WO2023132311A1 - 弁素子及び弁素子の製造方法 - Google Patents
弁素子及び弁素子の製造方法 Download PDFInfo
- Publication number
- WO2023132311A1 WO2023132311A1 PCT/JP2022/048368 JP2022048368W WO2023132311A1 WO 2023132311 A1 WO2023132311 A1 WO 2023132311A1 JP 2022048368 W JP2022048368 W JP 2022048368W WO 2023132311 A1 WO2023132311 A1 WO 2023132311A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- movable electrode
- valve element
- fluid
- electrode portion
- film
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 28
- 238000000034 method Methods 0.000 title claims description 21
- 239000012530 fluid Substances 0.000 claims abstract description 77
- 125000006850 spacer group Chemical group 0.000 claims abstract description 17
- 239000000758 substrate Substances 0.000 claims description 24
- 239000004065 semiconductor Substances 0.000 claims description 20
- 238000005530 etching Methods 0.000 claims description 5
- 239000011810 insulating material Substances 0.000 claims description 4
- 239000010408 film Substances 0.000 description 25
- 238000012986 modification Methods 0.000 description 11
- 230000004048 modification Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 239000010409 thin film Substances 0.000 description 8
- 238000007599 discharging Methods 0.000 description 4
- 238000010030 laminating Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- HIVGXUNKSAJJDN-UHFFFAOYSA-N [Si].[P] Chemical compound [Si].[P] HIVGXUNKSAJJDN-UHFFFAOYSA-N 0.000 description 1
- MXSJNBRAMXILSE-UHFFFAOYSA-N [Si].[P].[B] Chemical compound [Si].[P].[B] MXSJNBRAMXILSE-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
- F16K99/0003—Constructional types of microvalves; Details of the cutting-off member
- F16K99/0015—Diaphragm or membrane valves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B3/00—Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/02—Actuating devices; Operating means; Releasing devices electric; magnetic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K7/00—Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
- F16K7/12—Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
- F16K7/14—Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
- F16K99/0034—Operating means specially adapted for microvalves
- F16K99/0042—Electric operating means therefor
- F16K99/0051—Electric operating means therefor using electrostatic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K2099/0073—Fabrication methods specifically adapted for microvalves
- F16K2099/008—Multi-layer fabrications
Definitions
- the present invention relates to a valve element and a method for manufacturing a valve element.
- FIG. 1 shows a schematic diagram of a valve element 9 having such a structure.
- FIG. 1A shows a schematic cross-sectional view of the valve element 9 with the valve in the "open” state
- FIG. 1B shows a schematic cross-sectional view of the valve element 9 with the valve in the "closed” state.
- fluid is introduced from a fluid inlet 92 provided in a substrate 91 (fixed electrode), and the fluid is introduced into a diaphragm 93 (movable electrode) formed to be movable with respect to the substrate 91. It is configured to be discharged from a discharge port (not shown) provided in the electrode).
- the diaphragm 93 When electrostatic attraction is generated by applying a voltage to the substrate 91 (fixed electrode) and the diaphragm 93 (movable electrode), the diaphragm 93 is attracted to the substrate 91 by the attraction, and the diaphragm 93 causes the fluid inlet 92 to move. can be sealed. In this manner, the flow rate of the fluid can be controlled by interrupting the flow of the fluid or adjusting the applied voltage to adjust the distance between the diaphragm 93 and the substrate 91 .
- F is the electrostatic attraction
- ⁇ is the dielectric constant of air
- S is the area where both electrodes face each other
- V is the applied voltage
- d is the distance between the two electrodes. That is, the electrostatic attractive force F is greatly dependent on the applied voltage V and the inter-electrode distance d. If the applied voltage V is lowered or the inter-electrode distance d is increased, the electrostatic attractive force F is significantly weakened, driving the valve. The driving force for pulling the diaphragm 93 toward the substrate 91 is reduced.
- valve in a normally closed microvalve formed by bonding two semiconductor substrates, the valve is opened by bending the two semiconductor substrates in opposite directions by a thermal driving method using a bimetal.
- a technique for making is proposed (for example, Patent Document 2). According to such means, the distance between the valve opening and the valve body can be increased compared to bending only one of the substrates, and good fluid discharge characteristics can be obtained with low power consumption.
- the microvalve disclosed in Patent Document 2 electrodes for driving the valve are provided above and below (front and back) of the valve element, and it is necessary to wire both upper and lower surfaces of the valve element. be.
- the microvalve is manufactured by bonding two substrates together, and precise wafer alignment is required to properly bond them. That is, in order to manufacture the microvalve described in Patent Document 2, the manufacturing process becomes complicated, and the degree of difficulty in manufacturing increases.
- the present invention has been made in view of the above problems, and provides a technology capable of achieving both miniaturization and low power consumption of a valve element driven by electrostatic attraction through a simple manufacturing process. for the purpose.
- a valve element for controlling fluid flow comprising: a first movable electrode portion including a fluid inlet through which the fluid flows; A second movable electrode provided with an outlet through which the fluid is discharged, and arranged on one side of the first movable electrode section so as to cover the fluid inlet and spaced from the first movable electrode section.
- the valve element is characterized in that it is configured to be able to
- valve port fluid inlet of the first movable electrode portion
- structure second movable electrode portion
- each component can be manufactured by laminating thin films on a single semiconductor substrate, so that manufacturing can be easily performed by a semiconductor manufacturing process.
- valve element may have a plurality of sets of the fluid introduction port and the discharge port corresponding to the fluid introduction port.
- the sets of the fluid inlets and the outlets corresponding to the fluid inlets may be arranged in an array.
- the present invention also provides a method for manufacturing a valve element for controlling the flow of fluid, comprising: a first electrode forming step of forming, on a semiconductor substrate, a first movable electrode film having a first movable electrode and a fluid introduction port through which the fluid flows; a sacrificial layer film forming step of forming a sacrificial layer film from an insulating material on the first movable electrode film and the semiconductor substrate; a second electrode film forming step of forming, on the sacrificial layer film, a second movable electrode film having a second movable electrode and an outlet through which the fluid is discharged; a connecting electrode forming step of forming a first connecting electrode connected to the first movable electrode and a second connecting electrode connected to the second movable electrode; a back chamber forming step of forming a back chamber in the semiconductor substrate; a sacrificial layer film etching step of etching the sacrificial layer film while leaving a spacer portion that secures
- FIG. 1A is a first diagram showing an outline of a conventionally known valve element that drives a valve by electrostatic attraction.
- FIG. 1A is a second view schematically showing a conventionally known valve element that drives a valve by electrostatic attraction.
- 2A is a plan view schematically showing a valve element according to Example 1 of the present invention;
- FIG. 2B is a first view schematically showing a cross section of the valve element according to Example 1 of the present invention;
- FIG. 2C is a diagram illustrating details of an inlet and an outlet according to the first embodiment of the present invention;
- FIG. 3A is a first diagram showing the manufacturing process of the valve element according to Example 1 of the present invention.
- FIG. 3B is a second view showing the manufacturing process of the valve element according to Example 1 of the present invention
- FIG. 3C is a third view showing the manufacturing process of the valve element according to Example 1 of the present invention
- FIG. 3D is a fourth view showing the manufacturing process of the valve element according to Example 1 of the present invention
- FIG. 3E is a fifth view showing the manufacturing process of the valve element according to Example 1 of the present invention
- FIG. 3F is a sixth view showing the manufacturing process of the valve element according to Example 1 of the present invention
- 4A is a first diagram showing a modification of the valve element of Example 1.
- FIG. 4B is a second view showing a modification of the valve element of Example 1.
- FIG. 5A is a third view showing a modification of the valve element of Example 1.
- FIG. 5B is a fourth diagram showing a modification of the valve element of Example 1.
- FIG. 6A is a fifth view showing a modification of the valve element of Example 1.
- FIG. 6B is a sixth view showing a modification of the valve element of Example 1.
- FIG. 6C is a seventh view showing a modification of the valve element of Example 1.
- FIG. 6D is an eighth view showing a modification of the valve element of Example 1.
- FIG. 2 is a diagram schematically showing the valve element 1 according to this application example
- FIG. 2A is a plan view schematically showing the valve element 1 according to the application example
- FIG. 2B is a schematic cross-sectional view showing the AA cross-section when the valve of the valve element 1 in FIG. 2A is in the "open" state, but both ends of the cross-section are omitted.
- FIG. 2C is an enlarged view of a portion surrounded by a dashed line in FIG. 2A, and is a view for explaining the shape and arrangement of an inlet 111 and an outlet 121, which will be described later.
- the valve element 1 generally has a frame portion 13 made of a semiconductor, and a first movable electrode portion 11 and a second movable electrode portion 12 formed on the frame portion 13 .
- the first movable electrode portion 11 and the second movable electrode portion 12 are both formed in the form of thin films having flexibility, are insulated by the spacer portion 14, and are arranged at a predetermined interval.
- the frame part 13 is composed of a semiconductor substrate or the like, and has a back chamber 131 that serves as a flow path for fluid flowing into the valve.
- the first movable electrode portion 11 is provided with a plurality of inlets 111 for introducing fluid
- the second movable electrode portion 12 is provided with a plurality of outlets 121 for discharging the fluid.
- the inlet 111 and the outlet 121 are schematically shown, and their specific shape and arrangement will be described in detail later.
- a hollow portion 15 is formed between the second movable electrode portion 12 and the first movable electrode portion 11 when the valve is in the "open” state.
- the fluid is introduced through the inlet 111 provided in the first movable electrode section 11 and the fluid is introduced through the outlet 121 provided in the second movable electrode section 12 . Fluid can be circulated by discharging.
- the valve element 1 can open and close the valve by a so-called electrostatic drive method to control the flow of the fluid (control the flow rate including blocking of the flow).
- a voltage is applied to the first movable electrode 110 of the first movable electrode portion 11 and the second movable electrode 120 of the second movable electrode portion 12 to generate an electrostatic attractive force between the electrodes.
- By attracting the second movable electrode portion 12 and the first movable electrode portion 11 to each other by can be done.
- the flow rate of the fluid can be controlled.
- the inlet port 111 and the outlet port 121 are provided at positions that do not overlap with each other, so that the valve is in the "closed” state. That is, it is possible to block the flow of fluid.
- both the first movable electrode portion 11 and the second movable electrode portion 12 are movable members formed in the form of thin films. It will be. Therefore, compared to conventional valve elements in which one of the electrodes is a fixed electrode, it is possible to increase the distance between the electrodes and obtain good fluid discharge characteristics. In addition, it becomes possible to put the valve in the "closed" state with a small applied voltage.
- the valve element 1 can be used, for example, as a MEMS valve for supplying and discharging gas to and from the cuff of a sphygmomanometer. , a first movable electrode portion 11 and a second movable electrode portion 12 . That is, since it has the same configuration as the valve element 1 described in the application example, detailed description of the contents described in the application example will be omitted. Also, in this specification, the same components are described using the same reference numerals.
- the frame part 13 is a rigid substrate made of a semiconductor such as Si, and has a back chamber 131 that serves as a flow path for fluid flowing into the valve.
- the first movable electrode portion 11 is a thin-film electrode member having a first movable electrode 110 made of Si, for example, and is arranged over the upper surface side of the frame portion 13 (the side shown in FIG. 2A, the same applies hereinafter).
- the first movable electrode portion 11 is provided with an insulating film (for example, SiN film) 112 and is insulated from the frame portion 13 by this.
- the first movable electrode 110 is connected to an electrode pad 113, and is electrically connected to an external power source through the electrode pad 113 so that a voltage is applied.
- the first movable electrode portion 11 is provided with a plurality of inlets 111 for introducing fluid into the valve. The arrangement and shape of the introduction port 111 will be described later.
- the second movable electrode portion 12 is a flexible thin-film electrode member configured by coating a second movable electrode 120 made of Si with an insulating film (for example, a SiN film) 122, and includes a plurality of exhaust electrodes.
- An outlet 121 is provided. The arrangement and shape of the outlet 121 will be described later.
- the second movable electrode portion 12 in the present embodiment has a substantially circular shape in plan view, and has a configuration in which a plurality of projecting portions 124 are arranged on the circumference.
- the protruding portion 124 on the circumference is provided with a predetermined distance from the upper surface side of the first movable electrode portion 11 by the spacer portion 14 made of an insulating material, and is arranged while being insulated from the first movable electrode portion 11 .
- Silicon dioxide (SiO 2 ) for example, can be used as the material of the spacer portion 14, and PSG (Phosphorus Silicon Glass), BPSG (Boron Phosphorus Silicon Glass), or the like may be used.
- the second movable electrode 120 is connected to an electrode pad 123, and is electrically connected to an external power source through the electrode pad 123 so that a voltage is applied.
- FIG. 2C is an enlarged view of a portion surrounded by a dashed line in FIG.
- the introduction port 111 indicated by the dashed line in FIG. 2C is not actually visible when the valve element 1 is viewed from above, but is shown only for understanding the shape and arrangement relationship.
- the introduction port 111 and the discharge port 121 form a set in which a plurality of discharge ports 121 surround one introduction port 111 in plan view.
- elliptical outlets 121 are provided at positions corresponding to the sides of a hexagon surrounding the circular inlet 111 .
- the valve element 1 has a configuration in which a large number of pairs of such inlet ports 111 and outlet ports 121 are arranged in an array in a so-called honeycomb structure.
- FIGS. 3A to 3F are notional schematic cross-sectional views for convenience in explaining the manufacturing process, and are different from accurate cross-sectional views of any part of the valve element 1.
- FIG. The valve element 1 can be manufactured by forming a thin film on a semiconductor substrate by a so-called semiconductor manufacturing process.
- a first movable electrode film which will be the first movable electrode portion 11 having the first movable electrode 110 and the introduction port 111 , is formed on the silicon substrate that constitutes the frame portion 13 .
- This process corresponds to the first electrode forming step according to the present invention, and FIG. 3A is a schematic cross-sectional view showing the state after this process.
- FIG. 3B is a schematic cross-sectional view showing the state after this process.
- FIG. 3C is a schematic cross-sectional view showing the state after this process.
- FIG. 3D is a schematic cross-sectional view showing the state after this process.
- FIG. 3E is a schematic cross-sectional view showing the state after this process.
- the sacrificial layer film is etched while leaving the spacer portion 14 that secures the space between the first movable electrode portion 11 and the second movable electrode portion 12 .
- This process corresponds to the sacrificial layer film etching step according to the present invention
- FIG. 3F is a schematic cross-sectional view showing the state after this process.
- the valve element 1 according to the present embodiment can be manufactured by laminating thin films on one semiconductor substrate by the above-described steps, and can be easily manufactured. Further, according to the valve element 1 of the present embodiment, good fluid discharge characteristics can be obtained without increasing the electrode area and without increasing the applied voltage. That is, it is possible to easily manufacture a valve element that can be miniaturized and consume less power while having good fluid discharge characteristics.
- the second movable electrode portion 12 was configured to be supported by the spacer portions 14 provided at the four projecting portions 124, but the support structure of the second movable electrode portion 12 is as follows. configuration. 4A, 4B, 5A, and 5B are diagrams showing examples of other support structures for the second movable electrode portion 12, respectively.
- the second movable electrode portion 12 may be structured to be supported by spacer portions 14 provided on three projecting portions 124 as shown in FIG. 4A, or may be supported by six projecting portions as shown in FIG. 4B.
- a structure supported by the spacer portion 14 provided at 124 may be employed.
- the second movable electrode portion 12 may be structured to be supported by the spacer portions 14 provided on the eight protruding portions 124, or the entire circumference of the circular It may be configured such that the spacer portion 14 is provided over the entire length to support.
- inlet and outlet (Modified example of inlet and outlet)
- shape and arrangement of the inlet 111 and the outlet 121 are such that the elliptical outlet 121 is provided at each side of the hexagon surrounding the circular inlet 111 .
- 6A, 6B, 6C, and 6D are diagrams showing other configurations of inlet 111 and outlet 121, respectively.
- the shape and arrangement relationship between the inlet 111 and the outlet 121 may be such that a smaller circular outlet 121 is provided on the outer periphery of the circular inlet 111 as shown in FIG. 6A.
- the shape and arrangement relationship between the inlet 111 and the outlet 121 are such that the outlet 121 is provided on the outer circumference of the circular inlet 111 and has the shape of a circular ring divided into four, as shown in FIG. 6B.
- the elliptical discharge ports 121 are arranged on the outer periphery of the hexagonal inlet 111 at positions corresponding to the sides of the hexagon. It may be in such a mode that it is provided.
- the shape and arrangement relationship between the inlet 111 and the outlet 121 as shown in FIG. good.
- a valve element (1) for controlling fluid flow comprising: a first movable electrode section (11) comprising a fluid inlet (111) through which the fluid flows; A discharge port (121) for discharging the fluid is provided, and the first movable electrode portion is arranged on one side of the first movable electrode portion so as to cover the fluid introduction port and is spaced apart from the first movable electrode portion.
- a valve element characterized by:
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Electrically Driven Valve-Operating Means (AREA)
- Micromachines (AREA)
Abstract
Description
流体の流通を制御するための弁素子であって、
前記流体が流通する流体導入口を備える第一可動電極部と、
前記流体が排出される排出口を備え、前記第一可動電極部の一方の面側に前記流体導入口を覆うようにして前記第一可動電極部から間隔を設けて配置される第二可動電極部と、
前記第一可動電極部と前記第二可動電極部との前記間隔を確保するスペーサ部と、
前記第一可動電極部の他方の面側において前記流体導入口と連通するバックチャンバーを形成するとともに前記第一可動電極部を支持するフレーム部と、を有し、
前記第一可動電極部と前記第二可動電極部に電圧を印加することにより生じる静電引力によって、前記第一可動電極部と前記第二可動電極部とを引き寄せて前記流体導入口を封止可能に構成されている、ことを特徴とする弁素子である。
半導体基板上に、第一の可動電極と前記流体が流通する流体導入口とを備える第一可動電極膜を形成する第一電極形成ステップと、
前記第一可動電極膜上及び前記半導体基板上に絶縁性の素材により犠牲層膜を形成する犠牲層膜形成ステップと、
前記犠牲層膜上に、第二の可動電極と前記流体が排出される排出口とを備える第二可動電極膜を形成する第二電極膜形成ステップと、
前記第一の可動電極に接続される第一接続用電極、及び前記第二の可動電極に接続される第二接続用電極を形成する、接続用電極形成ステップと、
前記半導体基板に、バックチャンバーを形成するバックチャンバー形成ステップと、
前記犠牲層膜を、前記第一可動電極膜と前記第二可動電極膜との間隔を確保するスペーサ部を残してエッチングする、犠牲層膜エッチングステップと、を有する、
ことを特徴とする弁素子の製造方法としても捉えることができる。
以下に本発明の適用例の概要について一部の図面を用いて説明する。本発明は、例えば半導体製造工程により製造されるMEMS(Micro Electro Mechanical System)弁の弁素子1として適用することができる。図2は、本適用例に係る弁素子1の概略を示す図であり、図2Aは、適用例に係る弁素子1の概略を示す平面図である。図2Bは図2Aにおける弁素子1の弁が「開」状態におけるAA断面を示す概略断面図であるが、断面の両端が省略された図となっている。図2Cは図2A中の一点鎖線で囲んだ部位を拡大した図であり、後述する導入口111及び、排出口121の形状及び配置について説明する図である。
以下に、各図面(上記の適用例で一旦説明した図も含む)を順次参照して、この発明を実施するための形態を、実施例に基づいてさらに詳しく説明する。ただし、この実施例に記載されている具体的構成は、特に記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
本実施例に係る弁素子1は、例えば、血圧計のカフに気体の供給と排出を行うMEMS弁として用いることができ、図2A、図2B、図2Cに示すように、概略、フレーム部13、第一可動電極部11及び第二可動電極部12を有する構成となっている。即ち、適用例において説明した弁素子1と同様の構成を有するため、適用例で説明した内容については、詳細な説明は省略する。また、本明細書では同一の構成要素については同一の符号を用いて説明を行う。
続けて、図3A乃至図3Fに基づいて、本実施例に係る弁素子1を製造する方法の一例を説明する。なお、図3A乃至図3Fの各図は、製造工程説明の便宜のための観念上の概略断面図であり、弁素子1のいずれかの部位についての正確な断面図とは異なる。弁素子1はいわゆる半導体製造工程によって、半導体基板上に薄膜を形成して製造することができる。
なお、上記の実施例では第二可動電極部12は、4本の突出部124において設けられるスペーサ部14で支持される構成となっていたが、第二可動電極部12の支持構造はこのような構成に限られない。図4A、図4B、図5A、図5Bはそれぞれ、第二可動電極部12のその他の支持構造の例を示す図である。第二可動電極部12は、図4Aに示すように3本の突出部124に設けられるスペーサ部14により支持される構造であってもよいし、図4Bに示すように、6本の突出部124に設けられるスペーサ部14により支持される構造であってもよい。また、第二可動電極部12は図5Aに示すように、8本の突出部124に設けられるスペーサ部14により支持される構造であってもよいし、突出部を設けずに円形の外周全体に亘ってスペーサ部14を設けて支持されるような構成であってもよい。
また、上記の実施例では、導入口111と排出口121の形状及び配置関係は、円形の導入口111の周囲を囲む六角形の各辺に相当する位置に楕円形状の排出口121が設けられているような態様であったが、これについても様々な変形が可能である。図6A、図6B、図6C、図6Dは、それぞれ導入口111及び排出口121のその他の構成を示す図である。
上記実施例の説明は、本発明を例示的に説明するものに過ぎず、本発明は上記の具体的な形態には限定されない。本発明は、その技術的思想の範囲内で種々の変形及び組み合わせが可能である。例えば、上記実施例においては、半導体製造工程により半導体基板上に薄膜を積層して弁素子を製造する方法を例示したが、これ以外の方法で本発明に係る弁素子を製造するのであってもよい。
流体の流通を制御するための弁素子(1)であって、
前記流体が流通する流体導入口(111)を備える第一可動電極部(11)と、
前記流体が排出される排出口(121)を備え、前記第一可動電極部の一方の面側に前記流体導入口を覆うようにして前記第一可動電極部から間隔を設けて配置される第二可動電極部(12)と、
前記第一可動電極部と前記第二可動電極部との前記間隔を確保するスペーサ部(14)と、
前記第一可動電極部の他方の面側において前記流体導入口と連通するバックチャンバー(131)を形成するとともに前記第一可動電極部を支持するフレーム部13と、を有し、
前記第一可動電極部と前記第二可動電極部に電圧を印加することにより生じる静電引力によって、前記第一可動電極部と前記第二可動電極部とを引き寄せて前記流体導入口を封止可能に構成されている、
ことを特徴とする弁素子。
11・・・第一可動電極部
12・・・第二可動電極部
13・・・フレーム部
14・・・スペーサ部
15・・・中空部
110・・・第一可動電極
111・・・導入口
112、122・・・絶縁膜
113、123・・・電極パッド
120・・・第二可動電極
121・・・排出口
Claims (4)
- 流体の流通を制御するための弁素子であって、
前記流体が流通する流体導入口を備える第一可動電極部と、
前記流体が排出される排出口を備え、前記第一可動電極部の一方の面側に前記流体導入口を覆うようにして前記第一可動電極部から間隔を設けて配置される第二可動電極部と、
前記第一可動電極部と前記第二可動電極部との前記間隔を確保するスペーサ部と、
前記第一可動電極部の他方の面側において前記流体導入口と連通するバックチャンバーを形成するとともに前記第一可動電極部を支持するフレーム部と、を有し、
前記第一可動電極部と前記第二可動電極部の各電極に電圧を印加することにより生じる静電引力によって、前記第一可動電極部と前記第二可動電極部とを引き寄せて前記流体導入口を封止可能に構成されている、
ことを特徴とする弁素子。 - 前記流体導入口及び該流体導入口に対応する前記排出口の組を複数有する、
ことを特徴とする、請求項1に記載の弁素子。 - 前記流体導入口及び該流体導入口に対応する前記排出口の組が、アレイ状に配列されている、
ことを特徴とする、請求項2に記載の弁素子。 - 流体の流通を制御するための弁素子の製造方法であって、
半導体基板上に、第一の可動電極と前記流体が流通する流体導入口とを備える第一可動電極膜を形成する第一電極形成ステップと、
前記第一可動電極膜上及び前記半導体基板上に絶縁性の素材により犠牲層膜を形成する犠牲層膜形成ステップと、
前記犠牲層膜上に、第二の可動電極と前記流体が排出される排出口とを備える第二可動電極膜を形成する第二電極膜形成ステップと、
前記第一の可動電極に接続される第一接続用電極、及び前記第二の可動電極に接続される第二接続用電極を形成する、接続用電極形成ステップと、
前記半導体基板に、バックチャンバーを形成するバックチャンバー形成ステップと、
前記犠牲層膜を、前記第一可動電極膜と前記第二可動電極膜との間隔を確保するスペーサ部を残してエッチングする、犠牲層膜エッチングステップと、を有する、
ことを特徴とする弁素子の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280051716.7A CN117751255A (zh) | 2022-01-07 | 2022-12-27 | 阀元件以及阀元件的制造方法 |
US18/442,597 US20240183464A1 (en) | 2022-01-07 | 2024-02-15 | Valve element and method for manufacturing valve element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022001870A JP2023101306A (ja) | 2022-01-07 | 2022-01-07 | 弁素子及び弁素子の製造方法 |
JP2022-001870 | 2022-01-07 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/442,597 Continuation US20240183464A1 (en) | 2022-01-07 | 2024-02-15 | Valve element and method for manufacturing valve element |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023132311A1 true WO2023132311A1 (ja) | 2023-07-13 |
Family
ID=87073711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/048368 WO2023132311A1 (ja) | 2022-01-07 | 2022-12-27 | 弁素子及び弁素子の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240183464A1 (ja) |
JP (1) | JP2023101306A (ja) |
CN (1) | CN117751255A (ja) |
WO (1) | WO2023132311A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09137872A (ja) * | 1995-11-16 | 1997-05-27 | Matsushita Electric Ind Co Ltd | 高分子電解質アクチュエータ |
US20180187668A1 (en) * | 2015-07-02 | 2018-07-05 | Politecnico Di Milano | Micropump with electrostatic actuation |
JP2019093120A (ja) * | 2017-10-27 | 2019-06-20 | 研能科技股▲ふん▼有限公司 | ウェアラブルヒトインスリン注射用液体供給装置 |
-
2022
- 2022-01-07 JP JP2022001870A patent/JP2023101306A/ja active Pending
- 2022-12-27 WO PCT/JP2022/048368 patent/WO2023132311A1/ja active Application Filing
- 2022-12-27 CN CN202280051716.7A patent/CN117751255A/zh active Pending
-
2024
- 2024-02-15 US US18/442,597 patent/US20240183464A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09137872A (ja) * | 1995-11-16 | 1997-05-27 | Matsushita Electric Ind Co Ltd | 高分子電解質アクチュエータ |
US20180187668A1 (en) * | 2015-07-02 | 2018-07-05 | Politecnico Di Milano | Micropump with electrostatic actuation |
JP2019093120A (ja) * | 2017-10-27 | 2019-06-20 | 研能科技股▲ふん▼有限公司 | ウェアラブルヒトインスリン注射用液体供給装置 |
Also Published As
Publication number | Publication date |
---|---|
CN117751255A (zh) | 2024-03-22 |
JP2023101306A (ja) | 2023-07-20 |
US20240183464A1 (en) | 2024-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6126140A (en) | Monolithic bi-directional microvalve with enclosed drive electric field | |
EP0478716B1 (en) | Semiconductor microactuator | |
US6481984B1 (en) | Pump and method of driving the same | |
CA2320458C (en) | Mems variable optical attenuator | |
US6247908B1 (en) | Micropump | |
JPH04282085A (ja) | 多層構造のマイクロ弁 | |
JPH05302684A (ja) | バルブ及びそれを用いた半導体製造装置 | |
US20070290308A1 (en) | Package of MEMS device and method for fabricating the same | |
JP3336017B2 (ja) | 微薄膜ポンプ本体の製造方法 | |
JPH03234982A (ja) | 電子マイクロ弁装置及びその製造方法 | |
KR20010067141A (ko) | 단결정 요소들을 가지는 마이크로전자기구 밸브 및 관련된제작 방법 | |
TW202104065A (zh) | 具有大流體有效表面之微機電系統(mems) | |
US6283440B1 (en) | Apparatus and method for regulating fluid flow with a micro-electro mechanical block | |
JPH051669A (ja) | マイクロポンプ及びマイクロバルブの製造方法 | |
TWM575806U (zh) | 微流道結構 | |
TWI695934B (zh) | 微機電泵浦 | |
WO2023132311A1 (ja) | 弁素子及び弁素子の製造方法 | |
JPH10274164A (ja) | マイクロポンプ | |
JP3368741B2 (ja) | マイクロバルブ及びその製造方法 | |
JP5073382B2 (ja) | マイクロバルブ及びその製造方法 | |
JP2995401B2 (ja) | マイクロポンプおよびマイクロポンプの製造方法 | |
JP4472919B2 (ja) | マイクロバルブ | |
JP2011185399A (ja) | 乱流制御装置及び乱流制御用アクチュエータの製造方法 | |
JP4529814B2 (ja) | マイクロバルブ | |
JPH06264870A (ja) | マイクロポンプ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22918894 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280051716.7 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202417006107 Country of ref document: IN |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112024003356 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112022006331 Country of ref document: DE |
|
ENP | Entry into the national phase |
Ref document number: 112024003356 Country of ref document: BR Kind code of ref document: A2 Effective date: 20240221 |