WO2023133916A1 - 柔性显示面板及其制作方法 - Google Patents

柔性显示面板及其制作方法 Download PDF

Info

Publication number
WO2023133916A1
WO2023133916A1 PCT/CN2022/072923 CN2022072923W WO2023133916A1 WO 2023133916 A1 WO2023133916 A1 WO 2023133916A1 CN 2022072923 W CN2022072923 W CN 2022072923W WO 2023133916 A1 WO2023133916 A1 WO 2023133916A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
pixel
display panel
flexible display
definition layer
Prior art date
Application number
PCT/CN2022/072923
Other languages
English (en)
French (fr)
Inventor
韩佰祥
乔振洋
尹翔
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2023133916A1 publication Critical patent/WO2023133916A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements

Definitions

  • the present application relates to the display field, in particular to a flexible display panel and a manufacturing method thereof.
  • OLED Organic Light-Emitting Diode
  • OLED Organic Light-Emitting Diode
  • OLED is a current-type organic light-emitting device, which is a phenomenon of luminescence caused by injection and recombination of carriers, and the luminous intensity is proportional to the injected current.
  • An OLED includes an anode, a light-emitting layer, and a cathode. Under the action of an electric field, the holes generated by the anode and the electrons generated by the cathode will move, inject into the hole-transport layer and the electron-transport layer respectively, and migrate to the light-emitting layer. When the two meet in the light-emitting layer, energy excitons are generated, which excite light-emitting molecules and finally produce visible light.
  • OLED display Compared with the traditional liquid crystal display (Liquid Crystal Display, LCD), OLED display has excellent characteristics such as no backlight, low driving voltage, light weight and thinness, wide viewing angle, high contrast ratio, fast response rate and bendability, and is considered to be the emerging application of the next generation of flat-panel displays technology.
  • LCD liquid crystal Display
  • the bendable nature of the OLED display makes the form and portability of the display more optimized for space and playability. However, after the OLED display is bent many times, peeling tends to occur between the cathode and the pixel definition layer, which affects the normal use of the OLED display.
  • Embodiments of the present application provide a flexible display panel and a manufacturing method thereof, which can solve the technical problem that the cathode and the pixel definition layer of the OLED display are prone to peeling off after repeated bending.
  • An embodiment of the present application provides a flexible display panel, including:
  • a substrate having a plurality of sub-pixel regions
  • each of the first electrodes corresponding to one of the sub-pixel regions
  • a pixel definition layer covering the first electrode, the pixel definition layer is provided with a pixel opening and a depression, the pixel opening exposes the corresponding first electrode, and the depressions are located between two adjacent between sub-pixel regions;
  • the second electrode is arranged on the light emitting function layer and the pixel definition layer, and the second electrode covers the recessed part.
  • the depth of the depression is smaller than the thickness of the pixel definition layer.
  • the depth of the recessed portion is one-fifth to two-thirds of the thickness of the pixel definition layer.
  • the width of the recessed portion along the arrangement direction of two adjacent sub-pixel regions is smaller than the distance between two adjacent sub-pixel regions.
  • the width of the recessed portion along the arrangement direction of two adjacent sub-pixel regions is one-fifth of the distance between two adjacent sub-pixel regions One to two thirds.
  • the recessed portion includes a plurality of first grooves extending along a first direction, the plurality of first grooves are arranged along a second direction, and the first direction intersects the second direction.
  • the recessed portion further includes a plurality of second grooves extending along the second direction, and the plurality of second grooves are arranged along the first direction, The first groove communicates with the second groove.
  • the first direction and the second direction are vertically arranged, and the plurality of sub-pixel regions are distributed in an array along the first direction and the second direction.
  • the recessed portion includes a plurality of via holes.
  • the cross-sectional shape of the via hole is circular or polygonal.
  • the recess has a bottom surface and a side wall connected to the bottom surface, the side wall is provided with a first undercut opening, and the first undercut opening Communicating with the recessed portion, the second electrode is filled in the first undercut opening.
  • the pixel definition layer is further provided with a first protrusion, the first protrusion is disposed in the recessed portion, and the second electrode covers the first protrusion. bump on.
  • the side of the first protrusion is provided with a second undercut opening, and the second electrode is filled in the second undercut opening.
  • the pixel definition layer is further provided with a second protrusion, the second protrusion is located between two adjacent sub-pixel regions, and the second The protrusion avoids the recessed portion, and the second electrode covers the second protrusion.
  • a third undercut opening is provided on the side of the second protrusion, and the second electrode is filled in the third undercut opening.
  • the flexible display panel further includes a driving circuit layer, the driving circuit layer is disposed between the substrate and the first electrode, and the driving circuit layer is disposed There are a plurality of thin film transistors, the thin film transistors correspond to the sub-pixel regions one by one, and each thin film transistor is electrically connected to the first electrode of the corresponding sub-pixel region.
  • the embodiment of the present application also provides a method for manufacturing a flexible display panel, including the following steps:
  • the substrate has a plurality of sub-pixel regions, and the first electrode is arranged corresponding to the sub-pixel regions;
  • a pixel definition layer is formed on the first electrode, the pixel definition layer is provided with a pixel opening and a recess, the pixel opening exposes the corresponding first electrode, and the recess is located between two adjacent sub-substrates. Between pixel areas;
  • a second electrode is formed on the light emitting functional layer and the pixel definition layer, and the second electrode covers the recessed part.
  • the recessed portion includes a plurality of first grooves extending along the first direction, and the plurality of first grooves are arranged along the second direction, so The first direction intersects the second direction.
  • the recessed part further includes a plurality of second grooves extending along the second direction, and the plurality of second grooves extend along the first Arranged in one direction, the first groove communicates with the second groove.
  • the recessed portion includes a plurality of via holes.
  • the embodiment of the present application adopts a flexible display panel and its manufacturing method.
  • the second electrode is arranged on the pixel definition layer and covers the recess.
  • the concave part can increase the contact area between the second electrode and the pixel definition layer, thereby improving the adhesion of the second electrode, and avoiding the abnormal picture caused by the second electrode peeling off from the pixel definition layer during the bending process of the flexible display panel;
  • the concave part can also play a role of releasing stress, so as to prevent the film layer from breaking due to stress concentration during the bending process of the flexible display panel.
  • FIG. 1 is a schematic diagram of a vertical cross-sectional structure of a first flexible display panel provided by an embodiment of the present application
  • Fig. 2 is a cross-sectional structural schematic diagram 1 of the first flexible display panel provided by the embodiment of the present application along the direction A-A in Fig. 1;
  • Fig. 3 is a cross-sectional structural schematic diagram 2 of the first flexible display panel provided in the embodiment of the present application along the direction A-A in Fig. 1;
  • Fig. 4 is a schematic diagram of a vertical cross-sectional structure of a second flexible display panel provided by an embodiment of the present application
  • Fig. 5 is a cross-sectional structural schematic diagram 1 of the second flexible display panel provided in the embodiment of the present application along the B-B direction in Fig. 4;
  • Fig. 6 is a second cross-sectional structural schematic diagram of the second flexible display panel along the B-B direction in Fig. 4 provided by the embodiment of the present application;
  • FIG. 7 is a schematic flowchart of a method for manufacturing a flexible display panel provided by an embodiment of the present application.
  • Fig. 8 is a schematic diagram of making a pixel definition layer of the first flexible display panel provided by the embodiment of the present application.
  • Fig. 9 is a first schematic diagram of making a pixel definition layer of the second flexible display panel provided by the embodiment of the present application.
  • Fig. 10 is a second schematic diagram of the fabrication of the pixel definition layer of the second flexible display panel provided by the embodiment of the present application.
  • FIG. 11 is a schematic diagram of the third fabrication of the pixel definition layer of the second flexible display panel provided by the embodiment of the present application.
  • Embodiments of the present application provide a flexible display panel and a manufacturing method thereof. Each will be described in detail below. It should be noted that the description sequence of the following embodiments is not intended to limit the preferred sequence of the embodiments.
  • an embodiment of the present application provides a flexible display panel, including a substrate 100 and a plurality of first electrodes 300, the substrate 100 has a plurality of sub-pixel regions 110, and each sub-pixel region 110 includes a light-emitting region and a non-light-emitting region
  • the first electrode 300 is disposed on one side of the substrate 100 , and the first electrode 300 is disposed corresponding to the heat-emitting and light-emitting region of the sub-pixel region 110 .
  • each sub-pixel region 110 corresponds to one first electrode 300 .
  • the flexible display panel also includes a pixel definition layer 400, the pixel definition layer 400 covers the first electrode 300, the pixel definition layer 400 is provided with a pixel opening 410 and a concave portion 420, the pixel opening 410 exposes the corresponding first electrode 300, that is, the pixel opening 410 is disposed corresponding to the light-emitting area of the sub-pixel area 110 , and the recessed part 420 is located between two adjacent sub-pixel areas 110 .
  • the pixel definition layer 400 is provided with a plurality of pixel openings 410 and a plurality of recesses 420, the pixel openings 410 correspond to the sub-pixel regions 110 one by one, and each pixel opening 410 exposes the first part of the corresponding sub-pixel region 110.
  • An electrode 300 is provided with a plurality of pixel openings 410 and a plurality of recesses 420, the pixel openings 410 correspond to the sub-pixel regions 110 one by one, and each pixel opening 410 exposes the first part of the corresponding sub-pixel region 110.
  • An electrode 300 is provided with a plurality of pixel openings 410 and a plurality of recesses 420, the pixel openings 410 correspond to the sub-pixel regions 110 one by one, and each pixel opening 410 exposes the first part of the corresponding sub-pixel region 110.
  • An electrode 300 is provided with a plurality of pixel openings 410 and a plurality of recesses 420, the pixel openings
  • the flexible display panel also includes a light-emitting functional layer 500, which is disposed in the corresponding pixel opening 410.
  • the pixel definition layer 400 is provided with a plurality of pixel openings 410, and each pixel opening 410 is provided with a corresponding pixel opening 410.
  • the luminescent functional layer 500 is provided with a plurality of pixel openings 410, and each pixel opening 410 is provided with a corresponding pixel opening 410.
  • the flexible display panel further includes a second electrode 600 disposed on the light-emitting functional layer 500 and the pixel definition layer 400 , and the second electrode 600 covers the recessed portion 420 .
  • the recessed part 420 can increase the contact area between the second electrode 600 and the pixel definition layer 400, thereby Improve the adhesion of the second electrode 600 to prevent the second electrode 600 from being peeled off from the pixel definition layer 400 during the bending process of the flexible display panel, resulting in an abnormal picture; in addition, the recessed part 420 can also play a role in releasing stress and avoid flexible display panel.
  • the film layer is broken due to stress concentration.
  • one of the first electrode 300 and the second electrode 600 is an anode, and the other is a cathode
  • the light-emitting functional layer 500 includes a hole injection layer, a hole transport layer, a light-emitting layer, and an electron layer stacked in sequence from the anode to the cathode.
  • the transport layer and the electron injection layer wherein the hole injection layer is arranged close to the anode, and the electron injection layer is arranged close to the cathode.
  • the depth of the depressed part 420 is smaller than the thickness of the pixel definition layer 400 .
  • the depth of the recessed part 420 can be set to one-fifth to two-thirds of the thickness of the pixel definition layer 400, for example, the depth of the recessed part 420 can be one-fifth to two-thirds of the thickness of the pixel definition layer 400.
  • the depth of the recessed part 420 can be adjusted appropriately according to the selection and specific needs of the actual situation, as long as the depth of the recessed part 420 is greater than 0 and less than the thickness of the pixel definition layer 400, which is not unique here. limited.
  • the width of the recessed portion 420 along the arrangement direction of two adjacent sub-pixel regions 110 is smaller than the distance between two adjacent sub-pixel regions 110 , which can prevent the recessed portion 420 from colliding with the pixel opening 410
  • the situation that the light-emitting functional layer 500 fills the recessed portion 420 due to the through-communication occurs.
  • the second electrode 600 can cover the recessed portion 420 during the manufacturing process, and the contact area between the second electrode 600 and the pixel definition layer 400 is increased, thereby improving the adhesion of the second electrode 600 and avoiding flexible display.
  • the second electrode 600 is peeled off from the pixel definition layer 400 to cause an abnormal picture.
  • the width of the recessed portion 420 along the arrangement direction of two adjacent sub-pixel regions 110 is one-fifth to two-thirds of the distance between two adjacent sub-pixel regions 110 , for example, the recessed portion 420 along the adjacent
  • the width of the arrangement direction of the two sub-pixel regions 110 is one-fifth, one-third, two-fifths, one-half, three-fifths or one-third of the distance between two adjacent sub-pixel regions 110
  • the concave portion 420 includes a plurality of first grooves 421 extending along the first direction X, and the plurality of first grooves 421 are arranged along the second direction Y. , the first direction X and the second direction Y intersect.
  • the first groove 421 extends along the first direction X to form a strip groove
  • the second electrode 600 covers the first groove 421, which can well increase the size of the second electrode 600 and the pixel definition layer.
  • the first groove 421 also The stress generated when bending along the second direction Y can be buffered, and the film layer breakage due to stress concentration during the bending process of the flexible display panel can be avoided.
  • the recessed portion 420 further includes a plurality of second grooves 422 extending along the second direction Y, the plurality of second grooves 422 are arranged along the first direction X, and the first grooves 421 communicates with the second groove 422 .
  • the second groove 422 extends along the second direction Y to form a strip groove, and the second electrode 600 covers the second groove 422, which can well increase the size of the second electrode 600 and the pixel definition layer.
  • the second groove 422 also The stress generated when bending along the first direction X can be buffered, and the film layer breakage due to stress concentration during the bending process of the flexible display panel can be avoided.
  • the recessed portion 420 includes a plurality of via holes 423, the via holes 423 are provided between two adjacent sub-pixel regions 110, and the second electrode 600 covers the In the via hole 423, the contact area between the second electrode 600 and the pixel definition layer 400 can be well increased, so as to improve the adhesion of the second electrode 600 and prevent the second electrode 600 from falling off during the bending process of the flexible display panel.
  • the pixel definition layer 400 is peeled off to cause an abnormal picture; the via hole 423 can also buffer the stress generated during bending, and prevent the flexible display panel from breaking due to stress concentration during the bending process.
  • the cross-sectional shape of the via hole 423 is circular.
  • the cross-sectional shape of the via hole 423 can be polygonal (triangular, square, rectangular, five-dimensional). polygon, hexagon, etc.), and there is no unique limitation here.
  • the first direction X and the second direction Y are vertically arranged, and the plurality of sub-pixel regions 110 are distributed in an array along the first direction X and the second direction Y.
  • a first groove 421 is provided between two adjacent rows of sub-pixel regions 110, and a second groove 422 is provided between two adjacent columns of sub-pixel regions 110.
  • at least two first grooves 421 may also be provided between two adjacent rows of sub-pixel regions 110, and at least two second grooves 422 may also be provided between two adjacent columns of sub-pixel regions 110. This is not a unique limitation.
  • a row of via holes 423 is provided between two adjacent rows of sub-pixel regions 110, and a column of via holes 423 is provided between two adjacent columns of sub-pixel regions 110.
  • At least two rows of via holes 423 may also be provided between two adjacent rows of sub-pixel regions 110
  • at least two columns of via holes 423 may also be provided between two adjacent columns of sub-pixel regions 110 , which are not limited herein.
  • the recessed portion 420 has a bottom surface 424 and a side wall 425 connected to the bottom surface 424 , the side wall 425 is provided with a first undercut opening 426 , and the first undercut opening 426 is connected to the recess.
  • the portion 420 is connected, and the second electrode 600 is filled in the first undercut opening 426 .
  • the second electrode 600 is filled in the first undercut opening 426.
  • the gap between the second electrode 600 and the pixel definition layer 400 can be increased.
  • the contact area of the second electrode 600 is improved.
  • the first undercut opening 426 can prevent the second electrode 600 from being peeled off from the pixel definition layer 400.
  • the bending of the flexible display panel can be avoided.
  • the second electrode 600 is peeled off from the pixel definition layer 400 to cause an abnormal picture.
  • the first groove 421 has a bottom surface 424 and sidewalls 425 connected to opposite sides of the bottom surface 424 .
  • one of the sidewalls of the first groove 421 425 is provided with a first undercut opening 426, of course, according to the selection and specific needs of the actual situation, both side walls 425 of the first groove 421 are provided with a first undercut opening 426, which is not unique here. limited.
  • the second groove 422 has a bottom surface 424 and sidewalls 425 connected to opposite sides of the bottom surface 424 .
  • one of the sidewalls of the second groove 422 425 is provided with a first undercut opening 426, of course, according to the selection and specific needs of the actual situation, both side walls 425 of the second groove 422 are provided with a first undercut opening 426, which is not unique here. limited.
  • the via hole 423 has a bottom surface 424 and a side wall 425 connected to the peripheral side of the bottom surface 424.
  • the side wall 425 of the via hole 423 is provided with a first bottom
  • the undercut openings 426 are, of course, set according to the selection and specific requirements of the actual situation.
  • the sidewall 425 of the via hole 423 may be provided with two or more first undercut openings 426 , which is not limited here.
  • the pixel definition layer 400 is further provided with a first protrusion 430, and the first protrusion 430 is disposed on the recessed portion 420 (the first groove 421, the second groove 422 and the via hole 423 ), the second electrode 600 covers the first protrusion 430 .
  • the second electrode 600 covers the first protrusion 430, which can increase the contact area between the second electrode 600 and the pixel definition layer 400, and improve The adhesion of the second electrode 600 can prevent the second electrode 600 from being peeled off from the pixel definition layer 400 during the bending process of the flexible display panel, which may cause an abnormal picture.
  • the first protrusion 430 is disposed on the bottom surface 424 of the concave portion 420 .
  • the side of the first protrusion 430 is provided with a second undercut opening 431, and the second electrode 600 is filled in the second undercut opening 431.
  • the second undercut opening 431 can prevent the second electrode 600 from being peeled off from the pixel definition layer 400.
  • the pixel definition layer 400 is further provided with a second protrusion 440, the second protrusion 440 is located between two adjacent sub-pixel regions 110, and the second protrusion 440 avoids the concave portion 420 (the first groove 421 , the second groove 422 and the via hole 423 ), that is, the second protrusion 440 is located in a region other than the recess 420 , and the second electrode 600 covers the second protrusion 440 .
  • the second electrode 600 covers the second protrusion. 440, the contact area between the second electrode 600 and the pixel definition layer 400 can be increased, the adhesion of the second electrode 600 can be improved, and the second electrode 600 can be prevented from falling from the pixel definition layer 400 during the bending process of the flexible display panel.
  • the screen is abnormal due to peeling off.
  • the side of the second protrusion 440 is provided with a third undercut opening 441, and the second electrode 600 is filled in the third undercut opening 441.
  • the third undercut opening 441 can prevent the second electrode 600 from being peeled off from the pixel definition layer 400.
  • the flexible display panel further includes a driving circuit layer 200, the driving circuit layer 200 is arranged between the substrate 100 and the first electrode 300, the driving circuit layer 200 is provided with a plurality of thin film transistors 210, the thin film transistors 210 and the sub-pixel region 110- In one correspondence, each thin film transistor 210 is electrically connected to the first electrode 300 of the corresponding sub-pixel region 110 .
  • the thin film transistor 210 has a corresponding gate 211, an active layer 212 disposed above the gate and insulated from the gate 211, and a source 213 and a drain 214 disposed above the active layer 212.
  • the source The electrode 213 is in contact with one end of the active layer 212, the drain 214 is in contact with the other end of the active layer 212, and the first electrode 300 is in contact with the drain 214, so that each thin film transistor 210 is in contact with the corresponding sub-pixel region 110.
  • An electrode 300 is electrically connected.
  • the embodiment of the present application also provides a method for preparing the above-mentioned flexible display panel, including the following steps:
  • Step B1 forming a first electrode 300 on the substrate 100, the substrate 100 has a plurality of sub-pixel regions 110, and the first electrode 300 is set corresponding to the sub-pixel regions 110;
  • Step B2 forming a pixel definition layer 400 on the first electrode 300 and the substrate 100, the pixel definition layer 400 is provided with a pixel opening 410 and a depression 420, the pixel opening 410 exposes the corresponding first electrode 300, and the depression 420 is located adjacent to Between two sub-pixel regions 110;
  • Step B3 forming a light-emitting functional layer 500 in the pixel opening 410;
  • Step B4 forming a second electrode 600 on the light-emitting functional layer 500 and the pixel definition layer 400 , and the second electrode 600 covers the recessed portion 420 .
  • the recessed part 420 can increase the contact area between the second electrode 600 and the pixel definition layer 400, thereby Improve the adhesion of the second electrode 600 to prevent the second electrode 600 from being peeled off from the pixel definition layer 400 during the bending process of the flexible display panel, resulting in an abnormal picture; in addition, the recessed part 420 can also play a role in releasing stress and avoid flexible display panel. During the bending process of the display panel, the film layer is broken due to stress concentration.
  • the step B1 before forming the first electrode 300 on the substrate 100, the step B1 further includes: forming a driving circuit layer 200 on the substrate 100, and the first electrode 300 is formed on the driving circuit layer 200.
  • the driving circuit layer 200 On the circuit layer 200, the driving circuit layer 200 is disposed between the substrate 100 and the first electrode 300.
  • the driving circuit layer 200 is provided with a plurality of thin film transistors 210, and the thin film transistors 210 correspond to the sub-pixel regions 110 one by one. Each thin film transistor 210 It is electrically connected with the first electrode 300 of the corresponding sub-pixel area 110 .
  • the step of forming the pixel definition layer 400 on the first electrode 300 and the substrate 100 specifically includes:
  • Step B21 covering the entire surface of the first electrode 300 with a layer of photoresist material 40 , using a photomask 700 for exposure and development to form pixel openings 410 and recesses 420 to obtain a pixel definition layer 400 .
  • the pixel opening 410 and the recessed portion 420 can be prepared simultaneously through a photomask 700 process, which can improve process efficiency, thereby effectively increasing productivity and reducing production costs.
  • the mask 700 has a first region 710 corresponding to the sub-pixel region 110, a second region 720 corresponding to the recessed portion 420, and a third region corresponding to the region between the sub-pixel region 110 and the recessed portion 420. Area 730.
  • the light transmittance of the first region 710 is greater than the light transmittance of the second region 720, and the light transmittance of the second region 720 is greater than the light transmittance of the third region 730 ;
  • the material of the photoresist material layer 40 is a negative photoresist, the light transmittance of the first region 710 is less than the light transmittance of the second region 720, and the light transmittance of the second region 720 is less than the light transmittance of the third region 730 Rate.
  • the pixel definition layer 400 is further provided with a first protrusion 430, and the first protrusion 430 is disposed in the concave portion 420, and the first protrusion 430 formed in the subsequent step B4
  • the second electrode 600 covers the first protrusion 430 .
  • the photomask 700 has a fourth region 740 corresponding to the first protrusion 430, and when the material of the photoresist material layer 40 is a positive photoresist, the light transmittance of the fourth region 740 is smaller than that of the second region 720 The light transmittance of the fourth region 740 is greater than the light transmittance of the third region 730; when the material of the photoresist material layer 40 is a negative photoresist, the light transmittance of the fourth region 740 is greater than the second The light transmittance of the region 720 , and the light transmittance of the fourth region 740 is smaller than the light transmittance of the third region 730 .
  • the pixel definition layer 400 is further provided with a second protrusion 440, the second protrusion 440 is located between two adjacent sub-pixel regions 110, and the second The protrusion 440 is disposed avoiding the recessed portion 420 , that is, the second protrusion 440 is located outside the recessed portion 420 , and the second electrode 600 formed in the subsequent step B4 covers the second protrusion 440 .
  • the photomask 700 has a fifth region 750 corresponding to the second protrusion 440, and when the material of the photoresist material layer 40 is a positive photoresist, the light transmittance of the fifth region 750 is smaller than that of the third region 730 light transmittance; when the material of the photoresist material layer 40 is a negative photoresist, the light transmittance of the fifth region 750 is greater than the light transmittance of the third region 730 .
  • step B2 the recessed part 420 has a bottom surface 424 and a side wall 425 connected to the bottom surface 424, the side wall 425 is provided with a first undercut opening 426, the first bottom The cut opening 426 communicates with the recessed portion 420 , and the second electrode 600 formed in the subsequent step B4 is filled in the first undercut opening 426 .
  • step B2 also includes:
  • Step B22 covering the pixel definition layer 400 with a layer of photoresist 800, exposing and developing the photoresist 800, thereby forming a first notch 810 on the photoresist 800, the first notch 810 exposing the recessed part 420 side wall 425;
  • Step B23 etching a part of the sidewall 425 of the recessed portion 420 through the first notch 810, thereby forming a first undercut opening 426;
  • Step B24 stripping off the photoresist 800 .
  • the side of the first protrusion 430 is provided with a second undercut opening 431, and the second electrode 600 formed in the subsequent step B4 is filled in the second bottom. cut into the opening 431.
  • a second gap 820 is formed on the photoresist 800, and the second gap 820 exposes the side surface of the first protrusion 430; step B23 also Part of the side of the first protrusion 430 is etched through the second notch 820 to form the second undercut opening 431 .
  • a third undercut opening 441 is provided on the side of the second protrusion 440, and the second electrode 600 formed in the subsequent step B4 is filled in the third bottom. cut into the opening 441.
  • a third gap 830 is formed on the photoresist 800, and the third gap 830 exposes the side surface of the second protrusion 440; step B23 also Part of the side surface of the second protrusion 440 is etched through the third notch 830 to form a third undercut opening 441 .
  • the above-mentioned step B23 is etched by wet etching.
  • the etching solution By dropping the etching solution into the first notch 810, the second notch 820 and the third notch 830, the side wall 425 of the recessed part 420, the The side of the first protrusion 430 and the bottom of the side of the second protrusion 440 are etched to form the first undercut opening 426 , the second undercut opening 431 and the third undercut opening 441 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种柔性显示面板及其制作方法,通过在像素定义层(400)上对应相邻两个子像素区(110)之间的位置设置凹陷部(420),凹陷部(420)可以增大第二电极(600)与像素定义层(400)之间的接触面积,从而提高第二电极(600)粘附力,避免柔性显示面板在弯折过程中第二电极(600)从像素定义层(400)上剥离而造成画面异常。

Description

柔性显示面板及其制作方法 技术领域
本申请涉及显示领域,具体涉及一种柔性显示面板及其制作方法。
背景技术
OLED(Organic Light-Emitting Diode),又称为有机电激光显示、有机发光半导体。OLED属于一种电流型的有机发光器件,是通过载流子的注入和复合而致发光的现象,发光强度与注入的电流成正比。OLED包括阳极、发光层和阴极,在电场的作用下,阳极产生的空穴和阴极产生的电子就会发生移动,分别向空穴传输层和电子传输层注入,迁移到发光层。当二者在发光层相遇时,产生能量激子,从而激发发光分子最终产生可见光。
相对于传统液晶显示器(Liquid Crystal Display,LCD),OLED显示器具有不需背光源、驱动电压低、重量轻且薄、具有宽视角、高对比度、快速响应速率和可弯折等优异特性,被认为是下一代的平面显示器新兴应用技术。
OLED显示器的可弯折的特性,使显示器的形态和便携性有更多优化的空间和可玩性。然而,当OLED显示器经过多次弯折后,阴极与像素定义层之间容易出现剥离的现象,影响OLED显示器的正常使用。
技术问题
本申请实施例提供一种柔性显示面板及其制作方法,可以解决OLED显示器经过多次弯折后阴极与像素定义层之间容易出现剥离的现象的技术问题。
技术解决方案
本申请实施例提供一种柔性显示面板,包括:
衬底,具有多个子像素区;
多个第一电极,设于所述衬底的一侧,每一所述第一电极对应一个所述子像素区设置;
像素定义层,覆盖于所述第一电极上,所述像素定义层设有像素开口和凹陷部,所述像素开口裸露对应的所述第一电极,所述凹陷部位于相邻两个所述子像素区之间;
发光功能层,设于对应的所述像素开口内;以及
第二电极,设于所述发光功能层和所述像素定义层上,且所述第二电极覆盖所述凹陷部。
可选的,在本申请的一些实施例中,所述凹陷部的深度小于所述像素定义层的厚度。
可选的,在本申请的一些实施例中,所述凹陷部的深度为所述像素定义层的厚度的五分之一至三分之二。
可选的,在本申请的一些实施例中,所述凹陷部沿相邻两个所述子像素区的排列方向的宽度小于相邻两个所述子像素区之间的间距。
可选的,在本申请的一些实施例中,所述凹陷部沿相邻两个所述子像素区的排列方向的宽度为相邻两个所述子像素区之间的间距的五分之一至三分之二。
可选的,在本申请的一些实施例中,所述凹陷部包括多个沿第一方向延伸的第一凹槽,多个所述第一凹槽沿第二方向排列,所述第一方向和所述第二方向相交。
可选的,在本申请的一些实施例中,所述凹陷部还包括多个沿所述第二方向延伸的第二凹槽,多个所述第二凹槽沿所述第一方向排列,所述第一凹槽和所述第二凹槽连通。
可选的,在本申请的一些实施例中,所述第一方向和所述第二方向垂直设置,多个所述子像素区沿所述第一方向和所述第二方向呈阵列分布。
可选的,在本申请的一些实施例中,所述凹陷部包括多个过孔。
可选的,在本申请的一些实施例中,所述过孔的横截面形状呈圆形或多边形。
可选的,在本申请的一些实施例中,所述凹陷部具有底面以及连接于所述底面的侧壁,所述侧壁设有第一底切开口,所述第一底切开口与所述凹陷部连通,所述第二电极填充于所述第一底切开口内。
可选的,在本申请的一些实施例中,所述像素定义层还设有第一凸起,所述第一凸起设于所述凹陷部内,所述第二电极覆盖于所述第一凸起上。
可选的,在本申请的一些实施例中,所述第一凸起的侧面设有第二底切开口,所述第二电极填充于所述第二底切开口内。
可选的,在本申请的一些实施例中,所述像素定义层还设有第二凸起,所述第二凸起位于相邻两个所述子像素区之间,且所述第二凸起避让所述凹陷部设置,所述第二电极覆盖于所述第二凸起上。
可选的,在本申请的一些实施例中,所述第二凸起的侧面设有第三底切开口,所述第二电极填充于所述第三底切开口内。
可选的,在本申请的一些实施例中,所述柔性显示面板还包括驱动电路层,所述驱动电路层设于所述衬底和所述第一电极之间,所述驱动电路层设有多个薄膜晶体管,所述薄膜晶体管和所述子像素区一一对应,每个所述薄膜晶体管与对应的所述子像素区的所述第一电极电性连接。
本申请实施例还提供一种柔性显示面板的制作方法,包括以下步骤:
在衬底上形成第一电极,所述衬底具有多个子像素区,所述第一电极对应所述子像素区设置;
在所述第一电极上形成像素定义层,所述像素定义层设有像素开口和凹陷部,所述像素开口裸露对应的所述第一电极,所述凹陷部位于相邻两个所述子像素区之间;
在所述像素开口内形成发光功能层;
在所述发光功能层和所述像素定义层上形成第二电极,且所述第二电极覆盖所述凹陷部。
其中,在所述第一电极上形成像素定义层的步骤中,所述凹陷部包括多个沿第一方向延伸的第一凹槽,多个所述第一凹槽沿第二方向排列,所述第一方向和所述第二方向相交。
其中,在所述第一电极上形成像素定义层的步骤中,所述凹陷部还包括多个沿所述第二方向延伸的第二凹槽,多个所述第二凹槽沿所述第一方向排列,所述第一凹槽和所述第二凹槽连通。
其中,在所述第一电极上形成像素定义层的步骤中,所述凹陷部包括多个过孔。
有益效果
本申请实施例采用一种柔性显示面板及其制作方法,通过在像素定义层上对应相邻两个子像素区之间的位置设置凹陷部,第二电极设于像素定义层上且覆盖凹陷部,凹陷部可以增大第二电极与像素定义层之间的接触面积,从而提高第二电极粘附力,避免柔性显示面板在弯折过程中第二电极从像素定义层上剥离而造成画面异常;此外,凹陷部还能起到释放应力的作用,避免柔性显示面板在弯折过程中由于应力集中而发生膜层断裂的情况。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的第一种柔性显示面板的纵截面剖视结构示意图;
图2是本申请实施例提供的第一种柔性显示面板沿图1中A-A方向的横截面剖视结构示意图一;
图3是本申请实施例提供的第一种柔性显示面板沿图1中A-A方向的横截面剖视结构示意图二;
图4是本申请实施例提供的第二种柔性显示面板的纵截面剖视结构示意图;
图5是本申请实施例提供的第二种柔性显示面板沿图4中B-B方向的横截面剖视结构示意图一;
图6是本申请实施例提供的第二种柔性显示面板沿图4中B-B方向的横截面剖视结构示意图二;
图7是本申请实施例提供的柔性显示面板的制作方法的流程示意图;
图8是本申请实施例提供的第一种柔性显示面板的像素定义层的制作示意图;
图9是本申请实施例提供的第二种柔性显示面板的像素定义层的制作示意图一;
图10是本申请实施例提供的第二种柔性显示面板的像素定义层的制作示意图二;
图11是本申请实施例提供的第二种柔性显示面板的像素定义层的制作示意图三。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。在本申请中,在未作相反说明的情况下,使用的方位词如“上”和“下”通常是指装置实际使用或工作状态下的上和下,具体为附图中的图面方向;而“内”和“外”则是针对装置的轮廓而言的。
本申请实施例提供一种柔性显示面板及其制作方法。以下分别进行详细说明。需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。
请参阅图1,本申请实施例提供一种柔性显示面板,包括衬底100和多个第一电极300,衬底100具有多个子像素区110,每个子像素区110包括发光区和非发光区,第一电极300设于衬底100的一侧,第一电极300对应子像素区110发热发光区设置。在本申请实施例中,每个子像素区110对应一个第一电极300。
柔性显示面板还包括像素定义层400,像素定义层400覆盖于第一电极300上,像素定义层400设有像素开口410和凹陷部420,像素开口410裸露对应的第一电极300,即像素开口410对应子像素区110的发光区设置,凹陷部420位于相邻两个子像素区110之间。在本申请实施例中,像素定义层400设有多个像素开口410和多个凹陷部420,像素开口410和子像素区110一一对应,每个像素开口410裸露对应的子像素区110的第一电极300。
柔性显示面板还包括发光功能层500,发光功能层500设于对应的像素开口410内,在本申请实施例中,像素定义层400设有多个像素开口410,每个像素开口410设有对应的发光功能层500。
柔性显示面板还包括第二电极600,第二电极600设于发光功能层500和像素定义层400上,且第二电极600覆盖凹陷部420。本申请实施例通过在像素定义层400上对应相邻两个子像素区110之间的位置设置凹陷部420,凹陷部420可以增大第二电极600与像素定义层400之间的接触面积,从而提高第二电极600粘附力,避免柔性显示面板在弯折过程中第二电极600从像素定义层400上剥离而造成画面异常;此外,凹陷部420还能起到释放应力的作用,避免柔性显示面板在弯折过程中由于应力集中而发生膜层断裂的情况。
具体的,第一电极300和第二电极600中的一个为阳极,另一个为阴极,发光功能层500包括由阳极至阴极依次层叠设置的空穴注入层、空穴传输层、发光层、电子传输层和电子注入层,其中空穴注入层靠近阳极设置,电子注入层靠近阴极设置。
具体的,如图1所示,为了保证像素定义层400的绝缘效果,防止对应凹陷部420处的像素定义层400被击穿而导致第一电极300和第二电极600短路的情况,宜使凹陷部420的深度小于像素定义层400的厚度。为了保证像素定义层400的绝缘效果,可以将凹陷部420的深度设置为像素定义层400的厚度的五分之一至三分之二,例如,凹陷部420的深度可以为像素定义层400的厚度的五分之一、三分之一、五分之二、二分之一、五分之三或者三分之二。
可以理解的是,根据实际情况的选择和具体需求设置,凹陷部420的深度可以做适当调整,只要保证凹陷部420的深度大于0且小于像素定义层400的厚度即可,在此不做唯一限定。
具体的,如图1至图3所示,凹陷部420沿相邻两个子像素区110的排列方向的宽度小于相邻两个子像素区110之间的间距,可以防止凹陷部420与像素开口410贯穿连通而导致发光功能层500填充凹陷部420的情况发生。此结构下,可以保证第二电极600在制作过程中能覆盖凹陷部420,增大第二电极600与像素定义层400之间的接触面积,从而提高第二电极600粘附力,避免柔性显示面板在弯折过程中第二电极600从像素定义层400上剥离而造成画面异常。
具体的,凹陷部420沿相邻两个子像素区110的排列方向的宽度为相邻两个子像素区110之间的间距的五分之一至三分之二,例如,凹陷部420沿相邻两个子像素区110的排列方向的宽度为相邻两个子像素区110之间的间距的五分之一、三分之一、五分之二、二分之一、五分之三或者三分之二,可以保证凹陷部420和像素开口410之间的像素定义层400的机械强度,有效提高柔性显示面板的可靠性。
在本申请的一个实施例中,如图1和图2所示,凹陷部420包括多个沿第一方向X延伸的第一凹槽421,多个第一凹槽421沿第二方向Y排列,第一方向X和第二方向Y相交。此实施例下,第一凹槽421沿第一方向X延伸而成条状凹槽,第二电极600覆盖于第一凹槽421内,可以很好地增大第二电极600与像素定义层400之间的接触面积,从而提高第二电极600粘附力,避免柔性显示面板在弯折过程中第二电极600从像素定义层400上剥离而造成画面异常;此外,第一凹槽421还可以缓冲沿第二方向Y弯折时产生的应力,避免柔性显示面板在弯折过程中由于应力集中而发生膜层断裂的情况。
进一步的,如图1和图2所示,凹陷部420还包括多个沿第二方向Y延伸的第二凹槽422,多个第二凹槽422沿第一方向X排列,第一凹槽421和第二凹槽422连通。此实施例下,第二凹槽422沿第二方向Y延伸而成条状凹槽,第二电极600覆盖于第二凹槽422内,可以很好地增大第二电极600与像素定义层400之间的接触面积,从而提高第二电极600粘附力,避免柔性显示面板在弯折过程中第二电极600从像素定义层400上剥离而造成画面异常;此外,第二凹槽422还可以缓冲沿第一方向X弯折时产生的应力,避免柔性显示面板在弯折过程中由于应力集中而发生膜层断裂的情况。
在本申请的另一个实施例中,如图1和图3所示,凹陷部420包括多个过孔423,相邻两个子像素区110之间设有过孔423,第二电极600覆盖于过孔423内,可以很好地增大第二电极600与像素定义层400之间的接触面积,从而提高第二电极600粘附力,避免柔性显示面板在弯折过程中第二电极600从像素定义层400上剥离而造成画面异常;过孔423还可以缓冲弯折时产生的应力,避免柔性显示面板在弯折过程中由于应力集中而发生膜层断裂的情况。
具体的,如图3所示,过孔423的横截面形状呈圆形,当然,根据实际情况的选择和具体需求设置,过孔423的横截面形状可以呈多边形(三角形、正方形、长方形、五边形、六边形等),在此不做唯一限定。
具体的,如图1至图3所示,第一方向X和第二方向Y垂直设置,多个子像素区110沿第一方向X和第二方向Y呈阵列分布。
如图2所示,相邻两行子像素区110之间设有一条第一凹槽421,相邻两列子像素区110之间设有一条第二凹槽422,当然,根据实际情况的选择和具体需求,相邻两行子像素区110之间也可以设有至少两条第一凹槽421,相邻两列子像素区110之间也可以设有至少两条第二凹槽422,在此不做唯一限定。
如图3所示,相邻两行子像素区110之间设有一行过孔423,相邻两列子像素区110之间设有一列过孔423,当然,根据实际情况的选择和具体需求,相邻两行子像素区110之间也可以设有至少两行过孔423,相邻两列子像素区110之间也可以设有至少两列过孔423,在此不做唯一限定。
具体的,如图4至图6所示,凹陷部420具有底面424以及连接于底面424的侧壁425,侧壁425设有第一底切开口426,第一底切开口426与凹陷部420连通,第二电极600填充于第一底切开口426内。此结构下,通过在凹陷部420的底部增设第一底切开口426,第二电极600填充于第一底切开口426内,一方面可以增加第二电极600与像素定义层400之间的接触面积,提高第二电极600粘附力,另一方面,第一底切开口426可以阻挡第二电极600从像素定义层400上剥离,通过上述设置,可以避免柔性显示面板在弯折过程中第二电极600从像素定义层400上剥离而造成画面异常。
具体的,如图4和图5所示,第一凹槽421具有底面424和连接于底面424的相对两侧的侧壁425,本申请实施例中,第一凹槽421的其中一个侧壁425设有第一底切开口426,当然,根据实际情况的选择和具体需求设置,第一凹槽421的两个侧壁425均设有第一底切开口426,在此不做唯一限定。
具体的,如图4和图5所示,第二凹槽422具有底面424和连接于底面424的相对两侧的侧壁425,本申请实施例中,第二凹槽422的其中一个侧壁425设有第一底切开口426,当然,根据实际情况的选择和具体需求设置,第二凹槽422的两个侧壁425均设有第一底切开口426,在此不做唯一限定。
具体的,如图4和图6所示,过孔423具有底面424和连接于底面424的周侧的侧壁425,本申请实施例中,过孔423的侧壁425设有一个第一底切开口426,当然,根据实际情况的选择和具体需求设置,过孔423的侧壁425可以设置两个或更多第一底切开口426,在此不做限定。
具体的,如图4至图6所示,像素定义层400还设有第一凸起430,第一凸起430设于凹陷部420(第一凹槽421、第二凹槽422和过孔423)内,第二电极600覆盖于第一凸起430上。此结构下,通过在凹陷部420的底面424设置第一凸起430,第二电极600覆盖于第一凸起430上,可以增加第二电极600与像素定义层400之间的接触面积,提高第二电极600粘附力,可以避免柔性显示面板在弯折过程中第二电极600从像素定义层400上剥离而造成画面异常。在本实施例中,第一凸起430设于凹陷部420的底面424。
具体的,如图4至图6所示,第一凸起430的侧面设有第二底切开口431,第二电极600填充于第二底切开口431内,一方面可以增加第二电极600与像素定义层400之间的接触面积,提高第二电极600粘附力,另一方面,第二底切开口431可以阻挡第二电极600从像素定义层400上剥离,通过上述设置,可以避免柔性显示面板在弯折过程中第二电极600从像素定义层400上剥离而造成画面异常。
具体的,如图4至图6所示,像素定义层400还设有第二凸起440,第二凸起440位于相邻两个子像素区110之间,且第二凸起440避让凹陷部420(第一凹槽421、第二凹槽422和过孔423)设置,即第二凸起440位于凹陷部420以外的区域,第二电极600覆盖于第二凸起440上。此结构下,通过在像素定义层400上偏离凹陷部420(第一凹槽421、第二凹槽422和过孔423)的区域设置第二凸起440,第二电极600覆盖于第二凸起440上,可以增加第二电极600与像素定义层400之间的接触面积,提高第二电极600粘附力,可以避免柔性显示面板在弯折过程中第二电极600从像素定义层400上剥离而造成画面异常。
具体的,如图4至图6所示,第二凸起440的侧面设有第三底切开口441,第二电极600填充于第三底切开口441内,一方面可以增加第二电极600与像素定义层400之间的接触面积,提高第二电极600粘附力,另一方面,第三底切开口441可以阻挡第二电极600从像素定义层400上剥离,通过上述设置,可以避免柔性显示面板在弯折过程中第二电极600从像素定义层400上剥离而造成画面异常。
具体的,柔性显示面板还包括驱动电路层200,驱动电路层200设于衬底100和第一电极300之间,驱动电路层200设有多个薄膜晶体管210,薄膜晶体管210和子像素区110一一对应,每个薄膜晶体管210与对应的子像素区110的第一电极300电性连接。本实施例中,薄膜晶体管210具有对应的栅极211、设于栅极上方且与栅极211绝缘设置的有源层212以及设于有源层212上方的源极213和漏极214,源极213与有源层212的一端接触,漏极214与有源层212的另一端接触,第一电极300与漏极214接触,从而实现每个薄膜晶体管210与对应的子像素区110的第一电极300电性连接。
请参阅图1、图7和图8,本申请实施例还提供一种用于制备上述柔性显示面板的制作方法,包括以下步骤:
步骤B1、在衬底100上形成第一电极300,衬底100具有多个子像素区110,第一电极300对应子像素区110设置;
步骤B2、在第一电极300和衬底100上形成像素定义层400,像素定义层400设有像素开口410和凹陷部420,像素开口410裸露对应的第一电极300,凹陷部420位于相邻两个子像素区110之间;
步骤B3、在像素开口410内形成发光功能层500;
步骤B4、在发光功能层500和像素定义层400上形成第二电极600,第二电极600覆盖凹陷部420。本申请实施例通过在像素定义层400上对应相邻两个子像素区110之间的位置设置凹陷部420,凹陷部420可以增大第二电极600与像素定义层400之间的接触面积,从而提高第二电极600粘附力,避免柔性显示面板在弯折过程中第二电极600从像素定义层400上剥离而造成画面异常;此外,凹陷部420还能起到释放应力的作用,避免柔性显示面板在弯折过程中由于应力集中而发生膜层断裂的情况。
具体的,如图8所示,在上述步骤B1中,在衬底100上形成第一电极300前,步骤B1还包括:在衬底100上形成驱动电路层200,第一电极300形成于驱动电路层200上,驱动电路层200设于衬底100和第一电极300之间,驱动电路层200设有多个薄膜晶体管210,薄膜晶体管210和子像素区110一一对应,每个薄膜晶体管210与对应的子像素区110的第一电极300电性连接。
具体的,如图8所示,在上述步骤B2中,在第一电极300和衬底100上形成像素定义层400的步骤具体包括:
步骤B21、在第一电极300上整面覆盖一层光阻材料层40,采用光罩700进行曝光和显影处理,从而形成像素开口410和凹陷部420,得到像素定义层400。此设置下,通过一道光罩700制程即可同时制备像素开口410和凹陷部420,可以提高制程效率,从而有效提高产能,降低生产成本。
具体的,在上述步骤B21中,光罩700具有对应子像素区110的第一区域710、对应凹陷部420的第二区域720以及对应子像素区110和凹陷部420之间的区域的第三区域730。当光阻材料层40的材料为正性光阻时,第一区域710的透光率大于第二区域720的透光率,第二区域720的透光率大于第三区域730的透光率;当光阻材料层40的材料为负性光阻时,第一区域710的透光率小于第二区域720的透光率,第二区域720的透光率小于第三区域730的透光率。
具体的,如图4和图9所示,在上述步骤B2中,像素定义层400还设有第一凸起430,第一凸起430设于凹陷部420内,后续步骤B4所形成的第二电极600覆盖于第一凸起430上。在此实施例中,光罩700具有对应第一凸起430的第四区域740,当光阻材料层40的材料为正性光阻时,第四区域740的透光率小于第二区域720的透光率,且第四区域740的透光率大于第三区域730的透光率;当光阻材料层40的材料为负性光阻时,第四区域740的透光率大于第二区域720的透光率,且第四区域740的透光率小于第三区域730的透光率。
具体的,如图4和图9所示,在上述步骤B2中,像素定义层400还设有第二凸起440,第二凸起440位于相邻两个子像素区110之间,且第二凸起440避让凹陷部420设置,即第二凸起440位于凹陷部420以外的区域,后续步骤B4所形成的第二电极600覆盖于第二凸起440上。在此实施例中,光罩700具有对应第二凸起440的第五区域750,当光阻材料层40的材料为正性光阻时,第五区域750的透光率小于第三区域730的透光率;当光阻材料层40的材料为负性光阻时,第五区域750的透光率大于第三区域730的透光率。
具体的,如图4和图10所示,在上述步骤B2中,凹陷部420具有底面424以及连接于底面424的侧壁425,侧壁425设有第一底切开口426,第一底切开口426与凹陷部420连通,后续步骤B4所形成的第二电极600填充于第一底切开口426内。在此实施例中,步骤B2还包括:
步骤B22、在像素定义层400上覆盖一层光刻胶800,对光刻胶800进行曝光和显影处理,从而在光刻胶800上形成第一缺口810,第一缺口810裸露凹陷部420的侧壁425;
步骤B23、通过第一缺口810对凹陷部420的侧壁425的局部进行蚀刻,从而形成第一底切开口426;
步骤B24、如图11所示,剥离光刻胶800。
具体的,如图4和图10所示,在上述步骤B2中,第一凸起430的侧面设有第二底切开口431,后续步骤B4所形成的第二电极600填充于第二底切开口431内。在此实施例中,步骤B22在对于光刻胶800进行曝光和显影处理后,还在光刻胶800上形成第二缺口820,第二缺口820裸露第一凸起430的侧面;步骤B23还包括通过第二缺口820对第一凸起430的侧面的局部进行蚀刻,从而形成第二底切开口431。
具体的,如图4和图10所示,在上述步骤B2中,第二凸起440的侧面设有第三底切开口441,后续步骤B4所形成的第二电极600填充于第三底切开口441内。在此实施例中,步骤B22在对于光刻胶800进行曝光和显影处理后,还在光刻胶800上形成第三缺口830,第三缺口830裸露第二凸起440的侧面;步骤B23还包括通过第三缺口830对第二凸起440的侧面的局部进行蚀刻,从而形成第三底切开口441。
本申请实施例中,上述步骤B23采用湿蚀刻的方式进行蚀刻,通过朝第一缺口810、第二缺口820和第三缺口830中滴加蚀刻液,可以对凹陷部420的侧壁425、第一凸起430的侧面和第二凸起440的侧面的底部进行蚀刻,从而形成第一底切开口426、第二底切开口431和第三底切开口441。
以上对本申请实施例所提供的一种柔性显示面板及其制作方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种柔性显示面板,其包括:
    衬底,具有多个子像素区;
    多个第一电极,设于所述衬底的一侧,每一所述第一电极对应一个所述子像素区设置;
    像素定义层,覆盖于所述第一电极上,所述像素定义层设有像素开口和凹陷部,所述像素开口裸露对应的所述第一电极,所述凹陷部位于相邻两个所述子像素区之间;
    发光功能层,设于对应的所述像素开口内;以及
    第二电极,设于所述发光功能层和所述像素定义层上,且所述第二电极覆盖所述凹陷部。
  2. 如权利要求1所述的柔性显示面板,其中,所述凹陷部的深度小于所述像素定义层的厚度。
  3. 如权利要求2所述的柔性显示面板,其中,所述凹陷部的深度为所述像素定义层的厚度的五分之一至三分之二。
  4. 如权利要求1所述的柔性显示面板,其中,所述凹陷部沿相邻两个所述子像素区的排列方向的宽度小于相邻两个所述子像素区之间的间距。
  5. 如权利要求4所述的柔性显示面板,其中,所述凹陷部沿相邻两个所述子像素区的排列方向的宽度为相邻两个所述子像素区之间的间距的五分之一至三分之二。
  6. 如权利要求1所述的柔性显示面板,其中,所述凹陷部包括多个沿第一方向延伸的第一凹槽,多个所述第一凹槽沿第二方向排列,所述第一方向和所述第二方向相交。
  7. 如权利要求6所述的柔性显示面板,其中,所述凹陷部还包括多个沿所述第二方向延伸的第二凹槽,多个所述第二凹槽沿所述第一方向排列,所述第一凹槽和所述第二凹槽连通。
  8. 如权利要求6所述的柔性显示面板,其中,所述第一方向和所述第二方向垂直设置,多个所述子像素区沿所述第一方向和所述第二方向呈阵列分布。
  9. 如权利要求1所述的柔性显示面板,其中,所述凹陷部包括多个过孔。
  10. 如权利要求9所述的柔性显示面板,其中,所述过孔的横截面形状呈圆形或多边形。
  11. 如权利要求1所述的柔性显示面板,其中,所述凹陷部具有底面以及连接于所述底面的侧壁,所述侧壁设有第一底切开口,所述第一底切开口与所述凹陷部连通,所述第二电极填充于所述第一底切开口内。
  12. 如权利要求1所述的柔性显示面板,其中,所述像素定义层还设有第一凸起,所述第一凸起设于所述凹陷部内,所述第二电极覆盖于所述第一凸起上。
  13. 如权利要求12所述的柔性显示面板,其中,所述第一凸起的侧面设有第二底切开口,所述第二电极填充于所述第二底切开口内。
  14. 如权利要求1所述的柔性显示面板,其中,所述像素定义层还设有第二凸起,所述第二凸起位于相邻两个所述子像素区之间,且所述第二凸起避让所述凹陷部设置,所述第二电极覆盖于所述第二凸起上。
  15. 如权利要求14所述的柔性显示面板,其中,所述第二凸起的侧面设有第三底切开口,所述第二电极填充于所述第三底切开口内。
  16. 如权利要求1所述的柔性显示面板,其中,所述柔性显示面板还包括驱动电路层,所述驱动电路层设于所述衬底和所述第一电极之间,所述驱动电路层设有多个薄膜晶体管,所述薄膜晶体管和所述子像素区一一对应,每个所述薄膜晶体管与对应的所述子像素区的所述第一电极电性连接。
  17. 一种柔性显示面板的制作方法,其包括以下步骤:
    在衬底上形成第一电极,所述衬底具有多个子像素区,所述第一电极对应所述子像素区设置;
    在所述第一电极上形成像素定义层,所述像素定义层设有像素开口和凹陷部,所述像素开口裸露对应的所述第一电极,所述凹陷部位于相邻两个所述子像素区之间;
    在所述像素开口内形成发光功能层;
    在所述发光功能层和所述像素定义层上形成第二电极,且所述第二电极覆盖所述凹陷部。
  18. 如权利要求17所述的制作方法,其中,在所述第一电极上形成像素定义层的步骤中,所述凹陷部包括多个沿第一方向延伸的第一凹槽,多个所述第一凹槽沿第二方向排列,所述第一方向和所述第二方向相交。
  19. 如权利要求18所述的制作方法,其中,在所述第一电极上形成像素定义层的步骤中,所述凹陷部还包括多个沿所述第二方向延伸的第二凹槽,多个所述第二凹槽沿所述第一方向排列,所述第一凹槽和所述第二凹槽连通。
  20. 如权利要求17所述的制作方法,其中,在所述第一电极上形成像素定义层的步骤中,所述凹陷部包括多个过孔。
PCT/CN2022/072923 2022-01-13 2022-01-20 柔性显示面板及其制作方法 WO2023133916A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210034489.9A CN114420733A (zh) 2022-01-13 2022-01-13 柔性显示面板及其制作方法
CN202210034489.9 2022-01-13

Publications (1)

Publication Number Publication Date
WO2023133916A1 true WO2023133916A1 (zh) 2023-07-20

Family

ID=81274292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072923 WO2023133916A1 (zh) 2022-01-13 2022-01-20 柔性显示面板及其制作方法

Country Status (2)

Country Link
CN (1) CN114420733A (zh)
WO (1) WO2023133916A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017498A1 (ja) * 2010-08-06 2012-02-09 パナソニック株式会社 有機el表示パネルとその製造方法
CN109166882A (zh) * 2018-08-01 2019-01-08 云谷(固安)科技有限公司 显示面板及其形成方法、显示装置
CN111446265A (zh) * 2020-05-08 2020-07-24 武汉华星光电半导体显示技术有限公司 Oled显示面板及其制备方法
CN112909061A (zh) * 2021-02-02 2021-06-04 武汉华星光电半导体显示技术有限公司 一种柔性显示面板及其制备方法
CN113826233A (zh) * 2020-04-21 2021-12-21 京东方科技集团股份有限公司 显示装置、显示面板及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017498A1 (ja) * 2010-08-06 2012-02-09 パナソニック株式会社 有機el表示パネルとその製造方法
CN109166882A (zh) * 2018-08-01 2019-01-08 云谷(固安)科技有限公司 显示面板及其形成方法、显示装置
CN113826233A (zh) * 2020-04-21 2021-12-21 京东方科技集团股份有限公司 显示装置、显示面板及其制造方法
CN111446265A (zh) * 2020-05-08 2020-07-24 武汉华星光电半导体显示技术有限公司 Oled显示面板及其制备方法
CN112909061A (zh) * 2021-02-02 2021-06-04 武汉华星光电半导体显示技术有限公司 一种柔性显示面板及其制备方法

Also Published As

Publication number Publication date
CN114420733A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
US20170250236A1 (en) Display panel, fabrication method and electronic device
CN110544714B (zh) 显示面板及其制作方法、显示装置
US7759864B2 (en) Organic electroluminescent display device comprising moisture preventing sealing structure
JP2006164972A (ja) 有機elディスプレイ及びその製造方法
KR20230002018A (ko) 표시 장치, 표시 패널 및 이의 제조 방법
WO2021184235A1 (zh) 一种阵列基板及其制备方法和显示面板
WO2020239071A1 (zh) 显示基板及其制作方法、显示面板和显示装置
CN111930264B (zh) 一种触控显示面板和触控显示装置
WO2024103776A1 (zh) 显示面板及显示设备
WO2023108737A1 (zh) 显示面板及显示装置
WO2016090752A1 (zh) Oled显示装置及其制造方法
WO2023241297A1 (zh) 显示面板及其制造方法、显示装置
CN109860421B (zh) 一种有机发光二极管显示器
WO2023142173A1 (zh) 显示面板及其制作方法
KR101143356B1 (ko) 듀얼패널타입 유기전계발광 소자 및 그의 제조방법
WO2023133916A1 (zh) 柔性显示面板及其制作方法
CN115132796A (zh) 显示面板及其制备方法、显示装置
US20240032332A1 (en) Display panel and manufacturing method thereof
WO2020124835A1 (zh) 发光面板及显示装置
WO2023019603A1 (zh) 显示面板、显示面板的制作方法以及显示装置
WO2022262081A1 (zh) 显示面板及显示装置
JP2008108680A (ja) 有機el素子の製造方法
KR20070065097A (ko) 유기 발광 소자 및 그의 제조 방법
WO2022246906A1 (zh) 显示面板
CN114824127B (zh) 显示面板及其制作方法