WO2023131281A1 - 基于多面板的上行发送方法及相关装置 - Google Patents

基于多面板的上行发送方法及相关装置 Download PDF

Info

Publication number
WO2023131281A1
WO2023131281A1 PCT/CN2023/070945 CN2023070945W WO2023131281A1 WO 2023131281 A1 WO2023131281 A1 WO 2023131281A1 CN 2023070945 W CN2023070945 W CN 2023070945W WO 2023131281 A1 WO2023131281 A1 WO 2023131281A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
configuration information
transmission mode
uplink
simultaneous transmission
Prior art date
Application number
PCT/CN2023/070945
Other languages
English (en)
French (fr)
Inventor
袁世通
张希
樊波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023131281A1 publication Critical patent/WO2023131281A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/0858Load balancing or load distribution among entities in the uplink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • This application relates to the field of communication technology, in particular to a multi-panel-based uplink transmission method and related devices
  • the transmitter can send signals omnidirectionally or through a wider angle.
  • the transmitting end and the receiving end can arrange an antenna array composed of many antenna elements, and the transmitting end sends signals with a certain beamforming weight, so that the signal formation has a space
  • the receiving end uses an antenna array to receive with a certain beamforming weight, which can improve the receiving power of the signal at the receiving end and combat path loss.
  • the technique where the signal travels in a specific direction can be called beamforming or beamforming or beam forming etc.
  • a user equipment may arrange multiple antenna panels, referred to as panels (panels), so as to cover multiple different directions.
  • panels panels
  • UE can use one panel for uplink transmission at a time, for example, for physical uplink control channel (physical uplink control channel, PUCCH) and/or physical uplink shared channel (physical uplink shared channel, PUSCH)
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the UE can use multiple panels and transmit in a time-division manner, that is, use panel A for uplink transmission at one time, and use panel B for uplink transmission at another time.
  • the UE uses multiple panels for uplink transmission at the same time, for example, using panel A and panel B for uplink transmission at the same time, which has the advantages of improving transmission capacity and reliability.
  • panel A and panel B for uplink transmission at the same time
  • how to support the UE to use multiple panels to perform uplink transmission simultaneously is a technical problem to be solved urgently.
  • Embodiments of the present application provide a multi-panel-based uplink transmission method and a related device, which can support a terminal device to use multiple panels to perform uplink transmission at the same time, thereby improving transmission capacity and reliability.
  • the present application provides a multi-panel-based uplink transmission method, which can be executed by a terminal device or a module in the terminal device.
  • the method includes: receiving first configuration information, where the first configuration information is used to configure resources corresponding to a multi-panel simultaneous transmission mode; and performing uplink transmission in the multi-panel simultaneous transmission mode on resources configured according to the first configuration information.
  • the network device configures resources corresponding to the multi-panel simultaneous transmission mode for the terminal device, so as to support the terminal device to use multiple panels for simultaneous uplink transmission, thereby improving transmission capacity and reliability.
  • the above-mentioned first configuration information is used to configure a first uplink sounding reference signal (sounding reference signal, SRS) resource set group, and the first SRS resource set group includes multiple SRS resource sets, and the multiple The SRS resource set is associated with multiple panels, and the multiple panels are used for simultaneous uplink transmission, and one SRS resource set corresponds to one of the multiple panels.
  • the SRS resource set included in the first SRS resource set group is used to support the terminal device to realize multi-panel simultaneous transmission.
  • receiving second indication information where the second indication information is used to indicate the group identifier of the first SRS resource set group, so as to use the SRS resource set included in the first SRS resource set group, and perform multi-panel simultaneous transmission mode send uplink.
  • the above-mentioned first configuration information is used to configure multiple SRS resource sets, and the multiple SRS resource sets are associated with multiple panels, and the multiple panels are used for simultaneous uplink transmission.
  • the SRS resource set corresponds to one of the panels.
  • a panel identifier is configured in the SRS resource set configured in the first configuration information, so as to associate multiple SRS resource sets with multiple panels.
  • the above first configuration information is also used to configure the association relationship between the SRS resource set and the panel identifier, so as to associate multiple SRS resource sets with multiple panels.
  • the second configuration information is received, and the second configuration information is used to configure the time domain resources of the PUSCH. If the first indication information indicating multiple uplink beams is received, and the time domain resources of the PUSCH do not include Repeat the identification, then it can be determined that the multi-panel simultaneous transmission mode can be used; if the first indication information indicating multiple uplink beams is received, and the time domain resource of PUSCH includes the repeated identification, then it can be determined that the multi-panel time-sharing transmission can be used model.
  • the multi-panel simultaneous transmission mode and the multi-panel time-sharing transmission mode can be distinguished according to whether the time domain resource of the PUSCH includes a repetition identifier.
  • the repetition identifier in the time domain resource of the PUSCH indicates "no repetition”
  • the first indication information is received, and the first indication information includes an SRS resource indication field.
  • the SRS resource indicated by the SRS resource indication field includes a simultaneous identification, it can be determined that the multi-panel Simultaneous send mode to distinguish it from other send modes.
  • the first indication information is received, the first indication information includes multiple SRI fields, one SRI field indicates an uplink beam or a beam for uplink transmission of a panel, and the first indication information also includes a simultaneous transmission indication field, when the value of the simultaneous transmission indication field is used to indicate that the multiple uplink beams indicated by the multiple SRI fields are transmitted simultaneously, then it can be determined that the multi-panel simultaneous transmission mode is adopted.
  • the first indication information is received, and the first indication information includes an antenna port field.
  • the value of the antenna port field indicates the multi-panel simultaneous transmission mode, it can be determined that the multi-panel simultaneous transmission mode can be used. mode to distinguish it from other sending modes.
  • the above-mentioned antenna port field also indicates an antenna port set.
  • the antenna port set includes multiple antenna ports.
  • the terminal device determines among the multiple antenna ports for simultaneous transmission according to its panel capabilities, such as the number of antenna ports supported by each panel.
  • the transmission power of multiple uplink beams used for simultaneous transmission is determined. For example, multiple panels for simultaneous transmission are determined, and transmit powers of multiple uplink beams for simultaneous transmission are determined, and one panel corresponds to one uplink beam. The sum of the transmit power of multiple uplink beams shall not exceed the relevant regulations.
  • the third configuration information is received, and the third configuration information is used to configure the power control parameter sets corresponding to the above-mentioned multiple uplink beams in the multi-panel simultaneous transmission mode, and then the parameters of the multiple uplink beams can be determined. transmit power, so as to prevent the total transmit power of multiple uplink beams from exceeding relevant limits.
  • the third configuration information is received, and the third configuration information is used to configure multiple sets of power control parameter sets for the multi-panel time-sharing transmission mode; a set of power control parameter sets includes multiple uplink beam corresponding The set of power control parameters is determined according to the received control signaling when determining the transmit power of multiple uplink beams for simultaneous transmission.
  • the control signaling is used to indicate at least one set of power control parameter sets among the multiple sets of power control parameter sets, and according to at least one set of power control parameter sets, transmit power of multiple uplink beams for simultaneous transmission is determined.
  • the determination is made according to the power offset value.
  • the power offset value is an offset value relative to the transmission power in the multi-panel time-sharing transmission mode.
  • the present application provides a multi-panel-based uplink transmission method, which can be executed by a network device or a module in the network device.
  • the method includes: determining and sending first configuration information, where the first configuration information is used to configure resources corresponding to a multi-panel simultaneous sending mode.
  • the network device configures resources corresponding to the multi-panel simultaneous transmission mode for the terminal device, so as to support the terminal device to use multiple panels for simultaneous uplink transmission, thereby improving transmission capacity and reliability.
  • the above-mentioned first configuration information is used to configure a first SRS resource set group, and the first SRS resource set group includes multiple SRS resource sets, and the multiple SRS resource sets are associated with multiple panels , the multiple panels are used for simultaneous uplink transmission, and one SRS resource set corresponds to one of the multiple panels.
  • the SRS resource set included in the first SRS resource set group is used to support the terminal device to realize multi-panel simultaneous transmission.
  • sending second indication information where the second indication information is used to indicate the group identifier of the first SRS resource set group, so that the terminal device learns the first SRS resource set group, so as to use the SRS included in the first SRS resource set group Resource collection, and use multi-panel simultaneous transmission mode for uplink transmission.
  • the above-mentioned first configuration information is used to configure multiple SRS resource sets, and the multiple SRS resource sets are associated with multiple panels, and the multiple panels are used for simultaneous uplink transmission.
  • the SRS resource set corresponds to one of the panels.
  • a panel identifier is configured in the SRS resource set configured in the first configuration information, so as to associate multiple SRS resource sets with multiple panels.
  • the above first configuration information is also used to configure the association relationship between the SRS resource set and the panel identifier, so as to associate multiple SRS resource sets with multiple panels.
  • the second configuration information is sent, and the second configuration information is used to configure the time domain resources of the PUSCH, and the time domain resources of the PUSCH do not include a repetition identifier; the first indication information is sent, and the first indication information indicates multiple beams. Therefore, when the terminal device receives the first indication information indicating multiple beams, and the time domain resource of the PUSCH does not include a repetition identifier, it may determine to adopt the multi-panel simultaneous transmission mode.
  • the order of sending the second configuration information and the first indication information is not limited.
  • the first indication information is sent, and the first indication information includes an SRS resource indication field.
  • the SRS resource indicated by the SRS resource indication field includes a simultaneous identification
  • the terminal device may determine to use a multi-panel Simultaneous send mode.
  • the first indication information is sent, and the first indication information includes an antenna port field.
  • the terminal device may determine to use the multi-panel Simultaneous send mode.
  • the antenna port field is also used to indicate the antenna port set, and the antenna port set includes multiple antenna ports, so that the terminal device can determine each of the multiple antenna ports used for simultaneous transmission according to its panel capabilities. The corresponding antenna port on the panel.
  • the third configuration information is sent, and the third configuration information is used to configure the power control parameter sets corresponding to the multiple uplink beams used for simultaneous transmission in the multi-panel simultaneous transmission mode, so that the terminal device directly according to The third configuration information may determine the sending power when multiple uplink beams are sent simultaneously.
  • the third configuration information is sent, and the third configuration information is used to configure multiple sets of power control parameter sets for the multi-panel time-sharing transmission mode; a set of power control parameter sets includes multiple uplink beam corresponding The set of power control parameters; sending control signaling, so that the terminal device determines the sending power of multiple uplink beams used for simultaneous sending.
  • the control signaling is used to indicate at least one set of power control parameter sets among multiple sets of power control parameter sets, and the terminal device can determine the transmit power of multiple uplink beams for simultaneous transmission according to at least one set of power control parameter sets.
  • the present application provides a multi-panel based uplink transmission method, which can be executed by a terminal device or a module in the terminal device.
  • the method includes: receiving first indication information, the first indication information being used to determine the multi-panel simultaneous transmission mode; according to the first indication information, determining to adopt the multi-panel simultaneous transmission mode.
  • the terminal device can determine to adopt a multi-panel simultaneous sending mode to support simultaneous sending of multiple panels.
  • the second configuration information is received, and the second configuration information is used to configure the time domain resources of the PUSCH. If the first indication information indicates multiple uplink beams, and the time domain resources of the PUSCH do not include a repetition identifier, Then it can be determined that the multi-panel simultaneous transmission mode can be adopted; if the first indication information indicates multiple uplink beams, and the time domain resource of the PUSCH includes a repetition identifier, then it can be determined that the multi-panel time-sharing transmission mode can be adopted.
  • the multi-panel simultaneous transmission mode and the multi-panel time-sharing transmission mode can be distinguished according to whether the time domain resource of the PUSCH includes a repetition identifier.
  • the first indication information indicates multiple uplink beams, and the repetition identifier in the time domain resource of the PUSCH indicates "no repetition", then it can be determined that a multi-panel simultaneous transmission mode can be adopted.
  • the first indication information includes an SRS resource indication field, and when the SRS resource indicated by the SRS resource indication field includes a simultaneous transmission identifier, it can be determined that the multi-panel simultaneous transmission mode can be used, so as to communicate with Other transmission modes are distinguished.
  • the first indication information is received, the first indication information includes multiple SRI fields, one SRI field indicates an uplink beam or a beam for uplink transmission of a panel, and the first indication information also includes a simultaneous transmission indication field, when the value of the simultaneous transmission indication field is used to indicate that the multiple uplink beams indicated by the multiple SRI fields are transmitted simultaneously, then it can be determined that the multi-panel simultaneous transmission mode is adopted.
  • the first indication information includes an antenna port field, and when the value of the antenna port field indicates the multi-panel simultaneous transmission mode, it can be determined that the multi-panel simultaneous transmission mode can be used to communicate with other transmission modes. mode to distinguish.
  • the above-mentioned antenna port field also indicates an antenna port set.
  • the antenna port set includes multiple antenna ports.
  • the terminal device determines among the multiple antenna ports for simultaneous transmission according to its panel capabilities, such as the number of antenna ports supported by each panel.
  • the transmission power of multiple uplink beams used for simultaneous transmission is determined. For example, multiple panels for simultaneous transmission are determined, and transmit powers of multiple uplink beams for simultaneous transmission are determined, and one panel corresponds to one uplink beam. The sum of the transmit power of multiple uplink beams shall not exceed the relevant regulations.
  • the present application provides a multi-panel-based uplink transmission method, which can be executed by a network device or a module in the network device.
  • the method includes: generating and sending first indication information, where the first indication information is used to determine a multi-panel simultaneous transmission mode.
  • the second configuration information is sent, and the second configuration information is used to configure time domain resources of the PUSCH, and the time domain resources of the PUSCH do not include a repetition identifier; the first indication information indicates multiple beams. Therefore, when the terminal device receives the first indication information indicating multiple beams, and the time domain resource of the PUSCH does not include a repetition identifier, it may determine to adopt the multi-panel simultaneous transmission mode.
  • the first indication information includes an SRS resource indication field
  • the SRS resource indicated by the SRS resource indication field includes a simultaneous transmission identifier
  • the terminal device may determine to adopt a multi-panel simultaneous transmission mode.
  • the first indication information includes an antenna port field, and when the value of the antenna port field is used to indicate the multi-panel simultaneous transmission mode, the terminal device may determine to adopt the multi-panel simultaneous transmission mode.
  • the antenna port field is also used to indicate the antenna port set, and the antenna port set includes multiple antenna ports, so that the terminal device can determine each of the multiple antenna ports used for simultaneous transmission according to its panel capabilities. The corresponding antenna port on the panel.
  • the present application provides a communication device, and the communication device may be a terminal device, or a device in the terminal device, or a device that can be matched with the terminal device.
  • the communication device may also be a system on a chip.
  • the communication device may execute the method described in the first aspect or the third aspect.
  • the functions of the communication device may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the unit or module can be software and/or hardware.
  • the present application provides a communication device.
  • the communication device may be a network device, or a device in the network device, or a device that can be matched with the network device. Wherein, the communication device may also be a system on a chip.
  • the communication device may execute the method described in the second aspect or the fourth aspect.
  • the functions of the communication device may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the unit or module can be software and/or hardware.
  • the present application provides a communication device, the communication device includes a processor and an interface circuit, and the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or The signal from the processor is sent to other communication devices other than the communication device, and the processor uses a logic circuit or executes code instructions to implement the method described in any one of the first to fourth aspects. method.
  • the present application provides a computer-readable storage medium, where instructions are stored in the storage medium, and when the computer program or instruction is executed by a communication device, any one of the first to fourth aspects can be implemented. method described in the aspect.
  • the present application provides a computer program product including an instruction.
  • the communication device reads and executes the instruction, the communication device executes the method according to any one of the first aspect to the fourth aspect.
  • the present application provides a communication system, including at least one communication device for performing the method described in the first aspect above, and at least one communication device for performing the method described in the second aspect above, or, It includes at least one communication device for performing the method described in the third aspect above, and at least one communication device for performing the method described in the fourth aspect above.
  • Figure 1A, Figure 1B and Figure 1C are example diagrams of the mapping relationship between the panel and the radio frequency channel
  • FIG. 2A is an example diagram of a multi-panel time-sharing transmission mode
  • Fig. 2B is an example diagram of multi-panel simultaneous transmission mode
  • Fig. 3 is a schematic diagram of a system architecture applying the present application.
  • FIG. 4 is a schematic diagram of a form of communication between a terminal device and a network device
  • FIG. 5A and FIG. 5B are schematic diagrams of scenarios in which this application is applied.
  • FIG. 6 is a schematic flowchart of a multi-panel-based uplink transmission method provided in Embodiment 1 of the present application;
  • FIG. 7 is a schematic flowchart of a multi-panel-based uplink sending method provided in Embodiment 2 of the present application.
  • FIG. 8 is a schematic flowchart of a multi-panel-based uplink sending method provided in Embodiment 3 of the present application.
  • FIG. 9 is a schematic flowchart of a multi-panel-based uplink sending method provided in Embodiment 4 of the present application.
  • Fig. 10 is an example diagram of a set of power control parameters provided by the present application.
  • Fig. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Fig. 12 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • At least one (item) means one or more
  • multiple means two or more
  • at least two (items) means two or three and three
  • “and/or” is used to describe the corresponding relationship between corresponding objects, indicating that there may be three kinds of relationships, for example, “A and/or B” can mean: only A exists, only B exists, and A and B exist at the same time A case where A and B can be singular or plural.
  • the character “/” generally indicates that the corresponding objects before and after are an “or” relationship.
  • At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c ", where a, b, c can be single or multiple.
  • a beam is a communication resource that can be classified as wide, narrow, or other types of beams. Different beams can be regarded as different resources, and the same or different information can be sent through different beams. Optionally, multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • a beam can include one or more antenna ports for transmitting data channels, control channels and sounding signals, etc. In other words, signals can be transmitted based on one or more antenna ports and based on the same beam. It can be understood that one or more antenna ports forming a beam can also be regarded as an antenna port set.
  • the transmitting beam may refer to the distribution of signal strength formed in different directions in space after the signal is transmitted by the antenna
  • the receiving beam may refer to the distribution of signal strength in different directions in space of the wireless signal received from the antenna.
  • Beamforming technology allows signals to travel in specific directions.
  • the beamforming technique may be a digital beamforming technique, an analog beamforming technique, or a hybrid digital/analog beamforming technique.
  • the present application relates to an uplink beam of a terminal device, which is used to send a signal and/or a channel to a network device.
  • the signal is such as SRS
  • the channel is such as PUCCH or PUSCH.
  • panel panel
  • both the transmitting end and the receiving end are arranged with an antenna panel, and an antenna array composed of many antenna elements is arranged on the antenna panel.
  • the present application relates to a panel on a terminal device, and a plurality of panels may be arranged on the terminal device.
  • the relationship between the panel on the terminal device and the radio frequency channel may be a fixed mapping relationship (or called a binding relationship), as shown in FIG. 1A for example.
  • a box represents a panel
  • a diagonal line in the box represents a polarized antenna
  • RF channel 1 (ie RF1) and RF channel 2 correspond to panel 1
  • RF channel 3 and RF channel 4 correspond to panel 2 .
  • One antenna port corresponds to one RF channel
  • port 1 and port 2 correspond to panel 1
  • ports 3 and 4 correspond to panel 2.
  • the relationship between the panel on the terminal device and the radio frequency channel may also be an unfixed mapping relationship.
  • the number of RF channels of terminal equipment may be smaller than the number of panels.
  • the mapping relationship between RF channels and panels is not fixed, that is, RF channels and panels will not be bound.
  • the terminal equipment may realize dynamic mapping of radio frequency channels to panels through a switch network, as shown in Fig. 1B and Fig. 1C for example.
  • port 1 corresponds to panel 1; in (2) of FIG. 1B, port 2 corresponds to panel 2.
  • port 1 and port 2 correspond to panel 1; in (2) of FIG.
  • port 1 corresponds to panel 1
  • port 2 corresponds to panel 2. Since there is no fixed mapping relationship between the RF channel and the panel, that is, there is no fixed mapping relationship between the antenna port and the panel, and it can be adjusted dynamically. Therefore, the panel and RF channel used to send the SRS may change. That is to say, the network device indicates the identifier of the SRS resource for the terminal device, and the terminal device may not be able to determine which panel and beam to use for subsequent signal transmission.
  • Single-panel transmission mode means that the terminal device uses one panel for uplink transmission. It can also be described as a single beam transmission mode.
  • the multi-panel time-sharing transmission mode means that multiple panels on the terminal device perform uplink transmission at different times, that is, one panel is used for uplink transmission at a time.
  • the terminal device uses one uplink beam corresponding to panel 1 to perform uplink transmission at time 1, and uses one uplink beam corresponding to panel 2 to perform uplink transmission at time 2.
  • One panel can correspond to multiple uplink beams, and at one moment, one uplink beam of one panel is used for uplink transmission.
  • Multi-panel time-sharing transmission mode can also be called multi-panel transmission mode in turn, multi-panel time-division transmission mode or multi-panel non-simultaneous transmission mode, etc., or simply referred to as non-simultaneous transmission mode, round transmission mode, time division multiplexing (time division multiplexing, TDM) etc.
  • the multi-panel time-sharing transmission mode can also be described as a multi-beam time-sharing transmission mode.
  • the multi-panel simultaneous transmission mode means that multiple panels on the terminal device perform uplink transmission at the same time, that is, multiple panels are used for uplink transmission at a time.
  • the terminal device uses one uplink beam corresponding to panel 1 to perform uplink beam at time 3, and simultaneously uses one uplink beam corresponding to panel 2 to perform uplink transmission.
  • the multi-panel simultaneous sending mode may also be referred to as the multi-panel simultaneous sending mode, or simply the simultaneous sending mode.
  • the multi-panel simultaneous transmission mode is a transmission mode proposed by this application to distinguish the multi-panel time-sharing transmission mode from the single-panel transmission mode.
  • the multi-panel simultaneous transmission mode can also be described as a multi-beam simultaneous transmission mode.
  • this application can determine the transmission power in the multi-panel simultaneous transmission mode to ensure that the total transmission power does not exceed the relevant limit.
  • the dotted line beam represents the transmission power under the multi-panel time-sharing transmission mode
  • the solid line beam represents the transmission power under the multi-panel simultaneous transmission mode
  • the transmission power of the solid line beam on panel 1 is less than the transmission power of the dotted line beam
  • the transmit power of the solid-line beam on panel 2 is less than that of the dotted-line beam
  • the total transmit power of the solid-line beams on the two panels does not exceed the relevant limit.
  • QCL is used to indicate that multiple resources have one or more identical or similar communication features, and the same or similar communication configurations can be used for multiple resources that have a co-location relationship. For example, if two antenna ports have a co-location relationship, the large-scale properties of the channel transmitting a symbol on one port can be inferred from the large-scale properties of the channel transmitting a symbol on the other port.
  • Large-scale properties can include: delay spread, average delay, Doppler spread, Doppler shift, average gain, receive parameters, end device receive beam number, transmit/receive channel correlation, receive angle of arrival, receiver antenna Spatial correlation, main angle of arrival (angel-of-arrival, AoA), average angle of arrival, extension of AoA, etc.
  • This application can be used in the fifth generation (5th generation, 5G) system, also known as the new air interface (new radio, NR) system, or the sixth generation (6th generation, 6G) system, or the seventh generation (7th generation, 7G) ) system, or other communication systems in the future; or it can also be used in device to device (device to device, D2D) system, machine to machine (machine to machine, M2M) system, vehicle to everything (V2X) and so on.
  • 5G fifth generation
  • NR new air interface
  • 6G sixth generation
  • 7th generation, 7G) seventh generation
  • V2X vehicle to everything
  • the present application can be applied to the system architecture shown in FIG. 3 .
  • the communication system shown in FIG. 3 may include, but is not limited to: one or more terminal devices (eg, terminal device 10 ), and one or more network devices (eg, network device 20 ).
  • the terminal equipment may include but not limited to: UE, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, user agent or user device, etc.
  • the terminal device can be a mobile phone, tablet computer, computer with wireless transceiver function, virtual reality terminal device, augmented reality terminal device, wireless terminal in industrial control, wireless terminal in unmanned driving, wireless terminal in telemedicine , wireless terminals in smart grids, wireless terminals in transportation security, wireless terminals in smart cities, wireless terminals in smart homes, wireless terminals in the aforementioned V2X, etc.
  • the network device can be a device with a wireless transceiver function or a chip that can be set on the device, and the network device includes but is not limited to: an evolved node B (evolved node B, eNB), a radio network controller (radio network controller, RNC), Node B (Node B, NB), network device controller (base station controller, BSC), network device transceiver station (base transceiver station, BTS), home network equipment (for example, home evolved Node B, or home Node B, HNB), baseband unit (baseband unit, BBU), access point (access point, AP) in wireless fidelity (wireless fidelity, WIFI) system, wireless relay node, wireless backhaul node, transceiver node (transmission and reception point, TRP), transmission point (transmission point, TP) and so on.
  • Network devices can also be devices used in 5G, 6G or even 7G systems, such as next-generation node B (gNB) in NR systems; they can also be road
  • the network device 20 includes a processor 201 , a memory 202 and a transceiver 203 , and the transceiver 203 includes a transmitter 2031 , a receiver 2032 and an antenna 2033 .
  • the receiver 1032 may be configured to receive configuration information and/or indication information through the antenna 1033
  • the transmitter 1031 may be configured to send signals and/or channels to the network device 20 through the antenna 1033 .
  • the transmitter 2031 may be used to send configuration information and/or indication information to the terminal device 10 through the antenna 2033
  • the receiver 2032 may be used to receive the signal and/or channel sent by the terminal device 10 through the antenna 2033 .
  • the channel may include a physical uplink shared channel (physical uplink shared channel, PUSCH), a physical uplink control channel (physical uplink control channel, PUCCH), and the physical channel includes a random access channel (random access channel, PRACH), etc.
  • the signal may include Uplink sounding reference signal (sounding reference signal, SRS), demodulation reference signal (de-modulation reference signal, DMRS), phase noise tracking signal (phase noise tracking reference signal, PTRS), uplink positioning signal (uplink positioning reference signal), etc.
  • the signals involved in this application are mainly SRS, and the channels involved are mainly PUCCH and PUSCH.
  • a terminal device may arrange multiple panels, such as the two panels shown in FIG. 2A and FIG. 2B .
  • the terminal equipment uses multiple panels to transmit uplink at the same time, which has the advantages of improving transmission capacity and reliability.
  • the protocol does not support a terminal device to use multiple panels for simultaneous uplink transmission. Therefore, how to support a terminal device to use multiple panels for simultaneous uplink transmission is an urgent technical problem.
  • the present application provides a multi-panel based uplink transmission method and a related device, which can flexibly support simultaneous uplink transmission of multiple panels, thereby improving transmission capacity and reliability.
  • This application can be applied to the following two scenarios.
  • the inter-cell transmission scenario refers to a terminal device simultaneously performing uplink transmission to multiple TRPs of multiple cells.
  • the terminal device uses two uplink beams for uplink transmission, one uplink beam is for the TRP of the current serving cell, and the other uplink beam is for the TRP of another cell.
  • the reference signal from one of the uplink beams QCL to a synchronization signal block (SSB), which belongs to another cell, can be connected to another cell through a physical cell identifier (PCI) or other logical identification
  • PCI physical cell identifier
  • the current serving cell is distinguished.
  • the SSB consists of a primary synchronization signal (primary synchronization signal, PSS), a secondary synchronization signal (secondary synchronization signal, SSS) and a physical broadcast channel (physical broadcast channel, PBCH).
  • the intra-cell transmission scenario refers to the simultaneous uplink transmission of a terminal device to multiple TRPs in the same cell.
  • the terminal device uses two uplink beams to communicate with the base station antenna of the same cell.
  • the base station can adopt the remote antenna technology, that is, the antennas are deployed in a distributed manner, and the terminal equipment can use two uplink beams to simultaneously communicate with two base station antennas arranged in different directions.
  • there is a communication path with strong reflection in the environment as shown in FIG. 5B , the terminal device can send to two different directions at the same time, and the base station receives it.
  • the network device may configure resources corresponding to the multi-panel simultaneous transmission mode for the terminal device.
  • Embodiment 1 of the present application describes that a network device configures resources corresponding to a multi-panel simultaneous sending mode for a terminal device.
  • FIG. 6 is a schematic flowchart of a multi-panel-based uplink transmission method provided in Embodiment 1 of the present application. As shown in FIG. 6, the method may include but not limited to the following steps:
  • S600 is also included before S601, the terminal device sends capability information to the network device.
  • the network device receives the capability information from the terminal device.
  • the capability information is used to display or implicitly indicate the status of the upper panel of the terminal device, so that the network device can know the status of the upper panel of the terminal device.
  • the capability information display indicates the status of the panels on the terminal device, such as indicating the number of panels, or indicating the capabilities corresponding to each panel (such as the number of supported antenna ports, etc.).
  • the capability information display indicates that the number of antenna ports corresponding to panel 1 is 1, and the number of antenna ports corresponding to panel 2 is 2.
  • the capability information implicitly indicates the state of the panel on the terminal device, for example, the capability information is a capability value set, and different sets correspond to different panel capabilities.
  • the capability information includes two capability value sets, one capability value set corresponds to one panel, one capability value set indicates that the corresponding panel supports a single antenna port, and the other capability value set indicates that the corresponding panel supports dual antenna ports.
  • the terminal device can be equipped with more than two panels, such as 3 panels, and the number of antenna ports supported by the three panels can be indicated through 3 capability value sets, of which two panels support single antenna ports, and the other panel supports dual antennas port.
  • the capability value set can also indicate whether the corresponding panel can be used simultaneously with other panels.
  • the network device configures resources corresponding to the multi-panel simultaneous sending mode for the terminal device.
  • the network device can configure resources corresponding to the multi-panel simultaneous transmission mode for the terminal device according to the capability information reported by the terminal device, so as to support the terminal device to use the multi-panel simultaneous transmission mode for uplink transmission.
  • the network device can independently configure resources corresponding to the multi-panel simultaneous sending mode for the terminal device.
  • the network device may also configure resources corresponding to the multi-panel time-sharing transmission mode and/or resources corresponding to the single-panel transmission mode for the terminal device.
  • the network device can configure different resources for these three sending modes, so as to distinguish different sending modes.
  • the three sending modes listed in this application are used as examples, and there may be other types of sending modes in practical applications.
  • the network device sends first configuration information to the terminal device.
  • the terminal device receives the first configuration information from the network device.
  • the network device When the network device configures the resource corresponding to the multi-panel simultaneous transmission mode for the terminal device, it sends the first configuration information to the terminal device, so that the terminal device knows the resource, and can use the multi-panel simultaneous transmission mode to perform uplink transmission based on the resource.
  • the first configuration information is used to configure resources corresponding to the multi-panel simultaneous sending mode.
  • the first configuration information is used to configure a first SRS resource set group (SRS resource set group), the first SRS resource set group includes a plurality of SRS resource sets, and the multiple SRS resource sets and the plurality of panels have Association relationship, one SRS resource collection corresponds to one panel among multiple panels.
  • the first SRS resource set group is a newly defined SRS resource set group in this application.
  • the specific name of the first SRS resource set group is not limited in this application.
  • one SRS resource set corresponds to one type of panels among the multiple panels, and one type of panels has the same certain parameters or capabilities, such as the number of antenna ports.
  • the first configuration information is used to configure multiple SRS resource sets
  • the multiple SRS resource sets are associated with multiple panels
  • one SRS resource set corresponds to one of the multiple panels.
  • one SRS resource set corresponds to one type of panels among the multiple panels, and one type of panels has the same certain parameters or capabilities, such as the number of antenna ports.
  • association relationship between multiple SRS resource sets and multiple panels can be configured in one of the following ways.
  • the SRS resource set configured by the first configuration information is configured with a panel identifier (identifier, ID) or the SRS resource set included in the first SRS resource set group is configured with a panel ID, indicating that the SRS resource set is used for the panel ID.
  • the identified panel Exemplarily, the first configuration information is configured with SRS resource set 1 and SRS resource set 2, SRS resource set 1 is configured with panel 1, and SRS resource set 2 is configured with panel 2, thereby indicating that SRS resource set 1 is used for panel1, and SRS resource set 2 is configured with panel 1, and SRS resource set 2 is configured with panel 1.
  • Set 2 is used for panel 2, that is, SRS resource set 1 is associated with panel 1, and SRS resource set 2 is associated with panel2.
  • the first configuration information is also used to configure the association relationship between the SRS resource set ID and the panel ID.
  • the first configuration information may be expressed as ⁇ first SRS resource set ID ⁇ SRS resource set 1, panel 1 ⁇ , ⁇ SRS resource set 2, panel 2 ⁇ .
  • the SRS resource set configured in the first configuration information is configured with a capability value set ID or the SRS resource set included in the first SRS resource set group is configured with a capability value set ID.
  • a capability value set ID corresponds to a panel, that is, identifies a panel.
  • the SRS resource set can be indirectly associated with the panel through the capability value set ID.
  • SRS resource set 1 is configured with capability value set 1, assuming that capability value set 1 corresponds to panel 1, then SRS resource set 1 is associated with panel 1.
  • the first configuration information is also used to configure the association relationship between the SRS resource set and the capability value set ID.
  • the first configuration information may be expressed as ⁇ first SRS resource set ID ⁇ SRS resource set 1, capability value set 1 ⁇ , ⁇ SRS resource set 2, capability value set 2 ⁇ . Assuming that capability value set 1 corresponds to panel 1, ⁇ SRS resource set 1, capability value set 1 ⁇ can indicate that SRS resource set 1 is associated with panel 1.
  • the relationship between the above multiple SRS resource sets and multiple panels can be dynamic, for example, a certain configuration ⁇ SRS resource set 1, panel 1 ⁇ , ⁇ SRS resource set 2, panel 2 ⁇ , the next configuration ⁇ ⁇ SRS resource collection 1, panel 2 ⁇ , ⁇ SRS resource collection 2, panel 3 ⁇ .
  • the association relationship can be the association relationship between multiple SRS resource sets and all or part of the panels of the terminal device.
  • the terminal device can be equipped with three panels, and the association relationship can be between two SRS resource sets and two panels. Association relationship, or the association relationship between 3 SRS resource collections and 3 panels.
  • multiple panels refer to multiple panels that can simultaneously perform uplink transmission, or are described as multiple panels that adopt a multi-panel simultaneous transmission mode to perform uplink transmission.
  • the above panel ID is used as an example, and the panel ID can also be described as other identifiers used to indicate terminal equipment antenna panels or antenna capability information, which is not limited in this application.
  • the above four methods are used as examples, and actually other methods may be used to configure or indicate the above association relationship.
  • the above method 2 and method 4 can also be configured through other configuration information.
  • the first configuration information may be sent through radio resource control (radio resource control, RRC) signaling, that is, the first configuration information is configured through RRC signaling, or carried in RRC signaling.
  • RRC radio resource control
  • the first configuration information may be sent through high-layer parameters, that is, the first configuration information is configured through high-layer parameters or carried in high-layer parameters.
  • the network device may indicate the group ID of the first SRS resource set group through a downlink control indication (DCI).
  • DCI downlink control indication
  • the SRS resource indication field in the DCI may indicate the group ID of the first SRS resource set group, so that the terminal device acquires the first SRS resource set group according to the group ID.
  • the terminal device may determine to use a multi-panel simultaneous transmission mode for uplink transmission according to the group ID.
  • the indication information used to indicate the group ID of the first SRS resource set group is referred to as second indication information.
  • the terminal device configures resources according to the first configuration information, and uses a multi-panel simultaneous sending mode to perform uplink sending.
  • the terminal device can determine a plurality of panels according to the above association relationship, that is, determine which panels or panels with several capabilities are used for simultaneous uplink transmission. Further, the terminal device may also determine multiple uplink beams corresponding to multiple panels according to the above association relationship, one panel corresponds to one uplink beam, and the multiple uplink beams are used for simultaneous uplink transmission. That is, the terminal device determines the uplink beams corresponding to the panels that simultaneously perform uplink transmission. For example, each uplink beam that performs uplink transmission at the same time is determined through the association relationship between the SRS resource set and the beam.
  • the terminal device After receiving the first configuration information, the terminal device can know the resources corresponding to the multi-panel simultaneous transmission mode, and when receiving the indication information for indicating the transmission mode, it can use the transmission mode to perform uplink transmission based on the resources, that is, realize Multiple panels simultaneously transmit uplink.
  • the indication information used to indicate the multi-panel simultaneous transmission mode is described in the second embodiment.
  • the network device configures resources corresponding to the multi-panel simultaneous transmission mode for the terminal device, so as to support the terminal device to use the multi-panel simultaneous transmission mode for uplink transmission.
  • the network device may instruct the terminal device to adopt the multi-panel simultaneous transmission mode.
  • Embodiment 2 of the present application describes how a terminal device determines to adopt a multi-panel simultaneous sending mode.
  • FIG. 7 is a schematic flowchart of a multi-panel-based uplink transmission method provided in Embodiment 2 of the present application. As shown in FIG. 7, the method may include but not limited to the following steps:
  • the network device generates first indication information, where the first indication information is used to determine a multi-panel simultaneous sending mode.
  • the network device may generate the first indication information according to the capability information reported by the terminal device, that is, generate the first indication information when the terminal device supports a multi-panel simultaneous transmission mode.
  • the network device sends first indication information to the terminal device.
  • the terminal device receives the first indication information from the network device.
  • the terminal device determines to adopt a multi-panel simultaneous sending mode according to the first indication information.
  • the indication information used to determine the multi-panel simultaneous transmission mode is referred to as first indication information.
  • first indication information Embodiment 2 can be implemented in one of the following ways.
  • Mode 1 when the first indication information indicates multiple uplink beams, and the time domain resource of PUSCH does not include a repetition identifier, or when the repetition identifier is configured as "off", or, the repetition identifier is indicated as In the case of "no repetition", the terminal device determines to adopt the multi-panel simultaneous sending mode.
  • the network device configures the time domain resources of the PUSCH for the terminal device, and sends second configuration information to the terminal device, where the second configuration information is used to configure the time domain resources of the PUSCH.
  • the time domain resources of the PUSCH may include a repetition identifier (repetition), or may not include repetition.
  • the repeat flag is configured as "on” or "off”.
  • the repeat flag indicates "no repeat” or "repeat”.
  • the second configuration information can be configured through RRC signaling.
  • the second configuration information and the first configuration information may be carried in the same configuration information, or may be carried in different configuration information.
  • the terminal device may determine to adopt a multi-panel simultaneous transmission mode, that is, use the indicated multiple uplink beams to perform uplink transmission simultaneously.
  • the first indication information may be DCI, and the DCI indicates multiple uplink beams.
  • the DCI indicates two uplink beams, and the time domain resource of the PUSCH does not include repetition, and the terminal device can use the two uplink beams to perform uplink transmission simultaneously.
  • the terminal device may determine to adopt the multi-panel time-sharing transmission mode, that is, use the indicated multiple uplink beams to perform uplink transmission in time division.
  • DCI indicates two uplink beams
  • the time domain resource of PUSCH does not include repetition
  • the terminal device can use these two uplink beams to perform uplink transmission at different times, for example, use uplink beam 1 at time 1, and use uplink beam 1 at time 2 Use uplink beam 2.
  • the first indication information includes an SRI field
  • the SRS resource corresponding to the SRI indicated by the SRI field includes a simultaneous transmission identifier
  • the first indication information may be an SRS resource indication field in the DCI.
  • the SRS resource indication field is used for the SRS resource.
  • the SRS resource has a simultaneous transmission flag (flag), and the terminal device determines to adopt a multi-panel simultaneous transmission mode.
  • the first indication information includes multiple SRI fields, one SRI field indicates one uplink beam or one panel uplink transmission beam, for example, two SRI fields indicate two uplink beams or two panel uplink transmission beams.
  • the first indication information further includes a simultaneous transmission indication field, and a value of the simultaneous transmission indication field is used to indicate that multiple uplink beams indicated by multiple SRI fields are for simultaneous transmission.
  • the first indication information may be DCI, and the DCI may include multiple SRI fields, for example, 2 SRI fields.
  • DCI also includes a simultaneous transmission indication field, which can be a newly added bit in DCI. For example, when the value of this bit is "1", it indicates that multiple uplink beams are simultaneously transmitted; when the value is "0", it indicates that multiple The uplink beams are transmitted in time division. Or, this field reuses the existing field, and its special value is used to indicate that multiple uplink beams are sent simultaneously.
  • the terminal device may also determine multiple uplink beams for simultaneous transmission according to the multiple SRI fields.
  • the first indication information includes an antenna port field, and the value of the antenna port field indicates a multi-panel simultaneous transmission mode.
  • the first indication information may be an antenna port (antenna ports) field in the DCI, and a specific value of the antenna port is used to indicate a multi-panel simultaneous transmission mode.
  • Table 1 shows the number of layers (layer) under each bit field mapped to index (Bit field mapped to index) and the transmission precoding matrix index (transmission precoding matrix index, TPMI), and also shows Part of the index corresponds to simultaneous multi-panel uplink transmission (simultaneous multi-panel UL transmission, SMPUT).
  • Bit field mapped to index can indicate the value of the antenna port field, and SMPUT can indicate the multi-panel simultaneous transmission mode. SMPUT is used as an example. Other identifiers may be used to indicate the multi-panel simultaneous transmission mode in the implementation.
  • the bold part in Table 1 is a newly added part. The bold value in this part is a specific value, which can indicate the multi-panel simultaneous transmission mode.
  • the combination of the number of layers and TPMI indicated by the specific value is used as an example. For example, if the antenna port index is 10, it indicates the multi-panel simultaneous transmission mode, and at the same time indicates that the number of supported layers is 1, and the TPMI is 2. It should be noted that Table 1 is used as an example.
  • Table 1 uses the reserved value of the antenna port field to indicate the multi-panel simultaneous transmission mode, and a new table can also be defined, which includes the value of the antenna port field, and the value can indicate the multi-panel simultaneous transmission mode.
  • the antenna port field may indicate not only a multi-panel simultaneous transmission mode, but also an antenna port used for simultaneous transmission.
  • the antenna port field indicates an antenna port set including multiple antenna ports.
  • the terminal device determines the The corresponding antenna port on the panel.
  • the antenna port set includes port0, 1, 2, and 3, and the terminal device is equipped with two panels, panel 1 supports a maximum of 2 ports, and panel 2 supports a maximum of 4 ports, then the terminal device determines that panel 1 corresponds to port0 and port1, and the panel 2 corresponds to port0, 1, 2, and 3, that is, port0 and port1 can be used for uplink transmission on panel 1, and port0, 1, 2, and 3 can be used for uplink transmission on panel 2.
  • the antenna port indicated by one antenna port field can be used for simultaneous uplink transmission by multiple panels.
  • the panel defaults to sending according to the maximum number of antenna ports, and the port with the smallest port ID is used by default.
  • Table 1 and the newly defined table may support one antenna port field corresponding to multiple antenna port indication information.
  • the antenna port set includes port0, 1, 2, and 3, and the terminal device is equipped with two panels. Panel 1 supports a maximum of 2 ports, and panel 2 supports a maximum of 2 ports. Then, the terminal device uses port0 and port1 on panel 1 by default. For uplink sending, at the same time, port3 and port4 are used for uplink sending on panel 2 by default.
  • the first indication information may be RRC signaling, and the RRC signaling is used to configure a value of the antenna port field to indicate a multi-panel simultaneous transmission mode.
  • the RRC signaling can be used to indicate the multi-panel simultaneous transmission mode when the value in Table 1 is configured as 8. Combine the existing table with RRC signaling to indicate the multi-panel simultaneous transmission mode.
  • the network device sends port indication information to the terminal device, and the terminal device can determine the antenna port used by each panel for simultaneous transmission according to the port indication information and the number of antenna ports supported by each panel.
  • the port indication information may be carried in the DCI.
  • the panel defaults to sending according to the maximum number of antenna ports, and the port with the smallest port ID is used by default.
  • DCI indicates port0, 1, 2, 3, the terminal device is equipped with two panels, panel 1 supports a maximum of 2 ports, and panel 2 supports a maximum of 4 ports, then the terminal device can use port0 and port1 on panel 1 for upstream At the same time, port0, 1, 2, and 3 can be used on panel 2 for uplink sending.
  • the terminal device can determine to adopt the multi-panel simultaneous transmission mode through the first instruction information, so as to distinguish between the multi-panel time-sharing transmission mode and the single-panel transmission mode.
  • the first embodiment shown in Figure 6 and the second embodiment shown in Figure 7 can be combined to form the third embodiment. an identical or similar part.
  • the process shown in Figure 8 may include but is not limited to:
  • the terminal device sends capability information to the network device.
  • the network device receives the capability information from the terminal device.
  • the network device configures resources corresponding to the multi-panel simultaneous sending mode for the terminal device, and generates first indication information.
  • the network device sends first configuration information to the terminal device.
  • the terminal device receives the first configuration information from the network device.
  • the network device sends first indication information to the terminal device.
  • the terminal device receives the first indication information from the network device.
  • S802 and S803 are not limited, they may be executed at the same time, or S802 is executed first and then S803 is executed, or S803 is executed first and then S802 is executed.
  • the terminal device determines to adopt a multi-panel simultaneous sending mode according to the first indication information.
  • the terminal device configures resources according to the first configuration information, and uses a multi-panel simultaneous sending mode to perform uplink sending.
  • the terminal device uses resources corresponding to the multi-panel simultaneous transmission mode, and uses the multi-panel simultaneous transmission mode to perform uplink transmission when the multi-panel simultaneous transmission mode is determined.
  • the terminal device can determine the transmission power of multiple uplink beams used for simultaneous transmission in the multi-panel simultaneous transmission mode, one panel corresponds to one uplink transmission beam.
  • Embodiment 4 of the present application describes how a terminal device determines the transmit power of multiple uplink beams used for simultaneous transmission. Determining the transmit power of multiple uplink beams for simultaneous transmission can also be described as determining the transmit power of uplink beams corresponding to multiple panels for simultaneous transmission, or determining multiple panels for simultaneous transmission, and determining multiple multiple uplink beams corresponding to each panel, etc.
  • FIG. 9 is a schematic flowchart of a multi-panel-based uplink transmission method provided in Embodiment 4 of the present application. As shown in FIG. 9, the method may include but not limited to the following steps:
  • the network device sends third configuration information to the terminal device.
  • the terminal device receives third configuration information from the network device.
  • the third configuration information is used to configure multiple sets of power control parameter sets.
  • a pair of uplink beams corresponds to a set of power control parameters.
  • a set of power control parameters includes the power control parameter set corresponding to the first uplink beam and the power control parameter set corresponding to the second uplink beam.
  • control parameter set, the first uplink beam and the second uplink beam form a pair of uplink beams.
  • a set of power control parameter sets includes a power control parameter set corresponding to uplink beam 1 and a power control parameter set corresponding to uplink beam 2 .
  • the set of power control parameters corresponding to the first uplink beam is used for uplink transmission by the first uplink beam, and may include power control parameters corresponding to various uplink signals/channels, for example, power control parameters corresponding to SRS, power control parameters corresponding to PUCCH, Power control parameters corresponding to PUSCH.
  • the power control parameter set corresponding to the second uplink beam An example diagram of a set of power control parameters can be referred to in FIG. 10 .
  • the power control parameters corresponding to the SRS are used to determine the transmission power of the SRS using the first uplink beam, and the power control parameters corresponding to the SRS may include nominal power (P0), path loss compensation factor (alpha), path loss reference signal identifier One or more of (pathloss RS ID) and closed loop power control index (close loop index).
  • P0 nominal power
  • alpha path loss compensation factor
  • closed loop power control index close loop index
  • the beam identifiers of the first uplink beam and the second uplink beam may be SSB index, CSI-RS resource ID, SRS resource identifier, SRI, or SRS resource set ID, etc.
  • the uplink beam may be indicated by using a transmission configuration indication (TCI) state (state), for example, by using "joint TCI state” or by using "uplink (UL) TCI state”.
  • TCI transmission configuration indication
  • the third configuration information is specifically used to configure the power control parameter set of each uplink beam pair in the multi-panel simultaneous transmission mode, and the power control parameter set in the multi-panel time-sharing transmission mode. It can be understood that the third configuration information configures the corresponding relationship between the uplink beam pair, the transmission mode, and the power control parameter set, and the corresponding relationship can be referred to in Table 2 below.
  • uplink beam pair 1 corresponds to two sets of power control parameter sets, and one set of power control parameter sets is used for multi-panel simultaneous transmission mode, that is, for simultaneous transmission of signals and/or channels by uplink beam 1 and uplink beam 2;
  • a set of power control parameters is used for multi-panel time-sharing transmission mode, that is, for time-sharing transmission of signals and/or channels by uplink beam 1 and uplink beam 2.
  • the same goes for uplink beam pair 2.
  • Table 2 It can be known from Table 2 that the same uplink beam can be associated with two sets of power control parameters, which are used in two transmission modes respectively. It should be noted that Table 2 is used as an example and for easy understanding, and the logical relationship between configurations may not be displayed in the form of a table in actual implementation.
  • the third configuration information may be carried by RRC signaling.
  • multiple sets of power control parameter sets are carried by high-level parameters, and the power control parameter sets of the uplink beam pair in the multi-panel simultaneous transmission mode and the power control parameter set in the multi-panel time-sharing transmission mode are further carried by RRC signaling.
  • RRC signaling can be associated with two sets of power control parameter sets, one set is used for multi-panel simultaneous transmission mode, and the other set is used for multi-panel time-sharing transmission mode.
  • the terminal device determines the transmit power of multiple uplink beams used for simultaneous transmission according to the third configuration information.
  • the terminal device determines to adopt the multi-panel simultaneous transmission mode and determines the multiple uplink beams for simultaneous uplink transmission, according to the third configuration information, it determines the power control parameter set corresponding to the multiple uplink beams, and then determines the The transmit power of the multiple uplink beams.
  • the terminal device determines that the two uplink beams that transmit PUSCH at the same time are uplink beam 1 and uplink beam 2 respectively, and in combination with Table 2, determines the power control parameter set corresponding to uplink beam 1 and the power control parameter set corresponding to uplink beam 2 Parameter set, obtain the power control parameters corresponding to PUSCH from the power control parameter set corresponding to uplink beam 1, determine the transmit power 1 for sending PUSCH according to the power control parameters, and use uplink beam 1 and transmit power 1 to transmit PUSCH;
  • the power control parameter corresponding to the PUSCH is obtained from the power control parameter set corresponding to 2, the transmission power 2 for transmitting the PUSCH is determined according to the power control parameter, and the PUSCH is transmitted using the uplink beam 2 and the transmission power 2.
  • the terminal device determines to adopt the multi-panel time-sharing transmission mode, according to the third configuration information, it determines the power control parameter sets corresponding to the multiple uplink beams, and then determines the transmission power.
  • the terminal device determines the simultaneous uplink beam pair according to the power control parameter set in the multi-panel simultaneous transmission mode and the power control parameter set in the multi-panel time-sharing transmission mode.
  • the transmit power of the multiple uplink beams to be transmitted so as to avoid exceeding the limit of the relevant transmit power.
  • the terminal device supports simultaneous transmission of two panels as an example.
  • the terminal device may support simultaneous transmission of more than two panels.
  • the above-mentioned uplink beam pair can be changed to an uplink beam set, the uplink beam set includes 3 uplink beams, and a set of power control parameters includes the power control parameter set corresponding to the first uplink beam, The power control parameter set corresponding to the second uplink beam and the power control parameter set corresponding to the third uplink beam.
  • Embodiment 4 is an implementation manner in which a terminal device determines the transmission power of multiple uplink beams that simultaneously perform uplink transmission, and may also be implemented in one of the following manners.
  • the third configuration information configuration is used to configure multiple sets of power control parameter sets, and the multiple sets of power control parameter sets are for multi-panel time-sharing transmission mode by default.
  • the network device can instruct the terminal device to activate at least one set of power control parameter sets through control signaling, such as media access control-control element (media access control-control element, MAC-CE) signaling or RRC signaling.
  • a set of power control parameters is used for multi-panel simultaneous sending mode.
  • the control signaling is also used to associate the power control parameter set with the uplink beam, for example, associate the power parameter set 1 with the uplink beam 1.
  • the ID of the power control parameter set may be carried in the MAC-CE signaling, which is used to indicate which set of power control parameter set is activated.
  • the terminal device determines, according to the ID of the power control parameter set, the transmit power of multiple uplink beams that simultaneously perform uplink transmission.
  • the terminal device determines the transmission power of multiple uplink beams that simultaneously perform uplink transmission according to the power offset value.
  • the power offset value is an offset value relative to the transmission power in the multi-panel time-sharing transmission mode, which may be predefined or preconfigured by the protocol. For example, the transmission power of uplink beam 1 and uplink beam 2 in multi-panel time-sharing transmission mode is divided into 20dBm and 23dBm, and the power offset value is 3dBm, then the transmission power of uplink beam 1 and uplink beam 2 in multi-panel simultaneous transmission mode 17dBm and 20dBm.
  • the power offset value may be for one panel among multiple panels or for a group of uplink beams of the terminal. Wherein, the power offset value may also be referred to as a power backoff amount.
  • the network device configures a set of power control parameters for a pair of uplink beams (the default is for the multi-panel time-sharing transmission mode), and in the multi-panel simultaneous transmission mode, determine the corresponding A set of power control parameters is used to determine the transmission power.
  • the parameter offset value is an offset value relative to the power control parameter in the multi-panel time-sharing transmission mode.
  • the network device in the case of configuring the power control parameter set corresponding to the uplink beam (for multi-panel time-sharing transmission mode), the network device sends control signaling to the terminal device, such as MAC-CE signaling, indicating or updating a certain A set of power control parameters corresponding to the uplink beam, so that the terminal device determines the transmit power according to the set of power control parameters.
  • the control signaling may also dynamically indicate the power backoff of one or more uplink beams, or dynamically indicate the power backoff of uplink beams corresponding to one or more antenna panels, so that the transmission power can be dynamically determined.
  • Embodiment 4 can be combined with Embodiment 1 and/or Embodiment 2, so that the transmission power in the multi-panel simultaneous transmission mode does not exceed the limit of the related transmission power.
  • the sequence of sending configuration information is not limited, nor is the sequence of sending configuration information and indication information limited.
  • the terminal device and the network device may respectively include a hardware structure and a software module, and realize the above-mentioned functions in the form of a hardware structure, a software module, or a hardware structure plus a software module .
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 11 and FIG. 12 are schematic structural diagrams of possible communication devices provided by the embodiments of the present application. These communication apparatuses may be used to realize the functions of the terminal device or the network device in the foregoing method embodiments, and thus also realize the beneficial effects of the foregoing method embodiments.
  • the communication device 1100 shown in FIG. 11 may include a communication unit 1101 and a processing unit 1102 .
  • the communication unit 1101 may include a sending unit and/or a receiving unit, the sending unit is configured to implement a sending function, the receiving unit is configured to implement a receiving function, and the communication unit 1101 may implement a sending function and/or a receiving function.
  • a communication unit may also be described as a transceiving unit.
  • the communication device 1100 may be a terminal device, may also be a device in a terminal device, and may also be a device having a terminal device function.
  • the communications apparatus 1100 may perform related operations of the terminal device in the above-mentioned embodiments shown in FIG. 6 to FIG. 9 .
  • the communication unit 1101 is used to receive the first configuration information from the network device; the processing unit 1102 is used to use the multi-panel simultaneous transmission mode according to the first configuration information to communicate Unit 1101 performs uplink transmission.
  • the processing unit 1102 and the communication unit 1101 can be obtained by referring to related descriptions in the embodiments shown in FIG. 6 to FIG. 9 .
  • the communication device 900 may be a network device, may also be a device in the network device, and may also be a device having a network device function.
  • the communications apparatus 1100 may perform related operations of the network device in the above embodiments shown in FIG. 6 to FIG. 9 .
  • the processing unit 1102 is configured to configure resources corresponding to the multi-panel simultaneous transmission mode for the terminal device;
  • the communication unit 1101 is configured to send the first configuration information to the terminal device.
  • the terminal device receives the first configuration information from the network device.
  • the communication device 1200 shown in FIG. 12 may include a processor 1201 and an interface circuit 1202 .
  • the processor 1201 and the interface circuit 1202 are coupled to each other.
  • the interface circuit 1202 may be an interface circuit or an input/output interface.
  • the communication device 1200 may further include a memory 1203 for storing instructions executed by the processor 1201 or storing input data required by the processor 1201 to execute the instructions or storing data generated by the processor 1201 after executing the instructions.
  • the communication device 1200 may be a terminal device: the interface circuit 1202 is used to execute S600 and S602 in FIG. 6, S702 in FIG. 7, S800, S802 and S803 in FIG. 8, and S901 in FIG. 9; the processor 1201 Execute S603 in FIG. 6 , S703 in FIG. 7 , S804 and S805 in FIG. 8 , and S902 in FIG. 9 .
  • the communication device 1200 may be a network device: the interface circuit 1202 is configured to execute S600 and S602 in FIG. 6 , S702 in FIG. 7 , S800, S802 and S803 in FIG. 8 , and S901 in FIG. 9 ; the processor 1201 Execute S601 in FIG. 6 , S701 in FIG. 7 , S801 in FIG. 8 , and S901 in FIG. 9 .
  • the chip of the terminal device implements the functions of the terminal device in the above method embodiment.
  • the chip receives information from other modules in the terminal device (such as radio frequency modules or antennas), which is sent by the network device to the terminal device; or, the chip sends information to other modules in the terminal device (such as radio frequency modules or antennas) , the information is sent from the terminal device to the network device.
  • the chip of the network device realizes the functions of the network device in the above-mentioned method embodiment.
  • the chip receives information from other modules (such as radio frequency modules or antennas) in the network equipment, and the information is sent by the terminal equipment to the network equipment; or, the chip sends information to other modules (such as radio frequency modules or antennas) in the network terminal equipment Information, which is sent by the network terminal equipment to the terminal equipment.
  • the processor in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by means of a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only Memory, registers, hard disk, removable hard disk, compact disc read-only memory (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in a network device or a terminal device. Certainly, the processor and the storage medium may also exist in the network device or the terminal device as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions. When the computer program or instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer program or instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website, computer, A server or data center transmits to another website site, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a digital video disk; or it may be a semiconductor medium, such as a solid state disk.
  • the computer readable storage medium may be a volatile or a nonvolatile storage medium, or may include both volatile and nonvolatile types of storage media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种基于多面板的上行发送方法及相关装置,可以支持终端设备使用多个面板同时进行上行发送。该方法可包括:网络设备通过配置信息,为终端设备配置多面板同时发送模式对应的资源,终端设备根据该资源并采用多面板同时发送模式进行上行发送,通过配置资源支持多面板同时进行上行发送。该方法还可包括:网络设备通过指示信息,指示终端设备采用多面板同时发送模式,从而与其他发送模式进行区分。

Description

基于多面板的上行发送方法及相关装置
本申请要求于2022年1月7日提交中国专利局、申请号为202210018484.7、申请名称为“基于多面板的上行发送方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种基于多面板的上行发送方法及相关装置
背景技术
在低频或中频通信系统中,发送端可以全向发送信号或者通过一个较宽的角度发送信号。而在高频通信系统中,得益于较小的载波波长,发送端和接收端可以布置有很多天线阵子构成的天线阵列,发送端以一定波束赋形权值发送信号,使信号形成具有空间指向性的波束,接收端用天线阵列以一定波束赋形权值进行接收,可以提高信号在接收端的接收功率,对抗路径损耗。信号按特定方向传播的技术可以称为波束赋形或波束成形或形成波束等。
在高频通信系统中,用户设备(user equipment,UE)可布置多个天线面板,简称面板(panel),以覆盖多个不同的方向。目前,对上行发送而言,UE可在一个时刻使用一个面板进行上行发送,例如,对于物理上行控制信道(physical uplink control channel,PUCCH)和/或物理上行共享信道(physical uplink shared channel,PUSCH)的重复发送,UE可使用多个面板并采用时分方式发送,即一个时刻使用面板A进行上行发送,另一个时刻使用面板B进行上行发送。
UE使用多个面板同时进行上行发送,例如同时使用面板A和面板B进行上行发送,有提升传输容量和兼具可靠性的优点。但是如何支持UE使用多个面板同时进行上行发送是亟待解决的技术问题。
发明内容
本申请实施例提供一种基于多面板的上行发送方法及相关装置,可以支持终端设备使用多个面板同时进行上行发送,从而提升传输容量和可靠性。
第一方面,本申请提供一种基于多面板的上行发送方法,该方法可以由终端设备或终端设备中的模块执行。该方法包括:接收第一配置信息,第一配置信息用于配置多面板同时发送模式对应的资源;根据第一配置信息配置的资源,并采用多面板同时发送模式进行上行发送。
可见,网络设备为终端设备配置多面板同时发送模式对应的资源,以支持终端设备使用多个面板同时进行上行发送,从而提升传输容量和可靠性。
在一种可能的实现方式中,上述第一配置信息用于配置第一上行探测参考信号(sounding reference signal,SRS)资源集合组,第一SRS资源集合组包括多个SRS资源集合,这多个SRS资源集合与多个面板具有关联关系,这多个面板用于同时进行上行发送,一个SRS资源集合对应于多个面板中的一个面板。第一SRS资源集合组所包括的SRS资源集合用于支持终端设备实现多面板同时发送。
可选的,接收第二指示信息,第二指示信息用于指示第一SRS资源集合组的组标识,以便使用第一SRS资源集合组所包括的SRS资源集合,并采用多面板同时发送模式进行上行发送。
在另一种可能的实现方式中,上述第一配置信息用于配置多个SRS资源集合,这多个SRS资源集合与多个面板具有关联关系,这多个面板用于同时进行上行发送,一个SRS资源集合对应于多个面板中的一个面板。这多个SRS资源集合用于支持终端设备实现多面板同时发送。
可选的,上述第一配置信息配置的SRS资源集合中配置有面板标识,以将多个SRS资源集合与多个面板关联。或,上述第一配置信息还用于配置SRS资源集合与面板标识之间的关联关系,以将多个SRS资源集合与多个面板关联。
在一种可能的实现方式中,接收第二配置信息,第二配置信息用于配置PUSCH的时域资源,若接收到指示多个上行波束的第一指示信息,且PUSCH的时域资源不包括重复标识,那么可确定出可采用多面板同时发送模式;若接收到指示多个上行波束的第一指示信息,且PUSCH的时域资源包括重复标识,那么可确定出可采用多面板分时发送模式。
可见,在接收到指示多个上行波束的指示信息时,通过PUSCH的时域资源是否包括重复标识,可对多面板同时发送模式和多面板分时发送模式进行区分。
可选的,若接收到指示多个上行波束的第一指示信息,且PUSCH的时域资源中的重复标识指示为“不重复”,那么可确定出可采用多面板同时发送模式。
在另一种可能的实现方式中,接收第一指示信息,第一指示信息包括SRS资源指示字段,当SRS资源指示字段所指示的SRS资源包括同发标识时,那么可确定出可采用多面板同时发送模式,以便与其他发送模式进行区分。
在又一种可能的实现方式中,接收第一指示信息,第一指示信息包括多个SRI字段,一个SRI字段指示一个上行波束或一个面板上行发送的波束,第一指示信息还包括同发指示字段,当同发指示字段的取值用于指示多个SRI字段所指示的多个上行波束为同时发送时,那么可确定出采用多面板同时发送模式。
在又一种可能的实现方式中,接收第一指示信息,第一指示信息包括天线端口字段,当天线端口字段的取值指示多面板同时发送模式时,那么可确定出可采用多面板同时发送模式,以便与其他发送模式进行区分。
可选的,上述天线端口字段还指示天线端口集,天线端口集包括多个天线端口,终端设备根据其面板能力,例如各个面板支持的天线端口数,在多个天线端口中确定用于同时发送的多个面板中每个面板对应的天线端口,以便使用各个面板对应的天线端口同时进行上行发送。
在一种可能的实现方式中,为了不超过相关规定对终端设备的总发送功率的限定,在多面板同时发送模式下,确定用于同时发送的多个上行波束的发送功率。例如,确定用于同时发送的多个面板,并确定用于同时发送的多个上行波束的发送功率,一个面板对应一个上行波束。多个上行波束的发送功率的总和不超过相关规定。
在一种可能的实现方式中,接收第三配置信息,第三配置信息用于配置上述多个上行波束在多面板同时发送模式下对应的功控参数集合,进而可确定出多个上行波束的发送功率,从而避免多个上行波束的总发送功率超过相关限定。
在另一种可能的实现方式中,接收第三配置信息,第三配置信息用于配置针对多面板分时发送模式的多套功控参数集合;一套功控参数集合包括多个上行波束对应的功控参数集合,在确定用于同时发送的多个上行波束的发送功率时,根据接收的控制信令进行确定。该控制信令用于指示多套功控参数集合中的至少一套功控参数集合,根据至少一套功控参数集合,确定用于同时发送的多个上行波束的发送功率。
在又一种可能的实现方式中,在确定用于同时发送的多个上行波束的发送功率时,根据 功率偏移值进行确定。其中,功率偏移值为相对于多面板分时发送模式下的发送功率的偏移值。
第二方面,本申请提供一种基于多面板的上行发送方法,该方法可以由网络设备或网络设备中的模块执行。该方法包括:确定并发送第一配置信息,第一配置信息用于配置多面板同时发送模式对应的资源。
可见,网络设备为终端设备配置多面板同时发送模式对应的资源,以支持终端设备使用多个面板同时进行上行发送,从而提升传输容量和可靠性。
在一种可能的实现方式中,上述第一配置信息用于配置第一SRS资源集合组,第一SRS资源集合组包括多个SRS资源集合,这多个SRS资源集合与多个面板具有关联关系,这多个面板用于同时进行上行发送,一个SRS资源集合对应于多个面板中的一个面板。第一SRS资源集合组所包括的SRS资源集合用于支持终端设备实现多面板同时发送。
可选的,发送第二指示信息,第二指示信息用于指示第一SRS资源集合组的组标识,以便终端设备获知第一SRS资源集合组,从而使用第一SRS资源集合组所包括的SRS资源集合,并采用多面板同时发送模式进行上行发送。
在另一种可能的实现方式中,上述第一配置信息用于配置多个SRS资源集合,这多个SRS资源集合与多个面板具有关联关系,这多个面板用于同时进行上行发送,一个SRS资源集合对应于多个面板中的一个面板。这多个SRS资源集合用于支持终端设备实现多面板同时发送。
可选的,上述第一配置信息配置的SRS资源集合中配置有面板标识,以将多个SRS资源集合与多个面板关联。或,上述第一配置信息还用于配置SRS资源集合与面板标识之间的关联关系,以将多个SRS资源集合与多个面板关联。
在一种可能的实现方式中,发送第二配置信息,第二配置信息用于配置PUSCH的时域资源,PUSCH的时域资源不包括重复标识;发送第一指示信息,第一指示信息指示多个波束。从而终端设备在接收到指示多个波束的第一指示信息,且PUSCH的时域资源不包括重复标识的情况下,可确定采用多面板同时发送模式。不限定第二配置信息与第一指示信息的发送先后顺序。
在另一种可能的实现方式中,发送第一指示信息,第一指示信息包括SRS资源指示字段,当该SRS资源指示字段所指示的SRS资源包括同发标识时,终端设备可确定采用多面板同时发送模式。
在又一种可能的实现方式中,发送第一指示信息,第一指示信息包括天线端口字段,当该天线端口字段的取值用于指示多面板同时发送模式时,终端设备可确定采用多面板同时发送模式。
可选的,天线端口字段还用于指示天线端口集,天线端口集包括多个天线端口,以便终端设备根据其面板能力,在多个天线端口中确定用于同时发送的多个面板中每个面板对应的天线端口。
在一种可能的实现方式中,发送第三配置信息,第三配置信息用于配置用于同时发送的多个上行波束在多面板同时发送模式下对应的功控参数集合,以便终端设备直接根据第三配置信息可以确定多个上行波束同时发送时的发送功率。
在另一种可能的实现方式中,发送第三配置信息,第三配置信息用于配置针对多面板分时发送模式的多套功控参数集合;一套功控参数集合包括多个上行波束对应的功控参数集合;发送控制信令,以便终端设备确定用于同时发送的多个上行波束的发送功率。该控制信令用于指示多套功控参数集合中的至少一套功控参数集合,终端设备根据至少一套功控参数集合, 可确定用于同时发送的多个上行波束的发送功率。
第三方面,本申请提供一种基于多面板的上行发送方法,该方法可以由终端设备或终端设备中的模块执行。该方法包括:接收第一指示信息,第一指示信息用于确定多面板同时发送模式;根据第一指示信息,确定采用多面板同时发送模式。
可见,通过第一指示信息,终端设备可确定采用多面板同时发送模式,以支持多个面板同时发送。
在一种可能的实现方式中,接收第二配置信息,第二配置信息用于配置PUSCH的时域资源,若第一指示信息指示多个上行波束,且PUSCH的时域资源不包括重复标识,那么可确定出可采用多面板同时发送模式;若第一指示信息指示多个上行波束,且PUSCH的时域资源包括重复标识,那么可确定出可采用多面板分时发送模式。
可见,在接收到指示多个上行波束的第一指示信息时,通过PUSCH的时域资源是否包括重复标识,可对多面板同时发送模式和多面板分时发送模式进行区分。
可选的,若第一指示信息指示多个上行波束,且PUSCH的时域资源中的重复标识指示为“不重复”,那么可确定出可采用多面板同时发送模式。
在另一种可能的实现方式中,第一指示信息包括SRS资源指示字段,当SRS资源指示字段所指示的SRS资源包括同发标识时,那么可确定出可采用多面板同时发送模式,以便与其他发送模式进行区分。
在又一种可能的实现方式中,接收第一指示信息,第一指示信息包括多个SRI字段,一个SRI字段指示一个上行波束或一个面板上行发送的波束,第一指示信息还包括同发指示字段,当同发指示字段的取值用于指示多个SRI字段所指示的多个上行波束为同时发送时,那么可确定出采用多面板同时发送模式。
在又一种可能的实现方式中,第一指示信息包括天线端口字段,当天线端口字段的取值指示多面板同时发送模式时,那么可确定出可采用多面板同时发送模式,以便与其他发送模式进行区分。
可选的,上述天线端口字段还指示天线端口集,天线端口集包括多个天线端口,终端设备根据其面板能力,例如各个面板支持的天线端口数,在多个天线端口中确定用于同时发送的多个面板中每个面板对应的天线端口,以便使用各个面板对应的天线端口同时进行上行发送。
在一种可能的实现方式中,为了不超过相关规定对终端设备的总发送功率的限定,在采用多面板同时发送模式时,确定用于同时发送的多个上行波束的发送功率。例如,确定用于同时发送的多个面板,并确定用于同时发送的多个上行波束的发送功率,一个面板对应一个上行波束。多个上行波束的发送功率的总和不超过相关规定。
第四方面,本申请提供一种基于多面板的上行发送方法,该方法可以由网络设备或网络设备中的模块执行。该方法包括:生成并发送第一指示信息,第一指示信息用于确定多面板同时发送模式。
在一种可能的实现方式中,发送第二配置信息,第二配置信息用于配置PUSCH的时域资源,PUSCH的时域资源不包括重复标识;第一指示信息指示多个波束。从而终端设备在接收到指示多个波束的第一指示信息,且PUSCH的时域资源不包括重复标识的情况下,可确定采用多面板同时发送模式。
在另一种可能的实现方式中,第一指示信息包括SRS资源指示字段,当该SRS资源指示字段所指示的SRS资源包括同发标识时,终端设备可确定采用多面板同时发送模式。
在又一种可能的实现方式中,第一指示信息包括天线端口字段,当该天线端口字段的取值用于指示多面板同时发送模式时,终端设备可确定采用多面板同时发送模式。
可选的,天线端口字段还用于指示天线端口集,天线端口集包括多个天线端口,以便终端设备根据其面板能力,在多个天线端口中确定用于同时发送的多个面板中每个面板对应的天线端口。
第五方面,本申请提供了一种通信装置,该通信装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,该通信装置还可以为芯片系统。该通信装置可执行第一方面或第三方面所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。该单元或模块可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第一方面或第三方面所述的方法以及有益效果。
第六方面,本申请提供了一种通信装置,该通信装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。其中,该通信装置还可以为芯片系统。该通信装置可执行第二方面或第四方面所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。该单元或模块可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第二方面或第四方面所述的方法以及有益效果。
第七方面,本申请提供了一种通信装置,通信装置包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如第一方面至第四方面中任一方面所述的方法。
第八方面,本申请提供了一种计算机可读存储介质,所述存储介质中存储有指令,当所述计算机程序或指令被通信装置执行时,实现如第一方面至第四方面中任一方面所述的方法。
第九方面,本申请提供一种包括指令的计算机程序产品,当通信装置读取并执行该指令时,使得通信装置执行如第一方面至第四方面中任一方面中任意一项的方法。
第十方面,本申请提供了一种通信系统,包括至少一个用于执行上述第一方面所述的方法的通信装置,以及至少一个用于执行上述第二方面所述方法的通信装置,或者,包括至少一个用于执行上述第三方面所述的方法的通信装置,以及至少一个用于执行上述第四方面所述方法的通信装置。
附图说明
图1A、图1B以及图1C是面板与射频通道之间的映射关系的示例图;
图2A是多面板分时发送模式的示例图;
图2B是多面板同时发送模式的示例图;
图3是应用本申请的系统架构的示意图;
图4是终端设备与网络设备进行通信的一种形式的示意图;
图5A和图5B是应用本申请的场景的示意图;
图6是本申请实施例一提供的基于多面板的上行发送方法的流程示意图;
图7是本申请实施例二提供的基于多面板的上行发送方法的流程示意图;
图8是本申请实施例三提供的基于多面板的上行发送方法的流程示意图;
图9是本申请实施例四提供的基于多面板的上行发送方法的流程示意图;
图10是本申请提供的一套功控参数集合的示例图;
图11是本申请实施例提供的一种通信装置的结构示意图;
图12是本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列操作或单元的过程、方法、系统、产品或设备没有限定于已列出的操作或单元,而是可选地还包括没有列出的操作或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它操作或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述对应对象的对应关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后对应对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
为了能够更好地理解本申请,首先,对本申请涉及的相关概念进行阐述。
1.波束:
波束是一种通信资源,可以分为宽波束、窄波束或其他类型波束。不同的波束可以认为是不同的资源,通过不同的波束可以发送相同或不同的信息。可选的,可以将具有相同或者类似的通信特征的多个波束视为一个波束。一个波束可以包括一个或多个天线端口,用于传输数据信道,控制信道和探测信号等。换言之,信号可以基于一个或多个天线端口发送,并基于相同的波束发送。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。例如,发送波束可以是指信号经天线发射后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
波束成形技术,使得信号可以按特定方向传播。波束成形技术可以是数字波束成形技术,模拟波束成形技术,或混合数字/模拟波束成形技术。
本申请涉及终端设备的上行波束,用于向网络设备发送信号和/或信道,信号例如SRS,信道例如PUCCH或PUSCH。
2.天线面板,简称面板(panel):
在通信系统中,发送端和接收端均布置有天线面板,天线面板上布置有很多天线阵子构成的天线阵列。本申请涉及终端设备上的面板,终端设备上可布置多个面板。
终端设备上的面板与射频通道(radio frequency,RF)之间的关系可以为固定的映射关系 (或称为绑定关系),例如图1A所示。图1A中,一个方框表示一个面板,方框中的一条斜线表示一种极化天线,射频通道1(即RF1)和射频通道2对应面板1,射频通道3和射频通道4对应面板2。一个天线端口对应一个射频通道,那么端口1和端口2对应面板1,端口3和端口4对应面板2。
终端设备上的面板与射频通道之间的关系也可以为不固定的映射关系。实际应用中,终端设备的射频通道数目可能小于面板数目,该种情况下,射频通道和面板之间的映射关系不固定,即射频通道与面板不会绑定,在基于SRS资源配置发送SRS时,终端设备可能会通过一个开关网络实现动态的射频通道至面板的映射,例如图1B和图1C所示。图1B的(1)中,端口1对应面板1;图1B的(2)中,端口2对应面板2。图1C的(1)中,端口1和端口2对应面板1;图1C的(2)中,端口1对应面板1,端口2对应面板2。由于射频通道和面板没有固定的映射关系,即天线端口与面板没有固定的映射关系,可以动态调整,因此发送SRS使用的面板和射频通道可能会发生变化。也就是说,网络设备为终端设备指示SRS资源的标识,终端设备可能无法确定用哪个面板和波束进行后续的信号传输。
3.单面板发送模式,多面板分时发送模式,多面板同时发送模式:
单面板发送模式,指的是终端设备使用一个面板进行上行发送。也可以描述为单波束发送模式。
多面板分时发送模式,应用在本申请中,指的是终端设备上的多个面板在不同的时刻进行上行发送,即一个时刻使用一个面板进行上行发送。例如,图2A中,终端设备在时刻1使用面板1对应的一个上行波束进行上行发送,在时刻2使用面板2对应的一个上行波束进行上行发送。一个面板可以对应多个上行波束,在一个时刻,使用一个面板的一个上行波束进行上行发送。多面板分时发送模式也可称为多面板轮流发送模式、多面板时分发送模式或多面板非同时发送模式等,或者简称为非同发模式、轮发模式、时分复用(time division multiplexing,TDM)等。多面板分时发送模式也可以描述为多波束分时发送模式。
多面板同时发送模式,应用在本申请中,指的是终端设备上的多个面板在同一时刻进行上行发送,即一个时刻使用多个面板进行上行发送。例如,图2B中,终端设备在时刻3使用面板1对应的一个上行波束进行上行波束,并同时使用面板2对应的一个上行波束进行上行发送。多面板同时发送模式也可称为多面板同发模式,或简称为同发模式。多面板同时发送模式是本申请提出的一种发送模式,以区分多面板分时发送模式和单面板发送模式。多面板同时发送模式也可以描述为多波束同时发送模式。
考虑到相关规定对终端设备的总发送功率的限定,本申请可确定出多面板同时发送模式下的发送功率,以确保总发送功率不超过相关限定。例如,图2B中,虚线波束表示多面板分时发送模式下的发送功率,实线波束表示多面板同时发送模式下的发送功率,面板1上实线波束的发送功率小于虚线波束的发送功率,面板2上实线波束的发送功率小于虚线波束的发送功率,两个面板上实线波束的总发送功率不超过相关限定。
4.准同位(quasi-co-location,QCL):
QCL用于表示多个资源之间具有一个或多个相同或者相类似的通信特征,对于具有同位关系的多个资源,可以采用相同或者类似的通信配置。例如,如果两个天线端口具有同位关系,则一个端口传送一个符号的信道大尺度特性可以从另一个端口传送一个符号的信道大尺度特性推断出来。大尺度特性可以包括:延迟扩展,平均延迟,多普勒扩展,多普勒频移,平均增益,接收参数,终端设备接收波束编号,发射/接收信道相关性,接收到达角,接收机天线的空间相关性,主到达角(angel-of-arrival,AoA),平均到达角,AoA的扩展等等。
其次,对本申请涉及的系统架构进行阐述。
本申请可用于第五代(5th generation,5G)系统,也可以称为新空口(new radio,NR)系统,或者第六代(6th generation,6G)系统,或者第七代(7th generation,7G)系统,或未来的其他通信系统;或者还可用于设备到设备(device to device,D2D)系统,机器到机器(machine to machine,M2M)系统、车联网(vehicle to everything,V2X)等等。
本申请可应用于图3所示的系统架构中。图3所示的通信系统可包括但不限于:一个或多个终端设备(如终端设备10),一个或多个网络设备(如网络设备20)。
其中,终端设备可包括但不限于:UE、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、用户代理或用户装置等。再比如,终端设备可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端、前述的V2X中的无线终端等等。
其中,网络设备可为具有无线收发功能的设备或可设置于该设备的芯片,该网络设备包括但不限于:演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、网络设备控制器(base station controller,BSC)、网络设备收发台(base transceiver station,BTS)、家庭网络设备(例如,home evolved Node B,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、收发节点(transmission and reception point,TRP)、传输点(transmission point,TP)等。网络设备还可以为5G、6G甚至7G系统中使用的设备,如NR系统中的下一代节点(next-generation node B,gNB);还可以为V2X或者智能驾驶场景中的路侧单元(road side unit,RSU)。
图4所示的通信系统中一个网络设备和一个终端设备之间进行通信的一种形式,如图4所示,终端设备10包括处理器101、存储器102和收发器103,收发器103包括发射机1031、接收机1032和天线1033。网络设备20包括处理器201、存储器202和收发器203,收发器203包括发射机2031、接收机2032和天线2033。接收机1032可以用于通过天线1033接收配置信息和/或指示信息,发射机1031可以用于通过天线1033向网络设备20发送信号和/或信道。发射机2031可以用于通过天线2033向终端设备10发送配置信息和/或指示信息,接收机2032可以用于通过天线2033接收终端设备10发送的信号和/或信道。其中,信道可以包括物理上行共享信道(physical uplink shared channel,PUSCH),物理上行控制信道(physical uplink control channel,PUCCH),物理信道包括随机接入信道(random access channel,PRACH)等;信号可以包括上行探测参考信号(sounding reference signal,SRS),解调参考信号(de-modulation reference signal,DMRS),相位噪声跟踪信号(phase noise tracking reference signal,PTRS),上行定位信号(uplink positioning reference signal)等。本申请涉及的信号主要是SRS,涉及的信道主要是PUCCH和PUSCH。
在本申请中,终端设备可布置多个面板,例如图2A和图2B所示的两个面板。终端设备使用多个面板同时进行上行发送,有提升传输容量和兼具可靠性的优点。目前协议不支持终端设备使用多个面板同时进行上行发送,因此,如何支持终端设备使用多个面板同时进行上行发送是亟待的技术问题。鉴于此,本申请提供一种基于多面板的上行发送方法及相关装置,可以灵活地支持多面板同时进行上行发送,从而提升传输容量和可靠性。
本申请可以应用于如下两种场景。
场景一,小区间传输场景:
小区间传输场景,指的是终端设备向多个小区的多个TRP同时进行上行发送。例如,可参阅图5A所示,终端设备使用两个上行波束进行上行发送,一个上行波束针对当前服务小区的TRP,另一个上行波束针对另一个小区的TRP。其中一个上行波束QCL到一个同步信号块(synchronization signal block,SSB)的参考信号,该SSB属于另一个小区,可通过物理小区标识(physical cell identifier,PCI)或其他逻辑标识,将另一个小区与当前服务小区进行区分。其中,SSB由主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)和物理广播信道(physical broadcast channel,PBCH)构成。
场景二,小区内传输场景:
小区内传输场景,指的是终端设备向同一小区的多个TRP同时进行上行发送。例如,可参阅图5B所示,终端设备使用两个上行波束与同一小区的基站天线进行通信。实际实现中,例如,基站可采用天线拉远技术,即天线为分布式部署,终端设备可采用两个上行波束同时向两个不同方向布局的基站天线进行通信。再例如,环境中存在强反射的通信路径,如图5B所示,终端设备可以同时向两个不同方向发送,基站进行接收。
本申请描述的系统架构以及应用场景是为了更加清楚的说明本申请的技术方案,并不构成对于本申请提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
再次,对本申请的技术方案进行阐述。从终端设备与网络设备交互的角度对本申请的技术方案进行阐述。
为了支持终端设备使用多个面板同时进行上行发送,网络设备可为终端设备配置多面板同时发送模式对应的资源。本申请实施例一阐述网络设备为终端设备配置多面板同时发送模式对应的资源。
请参阅图6,是本申请实施例一提供的基于多面板的上行发送方法的流程示意图,如图6所示,该方法可以包括但不限于以下步骤:
可选的,S601之前还包括S600,终端设备向网络设备发送能力信息。相应的,网络设备接收来自终端设备的能力信息。
其中,能力信息用于显示或隐式地指示终端设备上面板的状态,以便网络设备可以获知终端设备上面板的状态。
能力信息显示指示终端设备上面板的状态,例如指示面板的数量,或指示各个面板对应的能力(例如支持的天线端口数等)。示例性的,能力信息显示指示面板1对应的天线端口数为1,面板2对应的天线端口数为2。可选的,还显示指示各个面板是否可以与其他面板同时使用,例如,指示面板1可以与面板2同时使用,面板3不可以与其他面板同时使用。
能力信息隐式指示终端设备上面板的状态,例如能力信息为能力值集合(capability value set),不同的set对应不同的面板能力。例如,能力信息包括2个capability value set,一个capability value set对应一个面板,一个capability value set指示对应的面板支持单天线端口,另一个capability value set指示对应的面板支持双天线端口。实际应用中,终端设备可装配不止两个面板,例如3个面板,可通过3个capability value set指示三个面板支持的天线端口数,其中两个面板支持单天线端口,另一个面板支持双天线端口。可选的,capability value set还可以指示对应的面板是否可以与其他面板同时使用。
S601,网络设备为终端设备配置多面板同时发送模式对应的资源。
网络设备可根据终端设备上报的能力信息,为终端设备配置多面板同时发送模式对应的资源,以支持终端设备使用多面板同时发送模式进行上行发送。或,网络设备可自主为终端设备配置多面板同时发送模式对应的资源。可选的,网络设备还可为终端设备配置多面板分时发送模式对应的资源,和/或,单面板发送模式对应的资源。网络设备针对这三种发送模式可配置不同的资源,以区分不同的发送模式。本申请列举的三种发送模式用于举例,实际应用中可能还存在其他类型的发送模式。
S602,网络设备向终端设备发送第一配置信息。相应的,终端设备接收来自网络设备的第一配置信息。
网络设备在为终端设备配置了多面板同时发送模式对应的资源的情况下,向终端设备发送第一配置信息,以便终端设备获知该资源,可基于该资源采用多面板同时发送模式进行上行发送。其中,第一配置信息用于配置多面板同时发送模式对应的资源。
在一种实现方式中,第一配置信息用于配置第一SRS资源集合组(SRS resource set group),第一SRS资源集合组包括多个SRS资源集合,多个SRS资源集合与多个面板具有关联关系,一个SRS资源集合对应多个面板中的一个面板。其中,第一SRS资源集合组是本申请新定义的一个SRS资源集合组,为了与其他SRS资源集合组进行区分,第一SRS资源集合组的具体名称在本申请中不作限定。可选的,一个SRS资源集合对应多个面板中的一种面板,一种面板具有相同的某些参数或能力,例如天线端口数等。
在另一种实现方式中,第一配置信息用于配置多个SRS资源集合,多个SRS资源集合与多个面板具有关联关系,一个SRS资源集合对应多个面板中的一个面板。可选的,一个SRS资源集合对应多个面板中的一种面板,一种面板具有相同的某些参数或能力,例如天线端口数等。
上述两种实现方式中,多个SRS资源集合与多个面板之间的关联关系,可通过如下几种方式中的一种进行配置。
方式一,第一配置信息配置的SRS资源集合中配置有panel标识(identifier,ID)或第一SRS资源集合组包括的SRS资源集合中配置有panel ID,指示SRS资源集合用于该面板ID所标识的面板。示例性的,第一配置信息配置有SRS资源集合1和SRS资源集合2,SRS资源集合1配置有panel 1,SRS资源集合2配置有panel 2,进而指示SRS资源集合1用于panel1,SRS资源集合2用于panel 2,即SRS资源集合1关联panel 1,SRS资源集合2关联panel2。
方式二,第一配置信息还用于配置SRS资源集合ID与panel ID之间的关联关系。示例性的,第一配置信息可表示为{第一SRS资源集合ID{{SRS资源集合1,panel 1},{SRS资源集合2,panel 2}}}。
方式三,第一配置信息配置的SRS资源集合中配置有capability value set ID或第一SRS资源集合组包括的SRS资源集合中配置有capability value set ID。一个capability value set ID对应一个panel,即标识一个panel。通过capability value set ID可以间接将SRS资源集合与panel进行关联。示例性的,SRS资源集合1配置有capability value set 1,假设capability value set 1对应于panel 1,那么SRS资源集合1关联于panel 1。
方式四,第一配置信息还用于配置SRS资源集合与capability value set ID之间的关联关系。示例性的,第一配置信息可表示为{第一SRS资源集合ID{{SRS资源集合1,capability value set 1},{SRS资源集合2,capability value set 2}}}。假设capability value set 1对应于panel 1,{SRS资源集合1,capability value set 1}可表示SRS资源集合1关联于panel 1。
上述多个SRS资源集合与多个面板之间的关联关系可以是动态的,例如某一次配置{{SRS资源集合1,panel 1},{SRS资源集合2,panel 2}},下一次配置{{SRS资源集合1,panel 2},{SRS资源集合2,panel 3}}。该关联关系可以是多个SRS资源集合与终端设备的全部或部分面板之间的关联关系,例如终端设备可装配3个面板,该关联关系可以是2个SRS资源集合与2个面板之间的关联关系,或3个SRS资源集合与3个面板之间的关联关系。在本申请中,多个面板指的是可以同时进行上行发送的多个面板,或描述为采用多面板同时发送模式进行上行发送的多个面板。上述panel ID用于举例,panel ID也可以描述为其他用于表示终端设备天线面板,或者天线能力信息的标识,本申请不做限定。
上述四种方式用于举例,实际还可以采用其他方式对上述关联关系进行配置或指示。上述方式二和方式四,还可以通过其他配置信息进行配置。
第一配置信息可通过无线资源控制(radio resource control,RRC)信令发送,即第一配置信息通过RRC信令配置,或携带在RRC信令中。或,第一配置信息可通过高层参数发送,即第一配置信息通过高层参数配置,或携带在高层参数中。
可选的,在网络设备为终端设备配置第一SRS资源集合组的情况下,网络设备可通过下行控制指示(downlink control indication,DCI)对第一SRS资源集合组的组ID进行指示。例如,DCI中的SRS资源指示字段可以指示第一SRS资源集合组的组ID,以便终端设备根据该组ID获取第一SRS资源集合组。可选的,终端设备可根据该组ID确定采用多面板同时发送模式进行上行发送。在本申请中,将用于指示第一SRS资源集合组的组ID的指示信息称为第二指示信息。
S603,终端设备根据第一配置信息配置的资源,并采用多面板同时发送模式进行上行发送。
终端设备可根据上述关联关系,确定多个面板,即确定采用哪几个面板,或哪几种能力的面板同时进行上行发送。进一步的,终端设备还可根据上述关联关系,确定出多个面板对应的多个上行波束,一个面板对应一个上行波束,这多个上行波束用于同时进行上行发送。即,终端设备确定同时进行上行发送的各个面板对应的上行波束。例如,通过SRS资源集合与波束之间的关联关系,确定同时进行上行发送的各个上行波束。
终端设备接收到第一配置信息,可以获知多面板同时发送模式对应的资源,在接收到用于指示该发送模式的指示信息时,可基于该资源,并采用该发送模式进行上行发送,即实现多面板同时进行上行发送。其中,用于指示多面板同时发送模式的指示信息在实施例二进行阐述。
在图6所示的实施例一中,网络设备为终端设备配置多面板同时发送模式对应的资源,以支持终端设备采用多面板同时发送模式进行上行发送。
为了将多面板分时发送模式、多面板同时发送模式、单面板发送模式进行区分,网络设备可指示终端设备采用多面板同时发送模式。本申请实施例二阐述终端设备如何确定出采用多面板同时发送模式。
请参阅图7,是本申请实施例二提供的基于多面板的上行发送方法的流程示意图,如图7所示,该方法可以包括但不限于以下步骤:
S701,网络设备生成第一指示信息,第一指示信息用于确定多面板同时发送模式。
网络设备可根据终端设备上报的能力信息,生成第一指示信息,即在终端设备支持多面板同时发送模式的情况下,生成第一指示信息。
S702,网络设备向终端设备发送第一指示信息。相应的,终端设备接收来自网络设备的第一指示信息。
S703,终端设备根据第一指示信息,确定采用多面板同时发送模式。
本申请中将用于确定多面板同时发送模式的指示信息称为第一指示信息,根据不同的第一指示信息,实施例二可通过以下几种方式中的一种实现。
方式1,在第一指示信息指示多个上行波束,且PUSCH的时域资源不包括重复标识的情况下,或者重复标识配置为“不开启(off)”的情况下,或者,重复标识指示为“不重复”的情况下,终端设备确定采用多面板同时发送模式。
网络设备为终端设备配置PUSCH的时域资源,并向终端设备发送第二配置信息,第二配置信息用于配置PUSCH的时域资源。其中,PUSCH的时域资源可包括重复标识(repetition),或不包括repetition。或,重复标识配置为“开启(on)”或“off”。或,重复标识指示为“不重复”或“重复”。第二配置信息可通过RRC信令配置。第二配置信息与第一配置信息可以携带在同一配置信息中,也可以携带在不同的配置信息中。
在第一指示信息指示多个上行波束,且PUSCH的时域资源不包括repetition的情况下,终端设备可确定采用多面板同时发送模式,即使用指示的多个上行波束同时进行上行发送。其中,第一指示信息可以是DCI,DCI指示多个上行波束。示例性的,DCI指示两个上行波束,且PUSCH的时域资源不包括repetition,终端设备可使用这两个上行波束同时进行上行发送。
在第一指示信息指示多个上行波束,且PUSCH的时域资源包括repetition的情况下,终端设备可确定采用多面板分时发送模式,即使用指示的多个上行波束分时进行上行发送。示例性的,DCI指示两个上行波束,且PUSCH的时域资源不包括repetition,终端设备可使用这两个上行波束在不同的时刻进行上行发送,例如在时刻1使用上行波束1,在时刻2使用上行波束2。
方式2,第一指示信息包括SRI字段,在SRI字段所指示的SRI对应的SRS资源包括同发标识时,终端设备确定采用多面板同时发送模式。
第一指示信息可以是DCI中的SRS资源指示字段,SRS资源指示字段用于SRS资源,SRS资源存在同发标识(flag),终端设备确定采用多面板同时发送模式。
方式3,第一指示信息包括多个SRI字段,一个SRI字段指示一个上行波束或一个面板上行发送的波束,例如2个SRI字段指示2个上行波束或2个面板上行发送的波束。第一指示信息还包括同发指示字段,同发指示字段的取值用于指示多个SRI字段所指示的多个上行波束为同时发送。
第一指示信息可以是DCI,DCI可包括多个SRI字段,例如2个SRI字段。DCI还包括同发指示字段,该字段可以是DCI中新增的一个比特,例如该比特的取值为“1”时,指示多个上行波束为同时发送;取值为“0”,指示多个上行波束为分时发送。或,该字段复用现有字段,其特殊取值用于指示多个上行波束为同时发送。
可选的,在DCI包括多个SRI字段的情况下,终端设备还可以根据这多个SRI字段确定出用于同时发送的多个上行波束。
方式4,第一指示信息包括天线端口字段,天线端口字段的取值指示多面板同时发送模式。
在一种可能的实现方式中,第一指示信息可以是DCI中的天线端口(antenna ports)字段,天线端口的特定取值用于指示多面板同时发送模式。示例性的,可参见下表1,表1展示各 个位域映射的索引(Bit field mapped to index)下的层(layer)数和传输预编码矩阵索引(transmission precoding matrix index,TPMI),还展示部分索引对应的同时多面板上行传输(simultaneous multi-panel UL transmission,SMPUT)。
Figure PCTCN2023070945-appb-000001
表1
表1中,Bit field mapped to index可表示天线端口字段的取值,SMPUT可表示多面板同时发送模式,SMPUT用于举例,实现中可能采用其他标识用于指示多面板同时发送模式。表1中加粗部分为新增部分,这部分中加粗的取值即为特定的取值,可指示多面板同时发送模式,特定取值所指示的层数与TPMI的组合用于举例。例如,天线端口索引为10,指示多面板同时发送模式,并同时指示支持的层数为1层,TPMI为2。需要说明的是,表1用于举例。
表1利用天线端口字段的预留取值指示多面板同时发送模式,也可以新定义一个表格,该表格包括天线端口字段的取值,以及取值可指示多面板同时发送模式。天线端口字段不仅可以指示多面板同时发送模式,还可以指示用于同时发送的天线端口。
可选的,该天线端口字段指示包括多个天线端口的天线端口集,终端设备根据其面板能力,例如终端设备上各个面板支持的天线端口数,从天线端口集中确定出多个面板中每个面板对应的天线端口。例如,天线端口集包括port0,1,2,3,终端设备装配有两个面板,面板1最大支持2个port,面板2最大支持4个port,那么终端设备确定面板1对应port0和port1,面板2对应port0,1,2,3,即在面板1上可采用port0和port1进行上行发送,同时在面板2可上采用port0,1,2,3进行上行发送。可以理解的是,通过一个天线端口字段指示的天线端口,可用于多个面板同时进行上行发送。当指示的天线端口数超过某个面板支持的最大天线端口数时,该面板默认按照最大天线端口数发送,默认采用port ID最小的port。
可选的,表1和新定义的表格,可支持一个天线端口字段对应多个天线端口指示信息。例如,天线端口集包括port0,1,2,3,终端设备装配有两个面板,面板1最大支持2个port,面板2最大支持2个port,那么终端设备默认在面板1上采用port0和port1进行上行发送,同时默认在面板2上采用port3和port4进行上行发送。
在另一种可能的实现方式中,第一指示信息可以是RRC信令,RRC信令用于配置天线端口字段的取值用于指示多面板同时发送模式。例如,RRC信令可用于配置表1中的取值为8时,指示多面板同时发送模式。将现有的表与RRC信令结合,以指示多面板同时发送模式。
上述方式1至方式4用于举例,第一指示信息还可通过其他方式实现。
可选的,网络设备向终端设备发送端口指示信息,终端设备根据该端口指示信息和各个 面板支持的天线端口数,可确定各个面板同时发送时采用的天线端口。该端口指示信息可以携带在DCI中。当指示的天线端口数超过某个面板支持的最大天线端口数时,该面板默认按照最大天线端口数发送,默认采用port ID最小的port。例如,DCI指示port0,1,2,3,终端设备装配有两个面板,面板1最大支持2个port,面板2最大支持4个port,那么终端设备在面板1上可采用port0和port1进行上行发送,同时在面板2可上采用port0,1,2,3进行上行发送。
在图7所示的实施例二中,终端设备通过第一指示信息,可确定采用多面板同时发送模式,以区分多面板分时发送模式和单面板发送模式。
图6所示的实施例一与图7所示的实施例二可结合构成实施例三,实施例三所示的流程图可参阅图8所示,实施例三省略与实施例二、实施例一相同或类似的部分。图8所示的流程可以包括但不限于:
可选的,S800,终端设备向网络设备发送能力信息。相应的,网络设备接收来自终端设备的能力信息。
S801,网络设备为终端设备配置多面板同时发送模式对应的资源,生成第一指示信息。
S802,网络设备向终端设备发送第一配置信息。相应的,终端设备接收来自网络设备的第一配置信息。
S803,网络设备向终端设备发送第一指示信息。相应的,终端设备接收来自网络设备的第一指示信息。
不限定S802与S803执行的先后顺序,可以同时执行,或先执行S802再执行S803,或先执行S803再执行S802。
S804,终端设备根据第一指示信息,确定采用多面板同时发送模式。
S805,终端设备根据第一配置信息配置的资源,并采用多面板同时发送模式进行上行发送。
在图8所示的实施例三中,终端设备利用多面板同时发送模式对应的资源,并在确定出多面板同时发送模式的情况下,采用多面板同时发送模式进行上行发送。
在多面板同时发送模式下,为了终端设备的总发送功率不超过相关限定,终端设备可确定多面板同时发送模式下,用于同时发送的多个上行波束的发送功率,一个面板对应一个上行发送波束。本申请实施例四阐述终端设备如何确定用于同时发送的多个上行波束的发送功率。确定用于同时发送的多个上行波束的发送功率,也可以描述为确定用于同时发送的多个面板分别对应的上行波束的发送功率,或确定用于同时发送的多个面板,并确定多个面板对应的多个上行波束等。
请参阅图9,是本申请实施例四提供的基于多面板的上行发送方法的流程示意图,如图9所示,该方法可以包括但不限于以下步骤:
S901,网络设备向终端设备发送第三配置信息。相应的,终端设备接收来自网络设备的第三配置信息。其中,第三配置信息用于配置多套功控参数集合。
一对上行波束对应一套功控参数集合,在终端设备支持两个面板同时发送的情况下,一套功控参数集合包括第一上行波束对应的功控参数集合和第二上行波束对应的功控参数集合,第一上行波束和第二上行波束构成一对上行波束。例如,一套功控参数集合包括上行波束1对应的功控参数集合和上行波束2对应的功控参数集合。第一上行波束对应的功控参数集合用于第一上行波束进行上行发送,可以包括各种上行信号/信道对应的功控参数,例如包括 SRS对应的功控参数,PUCCH对应的功控参数,和PUSCH对应的功控参数。同理第二上行波束对应的功控参数集合。一套功控参数集合的示例图可参见图10所示。其中,SRS对应的功控参数用于确定使用第一上行波束发送SRS的发送功率,SRS对应的功控参数可包括标称功率(P0)、路径损耗补偿因子(alpha)、路径损耗参考信号标识(pathloss RS ID)和闭环功控索引(close loop index)中的一种或多种。同理PUCCH对应的功控参数和PUSCH对应的功控参数。
其中,第一上行波束和第二上行波束的波束标识可以是SSB index,CSI-RS资源ID、SRS资源标识、SRI、或SRS资源集合ID等。上行波束可利用传输配置指示(transmission configuration indication,TCI)状态(state)进行指示,例如利用“joint TCI state”进行指示,或利用“上行(uplink,UL)TCI state”进行指示。
第三配置信息具体用于配置各个上行波束对在多面板同时发送模式下的功控参数集合,以及在多面板分时发送模式下的功控参数集合。可以理解的是,第三配置信息配置了上行波束对、发送模式以及功控参数集合之间的对应关系,该对应关系可参见下表2所示。
Figure PCTCN2023070945-appb-000002
表2
表2中,上行波束对1对应2套功控参数集合,其中一套功控参数集合用于多面板同时发送模式,即用于上行波束1和上行波束2同时发送信号和/或信道;另一套功控参数集合用于多面板分时发送模式,即用于上行波束1和上行波束2分时发送信号和/或信道。同理上行波束对2。由表2可知,同一上行波束可以关联两套功控参数集合,分别用于两种发送模式。需要说明的是,表2用于举例和便于理解,实际实现中可能不会采用表格的形式展示配置之间的逻辑关系。
其中,第三配置信息可以由RRC信令承载。或,多套功控参数集合由高层参数承载,上行波束对在多面板同时发送模式下的功控参数集合,以及在多面板分时发送模式下的功控参数集合进一步由RRC信令承载。可以理解为,RRC信令配置同一上行波束可以关联两套功控参数集合,一套用于多面板同时发送模式,一套用于多面板分时发送模式。
S902,终端设备根据第三配置信息,确定用于同时发送的多个上行波束的发送功率。
终端设备在确定采用多面板同时发送模式,并确定出同时进行上行发送的多个上行波束的情况下,根据第三配置信息,确定出这多个上行波束对应的功控参数集合,进而确定出这多个上行波束的发送功率。示例性的,终端设备确定出同时进行PUSCH发送的两个上行波束分别为上行波束1和上行波束2,结合表2,确定出上行波束1对应的功控参数集合和上行 波束2对应的功控参数集合,从上行波束1对应的功控参数集合中获取PUSCH对应的功控参数,根据该功控参数确定发送PUSCH的发送功率1,并使用上行波束1以及发送功率1发送PUSCH;从上行波束2对应的功控参数集合中获取PUSCH对应的功控参数,根据该功控参数确定发送PUSCH的发送功率2,并使用上行波束2以及发送功率2发送PUSCH。
终端设备在确定采用多面板分时发送模式的情况下,根据第三配置信息,确定出多个上行波束对应的功控参数集合,进而确定出发送功率。
在图9所示的实施例四中,终端设备根据上行波束对在多面板同时发送模式下的功控参数集合,以及在多面板分时发送模式下的功控参数集合,确定出同时进行上行发送的多个上行波束的发送功率,以避免超过相关发送功率的限定。
需要说明的是,实施例四以终端设备支持两个面板同时发送为例,实际实现中终端设备可能支持两个以上的面板同时发送,对于两个以上面板同时发送的情况,可基于实施例四进行扩展,例如支持3个面板同时发送,上述上行波束对可改成上行波束集合,上行波束集合包括3个上行波束,一套功控参数集合包括第一个上行波束对应的功控参数集合,第二个上行波束对应的功控参数集合以及第三个上行波束对应的功控参数集合。
实施例四是终端设备确定同时进行上行发送的多个上行波束的发送功率的一种实现方式,还可以通过如下几种方式中的一种方式实现。
方式(1),第三配置信息配置用于配置多套功控参数集合,这多套功控参数集合默认针对多面板分时发送模式。网络设备可通过控制信令,例如媒体接入控制-控制元素(media access control-control element,MAC-CE)信令或RRC信令,指示终端设备激活至少一套功控参数集合,这至少一套功控参数集合用于多面板同时发送模式。可选的,该控制信令还用于关联功控参数集合与上行波束,例如关联功率参数集合1与上行波束1。示例性的,MAC-CE信令中可携带功控参数集合的ID,用于指示激活哪套功控参数集合。终端设备根据功控参数集合的ID,确定同时进行上行发送的多个上行波束的发送功率。
方式(2),终端设备根据功率偏移值,确定同时进行上行发送的多个上行波束的发送功率。其中,功率偏移值为相对于多面板分时发送模式下的发送功率的偏移值,可以是协议预定义的或预配置的。例如上行波束1和上行波束2在多面板分时发送模式下的发送功率分为20dBm和23dBm,功率偏移值为3dBm,那么上行波束1和上行波束2在多面板同时发送模式下的发送功率为17dBm和20dBm。或者,所述功率偏移值可以是针对多个面板中的一个面板或者针对终端的一组上行波束。其中,功率偏移值也可以称为功率回退量。
可选的,网络设备针对一对上行波束配置一套功控参数集合(默认针对多面板分时发送模式),在多面板同时发送模式下,根据参数偏移值确定多面板同时发送模式对应的功控参数集合,进而确定发送功率。其中,参数偏移值为相对于多面板分时发送模式下的功控参数的偏移值。
方式(3),在配置上行波束对应的功控参数集合的情况下(针对多面板分时发送模式),网络设备向终端设备发送控制信令,例如MAC-CE信令,指示或更新某个上行波束对应的功控参数集合,以便终端设备根据该功控参数集合确定发送功率。可选的,控制信令还可以动态指示一个或多个上行波束的功率回退量,或者动态指示一个或多个天线面板对应的上行波束的功率回退量,以便可以动态地确定发送功率。
方式(1)至方式(3)用于举例,并不构成对本申请的限定。
实施例四与实施例一和/或实施例二可结合,使得多面板同时发送模式下的发送功率不超速相关发送功率的限定。对于实施例四与实施例一和/或实施例二结合的情况,不限定配置信 息发送的先后顺序,也不限定配置信息与指示信息发送的先后顺序。
为了实现本申请实施例提供的基于多面板的上行发送方法,终端设备和网络设备可以分别包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。图11和图12为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端设备或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。
图11所示的通信装置1100可包括通信单元1101和处理单元1102。通信单元1101可包括发送单元和/或接收单元,发送单元用于实现发送功能,接收单元用于实现接收功能,通信单元1101可以实现发送功能和/或接收功能。通信单元也可以描述为收发单元。
通信装置1100可以是终端设备,也可以终端设备中的装置,还可以具有终端设备功能的装置。
一种实施方式中,通信装置1100可执行上述图6至图9所示实施例中终端设备的相关操作。例如,在图6所示的实施例中,通信单元1101,用于接收来自网络设备的第一配置信息;处理单元1102,用于根据第一配置信息,并采用多面板同时发送模式,通过通信单元1101进行上行发送。其中,有关上述处理单元1102和通信单元1101更详细的描述可以参考图6至图9所示实施例中相关描述得到。
通信装置900可以是网络设备,也可以是网络设备中的装置,还可以是具有网络设备功能的装置。
一种实施方式中,通信装置1100可执行上述图6至图9所示实施例中网络设备的相关操作。例如,在图6所示的实施例中,处理单元1102用于为终端设备配置多面板同时发送模式对应的资源;通信单元1101用于向终端设备发送第一配置信息。相应的,终端设备接收来自网络设备的第一配置信息。其中,有关上述处理单元1102和通信单元1101更详细的描述可以参考图6至图9所示实施例中相关描述得到。
图12所示的通信装置1200可包括处理器1201和接口电路1202。处理器1201和接口电路1202之间相互耦合。可以理解的是,接口电路1202可以为接口电路或输入输出接口。可选的,通信装置1200还可以包括存储器1203,用于存储处理器1201执行的指令或存储处理器1201运行指令所需要的输入数据或存储处理器1201运行指令后产生的数据。
比如,所述通信装置1200可以为终端设备:接口电路1202用于执行图6中的S600和S602,图7中的S702,图8中的S800、S802和S803,图9中的S901;处理器1201执行图6中的S603,图7中的S703,图8中的S804和S805,图9中的S902。
比如,所述通信装置1200可以为网络设备:接口电路1202用于执行图6中的S600和S602,图7中的S702,图8中的S800、S802和S803,图9中的S901;处理器1201执行图6中的S601,图7中的S701,图8中的S801,图9中的S901。
当上述通信装置为应用于终端设备的芯片时,该终端设备的芯片实现上述方法实施例中终端设备的功能。该芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备的芯片实现上述方法实施例中网络设备的功能。该芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息 是终端设备发送给网络设备的;或者,该芯片向网络终端设备中的其它模块(如射频模块或天线)发送信息,该信息是网络终端设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。设备(终端设备或网络设备)发送信息时,通过芯片的接口电路输出信息;设备接收信息时,向芯片的接口电路输入信息。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、光盘只读存储器(compact disc read-only memory,CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。

Claims (59)

  1. 一种基于多面板的上行发送方法,其特征在于,所述方法包括:
    接收第一配置信息,所述第一配置信息用于配置多面板同时发送模式对应的资源;
    根据所述第一配置信息配置的资源和接收的第一指示信息,并采用所述多面板同时发送模式进行上行发送;
    其中,所述第一指示信息指示采用所述多面板同时发送模式;所述第一配置信息用于配置第一上行探测参考信号SRS资源集合组,所述第一SRS资源集合组包括多个SRS资源集合;或,所述第一配置信息用于配置多个SRS资源集合。
  2. 根据权利要求1所述的方法,其特征在于,所述多个SRS资源集合与多个面板具有关联关系,一个SRS资源集合对应于所述多个面板中的一个面板。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第二配置信息,所述第二配置信息用于配置物理上行共享信道PUSCH的时域资源;所述第二配置信息用于区分所述多面板同时发送模式或多面板分时发送模式;所述第二配置信息由RRC信令承载。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第四配置信息,所述第四配置信息用于配置单面板发送模式对应的资源。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述采用所述多面板同时发送模式进行上行发送之前,还包括:
    当所述第一指示信息指示多个上行波束,且所述PUSCH的时域资源不包括重复标识时,确定采用所述多面板同时发送模式。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述第一指示信息包括天线端口字段,所述天线端口字段用于指示所述多面板同时发送模式下的多个面板中每个面板传输所对应的传输预编码矩阵索引TPMI和层数。
  7. 根据权利要求6所述的方法,其特征在于,所述天线端口字段还指示天线端口集,所述天线端口集包括多个天线端口;
    所述采用所述多面板同时发送模式进行上行发送之前,还包括:
    根据终端设备的能力,在所述多个天线端口中确定用于同时发送的多个面板中每个面板对应的天线端口。
  8. 根据权利要求1至5任一项所述的方法,其特征在于,所述第一指示信息包括多个SRI字段,每个SRI字段指示一个上行波束。
  9. 根据权利要求8所述的方法,其特征在于,所述第一指示信息还包括同发指示字段,所述同发指示字段用于指示所述多个SRI字段所指示的多个上行波束为同时发送。
  10. 根据权利要求1至5任一项所述的方法,其特征在于,所述方法还包括:
    接收第二指示信息,所述第二指示信息用于指示所述第一SRS资源集合的组标识;
    根据所述组标识确定所述第一SRS资源集合,并确定采用所述多面板同时发送模式。
  11. 根据权利要求7至10中任一项所述的方法,其特征在于,所述采用所述多面板同时发送模式进行上行发送之前,还包括:
    确定用于同时发送的多个上行波束的发送功率,其中,一个面板对应一个上行波束。
  12. 根据权利要求11所述的方法,其特征在于,所述采用所述多面板同时发送模式进行上行发送之前,还包括:
    接收第三配置信息,所述第三配置信息用于配置所述多个上行波束在所述多面板同时发 送模式下对应的功控参数集合;
    所述确定用于同时发送的多个上行波束的发送功率,包括:
    根据所述多个上行波束在所述多面板同时发送模式下对应的功控参数集合,确定所述多个上行波束的发送功率。
  13. 根据权利要求11所述的方法,其特征在于,所述采用所述多面板同时发送模式进行上行发送之前,还包括:
    接收第三配置信息,所述第三配置信息用于配置针对多面板分时发送模式的多套功控参数集合;一套功控参数集合包括多个上行波束对应的功控参数集合;
    所述确定用于同时发送的多个上行波束的发送功率,包括:
    接收控制信令,所述控制信令用于指示所述多套功控参数集合中的至少一套功控参数集合;
    根据所述至少一套功控参数集合,确定用于同时发送的多个上行波束的发送功率。
  14. 一种基于多面板的上行发送方法,其特征在于,所述方法包括:
    确定第一配置信息,所述第一配置信息用于配置多面板同时发送模式对应的资源;
    发送所述第一配置信息;
    发送第一指示信息,所述第一指示信息用于确定所述多面板同时发送模式;
    其中,所述第一配置信息指示采用第一上行探测参考信号SRS资源集合组,所述第一SRS资源集合组包括多个SRS资源集合;或,所述第一配置信息用于配置多个SRS资源集合。
  15. 根据权利要求14所述的方法,其特征在于,所述多个SRS资源集合与多个面板具有关联关系,一个SRS资源集合对应于所述多个面板中的一个面板。
  16. 根据权利要求14或15所述的方法,其特征在于,所述方法还包括:
    发送第二配置信息,所述第二配置信息用于配置PUSCH的时域资源;所述第二配置信息用于区分所述多面板同时发送模式或多面板分时发送模式;所述第二配置信息由RRC信令承载。
  17. 根据权利要求14或15所述的方法,其特征在于,所述方法还包括:
    发送第四配置信息,所述第四配置信息用于配置单面板发送模式对应的资源。
  18. 根据权利要求14至17任一项所述的方法,其特征在于,所述第一指示信息包括天线端口字段,所述天线端口字段用于指示所述多面板同时发送模式下的多个面板中每个面板传输所对应的传输预编码矩阵索引TPMI和层数。
  19. 根据权利要求14至18任一项所述的方法,其特征在于,所述方法还包括:
    发送第三配置信息,所述第三配置信息用于配置所述多个上行波束在所述多面板同时发送模式下对应的功控参数集合。
  20. 根据权利要求14至18任一项所述的方法,其特征在于,所述方法还包括:
    发送第三配置信息,所述第三配置信息用于配置针对多面板分时发送模式的多套功控参数集合;一套功控参数集合包括多个上行波束对应的功控参数集合;
    发送控制信令,所述控制信令用于指示所述多套功控参数集合中的至少一套功控参数集合。
  21. 一种通信装置,其特征在于,包括处理单元和通信单元;
    所述通信单元,用于接收第一配置信息,所述第一配置信息用于配置多面板同时发送模式对应的资源;
    所述处理单元,用于根据所述第一配置信息配置的资源和接收的第一指示信息,并采用 所述多面板同时发送模式进行上行发送;
    其中,所述第一指示信息指示采用所述多面板同时发送模式;所述第一配置信息用于配置第一上行探测参考信号SRS资源集合组,所述第一SRS资源集合组包括多个SRS资源集合;或,所述第一配置信息用于配置多个SRS资源集合。
  22. 根据权利要求21所述的装置,其特征在于,所述多个SRS资源集合与多个面板具有关联关系,一个SRS资源集合对应于所述多个面板中的一个面板。
  23. 根据权利要求21所述的装置,其特征在于,
    所述通信单元,还用于接收第二配置信息,所述第二配置信息用于配置物理上行共享信道PUSCH的时域资源;所述第二配置信息用于区分所述多面板同时发送模式或多面板分时发送模式;所述第二配置信息由RRC信令承载。
  24. 根据权利要求21所述的装置,其特征在于,
    所述通信单元,还用于接收第四配置信息,所述第四配置信息用于配置单面板发送模式对应的资源。
  25. 根据权利要求21至24任一项所述的装置,其特征在于,
    所述处理单元,还用于当所述第一指示信息指示多个上行波束,且所述PUSCH的时域资源不包括重复标识时,确定采用所述多面板同时发送模式。
  26. 根据权利要求21至25任一项所述的装置,其特征在于,所述第一指示信息包括天线端口字段,所述天线端口字段用于指示所述多面板同时发送模式下的多个面板中每个面板传输所对应的传输预编码矩阵索引TPMI和层数。
  27. 根据权利要求26所述的装置,其特征在于,所述天线端口字段还指示天线端口集,所述天线端口集包括多个天线端口;
    所述处理单元,还用于根据终端设备的能力,在所述多个天线端口中确定用于同时发送的多个面板中每个面板对应的天线端口。
  28. 根据权利要求21至25任一项所述的装置,其特征在于,所述第一指示信息包括多个SRI字段,每个SRI字段指示一个上行波束。
  29. 根据权利要求28所述的装置,其特征在于,所述第一指示信息还包括同发指示字段,所述同发指示字段用于指示所述多个SRI字段所指示的多个上行波束为同时发送。
  30. 根据权利要求21至25任一项所述的装置,其特征在于,
    所述通信单元,还用于接收第二指示信息,所述第二指示信息用于指示所述第一SRS资源集合的组标识;
    所述处理单元,还用于根据所述组标识确定所述第一SRS资源集合,并确定采用所述多面板同时发送模式。
  31. 根据权利要求27至30中任一项所述的装置,其特征在于,
    所述处理单元,还用于确定用于同时发送的多个上行波束的发送功率,其中,一个面板对应一个上行波束。
  32. 根据权利要求31所述的装置,其特征在于,
    所述通信单元,还用于接收第三配置信息,所述第三配置信息用于配置所述多个上行波束在所述多面板同时发送模式下对应的功控参数集合;
    所述处理单元,具体用于根据所述多个上行波束在所述多面板同时发送模式下对应的功控参数集合,确定所述多个上行波束的发送功率。
  33. 根据权利要求31所述的装置,其特征在于,
    所述通信单元,还用于接收第三配置信息,所述第三配置信息用于配置针对多面板分时发送模式的多套功控参数集合;一套功控参数集合包括多个上行波束对应的功控参数集合;
    所述处理单元,具体用于控制所述通信单元接收控制信令,所述控制信令用于指示所述多套功控参数集合中的至少一套功控参数集合;根据所述至少一套功控参数集合,确定用于同时发送的多个上行波束的发送功率。
  34. 一种通信装置,其特征在于,包括处理单元和通信单元;
    所述处理单元,用于确定第一配置信息,所述第一配置信息用于配置多面板同时发送模式对应的资源;
    所述通信单元,用于发送所述第一配置信息;发送第一指示信息,所述第一指示信息用于确定所述多面板同时发送模式;
    其中,所述第一配置信息指示采用第一上行探测参考信号SRS资源集合组,所述第一SRS资源集合组包括多个SRS资源集合;或,所述第一配置信息用于配置多个SRS资源集合。
  35. 根据权利要求34所述的装置,其特征在于,所述多个SRS资源集合与多个面板具有关联关系,一个SRS资源集合对应于所述多个面板中的一个面板。
  36. 根据权利要求34或35所述的装置,其特征在于,
    所述通信单元,还用于发送第二配置信息,所述第二配置信息用于配置PUSCH的时域资源;所述第二配置信息用于区分所述多面板同时发送模式或多面板分时发送模式;所述第二配置信息由RRC信令承载。
  37. 根据权利要求34或35所述的装置,其特征在于,
    所述通信单元,还用于发送第四配置信息,所述第四配置信息用于配置单面板发送模式对应的资源。
  38. 根据权利要求34至37任一项所述的装置,其特征在于,所述第一指示信息包括天线端口字段,所述天线端口字段用于指示所述多面板同时发送模式下的多个面板中每个面板传输所对应的传输预编码矩阵索引TPMI和层数。
  39. 根据权利要求34至38任一项所述的装置,其特征在于,
    所述通信单元,还用于发送第三配置信息,所述第三配置信息用于配置所述多个上行波束在所述多面板同时发送模式下对应的功控参数集合。
  40. 根据权利要求34至38任一项所述的装置,其特征在于,
    所述通信单元,还用于发送第三配置信息,所述第三配置信息用于配置针对多面板分时发送模式的多套功控参数集合;一套功控参数集合包括多个上行波束对应的功控参数集合;发送控制信令,所述控制信令用于指示所述多套功控参数集合中的至少一套功控参数集合。
  41. 一种基于多面板的上行发送方法,其特征在于,所述方法包括:
    接收第一配置信息,所述第一配置信息用于配置多面板同时发送模式对应的资源;
    根据所述第一配置信息配置的资源,并采用所述多面板同时发送模式进行上行发送。
  42. 根据权利要求41所述的方法,其特征在于,所述第一配置信息用于配置第一上行探测参考信号SRS资源集合组,所述第一SRS资源集合组包括多个SRS资源集合;或,所述第一配置信息用于配置多个SRS资源集合;其中,所述多个SRS资源集合与多个面板具有关联关系,一个SRS资源集合对应于所述多个面板中的一个面板。
  43. 根据权利要求41所述的方法,其特征在于,所述采用所述多面板同时发送模式进行上行发送之前,还包括:
    接收第二配置信息,所述第二配置信息用于配置物理上行共享信道PUSCH的时域资源;
    接收第一指示信息;
    当所述第一指示信息指示多个上行波束,且所述PUSCH的时域资源不包括重复标识时,确定采用所述多面板同时发送模式。
  44. 根据权利要求41所述的方法,其特征在于,所述采用所述多面板同时发送模式进行上行发送之前,还包括:
    接收第一指示信息,所述第一指示信息包括上行探测参考信号SRS资源指示字段;
    当所述SRS资源指示字段所指示的SRS资源包括同发标识时,确定采用所述多面板同时发送模式。
  45. 根据权利要求41所述的方法,其特征在于,所述采用所述多面板同时发送模式进行上行发送之前,还包括:
    接收第一指示信息,所述第一指示信息包括天线端口字段;
    当所述天线端口字段的取值指示所述多面板同时发送模式时,确定采用所述多面板同时发送模式。
  46. 根据权利要求45所述的方法,其特征在于,所述天线端口字段还指示天线端口集,所述天线端口集包括多个天线端口;
    所述采用所述多面板同时发送模式进行上行发送之前,还包括:
    根据终端设备的面板能力,在所述多个天线端口中确定用于同时发送的多个面板中每个面板对应的天线端口。
  47. 根据权利要求41至46中任一项所述的方法,其特征在于,所述采用所述多面板同时发送模式进行上行发送之前,还包括:
    确定用于同时发送的多个上行波束的发送功率,其中,一个面板对应一个上行波束。
  48. 根据权利要求47所述的方法,其特征在于,所述采用所述多面板同时发送模式进行上行发送之前,还包括:
    接收第三配置信息,所述第三配置信息用于配置所述多个上行波束在所述多面板同时发送模式下对应的功控参数集合;
    所述确定用于同时发送的多个上行波束的发送功率,包括:
    根据所述多个上行波束在所述多面板同时发送模式下对应的功控参数集合,确定所述多个上行波束的发送功率。
  49. 根据权利要求47所述的方法,其特征在于,所述采用所述多面板同时发送模式进行上行发送之前,还包括:
    接收第三配置信息,所述第三配置信息用于配置针对多面板分时发送模式的多套功控参数集合;一套功控参数集合包括多个上行波束对应的功控参数集合;
    所述确定用于同时发送的多个上行波束的发送功率,包括:
    接收控制信令,所述控制信令用于指示所述多套功控参数集合中的至少一套功控参数集合;
    根据所述至少一套功控参数集合,确定用于同时发送的多个上行波束的发送功率。
  50. 一种基于多面板的上行发送方法,其特征在于,所述方法包括:
    确定第一配置信息,所述第一配置信息用于配置多面板同时发送模式对应的资源;
    发送所述第一配置信息。
  51. 根据权利要求50所述的方法,其特征在于,所述第一配置信息用于配置第一上行探测参考信号SRS资源集合组,所述第一SRS资源集合组包括多个SRS资源集合;或,所述 第一配置信息用于配置多个SRS资源集合;其中,所述多个SRS资源集合与多个面板具有关联关系,一个SRS资源集合对应于所述多个面板中的一个面板。
  52. 根据权利要求50或51所述的方法,其特征在于,所述方法还包括:
    发送第二配置信息,所述第二配置信息用于配置PUSCH的时域资源,所述PUSCH的时域资源不包括重复标识;
    发送第一指示信息,所述第一指示信息指示多个波束。
  53. 根据权利要求50或51所述的方法,其特征在于,所述方法还包括:
    发送第一指示信息,所述第一指示信息包括SRS资源指示字段,所述SRS资源指示字段所指示SRS资源包括同发标识。
  54. 根据权利要求50或51所述的方法,其特征在于,所述方法还包括:
    发送第一指示信息,所述第一指示信息包括天线端口字段,所述天线端口字段的取值用于指示所述多面板同时发送模式。
  55. 根据权利要求50至54任一项所述的方法,其特征在于,所述方法还包括:
    发送第三配置信息,所述第三配置信息用于配置所述多个上行波束在所述多面板同时发送模式下对应的功控参数集合。
  56. 根据权利要求50至54任一项所述的方法,其特征在于,所述方法还包括:
    发送第三配置信息,所述第三配置信息用于配置针对多面板分时发送模式的多套功控参数集合;一套功控参数集合包括多个上行波束对应的功控参数集合;
    发送控制信令,所述控制信令用于指示所述多套功控参数集合中的至少一套功控参数集合。
  57. 一种通信装置,其特征在于,包括用于执行如权利要求1至13中的任一项所述方法的模块,或包括用于执行如权利要求14至20中的任一项所述方法的模块,或包括用于执行如权利要求41至49中的任一项所述方法的模块,或包括用于执行如权利要求50至56中的任一项所述方法的模块。
  58. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至13中任一项所述的方法,或者,用于实现如权利要求14至20中任一项所述的方法,或者,用于实现如权利要求41至49中的任一项所述的方法,或者,用于实现如权利要求50至56中的任一项所述的方法。
  59. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至13中任一项所述的方法,或实现如权利要求14至20中任一项所述的方法,或实现如权利要求41至49中任一项所述的方法,实现如权利要求50至56中任一项所述的方法。
PCT/CN2023/070945 2022-01-07 2023-01-06 基于多面板的上行发送方法及相关装置 WO2023131281A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210018484.7A CN116456394A (zh) 2022-01-07 2022-01-07 基于多面板的上行发送方法及相关装置
CN202210018484.7 2022-01-07

Publications (1)

Publication Number Publication Date
WO2023131281A1 true WO2023131281A1 (zh) 2023-07-13

Family

ID=87073296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070945 WO2023131281A1 (zh) 2022-01-07 2023-01-06 基于多面板的上行发送方法及相关装置

Country Status (2)

Country Link
CN (1) CN116456394A (zh)
WO (1) WO2023131281A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117200951A (zh) * 2022-05-30 2023-12-08 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162718A1 (ko) * 2019-02-07 2020-08-13 엘지전자 주식회사 무선 통신 시스템에서 상향링크 전송을 수행하는 방법 및 이에 대한 장치
CN112543083A (zh) * 2019-09-20 2021-03-23 华为技术有限公司 一种上行数据传输方法及装置
US20210306994A1 (en) * 2020-03-30 2021-09-30 Qualcomm Incorporated Uplink timing associated with uplink transmission configuration indication (tci) state
WO2021237666A1 (en) * 2020-05-29 2021-12-02 Qualcomm Incorporated Precoder indication for non-codebook-based uplink transmissions
WO2021253055A2 (en) * 2020-10-22 2021-12-16 Futurewei Technologies, Inc. Methods and apparatus for multi-beam operation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162718A1 (ko) * 2019-02-07 2020-08-13 엘지전자 주식회사 무선 통신 시스템에서 상향링크 전송을 수행하는 방법 및 이에 대한 장치
CN112543083A (zh) * 2019-09-20 2021-03-23 华为技术有限公司 一种上行数据传输方法及装置
US20210306994A1 (en) * 2020-03-30 2021-09-30 Qualcomm Incorporated Uplink timing associated with uplink transmission configuration indication (tci) state
WO2021237666A1 (en) * 2020-05-29 2021-12-02 Qualcomm Incorporated Precoder indication for non-codebook-based uplink transmissions
WO2021253055A2 (en) * 2020-10-22 2021-12-16 Futurewei Technologies, Inc. Methods and apparatus for multi-beam operation

Also Published As

Publication number Publication date
CN116456394A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
TWI738067B (zh) 準同位框架之增強方法及使用者設備
WO2020164601A1 (zh) 传输配置编号状态指示的方法和通信装置
CN110071749B (zh) 一种天线选择指示方法、装置和系统
WO2020253713A1 (zh) 路损参考信号指示方法及装置、终端、基站及存储介质
WO2021088877A1 (zh) 发送参数确定方法,电子装置,设备及介质
WO2018202215A1 (zh) 配置上行信号的方法及装置、确定上行信号的方法及装置
US20220286251A1 (en) Method for transmitting srs and terminal therefor
KR20190143733A (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치
US20220167384A1 (en) Transmission instruction method, device, terminal, base station and storage medium
WO2021022952A1 (zh) 信号传输的方法与装置
CN108781356B (zh) 在定向无线通信频带上进行发现的装置、系统和方法
KR20220097490A (ko) Ptrs-dmrs 포트 연관
WO2021017739A1 (zh) 测量上报的方法与装置
WO2023131281A1 (zh) 基于多面板的上行发送方法及相关装置
EP4022788A1 (en) Emission restricted transmission of reference signals
KR20210038141A (ko) 무선 통신 시스템에서 컴퓨팅 구조 및 무선 통신 프로토콜 구조의 결정을 위한 방법 및 장치
WO2021047485A1 (zh) 一种传输方法、终端设备以及网络设备
US20230269820A1 (en) Apparatus and method for supporting sidelink operation of terminal in discontinuous reception mode in wireless communication system
WO2022151494A1 (zh) 一种传输参数确定方法及装置
US20240031256A1 (en) Method and apparatus for transmitting or receiving data packet in wireless communication system
WO2020199983A1 (zh) 一种功率控制方法及装置
KR20220105110A (ko) 무선 통신 시스템에서 중계 단말을 통한 원격 단말의 연결 설정 방법 및 장치
WO2024125353A1 (zh) 路径损耗参考信号确定方法以及相关装置
WO2024067426A1 (zh) 一种信号转发方法及相关装置
WO2022213888A1 (zh) 功率控制参数确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23737143

Country of ref document: EP

Kind code of ref document: A1