凝胶卡
CN105974147A (zh) * 2016-07-01 2016-09-28 江苏克莱斯克生物技术有限公司 血型血清学自动化检测一体机
CN109342736A (zh) * 2018-10-17 2019-02-15 深圳市龙华区中心医院 一种微柱凝集抗人球蛋白检测卡
CN212275783U (zh) * 2020-06-05 2021-01-01 上海润普生物技术有限公司 一种用于交叉配血检测用抗人球蛋白卡

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109939758A (zh) * 2019-03-28 2019-06-28 上海市嘉定区中心医院 一种血液流变检测用的自动血液前处理及移液平台

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224318A (ja) * 2007-03-09 2008-09-25 Olympus Corp 多層型凝集判定容器
CN101493456A (zh) * 2008-01-17 2009-07-29 奥索临床诊断有限公司 在用于免疫诊断检验的卡形式中产生的稀释孔
CN102281949A (zh) * 2008-12-23 2011-12-14 新彼奥医疗系统公司 用于执行凝集化验的装置和分析系统
CN103063853A (zh) * 2011-10-20 2013-04-24 苏州市锦新医用塑料容器厂 一种血型试剂卡
CN203310840U (zh) * 2012-12-24 2013-11-27 上海血液生物医药有限责任公司 一种微柱凝胶卡
CN103163310A (zh) * 2013-03-15 2013-06-19 东南大学 一种多通道微体积加样装置
CN105974147A (zh) * 2016-07-01 2016-09-28 江苏克莱斯克生物技术有限公司 血型血清学自动化检测一体机
CN109342736A (zh) * 2018-10-17 2019-02-15 深圳市龙华区中心医院 一种微柱凝集抗人球蛋白检测卡
CN212275783U (zh) * 2020-06-05 2021-01-01 上海润普生物技术有限公司 一种用于交叉配血检测用抗人球蛋白卡

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4235182A4 *

Also Published As

Publication number Publication date
EP4235182A4 (en) 2024-04-10
CN114295852A (zh) 2022-04-08
EP4235182A1 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
US20210322973A1 (en) Microfluidic chip, detecting and driving method thereof, and on-chip laboratory system
US6423536B1 (en) Low volume chemical and biochemical reaction system
WO2022067959A1 (zh) 3d多器官共培养芯片
WO2018014513A1 (zh) 微流控试剂卡及其检测方法和应用
EP1204479A1 (en) Multiple fluid sample processor and system
CN102174388B (zh) 基于表面电极技术的高通量细胞电融合芯片装置
WO2023133998A1 (zh) 一种微柱凝胶卡、加样机构及方法
CN101663578B (zh) 电泳芯片和电泳装置
WO2021185091A1 (zh) 检测芯片及其修饰方法
CN111269831A (zh) 一种透明多层夹膜微流控芯片及其制备方法和应用
CN113186080A (zh) 一种多头一体化核酸提取试管及方法
CN109097264B (zh) 一种用于细胞膜片钳的微流控细胞吸附芯片
CN101225436A (zh) 一种合成的固体侧向纳米孔
CN101376908B (zh) 一种基于分子和细胞水平研究药物代谢的方法
CN216900589U (zh) 一种微柱凝胶卡及加样机构
CN113842962B (zh) 基于电润湿的浓度均一化微流控芯片及浓度均一化方法
JP4672511B2 (ja) マイクロ反応装置
CN112266841B (zh) 一种生物样本处理芯片装置及处理方法
CN213222231U (zh) 含探针阵列微流控装置及其无污染的带侧通道的毛细管
CN211235559U (zh) 卡式微试管反应杯
CN210481367U (zh) 一种可拼拆的多通道定向突变克隆制备芯片
CN211463194U (zh) 一种微流控芯片及拼接式毛细管
CN202189053U (zh) 一种生物芯片
CN211455644U (zh) 基于微流控技术的离子源
CN214193272U (zh) 一种便携式恒温体外pcr扩增检测仪器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022871110

Country of ref document: EP

Effective date: 20230330