WO2023131201A1 - 多腔制冰组件 - Google Patents

多腔制冰组件 Download PDF

Info

Publication number
WO2023131201A1
WO2023131201A1 PCT/CN2023/070496 CN2023070496W WO2023131201A1 WO 2023131201 A1 WO2023131201 A1 WO 2023131201A1 CN 2023070496 W CN2023070496 W CN 2023070496W WO 2023131201 A1 WO2023131201 A1 WO 2023131201A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
ice
mold body
ejector
making assembly
Prior art date
Application number
PCT/CN2023/070496
Other languages
English (en)
French (fr)
Inventor
米切尔·艾伦·约瑟夫
Original Assignee
海尔智家股份有限公司
青岛海尔电冰箱有限公司
海尔美国电器解决方案有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔智家股份有限公司, 青岛海尔电冰箱有限公司, 海尔美国电器解决方案有限公司 filed Critical 海尔智家股份有限公司
Priority to EP23737064.8A priority Critical patent/EP4462044A1/en
Priority to AU2023204857A priority patent/AU2023204857A1/en
Priority to CN202380015424.2A priority patent/CN118451288A/zh
Publication of WO2023131201A1 publication Critical patent/WO2023131201A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/10Producing ice by using rotating or otherwise moving moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws
    • F25C5/06Apparatus for disintegrating, removing or harvesting ice without the use of saws by deforming bodies with which the ice is in contact, e.g. using inflatable members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/24Construction of moulds; Filling devices for moulds for refrigerators, e.g. freezing trays
    • F25C1/243Moulds made of plastics e.g. silicone

Definitions

  • the present invention relates generally to ice makers, and more particularly to ice makers for making multiple large ice cubes.
  • Ice makers are often offered as stand-alone appliances or can be incorporated into larger refrigeration appliances used for food storage in commercial and residential applications. Typically, such ice makers are used to make ice in batches, for example where multiple pieces of ice are used to cool the same beverage or to cool other food products. Individual ice cubes can have different shapes and are often relatively small in size (eg, individual ice cubes can have a maximum dimension of 2 inches or less, or even 1 inch or less). These batch ice machines generally do not produce multiple larger pieces or cubes, and some do not produce ice cubes that are uniformly of a particular shape, such as spherical.
  • Some consumers may prefer certain sizes or shapes of ice for certain beverages. For example, in the consumption of some alcohol-based beverages, consumers may prefer to use a single piece of ice to cool the beverage. Where a glass or metal cup is used, spherical ice cubes having a diameter nearly as large as the opening of the cup may also be preferred. For example, a diameter of two inches or greater may be preferred. While other shapes may also be used, a single piece of ice in a spherical shape may melt more slowly than other shapes of ice or pieces, which may mean less dilution of the alcohol-based beverage. Additionally, some consumers may also prefer relatively clear or transparent ice.
  • Hand-filled ice molds are available in specific shapes and sizes. These molds can be in one piece or in multiple pieces.
  • the customer manually fills the mold with water and may also have to remove entrapped air.
  • the molds are then placed in a refrigerated space kept at freezing temperatures. After sufficient time has passed for the water to freeze, the mold is then removed.
  • the mold may have to be heated and/or bent slightly to release the ice from the mold. If the consumer wants additional ice, the process must be repeated manually. Disadvantages of the manual process can include spillage, difficulty removing ice from the mold, the rate at which ice is produced is limited by the number of molds, and the user must remember to refill the mold each time.
  • an ice maker that can automatically or repeatedly make larger ice cubes of a specific shape would be desirable. Ice makers capable of making multiple chunks of ice at once would be particularly beneficial.
  • an ice making assembly for a refrigeration appliance.
  • the ice making assembly may include: a mold body comprising an upper portion and a lower portion, the mold body defining a plurality of cavities for forming ice shapes, wherein the upper portion defines a plurality of orifices for supplying water; a mold frame comprising at least Partially surrounding a mold body, wherein the mold bodies are coupled together via a mold frame; an ejector disposed adjacent to the mold body, the ejector being operable with the mold body and the mold frame between a first position and a second position wherein the ejector deflects the lower portion toward the upper portion, and wherein the upper portion is separated between a plurality of orifices to define a single orifice when in the second position; and a motor for causing the mold body, mold frame and the ejector rotates between a first position and a second position.
  • a refrigeration appliance may include: a box body including a freezing chamber; and an ice making assembly disposed in the freezing chamber.
  • the ice making assembly may include: a mold body comprising an upper portion and a lower portion, the mold body defining a plurality of cavities for forming ice shapes, wherein the upper portion defines a plurality of orifices for supplying water; a mold frame comprising at least Partially surrounding a mold body, wherein the mold bodies are coupled together via a mold frame; an ejector disposed adjacent to the mold body, the ejector being operable with the mold body and the mold frame between a first position and a second position wherein the ejector deflects the lower portion toward the upper portion, and wherein the upper portion is separated between a plurality of orifices to define a single orifice when in the second position; and a motor for causing the mold body, mold frame and the ejector rotates between a first
  • FIG. 1 provides a perspective view of a refrigeration appliance according to an exemplary embodiment of the present invention.
  • FIG. 2 provides a front view of the exemplary refrigeration appliance of FIG. 1 with the refrigerator and freezer doors in open positions.
  • FIG. 3 provides a perspective view of an ice maker according to an exemplary aspect of the present invention.
  • FIG. 4 provides a front cross-sectional view of the exemplary ice maker of FIG. 3 .
  • FIG. 5 provides a perspective cutaway view of the exemplary ice maker of FIG. 3 .
  • FIG. 6 provides a perspective view of an ice mold of the exemplary ice maker of FIG. 3 .
  • FIG. 7 provides a top view of the exemplary ice maker of FIG. 3 .
  • FIG. 8 provides a side cross-sectional view of the example ice maker of FIG. 3 with the ice molds in a first position.
  • FIG. 9 provides a side cross-sectional view of the example ice maker of FIG. 3 with the ice molds in a second position.
  • FIG. 10 is a schematic diagram depicting the relative position of the rotational axis of the mold body and the arcuate surface of the cam of an exemplary ice maker assembly.
  • Figure 11 depicts a portion of an exemplary ice making assembly in a first position.
  • Figure 12 depicts a portion of an exemplary ice making assembly in a second position.
  • upstream refers to relative directions with respect to fluid flow in a fluid pathway. For example, “upstream” refers to where the fluid flow is coming from, while “downstream” refers to the direction the fluid flow is going.
  • FIG. 1 provides a perspective view of a refrigeration appliance 100 according to an exemplary embodiment of the present invention.
  • the refrigeration appliance 100 includes a box or housing 102 extending in a vertical direction V between a top 104 and a bottom 106 and in a lateral direction L between a first side 108 and a second side 110. , and extends along the transverse direction T between the front side 112 and the rear side 114 .
  • Each of the vertical V, the lateral L, and the lateral T are perpendicular to each other.
  • Housing 102 defines a refrigerated compartment for receiving food for storage.
  • the housing 102 defines a fresh food compartment 122 disposed at or adjacent the top 104 of the housing 102 and a freezer compartment 124 disposed at or adjacent the bottom 106 of the housing 102 .
  • the refrigeration appliance 100 is generally called a bottom-mounted refrigerator. It is recognized, however, that the benefits of the present invention apply to other types and styles of cooling appliances, such as top-mounted cooling appliances or side-by-side cooling appliances. Accordingly, the description set forth herein is for illustrative purposes only and is not intended to be limiting in any way to any particular refrigeration chamber configuration.
  • Refrigerator door 128 is rotatably hinged to the edge of housing 102 for selective access to fresh food compartment 122 .
  • freezer door 130 is rotatably hinged to an edge of housing 102 to provide selective access to freezer compartment 124 .
  • the refrigerator door 128, the freezer door 130, or the housing 102 may define one or more sealing mechanisms (e.g., rubber seals, not shown) at the interface where the doors 128, 130 and the housing 102 meet. ).
  • Refrigerator door 128 and freezer door 130 are shown in a closed configuration in FIG. 1 and in an open configuration in FIG. 2 . It should be understood that doors of different styles, locations or configurations are possible and within the scope of the present invention.
  • the refrigeration appliance 100 also includes a dispensing assembly 132 for dispensing liquid water or ice.
  • the dispensing assembly 132 includes a dispenser 134 disposed on or mounted to the exterior of the refrigeration appliance 100 , for example, on one of the refrigeration doors 128 .
  • Dispenser 134 includes a drain 136 for capturing ice and liquid water.
  • An actuation mechanism 138 shown as a paddle, is mounted below discharge opening 136 to operate dispenser 134 .
  • dispenser 134 may be operated using any suitable actuation mechanism.
  • dispenser 134 may include a sensor (such as an ultrasonic sensor) or a button instead of a paddle.
  • a control panel 140 is provided to control the mode of operation.
  • the control panel 140 includes a number of user inputs (not labeled), such as a water dispense button and an ice dispense button, for selecting a desired mode of operation, such as crushed or non-crushed ice.
  • Discharge port 136 and actuation mechanism 138 are external parts of dispenser 134 and are mounted in dispenser recess 142 .
  • the dispenser recess 142 is provided at a predetermined height, which is convenient for a user to take ice or water, and enables the user to take ice without bending over and without opening the refrigeration door 128 .
  • the dispenser recess 142 is disposed at approximately the level of the user's chest.
  • dispensing assembly 132 may receive ice from an ice maker or ice making assembly 300 disposed in a sub-compartment (eg, IB compartment 180 ) of refrigeration appliance 100 .
  • the refrigeration appliance 100 also includes a controller 144 . Operation of refrigeration appliance 100 is regulated by controller 144 , which is operatively coupled to or in operative communication with control panel 140 .
  • control panel 140 may represent a general purpose I/O ("GPIO") device or functional block.
  • the control panel 140 may include input components such as one or more of various electrical, mechanical or electromechanical input devices including rotary dials, buttons, touch pads or touch screens.
  • Control panel 140 may communicate with controller 144 via one or more signal lines or a shared communication bus.
  • the control panel 140 provides options for user operation of the operation of the refrigeration appliance 100 . In response to a user's manipulation of the control panel 140 , the controller 144 operates various components of the refrigeration appliance 100 .
  • controller 144 is operably coupled or in communication with various components of the sealing system. Controller 144 may also communicate with various sensors, such as a room temperature sensor or an ambient temperature sensor. Controller 144 may receive signals from these temperature sensors that correspond to the temperature of the atmosphere or air within the respective locations of the sensors.
  • the controller 144 includes memory and one or more processing devices, such as a microprocessor, CPU, etc., such as a general or special purpose microprocessor, operable to perform operations associated with the refrigeration appliance 100. programming instructions or microcontroller code.
  • the memory may mean a random access memory such as DRAM or a read only memory such as ROM or FLASH.
  • a processor executes programmed instructions stored in memory.
  • the memory may be a separate component from the processor, or may be included on-board within the processor.
  • controller 144 may perform control functions without the use of a microprocessor (e.g., using a combination of discrete analog or digital logic circuits, such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc. , rather than relying on software) to build.
  • FIG. 2 provides a front view of refrigeration appliance 100 with refrigerator door 128 and freezer door 130 shown in an open position.
  • various storage components are installed within the fresh food compartment 122 and the freezer compartment 124 to facilitate storage of food products therein, as will be appreciated by those skilled in the art.
  • the storage components include boxes 146 , drawers 148 , and shelves 150 installed in the fresh food compartment 122 or the freezer compartment 124 . Boxes 146, drawers 148, and shelves 150 are used to receive food (eg, beverages or solid food) and can help organize such food.
  • drawer 148 may receive fresh food (eg, vegetables, fruit, or cheese) and increase the useful life of such fresh food.
  • FIG. 3-12 illustrate an exemplary embodiment of an ice making assembly 200 that may be used in a refrigeration appliance 100 or another appliance configuration as described above, including a dedicated ice maker.
  • ice making assembly 200 may be located in lower freezer compartment 124 as shown in FIG. 2 .
  • An ice bank 202 may be included for ice collection.
  • Ice making assembly 200 may include a mold body 204 that defines a cavity or chamber 210 into which a liquid (eg, water) may be supplied to form an ice shape 234 (such as a sphere, as shown in FIG. 8 ).
  • a liquid eg, water
  • ice shape 234 such as a sphere, as shown in FIG. 8
  • a liquid eg, water
  • the ice making assembly 200 may include a mold frame (or mold shell) 260 .
  • the mold frame 260 may at least partially surround the mold body 204 .
  • mold frame 260 may be coupled to mold body 204 at various connection points. Accordingly, the mold body 204 may be bounded by the mold frame 260 .
  • the mold frame 260 and mold body 204 may be co-rotated (eg, within the freezer compartment 124 ) by a rotation mechanism or assembly.
  • the mold frame 260 may include an upper mold shell 207 and a lower mold shell 209 .
  • mold body 204 is comprised of upper mold portion 206 and lower mold portion 208 ( FIG. 4 ) contained within upper mold shell 207 and lower mold shell 209 .
  • the two mold parts 206 and 208 may be pressed together between an upper mold shell 207 and a lower mold shell 209 connected by various fasteners 213 .
  • the lower mold shell 209 may include a plurality of heat exchange fins 211 in thermal communication with the lower mold portion 208 to assist in heat transfer during the freezing process.
  • the heat exchange fins 211 may be a separate component from the lower mold shell 209 .
  • the heat exchange fins 211 may be composed of metal, while the lower mold shell 209 may be composed of plastic. Accordingly, the heat exchange fins 211 may be coupled to the lower mold shell 209 .
  • thermocouple 215 or other temperature sensor can be connected to the controller 134 by wires 217 so that the freezing process can be monitored during ice making.
  • the upper mold shell 207 may define an opening 205 through which the upper mold portion 206 extends.
  • Upper mold portion 206 may define an opening 212 to cavity 210 .
  • pleats can be formed around the opening 212 and can be evenly spaced. Accordingly, opening 212 may be selectively enlarged, as will be described in more detail below.
  • the cavity 210 formed in the mold body 204 may include a first chamber 2101 and a second chamber 2102 .
  • the first chamber 2101 may define a first shape
  • the second chamber 2102 may define a second shape.
  • Each of the first shape and the second shape (eg, the first chamber 2101 and the second chamber 2102 ) may be identical in shape.
  • any suitable combination of shapes may be incorporated within chamber 210 .
  • any suitable number of different chambers may be formed within chamber 210 to accommodate any suitable number of ice shapes.
  • the first chamber 2101 and the second chamber 2102 may be connected by a central channel 262 .
  • the central channel may be a via or opening that fluidly connects the first chamber 2101 and the second chamber 2102 such that liquid supplied to the first chamber 2101 is subsequently supplied to the second chamber 2102 , for example. Accordingly, each of the first chamber 2101 and the second chamber 2102 may be supplied with water via a single opening 212 .
  • the central channel 262 may be disposed at or along a vertically central location within the mold body 204 . Additionally or alternatively, a central channel 262 may be disposed at or near a laterally central location within the mold body 204 .
  • Mold portions 206 and 208 may be constructed of a flexible or resilient material.
  • one or both mold portions 206 and 208 are composed of silicone rubber.
  • the pleats may allow the opening 212 to increase in size or diameter as the ice shape 234 is ejected from the mold body 204, as will be further explained.
  • one or both mold sections 206 and 208 are constructed of a flexible and hydrophobic material such as silicone rubber. Hydrophobicity helps prevent water from escaping (eg, through pleats or between mold sections 206 and 108 ) during the filling and freezing process.
  • a unitary construction may also be used in place of the mold portions 206 and 208.
  • upper mold portion 206 and lower mold portion 208 may be formed as a single piece with one or more openings 212 defined therein.
  • the upper mold part 206 may include a first upper mold part 2061 and a second upper mold part 2062 .
  • the first upper mold piece 2061 may form the first upper quadrant of the mold body 204 .
  • the first upper mold part 2061 may thus be referred to as a front upper mold part.
  • the second upper mold piece 2062 may form the second upper quadrant of the mold body 204 .
  • the second upper mold part 2062 may thus be referred to as a rear upper mold part.
  • the first upper mold piece 2061 and the second upper mold piece 2062 may be constructed of a flexible and hydrophobic material such as silicone rubber. Thus, hydrophobicity may help prevent water from escaping from the mold body 204 between the first upper mold piece 2061 and the second upper mold piece 2062 .
  • the upper mold portion 206 may define a joint 264 extending, eg, along the lateral direction L, from a first lateral end of the mold body 204 to a second lateral end of the mold body 204 .
  • the joint 264 may be a connection point between the first upper mold part 2061 and the second upper mold part 2062 .
  • the first upper mold part 2061 and the second upper mold part 2062 may contact each other along the joint 264 when the mold body 204 is in an intermediate or rest position.
  • the hydrophobicity of upper mold portion 206 may help prevent water from escaping via joint 264 (eg, when mold body 204 is in an intermediate position).
  • Joint 264 may further help define each of first chamber 2101 and second chamber 2102 .
  • each of the first chamber 2101 and the second chamber 2102 may be primarily spherical.
  • Joint 264 may be defined by one or more planar portions 266 on each of first upper mold piece 2061 and second upper mold piece 2062 .
  • a first planar portion 266 may be formed at a first side of the upper mold portion 206
  • a second planar portion 266 may be formed at a second side of the upper mold portion 206
  • a third planar portion 266 may be formed at the upper mold portion 206 (for example, along the side L).
  • the first upper mold part 2061 is selectively coupleable to the second upper mold part 2062 .
  • the first upper mold part 2061 and the second upper mold part 2062 may be coupled to each other at each of the first and second lateral ends.
  • One or more fasteners 213 may penetrate first planar portion 266 and second planar portion 266 (eg, through each of first upper mold piece 2061 and second upper mold piece 2062 ).
  • the upper mold portion 206 may be constrained at both lateral ends.
  • upper mold portion 206 may be a single piece.
  • each connection point defined at each lateral end of upper mold portion 206 may be integrally formed. The upper mold part 206 can thus be opened along the joint 264 .
  • joint 264 may be separated to create or define a single orifice 280 at the top of upper die portion 206 (i.e., two or more openings 212 may merged or joined to define an aperture 280).
  • the formed ice shape 234 can be easily released from the mold body 204 .
  • the mold frame 260 (eg, upper mold shell 207 ) may include a first support strut 270 disposed at a first lateral end of the upper mold shell 207 and a second support strut 270 disposed at a second lateral end of the upper mold shell 207 .
  • Two support pillars 272 .
  • the first support strut 270 and the second support strut 272 may be mirror images of each other with respect to the transverse direction T. As shown in FIG. Therefore, hereinafter, the first support strut 270 will be described in detail, while understanding that the description is also applicable to the second support strut 272 .
  • the first support strut 270 may define a first groove 271 (ie, the second support strut 272 defines a second groove 273 ).
  • the first groove 271 may extend in a vertical V and a lateral L direction.
  • first support strut 270 may include a plurality of walls defining first groove 271 .
  • the first groove 270 may optionally receive a portion of the upper mold portion 206 therein.
  • the planar portion 266 at the first lateral end of the mold body 204 is received within the first groove 271 .
  • planar portion 266 may be coupled to first support strut 270 via fastener 213 .
  • first planar portion 266 may be defined as a first tab 282 .
  • the first tab 282 is selectively receivable within the first groove 271 .
  • the second planar portion 266 may be defined as a second tab 284 .
  • the second tab 284 is selectively receivable within the second groove 273 .
  • first fastener 213 may penetrate the first support strut 270 and the first tab 282
  • second fastener 213 may penetrate the second support strut 272 and the second tab 284 .
  • the mold body 204 (and the mold frame 260) are rotatable between a first position (FIG. 8) and a second position (FIG. 9). In the first position, mold body 204 may be filled with water (eg, from water dispenser 232 ).
  • a valve (not shown) may be activated by controller 134 to provide an appropriate amount of water flow into mold body 204 when mold body 204 is in the upper (or first) position.
  • the lower mold shell 209 may contact the first limit switch 226 when the mold body 204 is in the first position.
  • the first limit switch 226 may be connected (eg, in communication) with the controller 134 to determine when the mold body 204 is in the first position.
  • ice shape 234 (or ice shapes) may be completely ejected from mold body 204 . Ice shapes 234 may, for example, be expelled into ice bank 202 (eg, via aperture 280 ). As shown in FIG. 9 , the lower mold shell 209 may contact the second limit switch 228 when the mold body 204 is in the second position. The second limit switch 228 may be connected (eg, in communication) with the controller 134 to determine when the mold body 204 is in the second position. Other configurations of limit switches may also be used to determine the position of the mold body 204 .
  • Motor 216 may be used to rotate mold body 204 (and mold frame 260 ) and ejector 238 between a first position and a second position. Motor 216 may be operated by controller 134 .
  • motor 216 may drive gear 244 to rotate mold body 204 about axis of rotation A-A between a first position and a second position as desired.
  • the direction of rotation of a shaft (not shown) from motor 216 may be used to control the direction of rotation of gear 244 and, thus, the direction of rotation of mold 204 as determined by controller 134 .
  • the ejector 238 may be disposed adjacent to the mold body 204 and may rotate with the mold body 204 between a first position and a second position. As will be explained, the ejector 238 may be configured to eject the ice through the orifice 280 created by separating the opened first upper mold part 2061 and second upper mold part 2062 during rotation between the first position and the second position. Shape 234 pushes out of chamber 210 (eg, first chamber 2101 and second chamber 2102 ). More particularly, ejector 238 is configured to move between a retracted position ( FIG. 8 ) and an extended position ( FIG. 9 ).
  • the ejector 238 may correspondingly move from the retracted position to the extended position. In doing so, the ejector may translate within a guide or channel 246 formed at least in part by the lower mold shell 209 .
  • the ejector 238 may include a first plunger 2381 and a second plunger 2382 .
  • a first plunger 2381 may be disposed below the first chamber 2101
  • a second plunger 2382 may be disposed below the second chamber 2102 (e.g., when the mold body 204 is in the first position, along the vertical V).
  • the first plunger 2381 and the second plunger 2382 may be connected by a shaft 274 .
  • the shaft 274 can connect the distal end 240 of the first plunger 2381 with the distal end 240 of the second plunger 2382 .
  • each of the first plunger 2381 and the second plunger 2382 can include a cam follower 242 (eg, at the respective distal end 240 of each plunger).
  • Shaft 274 may connect cam followers 242 to each other such that each of first plunger 2381 and second plunger 2382 rotate together, thereby ensuring smooth movement of assembly 200 .
  • movement of ejector 238 is determined by cam 218 .
  • the distal end 240 of the first plunger 2381 includes a cam follower or wheel 242 that travels in the slot 222 along the arcuate path 220 defined by the cam 218 .
  • the slotted arcuate path 220 may determine the position of the ejector 238 as the die 204 and ejector 238 are rotated together from the first position to the second position.
  • the cam 218 may include a first slot 2221 and a second slot 2222 .
  • the first slot 2221 may interact with the first plunger 2381 while the second slot 2222 interacts with the second plunger 2382 .
  • each ejector 238 may be associated with a dedicated slot 222, ensuring smooth and unobstructed operation when moving between the first position and the second position.
  • the water is allowed to freeze.
  • the mold body 204 remains in the first position shown in FIG. 8, during which time the ejector 238 also remains in the retracted position.
  • water may be filtered to remove particulates and cooled along a controlled temperature and time profile to provide clearer ice.
  • the temperature (as measured by sensor 215 ) may be monitored so that, for example, controller 134 may determine when the water transforms into ice shape 234 .
  • controller 134 may activate motor 216 to begin rotation of mold body 204 .
  • the mold body 204 rotates about the axis of rotation A-A
  • the head 250 of the ejector 238 is forced against the outer surface 214 of the lower mold half 208 .
  • the ejector 238 can move through the guide 246 in a direction perpendicular to the axis of rotation A-A. Rotation forces ejector 238 to do so as cam follower 242 travels on arcuate path 220 .
  • the center C of the radius R defining the arcuate path 220 is offset by a distance D from the axis of rotation A-A.
  • the rotation shortens the distance between the guide 246 and the arcuate path 220 of the cam 218 - which forces the ejector 238 to move through.
  • ejector 238 moves out of recess 252 formed in lower mold shell 209 and begins to deform flexible mold sections 206 and 208 as described in FIGS. 8 and 9 .
  • Continued rotation increases the movement of ejector 238 and the deformation of die sections 206 and 208 .
  • the lower mold part 208 can be turned over as it is pressed against the openings 205 and 212 .
  • joint 264 is separated by movement of ejector 238 (or first ejector 2381 and second ejector 2382), orifice 280 between first upper mold part 2061 and second upper mold part 2062 may begin to form.
  • Ice shape 234 can be rotated, but more importantly, forced to move in the same direction as ejector 238 by squeezing head 250 .
  • This squeezing action may force the ice shape 234 through the formed aperture 280 .
  • Due to the flexibility of upper mold portion 206 and joint 264 (eg, including planar portion 266 ) in upper mold portion 206 the diameter or size of orifice 280 may increase. In some embodiments, additional pleats may be added to upper mold portion 206 to provide further deflection capability.
  • ejector 238 reaches the extended position to force ice shape 234 to be completely ejected from mold body 204 via orifice 280 as indicated by arrow E.
  • second limit switch 228 may be activated, as shown in FIG. 12 , which provides a signal to controller 134 to stop motor 216 .
  • the controller 134 may immediately or after a delay reverse the motor 216 so that the mold body 204 returns to the first position and the ejector 238 is fully retracted.
  • the first limit switch 226 may be activated, as shown in FIG. 11 , which provides a signal to the controller 134 to stop the motor 216 .
  • Controller 134 may immediately or after a delay repeat the process of refilling chamber 210 with water 236 using dispenser 232 to create another ice shape 234 .
  • the mold body 204 and ejector 238 were rotated 90 degrees between the first position and the second position. In other embodiments, different degrees of rotation may be used. Additionally or alternatively, gravity and/or resilience of the lower mold portion 208 may be used to return the ejector 238 to the retracted position. A spring that is compressed when the ejector 238 is extended may also be used to push the ejector 238 back to its retracted position.
  • an ice making assembly for a refrigerator includes a multi-cavity or multi-chamber ice mold capable of simultaneously forming a plurality of ice shapes.
  • the mold may be formed from a flexible material such as silicon.
  • the top of the mold may be bounded at either lateral end forming a joint therebetween.
  • the top of the mold is formed from two separate pieces.
  • the top can be at least partially bounded by the mold frame.
  • the formed ice shape can press against the top of the mold, thereby separating the joint between the constrained ends.
  • a relatively large opening can be formed in the top of the mold due to the orifices formed therebetween. Then, the shaped ice can be easily discharged from the mold into the ice storage bin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

一种用于制冷电器的制冰组件包括:模具体,该模具体包括上模具和联接到上模具的下模具,模具体限定用于形成冰形状的腔;模具框架,该模具框架至少部分地围绕模具体,第一上模具件和第二上模具件经由模具框架联接在一起;排出器,该排出器设置为与模具体相邻,排出器可与模具体和模具框架一起在第一位置与第二位置之间旋转;以及电机,该电机用于使模具体、模具框架和排出器在第一位置与第二位置之间旋转。

Description

多腔制冰组件 技术领域
本发明总体涉及制冰器,更具体地涉及用于制造多个大冰块的制冰器。
背景技术
制冰机通常作为独立的电器提供,或者可以并入商业和住宅应用中用于储存食品的较大的制冷电器中。通常,这种制冰机用于在例如使用多块冰来冷却相同的饮料或冷却其它食品的情况下批量制冰。单独的冰块可具有不同的形状,并且通常尺寸相对较小(例如,单独冰块的最大尺寸可为2英寸或更小,或者甚至1英寸或更小)。这些批量冰制冰机通常不产生多个较大的块或冰块,并且一些不产生统一具有特定形状(诸如球形)的冰块。
一些消费者可能更喜欢特定尺寸或形状的冰用于某些饮料。例如,在一些基于酒精的饮料的消费中,消费者可能更喜欢使用单块冰来冷却饮料。在使用玻璃杯或金属杯的情况下,具有与杯开口几乎一样大的直径的球形冰块也可能是优选的。例如,两英寸或更大的直径可能是优选的。虽然也可以使用其它形状,但是球形的单块冰可以比其它形状的冰或多块冰更慢地融化,这可能意味着对基于酒精的饮料的更少稀释。另外,某些消费者还可能更喜欢相对清澈或透明的冰。
可以获得特定形状和尺寸的手动填充冰模具。这些模具可以是整体或多件。消费者手动地用水填充模具,并且还可能必须去除夹带的空气。然后将模具置于保持在冷冻温度的冷藏空间中。在经过足够的时间以使水冻结之后,随后移除模具。模具可能必须稍微加热和/或弯曲以使冰从模具中释放。如果消费者想要额外的冰,则必须手动重复该过程。手动过程的缺点可能包括溢出、从模具中移除冰的困难、冰块产生的速率受模具数量的限制、以及用户必须记得每次都要重新填充模具。
因此,一种可以自动地或重复地制造特定形状的较大冰块的制冰机将是期望的。能够一次制造多个大块冰的制冰机将是特别有益的。
发明内容
本发明的各个方面以及优点将会在下文的描述中进行阐述,或者是通过描述可以显而易见的,或者是可以通过实施本发明而学到。
在本发明的一个示例性方面,提供了一种用于制冷电器的制冰组件。该制冰组 件可包括:模具体,该模具体包括上部和下部,模具体限定用于形成冰形状的多个腔,其中,上部限定供应水的多个孔口;模具框架,该模具框架至少部分地围绕模具体,其中,模具体经由模具框架联接在一起;排出器,该排出器设置为与模具体相邻,排出器可与模具体和模具框架一起在第一位置与第二位置之间旋转,其中,排出器使下部朝向上部偏转,并且其中,上部在多个孔口之间分离以在处于第二位置时限定单个孔口;以及电机,该电机用于使模具体、模具框架和排出器在第一位置与第二位置之间旋转。
在本发明的另一个示例性方面,提供了一种制冷电器。该制冷电器可以包括:箱体,该箱体包括冷冻室;以及制冰组件,该制冰组件设置在冷冻室内。该制冰组件可包括:模具体,该模具体包括上部和下部,模具体限定用于形成冰形状的多个腔,其中,上部限定供应水的多个孔口;模具框架,该模具框架至少部分地围绕模具体,其中,模具体经由模具框架联接在一起;排出器,该排出器设置为与模具体相邻,排出器可与模具体和模具框架一起在第一位置与第二位置之间旋转,其中,排出器使下部朝向上部偏转,并且其中,上部在多个孔口之间分离以在处于第二位置时限定单个孔口;以及电机,该电机用于使模具体、模具框架和排出器在第一位置与第二位置之间旋转。
参照下文的描述以及所附权利要求,本发明的这些和其它的特征、方面以及优点将变得更容易理解。结合在本说明书中并且构成本说明书一部分的附图显示了本发明的实施方式并且与描述一起用于对本发明的原理进行解释。
附图说明
参照附图,说明书中阐述了面向本领域普通技术人员的本发明的完整公开,这种公开使得本领域普通技术人员能够实现本发明,包括本发明的最佳实施例。
图1提供了根据本发明的示例性实施方式的制冷电器的立体图。
图2提供了图1的示例性制冷电器的前视图,其中冷藏门体和冷冻门体处于打开位置。
图3提供了根据本发明的示例性方面的制冰器的立体图。
图4提供了图3的示例性制冰器的前剖视图。
图5提供了图3的示例性制冰器的立体剖视图。
图6提供了图3的示例性制冰器的冰模具的立体图。
图7提供了图3的示例性制冰器的顶视图。
图8提供了图3的示例性制冰器的侧面剖视图,其中冰模具处于第一位置。
图9提供了图3的示例性制冰器的侧面剖视图,其中冰模具处于第二位置。
图10是描述了示例性制冰组件的模具体的旋转轴线与凸轮的弓形表面的相对位置的示意图。
图11描述了处于第一位置的示例性制冰组件的一部分。
图12描述了处于第二位置的示例性制冰组件的一部分。
附图标记在本说明书和附图中的重复使用旨在表示本发明的相同或相似的特征或元件。
具体实施方式
现在将详细地参照本发明的实施方式,其中的一个或多个示例示于附图中。每个示例都以对发明进行解释的方式给出,并不对本发明构成限制。实际上,对于本领域技术人员而言显而易见的是,能够在不偏离本发明的范围的前提下对本发明进行多种改型和变型。例如,作为一个实施方式的一部分示出或者进行描述的特征能够用于另一个实施方式,从而产生又一个实施方式。因此,期望的是,本发明覆盖落入所附权利要求及其等同形式的范围内的这些改型以及变型。
如本文所用的,术语“或”通常旨在是包括的(即,“A或B”旨在意指“A或B或两者”)。短语“在一个实施方式中”不一定是指同一实施方式,但可以是同一实施方式。
术语“第一”、“第二”和“第三”可以互换使用以将一个部件与另一个部件区分开,并且这些术语并不旨在表示各个部件的位置或重要性。术语“上游”和“下游”是指相对于流体通路中的流体流动的相对方向。例如,“上游”是指流体流动的来向,而“下游”是指流体流动的去向。
图1提供了根据本发明的示例性实施方式的制冷电器100的立体图。制冷电器100包括箱体或壳体102,该箱体或壳体沿着竖向V在顶部104与底部106之间延伸,沿着侧向L在第一侧108与第二侧110之间延伸,并且沿着横向T在前侧112与后侧114之间延伸。竖向V、侧向L以及横向T中的每一个彼此互相垂直。
壳体102限定用于接收食品以便储存的制冷间室。特别地,壳体102限定设置在壳体102的顶部104处或与其相邻设置的食物保鲜室122和布置在壳体102的底部106处或与其相邻布置的冷冻室124。由此可见,制冷电器100通常被称为底置式冰箱。然而,认识到,本发明的益处适用于其他类型和样式的制冷电器,例如,顶 置式制冷电器或对开门式制冷电器。因此,本文阐述的描述仅出于说明性目的,而无意于在任何方面限制任何特定的制冷室构造。
冷藏门体128可旋转地铰接到壳体102的边缘,以便选择性地进入食物保鲜室122。类似地,冷冻门体130可旋转地铰接到壳体102的边缘,以便选择性地接近冷冻室124。为了防止冷空气泄漏,冷藏门体128、冷冻门体130或壳体102可以在门体128、130与壳体102相遇的界面处限定一个或多个密封机构(例如,橡胶封条,未示出)。冷藏门体128和冷冻门体130在图1中被示出为处于关闭构造,并且在图2中被示出为处于打开构造。应当理解,具有不同样式、位置或构造的门体是可能的,并且在本发明的范围内。
制冷电器100还包括用于分配液态水或冰的分配组件132。分配组件132包括分配器134,该分配器设置在制冷电器100的外部上或安装到该外部,例如,在冷藏门体128中的一个上。分配器134包括用于获取冰和液态水的排放口136。被示出为拨片的致动机构138安装在排放口136下方,以便操作分配器134。在可选示例性实施方式中,可以使用任意合适的致动机构来操作分配器134。例如,分配器134可以包括传感器(诸如超声传感器)或按钮,而不是拨片。设置控制面板140,以便控制操作模式。例如,控制面板140包括多个用户输入(未标记),诸如水分配按钮和冰分配按钮,这些用户输入用于选择期望的操作模式,诸如碎冰或非碎冰。
排放口136和致动机构138是分配器134的外部零件,并且安装在分配器凹部142中。分配器凹部142设置在预定高度处,该预定高度方便用户取冰或水,并且使得用户能够在不需要弯腰的情况下且在不需要打开冷藏门体128的情况下取冰。在示例性实施方式中,分配器凹部142设置在接近用户的胸部水平的位置处。根据示例性实施方式,分配组件132可以从布置在制冷电器100的子间室(例如,IB间室180)中的制冰机或制冰组件300接收冰。
制冷电器100还包括控制器144。制冷电器100的操作由控制器144来调节,该控制器可操作地联接到控制面板140或与其可操作地通信。在一个示例性实施方式中,控制面板140可以表示通用I/O(“GPIO”)装置或功能块。在另一示例性实施方式中,控制面板140可以包括输入部件,诸如包括旋转控制盘、按钮、触摸板或触摸屏的各种电气、机械或机电输入装置中的一个或多个。控制面板140可以经由一条或多条信号线或共享的通信总线与控制器144通信。控制面板140提供用于用户对制冷电器100的运行的操作的选择。响应于用户对控制面板140的操作,控制器144操作制冷电器100的各个部件。例如,如下面讨论的,控制器144与密封系统的 各个部件可操作地联接或通信。控制器144还可以与各种传感器(例如室温度传感器或环境温度传感器)通信。控制器144可以从这些温度传感器接收信号,这些信号对应于传感器各自位置内的大气或空气的温度。
在一些实施方式中,控制器144包括存储器和一个或多个处理装置,诸如微处理器、CPU等,诸如通用或专用微处理器,该微处理器可操作为执行与制冷电器100的操作关联的编程指令或微控制代码。存储器可以表示诸如DRAM的随机存取存储器或诸如ROM或FLASH的只读存储器。处理器执行存储在存储器中的编程指令。存储器可以是与处理器分开的部件,或者可以包括在处理器内的板上。另选地,控制器144可以在不使用微处理器(例如,使用离散的模拟或数字逻辑电路的组合,诸如开关、放大器、积分器、比较器、触发器、与门等,来执行控制功能,而不是依靠软件)的情况下来构建。
图2提供了制冷电器100的前视图,其中冷藏门体128和冷冻门体130被示出为处于打开位置。根据所示例的实施方式,如本领域技术人员将理解的,各种储存部件安装在食物保鲜室122和冷冻室124内,以促进食品在其中的储存。特别地,储存部件包括安装在食物保鲜室122或冷冻室124内的盒146、抽屉148以及层架150。盒146、抽屉148以及层架150用于接收食品(例如,饮料或固体食品),并且可以帮助组织这种食品。作为示例,抽屉148可以接收新鲜食品(例如,蔬菜、水果或奶酪),并且增加这种新鲜食品的使用寿命。
图3至图12示例了可用于制冷电器100或如上所述的另一电器构造(包括专用制冰器)中的制冰组件200的示例性实施方式。例如,制冰组件200可以如图2所示位于下冷冻室124中。可以包括储冰盒202以用于冰的收集。
制冰组件200可包括模具体204,该模具体限定腔室或腔210,液体(例如水)可供应到该腔室或腔中以形成冰形状234(诸如球形,如图8所示)。应当理解,本文给出的和附图中示出的示例不是限制性的,并且可以实施任何适当形状的冰模具以形成各种各样的冰形状。另外或可选地,虽然在图中示出并在本文中讨论了两个不同的冰形状容积,但是可以实施任何合适数量的冰形状容积,并且本发明不限于本文给出的示例。
制冰组件200可包括模具框架(或模具壳)260。模具框架260可至少部分地围绕模具体204。例如,模具框架260可在多个连接点处联接到模具体204。因此,模具体204可由模具框架260限制。如将在以下更详细地解释的,模具框架260和模具体204可以通过旋转机构或组件共同旋转(例如,在冷冻室124内)。模具框架260 可包括上模具壳207和下模具壳209。
在该示例性实施方式中,模具体204由包含在上模具壳207和下模具壳209内的上模具部206和下模具部208(图4)构成。两个模具部206和208可以在上模具壳207与下模具壳209之间压在一起,该上模具壳和下模具壳通过各种紧固件213连接。下模具壳209可以包括多个热交换翅片211,这些热交换翅片与下模具部208热连通以在冷冻过程期间辅助热传递。例如,热交换翅片211可以是与下模具壳209分离的部件。热交换翅片211可由金属组成,而下模具壳209可由塑料组成。因此,热交换翅片211可联接到下模具壳209。
热电偶215或其它温度传感器可通过电线217与控制器134连接,使得可在制冰期间监测冷冻过程。上模具壳207可以限定上模具部206延伸穿过的开口205。上模具部206可以限定通向腔室210的开口212。在一些实施方式中,褶裥可围绕开口212形成,并且可均匀地隔开。因此,开口212可以被选择性地扩大,如将在以下更详细地描述的。
而且,形成在模具体204内的腔室210可以包括第一室2101和第二室2102。详细地,如图3至图7所示,第一室2101可以限定第一形状,第二室2102可以限定第二形状。第一形状和第二形状(例如,第一室2101和第二室2102)中的每一个在形状上可以相同。然而,应当理解,任何合适的形状组合都可以并入在腔室210内。另外或可选地,应当理解,可以在腔室210内形成任何合适数量的不同腔室,以容纳任何合适数量的冰形状。
第一室2101和第二室2102可以通过中心通道262连接。详细地,中心通道可以是流体连接第一室2101和第二室2102的过孔或开口,使得供应至第一室2101的液体例如随后被供应至第二室2102。因此,第一室2101和第二室2102中的每一个都可以经由单个开口212供应水。进一步地,如图所示,当腔室为球形时,中心通道262可设置在模具体204内的竖直中心位置处或沿着该竖直中心位置设置。另外或可选地,中心通道262可设置在模具体204内的横向中心位置处或附近。
模具部206和208可以由柔性或弹性材料构成。在一个示例性方面,一个或两个模具部206和208由硅橡胶构成。如上所述,褶裥可以允许开口212的尺寸或直径随着冰形状234从模具体204中排出而增大,如将进一步解释的。在另一个示例性方面,一个或两个模具部206和208由柔性和疏水材料(例如硅橡胶)构成。疏水性有助于在填充和冷冻过程期间防止水逸出(例如,通过褶裥或在模具部206和108之间)。在本发明的其它实施方式中,也可以使用整体构造来代替模具部206和 208。例如,上模具部206和下模具部208可以形成为具有限定在其中的一个或多个开口212的单件。
根据至少一个实施方式,上模具部206可包括第一上模具件2061和第二上模具件2062。如图6所示,第一上模具件2061可形成模具体204的第一上象限。第一上模具件2061由此可以被称为前上模具件。因此,第二上模具件2062可形成模具体204的第二上象限。第二上模具件2062由此可以被称为后上模具件。如上所述,第一上模具件2061和第二上模具件2062可由柔性和疏水材料(例如硅橡胶)构成。由此,疏水性可有助于防止水在第一上模具件2061与第二上模具件2062之间从模具体204中逸出。
例如,上模具部206可限定例如沿着侧向L从模具体204的第一侧向端延伸至模具体204的第二侧向端的接头264。接头264可以是第一上模具件2061与第二上模具件2062之间的连接点。详细地,当模具体204处于中间或静止位置时,第一上模具件2061和第二上模具件2062可沿着接头264彼此接触。上模具部206的疏水性可有助于阻止水经由接头264逸出(例如,当模具体204处于中间位置时)。接头264可进一步有助于限定第一室2101和第二室2102中的每一个。例如,如图5和图6最清楚地示出,第一室2101和第二室2102中的每一个都可以主要是球形。接头264可由第一上模具件2061和第二上模具件2062中的每一个上的一个或多个平面部266限定。例如,第一平面部266可以形成在上模具部206的第一侧面处,第二平面部266可以形成在上模具部206的第二侧面处,并且第三平面部266可以形成在上模具部206的中心处(例如,沿着侧向L)。
第一上模具件2061可选择性地联接到第二上模具件2062。详细地,第一上模具件2061和第二上模具件2062可以在第一侧向端部和第二侧向端部中的每一个处彼此联接。一个或多个紧固件213可以穿透第一平面部266和第二平面部266(例如,穿过第一上模具件2061和第二上模具件2062中的每一个)。因此,上模具部206可以在两个侧向端部处受到约束。另外或可选地,上模具部206可以是单件。例如,在上模具部206的各个侧向端部处限定的各个连接点可以形成为整体。上模具部206由此可以沿着接头264打开。例如,如将在以下更详细地解释的,在收获操作期间,接头264可以被分开以在上模具部206的顶部处产生或限定单个孔口280(即,两个或更多个开口212可以合并或接合以限定孔口280)。有利地,所形成的冰形状234可以容易地从模具体204释放。
模具框架260(例如,上模具壳207)可以包括设置在上模具壳207的第一侧向 端部处的第一支撑支柱270和设置在上模具壳207的第二侧向端部处的第二支撑支柱272。第一支撑支柱270和第二支撑支柱272可以关于横向T彼此成镜像。因此,在下文中,将详细描述第一支撑支柱270,同时理解该描述也适用于第二支撑支柱272。
如图3中特别示出的,第一支撑支柱270可以限定第一凹槽271(即,第二支撑支柱272限定第二凹槽273)。第一凹槽271可以沿着竖向V和侧向L延伸。例如,第一支撑支柱270可以包括限定第一凹槽271的多个壁。第一凹槽270可以选择性地在其中接收上模具部206的一部分。根据至少一个实施方式,模具体204的第一侧向端部处的平面部266被接收在第一凹槽271内。另外或可选地,平面部266可以经由紧固件213联接到第一支撑支柱270。例如,第一平面部266可以被限定为第一突片282。第一突片282可以选择性地接收在第一凹槽271内。类似地,第二平面部266可以被限定为第二突片284。第二突片284可以选择性地接收在第二凹槽273内。因此,第一紧固件213可以穿透第一支撑支柱270和第一突片282,并且第二紧固件213可以穿透第二支撑支柱272和第二突片284。
图8和图9分别提供了制冰组件200处于第一位置和第二位置的侧面剖视图。虽然仅示出了单个腔室210,但是应当理解,例如,该描述适用于第一室2101和第二室2102中的每一个。因此,为了简洁和清楚起见,在适当的情况下将使用通用的附图标记。模具体204(和模具框架260)可在第一位置(图8)与第二位置(图9)之间旋转。在第一位置中,模具体204可以填充有水(例如,来自水分配器232)。例如,作为制冰过程的一部分,阀(未示出)可由控制器134启动,以在模具体204处于上部(或第一)位置时提供适量的水流入模具体204。如图8所示,当模具体204处于第一位置时,下模具壳209可以接触第一限位开关226。第一限位开关226可以与控制器134连接(例如,通信地),以便确定模具体204何时处于第一位置。
在第二位置中,冰形状234(或多个冰形状)可从模具体204完全排出。冰形状234例如可被排出到储冰盒202中(例如经由孔口280)。如图9所示,当模具体204处于第二位置时,下模具壳209可以接触第二限位开关228。第二限位开关228可以与控制器134连接(例如,通信地),以便确定模具体204何时处于第二位置。也可使用限位开关的其它构造来确定模具体204的位置。
电机216可用于在第一位置与第二位置之间旋转模具体204(和模具框架260)和排出器238。电机216可由控制器134操作。例如,电机216可以驱动齿轮244,以便根据期望使模具体204围绕旋转轴线A-A在第一位置与第二位置之间旋转。例 如来自电机216的轴(未示出)的旋转方向可用于控制齿轮244的旋转方向,因此控制由控制器134确定的模具204的旋转方向。
排出器238可与模具体204相邻设置,并且可与模具体204一起在第一位置与第二位置之间旋转。如将解释的,排出器238可被构造为在第一位置与第二位置之间旋转期间通过分开打开的第一上模具件2061和第二上模具件2062而产生的孔口280来将冰形状234推出腔室210(例如,第一室2101和第二室2102)。更特别地,排出器238被构造为在缩回位置(图8)与伸出位置(图9)之间移动。当模具体204从第一位置移动到第二位置时,排出器238可以相应地从缩回位置移动到伸出位置。在这样做时,排出器可以在至少部分地由下模具壳209形成的引导件或通道246内平移。
排出器238可包括第一柱塞2381和第二柱塞2382。例如,如图4所示,第一柱塞2381可以设置在第一室2101的下方,而第二柱塞2382设置在第二室2102的下方(例如,当模具体204在第一位置时,沿着竖向V)。第一柱塞2381和第二柱塞2382可通过轴杆274连接。轴杆274可以将第一柱塞2381的远端240与第二柱塞2382的远端240连接。例如,第一柱塞2381和第二柱塞2382中的每一个可以包括凸轮从动件242(例如,分别在各个柱塞的远端240处)。轴杆274可以将凸轮从动件242彼此连接,使得第一柱塞2381和第二柱塞2382中的每一个一起旋转,从而确保组件200的平滑运动。
对于该示例性实施方式,排出器238(例如,第一柱塞2381和第二柱塞2382)的移动由凸轮218确定。更特别地,第一柱塞2381的远端240包括凸轮从动件或轮242,该凸轮从动件或轮沿着由凸轮218限定的弓形路径220在狭槽222中行进。当模具204和排出器238一起从第一位置旋转至第二位置时,开槽的弓形路径220可以确定排出器238的位置。而且,凸轮218可包括第一狭槽2221和第二狭槽2222。第一狭槽2221可以与第一柱塞2381相互作用,而第二狭槽2222与第二柱塞2382相互作用。因此,各个排出器238可以与专用狭槽222相关联,从而确保当在第一位置与第二位置之间移动时的平滑且无阻碍的操作。
现在将使用所述示例性实施方式来阐述操作制冰组件200的示例性方法。本领域技术人员使用本文公开的示教将理解,也可以使用其它示例性操作方法。
在腔室210已经如前所述填充有适当量的水之后,允许水冻结。在填充和冷冻过程期间,模具体204保持在如图8所示的第一位置,在此期间,排出器238也保持在缩回位置。在本发明的一个示例性方面,水可被过滤以去除颗粒,并且可沿着 受控的温度和时间曲线冷却以提供更清澈的冰。可以监测温度(如由传感器215测量的),使得例如控制器134可以确定水何时转换成冰形状234。
在确定水已经冻结而形成冰形状234之后,控制器134可以启动电机216以开始模具体204的旋转。当模具体204绕旋转轴线A-A旋转时,排出器238的头部250被迫压靠下半模208的外表面214。当模具体204旋转时,排出器238可沿着垂直于旋转轴线A-A的方向移动通过引导件246。由于凸轮从动件242在弓形路径220上行进,因此旋转迫使排出器238这样移动。参见图10,限定弓形路径220的半径R的中心C与旋转轴线A-A偏移距离D。由此可见,旋转缩短了引导件246与凸轮218的弓形路径220之间的距离-这迫使排出器238移动通过。
当模具体204继续旋转时,排出器238移出在下模具壳209中形成的凹部252,并开始使柔性模具部206和208变形,如图8和图9所述。继续旋转增加了排出器238的移动和模具部206和208的变形。下模具部208在其被压向开口205和212时可以翻转。而且,当接头264通过排出器238(或第一排出器2381和第二排出器2382)的移动而分开时,第一上模具件2061与第二上模具件2062之间的孔口280可以开始形成。冰形状234可以被旋转,但是更重要的是,通过挤压头部250而被迫在与排出器238相同的方向上移动。该挤压动作可迫使冰形状234穿过所形成的孔口280。由于上模具部206和上模具部206中的接头264(例如,包括平面部266)的柔性,孔口280的直径或尺寸可以增加。在一些实施方式中,额外的褶裥可以被添加到上模具部206以提供进一步的偏转能力。当模具体204到达图9所示的第二位置时,排出器238到达伸出位置,以便迫使冰形状234如箭头E所示经由孔口280从模具体204完全排出。
在到达第二位置时,可以启动第二限位开关228,如图12所示,这向控制器134提供信号以停止电机216。控制器134可以立即或延迟后使电机216反向,使得模具体204返回到第一位置并且排出器238完全缩回。在到达第一位置时,可以启动第一限位开关226,如图11所示,这向控制器134提供信号以停止电机216。控制器134可以立即或延迟后重复使用分配器232向腔室210重新填充水236的过程,以便产生另一冰形状234。
对于上述示例性实施方式,模具体204和排出器238在第一位置与第二位置之间旋转90度。在其它实施方式中,可以使用不同程度的旋转。另外或可选地,下模具部208的重力和/或弹性可用于使排出器238返回到缩回位置。当排出器238伸出时被压缩的弹簧也可用于将排出器238推回到其缩回位置。
根据本发明,一种用于冰箱的制冰组件包括能够同时形成多个冰形状的多腔或多腔室冰模具。模具可以由柔性材料(诸如硅)形成。模具的顶部可以在任一侧向端部处被限制,从而在其间形成接头。在一些实施方式中,模具的顶部由两个单独的件形成。顶部可以至少部分地由模具框架限制。在冰已经形成在多个腔内之后,模具框架和模具一起可以例如通过电机旋转。在旋转期间,一个或多个排出器可挤压模具的底部。因此,形成的冰形状可以压靠模具的顶部,从而使受约束端部之间的接头分离。由于在其间形成有孔口,因此可以在模具的顶部中形成相对大的开口。然后,成形的冰可以容易地从模具中排出到储冰盒中。
本书面描述使用示例对本发明进行了公开(其中包括最佳实施例),并且还使本领域技术人员能够实施本发明(其中包括制造和使用任意装置或系统并且执行所包含的任意方法)。本发明的可专利范围通过权利要求进行限定,并且可以包括本领域技术人员能够想到的其它的示例。如果这种其它的示例包括与权利要求的字面语言没有区别的结构元件,或者如果这种其它的示例包括与权利要求的字面语言没有实质区别的等同结构元件,则期望这种其它的示例落入权利要求的范围中。

Claims (20)

  1. 一种用于制冷电器的制冰组件,其特征在于,所述制冰组件限定竖向、侧向以及横向,所述制冰组件包括:
    模具体,该模具体包括上部和下部,所述模具体限定用于形成冰形状的多个腔,其中,所述上部限定供应水的多个孔口;
    模具框架,该模具框架至少部分地围绕所述模具体,其中,所述模具体经由所述模具框架联接在一起;
    排出器,该排出器设置为与所述模具体相邻,所述排出器可与所述模具体和所述模具框架一起在第一位置与第二位置之间旋转,其中,所述排出器使所述下部朝向所述上部偏转,并且其中,所述上部在所述多个孔口之间分离以在处于所述第二位置时限定单个孔口;以及
    电机,该电机用于使所述模具体、所述模具框架和所述排出器在所述第一位置与所述第二位置之间旋转。
  2. 根据权利要求1所述的制冰组件,其特征在于,所述模具体包括柔性材料。
  3. 根据权利要求1所述的制冰组件,其特征在于,所述上部包括第一上模具件和联接到所述第一上模具件的第二上模具件。
  4. 根据权利要求3所述的制冰组件,其特征在于,所述第一上模具件和所述第二上模具件分别在所述模具体的第一端和所述模具体的第二端处彼此联接。
  5. 根据权利要求1所述的制冰组件,其特征在于,所述模具框架包括:
    第一支撑支柱,该第一支撑支柱设置在所述模具框架的第一端处,所述第一支撑支柱限定第一凹槽;以及
    第二支撑支柱,该第二支撑支柱设置在所述模具框架的第二端处,所述第二支撑支柱限定第二凹槽。
  6. 根据权利要求5所述的制冰组件,其特征在于,所述上部包括:
    第一突片,该第一突片选择性地接收在所述第一凹槽内;以及
    第二突片,该第二突片选择性地接收在所述第二凹槽内。
  7. 根据权利要求6所述的制冰组件,其特征在于,还包括:
    第一紧固件,该第一紧固件穿透所述第一支撑支柱和所述第一突片;以及
    第二紧固件,该第二紧固件穿透所述第二支撑支柱和所述第二突片。
  8. 根据权利要求1所述的制冰组件,其特征在于,所述模具体的所述多个腔限 定第一冰形状容积和第二冰形状容积,所述第一冰形状容积和所述第二冰形状容积通过中心通道连接。
  9. 根据权利要求8所述的制冰组件,其特征在于,液态水被供应到所述模具体的所述第一冰形状容积,并且经由所述中心通道流入所述模具体的所述第二冰形状容积。
  10. 根据权利要求8所述的制冰组件,其特征在于,所述排出器包括:
    第一柱塞,该第一柱塞接触所述下部的与所述第一冰形状容积相邻的外表面;
    第二柱塞,该第二柱塞接触所述下部的与所述第二冰形状容积相邻的外表面;以及
    轴杆,该轴杆将所述第一柱塞连接到所述第二柱塞。
  11. 根据权利要求10所述的制冰组件,其特征在于,还包括:
    凸轮,该凸轮与所述排出器机械连通,所述凸轮限定弓形路径,当在所述第一位置与所述第二位置之间旋转时,所述排出器的第一端部沿着所述弓形路径移动。
  12. 根据权利要求1所述的制冰组件,其特征在于,还包括:
    第一限位开关,该第一限位开关用于当所述模具框架移动到所述第一位置时停止所述模具框架和所述排出器的旋转;以及
    第二限位开关,该第二限位开关用于当所述模具框架移动到所述第二位置时停止所述模具框架和所述排出器的旋转。
  13. 根据权利要求1所述的制冰组件,其特征在于,还包括:
    多个热交换翅片,该多个热交换翅片与所述下部热连通,所述多个热交换翅片附接到所述模具框架。
  14. 一种限定竖向、侧向以及横向的制冷电器,其特征在于,所述制冷电器包括:
    箱体,该箱体包括冷冻室;以及
    制冰组件,该制冰组件设置在所述冷冻室内,所述制冰组件包括:
    模具体,该模具体包括上部和下部,所述模具体限定用于形成冰形状的多个腔,其中,所述上部限定供应水的多个孔口;
    模具框架,该模具框架至少部分地围绕所述模具体,其中,所述模具体经由所述模具框架联接在一起;
    排出器,该排出器设置为与所述模具体相邻,所述排出器可与所述模具体和所述模具框架一起在第一位置与第二位置之间旋转,其中,所述排出器使所 述下部朝向所述上部偏转,并且其中,所述上部在所述多个孔口之间分离以在处于所述第二位置时限定单个孔口;以及
    电机,该电机用于使所述模具体、所述模具框架和所述排出器在所述第一位置与所述第二位置之间旋转。
  15. 根据权利要求14所述的制冷电器,其特征在于,所述模具体包括柔性材料。
  16. 根据权利要求14所述的制冷电器,其特征在于,所述上部包括第一上模具件和联接到所述第一上模具件的第二上模具件。
  17. 根据权利要求16所述的制冷电器,其特征在于,所述第一上模具件和所述第二上模具件分别在所述模具体的第一端和所述模具体的第二端处彼此联接。
  18. 根据权利要求14所述的制冷电器,其特征在于,所述模具框架包括:
    第一支撑支柱,该第一支撑支柱设置在所述模具框架的第一端处,所述第一支撑支柱限定第一凹槽;以及
    第二支撑支柱,该第二支撑支柱设置在所述模具框架的第二端处,所述第二支撑支柱限定第二凹槽。
  19. 根据权利要求18所述的制冷电器,其特征在于,所述上部包括:
    第一突片,该第一突片选择性地接收在所述第一凹槽内;以及
    第二突片,该第二突片选择性地接收在所述第二凹槽内。
  20. 根据权利要求14所述的制冷电器,其特征在于,所述模具体的所述多个腔限定第一冰形状容积和第二冰形状容积,所述第一冰形状容积和所述第二冰形状容积通过中心通道连接。
PCT/CN2023/070496 2022-01-07 2023-01-04 多腔制冰组件 WO2023131201A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP23737064.8A EP4462044A1 (en) 2022-01-07 2023-01-04 Multi-cavity ice making assembly
AU2023204857A AU2023204857A1 (en) 2022-01-07 2023-01-04 Multi-cavity ice making assembly
CN202380015424.2A CN118451288A (zh) 2022-01-07 2023-01-04 多腔制冰组件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/570,583 2022-01-07
US17/570,583 US20230221053A1 (en) 2022-01-07 2022-01-07 Multi-cavity ice making assembly

Publications (1)

Publication Number Publication Date
WO2023131201A1 true WO2023131201A1 (zh) 2023-07-13

Family

ID=87070335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070496 WO2023131201A1 (zh) 2022-01-07 2023-01-04 多腔制冰组件

Country Status (5)

Country Link
US (1) US20230221053A1 (zh)
EP (1) EP4462044A1 (zh)
CN (1) CN118451288A (zh)
AU (1) AU2023204857A1 (zh)
WO (1) WO2023131201A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005326035A (ja) * 2004-05-12 2005-11-24 Japan Servo Co Ltd 自動製氷装置
US20060086134A1 (en) * 2004-10-26 2006-04-27 Voglewede Ronald L Refrigerator with compact icemaker
WO2020015707A1 (en) * 2018-07-19 2020-01-23 Qingdao Haier Refrigerator Co., Ltd. Ice making assembly for a refrigerator appliance
WO2020071824A1 (en) * 2018-10-02 2020-04-09 Lg Electronics Inc. Refrigerator
EP3653957A1 (en) * 2018-11-16 2020-05-20 LG Electronics Inc. Ice maker and refrigerator
CN113237284A (zh) * 2021-05-28 2021-08-10 海信容声(广东)冰箱有限公司 一种冰箱
US20220316782A1 (en) * 2021-04-01 2022-10-06 Haier Us Appliance Solutions, Inc. Appliance ice making assembly

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2717500A (en) * 1952-12-10 1955-09-13 Servel Inc Ice maker
US2808707A (en) * 1955-04-21 1957-10-08 Dole Valve Co Ice making apparatus
US3163018A (en) * 1961-08-02 1964-12-29 Borg Warner Cube type ice maker having electric heater and cam ejector
US3182464A (en) * 1962-12-14 1965-05-11 Erling B Archer Automatic ice making devices
US4669271A (en) * 1985-10-23 1987-06-02 Paul Noel Method and apparatus for molded ice sculpture
JPS63155978U (zh) * 1987-03-30 1988-10-13
JPH0689970B2 (ja) * 1987-11-10 1994-11-14 ダイキン工業株式会社 製氷機
CN201450894U (zh) * 2009-08-07 2010-05-12 刘奥 水果蔬菜成型模具
KR101850918B1 (ko) * 2011-10-04 2018-05-30 엘지전자 주식회사 아이스 메이커 및 이를 이용한 얼음 제조 방법
KR102023412B1 (ko) * 2012-06-12 2019-09-20 엘지전자 주식회사 냉장고
US9151527B2 (en) * 2012-12-13 2015-10-06 Whirlpool Corporation Molded clear ice spheres
KR102130632B1 (ko) * 2013-01-02 2020-07-06 엘지전자 주식회사 아이스 메이커
US10151519B2 (en) * 2013-07-23 2018-12-11 Wintersmiths, Llc Devices and methods for making shaped clear ice
US10697684B2 (en) * 2018-03-20 2020-06-30 Bsh Home Appliances Corporation Automatic ice-sphere-making system for refrigerator appliance
CN214491084U (zh) * 2020-12-25 2021-10-26 北京市高强混凝土有限责任公司 一种超高性能混凝土球型模具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005326035A (ja) * 2004-05-12 2005-11-24 Japan Servo Co Ltd 自動製氷装置
US20060086134A1 (en) * 2004-10-26 2006-04-27 Voglewede Ronald L Refrigerator with compact icemaker
WO2020015707A1 (en) * 2018-07-19 2020-01-23 Qingdao Haier Refrigerator Co., Ltd. Ice making assembly for a refrigerator appliance
WO2020071824A1 (en) * 2018-10-02 2020-04-09 Lg Electronics Inc. Refrigerator
EP3653957A1 (en) * 2018-11-16 2020-05-20 LG Electronics Inc. Ice maker and refrigerator
US20220316782A1 (en) * 2021-04-01 2022-10-06 Haier Us Appliance Solutions, Inc. Appliance ice making assembly
CN113237284A (zh) * 2021-05-28 2021-08-10 海信容声(广东)冰箱有限公司 一种冰箱

Also Published As

Publication number Publication date
US20230221053A1 (en) 2023-07-13
EP4462044A1 (en) 2024-11-13
AU2023204857A1 (en) 2024-07-11
CN118451288A (zh) 2024-08-06

Similar Documents

Publication Publication Date Title
EP2733445B1 (en) Ice cube release system and method
EP4317866A1 (en) Ice-making assembly for appliance
WO2020015707A1 (en) Ice making assembly for a refrigerator appliance
WO2023131201A1 (zh) 多腔制冰组件
AU2022204813A1 (en) Clear barrel ice maker
CN115427745B (zh) 用于制冷电器的制冰机、插入制冰机中的模具组件和冰箱
CN112771327A (zh) 冰箱
CN114174740B (zh) 制冷电器的制冰组件
CN118408329A (zh) 制冰设备的冰模组件系统
WO2021174491A1 (en) Ice making assembly and refrigerator appliance
WO2020233541A1 (zh) 具有储冰盒的制冷电器
WO2023131079A1 (zh) 用于制冷电器的制冰组件及制冷电器
KR20210029508A (ko) 아이스 메이커
KR20210005798A (ko) 냉장고
US11732945B2 (en) Ice making assembly and refrigerator appliance
CN113574336B (zh) 具有防溢盖的制冰机
KR20220152787A (ko) 아이스 메이커 및 이의 제어방법
KR20210029505A (ko) 아이스 메이커
KR20050103769A (ko) 냉장고용 다용도 도어 구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23737064

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023204857

Country of ref document: AU

Ref document number: AU2023204857

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 202380015424.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023737064

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2023737064

Country of ref document: EP

Effective date: 20240807