WO2023132199A1 - 静電入力装置 - Google Patents
静電入力装置 Download PDFInfo
- Publication number
- WO2023132199A1 WO2023132199A1 PCT/JP2022/046332 JP2022046332W WO2023132199A1 WO 2023132199 A1 WO2023132199 A1 WO 2023132199A1 JP 2022046332 W JP2022046332 W JP 2022046332W WO 2023132199 A1 WO2023132199 A1 WO 2023132199A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- value
- capacitance
- predetermined
- detection unit
- input device
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims abstract description 50
- 230000003213 activating effect Effects 0.000 abstract description 2
- 230000007704 transition Effects 0.000 description 21
- 238000005259 measurement Methods 0.000 description 20
- 238000013459 approach Methods 0.000 description 19
- 238000000034 method Methods 0.000 description 19
- 230000008569 process Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 14
- 238000012545 processing Methods 0.000 description 13
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004913 activation Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/08—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0416—Control or interface arrangements specially adapted for digitisers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H36/00—Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding
Definitions
- the present invention relates to an electrostatic input device.
- a capacitance detection unit is provided in the operation unit, and in order to save power, the capacitance detection unit is set to a standby state when the operation unit is not touched, and when the operation unit is touched.
- a method of driving an input unit that sets a capacitance detection unit to an activated state see, for example, Japanese Unexamined Patent Application Publication No. 2002-100003.
- the conventional method of driving input means is designed to reach the threshold for determining that there has been contact in a short period of time, but there are still cases where it is not fast enough and there is room for improvement.
- As a countermeasure it is conceivable to lower the judgment threshold for judging that the operation unit has been touched. Detection could increase.
- An electrostatic input device includes a capacitance detection unit that is arranged in an operation unit that is operated by a living body and that detects capacitance; When the amount of increase in the capacitance detected by the capacitance detection unit is a predetermined number of times or more and a first predetermined value or more within a predetermined period when the contact of the living body is not detected, the capacitance is detected. a control unit for activating the detection unit.
- FIG. 1 is a diagram showing a door handle 10 attached to a vehicle 1;
- FIG. FIG. 2 shows an electrostatic sensor 110; It is a figure which shows the electrostatic input device 100 of embodiment.
- FIG. 4 is a diagram showing scan intervals in normal mode and power saving mode;
- FIG. 4 is a diagram showing outputs of sensors 111, 112, and 113;
- 4 is a flowchart showing processing executed by control unit 126 during power saving mode.
- 10 is a flow chart showing processing executed by the control unit 126 in the first modified example of the embodiment;
- FIG. 10 is a diagram showing pulse waveforms used in scanning in normal mode and power saving mode in the second modified example of the embodiment;
- FIG. 11 is a flow chart showing processing executed by the control unit 126 in the second modified example of the embodiment;
- FIG. 11 is a diagram showing pulse waveforms used in scanning in normal mode and power saving mode in the third modified example of the embodiment;
- FIG. 11 is a flow chart showing processing executed by a control unit 126 in a third modified example of the embodiment;
- FIG. 12 is a diagram showing outputs of sensors 111, 112, and 113 in a fourth modified example of the embodiment;
- FIG. 13 is a flow chart showing processing executed by a control unit 126 in a fourth modified example of the embodiment;
- FIG. 1 shows a door handle 10 attached to a vehicle 1.
- FIG. A door handle 10 is attached to the door 2 of the vehicle 1.
- the door handle 10 has an elongated shape so that it can be easily grasped by fingers or the like.
- An electrostatic sensor 110 is provided inside the door handle 10 . Note that in FIG. 1, the longitudinal direction of the door handle 10 is the lateral direction in which the door handle 10 extends in an elongated manner.
- FIG. 2 is a diagram showing the electrostatic sensor 110.
- the electrostatic sensor 110 has a substrate 110A and sensors 111 , 112 , and 113 .
- the sensors 111, 112, 113 are arranged along the longitudinal direction of the door handle 10, for example.
- the electrostatic sensor 110 is an example of a capacitance detection unit.
- FIG. 3 is a diagram showing the electrostatic input device 100 of the embodiment.
- Capacitive input device 100 includes an electrostatic sensor 110 and an integrated circuit 120 .
- the integrated circuit 120 has a switch 121 , a switch 122 , an amplifier 123 , an ADC (Analog-to-digital converter: AD converter) 124 , an arithmetic section 125 and a control section 126 .
- the control unit 126 incorporates a storage unit 126A.
- the switches 121 of the integrated circuit 120 are connected to the sensors 111, 112, and 113 of the electrostatic sensor 110.
- the switch 121 is provided between the sensors 111 , 112 , 113 and the inverting input terminal of the amplifier 123 .
- the inverting input terminal of the amplifier 123 is switched between the sensors 111 , 112 . , 113.
- a power supply Vdd is connected via a switch 122 to a line branching from between the switch 121 and the inverting input terminal of the amplifier 123 .
- the switch 122 is intermittently switched on/off by the controller 126 when the switch 121 is connected to the sensors 111 , 112 , and 113 , so that the sensors 111 , 112 , and 113 are sequentially pulsed. (voltage value is Vdd).
- pulse voltages are applied to the sensors 111, 112, and 113 in order. Applying the pulse voltage to the sensors 111 , 112 , 113 in this manner is to scan the sensors 111 , 112 , 113 .
- the potential detected by each of the sensors 111, 112, and 113 is amplified by the amplifier 123 and converted from an analog signal to a digital signal by the ADC 124. Based on the digital signal converted in this way, the capacitance between the sensors 111, 112, 113 and the finger 200 can be calculated in the calculation unit 125.
- FIG. Information on the calculated capacitance is stored in the storage unit 126A of the control unit 126 .
- the control unit 126 detects (determines) the approach of the user to the door handle 10 based on the capacitance information calculated by the calculation unit 125 .
- FIG. 4 is a diagram showing scan intervals in normal mode and power saving mode.
- the normal mode is a mode in which the electrostatic sensor 110 is activated at short time intervals to detect contact or proximity of a living body.
- the electrostatic sensor 110 is in the normal mode, it is said to be in an activated state.
- a power saving mode is a mode in which the electrostatic sensor 110 is in a standby state.
- the standby state activation of the electrostatic sensor 110 is restricted, for example, the scan interval is lengthened or the number of measurement pulses is reduced, so that the power consumption of the electrostatic sensor 110 and the integrated circuit 120 is reduced.
- the power saving mode is canceled and transitions to the normal mode, and the electrostatic sensor 110 changes from the standby state to the activated state.
- the sensors 111, 112, and 113 are scanned, for example, at 5 ms intervals, and pulse voltages are applied in sequence at 5 ms intervals.
- the period during which one scan is performed is the period during which the pulse voltage is applied to each of the sensors 111, 112, and 113 once, as shown in FIG.
- the pulse voltage applied every 5 ms includes, as an example, eight pulses, more specifically, as shown in the enlarged view on the right.
- the pulse voltages applied to the sensors 111, 112, and 113 every 5 ms are time-shifted from each other.
- the capacitance calculated by the calculation unit 125 in one scan is the average value of the eight capacitances obtained when each of the eight pulses shown in an enlarged manner is applied.
- the number of measurements in the scan is 8 times. In order to simplify the explanation, the number of measurements is set to 8 for convenience, but in actual measurements, the average value may be obtained by setting a larger number of measurements such as 128 or 256. However, the number of measurements less than eight, such as one, may be used.
- the sensors 111, 112, and 113 are scanned, for example, at intervals of 20 ms, and pulse voltages are sequentially applied at intervals of 20 ms.
- the pulse voltage applied every 20 ms includes, as an example, eight pulses, more specifically, as shown in the enlarged view on the right.
- the pulse voltages applied to the sensors 111, 112, and 113 every 20 ms are time-shifted from each other.
- the period during which one scan is performed is a period in which the pulse voltage is applied once to each of the sensors 111, 112, and 113, similarly to the normal mode, and is calculated by the calculation unit 125 in one scan.
- the capacitance is the average value of the eight capacitances obtained when each of the eight pulses shown enlarged is applied.
- the number of times the pulse voltage is applied to the sensors 111, 112, and 113 is reduced compared to the normal mode. can be reduced.
- the controller 126 controls the user's door handle based on the outputs of the sensors 111, 112, and 113. It is conceivable to set a low threshold for detecting (determining) the approach to 10 and activate the electrostatic sensor 110 at the time of detection.
- FIG. 5 is a diagram showing the outputs of sensors 111, 112, and 113.
- FIG. 5A shows the sensors 111 and 112 when detecting (determining) the approach of the user to the door handle 10 using one threshold for the outputs of the sensors 111, 112 and 113. , 113 versus the threshold.
- FIG. 5A is a schematic characteristic diagram showing the output of one of the sensors 111, 112, and 113.
- FIG. The average values of the outputs of sensors 111, 112 and 113 exhibit similar characteristics.
- the output of the sensors 111, 112, and 113 means that the signal representing the potential detected by the sensors 111, 112, and 113 is converted into one signal as the output of the switch 121, amplified by the amplifier 123, and then digitalized by the ADC 124. It is a signal that is converted into a signal, the capacitance of which is obtained by the calculation unit 125 , and is input to the control unit 126 .
- the outputs of the sensors 111 , 112 , 113 are signals representing the capacitance input to the control section 126 .
- the control unit 126 uses one threshold value set low for detecting the approach of the user to the door handle 10.
- the control unit 126 utilizes based on the outputs of the sensors 111, 112, and 113.
- the threshold value is exceeded even if the capacitance fluctuates greatly only once due to the influence of noise or unintended movement of the user. will be detected as an approach to This may lead to erroneous detection.
- the electrostatic sensor 110 can be activated at just the right timing so that the user does not feel the delay in response. It may not be possible.
- the amount of increase in the capacitance detected by the electrostatic sensor 110 is equal to or greater than a predetermined value Ca (an example of a first predetermined value) at least a predetermined number of times within a predetermined period. If so, the electrostatic sensor 110 is activated.
- a predetermined value Ca an example of a first predetermined value
- FIG. 5B is an example showing waveforms actually obtained when scanning is performed in the normal mode or the power saving mode by the method shown in FIG. , 113 of the measured capacitance.
- the capacitance measured by each sensor 111, 112, and 113 in each scan indicates the average value of eight capacitances obtained when eight pulses are applied as described above.
- the scanning result up to the last minute is the leftmost capacitance data, but here, for the sake of clarity, the user is not approaching the door handle 10 (no operation). state), and the capacitance values measured by the sensors 111, 112, and 113 are simply assumed to be the same value C0.
- each scan three capacitances are measured by three sensors 111, 112, 113.
- the capacitance increments ⁇ C1, ⁇ C2, and ⁇ C3 obtained from any of the sensors 111, 112, and 113 in each of the first to third scans are measured in the current scan of the sensors 111, 112, and 113.
- the value obtained by subtracting the capacitance measured in the previous scan by the sensor any one of 111, 112, 113) that obtained the maximum value from the maximum value of the capacitance will be explained.
- the maximum value of the amount of increase in capacitance for each sensor between scans may be used as the representative value of the amount of increase between scans.
- the average value or total value of the capacitances of a plurality of sensors measured in each scan may be used to calculate the amount of increase between scans.
- the maximum value of the capacitance of each sensor in each scan may be taken as the representative value in that scan, and the increment between scans may be calculated using that value.
- the capacitance measured by the sensor 111 is the maximum
- the capacitance measured by the sensor 112 is the maximum
- the capacitance measured at 113 was maximum. For example, it is assumed that a person's hand or finger approaches the sensor 113 obliquely from above the sensor 111 .
- ⁇ C1 is the value obtained by subtracting the capacitance C0 of the previous scan (in the non-operating state) from the capacitance measured by the sensor 111, which is the maximum value of the first scan.
- ⁇ C2 is a value obtained by subtracting the capacitance measured by the sensor 112 in the first scan from the capacitance measured by the sensor 112, which is the maximum value in the second scan.
- ⁇ C3 is the value obtained by subtracting the capacitance measured by sensor 112 in the second scan from the capacitance measured by sensor 113, which is the maximum value in the third scan.
- the capacitance detected by the electrostatic sensor 110 increases three times or more within the period TP1, and the amount of increase in capacitance measured in three or more scans
- ⁇ C1, ⁇ C2, and ⁇ C3 in scanning are equal to or greater than a predetermined value Ca
- the power saving mode is changed to the normal mode, and the electrostatic sensor 110 is activated.
- the predetermined period is the period TP1
- the predetermined number of times is three
- the capacitance increases used for determination are ⁇ C1, ⁇ C2, and ⁇ C3.
- the scanning in which the amount of increase in capacitance is equal to or greater than the predetermined value Ca is continued will be described. Scans that do not exceed or decrease the capacitance may be included, and even if there is a discontinuous increase, it is sufficient that there are at least a predetermined number of scans in which the amount of increase is equal to or greater than the predetermined value Ca in a predetermined period.
- the period TP1 is shown to be about the same as the period for scanning three times.
- the period TP1 is counted from the first scan in which the amount of increase in capacitance exceeds Ca.
- the counting of the period TP1 may be started when the amount of increase in capacitance exceeds Ca again. Further, as an example, when the increase in capacitance again exceeds Ca before the counting of the period TP1 that started in the first scan ends (for example, in the second or third scan in FIG. 5(B) ), starting counting for a predetermined period from that point, counting the predetermined period in parallel with counting the period TP1 started in the first scan, and counting the number of times of proximity for each predetermined period. good.
- the power saving mode is changed to the normal mode.
- the starting point of the period TP1 may be the time when a parameter other than the amount of increase in capacitance exceeds a predetermined value set in advance.
- the period TP1 may be counted at predetermined time intervals regardless of the predetermined value.
- control unit 126 has a proximity number counter that counts the number of times of proximity.
- a proximity number counter is an example of a counter. If the capacitance detected by the electrostatic sensor 110 in the current scan is greater than the capacitance detected in the previous scan by a predetermined value Ca or more, the controller 126 increments the proximity count counter. do. The control unit 126 activates the electrostatic sensor 110 when the number of times of proximity counter reaches 3 or more within a predetermined period (period TP1).
- the starting condition is that the capacitance increases ⁇ C1, ⁇ C2, and ⁇ C3 detected by the electrostatic sensor 110 three times or more within the period TP1 are equal to or greater than a predetermined value Ca. called.
- Control unit 126 activates electrostatic sensor 110 when the activation condition is satisfied.
- the electrostatic input device 100 of the embodiment when the electrostatic sensor 110 is in the standby state, the approach of the user to the door handle 10 is detected ( judge.
- the controller 126 detects that the output of one of the sensors 111, 112, and 113 in the normal mode contacts the vehicle 1 (see FIG. 1). If it exceeds a threshold value for determining that the door handle has been touched, a signal permitting unlocking of the door is transmitted to an ECU (Electronic Control Unit) that controls the door lock of the vehicle 1 . As a result, the door is unlocked.
- ECU Electronic Control Unit
- FIG. 6 is a flowchart showing processing executed by the control unit 126 during the power saving mode.
- the control unit 126 repeatedly executes the flowchart shown in FIG. 6 at a predetermined control cycle corresponding to one scan operation shown in FIG.
- the capacitance calculated by the calculation unit 125 is converted from an analog value to a digital value, and for example, 10 pF is one count in the digital value.
- control unit 126 scans the sensors 111, 112, and 113 by controlling the connection of the switches 121 and 122 in the power saving mode (step S1).
- the control unit 126 determines whether or not the capacitance calculated by the calculation unit 125 is greater than or equal to a predetermined value Cwake that permits transition to the normal mode (step S2).
- the capacitance calculated at this time indicates the average value of eight capacitances obtained when eight pulses are applied as described above.
- the predetermined value Cwake is sufficiently large so that the increase in capacitance due to the user's approach to the door handle 10 can be accurately determined by one determination using one threshold value without causing erroneous detection. set to capacitance.
- control unit 126 determines that it is equal to or greater than the predetermined value Cwake (S2: YES), it transitions to the normal mode (step S3).
- the transition condition to step S3 is equal to or greater than the predetermined value Cwake representing the approach of the user to the door handle 10.
- Such a condition may be used as the normal mode transition condition if it can be determined that the operation has been performed.
- the control unit 126 clears the proximity count counter stored in the memory to 0 (step S4).
- control unit 126 ends the process in the control cycle corresponding to this scan timing (END).
- control unit 126 determines in step S2 that the capacitance is not equal to or greater than the predetermined value Cwake (S2: NO), it determines whether the increase in capacitance obtained in the previous scan is equal to or greater than a predetermined value Ca (step S5).
- the determination in step S5 is an operation corresponding to the example shown in FIG. 5B. This is the process of determining whether or not the capacitance of the sensor (one of 111, 112, 113) to be connected has increased by a predetermined value Ca or more.
- control unit 126 determines that it has increased by a predetermined value Ca or more (S5: YES), it increments the number-of-approach counter, that is, adds 1 to the count value stored in the memory and overwrites it (step S6).
- the control unit 126 determines whether or not the number-of-approach counter is 3 or more (step S7).
- control unit 126 determines that the number-of-approach counter is 3 or more (S7: YES), it advances the flow to step S3 to transition to the normal mode.
- control unit 126 determines in step S5 that the increase has not exceeded the predetermined value Ca (S5: NO), it determines whether the time from the start of counting, that is, the duration is equal to or greater than the period TP1 (step S8).
- control unit 126 determines that the duration is equal to or longer than the period TP1 (S8: YES), it clears the proximity count counter stored in the memory to 0 (step S9).
- step S7 When the control unit 126 determines in step S7 that the number-of-approach counter is not equal to or greater than 3 (S7: NO), it ends the processing in this control cycle (END). Then, the operation from step S1 is repeated in the control cycle corresponding to the next scan timing.
- control unit 126 determines in step S8 that the duration is not equal to or longer than the period TP1 (S8: NO), it ends the processing in the control cycle corresponding to this scan timing (END).
- the power saving mode when the capacitance detected by the electrostatic sensor 110 increases due to the user approaching the door handle 10, the previous scanning is repeated three times or more within the period TP1. is greater than or equal to a predetermined value Ca, the mode is changed to the normal mode.
- the electrostatic input device 100 that quickly activates the electrostatic sensor 110 from the standby state and suppresses erroneous detection.
- the electrostatic sensor 110 includes the three sensors 111, 112, and 113 has been described above, the number of sensors may be two, or four or more. Control processing by the control unit 126 in these cases is the same as when the electrostatic sensor 110 has three sensors 111 , 112 , and 113 .
- the electrostatic sensor 110 may be in a form including one sensor (for example, the sensor 111).
- the capacitance obtained by the sensor 111 increases by the predetermined value Ca or more three times or more from the capacitance at the time of the previous scan within the period TP1
- the power saving mode is changed to the normal mode. should be changed to .
- step S5 the proximity count counter is incremented when the value of the capacitance increases by a predetermined value Ca or more from the time of the previous scan. may increment the proximity count counter.
- the amount of increase in capacitance obtained in the first scan within the period TP1 is ⁇ C1
- the amount of increase in capacitance obtained in the second scan is ⁇ C2
- the increase in capacitance obtained in the third scan is ⁇ C3
- ⁇ C1 is equal to or greater than a predetermined value Ca in the first scan, ⁇ C1 ⁇ C2 in the second scan, and ⁇ C2 in the third scan. If ⁇ C3 holds, the proximity counter may be incremented.
- a scan may be included during the period TP1 in which the capacitance does not exceed the predetermined value Ca, or the capacitance decreases. are stored in a memory, and the increments of scans that are increments equal to or greater than a predetermined value Ca are sequentially set to ⁇ C1, ⁇ C2, and ⁇ C3. , and if it is established, the mode should be changed to the normal mode. The same applies to ⁇ C1, ⁇ C2, and ⁇ C3 after this.
- the predetermined value to be compared may be sequentially increased and compared.
- the transition to the normal mode may be made.
- a threshold may be set for the difference in the amount of increase in capacitance obtained within the period TP1. Specifically, as shown in FIG. 5B, when the capacitance increments ⁇ C1, ⁇ C2, and ⁇ C3 obtained three times within the period TP1 increase by a predetermined value Ca or more with the passage of time. You may make it change to normal mode immediately. This means that ⁇ C2 ⁇ C1>Ca and ⁇ C3 ⁇ C2>Ca are established.
- the difference in the amount of increase in capacitance increases over time so that ⁇ C2 ⁇ C1>Ca, ⁇ C3 ⁇ C2>Cb, and Cb>Ca are established, and the difference becomes Ca, Cb ( >Ca), the mode may be changed to the normal mode.
- step S8 the mode of clearing the number-of-approach counter when the period TP1 has passed has been described.
- the amount of increase in capacitance obtained in the previous scan is twice or more the predetermined value Ca
- the count value may not be decremented or changed to 1 without clearing the proximity number counter. Since there are individual differences in how the vehicle 1 is approached, this is to enable a quicker transition to the normal mode (activation of the electrostatic sensor 110) in the next determination.
- the value twice Ca is an example of a third predetermined value
- the decremented count value of 1 or an unchanged count value is an example of a second predetermined count value.
- FIG. 7 is a flowchart showing processing executed by the control unit 126 in the first modified example of the embodiment.
- the flowchart shown in FIG. 7 is obtained by adding a transition operation from the general normal mode to the power saving mode to the flowchart shown in FIG. 6, and by adding the processes of steps S11 to S15. Therefore, only differences from FIG. 6 will be described.
- control unit 126 determines whether or not the power saving mode is set (step S11).
- control unit 126 determines that the power saving mode is not set (S11: NO), it executes scanning in the normal mode (step S12). That is, as shown in FIG. 4, scanning is performed at a period of 5 ms.
- the control unit 126 determines whether or not the transition condition to the power saving mode is satisfied (step S13).
- a transition condition to the power saving mode is that the capacitance obtained by the sensors 111, 112, 113 over the past 30 seconds is less than or equal to a predetermined value representing that the door handle 10 has not been touched. 30 seconds is an example of the predetermined time included in the transition condition to the power saving mode.
- control unit 126 determines that the transition condition to the power saving mode is satisfied (S13: YES), it transitions to the power saving mode (step S14).
- the control unit 126 clears the number-of-approach counter (step S15). After finishing the process of step S15, the control unit 126 ends the flow (END).
- control unit 126 determines in step S13 that the condition for transition to the power saving mode is not satisfied (S13: NO), it ends the flow (END).
- step S11 determines in step S11 that the power saving mode is set (S11: YES)
- step S1 the process proceeds in the same manner as in the flowchart shown in FIG.
- FIG. 8 is a diagram showing pulse waveforms used in scanning in normal mode and power saving mode in the second modification of the embodiment.
- the sensors 111, 112, and 113 are scanned, for example, at intervals of 5 ms. contains 8 pulses as .
- the capacitance calculated by the calculation unit 125 in one scan is the average value of the eight capacitances obtained when each of the eight pulses shown enlarged is applied.
- the sensors 111, 112, and 113 are scanned, for example, at intervals of 20 ms. Including book pulse.
- the capacitance calculated by the calculation unit 125 in one scan is the average value of the four capacitances obtained when each of the four pulses shown enlarged is applied. That is, the number of measurements in one scan is four.
- FIG. 9 is a flowchart showing processing executed by the control unit 126 in the second modified example of the embodiment.
- the flowchart shown in FIG. 9 is obtained by changing the processes of steps S3 and S14 in the flowchart shown in FIG. Therefore, only differences from FIG. 7 will be described.
- step S14A When the control unit 126 determines that the transition condition to the power saving mode is satisfied (S13: YES), it transitions to the power saving mode (step S14A). In step S14A, as shown in the enlarged view of the power saving mode in FIG. 8, the number of measurements in one scan is reduced to four.
- step S3A the number of measurements in one scan is changed to eight in the normal mode.
- the number of measurements in one scan may be reduced more than in normal mode.
- the number of measurements may be any number as long as it is smaller than the number of measurements in the normal mode.
- FIG. 10 is a diagram showing pulse waveforms used in scanning in normal mode and power saving mode in the third modification of the embodiment.
- the capacitance is measured while the user is close to the door handle 10, so it may be affected by disturbance noise and the like.
- the frequency for outputting pulses for performing multiple measurements in one scan may be changed to a frequency less affected by noise.
- so-called frequency hopping is used to change the frequency.
- the amount of noise can be estimated by continuously measuring the capacitance value at the same frequency in a very short period and looking at the difference between the values.
- the frequency is changed in order to detect the frequency that is less affected by noise.
- the pulse indicated by the dashed line is output six times.
- measuring the capacitance with the pulse indicated by the dashed line is called noise scan.
- Measurement should be performed with 6 pulses for the noise scan, and the frequency of the pulse with the lowest capacitance should be set to the frequency of the 8 pulses for measurement in the next scan.
- the frequency is changed and the noise scan pulse indicated by the dashed line is output four times. That is, the number of pulses indicated by the dashed line for noise scanning is two less than in the normal mode.
- FIG. 11 is a flowchart showing processing executed by the control unit 126 in the third modified example of the embodiment.
- the flowchart shown in FIG. 11 is obtained by adding step S21 to the flowchart shown in FIG. 9 and changing the processes of steps S3 and S14. Therefore, only differences from FIG. 9 will be described.
- step S21 the control unit 126 sets the frequency of the pulse for measurement from the result of the noise scan.
- the frequency of the pulse for noise scan may be set to a predetermined initial value.
- step S14B the control unit 126 reduces the number of pulses for noise scanning to four when transitioning to the power saving mode (step S14B).
- step S3B the control unit 126 increases the number of pulses for noise scanning to 6 when transitioning to the normal mode (step S3B).
- power consumption may be reduced by reducing the number of pulses for noise scanning in the power saving mode.
- FIG. 12 is a diagram showing outputs of sensors 111, 112, and 113 in the fourth modified example of the embodiment.
- the fourth modification as shown in FIG. 5B, when the capacitance increases ⁇ C1, ⁇ C2, and ⁇ C3 over three times or more increase by a predetermined value Ca or more over time, the normal mode Instead of making a transition to , it is determined whether or not to make a transition using the integrated value of the difference in the amount of increase.
- the capacitance increases obtained by the sensors 111, 112, and 113 in the first scan are ⁇ C11, ⁇ C12, and ⁇ C13.
- ⁇ C21, ⁇ C22, and ⁇ C23 are the capacitance increases obtained by the sensors 111, 112, and 113 in the second scan
- the electrostatic capacitances obtained by the sensors 111, 112, and 113 in the third scan Assume that the amounts of increase in capacity are ⁇ C31, ⁇ C32, and ⁇ C33. It is also assumed that the capacitance increases obtained by the sensors 111, 112, and 113 in the fourth scan are ⁇ C41, ⁇ C42, and ⁇ C43.
- the integrated value of the difference between the amount of increase in capacitance obtained with the passage of time within a predetermined period (period TP1) and the amount of increase in capacitance in the previous scan is a predetermined number of times or more and a predetermined value. If it is equal to or higher than Cb, the mode is changed to the normal mode.
- the period TP1 starts from the scan in which the amount of increase in the capacitance exceeds Ca.
- the scan in which the amount of increase in the capacitance exceeds a predetermined value is set as the starting point (in FIG. 12, it is assumed that the amount of increase exceeds the predetermined value in the first scan).
- the starting point of the period TP1 may be the integrated value of the difference in the amount of increase or the time when the capacitance exceeds a predetermined value. Further, the starting point of the period TP1 may be set at predetermined time intervals other than the case where the amount of increase in the capacitance or the integrated value of the difference in the amount of increase exceeds the predetermined value as described above. .
- the integrated value in the present invention is the integration of target numerical values (in the fourth modification of the above-described embodiment, the difference in the amount of increase in capacitance) in a preset scan period or the number of scans.
- the scanning period and the number of scanning times to be integrated are set to an appropriate period or number of times according to the detection level of the capacitance, the scanning conditions, and the like.
- the scanning period for obtaining the integrated value may be the same as the predetermined period (period TP1) described above, or may be shorter.
- an integrated value for which integration is started from a period before the predetermined period (period TP1) may be set. Note that the integrated value is cleared when the scanning period or number of scans to be integrated ends.
- the difference from the amount of increase in capacitance in the previous scan is the average value of the amount of increase in capacitance in the previous scan, The difference from the average value of the increase in capacitance in the scan of .
- the integrated value is obtained as follows. For example, when scanning is performed four times, the average values of the increments ⁇ C11, ⁇ C12, and ⁇ C13 obtained in the first scan are calculated from the average values of the increments ⁇ C21, ⁇ C22, and ⁇ C23 obtained in the second scan. A difference C ⁇ 1 obtained by subtraction is obtained.
- the sum of the integrated values of the differences C ⁇ 1, C ⁇ 2, and C ⁇ 3) is obtained. If this integrated value is equal to or greater than a predetermined value Cb (an example of a second predetermined value), the mode is changed to the normal mode.
- the predetermined value here is a value that indicates that the user has approached the door handle 10 .
- the maximum value or total value of the increments of the three sensors obtained in each scan may be used instead of the average value of the increments obtained in each scan.
- the method of calculating the representative value of the electrostatic capacitance of each scan and the amount of increase is appropriately determined according to the system.
- FIG. 13 is a flowchart showing processing executed by the control unit 126 in the fourth modified example of the embodiment.
- the flowchart shown in FIG. 13 is obtained by changing the processes of steps S5 and S8 in the flowchart shown in FIG. Therefore, only differences from FIG. 9 will be described.
- step S5A the control unit 126 calculates the integrated value of the difference between the average value of the increase in capacitance obtained in the previous scan and the average value of the increase in capacitance obtained in the current scan. It is determined whether or not it is equal to or greater than a predetermined value Cb (step S5A).
- control unit 126 determines in step S5A that the integrated value is not equal to or greater than the predetermined value Cb (S5A: NO), it determines whether the duration is equal to or greater than the period TP1 (step S8A).
- step S7 when the scanning in step S1 is repeated three times or more within the period TP1 and the integrated value of the difference becomes equal to or greater than the predetermined value Cb, YES is determined in step S7, and normal scanning is performed in step S3. mode, and the electrostatic sensor 110 is activated. It should be noted that the number of times of determining YES in STEP7 can be appropriately set, and for example, the electrostatic sensor 110 may be activated only when the integrated value exceeds the predetermined value Cb or more once.
- the mode is changed to the normal mode.
- the predetermined value Cb of the integrated value may be set to increase stepwise.
- the integrated values of ⁇ C1, ⁇ C2, and ⁇ C3 may be calculated and used for determination.
- the integrated values of ⁇ C1, ⁇ C2, and ⁇ C3 may be calculated and used for determination.
- the electrostatic input device of the exemplary embodiment of the present invention has been described above, the present invention may be a combination of the specifically disclosed embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Life Sciences & Earth Sciences (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Electronic Switches (AREA)
- Geophysics And Detection Of Objects (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
接触と判定する前の状態から静電容量検出部を起動可能とし、誤検知を抑制した静電入力装置を提供する。 静電入力装置は、生体によって操作される操作部に配置され、静電容量を検出する静電容量検出部と、前記静電容量検出部が待機状態にあって前記生体の接触が検知されていないときに、前記静電容量検出部によって検出される静電容量の増加量が所定期間内に所定回数以上、第1所定値以上である場合に、前記静電容量検出部を起動状態にする制御部と、を含む。
Description
本発明は、静電入力装置に関する。
従来より、操作部に静電容量検出部を設け、省電力化のために操作部への接触がないときには静電容量検出部を待機状態に設定し、操作部への接触があったときに静電容量検出部を起動状態に設定する入力手段の駆動方法がある(例えば、特許文献1参照)。
ところで、従来の入力手段の駆動方法は、接触があったと判定する判定閾値に短時間に到達する為のものではあるが、それでも十分な速さではない場合があり改善の余地があった。なお、その対策の為に操作部に接触があったと判定する判定閾値を低下させることが考えられるが、その場合には利用者の動きに伴う瞬時的なノイズ等によって起動する可能性があり誤検知が増えるおそれがあった。
そこで、接触と判定する前の状態から静電容量検出部を起動可能とし、誤検知を抑制した静電入力装置を提供することを目的とする。
本発明の実施の形態の静電入力装置は、生体によって操作される操作部に配置され、静電容量を検出する静電容量検出部と、前記静電容量検出部が待機状態にあって前記生体の接触が検知されていないときに、前記静電容量検出部によって検出される静電容量の増加量が所定期間内に所定回数以上、第1所定値以上である場合に、前記静電容量検出部を起動状態にする制御部と、を含む。
接触と判定する前の状態から静電容量検出部を起動可能とし、誤検知を抑制した静電入力装置を提供することができる。
以下、本発明の静電入力装置を適用した実施の形態について説明する。
<実施の形態>
図1は、車両1に取り付けられたドアハンドル10を示す図である。車両1のドア2には、ドアハンドル10が取り付けられている。ドアハンドル10は、人の手の指等で掴みやすいように細長い形状を有している。ドアハンドル10の内部には静電センサ110が設けられている。なお、図1では、ドアハンドル10の長手方向は、ドアハンドル10が細長く延在する横方向である。
図1は、車両1に取り付けられたドアハンドル10を示す図である。車両1のドア2には、ドアハンドル10が取り付けられている。ドアハンドル10は、人の手の指等で掴みやすいように細長い形状を有している。ドアハンドル10の内部には静電センサ110が設けられている。なお、図1では、ドアハンドル10の長手方向は、ドアハンドル10が細長く延在する横方向である。
図2は、静電センサ110を示す図である。静電センサ110は、基板110Aと、センサ111、112、113とを有する。センサ111、112、113は、一例として、ドアハンドル10の長手方向に沿って配列されている。静電センサ110は、静電容量検出部の一例である。
図3は、実施の形態の静電入力装置100を示す図である。静電入力装置100は、静電センサ110と、集積回路120とを含む。
集積回路120は、スイッチ121、スイッチ122、アンプ123、ADC(Analog-to-digital converter:ADコンバータ)124、演算部125、及び制御部126を有する。制御部126は、記憶部126Aを内蔵する。
図3に示すように、静電センサ110のセンサ111、112、113には、集積回路120のスイッチ121が接続されている。
スイッチ121は、センサ111、112、113と、アンプ123の反転入力端子との間に設けられており、制御部126によって接続先が切り替えられることにより、アンプ123の反転入力端子をセンサ111、112、113のうちのいずれか1つに接続する。スイッチ121とアンプ123の反転入力端子との間から分岐する線路には、スイッチ122を介して電源Vddが接続されている。
スイッチ122は、スイッチ121がセンサ111、112、113のそれぞれに接続されているときに、制御部126によって断続的にオン/オフが切り替えられることにより、センサ111、112、113に順番にパルス状の電圧(電圧値はVdd)を印加するために設けられている。
このように制御部126によってスイッチ121の接続先が切り替えられるとともに、スイッチ122のオン/オフが切り替えられることにより、センサ111、112、113には、順番にパルス電圧が印加される。このように、センサ111、112、113にパルス電圧を印加することは、センサ111、112、113をスキャンすることである。
このようにセンサ111、112、113をスキャンすることにより、センサ111、112、113の各々で検出された電位はアンプ123により増幅され、ADC124によりアナログ信号からデジタル信号に変換される。このように変換されたデジタル信号に基づき、演算部125において、センサ111、112、113と指200との間の静電容量を算出することができる。算出された静電容量の情報は、制御部126の記憶部126Aに記憶される。制御部126は、演算部125によって算出された静電容量の情報に基づいて、利用者のドアハンドル10への接近を検出(判定)する。
図4は、通常モードと省電力モードにおけるスキャン間隔を示す図である。ここで、通常モードとは、静電センサ110が短時間の時間間隔で起動されて、生体の接触や近接を検知しているモードである。ここでは、静電センサ110が通常モードにある時、起動状態にあるという。
省電力モードとは、静電センサ110が待機状態にあるモードである。待機状態では、静電センサ110の起動が制限され、例えばスキャン間隔を長くしたり、測定パルス数を減らしたりして、静電センサ110及び集積回路120における消費電力が少なくなるように設定されている。省電力モードは所定の条件が満たされると解除されて通常モードに遷移し、静電センサ110は待機状態から起動状態となる。
通常モードでは、センサ111、112、113には、一例として、5ms間隔でスキャンが行われ、5ms間隔で順番にパルス電圧が印加される。1回のスキャンを行う期間は、図4に示す通り、センサ111、112、113の各々に、パルス電圧が1回ずつ印加される期間である。
また、5ms毎に印加されるパルス電圧は、より具体的には右側の拡大図に示すように、一例として8本のパルスを含む。センサ111、112、113に5ms毎に印加されるパルス電圧は、時系列的に互いにタイミングがずれている。
1回のスキャンにおいて演算部125によって算出される静電容量は、拡大して示す8本のパルスの各々が印加されたときに得られる8つの静電容量の平均値であるすなわち、1回のスキャンにおける測定回数は8回である。なお、ここでは説明を簡素化するため、測定回数を便宜上8回としているが、実際の測定においては、例えば128回、256回等のより多い測定回数に設定して平均値を求めてもよいし、1回など8回より少ない測定回数でもよい。
省電力モードでは、センサ111、112、113には、一例として、20ms間隔でスキャンが行われ、20ms間隔で順番にパルス電圧が印加される。20ms毎に印加されるパルス電圧は、より具体的には右側の拡大図に示すように、一例として8本のパルスを含む。センサ111、112、113に20ms毎に印加されるパルス電圧は、時系列的に互いにタイミングがずれている。
1回のスキャンを行う期間は、通常モードと同様に、センサ111、112、113の各々に、パルス電圧が1回ずつ印加される期間であり、1回のスキャンにおいて演算部125によって算出される静電容量は、拡大して示す8本のパルスの各々が印加されたときに得られる8つの静電容量の平均値である。
このように、省電力モードではセンサ111、112、113にパルス電圧を印加する回数が通常モードよりも減らされるため、集積回路120の消費電力も低減され、静電入力装置100全体として消費電力を低減することができる。
ところで、省電力モードから、接近と判定する前の早い段階で素速く静電センサ110を起動するには、例えば、センサ111、112、113の出力に基づいて制御部126が利用者のドアハンドル10への接近を検出(判定)する閾値を低く設定し、検出した時点で静電センサ110を起動することが考えられる。
しかしながら、利用者の手がドアハンドル10に接触する前の状態では、利用者とドアハンドル10との相対的な位置の変化や外乱ノイズ等によって、センサ111、112、113の出力にはノイズが含まれるおそれがあり、制御部126でフィルタ処理を行っても、利用者のドアハンドル10への接近を正確に検出(判定)することは難しい。
図5は、センサ111、112、113の出力を示す図である。図5(A)には、比較用に、センサ111、112、113の出力に対して1つの閾値を用いて利用者のドアハンドル10への接近を検出(判定)する場合のセンサ111、112、113の出力と閾値との関係を示す。図5(A)は模式的に示した特性図であり、センサ111、112、113のいずれかの出力を表したものである。センサ111、112、113の出力の平均値も同様の特性を示す。
ここで、センサ111、112、113の出力とは、センサ111、112、113が検出した電位を表す信号がスイッチ121の出力として1つの信号に変換され、アンプ123で増幅された後にADC124でデジタル信号に変換され、演算部125で静電容量が求められ、制御部126に入力される信号である。すなわち、センサ111、112、113の出力とは、制御部126に入力される静電容量を表す信号である。
図5(A)に示すように、利用者のドアハンドル10への接近を検出するために低く設定した1つの閾値を用いて、制御部126がセンサ111、112、113の出力に基づいて利用者のドアハンドル10への接近を検出(判定)すると、ノイズの影響や利用者の意図しない動作等によって静電容量が1回大きく変動しただけで閾値を超えてしまい、利用者のドアハンドル10への接近として検出されてしまう。これでは、誤検出に繋がる可能性がある。
また、誤検出を避けるために閾値を高くすると、利用者がドアハンドル10に接近した際に、利用者が応答の遅さを感じない程度に丁度良いタイミングで静電センサ110を起動することができないおそれがある。
そこで、実施の形態の静電入力装置100では、所定期間内に所定回数以上、静電センサ110によって検出される静電容量の増加量が所定値Ca(第1所定値の一例)以上である場合に、静電センサ110を起動させる。
図5(B)は、実際に、通常モード或いは省電力モードにおいて、図4で示した方法でスキャンを行った際に得られた波形を示す例であり、3回のスキャンによってセンサ111、112、113で測定される静電容量の変動を示す。なお、各スキャンによって各センサ111、112、113で測定される静電容量は前述のように8つのパルスを印可した際に得られる8つの静電容量の平均値を示す。また、このグラフで、直前までのスキャン結果が一番左にある静電容量データになるが、ここでは説明をわかりやすくするために、利用者がドアハンドル10に接近していない状態(無操作状態)を想定し、センサ111、112、113で測定される静電容量の値を、簡単に同じ値C0として、説明する。
各スキャンでは、3つのセンサ111、112、113で3つの静電容量が測定される。ここでは、1回目から3回目の各スキャンでセンサ111、112、113のいずれかから得られる静電容量の増加量ΔC1、ΔC2、ΔC3は、センサ111、112、113の今回のスキャンで測定される静電容量のうちの最大値から、最大値が得られたセンサ(111、112、113のうちのいずれか1つ)によって前回のスキャンで測定された静電容量を引いた値とした形態について説明する。
増加量の算出には、一例として各スキャン間のセンサ毎の静電容量の増加量の最大値をそのスキャン間での増加量の代表値としてもよい。あるいは、各スキャンで測定される複数のセンサの静電容量の平均値又は合計値を用いて各スキャン間の増加量を算出してもよい。また、各スキャンの各センサの静電容量の中の最大値をそのスキャンでの代表値とし、それを用いてスキャン間の増加量を算出してもよい。あるいは、スキャン間での複数のセンサの増加量の平均値、合計値を用いて、そのスキャン間の増加量としてもよい。各スキャンの静電容量の代表値や増加量の算出方法は、その系に応じて、適宜決められる。
一例として、1回目のスキャンでは、センサ111で測定される静電容量が最大であり、2回目のスキャンでは、センサ112で測定される静電容量が最大であり、3回目のスキャンでは、センサ113で測定される静電容量が最大であったとする。これは例えば、人の手或いは指等がセンサ111の上方からセンサ113に向けて斜めに接近した場合を想定している。
この場合には、ΔC1は、1回目のスキャンの最大値であるセンサ111で測定される静電容量から直前のスキャン(無操作状態)の静電容量C0を引いた値になる。また、ΔC2は、2回目のスキャンの最大値であるセンサ112で測定される静電容量から1回目のスキャンにおいてセンサ112で測定される静電容量を引いた値になる。同様に、ΔC3は、3回目のスキャンの最大値であるセンサ113で測定される静電容量から2回目のスキャンにおいてセンサ112で測定される静電容量を引いた値になる。
図5(B)に示すように、期間TP1内に3回以上、静電センサ110によって検出される静電容量が増加し、3回以上のスキャンで測定される静電容量の増加量の各スキャンでのΔC1、ΔC2、ΔC3が所定値Ca以上である場合に、省電力モードから通常モードに遷移させ、静電センサ110を起動させる。ΔC1>Ca、ΔC2>Ca、ΔC3>Caである。
すなわち、図5(B)に示す一例では、所定期間は期間TP1であり、所定回数は3回であり、判定に用いる静電容量の増加量は、ΔC1、ΔC2、ΔC3である。なお、ここでは説明を簡単にするために、静電容量の増加量が所定値Ca以上であるスキャンが連続する例を説明するが、上述したようなスキャンの間に増加量が所定値Caを超えない、あるいは静電容量が減少するようなスキャンが含まれていてもよく、不連続な増加でも所定期間に所定値Ca以上の増加量となるスキャンが所定回数以上あればよい。また、図5(B)では期間TP1は、3回のスキャンする期間と同じぐらいの期間のように示されているが、所定回数よりも多い回数のスキャンが可能な期間であれば、所定期間はもっと長い期間で設定されてもよい。また、図5(B)に示す一例では、期間TP1は静電容量の増加量がCaを超えた1回目のスキャンを起点としてカウントしている場合を示しているが、期間TP1が終了したら、再度静電容量の増加量がCaを超えた時に、期間TP1のカウントを開始するようにしてもよい。また、一例として、1回目のスキャンで開始した期間TP1のカウントが終了する前に静電容量の増加量がまたCaを超えた時、(例えば図5(B)の2回目または3回目のスキャン)、それを起点として所定期間のカウントを開始し、1回目のスキャンで開始した期間TP1のカウントと並列で所定期間のカウントをし、それぞれの所定期間ごとに近接回数をカウントする設定にしてもよい。この時、いずれかの所定期間のカウント中に近接回数が所定回数以上となった時に、省電力モードから通常モードに遷移する。また、一例として、静電容量の増加量以外のパラメータがあらかじめ設定された所定値を超えた時を期間TP1の起点としてもよい。また、所定値によらず所定時間間隔で期間TP1がカウントされるように設定してもよい。
また、制御部126は、近接回数をカウントする近接回数カウンタを有する。近接回数カウンタは、カウンタの一例である。制御部126は、今回のスキャンで静電センサ110によって検出される静電容量が前回のスキャンで検出された静電容量よりも所定値Ca以上増加している場合には、近接回数カウンタをインクリメントする。制御部126は、近接回数カウンタが所定期間(期間TP1)内に3以上になると、静電センサ110を起動する。
また、以下では、省電力モードにおいて、期間TP1内に3回以上、静電センサ110によって検出される静電容量の増加量ΔC1、ΔC2、ΔC3が所定値Ca以上であることを起動条件を満たすと称す。制御部126は、起動条件が満たされると、静電センサ110を起動させる。
実施の形態の静電入力装置100では、静電センサ110が待機状態にあるときに、図5(B)に示すような判定方法を用いて、利用者のドアハンドル10への接近を検出(判定)する。
また、制御部126は、起動条件が満たされて静電センサ110を起動させた場合に、通常モードにおいてセンサ111、112、113のいずれかの出力が、車両1(図1参照)に接触したと判定する閾値を超えるとドアハンドルに接触したと判定し、ドアロックの解除を許可する信号を車両1のドアロックを制御するECU(Electronic Control Unit)に送信する。この結果、ドアロックが解除される。
図6は、省電力モード中に制御部126が実行する処理を示すフローチャートである。制御部126は、図6に示すフローチャートを、図4で示す1回のスキャン動作に対応した所定の制御周期で繰り返し実行する。ここでは、演算部125が算出する静電容量は、アナログ値からデジタル値に変換され、例えば、10pFがデジタル値での1カウントになる。
制御部126は、処理がスタートすると、省電力モードでスイッチ121、122の接続を制御することにより、センサ111、112、113のスキャンを実行する(ステップS1)。
制御部126は、演算部125によって算出される静電容量が通常モードへの遷移を許可する所定値Cwake以上であるかどうかを判定する(ステップS2)。なお、この際に算出される静電容量は、前述のように8つのパルスを印可した際に得られる8つの静電容量の平均値を示す。また、所定値Cwakeは、利用者のドアハンドル10への接近による静電容量の増大を1つの閾値を用いた1回の判定で誤検知が生じずに正確に判別できるように、十分に大きな静電容量に設定されている。
制御部126は、所定値Cwake以上である(S2:YES)と判定すると、通常モードに遷移する(ステップS3)。なお、ここでは一例として、ステップS3への遷移条件が利用者のドアハンドル10への接近を表す所定値Cwake以上である形態について説明するが、利用者がセンサ111、112、113に確実に接近したことを判別できる場合には、そのような条件を通常モード遷移条件としてもよい。
制御部126は、メモリに記憶した近接回数カウンタをクリアして0とする(ステップS4)。
制御部126は、ステップS4の処理を終えると、当スキャンタイミングに対応する制御周期における処理を終了する(END)。
制御部126は、ステップS2において所定値Cwake以上ではない(S2:NO)と判定すると、前回のスキャンで得られた静電容量に対する増加量が所定値Ca以上であるかどうかを判定する(ステップS5)。
ステップS5の判定は、図5(B)で示す例に対応した動作であり、今回のスキャンでセンサ111、112、113によって得られる3つの静電容量のうちの最大値が前回のスキャンにおける対応するセンサ(111、112、113のいずれか)の静電容量に対して所定値Ca以上増大しているかどうかを判定する処理である。
制御部126は、所定値Ca以上増大している(S5:YES)と判定すると、近接回数カウンタをインクリメント、すなわちメモリに保管しているカウント値に1を加えて上書きする(ステップS6)。
制御部126は、近接回数カウンタが3以上であるかどうかを判定する(ステップS7)。
制御部126は、近接回数カウンタが3以上である(S7:YES)と判定すると、通常モードへ遷移すべく、フローをステップS3に進行させる。
制御部126は、ステップS5において、所定値Ca以上増大していない(S5:NO)と判定すると、カウントを開始してからの時間、すなわち継続時間が期間TP1以上であるかどうかを判定する(ステップS8)。
制御部126は、継続時間が期間TP1以上である(S8:YES)と判定すると、メモリに保管している近接回数カウンタをクリアして0とする(ステップS9)。
なお、制御部126は、ステップS7において、近接回数カウンタが3以上ではない(S7:NO)と判定すると、当制御周期における処理を終了する(END)。そして次回のスキャンタイミングに対応する制御周期においてにおいてステップS1からの動作を繰り返す。
また、制御部126は、ステップS8において、継続時間が期間TP1以上ではない(S8:NO)と判定すると、当スキャンタイミングに対応する制御周期における処理を終了する(END)。
以上の動作においては、省電力モードにおいて、利用者がドアハンドル10に接近することによって静電センサ110によって検出される静電容量が増大する際に、期間TP1以内に3回以上、前回のスキャンに対する静電容量の増加量が所定値Ca以上である場合に、通常モードに遷移させる。
このため、ノイズや利用者の意図しない動作等による誤検出を抑制し、人の手或いは指などの静電センサへの接近に伴って省電力モードから素速く通常モードに遷移させることができる。
したがって、待機状態から静電センサ110を素速く起動し、誤検知を抑制した静電入力装置100を提供することができる。
なお、以上では、静電センサ110が3つのセンサ111、112、113を含む形態について説明したが、センサの数は2つであってもよいし、4つ以上であってもよい。これらの場合における制御部126による制御処理は、静電センサ110が3つのセンサ111、112、113を有する場合と同様である。
また、静電センサ110は、1つのセンサ(例えばセンサ111)を含む形態であってもよい。この場合には、センサ111によって得られる静電容量が期間TP1内において、前回のスキャン時における静電容量より所定値Ca以上増大することが3回以上生じた場合に、省電力モードから通常モードに遷移するようにすればよい。
また、ステップS5においては、静電容量の値が前回のスキャン時よりも所定値Ca以上増大した場合に近接回数カウンタをインクリメントしたが、静電容量の増加量が時間経過に伴って増大した場合に近接回数カウンタをインクリメントしてもよい。具体的には、図5(B)で示すように期間TP1内における1回目のスキャンで得られる静電容量の増加量をΔC1、2回目のスキャンで得られる静電容量の増加量をΔC2、3回目のスキャンで得られる静電容量の増加量をΔC3とした場合、ステップS5において1回目のスキャンにおいてはΔC1が所定値Ca以上、2回目のスキャンではΔC1<ΔC2、3回目のスキャンではΔC2<ΔC3が成り立つ場合に、それぞれ、近接回数カウンタをインクリメントしてもよい。なお、その場合、期間TP1の間に所定値Caを超えない、あるいは静電容量が減少するようなスキャンが含まれていてもよく、これを確認する方法としては、各スキャンにおける静電容量値をメモリに保管し、所定値Ca以上の増加量となるスキャンの増加量を、順次、ΔC1、ΔC2、ΔC3とし、期間TP1内に、ΔC1<ΔC2<ΔC3の関係が成立するかによって判断して、成立する場合は通常モードに遷移するようにすれば良い。なお、これ以降のΔC1、ΔC2、ΔC3についても同様である。
また、前述の説明では、1回目,2回目,3回目のスキャンで増加量が増加する場合を説明したが、比較する所定値を順次増加させて、比較しても良い。具体的にはCa<ΔC1、Cb<ΔC2、Cc<ΔC3、かつ、Ca<Cb<Ccが成り立つ場合に、通常モードに遷移するようにしてもよい。
また、期間TP1内に得られる静電容量の増加量の差分に閾値を設けてもよい。具体的には、図5(B)で示すように期間TP1内に3回にわたって得られる静電容量の増加量ΔC1、ΔC2、ΔC3が時間経過に伴って所定値Ca以上ずつ増加している場合に、通常モードに遷移するようにしてもよい。これは、すなわち、ΔC2-ΔC1>CaかつΔC3-ΔC2>Caが成立していることである。
また、ΔC3-ΔC2>ΔC2-ΔC1>Caが成立するように、静電容量の増加量の差分がCa以上であって、時間経過に伴って増大する場合に、通常モードに遷移するようにしてもよい。
換言すれば、ΔC2-ΔC1>Ca、ΔC3-ΔC2>Cb、かつ、Cb>Caが成立するように、静電容量の増加量の差分が時間経過に伴って増大し、差分がCa、Cb(>Ca)と段階的に増加する場合に、通常モードに遷移するようにしてもよい。
また、ステップS8では、期間TP1を過ぎたときに、近接回数カウンタをクリアする形態について説明した。しかしながら、例えば、前回のスキャンで得られた静電容量に対する増大量が、所定値Caの2倍以上である場合のように、非常に大きい増大量が得られた場合には、今回のスキャンにおいて所定値よりも小さく、期間TP1を経過したとしても、近接回数カウンタをクリアせずにカウント値を1にデクリメント或いは変更しないようにしてもよい。車両1への近づき方には個人差があるため、次回の判定の際に、より素速く通常モードに遷移(静電センサ110を起動)できるようにするためである。なお、Caの2倍の値は、第3所定値の一例であり、デクリメントしたカウント値1、或いは変更しないカウント値は、第2所定カウント値の一例である。
図7は、実施の形態の第1変形例において制御部126が実行する処理を示すフローチャートである。図7に示すフローチャートは、図6に示すフローチャートに対して、概略通常モードから省電力モードへの遷移動作を追加したものであり、ステップS11~S15の処理を追加したものである。このため、図6との相違点についてのみ説明を行う。
制御部126は、処理がスタートすると、省電力モードに設定されているかどうかを判定する(ステップS11)。
制御部126は、省電力モードに設定されていない(S11:NO)と判定すると、通常モードでのスキャンを実行する(ステップS12)。すなわち、図4に示すように5msの周期でスキャンが行われる。
制御部126は、省電力モードへの遷移条件を満たすかどうかを判定する(ステップS13)。省電力モードへの遷移条件は、過去30秒間にわたってセンサ111、112、113によって得られる静電容量が、ドアハンドル10への接触がないことを表す所定値以下であることである。30秒は、省電力モードへの遷移条件に含まれる所定時間の一例である。
制御部126は、省電力モードへの遷移条件を満たす(S13:YES)と判定すると、省電力モードに遷移する(ステップS14)。
制御部126は、近接回数カウンタをクリアする(ステップS15)。制御部126は、ステップS15の処理を終えるとフローを終了する(END)。
また、制御部126は、ステップS13において、省電力モードへの遷移条件を満たさない(S13:NO)と判定すると、フローを終了する(END)。
また、制御部126は、ステップS11において、省電力モードに設定されている(S11:YES)と判定すると、フローをステップS1に進行させる。この後は、図6に示すフローチャートと同様に処理が進められる。
以上、図7に示すように、省電力モードに設定されているかどうかを最初に判定する形態では、省電力モードに設定されていない(S11:NO)と判定すると、通常モードによるスキャンを行う。
図8は、実施の形態の第2変形例における、通常モードと省電力モードにおけるスキャンで用いるパルス波形を示す図である。
通常モードでは、図4と同様に、センサ111、112、113には、一例として、5ms間隔でスキャンが行われ、5ms毎に印加されるパルス電圧は、右側の拡大図に示すように、一例として8本のパルスを含む。1回のスキャンにおいて演算部125によって算出される静電容量は、拡大して示す8本のパルスの各々が印加されたときに得られる8つの静電容量の平均値である。
一方、省電力モードでは、センサ111、112、113には、一例として、20ms間隔でスキャンが行われるが、20ms毎に印加されるパルス電圧は、右側の拡大図に示すように、一例として4本のパルスを含む。1回のスキャンにおいて演算部125によって算出される静電容量は、拡大して示す4本のパルスの各々が印加されたときに得られる4つの静電容量の平均値である。すなわち、1回のスキャンにおける測定回数は4回である。
このように、1回のスキャンでの測定回数を減らすことにより、省電力モードにおいてさらに消費電力を低減することができる。
図9は、実施の形態の第2変形例において制御部126が実行する処理を示すフローチャートである。図9に示すフローチャートは、図7に示すフローチャートにおけるステップS3、S14の処理を変更したものである。このため、図7との相違点についてのみ説明を行う。
制御部126は、省電力モードへの遷移条件を満たす(S13:YES)と判定すると、省電力モードに遷移する(ステップS14A)。ステップS14Aでは、図8の省電力モードの拡大図に示すように、1回のスキャンでの測定回数を4回に減らす。
また、制御部126は、ステップS2において所定値Cwake以上である(S2:YES)と判定すると、通常モードに遷移する(ステップS3A)。ステップS3Aでは、1回のスキャンにおける測定回数を通常モードにおける8回に変更する。
以上のように、省電力モードでは、1回のスキャンでの測定回数を通常モードよりも減らしてもよい。ここでは4回に減らす形態について説明したが、通常モードにおける測定回数よりも少なければ、何回であってもよい。
図10は、実施の形態の第3変形例における、通常モードと省電力モードにおけるスキャンで用いるパルス波形を示す図である。
省電力モードでは、利用者がドアハンドル10に接近している状態で静電容量を測定するため、外乱ノイズ等の影響を受けることが有り得る。このような場合には、1回のスキャンにおいて複数回の測定を行うためのパルスを出力する周波数をノイズの影響が少ない周波数に変更してもよい。ここでは、周波数を変更するために所謂周波数ホッピングを利用する。
ノイズの影響が少ない周波数を選択するには、ノイズの影響が少ない周波数を検出することが必要である。ノイズ量は非常に短い周期で同一周波数の容量値を連続して測定し、その値の差を見ることで推測が可能である。第3変形例では、図10の拡大図で示すように、通常モードでは、実線で示す測定用のパルスを8回出力した後に、ノイズの影響が少ない周波数を検出するために、周波数を変更して破線で示すパルスを6回出力する。ここでは、破線で示すパルスで静電容量を測定することをノイズスキャンと称す。
このようなノイズスキャンを行った場合に、演算部125によって算出される静電容量が小さいほど、ノイズの影響が少ない周波数であることになる。破線で示す6本のパルスは、3種類の周波数からなり、同一周波数のパルスを2回連続して出力する。
ノイズスキャン用の6本のパルスで測定を行い、静電容量が最も低いパルスの周波数を次回のスキャンにおける測定用の8本のパルスの周波数に設定すればよい。
このような周波数ホッピングを利用する場合に、省電力モードでは、実線で示す測定用のパルスを8回出力した後に、周波数を変更して破線で示すノイズスキャン用のパルスを4回出力する。すなわち、ノイズスキャン用の破線で示すパルスは、通常モードよりも2本少ないことになる。
このように、省電力モードでは、ノイズスキャン用のパルスの数を減らすことにより、消費電力を低減することができる。なお、図10で説明した周波数の種類の数、パルスの数は一例であるため、適宜変更が可能である。
図11は、実施の形態の第3変形例において制御部126が実行する処理を示すフローチャートである。図11に示すフローチャートは、図9に示すフローチャートに対してステップS21を追加し、ステップS3、S14の処理を変更したものである。このため、図9との相違点についてのみ説明を行う。
制御部126は、処理がスタートすると、ノイズスキャンの結果から、測定用のパルスの周波数を設定する(ステップS21)。なお、初めてステップS21の処理を行う際には、ノイズスキャンの結果は存在しないため、ノイズスキャン用のパルスの周波数を予め決めた初期値に設定すればよい。制御部126は、ステップS21の処理を終えると、フローをステップS11に進行させる。
また、制御部126は、ステップS14Bでは、省電力モードに遷移する際に、ノイズスキャン用のパルスを4個に減らす(ステップS14B)。
また、制御部126は、ステップS3Bでは、通常モードに遷移する際に、ノイズスキャン用のパルスを6個に増やす(ステップS3B)。
以上のように、周波数ホッピングを利用してノイズスキャンを行う場合に、省電力モードではノイズスキャン用のパルスの数を減らすことによって消費電力を低減してもよい。
図12は、実施の形態の第4変形例におけるセンサ111、112、113の出力を示す図である。第4変形例では、図5(B)に示すように3回以上にわたる静電容量の増加量ΔC1、ΔC2、ΔC3が時間経過に伴って所定値Ca以上ずつ増加している場合に、通常モードに遷移させる代わりに、増加量の差分の積算値を用いて遷移させるかどうかの判定を行う。
図12に示すように、センサ111、112、113で4回スキャンを行った場合に、1回目のスキャンでセンサ111、112、113で得られた静電容量の増加量がΔC11、ΔC12、ΔC13であったとする。同様に、2回目のスキャンでセンサ111、112、113で得られた静電容量の増加量がΔC21、ΔC22、ΔC23であり、3回目のスキャンでセンサ111、112、113で得られた静電容量の増加量がΔC31、ΔC32、ΔC33であったとする。また、4回目のスキャンでセンサ111、112、113で得られた静電容量の増加量がΔC41、ΔC42、ΔC43であったとする。
この場合に、所定期間(期間TP1)内に時間経過に伴って得られる静電容量の増加量の前回のスキャンにおける静電容量の増加量との差分の積算値が、所定回数以上、所定値Cb以上であれば、通常モードに遷移することとする。なお、図5(B)で示す例においては期間TP1は静電容量の増加量がCaを超えたスキャンを起点としているのに対して、本実施の形態の第4変形例においては一例として静電容量の増加量が所定値を超えたスキャンを起点(図12では、1回目のスキャンで増加量が所定値を超えたと想定)とした場合を示している。これに限らず、増加量の差分の積算値、或いは静電容量が所定値を超えた時を期間TP1の起点としてもよい。また、期間TP1の起点として、上述のように静電容量の増加量、或いは増加量の差分の積算値が所定値を超えた場合以外に、所定の時間間隔で設定されるようにしても良い。
なお、本発明でいう積算値は、事前に設定されたスキャン期間、あるいはスキャン回数においての対象となる数値(上述の実施の形態の第4変形例では静電容量の増加量の差分)の積算値であってもよい。また、積算の対象となるスキャン期間やスキャン回数は、静電容量の検出レベルやスキャン条件等に応じて、適当な期間あるいは回数に設定される。例えば、積算値を求めるスキャン期間は、上述の所定期間(期間TP1)と同じでもよいし、それよりも短くてもよい。また、上述の所定期間(期間TP1)の前の期間から積算が開始されている積算値を設定してもよい。なお、積算値は、積算の対象となるスキャン期間やスキャン回数が終了すると、クリアされる。
前回のスキャンにおける静電容量の増加量との差分は、静電センサ110が3つのセンサ111、112、113を有する場合には、前回のスキャンにおける静電容量の増加量の平均値と、今回のスキャンにおける静電容量の増加量の平均値との差分を取ればよい。
そして、積算値は、次のようにして求める。例えば、スキャンを4回行う場合には、2回目のスキャンで得られた増加量ΔC21、ΔC22、ΔC23の平均値から、1回目のスキャンで得られた増加量ΔC11、ΔC12、ΔC13の平均値を減算して得る差分Cα1を求める。
同様に、3回目のスキャンで得られた増加量ΔC31、ΔC32、ΔC33の平均値から、2回目のスキャンで得られた増加量ΔC21、ΔC22、ΔC23の平均値を減算して得る差分Cα2を求める。
同様に、4回目のスキャンで得られた増加量ΔC41、ΔC42、ΔC43の平均値から、3回目のスキャンで得られた増加量ΔC31、ΔC32、ΔC33の平均値を減算して得る差分Cα3を求める。
そして、差分Cα1、Cα2、Cα3の積算値合計値)を求める。この積算値が所定値Cb(第2所定値の一例)以上であれば、通常モードに遷移することとする。ここでの所定値は、利用者がドアハンドル10に接近したことを表す程度の値である。
なお、各スキャンで得られた増加量の平均値の代わりに、各スキャンで得られた3つのセンサの増加量の最大値又は合計値を用いてもよい。各スキャンの静電容量の代表値や増加量の算出方法は、その系に応じて、適宜決められる。
図13は、実施の形態の第4変形例において制御部126が実行する処理を示すフローチャートである。図13に示すフローチャートは、図9に示すフローチャートにおけるステップS5、S8の処理を変更したものである。このため、図9との相違点についてのみ説明を行う。
制御部126は、ステップS5Aでは、前回のスキャンで得られた静電容量の増加量の平均値と、今回のスキャンで得られた静電容量の増加量の平均値との差分の積算値が所定値Cb以上であるかどうかを判定する(ステップS5A)。
制御部126は、ステップS8Aでは、ステップS5Aにおいて、積算値が所定値Cb以上ではない(S5A:NO)と判定すると、継続時間が期間TP1以上であるかどうかを判定する(ステップS8A)。
図13に示すフローチャートでは、ステップS1でのスキャンを繰り返すことにより、期間TP1内において3回以上、差分の積算値が所定値Cb以上になると、ステップS7でYESと判定されて、ステップS3で通常モードに遷移し、静電センサ110が起動されることになる。なお、STEP7でYESと判定する回数は適宜設定でき、例えば積算値が所定値Cb以上を1回超えただけで静電センサ110を起動してもよい。
また、ここでは、静電容量の増加量の前回のスキャンにおける静電容量の増加量との差分の積算値を用いる形態について説明したが、差分ではなく、静電容量の増加量を用いて同様の処理を行うようにしてもよく、例えば静電容量の増加量ΔC1、ΔC2、ΔC3の積算値が所定回数、所定値Cb以上になった場合に通常モードに遷移するようにする。この時、積算値の所定値Cbが段階的に大きくなるように設定してもよい。
この時、静電容量の増加量が所定値Ca以上である場合の増加量ΔC1、ΔC2、ΔC3のみを用いて、その積算値が、所定値Cb以上となった時に、通常モードに遷移するようにしてもよい。
また、静電容量の増加量ΔC1が所定値Ca以上であって、ΔC1<ΔC2<ΔC3が成り立つ場合に、ΔC1、ΔC2、ΔC3の積算値を算出して判定に用いてもよい。
また、この場合に、Ca<ΔC1、Cb<ΔC2、Cc<ΔC3、かつ、Ca<Cb<Ccが成り立つ場合に、ΔC1、ΔC2、ΔC3の積算値を算出して判定に用いてもよい。
以上、本発明の例示的な実施の形態の静電入力装置について説明したが、本発明は、具体的に開示された実施の形態の組み合わせであってもよい。
また、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。
なお、本国際出願は、2022年1月4日に出願した日本国特許出願2022-000281に基づく優先権を主張するものであり、その全内容は本国際出願にここでの参照により援用されるものとする。
10 ドアハンドル
100 静電入力装置
110、110M 静電センサ
111、112、113、111M、112M センサ
120 集積回路
126 制御部
100 静電入力装置
110、110M 静電センサ
111、112、113、111M、112M センサ
120 集積回路
126 制御部
Claims (21)
- 生体によって操作される操作部に配置され、静電容量を検出する静電容量検出部と、
前記静電容量検出部が待機状態にあって前記生体の接触が検知されていないときに、前記静電容量検出部によって検出される静電容量の増加量が所定期間内に所定回数以上、第1所定値以上である場合に、前記静電容量検出部を起動状態にする制御部と、
を含む、静電入力装置。 - 前記制御部は、前記静電容量の増加量が前記第1所定値以上である場合に、値をインクリメントするカウンタを有し、前記所定期間内に前記カウンタのカウント値が前記所定回数に対応する所定カウント値に達すると、前記静電容量検出部を起動状態にする、請求項1記載の静電入力装置。
- 前記制御部は、前記第1所定値以上となる前記静電容量の増加量が時間経過に伴って増加している場合に、前記静電容量検出部を起動状態にする、請求項1記載の静電入力装置。
- 前記制御部は、前記第1所定値を、前記所定期間内に段階的に増大させる、請求項1記載の静電入力装置。
- 生体によって操作される操作部に配置され、静電容量を検出する静電容量検出部と、
前記静電容量検出部が待機状態にあって前記生体の接触が検知されていないときに、前記静電容量検出部によって検出される静電容量の増加量の積算値が所定期間内に所定回数以上、第2所定値以上である場合に、前記静電容量検出部を起動状態にする制御部と、を含む、静電入力装置。 - 前記制御部は、前記静電容量の増加量の積算値が前記第2所定値以上である場合に、値をインクリメントするカウンタを有し、前記所定期間内に前記カウンタのカウント値が前記所定回数に対応する所定カウント値に達すると、前記静電容量検出部を起動状態にする、請求項5記載の静電入力装置。
- 前記制御部は、前記第2所定値を、前記所定期間内に段階的に増大させる、請求項5記載の静電入力装置。
- 前記制御部は、第1所定値以上となる前記静電容量の増加量についての積算値が、所定期間内に所定回数以上、 前記第2所定値以上である場合に、前記静電容量検出部を起動状態にする、請求項5記載の静電入力装置。
- 前記制御部は、第1所定値以上となる前記静電容量の増加量が時間経過に伴って増加し、当該増加した静電容量の増加量の積算値が前記第2所定値以上である場合に、前記静電容量検出部を起動状態にする、請求項5記載の静電入力装置。
- 前記制御部は、前記第1所定値を、前記所定期間内に段階的に増大させる、請求項8記載の静電入力装置。
- 生体によって操作される操作部に配置され、静電容量を検出する静電容量検出部と、
前記静電容量検出部が待機状態にあって前記生体の接触が検知されていないときに、前記静電容量検出部によって連続して検出される静電容量の増加量の差分について、前記差分が所定期間内に所定回数以上、第1所定値以上である場合に、前記静電容量検出部を起動状態にする、制御部と
を含む、静電入力装置。 - 前記制御部は、前記差分が前記第1所定値以上である場合に、値をインクリメントするカウンタを有し、前記所定期間内に前記カウンタのカウント値が前記所定回数に対応する所定カウント値に達すると、前記静電容量検出部を起動状態にする、請求項11記載の静電入力装置。
- 前記制御部は、前記差分が前記第1所定値以上であり、かつ、前記第1所定値以上となる前記差分が時間経過に伴って増加する場合に、前記静電容量検出部を起動状態にする、請求項11記載の静電入力装置。
- 前記制御部は、前記第1所定値を、前記所定期間内に段階的に増大させる、請求項11記載の静電入力装置。
- 生体によって操作される操作部に配置され、静電容量を検出する静電容量検出部と、
前記静電容量検出部が待機状態にあって前記生体の接触が検知されていないときに、前記静電容量検出部によって連続して検出される静電容量の増加量の差分の積算値が所定期間内に所定回数以上、第2所定値以上である場合に、前記静電容量検出部を起動状態にする、制御部と
を含む、静電入力装置。 - 前記制御部は、前記差分の積算値が前記第2所定値以上である場合に、値をインクリメントするカウンタを有し、前記所定期間内に前記カウンタのカウント値が前記所定回数に対応する所定カウント値に達すると、前記静電容量検出部を起動状態にする、請求項15記載の静電入力装置。
- 前記制御部は、前記所定期間内に前記カウンタのカウント値が前記所定カウント値に達しない場合には、前記カウンタのカウント値をクリアする、請求項2、6、12、及び16のいずれか一項記載の静電入力装置。
- 前記制御部は、前記所定期間内に前記カウンタのカウント値が前記所定カウント値に達しない場合に、前記静電容量の増加量が前記第1所定値よりも大きい第3所定値以下であるときには前記カウンタのカウント値をクリアし、前記静電容量の増加量が前記第3所定値以上であるときには、前記カウント値をクリアせずに前記所定カウント値よりも少ない第2所定カウント値に設定する、請求項2又は12記載の静電入力装置。
- 前記操作部をさらに含む、請求項1乃至18のいずれか一項記載の静電入力装置。
- 前記制御部は、前記操作部への前記生体の接触がないときに前記静電容量検出部を前記待機状態に設定し、前記操作部への前記生体の接触があると前記静電容量検出部を前記起動状態に設定する、請求項1乃至19のいずれか一項記載の静電入力装置。
- 前記静電容量検出部は、複数のセンサを有し、
前記制御部は、前記所定期間内に所定回数以上、前記複数のセンサによって検出される複数の静電容量の最大値、平均値、又は合計値を前記静電容量として用いて、前記静電容量検出部を起動状態にする、請求項1乃至20のいずれか一項記載の静電入力装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280085826.5A CN118475853A (zh) | 2022-01-04 | 2022-12-16 | 静电输入装置 |
JP2023572396A JPWO2023132199A1 (ja) | 2022-01-04 | 2022-12-16 | |
US18/756,241 US20240345688A1 (en) | 2022-01-04 | 2024-06-27 | Electrostatic input device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-000281 | 2022-01-04 | ||
JP2022000281 | 2022-01-04 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/756,241 Continuation US20240345688A1 (en) | 2022-01-04 | 2024-06-27 | Electrostatic input device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023132199A1 true WO2023132199A1 (ja) | 2023-07-13 |
Family
ID=87073522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/046332 WO2023132199A1 (ja) | 2022-01-04 | 2022-12-16 | 静電入力装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240345688A1 (ja) |
JP (1) | JPWO2023132199A1 (ja) |
CN (1) | CN118475853A (ja) |
WO (1) | WO2023132199A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004212394A (ja) * | 2002-12-20 | 2004-07-29 | Alps Electric Co Ltd | 静電センサを有する入力手段の駆動方法 |
US20110221452A1 (en) * | 2010-03-12 | 2011-09-15 | Nuvoton Technology Corporation | Capacitive sensor and sensing method |
JP2012084453A (ja) * | 2010-10-14 | 2012-04-26 | Denso Corp | 静電容量スイッチ |
JP2014142753A (ja) * | 2013-01-23 | 2014-08-07 | Toto Ltd | 静電容量式タッチセンサ |
JP2017091224A (ja) * | 2015-11-10 | 2017-05-25 | 株式会社ジャパンディスプレイ | タッチ検出機能付き表示装置 |
-
2022
- 2022-12-16 JP JP2023572396A patent/JPWO2023132199A1/ja active Pending
- 2022-12-16 WO PCT/JP2022/046332 patent/WO2023132199A1/ja active Application Filing
- 2022-12-16 CN CN202280085826.5A patent/CN118475853A/zh active Pending
-
2024
- 2024-06-27 US US18/756,241 patent/US20240345688A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004212394A (ja) * | 2002-12-20 | 2004-07-29 | Alps Electric Co Ltd | 静電センサを有する入力手段の駆動方法 |
US20110221452A1 (en) * | 2010-03-12 | 2011-09-15 | Nuvoton Technology Corporation | Capacitive sensor and sensing method |
JP2012084453A (ja) * | 2010-10-14 | 2012-04-26 | Denso Corp | 静電容量スイッチ |
JP2014142753A (ja) * | 2013-01-23 | 2014-08-07 | Toto Ltd | 静電容量式タッチセンサ |
JP2017091224A (ja) * | 2015-11-10 | 2017-05-25 | 株式会社ジャパンディスプレイ | タッチ検出機能付き表示装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023132199A1 (ja) | 2023-07-13 |
US20240345688A1 (en) | 2024-10-17 |
CN118475853A (zh) | 2024-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4604739B2 (ja) | 静電容量検出装置 | |
US8125232B2 (en) | Capacitive sensing device and method | |
KR101771675B1 (ko) | 자동 정전용량형 터치 스캔 | |
EP2279470B1 (en) | Capacitive voltage divider touch sensor | |
US8106893B2 (en) | Sensing apparatus and method, and program therefor | |
JP4968121B2 (ja) | 容量センサー | |
US11409393B2 (en) | Capacitive proximity detection system and method | |
JP6168470B2 (ja) | 静電容量式タッチセンサ | |
US20110156800A1 (en) | Sensor, sensing method thereof, and filter therefor | |
US8217666B2 (en) | Capacitance detection apparatus | |
JP6066061B2 (ja) | 静電容量式タッチセンサ | |
JP2007150733A (ja) | タッチセンサスイッチ装置 | |
US11365571B2 (en) | Operation input device and door handle | |
US20070124674A1 (en) | Motion detection system and motion detection method | |
WO2023132199A1 (ja) | 静電入力装置 | |
JP2018096883A (ja) | 静電容量センサ | |
JP2011166240A (ja) | 静電容量検出方式および静電容量検出装置 | |
JP6115888B2 (ja) | 静電容量式タッチセンサ | |
US20060092068A1 (en) | Analog/digital conversion method and analog/digital conversion circuit | |
US10436610B2 (en) | Operation input detection device | |
JP4768334B2 (ja) | 光電センサ | |
US20120319970A1 (en) | Detection circuit and detection method for touch-sensing panel | |
US11175774B2 (en) | Method for determining a time of contact on a capacitive sensor element | |
KR101031996B1 (ko) | 선형으로 변화되는 주파수를 이용한 터치 감지 장치 및 방법 | |
KR102325027B1 (ko) | 접근 검출 센서에의 의사 접촉의 결정 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22918785 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023572396 Country of ref document: JP |