WO2023131120A1 - 一种时间差确定方法、电子设备和存储介质 - Google Patents

一种时间差确定方法、电子设备和存储介质 Download PDF

Info

Publication number
WO2023131120A1
WO2023131120A1 PCT/CN2023/070120 CN2023070120W WO2023131120A1 WO 2023131120 A1 WO2023131120 A1 WO 2023131120A1 CN 2023070120 W CN2023070120 W CN 2023070120W WO 2023131120 A1 WO2023131120 A1 WO 2023131120A1
Authority
WO
WIPO (PCT)
Prior art keywords
timing
offset
iab
node
time difference
Prior art date
Application number
PCT/CN2023/070120
Other languages
English (en)
French (fr)
Inventor
毕峰
卢有雄
邢卫民
苗婷
陈杰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023131120A1 publication Critical patent/WO2023131120A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present application relates to the technical field of wireless communication, for example, to a method for determining a time difference, an electronic device and a storage medium.
  • This high-frequency channel has a large free propagation loss, is easily absorbed by oxygen, and is greatly affected by rain attenuation, etc.
  • the shortcomings seriously affect the coverage performance of the high-frequency communication system.
  • the carrier frequency corresponding to high-frequency communication has a shorter wavelength, it can ensure that more antenna elements can be accommodated per unit area, and more antenna elements mean that the beamforming method can be used to improve the antenna gain. Thus, the coverage performance of high-frequency communication is guaranteed.
  • Dense cells are an increasingly important application scenario, and dense cells will require more network deployment costs.
  • the introduction of wireless backhaul transmission can easily deploy networks and greatly reduce network deployment costs.
  • the NR system includes a high-frequency frequency band, so the physical characteristics of the high-frequency carrier determine its coverage is a very big challenge, and wireless backhaul transmission can also solve this problem.
  • IAB Integrated Access and Backhaul
  • the link between a node and a parent node is called a backhaul link (Backhaul link, BL), and the link between a node and a child node, or a link between a node and a user equipment is called an access link (Access link, AL), where the parent node can be the main node DN (Donor Node, DN), and the ND can include Donor gNB.
  • Backhaul link BL
  • AL access link
  • the parent node can be the main node DN (Donor Node, DN)
  • Donor Node, DN Donor Node
  • Donor gNB Donor gNB
  • TDM Time Division Multiplexing
  • SDM Spatial Division Multiplexing
  • FDM Frequency Division Multiplexing
  • the current standard also defines two functions for relay nodes (Relay Node, RN), namely IAB-MT and IAB-DU, in which IAB-MT communicates with upstream nodes, and IAB-DU communicates with downstream nodes (downstream nodes include downstream terminals) to communicate with each other.
  • relay nodes RN
  • IAB-MT communicates with upstream nodes
  • IAB-DU communicates with downstream nodes (downstream nodes include downstream terminals) to communicate with each other.
  • DTT Downlink Tx Timing
  • DTT DRT-TD
  • the main purpose of the embodiments of the present application is to provide a method for determining a time difference, an electronic device, and a storage medium.
  • An embodiment of the present application provides a method for determining a time difference, wherein the method includes:
  • the first type of parameter includes at least one of the following: timing advance N TA , first timing advance offset N TA,offset ;
  • the second type of parameter includes at least one of the following: a timing parameter index T delta , a timing parameter reference N delta , and a timing parameter granularity G step .
  • the embodiment of the present application also provides an electronic device, wherein the electronic device includes:
  • processors one or more processors
  • memory for storing one or more programs
  • the one or more processors are made to implement any method described in the embodiments of the present application.
  • the embodiment of the present application also provides a computer-readable storage medium, wherein the computer-readable storage medium stores one or more programs, and the one or more programs are executed by the one or more processors, In order to realize the method described in any one of the embodiments of the present application.
  • FIG. 1 is an example diagram of a timing mode provided by an embodiment of the present application
  • Fig. 2 is an example diagram of another timing mode provided by the embodiment of the present application.
  • Fig. 3 is an example diagram of another timing mode provided by the embodiment of the present application.
  • Fig. 4 is an example diagram of another timing mode provided by the embodiment of the present application.
  • FIG. 5 is a flowchart of a method for determining a time difference provided in an embodiment of the present application
  • FIG. 6 is a flow chart of another method for determining a time difference provided in an embodiment of the present application.
  • FIG. 7 is a flowchart of another method for determining a time difference provided in an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a device for determining a time difference provided in an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the upstream node of the IAB-node is called the parent node of the IAB-node
  • the parent node can also be regarded as the serving cell of the node IAB-node
  • the downstream node of the node IAB-node can also be called the IAB-node
  • the child node child-node or UE the node IAB-node can be regarded as the serving cell of the child node child-node or UE.
  • IAB-node can also be regarded as the child-node of its parent-node; IAB-node can also be regarded as the parent-node of its child-node.
  • IAB-node defines two functions, namely IAB-MT and IAB-DU, wherein, IAB-MT communicates with upstream nodes, and IAB-DU communicates with downstream nodes, wherein downstream nodes may include terminals.
  • the main timing modes in this application include the following three types: (1) The downlink transmission timing of a node is aligned to the downlink transmission timing of its parent node or serving node, which is recorded as the first timing mode or non-simultaneous mode, see Figure 1 and The first timing mode of the IAB-node shown in Fig.
  • the second timing mode or simultaneous transmission mode refer to the second timing mode of the IAB-node shown in Figure 3; (3) the uplink receiving timing of the node is aligned to the downlink receiving timing of the node, or the downlink transmitting timing of the node is aligned to the parent
  • the downlink receiving timing of a node or serving node is recorded as a third timing mode or a simultaneous receiving mode, refer to the third timing mode of the IAB-node shown in FIG. 4 .
  • the first timing mode the UTT of the IAB-MT is determined by (N TA +N TA,offset ) ⁇ T c ;
  • the second timing mode the UTT of IAB-MT is aligned to or set as the downlink transmission timing (DL Tx Timing, DTT) of IAB-DU;
  • the third timing mode UTT of IAB-MT by (N TA +N TA,offset ) T c or (N TA +N TA,offset +N TA,add_offset ) T c or (N TA +N TA,offset -N TA, add_offset ) Tc is determined.
  • N TA means timing advance, which refers to the time advance of UTT of IAB-MT relative to DRT of IAB-MT;
  • N TA,offset represents the timing advance offset, specifically, including 0 ⁇ T c , 13792 ⁇ T c , 25600 ⁇ T c , 39936 ⁇ T c ;
  • ⁇ f represents the subcarrier spacing
  • T delta represents a timing parameter index
  • N delta represents the timing parameter reference
  • G step represents the timing parameter granularity or represents the step size of each timing parameter adjustment.
  • Fig. 5 is a flow chart of a time difference determination method provided by the embodiment of the present application.
  • the embodiment of the present application can be applied to determine the time difference between the DTT of the parent-DU and the DRT of the IAB-MT in different positioning modes, and the time difference formula
  • the method provided in the embodiment of the present application specifically includes the following steps:
  • Step 110 Determine the time difference according to at least one of the first type of parameter and the timing of the second type of parameter; wherein, the first type of parameter includes at least one of the following: timing advance N TA , first timing advance offset N TA,offset , second 2. Timing advance offset N TA,add_offset ; the second type of parameter includes at least one of the following: a timing parameter index T delta , a timing parameter reference N delta , and a timing parameter granularity G step .
  • the first type of parameter may be a parameter indicating the length of the timing advance time
  • the first type of parameter may include a timing advance, a first timing advance offset and a second timing advance offset
  • the first timing advance offset may be a preset
  • the second timing advance offset may be the time offset configured by the parent node or the service node.
  • the second type of parameter may be information indicating timing advance time granularity, and may include timing parameter index, timing parameter reference, timing parameter granularity, and the like.
  • the timing time difference may be determined according to at least one of the first type of parameters or the second type of parameters, and the time difference may be used for time alignment.
  • the time difference is determined according to timing parameters, including:
  • T TD ((N TA +N TA,add_offset )/2+N delta +T delta ⁇ G step ) ⁇ T c or
  • T TD ((N TA ⁇ N TA,add_offset )/2+N delta +T delta ⁇ G step ) ⁇ T c determines the time difference; wherein, T c is a basic time unit.
  • the first type of parameters and the second type of parameters can be used to determine the time difference through at least one of the above formulas.
  • the timing advance N TA included in the first type of parameters may be the timing advance of the uplink transmission timing of the IAB-MT relative to the downlink receiving timing of the IAB-MT configured by the parent node or serving node of the IAB-node.
  • the timing advance included in the first type of parameters can be set to the value of T TA /T C , or the value of T TA /T C -N TA, add_offset , T TA can indicate that the uplink transmission of IAB-MT is equivalent to IAB -Time interval for downlink receiving timing of MT, N TA, add_offset can be set to 0 in the second timing mode.
  • the timing advance N TA included in the first type of parameters is the uplink transmission timing of the IAB-MT configured by the parent node or the serving node, which is equivalent to the downlink
  • the timing advance of receiving timing, the second timing advance offset N TA included in the first type of parameter, add_offset is configured by the parent node or the serving node.
  • the timing advance used to determine the time difference may be the timing advance of the uplink transmission timing of the IAB-MT configured by the parent node or the serving node is equivalent to the timing advance of the downlink receiving timing of the IAB-MT, and the second timing advance offset The value can be configured by the parent node or service node.
  • the time difference T TD is determined in one of the following ways:
  • T TD ((N TA +N TA,add_offset )/2+N delta +T delta ⁇ G step ) ⁇ T c , or,
  • T TD ((N TA ⁇ N TA,add_offset )/2+N delta +T delta ⁇ G step ) ⁇ T c .
  • T TA is the time interval between UTT of IAB-MT and DRT of IAB-MT
  • N TA,offset is a timing advance offset
  • N TA,add_offset 0.
  • the time interval can be obtained by IAB-node measurement, and the unit (or dimension) of the time interval can be the direct time unit (dimension) with the granularity of the basic time unit Tc , or the indirect time with the granularity of natural numbers Unit (dimension), that is, dividing the direct time unit by the basic time unit T c represents the indirect time unit, such as 0 ⁇ T c , 13792 ⁇ T c , 25600 ⁇ T c , 39936 ⁇ T c and so on.
  • N TA is the timing advance of the UTT of the IAB-MT configured by the parent node relative to the DRT of the IAB-MT
  • N TA, add_offset is the parameter configured by the parent node, which is used in the third timing mode Adjust the UTT of IAB-MT down.
  • Fig. 6 is a flow chart of another time difference determination method provided by the embodiment of the present application.
  • the embodiment of the present application is based on the embodiment of the above application. Referring to Fig. 6, the method provided by the embodiment of the present application specifically includes:
  • T TD (N X /2+N delta +T delta ⁇ G step ) ⁇ T c
  • the time difference can be determined by the timing parameter index T delta , the timing parameter reference N delta , and the timing parameter granularity G step .
  • N x is a parameter configured by the IAB node, and the value of N x can be determined according to the first type of parameter Determine or set according to business needs.
  • the configuration parameter N x N TA , where N TA is the uplink sending timing of the IAB-MT configured by the parent node or serving node is equivalent to the downlink receiving Timed timing advances.
  • the value of the configuration parameter can be set as the timing advance in the first type of parameter, and the timing advance can be the uplink transmission timing of the IAB-MT of the parent node of the IAB node or the serving node relative to the downlink reception of the IAB-MT The value of timing advance.
  • the uplink transmission timing of the MT is equivalent to the time interval of the downlink reception timing.
  • the value of the configuration parameter used when determining the time difference can be determined by the time interval of the UTT of the IAB-MT relative to the DRT of the IAB-MT and the first timing offset N TA ,Offset is determined, and the configuration parameter can be set to the value of T TA /T C , or the value of T TA /T C -N TA,add_offset .
  • the uplink sending timing of the IAB-MT configured by the node is equivalent to the timing advance of the downlink receiving timing
  • the second timing advance offset N TA, add_offset included in the first type of parameters is configured by the parent node or the serving node.
  • the configuration parameters used to determine the time difference can be configured by the parent node parent of the IAB-node node.
  • the UTT of the IAB-MT is ahead of the timing of the DRT of the IAB-MT.
  • the parameters of the node parent configuration are determined.
  • the time difference T TD can be determined in any timing mode as follows:
  • T TD (N x /2+N delta +T delta ⁇ G step ) ⁇ T c .
  • N x N TA
  • N TA is the timing advance of the UTT of the IAB-MT configured by the parent node relative to the DRT of the IAB-MT.
  • T TA is the time interval between UTT of IAB-MT and DRT of IAB-MT
  • N TA,offset is the timing advance offset
  • the time interval can be obtained by IAB-node measurement, and the unit (or dimension) of the time interval can be the direct time unit (dimension) with the granularity of the basic time unit Tc , or the indirect time with the granularity of natural numbers Unit (dimension), that is, dividing the direct time unit by the basic time unit T c represents the indirect time unit, such as 0 ⁇ T c , 13792 ⁇ T c , 25600 ⁇ T c , 39936 ⁇ T c and so on.
  • N TA is the UTT of the IAB-MT configured by the parent node relative to the DRT of the IAB-MT Timing advance
  • N TA, add_offset is a parameter configured by the parent node, and is used to adjust the UTT of the IAB-MT in the third timing mode.
  • Fig. 7 is a flow chart of another method for determining the time difference provided by the embodiment of the present application.
  • the embodiment of the present application is based on the embodiment of the above application.
  • the method for determining the time difference in the embodiment of the present application includes:
  • the time difference T TD can be jointly determined by the timing advance N TA , the timing parameter index T delta , the timing parameter reference N delta , and the timing parameter granularity G step , and can be used by the IAB-node in any timing mode
  • the relationship between the timing advance, the timing parameter reference, the timing parameter granularity and the above formula determines the time difference.
  • the timing advance N TA included in the first type of parameters is equivalent to the downlink receiving timing of the IAB-MT configured by the parent node or serving node.
  • the timing is advanced.
  • the timing advance N TA may be the timing advance of the uplink sending timing of the IAB-MT relative to the downlink receiving timing of the IAB-MT configured by the parent node or serving node .
  • the value may be the time interval at which the uplink sending timing of the IAB-MT is equivalent to the downlink receiving timing.
  • N TA is replaced by N TA +N TA,add_offset or N TA -N TA,add_offset , and N TA is configured for the parent node or service node
  • the uplink sending timing of the IAB-MT is equivalent to the timing advance of the downlink receiving timing
  • the second timing advance offset N TA, add_offset included in the first type of parameters is configured by the parent node or the serving node.
  • the value of N TA in the above formula for determining the time difference can be replaced by N TA +N TA, add_offset or N TA - N TA, add_offset , N TA is the IAB-MT uplink transmission timing configured by the parent node or the service node is equivalent to the timing advance of the downlink reception timing, and the second timing advance offset can be set by the parent node of the IAB-node node or Service node configuration.
  • the timing advance N TA included in the first type of parameters is equal to the timing of the downlink receiving timing of the IAB-MT configured by the parent node or serving node. in advance.
  • the time difference T TD (N TA /2+N delta +T delta ⁇ G step ) ⁇ T c , where,
  • the timing advance N TA is determined in the following way:
  • T TA is the time interval between UTT of IAB-MT and DRT of IAB-MT
  • N TA,offset is the timing advance offset
  • the time interval can be obtained by measuring the IAB-node node, and the unit of the time interval can be a direct time unit with the granularity of the basic time unit Tc , or an indirect time unit with the granularity of a natural number, that is, The direct time unit is divided by the basic time unit T c to represent the indirect time unit.
  • the time difference T TD (N TA /2+N delta +T delta ⁇ G step ) ⁇ T c , where N TA is replaced by N TA +N TA,add_offset or replaced by N TA -N TA,add_offset , N TA is the UTT of the IAB-MT configured by the parent relative to the DRT of the IAB-MT Timing advance, N TA, add_offset is a parameter configured by the parent, N TA, add_offset can be used to adjust the uplink transmission timing of the IAB-MT.
  • the time difference T TD (N TA /2+N delta +T delta ⁇ G step ) ⁇ T c , where the timing advance N TA is determined in the following manner: N TA is the timing advance of the UTT of the IAB-MT configured by the parent node of the IAB-node relative to the DRT of the IAB-MT.
  • the values of the timing parameter index T delta , the timing parameter reference N delta , and the timing parameter granularity G step in different timing modes may be the same or different.
  • Fig. 8 is a schematic structural diagram of a time difference determining device provided in an embodiment of the present application, which can execute the time difference determining method provided in any embodiment of the present application, and has corresponding functional modules and beneficial effects for executing the method.
  • the device can be implemented by software and/or hardware, specifically including:
  • a time difference determination module 401 configured to determine the time difference according to at least one of the timing of the first type of parameter and the second type of parameter;
  • the first type of parameter includes at least one of the following: timing advance N TA , first timing advance offset N TA,offset , second timing advance offset N TA,add_offset ;
  • the second type of parameter includes at least one of the following: a timing parameter index T delta , a timing parameter reference N delta , and a timing parameter granularity G step .
  • the time difference determination module determines the time difference according to at least one of the first type of parameters and the second type of parameters, which can realize network time synchronization in the network system, reduce mutual interference between nodes, and maintain different network time in different network systems. Transmit timing alignment between nodes.
  • the time difference determination module 401 includes:
  • T TD ((N TA -N TA,add_offset )/2+N delta +T delta ⁇ G step ) ⁇ T c determines the time difference
  • T c is the basic time unit.
  • the timing advance N TA included in the first type of parameters is the uplink transmission timing of the IAB-MT configured by the parent node or the serving node Equivalent to the timing advance of downlink receiving timing, the second timing advance offset N TA, add_offset included in the first type of parameters is configured by the parent node or the serving node.
  • the time difference determination module 401 includes:
  • the second processing unit is in the first timing mode
  • the configuration parameter N x N TA
  • N TA is the uplink transmission timing of the IAB-MT configured by the parent node or the serving node It is equivalent to the timing advance of the downlink receiving timing.
  • the uplink sending timing of the IAB-MT configured by TA for the parent node or the serving node is equivalent to the timing advance of the downlink receiving timing
  • the second timing advance offset N TA included in the first type of parameter, add_offset is determined by the parent node or the set The service node configuration described above.
  • the time difference determination module 401 includes:
  • the timing advance N TA included in the first type of parameters is the uplink transmission timing of the IAB-MT configured by the parent node or the serving node It is equivalent to the timing advance of the downlink receiving timing.
  • the value of N TA is replaced by N TA +N TA,add_offset or N TA -N TA,add_offset ,N TA
  • the uplink sending timing of the IAB-MT configured for the parent node or the serving node is equivalent to the timing advance of the downlink receiving timing, and the second timing advance offset N TA included in the first type of parameter, add_offset is determined by the parent node or the Service node configuration.
  • the timing advance N TA included in the first type of parameters is equivalent to the uplink transmission timing of the IAB-MT configured by the parent node or the serving node. Timing advance of downlink receiving timing.
  • Fig. 9 is a schematic structural diagram of an electronic device provided by an embodiment of the present application, the electronic device includes a processor 50, a memory 51, an input device 52 and an output device 53; the number of processors 50 in the electronic device may be one or more
  • a processor 50 is taken as an example; the processor 50, memory 51, input device 52 and output device 53 in the electronic device can be connected through a bus or in other ways.
  • the connection through a bus is taken as an example.
  • the memory 51 can be used to store software programs, computer-executable programs and modules, such as the corresponding module (time difference determination module 401 ) of the device in the embodiment of the present application.
  • the processor 50 executes various functional applications and data processing of the electronic device by running software programs, instructions and modules stored in the memory 51 , that is, implements the above-mentioned method.
  • the memory 51 may mainly include a program storage area and a data storage area, wherein the program storage area may store an operating system and at least one application required by a function; the data storage area may store data created according to the use of the electronic device, and the like.
  • the memory 51 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage devices.
  • the memory 51 may further include a memory that is remotely located relative to the processor 50, and these remote memories may be connected to the electronic device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input device 52 can be used to receive input numbers or character information, and generate key signal input related to user settings and function control of the electronic device.
  • the output device 53 may include a display device such as a display screen.
  • a system for determining a time difference includes one or more electronic devices, and a processor of the electronic device executes a program to determine a time difference based on a first type of parameter and a second type of parameter.
  • the first type of parameter includes at least one of the following: a timing advance N TA , a first timing advance offset N TA,offset , and a second timing advance offset N TA,add_offset .
  • the second type of parameter includes at least one of the following: a timing parameter index T delta , a timing parameter reference N delta , and a timing parameter granularity G step .
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions, the computer-executable instructions are used to perform a method for determining a time difference when executed by a computer processor, and the method includes:
  • the first type of parameter includes at least one of the following: timing advance N TA , first timing advance offset N TA,offset , second timing advance offset N TA,add_offset ;
  • the second type of parameter includes at least one of the following: a timing parameter index T delta , a timing parameter reference N delta , and a timing parameter granularity G step .
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of several physical components. Components cooperate to execute.
  • Some or all of the physical components may be implemented as software executed by a processor, such as a central processing unit, digital signal processor, or microprocessor, or as hardware, or as an integrated circuit, such as an application-specific integrated circuit .
  • a processor such as a central processing unit, digital signal processor, or microprocessor
  • Such software may be distributed on computer readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes both volatile and nonvolatile media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. permanent, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage devices, or can Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种时间差确定方法、电子设备和存储介质,其中,该方法包括:根据第一类参数和第二类参数中至少之一确定时间差(110);其中,第一类参数包括如下至少之一:定时提前N TA、第一定时提前偏移N TA , offSet;第二类参数包括如下至少之一:定时参量索引T delta、定时参量基准N delta、定时参量颗粒度 G step

Description

一种时间差确定方法、电子设备和存储介质 技术领域
本申请涉及无线通信技术领域,例如涉及一种时间差确定方法、电子设备和存储介质。
背景技术
随着无线电技术的不断进步,各种各样的无线电业务大量涌现,而无线电业务所依托的频谱资源是有限的,面对人们对带宽需求的不断增加,传统的商业通信主要使用的300兆赫兹(MHz)~3吉赫兹(GHz)之间频谱资源表现出极为紧张的局面,已经无法满足未来无线通信的需求。从新一代无线通信系统开始,例如在新空口(New Radio,NR)系统或第五代移动通信系统(5th Generation Mobile Communication Technology,5G),将会采用比第四代无线通信(the 4th Generation Mobile Communication,4G)系统所采用的载波频率更高的载波频率进行通信,例如采用28GHz、45GHz、70GHz等等,这种高频信道具有自由传播损耗较大,容易被氧气吸收,受雨衰影响大等缺点,严重影响了高频通信系统的覆盖性能。但是,由于高频通信对应的载波频率具有更短的波长,所以可以保证单位面积上能容纳更多的天线元素,而更多的天线元素意味着可以采用波束赋形的方法来提高天线增益,从而保证高频通信的覆盖性能。
密集小区是越来越主要的应用场景,而密集小区将需要更多的网络部署成本,引入无线回程传输可以很容易地进行部署网络,并且大幅降低网络部署成本。此外NR系统包括高频频段,所以高频载波物理特性决定,其覆盖范围是非常大的挑战,无线回程传输也可以解决这个问题。基于上述需求,在NR系统中,已经针对综合接入和回程(Integrated Access and Backhaul,IAB)进行了立项。为了便于描述,节点和父节点之间的链路称为回程链路(Backhaul link,BL),节点和子节点之间的链路,或者节点和用户设备之间的链路称为接入链路(Access link,AL),其中父节点可以为主节点DN(Donor Node,DN),ND可以包括Donor gNB。同时为了克服半双工中继节点在in-band场景下带来的收发自干扰问题,提出BL和AL之间采用如下复用方式时分复用(Time Division Multiplexing,TDM)、空分复用(Spatial Division Multiplexing,SDM)和频分复用(Frequency Division Multiplexing,FDM)等,其中TDM表示BL和AL之间采用不同的时间资源,SDM表示BL和AL之间采用不同的波束资源,FDM表示BL和AL之间采用不同的频率资源。目前标准中还针对中继节点(Relay Node,RN)定义了两种功能,即IAB-MT和IAB-DU,其中IAB-MT与上游节点互相通信,IAB-DU与下游节点(下游节点包括下游终端)互相 通信。为了保持网络同步,减少节点间相互干扰,系统要求各节点之间需保持下行发射定时对齐。原则上,只要IAB-node基于IAB-MT的DRT向前提前定时提前量TA的一半即可确定IAB-DU的下行发射定时(Downlink Tx Timing,DTT),则可以保持节点间DTT对齐。但由于上游节点侧实现等原因,导致上游节点的上行接收定时(Uplink Rx Timing,URT)和上游节点的DTT之间存在偏移,所以IAB-node不能简单地认为基于IAB-MT的DRT向前提前TA/2就是实际的IAB-DU的DTT。为了解决该问题,系统中引入了定时参量T_delta,也就是说IAB-node可以基于IAB-MT的DRT向前提前时间差TD=TA/2+T_delta,即时间差TD可用于确定节点的DTT(DTT=DRT-TD),进而保持节点间DTT对齐。然而针对不同定时模式并没有明确如何确定parent-DU的DTT与IAB-MT的DRT之间的时间差。
发明内容
本申请实施例的主要目的在于提供一种时间差确定方法、电子设备和存储介质。
本申请实施例提供了一种时间差确定方法,其中,该方法包括:
根据第一类参数和第二类参数中至少之一确定时间差;
其中,所述第一类参数包括如下至少之一:定时提前N TA、第一定时提前偏移N TA,offset
所述第二类参数包括如下至少之一:定时参量索引T delta、定时参量基准N delta、定时参量颗粒度G step
本申请实施例还提供了一种电子设备,其中,该电子设备包括:
一个或多个处理器;
存储器,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本申请实施例中任一所述方法。
本申请实施例还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储有一个或多个程序,所述一个或多个程序被所述一个或多个处理器执行,以实现如本申请实施例中任一所述方法。
附图说明
图1是本申请实施例提供的一种定时模式的示例图;
图2是本申请实施例提供的另一种定时模式的示例图;
图3是本申请实施例提供的另一种定时模式的示例图;
图4是本申请实施例提供的另一种定时模式的示例图;
图5是本申请实施例提供的一种时间差确定方法的流程图;
图6是本申请实施例提供的另一种时间差确定方法的流程图;
图7是本申请实施例提供的另一种时间差确定方法的流程图;
图8是本申请实施例提供的一种时间差确定装置的结构示意图;
图9是本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本申请的说明,其本身没有特有的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
本申请中将IAB-node的上游节点称为IAB-node的父节点parent-node,父节点也可看作节点IAB-node的服务小区,节点IAB-node的下游节点也可称为IAB-node的子节点child-node或UE,节点IAB-node可看做是子节点child-node或UE的服务小区。也就是说,从节点之间相对关系来看,IAB-node也可以看做其parent-node的child-node;IAB-node也可以看做其child-node的parent-node。其中,IAB-node定义了两种功能,即IAB-MT和IAB-DU,其中,IAB-MT与上游节点互相通信,IAB-DU与下游节点互相通信,其中下行节点可以包括终端。此外,本申请中主要的定时模式包括如下三种:(1)节点的下行发射定时对齐到其父节点或者服务节点的下行发射定时,记为第一定时模式或非同时模式,参见图1和图2示出的IAB-node的第一定时模式;(2)节点的上行发射定时对齐到该节点的下行发射定时或者节点的下行发射定时对齐到父节点或服务节点的下行发射定时,记为第二定时模式或同时发射模式,参见图3示出的IAB-node的第二定时模式;(3)节点的上行接收定时对齐到该节点的下行接收定时,或者节点的下行发射定时对齐到父节点或服务节点的下行接收定时,记为第三定时模式或同收模式,参见图4示出的IAB-node的第三定时模式。对于上述三种定时模式,从IAB-MT的上行发射定时(UL Tx Timing,UTT)角度描述为:
第一定时模式:IAB-MT的UTT由(N TA+N TA,offset)·T c确定;
第二定时模式:IAB-MT的UTT对齐到或设置为IAB-DU的下行发射定时(DL Tx Timing,DTT);
第三定时模式:IAB-MT的UTT由(N TA+N TA,offset)·T c或(N TA+N TA,offset+N TA,add_offset)·T c或(N TA+N TA,offset-N TA,add_offset)·Tc确定。
此外,在此对本申请中使用的相关术语进行介绍:
N TA表示定时提前,是指IAB-MT的UTT相对于IAB-MT的DRT的时间提前量;
N TA,offset表示定时提前偏移,具体地,包括0·T c、13792·T c、25600·T c、39936·T c
T c表示基本时间单元,具体地,T c=1/(Δf max·N f),Δf max=480·10 3Hz,N f=4096;
Δf表示子载波间隔;
μ表示子载波间隔索引,具体地,Δf=2 μ·15kHz;
T delta表示定时参量索引;
N delta表示定时参量基准;
G step表示定时参量颗粒度或表示每次定时参量调整的步长。
图5是本申请实施例提供的一种时间差确定方法的流程图,本申请实施例可适用于在不同定位模式下确定parent-DU的DTT与IAB-MT的DRT之间的时间差,以及时间差公式中相关参数的情况,参见图5,本申请实施例提供的方法具体包括如下步骤:
步骤110、根据第一类参数和第二类参数定时中至少之一确定时间差;其中,第一类参数包括如下至少之一:定时提前N TA、第一定时提前偏移N TA,offset、第二定时提前偏移N TA,add_offset;第二类参数包括如下至少之一:定时参量索引T delta、定时参量基准N delta、定时参量颗粒度G step
其中,第一类参数可以是指示定时提前时间长度的参数,第一类参数可以包括定时提前、第一定时提前偏移和第二定时提前偏移,其中,第一定时提前偏移可以是预设好的时间偏移量,第二定时提前偏移可以是父节点或者服务节点配置的时间偏移量。第二类参数可以是指示定时提前时间粒度的信息,可以包括定时参量索引、定时参量基准和定时参量粒度等。
在本申请实施例中,可以按照第一类参数或者第二类参数中至少之一确定出定时时间差,该时间差可用于时间对齐。
进一步的,在上述申请实施例的基础上,根据定时参数确定时间差,包括:
根据T TD=((N TA+N TA,add_offset)/2+N delta+T delta·G step)·T c
T TD=((N TA-N TA,add_offset)/2+N delta+T delta·G step)·T c确定所述时间差;其中,T c为基本时间单元。
在本申请实施例中,无论在何种定时模式下,可以将第一类参数以及第二类参数通过上述公式中至少之一确定出时间差。
进一步的,在上述申请实施例的基础上,在第一定时模式下,所述第一类参数包括的定时提前N TA为父节点或服务节点配置的IAB-MT的上行发送定时相当于下行接收定时的定时提前,N TA,add_offset=0。
在本申请实施例中,第一类参数包括的定时提前N TA可以为IAB-node的父节点或服务节点配置的IAB-MT的上行发射定时相对于IAB-MT的下行接收定 时的定时提前。
进一步的,在上述申请实施例的基础上,在第二定时模式下,所述第一类参数包括的定时提前N TA=T TA/T c或N TA=T TA/T c-N TA,offset,其中,T TA为IAB-MT(统一接入和回程-移动终端)的上行发送定时相当于下行接收定时的时间间隔,N TA,add_offset=0。
具体的,第一类参数包括的定时提前可以设置为T TA/T C的值,或者T TA/T C-N TA,add_offset的值,T TA可以表示IAB-MT的上行发送动手相当于IAB-MT的下行接收定时的时间间隔,在第二定时模式下N TA,add_offset可以设置为0。
进一步的,在上述申请实施实施例的基础上,在第三定时模式下,所述第一类参数包括的定时提前N TA为父节点或服务节点配置的IAB-MT的上行发送定时相当于下行接收定时的定时提前,所述第一类参数包括的第二定时提前偏移N TA,add_offset由所述父节点或所述服务节点配置。
在本申请实施例中,确定时间差使用的定时提前可以是父节点或者服务节点配置的IAB-MT的上行发送定时相当于IAB-MT的下行接收定时的定时提前,以及第二定时提前偏移的取值可以由父节点或者服务节点进行配置。
在一个示例性的实施方式中,时间差T TD采用如下方式之一确定:
T TD=((N TA+N TA,add_offset)/2+N delta+T delta·G step)·T c,或,
T TD=((N TA-N TA,add_offset)/2+N delta+T delta·G step)·T c
具体的,在第一定时模式下,N TA为父节点parent配置的IAB-MT的UTT相对于IAB-MT的DRT的定时提前,N TA,add_offset=0。
在第二定时模式下,N TA=T TA/T c或N TA=T TA/T c-N TA,offset,T TA为IAB-MT的UTT相对于IAB-MT的DRT的时间间隔,N TA,offset为定时提前偏移,N TA,add_offset=0。其中,时间间隔可以由IAB-node测量获得,时间间隔的单位(或量纲)可以是以基本时间单元T c为粒度的直接时间单位(量纲),也可以是以自然数为粒度的间接时间单位(量纲),也就是说,直接时间单位除以基本时间单元T c就表示了间接时间单位,如,0·T c、13792·T c、25600·T c、39936·T c等。
在第三定时模式下,N TA为父节点parent配置的IAB-MT的UTT相对于IAB-MT的DRT的定时提前,N TA,add_offset为父节点parent配置的参数,用于在第三定时模式下调整IAB-MT的UTT。
图6是本申请实施例提供的另一种时间差确定方法的流程图,本申请实施例是在上述申请实施例的基础上的具体化,参见图6,本申请实施例提供的方法具体包括:
步骤210、根据T TD=(N x/2+N delta+T delta·G step)·T c确定时间差,其中,N x为配置 参数,T c为基本时间单元。
根据T TD=(N X/2+N delta+T delta·G step)·T c确定时间差
在本申请实施例中,可以通过定时参量索引T delta、定时参量基准N delta、定时参量颗粒度G step确定时间差,N x为IAB节点配置的参数,N x的取值可以根据第一类参数确定或者根据业务需求设定。
进一步的,在上述申请实施例的基础上,在第一定时模式下,所述配置参数N x=N TA,N TA为父节点或服务节点配置的IAB-MT的上行发送定时相当于下行接收定时的定时提前。
具体的,配置参数的取值可以设定为第一类参数中的定时提前,该定时提前可以是IAB节点的父节点或者服务节点的IAB-MT的上行发送定时相对于IAB-MT的下行接收定时的定时提前的取值。
进一步的,在上述申请实施例的基础上,在第二定时模式下,所述配置参数N x=T TA/T c或N x=T TA/T c-N TA,offset,T TA为IAB-MT的上行发送定时相当于下行接收定时的时间间隔。
在本申请实施例中,在第二定时模式下,在确定时间差时使用的配置参数的取值可以由IAB-MT的UTT相对于IAB-MT的DRT的时间间隔以及第一定时偏移N TA,offset确定,配置参数可以设置为T TA/T C的值,或者T TA/T C-N TA,add_offset的值。
进一步的,在上述申请实施例的基础上,在第三定时模式下,配置参数N x=N TA+N TA,add_offset或N x=N TA-N TA,add_offset,N TA为父节点或服务节点配置的IAB-MT的上行发送定时相当于下行接收定时的定时提前,所述第一类参数包括的第二定时提前偏移N TA,add_offset由所述父节点或所述服务节点配置。
具体的,在第三定时模式下,确定时间差使用的配置参数可以由IAB-node节点的父节点parent配置的IAB-MT的UTT相对于IAB-MT的DRT的定时提前,N TA,add_offset为父节点parent配置的参数确定。
在一个示例性的实施方式中,时间差T TD在任何定时模式下可以采用如下方式确定:
T TD=(N x/2+N delta+T delta·G step)·T c
具体的,第一定时模式下,N x=N TA,N TA为父节点parent配置的IAB-MT的UTT相对于IAB-MT的DRT的定时提前。
在第二定时模式下,N x=T TA/T c或N x=T TA/T c-N TA,offset,T TA为IAB-MT的UTT相对于IAB-MT的DRT的时间间隔,N TA,offset为定时提前偏移。其中,时间间隔可以由IAB-node测量获得,时间间隔的单位(或量纲)可以是以基本时间单元T c为粒度的直接时间单位(量纲),也可以是以自然数为粒度的间接时间单位(量纲),也就是说,直接时间单位除以基本时间单元T c就表示了间接 时间单位,如,0·T c、13792·T c、25600·T c、39936·T c等。
在第三定时模式下,N x=N TA+N TA,add_offset或N x=N TA-N TA,add_offset,N TA为父节点parent配置的IAB-MT的UTT相对于IAB-MT的DRT的定时提前,N TA,add_offset为父节点parent配置的参数,用于在第三定时模式下调整IAB-MT的UTT。
图7是本申请实施例提供的另一种时间差确定方法的流程图,本申请实施例是在上述申请实施例基础上的具体化,参见图7,本申请实施例的时间差确定方法包括:
步骤310、根据T TD=(N TA/2+N delta+T delta·G step)·T c确定所述时间差,其中,T c为基本时间单元。
在本申请实施例中,时间差T TD可以由定时提前N TA以及定时参量索引T delta、定时参量基准N delta、定时参量颗粒度G step共同确定,在任何定时模式下,可以由IAB-node使用定时提前、定时参量基准、定时参量颗粒度和上述公式对应的关系确定时间差。
进一步的,在上述申请实施例的基础上,第一定时模式下,所述第一类参数包括的定时提前N TA为父节点或服务节点配置的IAB-MT的上行发送定时相当于下行接收定时的定时提前。
在本申请实施例中,基于第一定时模式确定时间差的情况下,定时提前N TA可以是父节点或服务节点配置的IAB-MT的上行发送定时相对于IAB-MT的下行接收定时的定时提前。
进一步的,在上述申请实施例的基础上,第二定时模式下,第一类参数包括的定时提前N TA=T TA/T c或N TA=T TA/T c-N TA,offset,T TA为IAB-MT的上行发送定时相当于下行接收定时的时间间隔。
具体的,IAB-node节点在按照第二定时模式确定时间差的情况下,可以基于N TA=T TA/T c或N TA=T TA/T c-N TA,offset确定,其中,T TA的取值可以为IAB-MT的上行发送定时相当于下行接收定时的时间间隔。
进一步的,在上述申请实施例的基础上,第三定时模式下,N TA的取值替换为N TA+N TA,add_offset或N TA-N TA,add_offset,N TA为父节点或服务节点配置的IAB-MT的上行发送定时相当于下行接收定时的定时提前,所述第一类参数包括的第二定时提前偏移N TA,add_offset由所述父节点或所述服务节点配置。
在本申请实施例中,在IAB-node节点按照第三定时模式确定时间差的情况下,可以将上述确定时间差的公式中的N TA的取值替换为N TA+N TA,add_offset或N TA-N TA,add_offset,N TA为父节点或服务节点配置的IAB-MT的上行发送定时相当于下行接收定时的定时提前,而其中的第二定时提前偏移可以由IAB-node节点的父节点或者服务节点配置。
进一步的,在上述申请实施例的基础上,第三定时模式下,第一类参数包 括的定时提前N TA为父节点或服务节点配置的IAB-MT的上行发送定时相当于下行接收定时的定时提前。
在一个示例性的实施方式中,以IAB-node节点在第二定时模式下确定时间差为例,时间差T TD=(N TA/2+N delta+T delta·G step)·T c,其中,定时提前N TA采用如下方式确定:
N TA=T TA/T c或N TA=T TA/T c-N TA,offset,T TA为IAB-MT的UTT相对于IAB-MT的DRT的时间间隔,N TA,offset为定时提前偏移,其中,时间间隔可以由IAB-node节点测量获得,时间间隔的单位可以是以基本时间单元T c为粒度的直接时间单位,也可以是以自然数为粒度的间接时间单位,也就是说,直接时间单位除以基本时间单元T c来表示间接时间单位。
在另一个示例性的实施方式中,以IAB-node节点在第三定时模式下确定时间差为例,第三定时模式下,时间差T TD=(N TA/2+N delta+T delta·G step)·T c,其中,N TA被替换为N TA+N TA,add_offset或被替换为N TA-N TA,add_offset,N TA为parent配置的IAB-MT的UTT相对于IAB-MT的DRT的定时提前,N TA,add_offset为parent配置的参数,N TA,add_offset可以用于调整IAB-MT的上行发送定时。
在另一个示例性的实施方式中,以IAB-node节点在第三定时模式下确定时间差为例,第三定时模式下,时间差T TD=(N TA/2+N delta+T delta·G step)·T c,其中,定时提前N TA采用如下方式确定:N TA为IAB-node节点的父节点parent配置的IAB-MT的UTT相对于IAB-MT的DRT的定时提前。
进一步的,在上述申请实施例的基础上,不同定时模式下定时参量索引T delta、定时参量基准N delta、定时参量颗粒度G step的取值可以相同或者不同。
图8是本申请实施例提供的一种时间差确定装置的结构示意图,可执行本申请任意实施例所提供的时间差确定方法,具备执行方法相应的功能模块和有益效果。该装置可以由软件和/或硬件实现,具体包括:
时间差确定模块401,用于根据第一类参数和第二类参数定时中至少之一确定时间差;
其中,所述第一类参数包括如下至少之一:定时提前N TA、第一定时提前偏移N TA,offset、第二定时提前偏移N TA,add_offset
所述第二类参数包括如下至少之一:定时参量索引T delta、定时参量基准N delta、定时参量颗粒度G step
本申请实施例通过时间差确定模块根据第一类参数和第二类参数中至少之一确定时间差,可实现网络系统中的网络时间同步,降低各节点间的相互干扰,可保持不同网络系统中不同节点间的发射定时对齐。
进一步的,在上述申请实施例的基础上,时间差确定模块401包括:
第一处理单元,用于根据T TD=((N TA+N TA,add_offset)/2+N delta+T delta·G step)·T c
T TD=((N TA-N TA,add_offset)/2+N delta+T delta·G step)·T c确定所述时间差;
其中,T c为基本时间单元。
进一步的,在上述申请实施例的基础上,第一处理单元在第一定时模式下,所述第一类参数包括的定时提前N TA为父节点或服务节点配置的IAB-MT的上行发送定时相当于下行接收定时的定时提前,N TA,add_offset=0。
进一步的,在上述申请实施例的基础上,第一处理单元在第二定时模式下,所述第一类参数包括的定时提前N TA=T TA/T c或N TA=T TA/T c-N TA,offset,其中,T TA为IAB-MT的上行发送定时相当于下行接收定时的时间间隔,N TA,add_offset=0。
进一步的,在上述申请实施例的基础上,第一处理单元在第三定时模式下,所述第一类参数包括的定时提前N TA为父节点或服务节点配置的IAB-MT的上行发送定时相当于下行接收定时的定时提前,所述第一类参数包括的第二定时提前偏移N TA,add_offset由所述父节点或所述服务节点配置。
进一步的,在上述申请实施例的基础上,时间差确定模块401包括:
第二处理单元,用于根据T TD=(N x/2+N delta+T delta·G step)·T c确定所述时间差,其中,所述N x为配置参数,T c为基本时间单元。
进一步的,在上述申请实施例的基础上,第二处理单元在第一定时模式下,所述配置参数N x=N TA,N TA为父节点或服务节点配置的IAB-MT的上行发送定时相当于下行接收定时的定时提前。
进一步的,在上述申请实施例的基础上,第二处理单元在第二定时模式下,所述配置参数N x=T TA/T c或N x=T TA/T c-N TA,offset,T TA为IAB-MT的上行发送定时相当于下行接收定时的时间间隔。
进一步的,在上述申请实施例的基础上,第二处理单元在第三定时模式下,所述配置参数N x=N TA+N TA,add_offset或N x=N TA-N TA,add_offset,N TA为父节点或服务节点配置的IAB-MT的上行发送定时相当于下行接收定时的定时提前,所述第一类参数包括的第二定时提前偏移N TA,add_offset由所述父节点或所述服务节点配置。
进一步的,在上述申请实施例的基础上,时间差确定模块401包括:
第三处理单元,用于根据T TD=(N TA/2+N delta+T delta·G step)·T c确定所述时间差其中,T c为基本时间单元。
进一步的,在上述申请实施例的基础上,第三处理单元在第一定时模式下,所述第一类参数包括的定时提前N TA为父节点或服务节点配置的IAB-MT的上行发送定时相当于下行接收定时的定时提前。
进一步的,在上述申请实施例的基础上,第三处理单元在第二定时模式下,第一类参数包括的定时提前N TA=T TA/T c或N TA=T TA/T c-N TA,offset,T TA为IAB-MT的上行发送定时相当于下行接收定时的时间间隔。
进一步的,在上述申请实施例的基础上,第三处理单元在第三定时模式下, 所述N TA的取值替换为N TA+N TA,add_offset或N TA-N TA,add_offset,N TA为父节点或服务节点配置的IAB-MT的上行发送定时相当于下行接收定时的定时提前,所述第一类参数包括的第二定时提前偏移N TA,add_offset由所述父节点或所述服务节点配置。
进一步的,在上述申请实施例的基础上,第三处理单元在第三定时模式下,第一类参数包括的定时提前N TA为父节点或服务节点配置的IAB-MT的上行发送定时相当于下行接收定时的定时提前。
图9是本申请实施例提供的一种电子设备的结构示意图,该电子设备包括处理器50、存储器51、输入装置52和输出装置53;电子设备中处理器50的数量可以是一个或多个,图9中以一个处理器50为例;电子设备中处理器50、存储器51、输入装置52和输出装置53可以通过总线或其他方式连接,图9中以通过总线连接为例。
存储器51作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请实施例中的装置对应的模块(时间差确定模块401)。处理器50通过运行存储在存储器51中的软件程序、指令以及模块,从而执行电子设备的各种功能应用以及数据处理,即实现上述的方法。
存储器51可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据电子设备的使用所创建的数据等。此外,存储器51可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器51可进一步包括相对于处理器50远程设置的存储器,这些远程存储器可以通过网络连接至电子设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置52可用于接收输入的数字或字符信息,以及产生与电子设备的用户设置以及功能控制有关的键信号输入。输出装置53可包括显示屏等显示设备。
在一个示例性的实施方式中,一种时间差确定系统,该系统包括一个或多个电子设备,该电子设备的处理器在执行程序时实现:基于第一类参数和第二类参数确定时间差。
其中,第一类参数包括如下至少之一:定时提前N TA,第一定时提前偏移N TA,offset,第二定时提前偏移N TA,add_offset
其中第二类参数包括如下至少之一:定时参量索引T delta,定时参量基准N delta,定时参量颗粒度G step
本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种时间差确定方法,该方法包括:
根据第一类参数和第二类参数中至少之一确定时间差;
其中,所述第一类参数包括如下至少之一:定时提前N TA、第一定时提前偏移N TA,offset、第二定时提前偏移N TA,add_offset
所述第二类参数包括如下至少之一:定时参量索引T delta、定时参量基准N delta、定时参量颗粒度G step
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
值得注意的是,上述装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (8)

  1. 一种时间差确定方法,包括:
    根据第一类参数和第二类参数中至少之一确定时间差;
    其中,所述第一类参数包括如下至少之一:定时提前N TA、第一定时提前偏移N TA,offset
    所述第二类参数包括如下至少之一:定时参量索引T delta、定时参量基准N delta、定时参量颗粒度G step
  2. 根据权利要求1所述方法,其中,所述根据第一类参数和第二类参数中至少之一确定时间差,包括:
    根据T TD=T TA/2+(-N TA,offset/2+N delta+T delta·G step)·T c确定所述时间差;
    其中,T c为基本时间单元。
  3. 根据权利要求1所述方法,其中,所述根据第一类参数和第二类参数中至少之一确定时间差,包括:
    根据T TD=(N x/2+N delta+T delta·G step)·T c确定所述时间差,其中,N x为配置参数,T c为基本时间单元。
  4. 根据权利要求3所述方法,其中,所述配置参数N x=T TA/T c-N TA,offset,T TA为IAB-MT的上行发送定时相当于下行接收定时的时间间隔。
  5. 根据权利要求1所述方法,其中,所述根据第一类参数和第二类参数中至少之一确定时间差,包括:
    根据T TD=(N TA/2+N delta+T delta·G step)·T c确定所述时间差,其中,T c为基本时间单元。
  6. 根据权利要求5所述方法,其中,第一类参数包括的定时提前N TA=T TA/T c-N TA,offset,T TA为IAB-MT的上行发送定时相当于下行接收定时的时间间隔。
  7. 一种电子设备,包括:
    一个或多个处理器;
    存储器,用于存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-6中任一所述方法。
  8. 一种计算机可读存储介质,所述计算机可读存储介质存储有一个或多个程序,所述一个或多个程序可被一个或多个处理器执行,以实现如权利要求1-6中任一所述方法。
PCT/CN2023/070120 2022-01-07 2023-01-03 一种时间差确定方法、电子设备和存储介质 WO2023131120A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210015652.7 2022-01-07
CN202210015652.7A CN115843095A (zh) 2022-01-07 2022-01-07 一种时间差确定方法、电子设备和存储介质

Publications (1)

Publication Number Publication Date
WO2023131120A1 true WO2023131120A1 (zh) 2023-07-13

Family

ID=85574615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070120 WO2023131120A1 (zh) 2022-01-07 2023-01-03 一种时间差确定方法、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN115843095A (zh)
WO (1) WO2023131120A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111901863A (zh) * 2020-04-02 2020-11-06 中兴通讯股份有限公司 一种定时参量确定方法、装置、设备和存储介质
CN112512078A (zh) * 2020-10-15 2021-03-16 中兴通讯股份有限公司 定时确定方法、装置、电子设备和存储介质
CN112839376A (zh) * 2021-01-04 2021-05-25 中兴通讯股份有限公司 定时确定方法、装置、通信节点及存储介质
CN113508624A (zh) * 2019-03-28 2021-10-15 华为技术有限公司 一种定时对齐的方法和装置
WO2021234581A1 (en) * 2020-05-19 2021-11-25 Lenovo (Singapore) Pte. Ltd. Timing alignment in integrated access and backhaul
US20220124652A1 (en) * 2020-10-16 2022-04-21 Nokia Technologies Oy IAB Timing Delta MAC CE Enhancement For Case #6 Timing Support
US20220232604A1 (en) * 2021-01-18 2022-07-21 Samsung Electronics Co., Ltd. Method and apparatus for performing communication for transmission/reception of iab node in wireless communication system
US20220232562A1 (en) * 2021-01-18 2022-07-21 Samsung Electronics Co., Ltd. Method and apparatus for performing communication for transmission of iab node in wireless communication system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113508624A (zh) * 2019-03-28 2021-10-15 华为技术有限公司 一种定时对齐的方法和装置
CN111901863A (zh) * 2020-04-02 2020-11-06 中兴通讯股份有限公司 一种定时参量确定方法、装置、设备和存储介质
WO2021234581A1 (en) * 2020-05-19 2021-11-25 Lenovo (Singapore) Pte. Ltd. Timing alignment in integrated access and backhaul
CN112512078A (zh) * 2020-10-15 2021-03-16 中兴通讯股份有限公司 定时确定方法、装置、电子设备和存储介质
US20220124652A1 (en) * 2020-10-16 2022-04-21 Nokia Technologies Oy IAB Timing Delta MAC CE Enhancement For Case #6 Timing Support
CN112839376A (zh) * 2021-01-04 2021-05-25 中兴通讯股份有限公司 定时确定方法、装置、通信节点及存储介质
US20220232604A1 (en) * 2021-01-18 2022-07-21 Samsung Electronics Co., Ltd. Method and apparatus for performing communication for transmission/reception of iab node in wireless communication system
US20220232562A1 (en) * 2021-01-18 2022-07-21 Samsung Electronics Co., Ltd. Method and apparatus for performing communication for transmission of iab node in wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MODERATOR (ZTE): "FL summary #2 on remaining issues in IAB case-1 timing", 3GPP TSG RAN WG1 MEETING #100BIS-E R1-2002750, 27 April 2020 (2020-04-27), XP051878579 *
ZTE CORPORATION: "Discussion on timing issues for simultaneous operation of IAB", 3GPP TSG-RAN WG4 MEETING # 103-E R4-2208505, 25 April 2022 (2022-04-25), XP052139985 *

Also Published As

Publication number Publication date
CN115843095A (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
US11765670B2 (en) Method and apparatus for transmission timing, base station, and computer readable storage medium
EP3890409B1 (en) Power control method and power control apparatus
RU2746577C1 (ru) Пользовательский терминал и способ радиосвязи
WO2020119700A1 (zh) 定时信息配置方法、装置、存储介质和系统
US20210105782A1 (en) Techniques for addressing iab node switching time
WO2019192336A1 (zh) 功率控制方法、装置和系统
US20220039180A1 (en) Apparatus and methods for operating multi-link devices in wireless networks
WO2020063958A1 (zh) 信号发送、资源确定方法、装置、终端、基站和存储介质
WO2021196702A1 (zh) 定时参量确定方法、装置、设备和存储介质
CN114223274B (zh) 一种定时同步方法及装置
WO2023131120A1 (zh) 一种时间差确定方法、电子设备和存储介质
CN113542176B (zh) 一种信号发送的方法及装置
WO2021041648A1 (en) Root set selection for multi-root preamble
Riihonen et al. SINR analysis of full-duplex OFDM repeaters
US20220346036A1 (en) Maximum power reduction
US20200359331A1 (en) Uplink transmit power control for cross link interference
US10447456B2 (en) Method for limiting spurious emission and user equipment performing the method
TWI444083B (zh) 無線通訊系統及其中繼通訊裝置與無線通訊裝置
WO2023041064A1 (zh) 时间参数确定方法、设备和存储介质
WO2023087326A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
KR102672745B1 (ko) 타이밍 정보 구성 방법, 장치, 저장매체 및 시스템
WO2022252048A1 (zh) 定时参数配置方法、装置、终端设备及网络设备
WO2023201702A1 (en) Systems, methods, and devices for interruption reduction during deactivated secondary cell group
US20230371059A1 (en) Automatic gain control for super-high order modulations
WO2024059993A1 (en) Cross-link interference timing alignment for partial timing advance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23736985

Country of ref document: EP

Kind code of ref document: A1