WO2020119700A1 - 定时信息配置方法、装置、存储介质和系统 - Google Patents

定时信息配置方法、装置、存储介质和系统 Download PDF

Info

Publication number
WO2020119700A1
WO2020119700A1 PCT/CN2019/124440 CN2019124440W WO2020119700A1 WO 2020119700 A1 WO2020119700 A1 WO 2020119700A1 CN 2019124440 W CN2019124440 W CN 2019124440W WO 2020119700 A1 WO2020119700 A1 WO 2020119700A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
timing
mode
value
timing mode
Prior art date
Application number
PCT/CN2019/124440
Other languages
English (en)
French (fr)
Inventor
毕峰
苗婷
张文峰
卢有雄
邢卫民
刘文豪
梅猛
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to RU2021120277A priority Critical patent/RU2769943C1/ru
Priority to EP19895686.4A priority patent/EP3896903A4/en
Priority to KR1020217021721A priority patent/KR102672745B1/ko
Priority to US17/413,482 priority patent/US20220070810A1/en
Publication of WO2020119700A1 publication Critical patent/WO2020119700A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2646Arrangements specific to the transmitter only using feedback from receiver for adjusting OFDM transmission parameters, e.g. transmission timing or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/005Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by adjustment in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the embodiments of the present disclosure relate to, but are not limited to, communication technologies, and in particular, to a method, device, storage medium, and system for configuring timing information.
  • This high-frequency channel has a large free propagation loss and is easily absorbed by oxygen It is affected by rain attenuation and other shortcomings, which seriously affect the coverage performance of high-frequency communication systems.
  • the carrier frequency corresponding to high-frequency communication has a shorter wavelength, it can ensure that more antenna elements can be accommodated per unit area, and more antenna elements means that beamforming can be used to increase the antenna gain. So as to ensure the coverage performance of high frequency communication.
  • Dense cells are an increasingly important application scenario, and dense cells will require more network deployment costs.
  • the introduction of wireless backhaul transmission can easily deploy networks and significantly reduce network deployment costs.
  • NR systems include high-frequency bands, so the physical characteristics of high-frequency carriers determine their coverage is a very big challenge, wireless backhaul transmission can also solve this problem.
  • IAB overall access and backhaul
  • the standard defines several marks (LP , DL , LP , UL ), (LC , DL , LC , UL ), (LA , DL , LA , UL ); where, ( LP , DL , LP , UL ) represents the downlink and uplink between the node and the parent node, the link can be regarded as a backhaul link (BL, Backhaul link), the node can be regarded as Is a child node of the parent node; (LC , DL , LC , UL ) represents the downlink and uplink between the node and the child node, the link can be regarded as BL, the node can be seen Be the parent node of the child node; (LA , DL , LA , UL ) represents the downlink and uplink between the node and the user equipment, the link can be regarded as an access link ( AL, Access link); where, the parent node may also be a donor no
  • TDM Time Division Multiplexing
  • FDM Frequency division multiplexing
  • SDM Spatial Division Multiplexing
  • TDM means that different time resources are used between BL and AL
  • SDM means that different beams are used between BL and AL Resources
  • FDM means that different frequency resources are used between BL and AL.
  • stage 1 stage 1
  • stage_2 stage 2
  • stage_2 stage_2
  • node mode the relay node completes synchronization and initial access to the network to communicate with other nodes or user equipment as a node (or centralized unit or distributed unit), Namely "node mode”.
  • timing advance command Timing Advance Command
  • the user equipment receives the TAC (TAC in RAR) in the random access response (RAR, Random Access) or TAC (TAC in the MAC) (MAC, CE, Media Access Control, Control Elements) MAC (CE) will be launched in advance at the corresponding time point.
  • TAC Timing Advance Command
  • MAC Media Access Control, Control Elements
  • CE Media Access Control, Control Elements
  • Embodiments of the present disclosure provide a method, device, storage medium, and system for configuring timing information, which can implement the configuration of timing information.
  • An embodiment of the present disclosure provides a method for configuring timing information, including:
  • the first node predefines or configures the timing information of the second node; wherein the timing information includes at least one of the following: timing mode, reference timing alignment mode, time advance TA configuration mode, TA value, offset of TA value, The number of orthogonal frequency division multiplexing (OFDM, Orthogonal, Frequency, Multiplexing) symbols required for the alignment of the uplink transmit link with respect to the downlink transmit link needs to be advanced or delayed, and the alignment of the uplink receive link with the downlink receive link needs to be advanced Or the number of OFDM symbols delayed by offset.
  • OFDM Orthogonal frequency division multiplexing
  • An embodiment of the present disclosure provides a method for configuring timing information, including:
  • the second node determines the timing information of the second node in a predefined or configured manner; wherein the timing information includes at least one of the following: timing mode, reference timing alignment mode, time advance TA configuration mode, TA value, TA value Offset, the number of OFDM symbols that need to be advanced or delayed to be aligned with the uplink transmit link relative to the downlink transmit link, and the OFDM symbols that need to be advanced or delayed to be aligned with the uplink receive link relative to the downlink receive link Number of.
  • Timing information configuration device including:
  • the configuration module is used to predefine or configure the timing information of the second node; wherein, the timing information includes at least one of the following: timing mode, reference timing alignment mode, time advance TA configuration mode, TA value, TA value offset The amount, the number of OFDM symbols that need to be advanced or delayed to be aligned with the uplink transmit link relative to the downlink transmit link, and the number of OFDM symbols that need to be advanced or delayed to be aligned with the uplink receive link relative to the downlink receive link.
  • Timing information configuration device including:
  • the determining module is configured to determine the timing information of the second node in a predefined manner or a configured manner; wherein, the timing information includes at least one of the following: timing mode, reference timing alignment mode, time advance TA configuration mode, TA value, The offset of the TA value, the number of OFDM symbols that need to be advanced or delayed to be aligned with the uplink transmit link relative to the downlink transmit link, and the alignment that needs to be advanced or delayed to be aligned with the uplink receive link relative to the downlink receive link The number of OFDM symbols.
  • An embodiment of the present disclosure provides a timing information configuration device, including a processor and a computer-readable storage medium.
  • the computer-readable storage medium stores instructions, and when the instructions are executed by the processor, the A timing information configuration method.
  • An embodiment of the present disclosure provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of any of the foregoing timing information configuration methods are implemented.
  • Timing information configuration system including:
  • the first node is used to predefine or configure the timing information of the second node
  • the second node is used to determine the timing information of the second node in a predefined manner or a configured manner
  • the timing information includes at least one of the following: timing mode, reference timing alignment mode, time advance TA configuration mode, TA value, offset of TA value, alignment of the uplink transmission link relative to the downlink transmission link needs to be advanced or The number of OFDM symbols that are delayed and the number of OFDM symbols that need to be shifted in advance or delayed for the alignment of the uplink receive link relative to the downlink receive link.
  • Embodiments of the present disclosure include: the first node predefines or configures the timing information of the second node; wherein, the timing information includes at least one of the following: timing mode, reference timing alignment mode, time advance TA configuration mode, TA value, TA Value offset, the number of OFDM symbols that need to be advanced or delayed to be aligned with the uplink transmit link relative to the downlink transmit link, and the OFDM that needs to be advanced or delayed to be aligned with the uplink receive link relative to the downlink receive link The number of symbols; the second node determines the timing information of the second node in a predefined manner or in a configured manner.
  • the embodiments of the present disclosure implement the configuration of timing information.
  • FIG. 1 is a flowchart of a method for configuring timing information according to an embodiment of the present disclosure
  • FIG. 2(a) is a schematic diagram of a first timing mode of an embodiment of the present disclosure
  • FIG. 2(b) is a schematic diagram 1 of a second timing mode according to an embodiment of the present disclosure
  • 2(c) is a second schematic diagram of a second timing mode according to an embodiment of the present disclosure
  • FIG. 2(d) is a schematic diagram of a third timing mode of an embodiment of the present disclosure.
  • FIG. 3 is a flowchart of a method for configuring timing information according to another embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a node topology structure according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural composition diagram of a timing information configuration device proposed by another embodiment of the present disclosure.
  • FIG. 6 is a schematic structural composition diagram of a timing information configuration device according to another embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a timing information configuration system proposed by another embodiment of the present disclosure.
  • an embodiment of the present disclosure proposes a method for configuring timing information, including:
  • Step 100 The first node predefines or configures the timing information of the second node; wherein the timing information includes at least one of the following: timing mode, reference timing alignment mode, time advance TA configuration mode, TA value, and deviation of TA value Shift, number of OFDM symbols that need to be advanced or delayed to be aligned with the uplink transmit link relative to the downlink transmit link, number of OFDM symbols that need to be advanced or delayed to be aligned with the uplink receive link relative to the downlink receive link .
  • the timing information includes at least one of the following: timing mode, reference timing alignment mode, time advance TA configuration mode, TA value, and deviation of TA value Shift, number of OFDM symbols that need to be advanced or delayed to be aligned with the uplink transmit link relative to the downlink transmit link, number of OFDM symbols that need to be advanced or delayed to be aligned with the uplink receive link relative to the downlink receive link .
  • timing refers to the moment when a node transmits and receives, corresponding to a certain time domain symbol, or time slot, or subframe, or wireless frame, or superframe boundary.
  • the reference timing refers to the absolute time, or downlink transmission timing, or uplink reception timing.
  • absolute time refers to time 0, or the absolute time refers to a time domain symbol, or time slot, subframe, or radio frame, or superframe time index.
  • the time slot index refers to the labels of several time slots included in the radio frame.
  • timing information when the timing information includes two or more, it may be configured separately or at the same time.
  • the specific configuration sequence is not limited by the embodiment of the present disclosure.
  • one or more timing modes can be defined at will, and the types of the timing modes are not used to limit the protection scope of the embodiments of the present disclosure.
  • the timing mode includes at least one of the following: a first timing mode, a second timing mode, a third timing mode, and a mixed timing mode.
  • the first timing mode includes: the reference timings of all nodes are aligned to the reference timing of the donor node; as shown in FIG. 2(a), when the reference timing is the downlink transmission timing, the downlink transmission timings of all nodes are aligned ,
  • the dotted line shown in Figure 2(a) is the downlink transmission timing; in the figure, t1 represents the propagation delay (PD, Propagation) of the first hop, t2 represents the PD of the second hop, and t3 represents the third hop. PD, t4 represents the PD of the fourth hop, and t5 represents the PD of the fifth hop;
  • the second timing mode includes: the reference timings of all nodes are aligned to the reference timing of the donor node, and the uplink transmission timing of each node is aligned to the reference timing of each node; as shown in FIG. 2(b) and FIG. 2(c ), when the reference timing is the downlink transmission timing, the downlink transmission timing of all nodes is aligned, and the uplink transmission timing of each node is aligned to the node's downlink transmission timing, as shown in Figure 2(b) and Figure 2(c)
  • the dotted lines shown are the downlink transmission timing and the uplink transmission timing; in the figure, t1 represents the propagation delay of the first hop (PD, Propagation), t2 represents the PD of the second hop, t3 represents the PD of the third hop, t4 Represents the PD of the fourth hop, and t5 represents the PD of the fifth hop;
  • the third timing mode includes: the reference timing of all nodes is aligned to the reference timing of the donor node, and the upstream receiving timing of each node is aligned to the downstream receiving timing of each node; as shown in FIG. 2(d), when When the reference timing is the downlink transmission timing, the downlink transmission timing of all nodes is aligned, and the uplink reception timing of each node is aligned to the node's downlink reception timing.
  • the dotted line shown in Figure 2(d) is the downlink transmission timing; Among them, t1 represents the propagation delay (PD) of the first hop, t2 represents the PD of the second hop, t3 represents the PD of the third hop, t4 represents the PD of the fourth hop, and t5 represents the PD of the fifth hop.
  • PD propagation delay
  • the mixed timing mode includes at least one of the following:
  • the time slot index (slot index) divided by the remainder i obtained by M corresponds to the timing mode of the second node in any one of the first timing mode, the second timing mode, and the third timing mode, and is different
  • the timing mode of the second node in the time slot corresponding to the remainder i is different; where M is an integer greater than or equal to 2 and i is any integer from 0 to (M-1); for example, the The timing mode of the second node is the second timing mode; the timing mode of the second node in the second time slot is the third timing mode; wherein, the time slot index of the first time slot is divided by The remainder obtained by 2 is the first value, the slot index of the second time slot divided by 2 is the second value, the first value and the second value are different, and the first The numerical value and the second numerical value are any one of 0 and 1; for another example, the timing mode of the second node in the third time slot is the first timing mode; the second node in the fourth time slot The timing mode of is the second timing mode; the timing mode
  • the first node predefining the timing mode of the second node includes:
  • the first node predefines the timing mode of the second node as any one of the first timing mode, the second timing mode, the third timing mode, and the mixed timing mode.
  • the first node's predefined timing pattern of the second node includes at least one of the following:
  • the first node predefines the timing mode of the second node as the First timing mode
  • the first node predefines the timing mode of the second node as the second timing mode
  • the first node predefines the timing mode of the second node to the third timing mode.
  • the first node's predefined second node's timing mode includes at least one of the following:
  • the first node predefines the timing mode of the second node in the first time resource as the first timing mode
  • the first node predefines the timing mode of the second node in the second time resource as the second timing mode
  • the first node pre-defines the timing mode of the second node in the third time resource to be a third timing mode.
  • the first time resource is a time slot index divided by 3 and the remainder obtained by the third value is the time slot corresponding to the third value;
  • the second time resource is the time slot index divided by 3 and the remainder is the fourth value by the fourth value
  • the time slot of the third time resource is the time slot index divided by 3 and the remainder obtained by dividing by 3 is the time slot corresponding to the fifth value; wherein the third value, the fourth value and the fifth value are taken
  • the values are different, and the third numerical value, the fourth numerical value, and the fifth numerical value are any one of 0,1,2.
  • the timing mode in which the first node configures the second node includes:
  • the first node directly configures the timing mode of the second node
  • the first node configures the timing mode of the second node according to the timing mode capability reported by the second node.
  • the timing mode capability refers to which timing mode the second node supports.
  • the first node configuring the timing mode of the second node according to the timing mode capability reported by the second node includes at least one of the following:
  • the first node configures the timing mode of the second node to be the second timing mode; wherein, the first A capability includes any one of the following: the second node supports the second timing mode; the second node has simultaneous uplink transmission and downlink transmission capabilities;
  • the first node configures the timing mode of the second node to be the first timing mode or the The third timing mode;
  • the first node configures the timing mode of the second node to be the third timing mode; wherein, the first The second capability includes any one of the following: the second node supports the third timing mode; the second node has simultaneous receiving capabilities of uplink reception and downlink reception;
  • the first node configures the timing mode of the second node to be the first timing mode or the Second timing mode
  • the first node configures the timing mode of the second node to be a hybrid timing mode; wherein, the third capability includes Any one of the following: the second node supports the mixed timing mode; the second node supports the simultaneous transmission of uplink transmission and downlink transmission, and the timing mode of simultaneous reception of uplink reception and downlink reception;
  • the first node configures the timing mode of the second node to be the first timing mode.
  • the timing mode in which the first node configures the second node includes:
  • the first node configures the timing mode of the second node by means of first signaling
  • the first node configures the timing mode of the second node through operation management and maintenance (OAM).
  • OAM that is, the first node
  • OAM generates timing mode information and transmits the timing mode information The timing mode for the second node.
  • the first signaling includes wireless air interface signaling
  • the wireless air interface signaling includes at least one of the following: high layer signaling, media access control MAC layer signaling, and physical layer signaling.
  • any X binary states among the 2 A binary states represented by A bits are used to represent the first timing mode, the second timing mode, the third timing mode and Any one of the mixed timing modes; wherein, A and X are integers greater than or equal to 1.
  • the reference timing alignment mode is the reference timing alignment mode when the timing mode is the second timing mode.
  • the reference timing alignment mode can be arbitrarily defined.
  • the reference timing alignment module includes at least one of the following: a first reference timing alignment mode, a second reference timing alignment mode, and a mixed reference timing alignment mode.
  • the first reference timing alignment mode includes at least one of the following: when the first timing mode and the second timing mode are executed in parallel, the reference timing between nodes is determined according to the reference timing of the first timing mode ; Specifically, the reference timing of the first timing mode can be used as the reference timing between nodes; when the third timing mode and the second timing mode are executed in parallel, the node is determined according to the reference timing of the third timing mode Between the reference timing; specifically, the reference timing of the third timing mode can be used as the reference timing between nodes;
  • the second reference timing alignment mode includes: determining a reference between nodes according to a time difference between the reference timing of the first node and the upstream receiving timing, and a time difference between the reference timing of the second node and the downstream receiving timing timing. Specifically, if the time difference between the reference timing of the first node and the uplink reception timing is greater than the time difference between the reference timing of the second node and the downlink reception timing, the second node advances the reference of the second node Timing; if the time difference between the reference timing of the first node and the uplink receiving timing is less than the time difference between the reference timing of the second node and the downlink receiving timing, the second node delays the second node Reference timing.
  • the mixed reference timing alignment mode includes: the first reference timing alignment mode is adopted for the first to Nth reference timing alignments, and the second reference timing alignment mode is adopted after the Nth reference timing alignment; wherein , N is an integer greater than or equal to 1.
  • the predefined timing alignment pattern of the second node by the first node includes:
  • the first node predefines the reference timing alignment mode of the second node as any one of the first reference timing alignment mode, the second reference timing alignment mode and the mixed reference timing alignment mode.
  • the reference timing alignment mode configured by the first node to configure the second node includes:
  • the first node configures the reference timing alignment mode of the second node by means of second signaling
  • the first node configures the reference timing alignment mode of the second node by operating, managing, and maintaining OAM.
  • the second signaling includes wireless air interface signaling
  • the wireless air interface signaling includes at least one of the following: high layer signaling, media access control MAC layer signaling, and physical layer signaling.
  • any Y binary states among the 2 B binary states represented by B bits are used to represent the first reference timing alignment mode, the second reference timing alignment mode and the hybrid Any one of the reference timing alignment modes; where B and Y are integers greater than or equal to 1.
  • the reference timing alignment mode configured by the first node to configure the second node includes:
  • the first node directly configures the reference timing alignment mode of the second node
  • the first node configures the reference timing alignment mode of the second node according to the reference timing alignment mode capability reported by the second node.
  • the reference timing alignment mode capability refers to whether the second node supports which reference timing alignment mode.
  • the first node configuring the reference timing alignment mode of the second node according to the reference timing alignment mode capability reported by the second node includes at least one of the following:
  • the first node configures the reference timing alignment mode of the second node to The second reference timing alignment mode
  • the first node configures the reference timing alignment mode of the second node as the The first reference timing alignment mode.
  • the TA configuration mode is the TA configuration mode when the timing mode is the third timing mode.
  • the TA configuration mode can be arbitrarily defined.
  • the TA configuration mode includes at least one of the following: a first TA configuration mode, a second TA configuration mode, a third TA configuration mode, and a compatibility mode.
  • the first TA configuration mode includes: configuring an absolute negative TA
  • the second TA configuration mode includes: configuring a relatively negative TA
  • the third TA configuration mode includes: symbol-level alignment corresponding to the positive TA.
  • the compatibility mode includes: the first node is configured with a positive TA, and the first node schedules the second node in a non-slot (or mini-slot) manner.
  • the predefined TA configuration mode of the first node includes:
  • the first node predefines the TA configuration mode as any one of the first TA configuration mode, the second TA configuration mode, the third TA configuration mode, and the compatibility mode.
  • the TA configuration mode in which the first node configures the second node includes:
  • the first node configures the TA configuration mode of the second node by means of third signaling
  • the first node configures the TA configuration mode of the second node through operation, management and maintenance OAM.
  • the third signaling includes wireless air interface signaling
  • the wireless air interface signaling includes at least one of the following: high layer signaling, media access control MAC layer signaling, and physical layer signaling.
  • any Z binary states among the 2 C binary states represented by C bits are used to represent the first TA configuration mode, the second TA configuration mode, and the third TA Any one of the configuration mode and the compatibility mode; where C and Z are integers greater than or equal to 1.
  • the TA configuration mode in which the first node configures the second node includes:
  • the first node directly configures the TA configuration mode of the second node
  • the first node configures the TA configuration mode of the second node according to the TA configuration mode capability reported by the second node.
  • the TA configuration mode capability refers to whether the second node has negative TA capability.
  • the first node configuring the TA configuration mode of the second node according to the TA configuration mode capability reported by the second node includes at least one of the following:
  • the first node configures the TA configuration mode of the second node to the third TA configuration mode or compatible mode;
  • the TA configuration mode of the first node configuring the second node is the first TA configuration mode or the The second TA configuration mode.
  • the TA value when the TA value is an absolute TA value, the TA value greater than zero indicates that the uplink transmission timing of the second node is advanced relative to the downlink reception timing of the second node, and the TA value is less than Zero indicates that the uplink transmission timing of the second node is delayed relative to the downlink reception timing of the second node, and the TA value equal to zero indicates that the uplink transmission timing of the second node is relative to the downlink reception of the second node Align regularly.
  • the determination of the TA value includes at least one of the following:
  • the TA value attribute of the 0th hop link is equal to 0;
  • the TA value attribute of the i-th hop link is greater than or equal to 0, and the TA value of the i-th hop link is 2PD(i); where, PD(i) Is the propagation delay of the i-th hop link;
  • the TA value attribute of the 0th hop link is equal to 0;
  • the TA value attribute of the i-th hop link is greater than or equal to 0, and the TA value of the i-th hop link is PD(i); where, PD(i) Is the propagation delay of the i-th hop link;
  • the timing mode is the third timing mode
  • the TA value attribute of the 0th hop link is equal to 0;
  • the timing mode is the third timing mode
  • the TA value attribute of the first hop link is greater than or equal to 0, and the TA value of the i th hop link is 2PD(i); where, PD(i) Is the propagation delay of the i-th hop link;
  • the timing mode is the third timing mode and PD(i-1) is less than or equal to 2PD(i)
  • the TA value attribute of the i-th hop link is greater than or equal to 0, and the i-th hop link Has a TA value of 2PD(i)-PD(i-1); where PD(i) is the propagation delay of the i-th hop link;
  • the timing mode is the third timing mode and PD(i-1) is greater than or equal to 2PD(i)
  • the TA value attribute of the i-th hop link is less than or equal to 0, and the i-th hop link
  • the TA value is -(PD(i-1)-2PD(i)).
  • the configuration of the TA value of the second node by the first node includes:
  • the first node configures the TA value of the second node by indicating information bits.
  • the indication information bits include (D+1) bits, where D bits represent the numerical value of the TA value, and 1 bit represents the attribute of the TA value; wherein, D is an integer greater than or equal to 1.
  • bit interval corresponding to the TA value is the first sub-interval, it means that the attribute of the TA value is greater than or equal to 0;
  • bit interval corresponding to the TA value When the bit interval corresponding to the TA value is the second sub-interval, it indicates that the attribute of the TA value is less than or equal to 0;
  • the union of the first sub-interval and the second sub-interval is the TA value interval in the timing advance command TAC.
  • a value of (TA+Offset) greater than zero indicates that the uplink transmission timing of the second node is relatively
  • (TA+Offset) value less than zero means that the uplink transmission timing of the second node is delayed relative to the downlink reception timing of the second node
  • (TA+Offset) value Equal to zero indicates that the uplink transmission timing of the second node is aligned with the downlink reception timing of the second node; where Offset is the offset of the TA value, and (TA+Offset) indicates that the TA value and the specific time The sum of the offsets of the TA value.
  • time granularity corresponding to Offset is the same as the time granularity corresponding to the TA value
  • the time granularity corresponding to Offset is different from the time granularity corresponding to the TA value.
  • the offset of the TA value is an offset relative to the latest TA value
  • the offset is independent of the timing advance command TAC in the random access response RAR, or independent of the TAC in the media access control unit MAC CE; or, the offset and the There is a nesting relationship between the TAC in the RAR or the TAC in the MAC and CE.
  • the nesting relationship between the offset and the TAC in the RAR or the TAC in the MAC and CE includes:
  • the offset of the TA value of the first node configuring the second node includes:
  • the first node configures the offset of the TA value of the second node by means of fourth signaling; where the fourth signaling includes wireless air interface signaling, and the wireless air interface signaling includes at least one of the following: High-level signaling, media access control MAC layer signaling, physical layer signaling;
  • the first node configures the offset of the TA value of the second node by way of operation management and maintenance OAM.
  • the OFDM symbol time length is determined according to any one of the following:
  • SCS_UL_Tx is the subcarrier interval corresponding to the uplink transmission link of the second node
  • SCS_DL_Tx is the subcarrier interval corresponding to the downlink transmission link of the second node
  • SCS_UL_Rx is the uplink receiving link of the second node
  • SCS_DL_Rx is the subcarrier spacing corresponding to the downlink receiving link of the second node.
  • another embodiment of the present disclosure provides a timing information configuration method, including:
  • Step 300 The second node determines the timing information in a predefined or configured manner; wherein the timing information includes at least one of the following: timing mode, reference timing alignment mode, time advance TA configuration mode, TA value, TA value Offset, the number of OFDM symbols that need to be advanced or delayed to be aligned with the uplink transmit link relative to the downlink transmit link, the number of OFDM symbols that need to be advanced or delayed to be aligned with the uplink receive link relative to the downlink receive link number.
  • the timing information includes at least one of the following: timing mode, reference timing alignment mode, time advance TA configuration mode, TA value, TA value Offset, the number of OFDM symbols that need to be advanced or delayed to be aligned with the uplink transmit link relative to the downlink transmit link, the number of OFDM symbols that need to be advanced or delayed to be aligned with the uplink receive link relative to the downlink receive link number.
  • timing refers to the moment when a node transmits and receives, corresponding to a certain time domain symbol, or time slot, or subframe, or wireless frame, or superframe boundary.
  • the reference timing refers to the absolute time, or downlink transmission timing, or uplink reception timing.
  • absolute time refers to time 0, or the absolute time refers to a time domain symbol, or time slot, subframe, or radio frame, or superframe time index.
  • the time slot index refers to the labels of several time slots included in the radio frame.
  • timing information when the timing information includes two or more, it may be configured separately or at the same time.
  • the specific configuration sequence is not limited by the embodiment of the present disclosure.
  • one or more timing modes can be defined at will, and the types of the timing modes are not used to limit the protection scope of the embodiments of the present disclosure.
  • the timing mode includes at least one of the following: a first timing mode, a second timing mode, a third timing mode, and a mixed timing mode.
  • the first timing mode includes: the reference timings of all nodes are aligned to the reference timing of the donor node; as shown in FIG. 2(a), when the reference timing is the downlink transmission timing, the downlink transmission timings of all nodes are aligned ,
  • the dotted line shown in Figure 2(a) is the downlink transmission timing; in the figure, t1 represents the propagation delay (PD, Propagation) of the first hop, t2 represents the PD of the second hop, and t3 represents the third hop. PD, t4 represents the PD of the fourth hop, and t5 represents the PD of the fifth hop;
  • the second timing mode includes: the reference timings of all nodes are aligned to the reference timing of the donor node, and the uplink transmission timing of each node is aligned to the reference timing of each node; as shown in FIG. 2(b) and FIG. 2(c ), when the reference timing is the downlink transmission timing, the downlink transmission timing of all nodes are aligned, and the uplink transmission timing of each node is aligned to the node's downlink transmission timing, as shown in Figure 2(b) and Figure 2(c)
  • the dotted lines shown are the downlink transmission timing and the uplink transmission timing; in the figure, t1 represents the propagation delay of the first hop (PD, Propagation), t2 represents the PD of the second hop, t3 represents the PD of the third hop, t4 Represents the PD of the fourth hop, and t5 represents the PD of the fifth hop;
  • the third timing mode includes: the reference timing of all nodes is aligned to the reference timing of the donor node, and the upstream receiving timing of each node is aligned to the downstream receiving timing of each node; as shown in FIG. 2(d), when When the reference timing is the downlink transmission timing, the downlink transmission timing of all nodes is aligned, and the uplink reception timing of each node is aligned to the node's downlink reception timing.
  • the dotted line shown in Figure 2(d) is the downlink transmission timing; Among them, t1 represents the propagation delay (PD) of the first hop, t2 represents the PD of the second hop, t3 represents the PD of the third hop, t4 represents the PD of the fourth hop, and t5 represents the PD of the fifth hop.
  • PD propagation delay
  • the mixed timing mode includes at least one of the following:
  • the time slot index (slot index) divided by the remainder i obtained by M corresponds to the timing mode of the second node in any one of the first timing mode, the second timing mode, and the third timing mode, and is different
  • the timing mode of the second node in the time slot corresponding to the remainder i is different; where M is an integer greater than or equal to 2 and i is any integer from 0 to (M-1); for example, the The timing mode of the second node is the second timing mode; the timing mode of the second node in the second time slot is the third timing mode; wherein, the time slot index of the first time slot is divided by The remainder obtained by 2 is the first value, the slot index of the second time slot divided by 2 is the second value, the first value and the second value are different, and the first The numerical value and the second numerical value are any one of 0 and 1; for another example, the timing mode of the second node in the third time slot is the first timing mode; the second node in the fourth time slot The timing mode of is the second timing mode; the timing mode
  • the second node determining the timing mode in a predefined manner includes:
  • the predefined timing mode of the second node is any one of the first timing mode, the second timing mode, the third timing mode, and the mixed timing mode.
  • the second node determining the timing mode in a predefined manner includes at least one of the following:
  • the predefined timing mode of the second node is the first timing mode
  • the predefined timing mode of the second node is the second timing mode
  • the predefined timing mode of the second node is the third timing mode.
  • the second node determining the timing mode in a predefined manner includes at least one of the following:
  • the second node predefines the timing mode in the first time resource as the first timing mode
  • the timing mode within the second time resource predefined by the second node is a second timing mode
  • the second node pre-defines the timing mode in the third time resource to be the third timing mode.
  • the first time resource is a time slot index divided by 3 and the remainder obtained by the third value is the time slot corresponding to the third value;
  • the second time resource is the time slot index divided by 3 and the remainder is the fourth value by the fourth value
  • the time slot of the third time resource is the time slot index divided by 3 and the remainder obtained by dividing by 3 is the time slot corresponding to the fifth value; wherein the third value, the fourth value and the fifth value are taken
  • the values are different, and the third numerical value, the fourth numerical value, and the fifth numerical value are any one of 0,1,2.
  • the method further includes the second node reporting the timing mode capability of the second node.
  • the timing mode capability refers to which timing mode the second node supports.
  • the second node adopting the configured manner to determine the timing mode includes:
  • the second node receives first signaling, and determines a timing mode according to the first signaling
  • the second node determines the timing mode of the second node through operation, management and maintenance OAM.
  • the first signaling includes wireless air interface signaling
  • the wireless air interface signaling includes at least one of the following: high layer signaling, media access control MAC layer signaling, and physical layer signaling.
  • any X binary states among the 2 A binary states represented by A bits are used to represent the first timing mode, the second timing mode, the third timing mode and Any one of the mixed timing modes; wherein, A and X are integers greater than or equal to 1.
  • the reference timing alignment mode is the reference timing alignment mode when the timing mode is the second timing mode.
  • the reference timing alignment mode can be arbitrarily defined.
  • the reference timing alignment module includes at least one of the following: a first reference timing alignment mode, a second reference timing alignment mode, and a mixed reference timing alignment mode.
  • the first reference timing alignment mode includes at least one of the following: when the first timing mode and the second timing mode are executed in parallel, the reference timing between nodes is determined according to the reference timing of the first timing mode ; Specifically, the reference timing of the first timing mode can be used as the reference timing between nodes; when the third timing mode and the second timing mode are executed in parallel, the node is determined according to the reference timing of the third timing mode Between the reference timing; specifically, the reference timing of the third timing mode can be used as the reference timing between nodes;
  • the second reference timing alignment mode includes: determining a reference between nodes according to a time difference between the reference timing of the first node and the upstream receiving timing, and a time difference between the reference timing of the second node and the downstream receiving timing timing.
  • the mixed reference timing alignment mode includes: the first reference timing alignment mode is adopted for the first to Nth reference timing alignments, and the second reference timing alignment mode is adopted after the Nth reference timing alignment; wherein , N is an integer greater than or equal to 1.
  • the second node determining the reference timing alignment mode of the second node in a predefined manner includes:
  • the second node predefines the reference timing alignment mode of the second node to any one of the first reference timing alignment mode, the second reference timing alignment mode, and the mixed reference timing alignment mode.
  • the second node adopting the configured manner to determine the reference timing alignment mode of the second node includes:
  • the second node receives second signaling, and determines the reference timing alignment mode of the second node according to the second signaling;
  • the second node determines the reference timing alignment mode of the second node by way of operation management and maintenance OAM.
  • the second signaling includes wireless air interface signaling
  • the wireless air interface signaling includes at least one of the following: high layer signaling, media access control MAC layer signaling, and physical layer signaling.
  • any Y binary states among the 2 B binary states represented by B bits are used to represent the first reference timing alignment mode, the second reference timing alignment mode and the hybrid Any one of the reference timing alignment modes; where B and Y are integers greater than or equal to 1.
  • the method further includes: the second node reporting the reference timing alignment mode capability of the second node.
  • the reference timing alignment mode capability refers to whether the second node supports which reference timing alignment mode.
  • the TA configuration mode is the TA configuration mode when the timing mode is the third timing mode.
  • the TA configuration mode can be arbitrarily defined.
  • the TA configuration mode includes at least one of the following: a first TA configuration mode, a second TA configuration mode, a third TA configuration mode, and a compatibility mode.
  • the first TA configuration mode includes: configuring an absolute negative TA
  • the second TA configuration mode includes: configuring a relatively negative TA
  • the third TA configuration mode includes: symbol-level alignment corresponding to the positive TA.
  • the compatibility mode includes: the first node configures a positive TA, and the first node schedules the second node in a non-slot manner.
  • the predefined TA configuration mode of the first node includes:
  • the first node predefines the TA configuration mode as any one of the first TA configuration mode, the second TA configuration mode, the third TA configuration mode, and the compatibility mode.
  • the second node adopting the configured manner to determine the TA configuration mode of the second node includes:
  • the second node receives third signaling, and determines the TA configuration mode of the second node according to the third signaling;
  • the second node determines the TA configuration mode of the second node through operation, management and maintenance OAM.
  • the third signaling includes wireless air interface signaling
  • the wireless air interface signaling includes at least one of the following: high layer signaling, media access control MAC layer signaling, and physical layer signaling.
  • any Z binary states among the 2 C binary states represented by C bits are used to represent the first TA configuration mode, the second TA configuration mode, and the third TA Any one of the configuration mode and the compatibility mode; where C and Z are integers greater than or equal to 1.
  • the method further includes the second node reporting the TA configuration mode capability of the second node.
  • the TA configuration mode capability refers to whether the second node has negative TA capability.
  • the TA value when the TA value is an absolute TA value, the TA value greater than zero indicates that the uplink transmission timing of the second node is advanced relative to the downlink reception timing of the second node, and the TA value is less than Zero indicates that the uplink transmission timing of the second node is delayed relative to the downlink reception timing of the second node, and the TA value equal to zero indicates that the uplink transmission timing of the second node is relative to the downlink reception of the second node Align regularly.
  • the second node determining the TA value of the second node in a predefined manner includes:
  • the TA value attribute of the 0th hop link is equal to 0;
  • the TA value attribute of the i-th hop link is greater than or equal to 0, and the TA value of the i-th hop link is 2PD(i); where, PD(i) Is the propagation delay of the i-th hop link;
  • the TA value attribute of the 0th hop link is equal to 0;
  • the TA value attribute of the i-th hop link is greater than or equal to 0, and the TA value of the i-th hop link is PD(i); where, PD(i) Is the propagation delay of the i-th hop link;
  • the timing mode is the third timing mode
  • the TA value attribute of the 0th hop link is equal to 0;
  • the timing mode is the third timing mode
  • the TA value attribute of the first hop link is greater than or equal to 0, and the TA value of the i th hop link is 2PD(i); where, PD(i) Is the propagation delay of the i-th hop link;
  • the timing mode is the third timing mode and PD(i-1) is less than or equal to 2PD(i)
  • the TA value attribute of the i-th hop link is greater than or equal to 0, and the i-th hop link Has a TA value of 2PD(i)-PD(i-1); where PD(i) is the propagation delay of the i-th hop link;
  • the timing mode is the third timing mode and PD(i-1) is greater than or equal to 2PD(i)
  • the TA value attribute of the i-th hop link is less than or equal to 0, and the i-th hop link
  • the TA value is -(PD(i-1)-2PD(i)).
  • the second node adopting the configured manner to determine the TA value of the second node includes:
  • the second node receives indication information bits, and determines the TA value of the second node according to the indication information bits;
  • the second node determines the TA value attribute according to the configured bit interval corresponding to the TA value
  • the second node determines the TA value attribute according to the propagation delay of the link hop.
  • the indication information bits include (D+1) bits, where D bits represent the numerical value of the TA value, and 1 bit represents the attribute of the TA value; wherein, D is an integer greater than or equal to 1.
  • the second node determining the attribute of the TA value according to the configured bit interval corresponding to the TA value includes at least one of the following:
  • the bit interval corresponding to the TA value is the first sub-interval, it is determined that the attribute of the TA value is greater than or equal to 0;
  • the bit interval corresponding to the TA value is the second sub-interval, it is determined that the attribute of the TA value is less than or equal to 0;
  • the union of the first sub-interval and the second sub-interval is the TA value interval in the timing advance command TAC.
  • a value of (TA+Offset) greater than zero indicates that the uplink transmission timing of the second node is relatively
  • (TA+Offset) value less than zero means that the uplink transmission timing of the second node is delayed relative to the downlink reception timing of the second node
  • (TA+Offset) value Equal to zero indicates that the uplink transmission timing of the second node is aligned with the downlink reception timing of the second node; where Offset is the offset of the TA value.
  • time granularity corresponding to Offset is the same as the time granularity corresponding to the TA value
  • the time granularity corresponding to Offset is different from the time granularity corresponding to the TA value.
  • the offset of the TA value is an offset relative to the latest TA value
  • the offset is independent of the timing advance command TAC in the random access response RAR, or independent of the TAC in the media access control unit MAC CE; or, the offset and the There is a nesting relationship between the TAC in the RAR or the TAC in the MAC and CE.
  • the nesting relationship between the offset and the TAC in the RAR or the TAC in the MAC and CE includes:
  • the second node adopting the configured manner to determine the offset of the TA value of the second node includes:
  • the second node receives fourth signaling, and determines the offset of the TA value of the second node according to the fourth signaling; where the fourth signaling includes wireless air interface signaling, and the wireless air interface signaling includes the following At least one of: high-level signaling, media access control MAC layer signaling, physical layer signaling;
  • the second node determines the offset of the TA value of the second node by means of operation management and maintenance OAM.
  • the OFDM symbol time length is determined according to any one of the following:
  • SCS_UL_Tx is the subcarrier interval corresponding to the uplink transmission link of the second node
  • SCS_DL_Tx is the subcarrier interval corresponding to the downlink transmission link of the second node
  • SCS_UL_Rx is the uplink receiving link of the second node
  • SCS_DL_Rx is the subcarrier spacing corresponding to the downlink receiving link of the second node.
  • the node includes but is not limited to a base station, or a relay node, or user equipment.
  • N1 represents a first node
  • N2 represents a second node
  • N3 represents a third node
  • N4 represents a fourth node
  • UE1 represents a UE under N1 coverage
  • UE2 represents a UE under N2 coverage
  • UE3 represents a UE under N3 coverage
  • UE4 represents a UE under N4 coverage
  • N2 can be regarded as the child node of N1
  • N1 can be regarded as the parent node of N2
  • specifically, N1 can be regarded as the source parent node of N2
  • N4 can be regarded as the target parent node of N2.
  • timing modes namely a first timing mode, a second timing mode, a third timing mode, and a mixed timing mode.
  • the characteristics of these four timing modes are introduced below.
  • the first timing mode includes: the reference timings of all nodes are aligned to the reference timing of the donor node; as shown in FIG. 2(a), when the reference timing is the downlink transmission timing, the downlink transmission timings of all nodes are aligned, such as
  • the dotted line shown in Figure 2(a) is the downlink transmission timing; in the figure, t1 represents the propagation delay (PD, Propagation Delay) of the first hop, t2 represents the PD of the second hop, and t3 represents the PD of the third hop, t4 represents the PD of the fourth hop, and t5 represents the PD of the fifth hop;
  • PD propagation delay
  • Propagation Delay Propagation Delay
  • the second timing mode includes: the reference timings of all nodes are aligned to the reference timing of the donor node, and the uplink transmission timing of each node is aligned to the reference timing of each node; as shown in FIG. 2(b) and FIG. 2(c ), when the reference timing is the downlink transmission timing, the downlink transmission timing of all nodes is aligned, and the uplink transmission timing of each node is aligned to the node's downlink transmission timing, as shown in Figure 2(b) and Figure 2(c)
  • the dotted lines shown are the downlink transmission timing and the uplink transmission timing; in the figure, t1 represents the propagation delay of the first hop (PD, Propagation), t2 represents the PD of the second hop, t3 represents the PD of the third hop, t4 Represents the PD of the fourth hop, and t5 represents the PD of the fifth hop;
  • the third timing mode includes: the reference timing of all nodes is aligned to the reference timing of the donor node, and the upstream receiving timing of each node is aligned to the downstream receiving timing of each node; as shown in FIG. 2(d), when When the reference timing is the downlink transmission timing, the downlink transmission timing of all nodes is aligned, and the uplink reception timing of each node is aligned to the node's downlink reception timing.
  • the dotted line shown in Figure 2(d) is the downlink transmission timing; Among them, t1 represents the propagation delay (PD) of the first hop, t2 represents the PD of the second hop, t3 represents the PD of the third hop, t4 represents the PD of the fourth hop, and t5 represents the PD of the fifth hop.
  • PD propagation delay
  • the mixed timing mode includes at least one of the following:
  • the time slot index (slot index) divided by the remainder i obtained by M corresponds to the timing mode of the second node in any one of the first timing mode, the second timing mode, and the third timing mode, and is different
  • the timing mode of the second node in the time slot corresponding to the remainder i is different; where M is an integer greater than or equal to 2 and i is any integer from 0 to (M-1); for example, the The timing mode of the second node is the second timing mode; the timing mode of the second node in the second time slot is the third timing mode; wherein, the time slot index of the first time slot is divided by The remainder obtained by 2 is the first value, the slot index of the second time slot divided by 2 is the second value, the first value and the second value are different, and the first The numerical value and the second numerical value are any one of 0 and 1; for another example, the timing mode of the second node in the third time slot is the first timing mode; the second node in the fourth time slot The timing mode of is the second timing mode; the timing mode
  • Example 1 Sub-example 1: Predefined timing mode
  • the predefined timing mode is any one of the first timing mode, the second timing mode, the third timing mode, and the mixed timing mode.
  • the predefined timing mode of N1 and N2 is the first timing mode
  • N1 and N2 predefined timing modes are the second timing mode; or,
  • the predefined timing modes of N1 and N2 are the third timing mode.
  • Example 1 Sub-example 2: Predefined timing mode according to multiplexing mode
  • the predefined timing mode is a first timing mode, a second timing mode, and a third timing mode according to the multiplexing mode adopted between each hop link including the link between the first node and the second node Any one of the modes.
  • the link between N1 and N2 and the other links use time division multiplexing between hops, and the predefined timing mode of N1 and N2 is the first timing mode;
  • Space-division multiplexing or frequency-division multiplexing is used between the hop links, and the simultaneous transmission mechanism is adopted for the uplink transmission of N2 and the downlink transmission of N2, and the predefined timing modes of N1 and N2 are the second timing mode;
  • Space-division multiplexing or frequency-division multiplexing is used between the hop links, that is, N2 upstream reception and N2 downstream reception adopt the simultaneous reception mechanism, and the predefined timing modes of N1 and N2 are the third timing mode.
  • Example 1 Sub-example 3: Predefined timing mode within the time resource range
  • the timing modes within the predefined first time resource, second time resource, and third time resource are respectively any one of the first timing mode, the second timing mode, and the third timing mode.
  • Example 1 Sub-example 4: Configure the timing mode
  • N1 configures the first signaling to N2, and N2 receives and determines the timing mode according to the first signaling.
  • the first signaling is configured to N2 through wireless air interface signaling, or configured to N2 through operation management (OAM, Operation, Administration and Maintenance), where the wireless air interface signaling includes at least one of the following: Order, MAC layer signaling, physical layer signaling.
  • any X binary states in the 2 A (2 to the power of A) binary states represent the first, second, third, and mixed timing modes, respectively.
  • One or more timing modes are possible.
  • any 3 binary states among the corresponding 4 binary states respectively represent the first timing mode, the second timing mode, and the third timing mode.
  • the remaining 1 binary state represents the mixed timing mode of the second timing mode and the third timing mode.
  • the remaining one binary state represents the mixed timing mode of the first timing mode, the second timing mode, and the third timing mode.
  • the remaining one binary state indicates that the timing mode of simultaneous transmission and simultaneous reception is supported in the same time slot.
  • Example 1 Subcase 5 Node reporting timing mode capability or reporting timing mode related capability
  • N2 reports the timing mode capability of N2 to N1, and N1 determines the timing mode according to the timing mode capability supported by N2;
  • N2 reports whether the uplink transmission of N2 and the downlink transmission of N2 can simultaneously transmit the capability to N1.
  • N1 determines the timing mode according to whether N2 supports the simultaneous transmission capability.
  • the second timing mode is adopted for the simultaneous transmission capability, and the simultaneous transmission capability is not.
  • N2 reports whether the upstream reception of N2 and the downstream reception of N2 can simultaneously receive the capability to N1.
  • N1 determines the timing mode according to whether N2 supports the simultaneous reception capability.
  • the third timing mode is adopted for simultaneous reception capability, but not the simultaneous reception capability. Use the first timing mode or the second timing mode;
  • N2 reports whether N2's uplink transmission and N2's downlink transmission can simultaneously transmit the capability to N1
  • N2 reports whether N2's uplink reception and N2's downlink reception can simultaneously receive the capability to N1
  • N1 determines whether N2 supports simultaneous transmission and simultaneous reception
  • the timing mode optionally, has a simultaneous transmission and simultaneous reception capability using a mixed timing mode, and does not have a simultaneous transmission and simultaneous reception capability using a first timing mode.
  • N1 represents a first node
  • N2 represents a second node
  • N3 represents a third node
  • N4 represents a fourth node
  • UE1 represents a UE under N1 coverage
  • UE2 represents a UE under N2 coverage
  • UE3 represents a UE under N3 coverage
  • UE4 represents a UE under N4 coverage
  • N2 can be regarded as the child node of N1
  • N1 can be regarded as the parent node of N2
  • specifically, N1 can be regarded as the source parent node of N2
  • N4 can be regarded as the target parent node of N2.
  • three reference timing alignment modes are defined, which are a first reference timing alignment mode, a second reference timing alignment mode, and a mixed reference timing alignment mode.
  • the characteristics of these four reference timing alignment modes are introduced below.
  • the first reference timing alignment mode includes at least one of the following: when the first timing mode and the second timing mode are executed in parallel, the reference timing between nodes is determined according to the reference timing of the first timing mode ; Specifically, the reference timing of the first timing mode can be used as the reference timing between nodes; when the third timing mode and the second timing mode are executed in parallel, the node is determined according to the reference timing of the third timing mode Between the reference timing; specifically, the reference timing of the third timing mode can be used as the reference timing between nodes;
  • the second reference timing alignment mode includes: determining a reference between nodes according to a time difference between the reference timing of the first node and the upstream receiving timing, and a time difference between the reference timing of the second node and the downstream receiving timing timing.
  • the mixed reference timing alignment mode includes: the first reference timing alignment mode is adopted for the first to Nth reference timing alignments, and the second reference timing alignment mode is adopted after the Nth reference timing alignment; wherein , N is an integer greater than or equal to 1.
  • the predefined reference timing alignment mode is any one of the first reference timing alignment mode, the second reference timing alignment mode, and the mixed reference timing alignment mode.
  • the predefined reference timing alignment mode of N1 and N2 is the first reference timing alignment mode
  • the predetermined reference timing alignment mode of N1 and N2 is the second reference timing alignment mode.
  • Example 2 Sub-example 2: Configure the reference timing alignment mode
  • N1 configures the second signaling to N2, and N2 receives and determines the reference timing alignment mode according to the second signaling.
  • the second signaling is configured to N2 through wireless air interface signaling or NAM through OAM, where the wireless air interface signaling includes at least one of the following: high layer signaling, MAC layer signaling, and physical layer signaling.
  • any Y binary states among 2 B (2 to the power of B) binary states represent the first reference timing alignment mode, the second reference timing alignment mode, and the mixed reference timing alignment mode, respectively.
  • One or more reference timing alignment modes are possible.
  • B 1
  • the corresponding two binary states respectively represent the first reference timing alignment mode and the second reference timing alignment mode.
  • any two binary states among the corresponding four binary states respectively represent the first reference timing alignment mode and the second reference timing alignment mode.
  • One of the remaining binary states represents a mixed reference timing alignment mode of the first reference timing alignment mode and the second reference timing alignment mode.
  • the first reference timing alignment adopts the first reference timing alignment mode
  • the first reference timing alignment mode After alignment, the second reference timing alignment mode is adopted.
  • Example 2 Sub-example 3: Nodes report the ability to report reference timing alignment mode or report reference timing alignment mode
  • N2 reports N2's reference timing alignment mode capability to N1, and N1 determines the reference timing alignment mode according to the reference timing alignment mode capability supported by N2.
  • N2 does not have the first timing mode or third timing mode capability and determines the reference timing alignment mode as the second reference timing alignment mode; N2 has the first timing mode or third timing mode capability and determines the reference timing alignment mode as the first Reference timing alignment mode.
  • Example 3 TA configuration mode determination
  • N1 represents a first node
  • N2 represents a second node
  • N3 represents a third node
  • N4 represents a fourth node
  • UE1 represents a UE under N1 coverage
  • UE2 represents a UE under N2 coverage
  • UE3 represents a UE under N3 coverage
  • UE4 represents a UE under N4 coverage
  • N2 can be regarded as the child node of N1
  • N1 can be regarded as the parent node of N2
  • specifically, N1 can be regarded as the source parent node of N2
  • N4 can be regarded as the target parent node of N2.
  • TA configuration modes are defined, which are a first TA configuration mode, a second TA configuration mode, a third TA configuration mode, and a compatibility mode.
  • the characteristics of these four TA configuration modes are introduced below.
  • the first TA configuration mode includes: configuring an absolute negative TA
  • the second TA configuration mode includes: configuring a relatively negative TA
  • the third TA configuration mode includes: symbol-level alignment corresponding to the positive TA.
  • the compatibility mode includes: the first node configures a positive TA, and the first node schedules the second node in a non-slot manner.
  • Example 3 Subcase 1: Predefined TA configuration mode
  • the predefined TA configuration mode is any one of the first TA configuration mode, the second TA configuration mode, the third TA configuration mode, and the compatibility mode.
  • the predefined TA configuration mode of N1 and N2 is the first TA configuration mode
  • the predefined TA configuration mode of N1 and N2 is the second TA configuration mode; or,
  • the predefined TA configuration modes of N1 and N2 are the third TA configuration mode.
  • Example 3 Sub-example 2: Configure TA configuration mode
  • N1 configures third signaling to N2, and N2 receives and determines the TA configuration mode according to the third signaling.
  • the third signaling is configured to N2 through wireless air interface signaling or NAM through OAM, where the wireless air interface signaling includes at least one of the following: high layer signaling, MAC layer signaling, and physical layer signaling .
  • any Z binary states among the 2 C (2 to the power of C) binary states respectively represent the first TA configuration mode, the second TA configuration mode, the third TA configuration mode, and the compatibility mode One or more TA configuration modes.
  • C 2
  • any 3 binary states among the corresponding 4 binary states respectively represent the first TA configuration mode, the second TA configuration mode, and the third TA configuration mode.
  • N1 is configured with a positive TA, and N1 uses a non-slot (or mini-slot) method to schedule N2.
  • Example 3 Sub-example 3: Node reporting TA configuration mode capability or reporting TA configuration mode related capability
  • N2 reports the TA configuration mode capabilities of N2 to N1, and N1 determines the TA configuration mode according to the TA configuration mode capabilities supported by N2.
  • N2 does not have a negative TA capability and determines the TA configuration mode as the third TA configuration mode; N2 has a negative TA capability and determines that the TA configuration mode is the first TA configuration mode or the second TA configuration mode.
  • N1 represents a first node
  • N2 represents a second node
  • N3 represents a third node
  • N4 represents a fourth node
  • UE1 represents a UE under N1 coverage
  • UE2 represents a UE under N2 coverage
  • UE3 represents a UE under N3 coverage
  • UE4 represents a UE under N4 coverage
  • N2 can be regarded as the child node of N1
  • N1 can be regarded as the parent node of N2
  • specifically, N1 can be regarded as the source parent node of N2
  • N4 can be regarded as the target parent node of N2.
  • N1 configures the TA value for N2.
  • N2 receives and determines the upstream transmission timing of N2 according to the TA value. When the TA value is greater than zero, the upstream transmission timing of N2 is advanced relative to the downstream reception timing of N2. When the TA value is less than zero, the upstream transmission of N2 is indicated. The transmission timing is delayed relative to the downlink reception timing of N2. When the TA value is equal to zero, it indicates that the uplink transmission timing of N2 is aligned with the downlink reception timing of N2.
  • TA is determined by PD
  • PD(n) represents the propagation delay of the (n)th hop link
  • N1 determines the TA attribute and TA value according to the timing mode and/or the propagation delay of the hop link, and N1 configures the TA value to N2; or N1 and N2 are determined according to the timing mode and/or the propagation delay of the hop link TA value attribute and TA value.
  • determining the TA value attribute and the TA value according to the timing mode and/or the propagation delay of the hopping link includes:
  • Example 4 Sub-example 2: Configure 1 TA, display mode indication
  • N1 configures one TA to N2, and N2 determines the TA value attribute according to the indication information bit.
  • the original TAC uses D bits to represent the TA value
  • a bit is added to indicate the TA value attribute.
  • the original D bit in the TAC that indicates the TA value is also used to indicate the value of the TA value.
  • the newly added 1 bit indicates the TA value attribute, for example , "0" indicates that the TA value is greater than or equal to zero, "1" indicates that the TA value is less than or equal to zero; or, "1" indicates that the TA value is greater than or equal to zero, and "0” indicates that the TA value is less than or equal to zero.
  • any 1 bit indicates the attribute of the TA value, for example, "0" indicates that the TA value is greater than or equal to zero, “1” indicates that the TA value is less than or equal to zero; or, “1” indicates TA The value is greater than or equal to zero, “0” indicates that the TA value is less than or equal to zero; the remaining (D-1) bits indicate the value of the TA value.
  • Example 4 Sub-example 3: Configure 1 TA, determine the bit interval
  • N1 configures a TA value to N2, and N2 determines the TA value attribute according to the binary bit interval corresponding to the TA value.
  • the original TAC uses D bits to represent the TA value
  • the first sub-interval ⁇ B1 ⁇ in the ⁇ B ⁇ interval means that the TA value is greater than or equal to 0
  • the second sub-interval ⁇ B2 ⁇ Indicates that the TA value is less than or equal to 0.
  • N1 represents a first node
  • N2 represents a second node
  • N3 represents a third node
  • N4 represents a fourth node
  • UE1 represents a UE under N1 coverage
  • UE2 represents a UE under N2 coverage
  • UE3 represents a UE under N3 coverage
  • UE4 represents a UE under N4 coverage
  • N2 can be regarded as the child node of N1
  • N1 can be regarded as the parent node of N2
  • specifically, N1 can be regarded as the source parent node of N2
  • N4 can be regarded as the target parent node of N2.
  • N1 configures Offset relative to the TA value at a specific moment to N2.
  • N2 receives and determines the upstream transmission timing of N2 according to the TA value and Offset.
  • a value of (TA+Offset) greater than zero indicates that N2's upstream transmission timing can be relative to N2's downstream transmission.
  • Reception timing advance, (TA+Offset) value less than zero means that N2's uplink transmission timing can be delayed relative to N2's downlink reception timing
  • (TA+Offset) value equal to zero means that N2's uplink transmission timing can be relative to N2's downlink reception timing Align.
  • the time granularity corresponding to Offset may be different from the time granularity corresponding to TA.
  • Offset is configured to N2 through wireless air interface signaling or NAM through OAM.
  • the wireless air interface signaling includes at least one of the following: high-layer signaling, MAC layer signaling, and physical layer signaling.
  • Offset corresponds to special signaling, that is, independent of TAC in RAR or independent of TAC in MAC.
  • Example 5 Sub-example 2: Nested TAC indication
  • N1 configures an Offset relative to the latest TA to N2.
  • Offset and TAC in RAR or TAC in MAC have a nested relationship.
  • the decimal bit interval represented by D bits is ⁇ D1 ⁇
  • the first sub-interval ⁇ D1 ⁇ represents the TA value
  • the second sub-interval ⁇ D2 ⁇ represents Offset relative to the latest TA.
  • D 12
  • ⁇ D ⁇ ⁇ 0 ,1,2,...,3846,3847,3848,3849,...7692 ⁇
  • Example 6 Symbol-level alignment positive TA (Symbol alignment for TA) (third TA configuration mode)
  • Example 6 Sub-example 1: Simultaneous transmission symbol alignment
  • the uplink transmission link of N2 is offset by several OFDM symbols in advance or delayed relative to the downlink transmission link of N2, and the time length of 1 OFDM symbol offset is determined by the minimum value min(SCS_UL_Tx, SCS_DL_Tx), where SCS_UL_Tx represents The subcarrier interval corresponding to the uplink transmission link of N2, SCS_DL_Tx represents the subcarrier interval corresponding to the downlink transmission link of N2, where the number of offset OFDM symbols is determined in a predefined or configured manner.
  • Example 6 Sub-example 2: Simultaneous reception symbol alignment
  • the uplink receiving link of N2 is shifted by several OFDM symbols in advance or delayed relative to the downlink receiving link of N2 and aligned.
  • the time length of 1 OFDM symbol offset is determined by the minimum value min(SCS_UL_Rx, SCS_DL_Rx), where SCS_UL_Rx represents The subcarrier interval corresponding to the uplink receiving link of N2, SCS_DL_Rx represents the subcarrier interval corresponding to the downlink receiving link of N2, where the number of offset OFDM symbols is determined in a predefined or configured manner.
  • a timing information configuration device (such as a first node), including:
  • the configuration module 501 is used to predefine or configure the timing information of the second node; wherein, the timing information includes at least one of the following: timing mode, reference timing alignment mode, time advance TA configuration mode, TA value, deviation of TA value Shift, number of OFDM symbols that need to be advanced or delayed to be aligned with the uplink transmit link relative to the downlink transmit link, number of OFDM symbols that need to be advanced or delayed to be aligned with the uplink receive link relative to the downlink receive link .
  • the timing mode includes at least one of the following: a first timing mode, a second timing mode, a third timing mode, and a mixed timing mode.
  • the first timing mode includes: the reference timings of all nodes are aligned to the reference timing of the donor node;
  • the second timing mode includes: the reference timings of all nodes are aligned to the reference timing of the donor node, and the uplink transmission timing of each node is aligned to the reference timing of each node;
  • the third timing mode includes that the reference timings of all nodes are aligned to the reference timing of the donor node, and the upstream receiving timing of each node is aligned to the downstream receiving timing of each node.
  • the mixed timing mode includes at least one of the following:
  • the timing mode of the second node in the first time slot is the second timing mode; the timing mode of the second node in the second time slot is the third timing mode; wherein, the first time slot The remainder obtained by dividing the slot index of 2 by 2 is the first value, and the remainder obtained by dividing the slot index of 2 by 2 is the second value, and the first value and the second value are different , And the first value and the second value are any one of 0 and 1;
  • the timing mode of the second node in the third time slot is the first timing mode; the timing mode of the second node in the fourth time slot is the second timing mode; the first The timing mode of the two nodes is the third timing mode; wherein the remainder obtained by dividing the slot index of the third slot by 3 is the third value, and the slot index of the fourth slot is divided by 3 Is the fourth value, the remainder obtained by dividing the slot index of the fifth time slot by 3 is the fifth value, and the third value, the fourth value, and the fifth value have different values, and The third value, the fourth value and the fifth value are any one of 0, 1, 2;
  • the configuration module 501 is specifically configured to implement the predefined timing mode of the second node in the following manner:
  • the timing mode of the second node is predefined to be any one of the first timing mode, the second timing mode, the third timing mode, and the mixed timing mode.
  • the configuration module 501 is specifically configured to implement the predefined timing mode of the second node in at least one of the following ways:
  • the timing mode of the second node is predefined as the first timing mode
  • the timing mode of the second node is predefined as the second timing mode
  • the timing mode of the second node is predefined as the third timing mode.
  • the configuration module 501 is specifically configured to implement the predefined second node timing mode in at least one of the following ways:
  • the timing mode of the second node in the predefined third time resource is the third timing mode.
  • the first time resource is a time slot index divided by 3, and the remainder obtained by dividing by 3 is the time slot corresponding to the third value;
  • the second time resource is a time slot index divided by 3, and the remainder obtained by dividing by 3 is the time slot corresponding to the fourth value;
  • the third time resource is the time slot index divided by 3, and the remainder obtained by dividing by 3 is the time slot corresponding to the fifth value;
  • the configuration module 501 is specifically configured to implement the timing mode of configuring the second node in the following manner:
  • the timing mode of the second node is configured according to the timing mode capability reported by the second node.
  • the configuration module 501 is specifically configured to implement at least one of the following ways to configure the timing mode of the second node according to the timing mode capability reported by the second node:
  • the timing mode capability reported by the second node is that the second node has the first capability
  • the first capability includes any of the following One: the second node supports the second timing mode; the second node has the capability of simultaneous uplink and downlink transmission;
  • the timing mode capability reported by the second node is that the second node does not have the first capability, configure the timing mode of the second node to be the first timing mode or the third timing mode;
  • the timing mode capability reported by the second node is that the second node has the second capability
  • the second capability includes any of the following One: the second node supports the third timing mode; the second node has simultaneous receiving capabilities for uplink reception and downlink reception;
  • the timing mode capability reported by the second node is that the second node does not have the second capability, configure the timing mode of the second node to be the first timing mode or the second timing mode;
  • the timing mode of the second node is configured to be a hybrid timing mode; wherein, the third capability includes any of the following: The second node supports the mixed timing mode; the second node supports the simultaneous transmission of uplink transmission and downlink transmission, and the timing mode of simultaneous reception of uplink reception and downlink reception;
  • the timing mode of the second node is configured as the first timing mode.
  • the configuration module 501 is specifically configured to implement the timing mode of configuring the second node in the following manner:
  • the timing mode of the second node is configured through operation management and maintenance OAM.
  • the first signaling includes wireless air interface signaling
  • the wireless air interface signaling includes at least one of the following: high layer signaling, media access control MAC layer signaling, and physical layer signaling.
  • any X binary states among the 2 A binary states represented by A bits are used to represent the first timing mode, the second timing mode, the Any one of the third timing mode and the mixed timing mode; wherein, A and X are integers greater than or equal to 1.
  • the reference timing alignment mode is the reference timing alignment mode when the timing mode is the second timing mode.
  • the reference timing alignment mode includes at least one of the following: a first reference timing alignment mode, a second reference timing alignment mode, and a mixed reference timing alignment mode.
  • the first reference timing alignment mode includes at least one of the following: when the first timing mode and the second timing mode are executed in parallel, it is determined according to the reference timing of the first timing mode Reference timing between nodes; when the third timing mode and the second timing mode are executed in parallel, the reference timing between nodes is determined according to the reference timing of the third timing mode;
  • the second reference timing alignment mode includes: determining a reference between nodes according to a time difference between the reference timing of the first node and the upstream receiving timing, and a time difference between the reference timing of the second node and the downstream receiving timing timing.
  • the mixed reference timing alignment mode includes: the first reference timing alignment mode is adopted for the first to Nth reference timing alignments, and the second reference is adopted after the Nth reference timing alignment Timing alignment mode; where N is an integer greater than or equal to 1.
  • the configuration module 501 is specifically configured to implement the reference timing alignment mode of the predefined second node in the following manner:
  • the reference timing alignment mode of the second node is predefined as any one of the first reference timing alignment mode, the second reference timing alignment mode and the mixed reference timing alignment mode.
  • the configuration module 501 is specifically configured to implement the reference timing alignment mode for configuring the second node in the following manner:
  • the reference timing alignment mode of the second node is configured through operation management and maintenance OAM.
  • the second signaling includes wireless air interface signaling
  • the wireless air interface signaling includes at least one of the following: high layer signaling, media access control MAC layer signaling, and physical layer signaling.
  • any Y binary states among the 2 B binary states represented by B bits are used to represent the first reference timing alignment mode and the second reference timing alignment Any one of the mode and the mixed reference timing alignment mode; wherein, B and Y are integers greater than or equal to 1.
  • the configuration module 501 is specifically configured to implement the reference timing alignment mode for configuring the second node in the following manner:
  • the configuration module 501 is specifically configured to implement at least one of the following ways to configure the reference timing alignment mode of the second node according to the reference timing alignment mode capability reported by the second node:
  • the reference timing alignment mode of the second node is configured as the second reference timing Alignment mode
  • the reference timing alignment mode of the second node is configured as the first reference timing alignment mode.
  • the TA configuration mode is the TA configuration mode when the timing mode is the third timing mode.
  • the TA configuration mode includes at least one of the following: a first TA configuration mode, a second TA configuration mode, a third TA configuration mode, and a compatibility mode.
  • the first TA configuration mode includes: configuring an absolute negative TA
  • the second TA configuration mode includes: configuring a relatively negative TA
  • the third TA configuration mode includes: symbol-level alignment corresponding to the positive TA.
  • the compatibility mode includes: the first node is configured with a positive TA, and the first node schedules the second node in a non-slot manner.
  • the configuration module 501 is specifically configured to implement the predefined TA configuration mode in the following manner:
  • the TA configuration mode is predefined as any one of the first TA configuration mode, the second TA configuration mode, the third TA configuration mode, and the compatibility mode.
  • the configuration module 501 is specifically configured to implement the TA configuration mode for configuring the second node in the following manners:
  • the TA configuration mode of the second node is configured through operation management and maintenance OAM.
  • the third signaling includes wireless air interface signaling
  • the wireless air interface signaling includes at least one of the following: high layer signaling, media access control MAC layer signaling, and physical layer signaling.
  • any Z binary states among 2 C binary states represented by C bits are used to represent the first TA configuration mode, the second TA configuration mode, Any one of the third TA configuration mode and the compatibility mode; wherein, C and Z are integers greater than or equal to 1.
  • the configuration module 501 is specifically configured to implement the TA configuration mode for configuring the second node in the following manner:
  • the configuration module 501 is specifically configured to implement at least one of the following ways to configure the TA configuration mode of the second node according to the TA configuration mode capability reported by the second node:
  • the TA configuration mode capability reported by the second node is that the second node does not have a negative TA capability
  • the TA configuration mode capability reported by the second node is that the second node has a negative TA capability
  • the TA value is an absolute TA value
  • the TA value greater than zero indicates that the uplink transmission timing of the second node is advanced relative to the downlink reception timing of the second node
  • the TA value is less than Zero indicates that the uplink transmission timing of the second node is delayed relative to the downlink reception timing of the second node
  • the TA value equal to zero indicates that the uplink transmission timing of the second node is relative to the downlink reception of the second node Align regularly.
  • the determination of the TA value includes at least one of the following:
  • the TA value attribute of the 0th hop link is equal to 0;
  • the TA value attribute of the i-th hop link is greater than or equal to 0, and the TA value of the i-th hop link is 2PD(i); where, PD(i) Is the propagation delay of the i-th hop link;
  • the TA value attribute of the 0th hop link is equal to 0;
  • the TA value attribute of the i-th hop link is greater than or equal to 0, and the TA value of the i-th hop link is PD(i); where, PD(i) Is the propagation delay of the i-th hop link;
  • the timing mode is the third timing mode
  • the TA value attribute of the 0th hop link is equal to 0;
  • the timing mode is the third timing mode
  • the TA value attribute of the first hop link is greater than or equal to 0, and the TA value of the i th hop link is 2PD(i); where, PD(i) Is the propagation delay of the i-th hop link;
  • the timing mode is the third timing mode and PD(i-1) is less than or equal to 2PD(i)
  • the TA value attribute of the i-th hop link is greater than or equal to 0, and the i-th hop link Has a TA value of 2PD(i)-PD(i-1); where PD(i) is the propagation delay of the i-th hop link;
  • the timing mode is the third timing mode and PD(i-1) is greater than or equal to 2PD(i)
  • the TA value attribute of the i-th hop link is less than or equal to 0, and the i-th hop link
  • the TA value is -(PD(i-1)-2PD(i)).
  • the configuration module 501 is specifically configured to implement the configuration of the TA value of the second node in the following manner: the TA value of the second node is configured through an indication information bit.
  • the indication information bits include (D+1) bits, where D bits represent the value of the TA value and 1 bit represents the attribute of the TA value; where D is a value greater than or equal to 1 Integer.
  • bit interval corresponding to the TA value is the first sub-interval, it means that the attribute of the TA value is greater than or equal to 0;
  • bit interval corresponding to the TA value When the bit interval corresponding to the TA value is the second sub-interval, it indicates that the attribute of the TA value is less than or equal to 0;
  • the union of the first sub-interval and the second sub-interval is the TA value interval in the timing advance command TAC.
  • the offset of the TA value is an offset with respect to the TA value at a specific moment, and a value of (TA+Offset) greater than zero indicates that the uplink transmission timing of the second node is relative to all
  • the downlink reception timing of the second node is advanced, (TA+Offset) value less than zero indicates that the uplink transmission timing of the second node is delayed relative to the downlink reception timing of the second node, (TA+Offset) value equal to zero indicates The uplink transmission timing of the second node is aligned with the downlink reception timing of the second node; where Offset is the offset of the TA value.
  • the time granularity corresponding to the Offset is different from the time granularity corresponding to the TA value.
  • the offset of the TA value is an offset relative to the latest TA value
  • the offset is independent of the timing advance command TAC in the random access response RAR, or independent of the TAC in the media access control unit MAC CE; or, the offset is different from the TAC in the RAR or The TAC in the MAC CE has a nested relationship.
  • the nested relationship between the offset and the TAC in the RAR or the TAC in the MAC includes:
  • the configuration module 501 is specifically configured to implement the following method to configure the offset of the TA value of the second node:
  • the offset of the TA value of the second node is configured through operation management and maintenance OAM.
  • the OFDM symbol time length is determined according to any one of the following:
  • SCS_UL_Tx is the subcarrier interval corresponding to the uplink transmission link of the second node
  • SCS_DL_Tx is the subcarrier interval corresponding to the downlink transmission link of the second node
  • SCS_UL_Rx is the uplink receiving link of the second node
  • SCS_DL_Rx is the subcarrier spacing corresponding to the downlink receiving link of the second node.
  • the specific implementation process of the foregoing timing information configuration device is the same as the specific implementation process of the timing information configuration method in the foregoing embodiment, and details are not described herein again.
  • timing information configuration device (such as a second node), including:
  • the determining module 601 is configured to determine timing information in a predefined manner or a configured manner; wherein, the timing information includes at least one of the following: timing mode, reference timing alignment mode, time advance TA configuration mode, TA value, TA value Offset, the number of OFDM symbols that need to be advanced or delayed to be aligned with the uplink transmit link relative to the downlink transmit link, the number of OFDM symbols that need to be advanced or delayed to be aligned with the uplink receive link relative to the downlink receive link number.
  • the timing mode includes at least one of the following: a first timing mode, a second timing mode, a third timing mode, and a mixed timing mode.
  • the first timing mode includes: the reference timings of all nodes are aligned to the reference timing of the donor node;
  • the second timing mode includes: the reference timings of all nodes are aligned to the reference timing of the donor node, and the uplink transmission timing of each node is aligned to the reference timing of each node;
  • the third timing mode includes that the reference timings of all nodes are aligned to the reference timing of the donor node, and the upstream receiving timing of each node is aligned to the downstream receiving timing of each node.
  • the mixed timing mode includes at least one of the following:
  • the timing mode of the second node in the first time slot is the second timing mode; the timing mode of the second node in the second time slot is the third timing mode; wherein, the first time slot The remainder obtained by dividing the slot index of 2 by 2 is the first value, and the remainder obtained by dividing the slot index of 2 by 2 is the second value, and the first value and the second value are different , And the first value and the second value are any one of 0 and 1;
  • the timing mode of the second node in the third time slot is the first timing mode; the timing mode of the second node in the fourth time slot is the second timing mode; the first The timing mode of the two nodes is the third timing mode; wherein the remainder obtained by dividing the slot index of the third slot by 3 is the third value, and the slot index of the fourth slot is divided by 3 Is the fourth value, the remainder obtained by dividing the slot index of the fifth time slot by 3 is the fifth value, and the third value, the fourth value, and the fifth value have different values, and The third value, the fourth value and the fifth value are any one of 0, 1, 2;
  • the determining module 601 is specifically configured to implement the following manner to determine the timing mode in a predefined manner:
  • the predefined timing mode is any one of the first timing mode, the second timing mode, the third timing mode, and the mixed timing mode.
  • the determination module 601 is specifically configured to adopt at least one of the following ways to implement a predetermined manner to determine the timing mode:
  • the predefined timing mode is the first timing mode
  • the predefined timing mode is the second timing mode
  • the predefined timing mode is the third timing mode.
  • the determination module 601 is specifically configured to adopt at least one of the following ways to implement a predetermined manner to determine the timing mode:
  • the timing mode within the predefined first time resource is the first timing mode
  • the timing mode within the predefined second time resource is the second timing mode
  • the timing mode within the predefined third time resource is the third timing mode.
  • the first time resource is a time slot index divided by 3, and the remainder obtained by dividing by 3 is the time slot corresponding to the third value;
  • the second time resource is a time slot index divided by 3, and the remainder obtained by dividing by 3 is the time slot corresponding to the fourth value;
  • the third time resource is the time slot index divided by 3, and the remainder obtained by dividing by 3 is the time slot corresponding to the fifth value;
  • a reporting module 602 configured to report the timing mode capability of the second node.
  • the determination module 601 is specifically configured to implement the configured manner to determine the timing mode in the following manner:
  • the first signaling includes wireless air interface signaling
  • the wireless air interface signaling includes at least one of the following: high layer signaling, media access control MAC layer signaling, and physical layer signaling.
  • any X binary states among the 2 A binary states represented by A bits are used to represent the first timing mode, the second timing mode, the Any one of the third timing mode and the mixed timing mode; wherein, A and X are integers greater than or equal to 1.
  • the reference timing alignment mode is the reference timing alignment mode when the timing mode is the second timing mode.
  • the reference timing alignment module includes at least one of the following: a first reference timing alignment mode, a second reference timing alignment mode, and a mixed reference timing alignment mode.
  • the first reference timing alignment mode includes at least one of the following: when the first timing mode and the second timing mode are executed in parallel, it is determined according to the reference timing of the first timing mode Reference timing between nodes; when the third timing mode and the second timing mode are executed in parallel, the reference timing between nodes is determined according to the reference timing of the third timing mode;
  • the second reference timing alignment mode includes: determining a reference between nodes according to a time difference between the reference timing of the first node and the upstream receiving timing, and a time difference between the reference timing of the second node and the downstream receiving timing timing.
  • the mixed reference timing alignment mode includes: the first reference timing alignment mode is adopted for the first to Nth reference timing alignments, and the second reference is adopted after the Nth reference timing alignment Timing alignment mode; where N is an integer greater than or equal to 1.
  • the determining module 601 is specifically configured to implement the following method to determine the reference timing alignment mode of the second node in a predefined manner:
  • the reference timing alignment mode of the second node is predefined as any one of the first reference timing alignment mode, the second reference timing alignment mode and the mixed reference timing alignment mode.
  • the determining module 601 is specifically configured to implement the following manner to determine the reference timing alignment mode of the second node in a configured manner:
  • the reference timing alignment mode of the second node is determined by means of operation management and maintenance OAM.
  • the second signaling includes wireless air interface signaling
  • the wireless air interface signaling includes at least one of the following: high layer signaling, media access control MAC layer signaling, and physical layer signaling.
  • any Y binary states among the 2 B binary states represented by B bits are used to represent the first reference timing alignment mode and the second reference timing alignment Any one of the mode and the mixed reference timing alignment mode; wherein, B and Y are integers greater than or equal to 1.
  • it further includes: a reporting module 602, which is used by the second node to report the reference timing alignment mode capability of the second node.
  • the TA configuration mode is the TA configuration mode when the timing mode is the third timing mode.
  • the TA configuration mode includes at least one of the following: a first TA configuration mode, a second TA configuration mode, a third TA configuration mode, and a compatibility mode.
  • the first TA configuration mode includes: configuring an absolute negative TA
  • the second TA configuration mode includes: configuring a relatively negative TA
  • the third TA configuration mode includes: symbol-level alignment corresponding to the positive TA.
  • the compatibility mode includes: the first node is configured with a positive TA, and the first node schedules the second node in a non-slot manner.
  • the determination module 601 is specifically configured to implement the predefined TA configuration mode in the following manner:
  • the TA configuration mode is predefined as any one of the first TA configuration mode, the second TA configuration mode, the third TA configuration mode, and the compatibility mode.
  • the determination module 601 is specifically configured to implement the TA configuration mode for determining the second node in the configured manner in the following manner:
  • the TA configuration mode of the second node is determined through operation, management and maintenance OAM.
  • the third signaling includes wireless air interface signaling
  • the wireless air interface signaling includes at least one of the following: high layer signaling, media access control MAC layer signaling, and physical layer signaling.
  • any Z binary states among 2 C binary states represented by C bits are used to represent the first TA configuration mode, the second TA configuration mode, Any one of the third TA configuration mode and the compatibility mode; wherein, C and Z are integers greater than or equal to 1.
  • a reporting module 602 which is used by the second node to report the TA configuration mode capability of the second node.
  • the TA value is an absolute TA value
  • the TA value greater than zero indicates that the uplink transmission timing of the second node is advanced relative to the downlink reception timing of the second node
  • the TA value is less than Zero indicates that the uplink transmission timing of the second node is delayed relative to the downlink reception timing of the second node
  • the TA value equal to zero indicates that the uplink transmission timing of the second node is relative to the downlink reception of the second node Align regularly.
  • the determining module 601 is specifically configured to implement the following method to determine the TA value of the second node in a predefined manner:
  • the TA value attribute of the 0th hop link is equal to 0;
  • the TA value attribute of the i-th hop link is greater than or equal to 0, and the TA value of the i-th hop link is 2PD(i); where, PD(i) Is the propagation delay of the i-th hop link;
  • the TA value attribute of the 0th hop link is equal to 0;
  • the TA value attribute of the i-th hop link is greater than or equal to 0, and the TA value of the i-th hop link is PD(i); where, PD(i) Is the propagation delay of the i-th hop link;
  • the timing mode is the third timing mode
  • the TA value attribute of the 0th hop link is equal to 0;
  • the timing mode is the third timing mode
  • the TA value attribute of the first hop link is greater than or equal to 0, and the TA value of the i th hop link is 2PD(i); where, PD(i) Is the propagation delay of the i-th hop link;
  • the timing mode is the third timing mode and PD(i-1) is less than or equal to 2PD(i)
  • the TA value attribute of the i-th hop link is greater than or equal to 0, and the i-th hop link Has a TA value of 2PD(i)-PD(i-1); where PD(i) is the propagation delay of the i-th hop link;
  • the timing mode is the third timing mode and PD(i-1) is greater than or equal to 2PD(i)
  • the TA value attribute of the i-th hop link is less than or equal to 0, and the i-th hop link
  • the TA value is -(PD(i-1)-2PD(i)).
  • the determining module 601 is specifically configured to implement the configured method to determine the TA value of the second node in the following manner:
  • the second node determines the TA value attribute according to the timing mode and the propagation delay of the link hop.
  • the indication information bits include (D+1) bits, where D bits represent the value of the TA value and 1 bit represents the attribute of the TA value; where D is a value greater than or equal to 1 Integer.
  • the determination module 601 is specifically configured to implement at least one of the following ways to determine the TA value attribute according to the configured bit interval corresponding to the TA value:
  • the bit interval corresponding to the TA value is the first sub-interval, it is determined that the attribute of the TA value is greater than or equal to 0;
  • the bit interval corresponding to the TA value is the second sub-interval, it is determined that the attribute of the TA value is less than or equal to 0;
  • the union of the first sub-interval and the second sub-interval is the TA value interval in the timing advance command TAC.
  • the offset of the TA value is an offset with respect to the TA value at a specific moment, and a value of (TA+Offset) greater than zero indicates that the uplink transmission timing of the second node is relative to all
  • the downlink reception timing of the second node is advanced, (TA+Offset) value less than zero indicates that the uplink transmission timing of the second node is delayed relative to the downlink reception timing of the second node, (TA+Offset) value equal to zero indicates The uplink transmission timing of the second node is aligned with the downlink reception timing of the second node; where Offset is the offset of the TA value.
  • the time granularity corresponding to the Offset is different from the time granularity corresponding to the TA value.
  • the offset of the TA value is an offset relative to the latest TA value
  • the offset is independent of the timing advance command TAC in the random access response RAR, or independent of the TAC in the media access control unit MAC CE; or, the offset is different from the TAC in the RAR or The TAC in the MAC CE has a nested relationship.
  • the nesting relationship between the offset and the TAC in the RAR or the TAC in the MAC includes:
  • the determination module 601 is specifically configured to implement the following configuration to determine the offset of the TA value of the second node in a configured manner:
  • the fourth signaling includes wireless air interface signaling
  • the wireless air interface signaling includes at least one of the following: Signaling, media access control MAC layer signaling, physical layer signaling;
  • the offset of the TA value of the second node is determined through operation management and maintenance OAM.
  • the OFDM symbol time length is determined according to any one of the following:
  • SCS_UL_Tx is the subcarrier interval corresponding to the uplink transmission link of the second node
  • SCS_DL_Tx is the subcarrier interval corresponding to the downlink transmission link of the second node
  • SCS_UL_Rx is the uplink receiving link of the second node
  • SCS_DL_Rx is the subcarrier spacing corresponding to the downlink receiving link of the second node.
  • the specific implementation process of the foregoing timing information configuration device is the same as the specific implementation process of the timing information configuration method in the foregoing embodiment, and details are not described herein again.
  • Timing information configuration device including a processor and a computer-readable storage medium, where the computer-readable storage medium stores instructions, which are implemented when the instructions are executed by the processor Any one of the above timing information configuration methods.
  • Another embodiment of the present disclosure proposes a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of any of the foregoing timing information configuration methods are implemented.
  • timing information configuration system including:
  • the first node 701 is used to predefine or configure the timing information of the second node
  • the second node 702 is used to determine the timing information of the second node in a predefined manner or a configured manner;
  • the timing information includes at least one of the following: timing mode, reference timing alignment mode, time advance TA configuration mode, TA value, offset of TA value, alignment of the uplink transmission link relative to the downlink transmission link needs to be advanced or The number of OFDM symbols that are delayed and the number of OFDM symbols that need to be shifted in advance or delayed to align the uplink receive link relative to the downlink receive link.
  • the timing mode includes at least one of the following: a first timing mode, a second timing mode, a third timing mode, and a mixed timing mode.
  • the first timing mode includes: the reference timing of all nodes are aligned to the reference timing of the donor node;
  • the second timing mode includes: the reference timings of all nodes are aligned to the reference timing of the donor node, and the uplink transmission timing of each node is aligned to the reference timing of each node;
  • the third timing mode includes that the reference timings of all nodes are aligned to the reference timing of the donor node, and the upstream receiving timing of each node is aligned to the downstream receiving timing of each node.
  • the mixed timing mode includes at least one of the following:
  • the timing mode of the second node in the first time slot is the second timing mode; the timing mode of the second node in the second time slot is the third timing mode; wherein, the first time slot The remainder obtained by dividing the slot index of 2 by 2 is the first value, and the remainder obtained by dividing the slot index of 2 by 2 is the second value, and the first value and the second value are different , And the first value and the second value are any one of 0 and 1;
  • the timing mode of the second node in the third time slot is the first timing mode; the timing mode of the second node in the fourth time slot is the second timing mode; the first The timing mode of the two nodes is the third timing mode; wherein the remainder obtained by dividing the slot index of the third slot by 3 is the third value, and the slot index of the fourth slot is divided by 3 Is the fourth value, the remainder obtained by dividing the slot index of the fifth time slot by 3 is the fifth value, and the third value, the fourth value, and the fifth value have different values, and The third value, the fourth value and the fifth value are any one of 0, 1, 2;
  • the first node 701 is specifically configured to implement the predefined timing mode of the second node in the following manner:
  • the timing mode of the second node as any one of the first timing mode, the second timing mode, the third timing mode, and the mixed timing mode
  • the second node 702 is specifically used to implement the following manner to determine the timing mode of the second node in a predefined manner:
  • the timing mode of the second node is predefined to be any one of the first timing mode, the second timing mode, the third timing mode, and the mixed timing mode.
  • the first node 701 and the second node 702 are specifically configured to implement a predefined timing mode of the second node in at least one of the following ways:
  • the timing mode of the second node is predefined as the first timing mode
  • the timing mode of the second node is predefined as the second timing mode
  • the timing mode of the second node is predefined as the third timing mode.
  • the first node 701 and the second node 702 are specifically used to implement a predefined second node timing mode in at least one of the following ways:
  • the timing mode of the second node in the predefined third time resource is the third timing mode.
  • the first time resource is a time slot index divided by 3, and the remainder obtained by dividing by 3 is the time slot corresponding to the third value;
  • the second time resource is a time slot index divided by 3, and the remainder obtained by dividing by 3 is the time slot corresponding to the fourth value;
  • the third time resource is the time slot index divided by 3, and the remainder obtained by dividing by 3 is the time slot corresponding to the fifth value;
  • the first node 701 is specifically configured to implement the timing mode of configuring the second node in the following manner:
  • the first node configures the timing mode of the second node according to the timing mode capability reported by the second node;
  • the second node 702 is also used to report the timing mode capability of the second node.
  • the first node 701 is specifically configured to implement the configuration of the timing mode of the second node according to the timing mode capability reported by the second node in at least one of the following ways:
  • the timing mode capability reported by the second node is that the second node has the first capability
  • the first capability includes any of the following One: the second node supports the second timing mode; the second node has the capability of simultaneous uplink and downlink transmission;
  • the timing mode capability reported by the second node is that the second node does not have the first capability, configure the timing mode of the second node to be the first timing mode or the third timing mode;
  • the timing mode capability reported by the second node is that the second node has the second capability
  • the second capability includes any of the following One: the second node supports the third timing mode; the second node has simultaneous receiving capabilities for uplink reception and downlink reception;
  • the timing mode capability reported by the second node is that the second node does not have the second capability, configure the timing mode of the second node to be the first timing mode or the second timing mode;
  • the timing mode of the second node is configured to be a hybrid timing mode; wherein, the third capability includes any of the following: The second node supports the mixed timing mode; the second node supports the simultaneous transmission of uplink transmission and downlink transmission, and the timing mode of simultaneous reception of uplink reception and downlink reception;
  • the timing mode of the second node is configured as the first timing mode.
  • the first node 701 is specifically configured to implement the timing mode of configuring the second node in the following manner:
  • the first node configures the timing mode of the second node by means of first signaling
  • the first node configures the timing mode of the second node through operation management and maintenance OAM;
  • the second node 702 is specifically configured to implement the configured mode to determine the timing mode of the second node in the following manner:
  • the timing mode of the second node is determined by means of operation management and maintenance OAM.
  • the first signaling includes wireless air interface signaling
  • the wireless air interface signaling includes at least one of the following: high layer signaling, media access control MAC layer signaling, and physical layer signaling.
  • the first signaling includes wireless air interface signaling
  • the wireless air interface signaling includes at least one of the following: high layer signaling, media access control MAC layer signaling, and physical layer signaling.
  • any X binary states among the 2 A binary states represented by A bits are used to represent the first timing mode, the second timing mode, the Any one of the third timing mode and the mixed timing mode; wherein, A and X are integers greater than or equal to 1.
  • the reference timing alignment mode is the reference timing alignment mode when the timing mode is the second timing mode.
  • the reference timing alignment mode includes at least one of the following: a first reference timing alignment mode, a second reference timing alignment mode, and a mixed reference timing alignment mode.
  • the first reference timing alignment mode includes at least one of the following: when the first timing mode and the second timing mode are executed in parallel, it is determined according to the reference timing of the first timing mode Reference timing between nodes; when the third timing mode and the second timing mode are executed in parallel, the reference timing between nodes is determined according to the reference timing of the third timing mode;
  • the second reference timing alignment mode includes: determining a reference between nodes according to a time difference between the reference timing of the first node and the upstream receiving timing, and a time difference between the reference timing of the second node and the downstream receiving timing timing.
  • the mixed reference timing alignment mode includes: the first reference timing alignment mode is adopted for the first to Nth reference timing alignments, and the second reference is adopted after the Nth reference timing alignment Timing alignment mode; where N is an integer greater than or equal to 1.
  • the first node 701 is specifically configured to implement the reference timing alignment mode of the predefined second node in the following manner:
  • the second node 702 is specifically used to implement the following manner to determine the reference timing alignment mode of the second node in a predefined manner:
  • the reference timing alignment mode of the second node is predefined as any one of the first reference timing alignment mode, the second reference timing alignment mode and the mixed reference timing alignment mode.
  • the first node 701 is specifically configured to implement the reference timing alignment mode for configuring the second node in the following manner:
  • the second node 702 is specifically configured to implement the following manner to determine the reference timing alignment mode of the second node in a configured manner:
  • the reference timing alignment mode of the second node is determined by means of operation management and maintenance OAM.
  • the second signaling includes wireless air interface signaling
  • the wireless air interface signaling includes at least one of the following: high layer signaling, media access control MAC layer signaling, and physical layer signaling.
  • any Y binary states among the 2 B binary states represented by B bits are used to represent the first reference timing alignment mode and the second reference timing alignment Any one of the mode and the mixed reference timing alignment mode; wherein, B and Y are integers greater than or equal to 1.
  • the first node 701 is specifically configured to implement the reference timing alignment mode for configuring the second node in the following manner:
  • the first node configures the reference timing alignment mode of the second node according to the reference timing alignment mode capability reported by the second node;
  • the second node 702 is also used to report the reference timing alignment mode capability of the second node.
  • the first node 701 is specifically configured to implement the configuration of the reference timing alignment mode of the second node according to the capability of the reference timing alignment mode reported by the second node in at least one of the following ways:
  • the reference timing alignment mode of the second node is configured as the second reference timing Alignment mode
  • the reference timing alignment mode of the second node is configured as the first reference timing alignment mode.
  • the TA configuration mode is the TA configuration mode when the timing mode is the third timing mode.
  • the TA configuration mode includes at least one of the following: a first TA configuration mode, a second TA configuration mode, a third TA configuration mode, and a compatibility mode.
  • the first TA configuration mode includes: configuring an absolute negative TA
  • the second TA configuration mode includes: configuring a relatively negative TA
  • the third TA configuration mode includes: symbol-level alignment corresponding to the positive TA.
  • the compatibility mode includes: the first node is configured with a positive TA, and the first node schedules the second node in a non-slot manner.
  • the first node 701 and the second node 702 are specifically used to implement the predefined TA configuration mode in the following manner:
  • the TA configuration mode is predefined as any one of the first TA configuration mode, the second TA configuration mode, the third TA configuration mode, and the compatibility mode.
  • the first node 701 is specifically configured to implement the TA configuration mode for configuring the second node in the following manner:
  • the second node 702 is specifically configured to implement the TA configuration mode for determining the second node in the configured manner in the following manner:
  • the TA configuration mode of the second node is determined through operation, management and maintenance OAM.
  • the third signaling includes wireless air interface signaling
  • the wireless air interface signaling includes at least one of the following: high layer signaling, media access control MAC layer signaling, and physical layer signaling.
  • any Z binary states among 2 C binary states represented by C bits are used to represent the first TA configuration mode, the second TA configuration mode, Any one of the third TA configuration mode and the compatibility mode; wherein, C and Z are integers greater than or equal to 1.
  • the first node 701 is specifically configured to implement the TA configuration mode for configuring the second node in the following manner:
  • the second node 702 is also used to report the TA configuration mode capability of the second node.
  • the first node 701 is specifically configured to implement the TA configuration mode of the second node according to the TA configuration mode capability reported by the second node in at least one of the following ways:
  • the TA configuration mode capability reported by the second node is that the second node does not have a negative TA capability
  • the TA configuration mode capability reported by the second node is that the second node has a negative TA capability
  • the TA value is an absolute TA value
  • the TA value greater than zero indicates that the uplink transmission timing of the second node is advanced relative to the downlink reception timing of the second node
  • the TA value is less than Zero indicates that the uplink transmission timing of the second node is delayed relative to the downlink reception timing of the second node
  • the TA value equal to zero indicates that the uplink transmission timing of the second node is relative to the downlink reception of the second node Align regularly.
  • the determination of the TA value includes at least one of the following:
  • the TA value attribute of the 0th hop link is equal to 0;
  • the TA value attribute of the i-th hop link is greater than or equal to 0, and the TA value of the i-th hop link is 2PD(i); where, PD(i) Is the propagation delay of the i-th hop link;
  • the TA value attribute of the 0th hop link is equal to 0;
  • the TA value attribute of the i-th hop link is greater than or equal to 0, and the TA value of the i-th hop link is PD(i); where, PD(i) Is the propagation delay of the i-th hop link;
  • the timing mode is the third timing mode
  • the TA value attribute of the 0th hop link is equal to 0;
  • the timing mode is the third timing mode
  • the TA value attribute of the first hop link is greater than or equal to 0, and the TA value of the i th hop link is 2PD(i); where, PD(i) Is the propagation delay of the i-th hop link;
  • the timing mode is the third timing mode and PD(i-1) is less than or equal to 2PD(i)
  • the TA value attribute of the i-th hop link is greater than or equal to 0, and the i-th hop link Has a TA value of 2PD(i)-PD(i-1); where PD(i) is the propagation delay of the i-th hop link;
  • the timing mode is the third timing mode and PD(i-1) is greater than or equal to 2PD(i)
  • the TA value attribute of the i-th hop link is less than or equal to 0, and the i-th hop link
  • the TA value is -(PD(i-1)-2PD(i)).
  • the first node 701 is specifically configured to configure the TA value of the second node in the following manner: configure the TA value of the second node by indicating information bits;
  • the second node 702 is specifically configured to implement the configured method to determine the TA value of the second node in the following manner:
  • the second node determines the TA value attribute according to the timing mode and the propagation delay of the hopped link.
  • the indication information bits include (D+1) bits, where D bits represent the value of the TA value and 1 bit represents the attribute of the TA value; where D is a value greater than or equal to 1 Integer.
  • the second node 702 is specifically configured to determine the TA value attribute according to the configured bit interval corresponding to the TA value in at least one of the following ways:
  • the bit interval corresponding to the TA value is the first sub-interval, it is determined that the attribute of the TA value is greater than or equal to 0;
  • the bit interval corresponding to the TA value is the second sub-interval, it is determined that the attribute of the TA value is less than or equal to 0;
  • the union of the first sub-interval and the second sub-interval is the TA value interval in the timing advance command TAC.
  • the offset of the TA value is an offset with respect to the TA value at a specific moment, and a value of (TA+Offset) greater than zero indicates that the uplink transmission timing of the second node is relative to all
  • the downlink reception timing of the second node is advanced, (TA+Offset) value less than zero indicates that the uplink transmission timing of the second node is delayed relative to the downlink reception timing of the second node, (TA+Offset) value equal to zero indicates The uplink transmission timing of the second node is aligned with the downlink reception timing of the second node; where Offset is the offset of the TA value.
  • the time granularity corresponding to the Offset is different from the time granularity corresponding to the TA value.
  • the offset of the TA value is an offset relative to the latest TA value
  • the offset is independent of the timing advance command TAC in the random access response RAR, or independent of the TAC in the media access control unit MAC CE; or, the offset is different from the TAC in the RAR or The TAC in the MAC CE has a nested relationship.
  • the nesting relationship between the offset and the TAC in the RAR or the TAC in the MAC includes:
  • the first node 701 is specifically configured to implement the following method to configure the offset of the TA value of the second node:
  • the fourth signaling includes wireless air interface signaling
  • the wireless air interface signaling includes at least one of the following: high layer signaling, media Access control MAC layer signaling, physical layer signaling;
  • the second node 702 is specifically configured to implement the following configuration to determine the offset of the TA value of the second node in the configured manner:
  • the offset of the TA value of the second node is determined through operation management and maintenance OAM.
  • the OFDM symbol time length is determined according to any one of the following:
  • SCS_UL_Tx is the subcarrier interval corresponding to the uplink transmission link of the second node
  • SCS_DL_Tx is the subcarrier interval corresponding to the downlink transmission link of the second node
  • SCS_UL_Rx is the uplink receiving link of the second node
  • SCS_DL_Rx is the subcarrier spacing corresponding to the downlink receiving link of the second node.
  • computer storage media includes both volatile and nonvolatile implemented in any method or technology for storing information such as computer readable instructions, data structures, program modules, or other data Sex, removable and non-removable media.
  • Computer storage media include but are not limited to random access memory (Random Access Memory, RAM), read-only memory (Read-Only Memory, ROM), electrically erasable read-only memory (Electrically, Erasable Programmable Read-Only Memory, EEPROM), flash memory Or other memory technologies, portable compact disk read-only memory (Compact Disc Read Only Memory, CD-ROM), digital versatile disk (Digital Video Disk, DVD) or other optical disk storage, magnetic box, magnetic tape, magnetic disk storage or other magnetic storage A device, or any other medium that can be used to store desired information and can be accessed by a computer.
  • the communication medium generally contains computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例公开了一种定时信息配置方法、装置、存储介质和系统,所述定时信息配置方法包括:第一节点预定义或配置第二节点的定时信息;其中,所述定时信息包括以下至少之一:定时模式、基准定时对齐模式、时间提前TA配置模式、TA值、TA值的偏移量、上行发射链路相对于下行发射链路对齐需要提前或延后偏移的正交频分复用OFDM符号的数目、上行接收链路相对于下行接收链路对齐需要提前或延后偏移的OFDM符号的数目;第二节点采用预定义方式或被配置方式确定第二节点的定时信息。

Description

定时信息配置方法、装置、存储介质和系统
本申请要求在2018年12月12日提交中国专利局、申请号为201811518172.2的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开实施例涉及但不限于通信技术,尤指一种定时信息配置方法、装置、存储介质和系统。
背景技术
随着无线电技术的不断进步,各种各样的无线电业务大量涌现,而无线电业务所依托的频谱资源是有限的,面对人们对带宽需求的不断增加,相关技术中的商业通信使用的300兆赫兹(MHz)到3吉赫兹(GHz)之间的频谱资源表现出极为紧张的局面,已经无法满足未来无线通信的需求。在新一代无线通信系统中(例如在新制式(NR,New Radio)系统(或称为5G系统)中,同时也包括5G之后的新一代无线通信系统中),将会采用比第四代无线通信(4G,the 4th Generation Mobile Communication)系统所采用的载波频率更高的载波频率进行通信,例如采用28GHz、45GHz、70GHz等等,这种高频信道具有自由传播损耗较大,容易被氧气吸收,受雨衰影响大等缺点,严重影响了高频通信系统的覆盖性能。但是,由于高频通信对应的载波频率具有更短的波长,所以可以保证单位面积上能容纳更多的天线元素,而更多的天线元素意味着可以采用波束赋形的方法来提高天线增益,从而保证高频通信的覆盖性能。
密集小区是越来越主要的应用场景,而密集小区将需要更多的网络部署成本,引入无线回程传输可以很容易地进行部署网络,并且大幅降低网络部署成本。此外NR系统包括高频频段,所以高频载波物理特性决定其覆盖范围是非常大的挑战,无线回程传输也可以解决这个问题。基于上述需求,在NR系统中,已经针对整体的接入和回程链路(IAB,Integrated Access and Backhaul)进行了立项。为了便于描述,标准中定义了几种标记(L P,DL,L P,UL),(L C,DL,L C,UL),(L A,DL,L A,UL);其中,(L P,DL,L P,UL)表示节点和父节点之间的下行链路和上行链路,所述链路可看做是回程链路(BL,Backhaul link),所述节点可看做是所述父节点的子节点;(L C,DL,L C,UL)表示节点和子节点之间的下行链路和 上行链路,所述链路可看做是BL,所述节点可看做是所述子节点的父节点;(L A,DL,L A,UL)表示节点和用户设备之间的下行链路和上行链路,所述链路可看做是接入链路(AL,Access link);其中,父节点也可为施主节点(DN,Donor Node)。同时为了克服半双工中继节点在带内(in-band)场景下带来的收发自干扰问题,提出BL和AL之间采用如下复用方式:时分复用(TDM,Time Division Multiplexing)、频分复用(FDM,Frequency Division Multiplexing)、空分复用(SDM,Spatial Division Multiplexing),其中,TDM表示BL和AL之间采用不同的时间资源,SDM表示BL和AL之间采用不同的波束资源,FDM表示BL和AL之间采用不同的频率资源。标准中还针对中继节点(RN,Relay Node)(RN也称为IAB Node)定义了两种阶段,即阶段1(stage_1)表示中继节点供电后以用户设备(或移动终端)身份同步和初始接入到网络,即“用户设备模式”;阶段2(stage_2)表示中继节点完成同步和初始接入到网络后以节点(或集中单元或分布单元)身份与其他节点或用户设备通信,即“节点模式”。
另一方面,无线通信系统中由于每个用户设备与基站之间的距离不同,需要保证每个用户设备发射的数据同时到达基站侧,基站通过时间提前量命令(TAC,Timing Advance Command)通知用户设备需要提前多少时间进行发射,用户设备收到随机接入响应(RAR,Random Access Response)中的TAC(TAC in RAR)或MAC单元(MAC CE,Media Access Control Control Elements)中的TAC(TAC in MAC CE)后将在对应的时间点提前发射。但通信系统中引入RN后,针对每一跳链路之间的定时信息配置问题,尤其是引入负数TA(negative TA)后的定时信息指示,以及不同链路之间的定时信息维护问题,标准中尚未给出明确的解决方案。
发明内容
本公开实施例提供了一种定时信息配置方法、装置、存储介质和系统,能够实现定时信息的配置。
本公开实施例提供了一种定时信息配置方法,包括:
第一节点预定义或配置第二节点的定时信息;其中,所述定时信息包括以下至少之一:定时模式、基准定时对齐模式、时间提前TA配置模式、TA值、TA值的偏移量、上行发射链路相对于下行发射链路对齐需要提前或延后偏移的 正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号的数目、上行接收链路相对于下行接收链路对齐需要提前或延后偏移的OFDM符号的数目。
本公开实施例提供了一种定时信息配置方法,包括:
第二节点采用预定义方式或被配置方式确定第二节点的定时信息;其中,所述定时信息包括以下至少之一:定时模式、基准定时对齐模式、时间提前TA配置模式、TA值、TA值的偏移量、上行发射链路相对于下行发射链路对齐需要提前或延后偏移的OFDM符号的数目、上行接收链路相对于下行接收链路对齐需要提前或延后偏移的OFDM符号的数目。
本公开实施例提供了一种定时信息配置装置,包括:
配置模块,用于预定义或配置第二节点的定时信息;其中,所述定时信息包括以下至少之一:定时模式、基准定时对齐模式、时间提前TA配置模式、TA值、TA值的偏移量、上行发射链路相对于下行发射链路对齐需要提前或延后偏移的OFDM符号的数目、上行接收链路相对于下行接收链路对齐需要提前或延后偏移的OFDM符号的数目。
本公开实施例提供了一种定时信息配置装置,包括:
确定模块,用于采用预定义方式或被配置方式确定第二节点的定时信息;其中,所述定时信息包括以下至少之一:定时模式、基准定时对齐模式、时间提前TA配置模式、TA值、TA值的偏移量、上行发射链路相对于下行发射链路对齐需要提前或延后偏移的OFDM符号的数目、上行接收链路相对于下行接收链路对齐需要提前或延后偏移的OFDM符号的数目。
本公开实施例提供了一种定时信息配置装置,包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令被所述处理器执行时,实现上述任一种定时信息配置方法。
本公开实施例提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一种定时信息配置方法的步骤。
本公开实施例提供了一种定时信息配置系统,包括:
第一节点,用于预定义或配置第二节点的定时信息;
第二节点,用于采用预定义方式或被配置方式确定第二节点的定时信息;
其中,所述定时信息包括以下至少之一:定时模式、基准定时对齐模式、时间提前TA配置模式、TA值、TA值的偏移量、上行发射链路相对于下行发射链路对齐需要提前或延后偏移的OFDM符号的数目、上行接收链路相对于下行接收链路对齐需要提前或延后偏移的OFDM符号的数目。
本公开实施例包括:第一节点预定义或配置第二节点的定时信息;其中,所述定时信息包括以下至少之一:定时模式、基准定时对齐模式、时间提前TA配置模式、TA值、TA值的偏移量、上行发射链路相对于下行发射链路对齐需要提前或延后偏移的OFDM符号的数目、上行接收链路相对于下行接收链路对齐需要提前或延后偏移的OFDM符号的数目;第二节点采用预定义方式或被配置方式确定第二节点的定时信息。本公开实施例实现了定时信息的配置。
附图说明
图1为本公开一个实施例提出的定时信息配置方法的流程图;
图2(a)为本公开实施例第一定时模式的示意图;
图2(b)为本公开实施例第二定时模式的示意图一;
图2(c)为本公开实施例第二定时模式的示意图二;
图2(d)为本公开实施例第三定时模式的示意图;
图3为本公开另一个实施例提出的定时信息配置方法的流程图;
图4为本公开实施例的节点拓扑结构示意图;
图5为本公开另一个实施例提出的定时信息配置装置的结构组成示意图;
图6为本公开另一个实施例提出的定时信息配置装置的结构组成示意图;
图7为本公开另一个实施例提出的定时信息配置系统的结构组成示意图。
具体实施方式
下文中将结合附图对本公开实施例进行详细说明。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系 统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
参见图1,本公开一个实施例提出了一种定时信息配置方法,包括:
步骤100、第一节点预定义或配置第二节点的定时信息;其中,所述定时信息包括以下至少之一:定时模式、基准定时对齐模式、时间提前TA配置模式、TA值、TA值的偏移量、上行发射链路相对于下行发射链路对齐需要提前或延后偏移的OFDM符号的数目、上行接收链路相对于下行接收链路对齐需要提前或延后偏移的OFDM符号的数目。
在本公开实施例中,定时是指节点进行发射、接收的时刻,对应某个时域符号,或时隙,或子帧,或无线帧,或超帧的边界。
基准定时是指绝对时间,或下行发射定时,或上行接收定时。
其中,绝对时间是指时间为0时刻,或所述绝对时间是指某个时域符号,或时隙、子帧,或无线帧,或超帧的时间索引。
时隙索引是指无线帧内包括的若干时隙的标号。
在本公开实施例中,当定时信息包括两个或两个以上时,可以分别配置,也可以同时配置,具体的配置先后顺序本公开实施例不作限定。
下面对上述各个定时信息进行逐一详细说明。
(一)定时模式
在本公开实施例中,可以随意定义一种或多种定时模式,定时模式的种类不用于限定本公开实施例的保护范围。例如,所述定时模式包括以下至少之一:第一定时模式、第二定时模式、第三定时模式、混合定时模式。
其中,所述第一定时模式包括:所有节点的基准定时均对齐到施主节点的基准定时;如图2(a)所示,当基准定时为下行发射定时时,所有节点的下行发射定时均对齐,如图2(a)所示的虚线即为下行发射定时;图中,t1表示第1跳的传播时延(PD,Propagation Delay),t2表示第2跳的PD,t3表示第3跳的PD,t4表示第4跳的PD,t5表示第5跳的PD;
所述第二定时模式包括:所有节点的基准定时均对齐到施主节点的基准定时,且每一个节点的上行发射定时对齐到每一个节点的基准定时;如图2(b) 和图2(c)所示,当基准定时为下行发射定时时,所有节点的下行发射定时均对齐,且每一个节点的上行发射定时对齐到节点的下行发射定时,如图2(b)和图2(c)所示的虚线即为下行发射定时和上行发射定时;图中,t1表示第1跳的传播时延(PD,Propagation Delay),t2表示第2跳的PD,t3表示第3跳的PD,t4表示第4跳的PD,t5表示第5跳的PD;
所述第三定时模式包括:所有节点的基准定时均对齐到施主节点的基准定时,且每一个节点的上行接收定时对齐到每一个节点的下行接收定时;如图2(d)所示,当基准定时为下行发射定时时,所有节点的下行发射定时均对齐,且每一个节点的上行接收定时对齐到节点的下行接收定时,如图2(d)所示的虚线即为下行发射定时;图中,t1表示第1跳的传播时延(PD,Propagation Delay),t2表示第2跳的PD,t3表示第3跳的PD,t4表示第4跳的PD,t5表示第5跳的PD。
其中,所述混合定时模式包括以下至少之一:
时隙索引(slot index)除以M得到的余数i所对应的时隙内第二节点的定时模式为第一定时模式、第二定时模式、第三定时模式中的任意一种模式,且不同余数i所对应的时隙内第二节点的定时模式不同;其中,M为大于或等于2的整数,i为0到(M-1)中的任意一个整数;例如,第一时隙内所述第二节点的定时模式为所述第二定时模式;第二时隙内所述第二节点的定时模式为所述第三定时模式;其中,所述第一时隙的时隙索引除以2得到的余数为第一数值,所述第二时隙的时隙索引除以2得到的余数为第二数值,所述第一数值和所述第二数值取值不同,且所述第一数值和所述第二数值为0和1中的任意一个;又如,第三时隙内所述第二节点的定时模式为所述第一定时模式;第四时隙内所述第二节点的定时模式为所述第二定时模式;第五时隙内所述第二节点的定时模式为所述第三定时模式;其中,所述第三时隙的时隙索引除以3得到的余数为第三数值,所述第四时隙的时隙索引除以3得到的余数为第四数值,所述第五时隙的时隙索引除以3得到的余数为第五数值,所述第三数值、所述第四数值和所述第五数值取值不同,且所述第三数值、所述第四数值和所述第五数值为0,1,2中的任意一个;
同时支持同时发射和同时接收的定时模式,也就是说在同一时刻支持同时发射和同时接收的定时模式。
在本公开一个实施例中,所述第一节点预定义所述第二节点的定时模式包括:
所述第一节点预定义所述第二节点的定时模式为所述第一定时模式、所述第二定时模式、所述第三定时模式和所述混合定时模式中的任意一种模式。
在本公开另一个实施例中,所述第一节点预定义所述第二节点的定时模式包括以下至少之一:
当包含所述第一节点和所述第二节点之间的链路的各跳链路之间采用时分复用方式时,所述第一节点预定义所述第二节点的定时模式为所述第一定时模式;
当包含所述第一节点和所述第二节点之间的链路的各跳链路之间采用空分复用方式或频分复用方式,且所述第二节点的上行发射和所述第二节点的下行发射采用同时发射机制时,所述第一节点预定义所述第二节点的定时模式为所述第二定时模式;
当包含所述第一节点和所述第二节点之间的链路的各跳链路之间采用空分复用方式或频分复用方式,且所述第二节点的上行接收和所述第二节点的下行接收采用同时接收机制时,所述第一节点预定义所述第二节点的定时模式为所述第三定时模式。
在本公开另一个实施例中,所述第一节点预定义第二节点的定时模式包括以下至少之一:
所述第一节点预定义第一时间资源内所述第二节点的定时模式为第一定时模式;
所述第一节点预定义第二时间资源内所述第二节点的定时模式为第二定时模式;
所述第一节点预定义第三时间资源内所述第二节点的定时模式为第三定时模式。
其中,所述第一时间资源为时隙索引除以3得到的余数为第三数值所对应的时隙;所述第二时间资源为时隙索引除以3得到的余数为第四数值所对应的时隙;所述第三时间资源为时隙索引除以3得到的余数为第五数值所对应的时 隙;其中,所述第三数值、所述第四数值和所述第五数值取值不同,且所述第三数值、所述第四数值和所述第五数值为0,1,2中的任意一个。
在本公开实施例中,所述第一节点配置第二节点的定时模式包括:
第一节点直接配置第二节点的定时模式;
或者,所述第一节点根据所述第二节点上报的定时模式能力配置所述第二节点的定时模式。其中,定时模式能力是指第二节点是否支持哪种定时模式。
其中,所述第一节点根据第二节点上报的定时模式能力配置第二节点的定时模式包括以下至少之一:
当所述第二节点上报的定时模式能力为所述第二节点具有第一能力时,所述第一节点配置所述第二节点的定时模式为所述第二定时模式;其中,所述第一能力包括以下任意一个:所述第二节点支持所述第二定时模式;所述第二节点具有上行发射和下行发射同时发射能力;
当所述第二节点上报的定时模式能力为所述第二节点不具有所述第一能力时,所述第一节点配置所述第二节点的定时模式为所述第一定时模式或所述第三定时模式;
当所述第二节点上报的定时模式能力为所述第二节点具有第二能力时,所述第一节点配置所述第二节点的定时模式为所述第三定时模式;其中,所述第二能力包括以下任意一个:所述第二节点支持所述第三定时模式;所述第二节点具有上行接收和下行接收同时接收能力;
当所述第二节点上报的定时模式能力为所述第二节点不具有所述第二能力时,所述第一节点配置所述第二节点的定时模式为所述第一定时模式或所述第二定时模式;
当所述第二节点上报的定时模式能力为所述第二节点具有第三能力时,所述第一节点配置所述第二节点的定时模式为混合定时模式;其中,所述第三能力包括以下任意一个:所述第二节点支持所述混合定时模式;所述第二节点支持上行发射和下行发射同时发射,以及上行接收和下行接收同时接收的定时模式;
当所述第二节点上报的定时模式能力为所述第二节点不具有所述第三能力 时,所述第一节点配置所述第二节点的定时模式为所述第一定时模式。
在本公开实施例中,所述第一节点配置第二节点的定时模式包括:
所述第一节点通过第一信令的方式配置所述第二节点的定时模式;
或者,所述第一节点通过操作管理维护(Operation and Maintenance,OAM)的方式配置所述第二节点的定时模式,具体的,OAM(即第一节点)产生定时模式信息并将定时模式信息传递给第二节点的定时模式。
其中,所述第一信令包括无线空口信令,所述无线空口信令包括以下至少之一:高层信令、媒体访问控制MAC层信令、物理层信令。
其中,所述第一信令中,采用A比特所表示的2 A个二进制状态中的任意X个二进制状态表示所述第一定时模式、所述第二定时模式、所述第三定时模式和所述混合定时模式中的任意一种定时模式;其中,A和X为大于或等于1的整数。
(二)基准定时对齐模式
在本公开实施例中,所述基准定时对齐模式为所述定时模式为第二定时模式时的基准定时对齐模式。
在本公开实施例中,可以随意定义基准定时对齐模式,例如,所述基准定时对齐模块包括以下至少之一:第一基准定时对齐模式、第二基准定时对齐模式、混合基准定时对齐模式。
其中,所述第一基准定时对齐模式包括以下至少之一:当所述第一定时模式和所述第二定时模式并行执行时,根据所述第一定时模式的基准定时确定节点间的基准定时;具体的,可以将第一定时模式的基准定时作为节点间的基准定时;当所述第三定时模式和所述第二定时模式并行执行时,根据所述第三定时模式的基准定时确定节点间的基准定时;具体的,可以将第三定时模式的基准定时作为节点间的基准定时;
所述第二基准定时对齐模式包括:根据所述第一节点的基准定时和上行接收定时之间的时间差,和所述第二节点的基准定时和下行接收定时之间的时间差确定节点间的基准定时。具体的,如果所述第一节点的基准定时和上行接收定时之间的时间差大于所述第二节点的基准定时和下行接收定时之间的时间差, 则所述第二节点提前第二节点的基准定时;如果所述第一节点的基准定时和上行接收定时之间的时间差小于所述第二节点的基准定时和下行接收定时之间的时间差,则所述第二节点延后所述第二节点的基准定时。
其中,所述混合基准定时对齐模式包括:第1次到第N次基准定时对齐时采用所述第一基准定时对齐模式,第N次基准定时对齐以后采用所述第二基准定时对齐模式;其中,N为大于或等于1的整数。
在本公开实施例中,所述第一节点预定义第二节点的基准定时对齐模式包括:
所述第一节点预定义所述第二节点的基准定时对齐模式为所述第一基准定时对齐模式、所述第二基准定时对齐模式和混合基准定时对齐模式中的任意一种模式。
在本公开实施例中,所述第一节点配置第二节点的基准定时对齐模式包括:
所述第一节点通过第二信令的方式配置所述第二节点的基准定时对齐模式;
或者,所述第一节点通过操作管理维护OAM的方式配置所述第二节点的基准定时对齐模式。
其中,所述第二信令包括无线空口信令,所述无线空口信令包括以下至少之一:高层信令、媒体访问控制MAC层信令、物理层信令。
其中,所述第二信令中,采用B比特所表示的2 B个二进制状态中的任意Y个二进制状态表示所述第一基准定时对齐模式、所述第二基准定时对齐模式和所述混合基准定时对齐模式中的任意一种模式;其中,B和Y为大于或等于1的整数。
在本公开实施例中,所述第一节点配置第二节点的基准定时对齐模式包括:
第一节点直接配置第二节点的基准定时对齐模式;
或者,所述第一节点根据所述第二节点上报的基准定时对齐模式能力配置所述第二节点的基准定时对齐模式。其中,基准定时对齐模式能力指的是第二节点是否支持哪种基准定时对齐模式。
其中,所述第一节点根据第二节点上报的基准定时对齐模式能力配置第二节点的基准定时对齐模式包括以下至少之一:
当所述第二节点上报的基准定时对齐模式能力为所述第二节点不支持第一定时模式或第三定时模式能力时,所述第一节点配置所述第二节点的基准定时对齐模式为所述第二基准定时对齐模式;
当所述第二节点上报的基准定时对齐模式能力为所述第二节点支持第一定时模式或第三定时模式时,所述第一节点配置所述第二节点的基准定时对齐模式为所述第一基准定时对齐模式。
(三)TA配置模式
在本公开实施例中,所述TA配置模式为所述定时模式为第三定时模式时的TA配置模式。
在本公开实施例中,可以随意定义TA配置模式,例如,所述TA配置模式包括以下至少之一:第一TA配置模式、第二TA配置模式、第三TA配置模式、兼容模式。
其中,所述第一TA配置模式包括:配置绝对负TA;
所述第二TA配置模式包括:配置相对负TA;
所述第三TA配置模式包括:符号级对齐对应的正TA。
其中,所述兼容模式包括:所述第一节点配置正TA,所述第一节点采用非时隙(non-slot)(或mini-slot)方式调度所述第二节点。
在本公开实施例中,所述第一节点预定义TA配置模式包括:
所述第一节点预定义所述TA配置模式为所述第一TA配置模式、所述第二TA配置模式、所述第三TA配置模式和所述兼容模式中的任意一种模式。
在本公开实施例中,所述第一节点配置第二节点的TA配置模式包括:
所述第一节点通过第三信令的方式配置所述第二节点的TA配置模式;
或者,所述第一节点通过操作管理维护OAM的方式配置所述第二节点的TA配置模式。
其中,所述第三信令包括无线空口信令,所述无线空口信令包括以下至少之一:高层信令、媒体访问控制MAC层信令、物理层信令。
其中,所述第三信令中,采用C比特所表示的2 C个二进制状态中的任意Z 个二进制状态表示所述第一TA配置模式、所述第二TA配置模式、所述第三TA配置模式和所述兼容模式中的任意一种模式;其中,C和Z为大于或等于1的整数。
在本公开实施例中,所述第一节点配置第二节点的TA配置模式包括:
第一节点直接配置第二节点的TA配置模式;
或者,所述第一节点根据所述第二节点上报的TA配置模式能力配置所述第二节点的TA配置模式。其中,TA配置模式能力指的是第二节点是否具有负TA能力。
在本公开实施例中,所述第一节点根据第二节点上报的TA配置模式能力配置第二节点的TA配置模式包括以下至少之一:
当所述第二节点上报的TA配置模式能力为所述第二节点不具有负TA能力时,所述第一节点配置所述第二节点的TA配置模式为所述第三TA配置模式或兼容模式;
当所述第二节点上报的TA配置模式能力为所述第二节点具有负TA能力时,所述第一节点配置所述第二节点的TA配置模式为所述第一TA配置模式或所述第二TA配置模式。
(四)TA值
在本公开实施例中,当TA值为绝对TA值时,所述TA值大于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时提前,所述TA值小于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时延后,所述TA值等于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时对齐。
在本公开实施例中,TA值的确定包括以下至少之一:
当所述定时模式为第一定时模式时,第0跳链路的TA值属性为等于0;
当所述定时模式为第一定时模式时,第i跳链路的TA值属性为大于或等于0,且所述第i跳链路的TA值为2PD(i);其中,PD(i)为所述第i跳链路的传播时延;
当所述定时模式为第二定时模式时,第0跳链路的TA值属性为等于0;
当所述定时模式为第二定时模式时,第i跳链路的TA值属性为大于或等于0,且所述第i跳链路的TA值为PD(i);其中,PD(i)为所述第i跳链路的传播时延;
当所述定时模式为第三定时模式时,第0跳链路的TA值属性为等于0;
当所述定时模式为第三定时模式时,第1跳链路的TA值属性为大于或等于0,且所述第i跳链路的TA值为2PD(i);其中,PD(i)为所述第i跳链路的传播时延;
当所述定时模式为第三定时模式,且PD(i-1)小于或等于2PD(i)时,第i跳链路的TA值属性为大于或等于0,且所述第i跳链路的TA值为2PD(i)-PD(i-1);其中,PD(i)为所述第i跳链路的传播时延;
当所述定时模式为第三定时模式,且PD(i-1)大于或等于2PD(i)时,第i跳链路的TA值属性为小于或等于0,且所述第i跳链路的TA值为-(PD(i-1)-2PD(i))。
在本公开实施例中,所述第一节点配置第二节点的TA值包括:
所述第一节点通过指示信息比特配置所述第二节点的TA值。
其中,所述指示信息比特包括(D+1)比特,其中,D比特表示所述TA值的数值,1比特表示所述TA值属性;其中,D为大于或等于1的整数。
在本公开实施例中,包括以下至少之一:
当所述TA值对应的比特区间为第一子区间时,表示所述TA值属性为大于或等于0;
当所述TA值对应的比特区间为第二子区间时,表示所述TA值属性为小于或等于0;
其中,所述第一子区间和所述第二子区间的并集为时间提前量命令TAC中的TA值区间。
(五)TA值的偏移量
在本公开实施例中,当所述TA值的偏移量为相对于某一特定时刻TA值的偏移量时,(TA+Offset)值大于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时提前,(TA+Offset)值小于零表示所述第二节点的 上行发射定时相对于所述第二节点的下行接收定时延后,(TA+Offset)值等于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时对齐;其中,Offset为所述TA值的偏移量,(TA+Offset)表示所述特定时刻TA值与所述TA值的偏移量的和。
其中,Offset所对应的时间颗粒度与所述TA值所对应的时间颗粒度相同;
或者,Offset所对应的时间颗粒度与所述TA值所对应的时间颗粒度不同。
其中,所述TA值的偏移量为相对于最新TA值的偏移量;
在本公开实施例中,所述偏移量独立于随机接入响应RAR中的时间提前量命令TAC,或独立于媒体访问控制单元MAC CE中的TAC;或者,所述偏移量与所述RAR中的TAC或所述MAC CE中的TAC存在嵌套关系。
其中,所述偏移量与RAR中的TAC或MAC CE中的TAC存在嵌套关系包括:
将所述RAR中的TAC或MAC CE中的TAC中的TA值区间扩展成第三子区间和第四子区间的并集;其中,所述第三子区间表示所述RAR中的TAC或MAC CE中的TAC中的TA值,所述第四子区间表示所述TA值的偏移量。
在本公开实施例中,所述第一节点配置第二节点的TA值的偏移量包括:
所述第一节点通过第四信令的方式配置所述第二节点的TA值的偏移量;其中,第四信令包括无线空口信令,所述无线空口信令包括如下至少之一:高层信令、媒体访问控制MAC层信令、物理层信令;
或者,所述第一节点通过操作管理维护OAM的方式配置所述第二节点的TA值的偏移量。
(六)OFDM符号数
在本公开实施例中,所述OFDM符号时间长度根据以下任意一个确定:
min(SCS_UL_Tx,SCS_DL_Tx);min(SCS_UL_Rx,SCS_DL_Rx);
其中,SCS_UL_Tx为所述第二节点的上行发射链路对应的子载波间隔,SCS_DL_Tx为所述第二节点的下行发射链路对应的子载波间隔,SCS_UL_Rx为所述第二节点的上行接收链路对应的子载波间隔,SCS_DL_Rx为所述第二节点的下行接收链路对应的子载波间隔。
参见图3,本公开另一个实施例提出了一种定时信息配置方法,包括:
步骤300、第二节点采用预定义方式或被配置方式确定定时信息;其中,所述定时信息包括以下至少之一:定时模式、基准定时对齐模式、时间提前TA配置模式、TA值、TA值的偏移量、上行发射链路相对于下行发射链路对齐需要提前或延后偏移的OFDM符号的数目、上行接收链路相对于下行接收链路对齐需要提前或延后偏移的OFDM符号的数目。
在本公开实施例中,定时是指节点进行发射、接收的时刻,对应某个时域符号,或时隙,或子帧,或无线帧,或超帧的边界。
基准定时是指绝对时间,或下行发射定时,或上行接收定时。
其中,绝对时间是指时间为0时刻,或所述绝对时间是指某个时域符号,或时隙、子帧,或无线帧,或超帧的时间索引。
时隙索引是指无线帧包括的若干时隙的标号。
在本公开实施例中,当定时信息包括两个或两个以上时,可以分别配置,也可以同时配置,具体的配置先后顺序本公开实施例不作限定。
下面对上述各个定时信息进行逐一详细说明。
(一)定时模式
在本公开实施例中,可以随意定义一种或多种定时模式,定时模式的种类不用于限定本公开实施例的保护范围。例如,所述定时模式包括以下至少之一:第一定时模式、第二定时模式、第三定时模式、混合定时模式。
其中,所述第一定时模式包括:所有节点的基准定时均对齐到施主节点的基准定时;如图2(a)所示,当基准定时为下行发射定时时,所有节点的下行发射定时均对齐,如图2(a)所示的虚线即为下行发射定时;图中,t1表示第1跳的传播时延(PD,Propagation Delay),t2表示第2跳的PD,t3表示第3跳的PD,t4表示第4跳的PD,t5表示第5跳的PD;
所述第二定时模式包括:所有节点的基准定时均对齐到施主节点的基准定时,且每一个节点的上行发射定时对齐到每一个节点的基准定时;如图2(b)和图2(c)所示,当基准定时为下行发射定时时,所有节点的下行发射定时均对齐,且每一个节点的上行发射定时对齐到节点的下行发射定时,如图2(b) 和图2(c)所示的虚线即为下行发射定时和上行发射定时;图中,t1表示第1跳的传播时延(PD,Propagation Delay),t2表示第2跳的PD,t3表示第3跳的PD,t4表示第4跳的PD,t5表示第5跳的PD;
所述第三定时模式包括:所有节点的基准定时均对齐到施主节点的基准定时,且每一个节点的上行接收定时对齐到每一个节点的下行接收定时;如图2(d)所示,当基准定时为下行发射定时时,所有节点的下行发射定时均对齐,且每一个节点的上行接收定时对齐到节点的下行接收定时,如图2(d)所示的虚线即为下行发射定时;图中,t1表示第1跳的传播时延(PD,Propagation Delay),t2表示第2跳的PD,t3表示第3跳的PD,t4表示第4跳的PD,t5表示第5跳的PD。
其中,所述混合定时模式包括以下至少之一:
时隙索引(slot index)除以M得到的余数i所对应的时隙内第二节点的定时模式为第一定时模式、第二定时模式、第三定时模式中的任意一种模式,且不同余数i所对应的时隙内第二节点的定时模式不同;其中,M为大于或等于2的整数,i为0到(M-1)中的任意一个整数;例如,第一时隙内所述第二节点的定时模式为所述第二定时模式;第二时隙内所述第二节点的定时模式为所述第三定时模式;其中,所述第一时隙的时隙索引除以2得到的余数为第一数值,所述第二时隙的时隙索引除以2得到的余数为第二数值,所述第一数值和所述第二数值取值不同,且所述第一数值和所述第二数值为0和1中的任意一个;又如,第三时隙内所述第二节点的定时模式为所述第一定时模式;第四时隙内所述第二节点的定时模式为所述第二定时模式;第五时隙内所述第二节点的定时模式为所述第三定时模式;其中,所述第三时隙的时隙索引除以3得到的余数为第三数值,所述第四时隙的时隙索引除以3得到的余数为第四数值,所述第五时隙的时隙索引除以3得到的余数为第五数值,所述第三数值、所述第四数值和所述第五数值取值不同,且所述第三数值、所述第四数值和所述第五数值为0,1,2中的任意一个;
同时支持同时发射和同时接收的定时模式,即同一时刻既支持同时发射,又支持同时接收的定时模式。
在本公开一个实施例中,所述第二节点采用预定义方式确定定时模式包括:
所述第二节点预定义定时模式为所述第一定时模式、所述第二定时模式、所述第三定时模式和所述混合定时模式中的任意一种模式。
在本公开另一个实施例中,所述第二节点采用预定义方式确定定时模式包括以下至少之一:
当包含所述第一节点和所述第二节点之间的链路的各跳链路之间采用时分复用方式时,所述第二节点预定义定时模式为所述第一定时模式;
当包含所述第一节点和所述第二节点之间的链路的各跳链路之间采用空分复用方式或频分复用方式,且所述第二节点的上行发射和所述第二节点的下行发射采用同时发射机制时,所述第二节点预定义定时模式为所述第二定时模式;
当包含所述第一节点和所述第二节点之间的链路的各跳链路之间采用空分复用方式或频分复用方式,且所述第二节点的上行接收和所述第二节点的下行接收采用同时接收机制时,所述第二节点预定义定时模式为所述第三定时模式。
在本公开另一个实施例中,所述第二节点采用预定义方式确定定时模式包括以下至少之一:
所述第二节点预定义第一时间资源内定时模式为第一定时模式;
所述第二节点预定义第二时间资源内定时模式为第二定时模式;
所述第二节点预定义第三时间资源内定时模式为第三定时模式。
其中,所述第一时间资源为时隙索引除以3得到的余数为第三数值所对应的时隙;所述第二时间资源为时隙索引除以3得到的余数为第四数值所对应的时隙;所述第三时间资源为时隙索引除以3得到的余数为第五数值所对应的时隙;其中,所述第三数值、所述第四数值和所述第五数值取值不同,且所述第三数值、所述第四数值和所述第五数值为0,1,2中的任意一个。
在本公开实施例中,该方法还包括:所述第二节点上报所述第二节点的定时模式能力。其中,定时模式能力指的是第二节点是否支持哪种定时模式。
在本公开实施例中,所述第二节点采用被配置方式确定定时模式包括:
所述第二节点接收第一信令,根据所述第一信令确定定时模式;
或者,所述第二节点通过操作管理维护OAM的方式确定所述第二节点的定时模式。
其中,所述第一信令包括无线空口信令,所述无线空口信令包括以下至少之一:高层信令、媒体访问控制MAC层信令、物理层信令。
其中,所述第一信令中,采用A比特所表示的2 A个二进制状态中的任意X个二进制状态表示所述第一定时模式、所述第二定时模式、所述第三定时模式和所述混合定时模式中的任意一种定时模式;其中,A和X为大于或等于1的整数。
(二)基准定时对齐模式
在本公开实施例中,所述基准定时对齐模式为所述定时模式为第二定时模式时的基准定时对齐模式。
在本公开实施例中,可以随意定义基准定时对齐模式,例如,所述基准定时对齐模块包括以下至少之一:第一基准定时对齐模式、第二基准定时对齐模式、混合基准定时对齐模式。
其中,所述第一基准定时对齐模式包括以下至少之一:当所述第一定时模式和所述第二定时模式并行执行时,根据所述第一定时模式的基准定时确定节点间的基准定时;具体的,可以将第一定时模式的基准定时作为节点间的基准定时;当所述第三定时模式和所述第二定时模式并行执行时,根据所述第三定时模式的基准定时确定节点间的基准定时;具体的,可以将第三定时模式的基准定时作为节点间的基准定时;
所述第二基准定时对齐模式包括:根据所述第一节点的基准定时和上行接收定时之间的时间差,和所述第二节点的基准定时和下行接收定时之间的时间差确定节点间的基准定时。
其中,所述混合基准定时对齐模式包括:第1次到第N次基准定时对齐时采用所述第一基准定时对齐模式,第N次基准定时对齐以后采用所述第二基准定时对齐模式;其中,N为大于或等于1的整数。
在本公开实施例中,所述第二节点采用预定义方式确定第二节点的基准定时对齐模式包括:
所述第二节点预定义所述第二节点的基准定时对齐模式为所述第一基准定时对齐模式、所述第二基准定时对齐模式和混合基准定时对齐模式中的任意一种模式。
在本公开实施例中,所述第二节点采用被配置方式确定第二节点的基准定时对齐模式包括:
所述第二节点接收第二信令,根据所述第二信令确定所述第二节点的基准定时对齐模式;
或者,所述第二节点通过操作管理维护OAM的方式确定所述第二节点的基准定时对齐模式。
其中,所述第二信令包括无线空口信令,所述无线空口信令包括以下至少之一:高层信令、媒体访问控制MAC层信令、物理层信令。
其中,所述第二信令中,采用B比特所表示的2 B个二进制状态中的任意Y个二进制状态表示所述第一基准定时对齐模式、所述第二基准定时对齐模式和所述混合基准定时对齐模式中的任意一种模式;其中,B和Y为大于或等于1的整数。
在本公开实施例中,该方法还包括:所述第二节点上报所述第二节点的基准定时对齐模式能力。其中,基准定时对齐模式能力指的是第二节点是否支持哪种基准定时对齐模式。
(三)TA配置模式
在本公开实施例中,所述TA配置模式为所述定时模式为第三定时模式时的TA配置模式。
在本公开实施例中,可以随意定义TA配置模式,例如,所述TA配置模式包括以下至少之一:第一TA配置模式、第二TA配置模式、第三TA配置模式、兼容模式。
其中,所述第一TA配置模式包括:配置绝对负TA;
所述第二TA配置模式包括:配置相对负TA;
所述第三TA配置模式包括:符号级对齐对应的正TA。
其中,所述兼容模式包括:所述第一节点配置正TA,所述第一节点采用非时隙方式调度所述第二节点。
在本公开实施例中,所述第一节点预定义TA配置模式包括:
所述第一节点预定义所述TA配置模式为所述第一TA配置模式、所述第二TA配置模式、所述第三TA配置模式和所述兼容模式中的任意一种模式。
在本公开实施例中,所述第二节点采用被配置方式确定第二节点的TA配置模式包括:
所述第二节点接收第三信令,根据所述第三信令确定所述第二节点的TA配置模式;
或者,所述第二节点通过操作管理维护OAM的方式确定所述第二节点的TA配置模式。
其中,所述第三信令包括无线空口信令,所述无线空口信令包括以下至少之一:高层信令、媒体访问控制MAC层信令、物理层信令。
其中,所述第三信令中,采用C比特所表示的2 C个二进制状态中的任意Z个二进制状态表示所述第一TA配置模式、所述第二TA配置模式、所述第三TA配置模式和所述兼容模式中的任意一种模式;其中,C和Z为大于或等于1的整数。
在本公开实施例中,该方法还包括:所述第二节点上报所述第二节点的TA配置模式能力。其中,TA配置模式能力指的是第二节点是否具有负TA能力。
(四)TA值
在本公开实施例中,当TA值为绝对TA值时,所述TA值大于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时提前,所述TA值小于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时延后,所述TA值等于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时对齐。
在本公开实施例中,所述第二节点采用预定义方式确定第二节点的TA值包括:
当所述定时模式为第一定时模式时,第0跳链路的TA值属性为等于0;
当所述定时模式为第一定时模式时,第i跳链路的TA值属性为大于或等于0,且所述第i跳链路的TA值为2PD(i);其中,PD(i)为所述第i跳链路的传播时延;
当所述定时模式为第二定时模式时,第0跳链路的TA值属性为等于0;
当所述定时模式为第二定时模式时,第i跳链路的TA值属性为大于或等于0,且所述第i跳链路的TA值为PD(i);其中,PD(i)为所述第i跳链路的传播时延;
当所述定时模式为第三定时模式时,第0跳链路的TA值属性为等于0;
当所述定时模式为第三定时模式时,第1跳链路的TA值属性为大于或等于0,且所述第i跳链路的TA值为2PD(i);其中,PD(i)为所述第i跳链路的传播时延;
当所述定时模式为第三定时模式,且PD(i-1)小于或等于2PD(i)时,第i跳链路的TA值属性为大于或等于0,且所述第i跳链路的TA值为2PD(i)-PD(i-1);其中,PD(i)为所述第i跳链路的传播时延;
当所述定时模式为第三定时模式,且PD(i-1)大于或等于2PD(i)时,第i跳链路的TA值属性为小于或等于0,且所述第i跳链路的TA值为-(PD(i-1)-2PD(i))。
在本公开实施例中,所述第二节点采用被配置方式确定第二节点的TA值包括:
所述第二节点接收指示信息比特,根据指示信息比特确定所述第二节点的TA值;
或者,所述第二节点根据配置的TA值对应的比特区间确定所述TA值属性;
或者,所述第二节点根据该跳链路的传播时延确定所述TA值属性。
其中,所述指示信息比特包括(D+1)比特,其中,D比特表示所述TA值的数值,1比特表示所述TA值属性;其中,D为大于或等于1的整数。
其中,所述第二节点根据配置的TA值对应的比特区间确定所述TA值属性包括以下至少之一:
当所述TA值对应的比特区间为第一子区间时,确定所述TA值属性为大于或等于0;
当所述TA值对应的比特区间为第二子区间时,确定所述TA值属性为小于或等于0;
其中,所述第一子区间和所述第二子区间的并集为时间提前量命令TAC中的TA值区间。
(五)TA值的偏移量
在本公开实施例中,当所述TA值的偏移量为相对于某一特定时刻TA值的偏移量时,(TA+Offset)值大于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时提前,(TA+Offset)值小于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时延后,(TA+Offset)值等于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时对齐;其中,Offset为所述TA值的偏移量。
其中,Offset所对应的时间颗粒度与所述TA值所对应的时间颗粒度相同;
或者,Offset所对应的时间颗粒度与所述TA值所对应的时间颗粒度不同。
其中,所述TA值的偏移量为相对于最新TA值的偏移量;
在本公开实施例中,所述偏移量独立于随机接入响应RAR中的时间提前量命令TAC,或独立于媒体访问控制单元MAC CE中的TAC;或者,所述偏移量与所述RAR中的TAC或所述MAC CE中的TAC存在嵌套关系。
其中,所述偏移量与RAR中的TAC或MAC CE中的TAC存在嵌套关系包括:
将所述RAR中的TAC或MAC CE中的TAC中的TA值区间扩展成第三子区间和第四子区间的并集;其中,所述第三子区间表示所述RAR中的TAC或MAC CE中的TAC中的TA值,所述第四子区间表示所述TA值的偏移量。
在本公开实施例中,所述第二节点采用被配置方式确定第二节点的TA值的偏移量包括:
所述第二节点接收第四信令,根据第四信令确定所述第二节点的TA值的偏移量;其中,第四信令包括无线空口信令,所述无线空口信令包括如下至少之一:高层信令、媒体访问控制MAC层信令、物理层信令;
或者,所述第二节点通过操作管理维护OAM的方式确定所述第二节点的TA值的偏移量。
(六)OFDM符号数
在本公开实施例中,所述OFDM符号时间长度根据以下任意一个确定:
min(SCS_UL_Tx,SCS_DL_Tx);min(SCS_UL_Rx,SCS_DL_Rx);
其中,SCS_UL_Tx为所述第二节点的上行发射链路对应的子载波间隔,SCS_DL_Tx为所述第二节点的下行发射链路对应的子载波间隔,SCS_UL_Rx为所述第二节点的上行接收链路对应的子载波间隔,SCS_DL_Rx为所述第二节点的下行接收链路对应的子载波间隔。
在本公开实施例中,节点包括但不限于基站,或中继节点,或用户设备。
下面列举具体例子对本公开实施例的方法进行说明,所列举的例子不用于限定本公开实施例的保护范围。
示例1:定时模式确定
本示例中,如图4所示,N1表示第一节点,N2表示第二节点,N3表示第三节点,N4表示第四节点;UE1表示N1覆盖下的UE,UE2表示N2覆盖下的UE,UE3表示N3覆盖下的UE,UE4表示N4覆盖下的UE。其中,N2可看做是N1的子节点,N1可看做是N2的父节点;具体的,N1可看做是N2的源父节点,N4可看做是N2的目标父节点。
本示例中定义了四种定时模式,分别为第一定时模式、第二定时模式、第三定时模式和混合定时模式,下面分别介绍这四种定时模式的特征。
所述第一定时模式包括:所有节点的基准定时均对齐到施主节点的基准定时;如图2(a)所示,当基准定时为下行发射定时时,所有节点的下行发射定时均对齐,如图2(a)所示的虚线即为下行发射定时;图中,t1表示第1跳的传播时延(PD,Propagation Delay),t2表示第2跳的PD,t3表示第3跳的PD,t4表示第4跳的PD,t5表示第5跳的PD;
所述第二定时模式包括:所有节点的基准定时均对齐到施主节点的基准定时,且每一个节点的上行发射定时对齐到每一个节点的基准定时;如图2(b)和图2(c)所示,当基准定时为下行发射定时时,所有节点的下行发射定时均对齐,且每一个节点的上行发射定时对齐到节点的下行发射定时,如图2(b)和图2(c)所示的虚线即为下行发射定时和上行发射定时;图中,t1表示第1跳的传播时延(PD,Propagation Delay),t2表示第2跳的PD,t3表示第3跳的PD,t4表示第4跳的PD,t5表示第5跳的PD;
所述第三定时模式包括:所有节点的基准定时均对齐到施主节点的基准定时,且每一个节点的上行接收定时对齐到每一个节点的下行接收定时;如图2(d)所示,当基准定时为下行发射定时时,所有节点的下行发射定时均对齐,且每一个节点的上行接收定时对齐到节点的下行接收定时,如图2(d)所示的虚线即为下行发射定时;图中,t1表示第1跳的传播时延(PD,Propagation Delay),t2表示第2跳的PD,t3表示第3跳的PD,t4表示第4跳的PD,t5表示第5跳的PD。
所述混合定时模式包括以下至少之一:
时隙索引(slot index)除以M得到的余数i所对应的时隙内第二节点的定时模式为第一定时模式、第二定时模式、第三定时模式中的任意一种模式,且不同余数i所对应的时隙内第二节点的定时模式不同;其中,M为大于或等于2的整数,i为0到(M-1)中的任意一个整数;例如,第一时隙内所述第二节点的定时模式为所述第二定时模式;第二时隙内所述第二节点的定时模式为所述第三定时模式;其中,所述第一时隙的时隙索引除以2得到的余数为第一数值,所述第二时隙的时隙索引除以2得到的余数为第二数值,所述第一数值和所述第二数值取值不同,且所述第一数值和所述第二数值为0和1中的任意一个;又如,第三时隙内所述第二节点的定时模式为所述第一定时模式;第四时隙内所述第二节点的定时模式为所述第二定时模式;第五时隙内所述第二节点的定时模式为所述第三定时模式;其中,所述第三时隙的时隙索引除以3得到的余数为第三数值,所述第四时隙的时隙索引除以3得到的余数为第四数值,所述第五时隙的时隙索引除以3得到的余数为第五数值,所述第三数值、所述第四数值和所述第五数值取值不同,且所述第三数值、所述第四数值和所述第五数值为0,1,2中的任意一个;
同时支持同时发射和同时接收的定时模式,也就是说在同一时刻支持同时发射和同时接收的定时模式。
示例1子例1:预定义定时模式
预定义定时模式为第一定时模式、第二定时模式、第三定时模式和混合定时模式中的任意一种模式。
例如,N1和N2预定义定时模式为第一定时模式;或,
N1和N2预定义定时模式为第二定时模式;或,
N1和N2预定义定时模式为第三定时模式。
示例1子例2:根据复用方式预定义定时模式
根据包含所述第一节点和所述第二节点之间的链路的各跳链路之间所采用的复用方式预定义定时模式为第一定时模式、第二定时模式、第三定时模式中的任意一种模式。
例如,N1和N2之间的链路和其他的链路各跳链路之间采用时分复用,N1和N2预定义定时模式为第一定时模式;
各跳链路之间采用空分复用或采用频分复用,且N2的上行发射和N2的下行发射采用同时发射机制,N1和N2预定义定时模式为第二定时模式;
各跳链路之间采用空分复用或采用频分复用,即N2的上行接收和N2的下行接收采用同时接收机制,N1和N2预定义定时模式为第三定时模式。
示例1子例3:在时间资源范围内预定义定时模式
预定义第一时间资源、第二时间资源、第三时间资源范围内定时模式分别为第一定时模式、第二定时模式、第三定时模式中的任意一种模式。
例如,N1和N2在mod(slot index,3)=0对应的时隙内预定义定时模式为第一定时模式;N1和N2在mod(slot index,3)=1对应的时隙内预定义定时模式为第二定时模式;N1和N2在mod(slot index,3)=2对应的时隙内预定义定时模式为第三定时模式。
示例1子例4:配置定时模式
N1配置第一信令给N2,N2接收并根据第一信令确定定时模式。第一信令通过无线空口信令的方式配置给N2,或通过操作管理维护(OAM,Operation Administration and Maintenance)的方式配置给N2,其中,无线空口信令的方式包括如下至少之一:高层信令、MAC层信令、物理层信令。
假设第一信令对应A比特,其中2 A(2的A次幂)个二进制状态中任意X个二进制状态分别表示第一定时模式、第二定时模式、第三定时模式和混合定时模式中的一种或多种定时模式。
例如A=2,对应的4个二进制状态中任意3个二进制状态分别表示第一定 时模式、第二定时模式、第三定时模式。
剩余1个二进制状态表示第二定时模式和第三定时模式的混合定时模式,可选地,在mod(slot index,2)=0对应的时隙内表示第二定时模式,在mod(slot index,2)=1对应的时隙内表示第三定时模式。
或者,剩余1个二进制状态表示第一定时模式和第二定时模式和第三定时模式的混合定时模式,可选地,在mod(slot index,3)=0对应的时隙内表示第一定时模式,在mod(slot index,3)=1对应的时隙内表示第二定时模式,在mod(slot index,3)=2对应的时隙内表示第三定时模式。
或者,剩余1个二进制状态表示在相同时隙内同时支持同时发射和同时接收的定时模式。
示例1子例5:节点上报定时模式能力或上报定时模式相关的能力
N2上报N2的定时模式能力给N1,N1根据N2支持的定时模式能力确定定时模式;
N2上报N2的上行发射和N2的下行发射是否可以同时发射能力给N1,N1根据N2是否支持同时发射能力确定定时模式,可选地,具有同时发射能力采用第二定时模式,不具有同时发射能力采用第一定时模式或第三定时模式;
N2上报N2的上行接收和N2的下行接收是否可以同时接收能力给N1,N1根据N2是否支持同时接收能力确定定时模式,可选地,具有同时接收能力采用第三定时模式,不具有同时接收能力采用第一定时模式或第二定时模式;
N2上报N2的上行发射和N2的下行发射是否可以同时发射能力给N1,N2上报N2的上行接收和N2的下行接收是否可以同时接收能力给N1,N1根据N2是否支持同时发射和同时接收能力确定定时模式,可选地,具有同时发射和同时接收能力采用混合定时模式,不具有同时发射和同时接收能力采用第一定时模式。
示例2:基准定时对齐模式确定
本示例中,如图4所示,N1表示第一节点,N2表示第二节点,N3表示第三节点,N4表示第四节点;UE1表示N1覆盖下的UE,UE2表示N2覆盖下的UE,UE3表示N3覆盖下的UE,UE4表示N4覆盖下的UE。其中,N2可看做 是N1的子节点,N1可看做是N2的父节点;具体的,N1可看做是N2的源父节点,N4可看做是N2的目标父节点。
本示例中定义了三种基准定时对齐模式,分别为第一基准定时对齐模式、第二基准定时对齐模式和混合基准定时对齐模式,下面分别介绍这四种基准定时对齐模式的特征。
其中,所述第一基准定时对齐模式包括以下至少之一:当所述第一定时模式和所述第二定时模式并行执行时,根据所述第一定时模式的基准定时确定节点间的基准定时;具体的,可以将第一定时模式的基准定时作为节点间的基准定时;当所述第三定时模式和所述第二定时模式并行执行时,根据所述第三定时模式的基准定时确定节点间的基准定时;具体的,可以将第三定时模式的基准定时作为节点间的基准定时;
所述第二基准定时对齐模式包括:根据所述第一节点的基准定时和上行接收定时之间的时间差,和所述第二节点的基准定时和下行接收定时之间的时间差确定节点间的基准定时。
其中,所述混合基准定时对齐模式包括:第1次到第N次基准定时对齐时采用所述第一基准定时对齐模式,第N次基准定时对齐以后采用所述第二基准定时对齐模式;其中,N为大于或等于1的整数。
示例2子例1:预定义基准定时对齐模式
预定义基准定时对齐模式为第一基准定时对齐模式、第二基准定时对齐模式和混合基准定时对齐模式中的任意一种模式。
例如,N1和N2预定义基准定时对齐模式为第一基准定时对齐模式;或,
N1和N2预定基准定时对齐模式为第二基准定时对齐模式。
示例2子例2:配置基准定时对齐模式
N1配置第二信令给N2,N2接收并根据第二信令确定基准定时对齐模式。第二信令通过无线空口信令的方式配置给N2,或通过OAM的方式配置给N2,其中,无线空口信令包括如下至少之一:高层信令、MAC层信令、物理层信令。
假设第二信令对应B比特,其中2 B(2的B次幂)个二进制状态中任意Y个二进制状态分别表示第一基准定时对齐模式、第二基准定时对齐模式和混合 基准定时对齐模式中的一种或多种基准定时对齐模式。
例如B=1,对应的2个二进制状态分别表示第一基准定时对齐模式、第二基准定时对齐模式。
例如B=2,对应的4个二进制状态中任意2个二进制状态分别表示第一基准定时对齐模式、第二基准定时对齐模式。
剩余其中1个二进制状态表示第一基准定时对齐模式和第二基准定时对齐模式的混合基准定时对齐模式,可选地,第一次基准定时对齐采用第一基准定时对齐模式,第一次基准定时对齐以后采用第二基准定时对齐模式。
示例2子例3:节点上报基准定时对齐模式或上报基准定时对齐模式相关的能力
N2上报N2的基准定时对齐模式能力给N1,N1根据N2支持的基准定时对齐模式能力确定基准定时对齐模式。
例如,N2不具有第一定时模式或第三定时模式能力,确定基准定时对齐模式为第二基准定时对齐模式;N2具有第一定时模式或第三定时模式能力,确定基准定时对齐模式为第一基准定时对齐模式。
示例3:TA配置模式确定
本示例中,如图4所示,N1表示第一节点,N2表示第二节点,N3表示第三节点,N4表示第四节点;UE1表示N1覆盖下的UE,UE2表示N2覆盖下的UE,UE3表示N3覆盖下的UE,UE4表示N4覆盖下的UE。其中,N2可看做是N1的子节点,N1可看做是N2的父节点;具体的,N1可看做是N2的源父节点,N4可看做是N2的目标父节点。
本示例中定义了四种TA配置模式,分别为第一TA配置模式、第二TA配置模式、第三TA配置模式和兼容模式,下面分别介绍这四种TA配置模式的特征。
所述第一TA配置模式包括:配置绝对负TA;
所述第二TA配置模式包括:配置相对负TA;
所述第三TA配置模式包括:符号级对齐对应的正TA。
所述兼容模式包括:所述第一节点配置正TA,所述第一节点采用非时隙方 式调度所述第二节点。
示例3子例1:预定义TA配置模式
预定义TA配置模式为第一TA配置模式、第二TA配置模式、第三TA配置模式和兼容模式中任意一种模式。
例如,N1和N2预定义TA配置模式为第一TA配置模式;或,
N1和N2预定义TA配置模式为第二TA配置模式;或,
N1和N2预定义TA配置模式为第三TA配置模式。
示例3子例2:配置TA配置模式
N1配置第三信令给N2,N2接收并根据第三信令确定TA配置模式。第三信令通过无线空口信令的方式配置给N2,或通过OAM的方式配置给N2,其中无线空口信令的方式包括如下至少之一:高层信令、MAC层信令、物理层信令。
假设第三信令对应C比特,其中2 C(2的C次幂)个二进制状态中任意Z个二进制状态分别表示第一TA配置模式、第二TA配置模式、第三TA配置模式和兼容模式中的一种或多种TA配置模式。
例如C=2,对应的4个二进制状态中任意3个二进制状态分别表示第一TA配置模式、第二TA配置模式、第三TA配置模式。
剩余1个二进制状态表示兼容模式,可选地,N1配置正TA,N1采用非时隙(non-slot)(或称为mini-slot)方式调度N2。
示例3子例3:节点上报TA配置模式能力或上报TA配置模式相关的能力
N2上报N2的TA配置模式能力给N1,N1根据N2支持的TA配置模式能力确定TA配置模式。
例如,N2不具有负TA能力,确定TA配置模式为第三TA配置模式;N2具有负TA能力,确定TA配置模式为第一TA配置模式,或第二TA配置模式。
示例4:绝对负TA(第一TA配置模式)
本示例中,如图4所示,N1表示第一节点,N2表示第二节点,N3表示第三节点,N4表示第四节点;UE1表示N1覆盖下的UE,UE2表示N2覆盖下的UE,UE3表示N3覆盖下的UE,UE4表示N4覆盖下的UE。其中,N2可看做 是N1的子节点,N1可看做是N2的父节点;具体的,N1可看做是N2的源父节点,N4可看做是N2的目标父节点。
N1配置TA值给N2,N2接收并根据TA值确定N2的上行发射定时,其中当TA值大于零表示N2的上行发射定时相对于N2的下行接收定时提前,当TA值小于零表示N2的上行发射定时相对于N2的下行接收定时延后,当TA值等于零表示N2的上行发射定时相对于N2的下行接收定时对齐。其中TA由PD确定,PD(n)表示第(n)跳链路的传播时延,PD(n+1)表示第(n+1)跳链路的传播时延,其中n>=0。
示例4子例1:
N1根据定时模式和/或该跳链路的传播时延确定TA值属性和TA值,N1配置TA值给N2;或者N1和N2均根据定时模式和/或该跳链路的传播时延确定TA值属性和TA值。具体的,根据定时模式和/或该跳链路的传播时延确定TA值属性和TA值包括:
第一定时模式:
第0跳链路的PD(0)=0,TA(0)=0;
第1跳链路的TA值大于或等于0,TA(1)=2*PD(1);
第(n)跳链路的TA值大于或等于0,TA(n)=2*PD(n)。
第二定时模式:
第0跳链路的PD(0)=0,TA(0)=0;
第1跳链路的TA值大于或等于0,TA(1)=PD(1);
第(n)跳链路的TA值大于或等于0,TA(n)=PD(n)。
第三定时模式:
第0跳链路的PD(0)=0,TA(0)=0;
第1跳链路的TA值大于或等于0,TA(1)=2*PD(1);
当PD(n-1)<=2*PD(n)时,第(n)跳链路的TA值大于或等于0,TA(n)=2*PD(n)-PD(n-1);
当PD(n-1)>=2*PD(n)时,第(n)跳链路的TA值小于或等于0, TA(n)=-(PD(n-1)-2*PD(n))。
示例4子例2:配置1个TA,显示方式指示
N1配置1个TA给N2,N2根据指示信息比特确定TA值属性。
假设原有TA值对应D比特,即原来TAC中采用D比特表示TA值;
本示例中增加一个比特表示TA值属性,那么,(D+1)比特中,原来TAC中表示TA值的D比特还用于表示TA值的数值,新增加的1比特表示TA值属性,例如,“0”表示TA值大于或等于零,“1”表示TA值小于或等于零;或者,“1”表示TA值大于或等于零,“0”表示TA值小于或等于零。
或者,原来TAC中表示TA值的D比特中,任意1比特表示TA值属性,例如,“0”表示TA值大于或等于零,“1”表示TA值小于或等于零;或者,“1”表示TA值大于或等于零,“0”表示TA值小于或等于零;剩余(D-1)比特表示TA值的数值。
示例4子例3:配置1个TA,比特区间确定
N1配置1个TA值给N2,N2根据TA值对应的二进制比特区间确定TA值属性。
假设原有TA值区间对应D比特,即原来TAC中采用D比特表示TA值;
其中,D比特所表示的二进制比特区间为{B}={B1}∪{B2},{B}区间中第一子区间{B1}表示TA值大于或等于0,第二子区间{B2}表示TA值小于或等于0。
例如D=3,二进制比特区间{B}={000,001,010,011,100,101,110,111},把{B}分成两个子区间{B1}={000,001,010,011},{B2}={100,101,110,111},其中{B1}表示TA值大于或等于0,{B2}表示TA值小于或等于0。
示例5:相对负TA(Relative negative TA)(第二TA配置模式)
本示例中,如图4所示,N1表示第一节点,N2表示第二节点,N3表示第三节点,N4表示第四节点;UE1表示N1覆盖下的UE,UE2表示N2覆盖下的UE,UE3表示N3覆盖下的UE,UE4表示N4覆盖下的UE。其中,N2可看做是N1的子节点,N1可看做是N2的父节点;具体的,N1可看做是N2的源父节点,N4可看做是N2的目标父节点。
N1配置相对于某一特定时刻TA值的Offset给N2,N2接收并根据TA值和Offset确定N2的上行发射定时,(TA+Offset)值大于零表示N2的上行发射定时可相对于N2的下行接收定时提前,(TA+Offset)值小于零表示N2的上行发射定时可相对于N2的下行接收定时延后,(TA+Offset)值等于零表示N2的上行发射定时可相对于N2的下行接收定时对齐。
其中,Offset所对应的时间颗粒度可与TA所对应的时间颗粒度不同。
其中,Offset通过无线空口信令的方式配置给N2,或通过OAM的方式配置给N2,其中无线空口信令包括如下至少之一:高层信令、MAC层信令、物理层信令。
示例5子例1:独立信令指示
N1配置1个相对于最新TA的Offset给N2,Offset对应专门的信令,即独立于TAC in RAR,或独立于TAC in MAC。
示例5子例2:嵌套TAC指示
N1配置1个相对于最新TA的Offset给N2,Offset与TAC in RAR或TAC in MAC存在嵌套关系。
假设原有TA值区间对应D比特,其中D比特所表示的十进制比特区间为{D1},第一子区间{D1}表示TA值,把{D1}扩展成{D}={D1}∪{D2},第二子区间{D2}表示相对于最新TA的Offset。
例如,D=12,十进制区间{D1}={0,1,2,...,3846},把{D1}扩展成{D}={D1}∪{D2},{D}={0,1,2,...,3846,3847,3848,3849,...7692},其中{D2}={3847,3848,3849,...7692}表示相对于最新TA的Offset。
例如,D=6,十进制区间{D1}={0,1,2,...,63},把{D1}扩展成{D}={D1}∪{D2},{D}={0,1,2,...,63,64,65,66,...127},其中{D2}={64,65,66,...127}表示相对于最新TA的Offset。
示例6:符号级对齐正TA(Symbol alignment for positive TA)(第三TA配置模式)
示例6子例1:同时发射符号对齐
N2的上行发射链路相对于N2的下行发射链路提前或延后偏移若干个 OFDM符号后对齐,偏移的1个OFDM符号时间长度由最小值min(SCS_UL_Tx,SCS_DL_Tx)确定,其中SCS_UL_Tx表示N2的上行发射链路对应的子载波间隔,SCS_DL_Tx表示N2的下行发射链路对应的子载波间隔,其中偏移OFDM符号的数目采用预定义或配置的方式确定。
示例6子例2:同时接收符号对齐
N2的上行接收链路相对于N2的下行接收链路提前或延后偏移若干个OFDM符号后对齐,偏移的1个OFDM符号时间长度由最小值min(SCS_UL_Rx,SCS_DL_Rx)确定,其中SCS_UL_Rx表示N2的上行接收链路对应的子载波间隔,SCS_DL_Rx表示N2的下行接收链路对应的子载波间隔,其中偏移OFDM符号的数目采用预定义或配置的方式确定。
参见图5,本公开另一个实施例提出了一种定时信息配置装置(如第一节点),包括:
配置模块501,用于预定义或配置第二节点的定时信息;其中,所述定时信息包括以下至少之一:定时模式、基准定时对齐模式、时间提前TA配置模式、TA值、TA值的偏移量、上行发射链路相对于下行发射链路对齐需要提前或延后偏移的OFDM符号的数目、上行接收链路相对于下行接收链路对齐需要提前或延后偏移的OFDM符号的数目。
在本公开实施例中,所述定时模式包括以下至少之一:第一定时模式、第二定时模式、第三定时模式、混合定时模式。
在本公开实施例中,所述第一定时模式包括:所有节点的基准定时均对齐到施主节点的基准定时;
所述第二定时模式包括:所有节点的基准定时均对齐到施主节点的基准定时,且每一个节点的上行发射定时对齐到每一个节点的基准定时;
所述第三定时模式包括:所有节点的基准定时均对齐到施主节点的基准定时,且每一个节点的上行接收定时对齐到每一个节点的下行接收定时。
在本公开实施例中,所述混合定时模式包括以下至少之一:
第一时隙内所述第二节点的定时模式为所述第二定时模式;第二时隙内所述第二节点的定时模式为所述第三定时模式;其中,所述第一时隙的时隙索引 除以2得到的余数为第一数值,所述第二时隙的时隙索引除以2得到的余数为第二数值,所述第一数值和所述第二数值取值不同,且所述第一数值和所述第二数值为0和1中的任意一个;
第三时隙内所述第二节点的定时模式为所述第一定时模式;第四时隙内所述第二节点的定时模式为所述第二定时模式;第五时隙内所述第二节点的定时模式为所述第三定时模式;其中,所述第三时隙的时隙索引除以3得到的余数为第三数值,所述第四时隙的时隙索引除以3得到的余数为第四数值,所述第五时隙的时隙索引除以3得到的余数为第五数值,所述第三数值、所述第四数值和所述第五数值取值不同,且所述第三数值、所述第四数值和所述第五数值为0,1,2中的任意一个;
同时支持同时发射和同时接收的定时模式。
在本公开实施例中,配置模块501具体用于采用以下方式实现预定义所述第二节点的定时模式:
预定义所述第二节点的定时模式为所述第一定时模式、所述第二定时模式、所述第三定时模式和所述混合定时模式中的任意一种模式。
在本公开实施例中,配置模块501具体用于采用以下至少之一方式实现预定义所述第二节点的定时模式:
当包含所述第一节点和所述第二节点之间的链路的各跳链路之间采用时分复用方式时,预定义所述第二节点的定时模式为所述第一定时模式;
当包含所述第一节点和所述第二节点之间的链路的各跳链路之间采用空分复用方式或频分复用方式,且所述第二节点的上行发射和所述第二节点的下行发射采用同时发射机制时,预定义所述第二节点的定时模式为所述第二定时模式;
当包含所述第一节点和所述第二节点之间的链路的各跳链路之间采用空分复用方式或频分复用方式,且所述第二节点的上行接收和所述第二节点的下行接收采用同时接收机制时,预定义所述第二节点的定时模式为所述第三定时模式。
在本公开实施例中,配置模块501具体用于采用以下至少之一方式实现预定义第二节点的定时模式:
预定义第一时间资源内所述第二节点的定时模式为第一定时模式;
预定义第二时间资源内所述第二节点的定时模式为第二定时模式;
预定义第三时间资源内所述第二节点的定时模式为第三定时模式。
在本公开实施例中,所述第一时间资源为时隙索引除以3得到的余数为第三数值所对应的时隙;
所述第二时间资源为时隙索引除以3得到的余数为第四数值所对应的时隙;
所述第三时间资源为时隙索引除以3得到的余数为第五数值所对应的时隙;
其中,所述第三数值、所述第四数值和所述第五数值取值不同,且所述第三数值、所述第四数值和所述第五数值为0,1,2中的任意一个。
在本公开实施例中,配置模块501具体用于采用以下方式实现配置第二节点的定时模式:
根据所述第二节点上报的定时模式能力配置所述第二节点的定时模式。
在本公开实施例中,配置模块501具体用于采用以下至少之一方式实现根据第二节点上报的定时模式能力配置第二节点的定时模式:
当所述第二节点上报的定时模式能力为所述第二节点具有第一能力时,配置所述第二节点的定时模式为所述第二定时模式;其中,所述第一能力包括以下任意一个:所述第二节点支持所述第二定时模式;所述第二节点具有上行发射和下行发射同时发射能力;
当所述第二节点上报的定时模式能力为所述第二节点不具有所述第一能力时,配置所述第二节点的定时模式为所述第一定时模式或所述第三定时模式;
当所述第二节点上报的定时模式能力为所述第二节点具有第二能力时,配置所述第二节点的定时模式为所述第三定时模式;其中,所述第二能力包括以下任意一个:所述第二节点支持所述第三定时模式;所述第二节点具有上行接收和下行接收同时接收能力;
当所述第二节点上报的定时模式能力为所述第二节点不具有所述第二能力时,配置所述第二节点的定时模式为所述第一定时模式或所述第二定时模式;
当所述第二节点上报的定时模式能力为所述第二节点具有第三能力时,配 置所述第二节点的定时模式为混合定时模式;其中,所述第三能力包括以下任意一个:所述第二节点支持所述混合定时模式;所述第二节点支持上行发射和下行发射同时发射,以及上行接收和下行接收同时接收的定时模式;
当所述第二节点上报的定时模式能力为所述第二节点不具有所述第三能力时,配置所述第二节点的定时模式为所述第一定时模式。
在本公开实施例中,配置模块501具体用于采用以下方式实现配置第二节点的定时模式:
通过第一信令的方式配置所述第二节点的定时模式;
或者,通过操作管理维护OAM的方式配置所述第二节点的定时模式。
在本公开实施例中,所述第一信令包括无线空口信令,所述无线空口信令包括以下至少之一:高层信令、媒体访问控制MAC层信令、物理层信令。
在本公开实施例中,所述第一信令中,采用A比特所表示的2 A个二进制状态中的任意X个二进制状态表示所述第一定时模式、所述第二定时模式、所述第三定时模式和所述混合定时模式中的任意一种定时模式;其中,A和X为大于或等于1的整数。
在本公开实施例中,所述基准定时对齐模式为所述定时模式为第二定时模式时的基准定时对齐模式。
在本公开实施例中,所述基准定时对齐模式包括以下至少之一:第一基准定时对齐模式、第二基准定时对齐模式、混合基准定时对齐模式。
在本公开实施例中,所述第一基准定时对齐模式包括以下至少之一:当所述第一定时模式和所述第二定时模式并行执行时,根据所述第一定时模式的基准定时确定节点间的基准定时;当所述第三定时模式和所述第二定时模式并行执行时,根据所述第三定时模式的基准定时确定节点间的基准定时;
所述第二基准定时对齐模式包括:根据所述第一节点的基准定时和上行接收定时之间的时间差,和所述第二节点的基准定时和下行接收定时之间的时间差确定节点间的基准定时。
在本公开实施例中,所述混合基准定时对齐模式包括:第1次到第N次基准定时对齐时采用所述第一基准定时对齐模式,第N次基准定时对齐以后采用 所述第二基准定时对齐模式;其中,N为大于或等于1的整数。
在本公开实施例中,配置模块501具体用于采用以下方式实现预定义第二节点的基准定时对齐模式:
预定义所述第二节点的基准定时对齐模式为所述第一基准定时对齐模式、所述第二基准定时对齐模式和混合基准定时对齐模式中的任意一种模式。
在本公开实施例中,配置模块501具体用于采用以下方式实现配置第二节点的基准定时对齐模式:
通过第二信令的方式配置所述第二节点的基准定时对齐模式;
或者,通过操作管理维护OAM的方式配置所述第二节点的基准定时对齐模式。
在本公开实施例中,所述第二信令包括无线空口信令,所述无线空口信令包括以下至少之一:高层信令、媒体访问控制MAC层信令、物理层信令。
在本公开实施例中,所述第二信令中,采用B比特所表示的2 B个二进制状态中的任意Y个二进制状态表示所述第一基准定时对齐模式、所述第二基准定时对齐模式和所述混合基准定时对齐模式中的任意一种模式;其中,B和Y为大于或等于1的整数。
在本公开实施例中,配置模块501具体用于采用以下方式实现配置第二节点的基准定时对齐模式:
根据所述第二节点上报的基准定时对齐模式能力配置所述第二节点的基准定时对齐模式。
在本公开实施例中,配置模块501具体用于采用以下至少之一方式实现根据第二节点上报的基准定时对齐模式能力配置第二节点的基准定时对齐模式:
当所述第二节点上报的基准定时对齐模式能力为所述第二节点不支持第一定时模式或第三定时模式时,配置所述第二节点的基准定时对齐模式为所述第二基准定时对齐模式;
当所述第二节点上报的基准定时对齐模式能力为所述第二节点支持第一定时模式或第三定时模式时,配置所述第二节点的基准定时对齐模式为所述第一基准定时对齐模式。
在本公开实施例中,所述TA配置模式为所述定时模式为第三定时模式时的TA配置模式。
在本公开实施例中,所述TA配置模式包括以下至少之一:第一TA配置模式、第二TA配置模式、第三TA配置模式、兼容模式。
在本公开实施例中,所述第一TA配置模式包括:配置绝对负TA;
所述第二TA配置模式包括:配置相对负TA;
所述第三TA配置模式包括:符号级对齐对应的正TA。
在本公开实施例中,所述兼容模式包括:所述第一节点配置正TA,所述第一节点采用非时隙方式调度所述第二节点。
在本公开实施例中,配置模块501具体用于采用以下方式实现预定义TA配置模式:
预定义所述TA配置模式为所述第一TA配置模式、所述第二TA配置模式、所述第三TA配置模式和所述兼容模式中的任意一种模式。
在本公开实施例中,配置模块501具体用于采用以下方式实现配置第二节点的TA配置模式包括:
通过第三信令的方式配置所述第二节点的TA配置模式;
或者,通过操作管理维护OAM的方式配置所述第二节点的TA配置模式。
在本公开实施例中,所述第三信令包括无线空口信令,所述无线空口信令包括以下至少之一:高层信令、媒体访问控制MAC层信令、物理层信令。
在本公开实施例中,所述第三信令中,采用C比特所表示的2 C个二进制状态中的任意Z个二进制状态表示所述第一TA配置模式、所述第二TA配置模式、所述第三TA配置模式和所述兼容模式中的任意一种模式;其中,C和Z为大于或等于1的整数。
在本公开实施例中,配置模块501具体用于采用以下方式实现配置第二节点的TA配置模式:
根据所述第二节点上报的TA配置模式能力配置所述第二节点的TA配置模式。
在本公开实施例中,配置模块501具体用于采用以下至少之一方式实现根据第二节点上报的TA配置模式能力配置第二节点的TA配置模式:
当所述第二节点上报的TA配置模式能力为所述第二节点不具有负TA能力时,配置所述第二节点的TA配置模式为所述第三TA配置模式或所述兼容模式;
当所述第二节点上报的TA配置模式能力为所述第二节点具有负TA能力时,配置所述第二节点的TA配置模式为所述第一TA配置模式或所述第二TA配置模式。
在本公开实施例中,所述TA值为绝对TA值,所述TA值大于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时提前,所述TA值小于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时延后,所述TA值等于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时对齐。
在本公开实施例中,TA值的确定包括以下至少之一:
当所述定时模式为第一定时模式时,第0跳链路的TA值属性为等于0;
当所述定时模式为第一定时模式时,第i跳链路的TA值属性为大于或等于0,且所述第i跳链路的TA值为2PD(i);其中,PD(i)为所述第i跳链路的传播时延;
当所述定时模式为第二定时模式时,第0跳链路的TA值属性为等于0;
当所述定时模式为第二定时模式时,第i跳链路的TA值属性为大于或等于0,且所述第i跳链路的TA值为PD(i);其中,PD(i)为所述第i跳链路的传播时延;
当所述定时模式为第三定时模式时,第0跳链路的TA值属性为等于0;
当所述定时模式为第三定时模式时,第1跳链路的TA值属性为大于或等于0,且所述第i跳链路的TA值为2PD(i);其中,PD(i)为所述第i跳链路的传播时延;
当所述定时模式为第三定时模式,且PD(i-1)小于或等于2PD(i)时,第i跳链路的TA值属性为大于或等于0,且所述第i跳链路的TA值为2PD(i)-PD(i-1);其中,PD(i)为所述第i跳链路的传播时延;
当所述定时模式为第三定时模式,且PD(i-1)大于或等于2PD(i)时,第i跳链路的TA值属性为小于或等于0,且所述第i跳链路的TA值为-(PD(i-1)-2PD(i))。
在本公开实施例中,配置模块501具体用于采用以下方式实现配置第二节点的TA值包括:通过指示信息比特配置所述第二节点的TA值。
在本公开实施例中,所述指示信息比特包括(D+1)比特,其中,D比特表示所述TA值的数值,1比特表示所述TA值属性;其中,D为大于或等于1的整数。
在本公开实施例中,包括以下至少之一:
当所述TA值对应的比特区间为第一子区间时,表示所述TA值属性为大于或等于0;
当所述TA值对应的比特区间为第二子区间时,表示所述TA值属性为小于或等于0;
其中,所述第一子区间和所述第二子区间的并集为时间提前量命令TAC中的TA值区间。
在本公开实施例中,所述TA值的偏移量为相对于某一特定时刻TA值的偏移量,(TA+Offset)值大于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时提前,(TA+Offset)值小于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时延后,(TA+Offset)值等于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时对齐;其中,Offset为所述TA值的偏移量。
在本公开实施例中,所述Offset所对应的时间颗粒度与所述TA值所对应的时间颗粒度不同。
在本公开实施例中,所述TA值的偏移量为相对于最新TA值的偏移量;
其中,所述偏移量独立于随机接入响应RAR中的时间提前量命令TAC,或独立于媒体访问控制单元MAC CE中的TAC;或者,所述偏移量与所述RAR中的TAC或所述MAC CE中的TAC存在嵌套关系。
在本公开实施例中,所述偏移量与RAR中的TAC或MAC CE中的TAC存 在嵌套关系包括:
将所述RAR中的TAC或MAC CE中的TAC中的TA值区间扩展成第三子区间和第四子区间的并集;其中,所述第三子区间表示所述RAR中的TAC或MAC CE中的TAC中的TA值,所述第四子区间表示所述TA值的偏移量。
在本公开实施例中,配置模块501具体用于采用以下方式实现配置第二节点的TA值的偏移量:
通过第四信令的方式配置所述第二节点的TA值的偏移量;
或者,通过操作管理维护OAM的方式配置所述第二节点的TA值的偏移量。
在本公开实施例中,所述OFDM符号时间长度根据以下任意一个确定:
min(SCS_UL_Tx,SCS_DL_Tx);min(SCS_UL_Rx,SCS_DL_Rx);
其中,SCS_UL_Tx为所述第二节点的上行发射链路对应的子载波间隔,SCS_DL_Tx为所述第二节点的下行发射链路对应的子载波间隔,SCS_UL_Rx为所述第二节点的上行接收链路对应的子载波间隔,SCS_DL_Rx为所述第二节点的下行接收链路对应的子载波间隔。
上述定时信息配置装置的具体实现过程与前述实施例定时信息配置方法的具体实现过程相同,这里不再赘述。
参见图6,本公开另一个实施例提出了一种定时信息配置装置(如第二节点),包括:
确定模块601,用于采用预定义方式或被配置方式确定定时信息;其中,所述定时信息包括以下至少之一:定时模式、基准定时对齐模式、时间提前TA配置模式、TA值、TA值的偏移量、上行发射链路相对于下行发射链路对齐需要提前或延后偏移的OFDM符号的数目、上行接收链路相对于下行接收链路对齐需要提前或延后偏移的OFDM符号的数目。
在本公开实施例中,所述定时模式包括以下至少之一:第一定时模式、第二定时模式、第三定时模式、混合定时模式。
在本公开实施例中,所述第一定时模式包括:所有节点的基准定时均对齐到施主节点的基准定时;
所述第二定时模式包括:所有节点的基准定时均对齐到施主节点的基准定 时,且每一个节点的上行发射定时对齐到每一个节点的基准定时;
所述第三定时模式包括:所有节点的基准定时均对齐到施主节点的基准定时,且每一个节点的上行接收定时对齐到每一个节点的下行接收定时。
在本公开实施例中,所述混合定时模式包括以下至少之一:
第一时隙内所述第二节点的定时模式为所述第二定时模式;第二时隙内所述第二节点的定时模式为所述第三定时模式;其中,所述第一时隙的时隙索引除以2得到的余数为第一数值,所述第二时隙的时隙索引除以2得到的余数为第二数值,所述第一数值和所述第二数值取值不同,且所述第一数值和所述第二数值为0和1中的任意一个;
第三时隙内所述第二节点的定时模式为所述第一定时模式;第四时隙内所述第二节点的定时模式为所述第二定时模式;第五时隙内所述第二节点的定时模式为所述第三定时模式;其中,所述第三时隙的时隙索引除以3得到的余数为第三数值,所述第四时隙的时隙索引除以3得到的余数为第四数值,所述第五时隙的时隙索引除以3得到的余数为第五数值,所述第三数值、所述第四数值和所述第五数值取值不同,且所述第三数值、所述第四数值和所述第五数值为0,1,2中的任意一个;
同时支持同时发射和同时接收的定时模式。
在本公开实施例中,确定模块601具体用于采用以下方式实现采用预定义方式确定定时模式:
预定义定时模式为所述第一定时模式、所述第二定时模式、所述第三定时模式和所述混合定时模式中的任意一种模式。
在本公开实施例中,确定模块601具体用于采用以下至少之一方式实现采用预定义方式确定定时模式:
当包含所述第一节点和所述第二节点之间的链路的各跳链路之间采用时分复用方式时,预定义定时模式为所述第一定时模式;
当包含所述第一节点和所述第二节点之间的链路的各跳链路之间采用空分复用方式或频分复用方式,且所述第二节点的上行发射和所述第二节点的下行发射采用同时发射机制时,预定义定时模式为所述第二定时模式;
当包含所述第一节点和所述第二节点之间的链路的各跳链路之间采用空分复用方式或频分复用方式,且所述第二节点的上行接收和所述第二节点的下行接收采用同时接收机制时,预定义定时模式为所述第三定时模式。
在本公开实施例中,确定模块601具体用于采用以下至少之一方式实现采用预定义方式确定定时模式:
预定义第一时间资源内定时模式为第一定时模式;
预定义第二时间资源内定时模式为第二定时模式;
预定义第三时间资源内定时模式为第三定时模式。
在本公开实施例中,所述第一时间资源为时隙索引除以3得到的余数为第三数值所对应的时隙;
所述第二时间资源为时隙索引除以3得到的余数为第四数值所对应的时隙;
所述第三时间资源为时隙索引除以3得到的余数为第五数值所对应的时隙;
其中,所述第三数值、所述第四数值和所述第五数值取值不同,且所述第三数值、所述第四数值和所述第五数值为0,1,2中的任意一个。
在本公开实施例中,还包括:上报模块602,用于上报所述第二节点的定时模式能力。
在本公开实施例中,确定模块601具体用于采用以下方式实现采用被配置方式确定定时模式:
接收第一信令,根据所述第一信令确定所述第二节点的定时模式;
或者,通过操作管理维护OAM的方式确定定时模式。
在本公开实施例中,所述第一信令包括无线空口信令,所述无线空口信令包括以下至少之一:高层信令、媒体访问控制MAC层信令、物理层信令。
在本公开实施例中,所述第一信令中,采用A比特所表示的2 A个二进制状态中的任意X个二进制状态表示所述第一定时模式、所述第二定时模式、所述第三定时模式和所述混合定时模式中的任意一种定时模式;其中,A和X为大于或等于1的整数。
在本公开实施例中,所述基准定时对齐模式为所述定时模式为第二定时模 式时的基准定时对齐模式。
在本公开实施例中,所述基准定时对齐模块包括以下至少之一:第一基准定时对齐模式、第二基准定时对齐模式、混合基准定时对齐模式。
在本公开实施例中,所述第一基准定时对齐模式包括以下至少之一:当所述第一定时模式和所述第二定时模式并行执行时,根据所述第一定时模式的基准定时确定节点间的基准定时;当所述第三定时模式和所述第二定时模式并行执行时,根据所述第三定时模式的基准定时确定节点间的基准定时;
所述第二基准定时对齐模式包括:根据所述第一节点的基准定时和上行接收定时之间的时间差,和所述第二节点的基准定时和下行接收定时之间的时间差确定节点间的基准定时。
在本公开实施例中,所述混合基准定时对齐模式包括:第1次到第N次基准定时对齐时采用所述第一基准定时对齐模式,第N次基准定时对齐以后采用所述第二基准定时对齐模式;其中,N为大于或等于1的整数。
在本公开实施例中,确定模块601具体用于采用以下方式实现采用预定义方式确定第二节点的基准定时对齐模式:
预定义所述第二节点的基准定时对齐模式为所述第一基准定时对齐模式、所述第二基准定时对齐模式和混合基准定时对齐模式中的任意一种模式。
在本公开实施例中,确定模块601具体用于采用以下方式实现采用被配置方式确定第二节点的基准定时对齐模式:
接收第二信令,根据所述第二信令确定所述第二节点的基准定时对齐模式;
或者,通过操作管理维护OAM的方式确定所述第二节点的基准定时对齐模式。
在本公开实施例中,所述第二信令包括无线空口信令,所述无线空口信令包括以下至少之一:高层信令、媒体访问控制MAC层信令、物理层信令。
在本公开实施例中,所述第二信令中,采用B比特所表示的2 B个二进制状态中的任意Y个二进制状态表示所述第一基准定时对齐模式、所述第二基准定时对齐模式和所述混合基准定时对齐模式中的任意一种模式;其中,B和Y为大于或等于1的整数。
在本公开实施例中,还包括:上报模块602,用于所述第二节点上报所述第二节点的基准定时对齐模式能力。
在本公开实施例中,所述TA配置模式为所述定时模式为第三定时模式时的TA配置模式。
在本公开实施例中,所述TA配置模式包括以下至少之一:第一TA配置模式、第二TA配置模式、第三TA配置模式、兼容模式。
在本公开实施例中,所述第一TA配置模式包括:配置绝对负TA;
所述第二TA配置模式包括:配置相对负TA;
所述第三TA配置模式包括:符号级对齐对应的正TA。
在本公开实施例中,所述兼容模式包括:所述第一节点配置正TA,所述第一节点采用非时隙方式调度所述第二节点。
在本公开实施例中,确定模块601具体用于采用以下方式实现预定义TA配置模式:
预定义所述TA配置模式为所述第一TA配置模式、所述第二TA配置模式、所述第三TA配置模式和所述兼容模式中的任意一种模式。
在本公开实施例中,确定模块601具体用于采用以下方式实现采用被配置方式确定第二节点的TA配置模式:
接收第三信令,根据所述第三信令确定所述第二节点的TA配置模式;
或者,通过操作管理维护OAM的方式确定所述第二节点的TA配置模式。
在本公开实施例中,所述第三信令包括无线空口信令,所述无线空口信令包括以下至少之一:高层信令、媒体访问控制MAC层信令、物理层信令。
在本公开实施例中,所述第三信令中,采用C比特所表示的2 C个二进制状态中的任意Z个二进制状态表示所述第一TA配置模式、所述第二TA配置模式、所述第三TA配置模式和所述兼容模式中的任意一种模式;其中,C和Z为大于或等于1的整数。
在本公开实施例中,还包括:上报模块602,用于所述第二节点上报所述第二节点的TA配置模式能力。
在本公开实施例中,所述TA值为绝对TA值,所述TA值大于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时提前,所述TA值小于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时延后,所述TA值等于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时对齐。
在本公开实施例中,确定模块601具体用于采用以下方式实现采用预定义方式确定第二节点的TA值:
当所述定时模式为第一定时模式时,第0跳链路的TA值属性为等于0;
当所述定时模式为第一定时模式时,第i跳链路的TA值属性为大于或等于0,且所述第i跳链路的TA值为2PD(i);其中,PD(i)为所述第i跳链路的传播时延;
当所述定时模式为第二定时模式时,第0跳链路的TA值属性为等于0;
当所述定时模式为第二定时模式时,第i跳链路的TA值属性为大于或等于0,且所述第i跳链路的TA值为PD(i);其中,PD(i)为所述第i跳链路的传播时延;
当所述定时模式为第三定时模式时,第0跳链路的TA值属性为等于0;
当所述定时模式为第三定时模式时,第1跳链路的TA值属性为大于或等于0,且所述第i跳链路的TA值为2PD(i);其中,PD(i)为所述第i跳链路的传播时延;
当所述定时模式为第三定时模式,且PD(i-1)小于或等于2PD(i)时,第i跳链路的TA值属性为大于或等于0,且所述第i跳链路的TA值为2PD(i)-PD(i-1);其中,PD(i)为所述第i跳链路的传播时延;
当所述定时模式为第三定时模式,且PD(i-1)大于或等于2PD(i)时,第i跳链路的TA值属性为小于或等于0,且所述第i跳链路的TA值为-(PD(i-1)-2PD(i))。
在本公开实施例中,确定模块601具体用于采用以下方式实现采用被配置方式确定第二节点的TA值:
接收指示信息比特,根据指示信息比特确定所述第二节点的TA值;
或者,根据配置的TA值对应的比特区间确定所述TA值属性;
或者,所述第二节点根据定时模式和该跳链路的传播时延确定所述TA值属性。
在本公开实施例中,所述指示信息比特包括(D+1)比特,其中,D比特表示所述TA值的数值,1比特表示所述TA值属性;其中,D为大于或等于1的整数。
在本公开实施例中,确定模块601具体用于采用以下至少之一方式实现根据配置的TA值对应的比特区间确定所述TA值属性:
当所述TA值对应的比特区间为第一子区间时,确定所述TA值属性为大于或等于0;
当所述TA值对应的比特区间为第二子区间时,确定所述TA值属性为小于或等于0;
其中,所述第一子区间和所述第二子区间的并集为时间提前量命令TAC中的TA值区间。
在本公开实施例中,所述TA值的偏移量为相对于某一特定时刻TA值的偏移量,(TA+Offset)值大于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时提前,(TA+Offset)值小于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时延后,(TA+Offset)值等于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时对齐;其中,Offset为所述TA值的偏移量。
在本公开实施例中,所述Offset所对应的时间颗粒度与所述TA值所对应的时间颗粒度不同。
在本公开实施例中,所述TA值的偏移量为相对于最新TA值的偏移量;
其中,所述偏移量独立于随机接入响应RAR中的时间提前量命令TAC,或独立于媒体访问控制单元MAC CE中的TAC;或者,所述偏移量与所述RAR中的TAC或所述MAC CE中的TAC存在嵌套关系。
在本公开实施例中,所述偏移量与RAR中的TAC或MAC CE中的TAC存在嵌套关系包括:
将所述RAR中的TAC或MAC CE中的TAC中的TA值区间扩展成第三子区间和第四子区间的并集;其中,所述第三子区间表示所述RAR中的TAC或MAC CE中的TAC中的TA值,所述第四子区间表示所述TA值的偏移量。
在本公开实施例中,确定模块601具体用于采用以下方式实现采用被配置方式确定第二节点的TA值的偏移量:
接收第四信令,根据第四信令确定所述第二节点的TA值的偏移量;其中,第四信令包括无线空口信令,所述无线空口信令包括如下至少之一:高层信令、媒体访问控制MAC层信令、物理层信令;
或者,通过操作管理维护OAM的方式确定所述第二节点的TA值的偏移量。
在本公开实施例中,所述OFDM符号时间长度根据以下任意一个确定:
min(SCS_UL_Tx,SCS_DL_Tx);min(SCS_UL_Rx,SCS_DL_Rx);
其中,SCS_UL_Tx为所述第二节点的上行发射链路对应的子载波间隔,SCS_DL_Tx为所述第二节点的下行发射链路对应的子载波间隔,SCS_UL_Rx为所述第二节点的上行接收链路对应的子载波间隔,SCS_DL_Rx为所述第二节点的下行接收链路对应的子载波间隔。
上述定时信息配置装置的具体实现过程与前述实施例定时信息配置方法的具体实现过程相同,这里不再赘述。
本公开另一个实施例提出了一种定时信息配置装置,包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令被所述处理器执行时,实现上述任一种定时信息配置方法。
本公开另一个实施例提出了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一种定时信息配置方法的步骤。
参见图7,本公开另一个实施例提出了一种定时信息配置系统,包括:
第一节点701,用于预定义或配置第二节点的定时信息;
第二节点702,用于采用预定义方式或被配置方式确定第二节点的定时信息;
其中,所述定时信息包括以下至少之一:定时模式、基准定时对齐模式、时间提前TA配置模式、TA值、TA值的偏移量、上行发射链路相对于下行发 射链路对齐需要提前或延后偏移的OFDM符号的数目、上行接收链路相对于下行接收链路对齐需要提前或延后偏移的OFDM符号的数目。
在本公开实施例中,所述定时模式包括以下至少之一:第一定时模式、第二定时模式、第三定时模式、混合定时模式。
在本公开实施例中,
所述第一定时模式包括:所有节点的基准定时均对齐到施主节点的基准定时;
所述第二定时模式包括:所有节点的基准定时均对齐到施主节点的基准定时,且每一个节点的上行发射定时对齐到每一个节点的基准定时;
所述第三定时模式包括:所有节点的基准定时均对齐到施主节点的基准定时,且每一个节点的上行接收定时对齐到每一个节点的下行接收定时。
在本公开实施例中,所述混合定时模式包括以下至少之一:
第一时隙内所述第二节点的定时模式为所述第二定时模式;第二时隙内所述第二节点的定时模式为所述第三定时模式;其中,所述第一时隙的时隙索引除以2得到的余数为第一数值,所述第二时隙的时隙索引除以2得到的余数为第二数值,所述第一数值和所述第二数值取值不同,且所述第一数值和所述第二数值为0和1中的任意一个;
第三时隙内所述第二节点的定时模式为所述第一定时模式;第四时隙内所述第二节点的定时模式为所述第二定时模式;第五时隙内所述第二节点的定时模式为所述第三定时模式;其中,所述第三时隙的时隙索引除以3得到的余数为第三数值,所述第四时隙的时隙索引除以3得到的余数为第四数值,所述第五时隙的时隙索引除以3得到的余数为第五数值,所述第三数值、所述第四数值和所述第五数值取值不同,且所述第三数值、所述第四数值和所述第五数值为0,1,2中的任意一个;
同时支持同时发射和同时接收的定时模式。
在本公开实施例中,所述第一节点701具体用于采用以下方式实现预定义所述第二节点的定时模式:
预定义所述第二节点的定时模式为所述第一定时模式、所述第二定时模式、 所述第三定时模式和所述混合定时模式中的任意一种模式;
第二节点702具体用于采用以下方式实现采用预定义方式确定第二节点的定时模式:
预定义所述第二节点的定时模式为所述第一定时模式、所述第二定时模式、所述第三定时模式和所述混合定时模式中的任意一种模式。
在本公开实施例中,所述第一节点701和第二节点702具体用于采用以下至少之一方式实现预定义所述第二节点的定时模式:
当包含所述第一节点和所述第二节点之间的链路的各跳链路之间采用时分复用方式时,预定义所述第二节点的定时模式为所述第一定时模式;
当包含所述第一节点和所述第二节点之间的链路的各跳链路之间采用空分复用方式或频分复用方式,且所述第二节点的上行发射和所述第二节点的下行发射采用同时发射机制时,预定义所述第二节点的定时模式为所述第二定时模式;
当包含所述第一节点和所述第二节点之间的链路的各跳链路之间采用空分复用方式或频分复用方式,且所述第二节点的上行接收和所述第二节点的下行接收采用同时接收机制时,预定义所述第二节点的定时模式为所述第三定时模式。
在本公开实施例中,所述第一节点701和第二节点702具体用于采用以下至少之一方式实现预定义第二节点的定时模式:
预定义第一时间资源内所述第二节点的定时模式为第一定时模式;
预定义第二时间资源内所述第二节点的定时模式为第二定时模式;
预定义第三时间资源内所述第二节点的定时模式为第三定时模式。
在本公开实施例中,所述第一时间资源为时隙索引除以3得到的余数为第三数值所对应的时隙;
所述第二时间资源为时隙索引除以3得到的余数为第四数值所对应的时隙;
所述第三时间资源为时隙索引除以3得到的余数为第五数值所对应的时隙;
其中,所述第三数值、所述第四数值和所述第五数值取值不同,且所述第 三数值、所述第四数值和所述第五数值为0,1,2中的任意一个。
在本公开实施例中,所述第一节点701具体用于采用以下方式实现配置第二节点的定时模式:
所述第一节点根据所述第二节点上报的定时模式能力配置所述第二节点的定时模式;
第二节点702还用于:上报所述第二节点的定时模式能力。
在本公开实施例中,所述第一节点701具体用于采用以下以下至少之一方式实现根据第二节点上报的定时模式能力配置第二节点的定时模式:
当所述第二节点上报的定时模式能力为所述第二节点具有第一能力时,配置所述第二节点的定时模式为所述第二定时模式;其中,所述第一能力包括以下任意一个:所述第二节点支持所述第二定时模式;所述第二节点具有上行发射和下行发射同时发射能力;
当所述第二节点上报的定时模式能力为所述第二节点不具有所述第一能力时,配置所述第二节点的定时模式为所述第一定时模式或所述第三定时模式;
当所述第二节点上报的定时模式能力为所述第二节点具有第二能力时,配置所述第二节点的定时模式为所述第三定时模式;其中,所述第二能力包括以下任意一个:所述第二节点支持所述第三定时模式;所述第二节点具有上行接收和下行接收同时接收能力;
当所述第二节点上报的定时模式能力为所述第二节点不具有所述第二能力时,配置所述第二节点的定时模式为所述第一定时模式或所述第二定时模式;
当所述第二节点上报的定时模式能力为所述第二节点具有第三能力时,配置所述第二节点的定时模式为混合定时模式;其中,所述第三能力包括以下任意一个:所述第二节点支持所述混合定时模式;所述第二节点支持上行发射和下行发射同时发射,以及上行接收和下行接收同时接收的定时模式;
当所述第二节点上报的定时模式能力为所述第二节点不具有所述第三能力时,配置所述第二节点的定时模式为所述第一定时模式。
在本公开实施例中,所述第一节点701具体用于采用以下方式实现配置第二节点的定时模式:
所述第一节点通过第一信令的方式配置所述第二节点的定时模式;
或者,所述第一节点通过操作管理维护OAM的方式配置所述第二节点的定时模式;
第二节点702具体用于采用以下方式实现采用被配置方式确定第二节点的定时模式:
接收第一信令,根据所述第一信令确定所述第二节点的定时模式;
或者,通过操作管理维护OAM的方式确定所述第二节点的定时模式。
在本公开实施例中,所述第一信令包括无线空口信令,所述无线空口信令包括以下至少之一:高层信令、媒体访问控制MAC层信令、物理层信令。
在本公开实施例中,所述第一信令包括无线空口信令,所述无线空口信令包括以下至少之一:高层信令、媒体访问控制MAC层信令、物理层信令。
在本公开实施例中,所述第一信令中,采用A比特所表示的2 A个二进制状态中的任意X个二进制状态表示所述第一定时模式、所述第二定时模式、所述第三定时模式和所述混合定时模式中的任意一种定时模式;其中,A和X为大于或等于1的整数。
在本公开实施例中,所述基准定时对齐模式为所述定时模式为第二定时模式时的基准定时对齐模式。
在本公开实施例中,所述基准定时对齐模式包括以下至少之一:第一基准定时对齐模式、第二基准定时对齐模式、混合基准定时对齐模式。
在本公开实施例中,所述第一基准定时对齐模式包括以下至少之一:当所述第一定时模式和所述第二定时模式并行执行时,根据所述第一定时模式的基准定时确定节点间的基准定时;当所述第三定时模式和所述第二定时模式并行执行时,根据所述第三定时模式的基准定时确定节点间的基准定时;
所述第二基准定时对齐模式包括:根据所述第一节点的基准定时和上行接收定时之间的时间差,和所述第二节点的基准定时和下行接收定时之间的时间差确定节点间的基准定时。
在本公开实施例中,所述混合基准定时对齐模式包括:第1次到第N次基准定时对齐时采用所述第一基准定时对齐模式,第N次基准定时对齐以后采用 所述第二基准定时对齐模式;其中,N为大于或等于1的整数。
在本公开实施例中,所述第一节点701具体用于采用以下方式实现预定义第二节点的基准定时对齐模式:
预定义所述第二节点的基准定时对齐模式为所述第一基准定时对齐模式、所述第二基准定时对齐模式和混合基准定时对齐模式中的任意一种模式;
第二节点702具体用于采用以下方式实现采用预定义方式确定第二节点的基准定时对齐模式:
预定义所述第二节点的基准定时对齐模式为所述第一基准定时对齐模式、所述第二基准定时对齐模式和混合基准定时对齐模式中的任意一种模式。
在本公开实施例中,所述第一节点701具体用于采用以下方式实现配置第二节点的基准定时对齐模式:
通过第二信令的方式配置所述第二节点的基准定时对齐模式;
或者,通过操作管理维护OAM的方式配置所述第二节点的基准定时对齐模式;
第二节点702具体用于采用以下方式实现采用被配置方式确定第二节点的基准定时对齐模式:
接收第二信令,根据所述第二信令确定所述第二节点的基准定时对齐模式;
或者,通过操作管理维护OAM的方式确定所述第二节点的基准定时对齐模式。
在本公开实施例中,所述第二信令包括无线空口信令,所述无线空口信令包括以下至少之一:高层信令、媒体访问控制MAC层信令、物理层信令。
在本公开实施例中,所述第二信令中,采用B比特所表示的2 B个二进制状态中的任意Y个二进制状态表示所述第一基准定时对齐模式、所述第二基准定时对齐模式和所述混合基准定时对齐模式中的任意一种模式;其中,B和Y为大于或等于1的整数。
在本公开实施例中,所述第一节点701具体用于采用以下方式实现配置第二节点的基准定时对齐模式:
所述第一节点根据所述第二节点上报的基准定时对齐模式能力配置所述第二节点的基准定时对齐模式;
第二节点702还用于:上报所述第二节点的基准定时对齐模式能力。
在本公开实施例中,所述第一节点701具体用于采用以下至少之一方式实现根据第二节点上报的基准定时对齐模式能力配置第二节点的基准定时对齐模式:
当所述第二节点上报的基准定时对齐模式能力为所述第二节点不支持第一定时模式或第三定时模式时,配置所述第二节点的基准定时对齐模式为所述第二基准定时对齐模式;
当所述第二节点上报的基准定时对齐模式能力为所述第二节点支持第一定时模式或第三定时模式时,配置所述第二节点的基准定时对齐模式为所述第一基准定时对齐模式。
在本公开实施例中,所述TA配置模式为所述定时模式为第三定时模式时的TA配置模式。
在本公开实施例中,所述TA配置模式包括以下至少之一:第一TA配置模式、第二TA配置模式、第三TA配置模式、兼容模式。
在本公开实施例中,所述第一TA配置模式包括:配置绝对负TA;
所述第二TA配置模式包括:配置相对负TA;
所述第三TA配置模式包括:符号级对齐对应的正TA。
在本公开实施例中,所述兼容模式包括:所述第一节点配置正TA,所述第一节点采用非时隙方式调度所述第二节点。
在本公开实施例中,所述第一节点701和第二节点702具体用于采用以下方式实现预定义TA配置模式:
预定义所述TA配置模式为所述第一TA配置模式、所述第二TA配置模式、所述第三TA配置模式和所述兼容模式中的任意一种模式。
在本公开实施例中,所述第一节点701具体用于采用以下方式实现配置第二节点的TA配置模式:
通过第三信令的方式配置所述第二节点的TA配置模式;
或者,通过操作管理维护OAM的方式配置所述第二节点的TA配置模式;
第二节点702具体用于采用以下方式实现采用被配置方式确定第二节点的TA配置模式:
接收第三信令,根据所述第三信令确定所述第二节点的TA配置模式;
或者,通过操作管理维护OAM的方式确定所述第二节点的TA配置模式。
在本公开实施例中,所述第三信令包括无线空口信令,所述无线空口信令包括以下至少之一:高层信令、媒体访问控制MAC层信令、物理层信令。
在本公开实施例中,所述第三信令中,采用C比特所表示的2 C个二进制状态中的任意Z个二进制状态表示所述第一TA配置模式、所述第二TA配置模式、所述第三TA配置模式和所述兼容模式中的任意一种模式;其中,C和Z为大于或等于1的整数。
在本公开实施例中,所述第一节点701具体用于采用以下方式实现配置第二节点的TA配置模式:
根据所述第二节点上报的TA配置模式能力配置所述第二节点的TA配置模式;
第二节点702还用于:上报所述第二节点的TA配置模式能力。
在本公开实施例中,所述第一节点701具体用于采用以下至少之一方式实现根据第二节点上报的TA配置模式能力配置第二节点的TA配置模式:
当所述第二节点上报的TA配置模式能力为所述第二节点不具有负TA能力时,配置所述第二节点的TA配置模式为所述第三TA配置模式或兼容模式;
当所述第二节点上报的TA配置模式能力为所述第二节点具有负TA能力时,配置所述第二节点的TA配置模式为所述第一TA配置模式或所述第二TA配置模式。
在本公开实施例中,所述TA值为绝对TA值,所述TA值大于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时提前,所述TA值小于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时延后,所述TA值等于零表示所述第二节点的上行发射定时相对于所述第二节点 的下行接收定时对齐。
在本公开实施例中,所述TA值的确定包括以下至少之一:
当所述定时模式为第一定时模式时,第0跳链路的TA值属性为等于0;
当所述定时模式为第一定时模式时,第i跳链路的TA值属性为大于或等于0,且所述第i跳链路的TA值为2PD(i);其中,PD(i)为所述第i跳链路的传播时延;
当所述定时模式为第二定时模式时,第0跳链路的TA值属性为等于0;
当所述定时模式为第二定时模式时,第i跳链路的TA值属性为大于或等于0,且所述第i跳链路的TA值为PD(i);其中,PD(i)为所述第i跳链路的传播时延;
当所述定时模式为第三定时模式时,第0跳链路的TA值属性为等于0;
当所述定时模式为第三定时模式时,第1跳链路的TA值属性为大于或等于0,且所述第i跳链路的TA值为2PD(i);其中,PD(i)为所述第i跳链路的传播时延;
当所述定时模式为第三定时模式,且PD(i-1)小于或等于2PD(i)时,第i跳链路的TA值属性为大于或等于0,且所述第i跳链路的TA值为2PD(i)-PD(i-1);其中,PD(i)为所述第i跳链路的传播时延;
当所述定时模式为第三定时模式,且PD(i-1)大于或等于2PD(i)时,第i跳链路的TA值属性为小于或等于0,且所述第i跳链路的TA值为-(PD(i-1)-2PD(i))。
在本公开实施例中,所述第一节点701具体用于采用以下方式实现配置第二节点的TA值:通过指示信息比特配置所述第二节点的TA值;
第二节点702具体用于采用以下方式实现采用被配置方式确定第二节点的TA值:
接收指示信息比特,根据指示信息比特确定所述第二节点的TA值;
或者,根据配置的TA值对应的比特区间确定所述TA值属性;
或者,所述第二节点根据定时模式和该跳链路的传播时延确定所述TA值属 性。
在本公开实施例中,所述指示信息比特包括(D+1)比特,其中,D比特表示所述TA值的数值,1比特表示所述TA值属性;其中,D为大于或等于1的整数。
在本公开实施例中,第二节点702具体用于采用以下至少之一方式实现根据配置的TA值对应的比特区间确定所述TA值属性:
当所述TA值对应的比特区间为第一子区间时,确定所述TA值属性为大于或等于0;
当所述TA值对应的比特区间为第二子区间时,确定所述TA值属性为小于或等于0;
其中,所述第一子区间和所述第二子区间的并集为时间提前量命令TAC中的TA值区间。
在本公开实施例中,所述TA值的偏移量为相对于某一特定时刻TA值的偏移量,(TA+Offset)值大于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时提前,(TA+Offset)值小于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时延后,(TA+Offset)值等于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时对齐;其中,Offset为所述TA值的偏移量。
在本公开实施例中,所述Offset所对应的时间颗粒度与所述TA值所对应的时间颗粒度不同。
在本公开实施例中,所述TA值的偏移量为相对于最新TA值的偏移量;
其中,所述偏移量独立于随机接入响应RAR中的时间提前量命令TAC,或独立于媒体访问控制单元MAC CE中的TAC;或者,所述偏移量与所述RAR中的TAC或所述MAC CE中的TAC存在嵌套关系。
在本公开实施例中,所述偏移量与RAR中的TAC或MAC CE中的TAC存在嵌套关系包括:
将所述RAR中的TAC或MAC CE中的TAC中的TA值区间扩展成第三子区间和第四子区间的并集;其中,所述第三子区间表示所述RAR中的TAC或 MAC CE中的TAC中的TA值,所述第四子区间表示所述TA值的偏移量。
在本公开实施例中,所述第一节点701具体用于采用以下方式实现配置第二节点的TA值的偏移量:
通过第四信令的方式配置所述第二节点的TA值的偏移量;其中,第四信令包括无线空口信令,所述无线空口信令包括如下至少之一:高层信令、媒体访问控制MAC层信令、物理层信令;
或者,通过操作管理维护OAM的方式配置所述第二节点的TA值的偏移量;
第二节点702具体用于采用以下方式实现采用被配置方式确定第二节点的TA值的偏移量:
接收第四信令,根据第四信令确定所述第二节点的TA值的偏移量;
或者,通过操作管理维护OAM的方式确定所述第二节点的TA值的偏移量。
在本公开实施例中,所述OFDM符号时间长度根据以下任意一个确定:
min(SCS_UL_Tx,SCS_DL_Tx);min(SCS_UL_Rx,SCS_DL_Rx);
其中,SCS_UL_Tx为所述第二节点的上行发射链路对应的子载波间隔,SCS_DL_Tx为所述第二节点的下行发射链路对应的子载波间隔,SCS_UL_Rx为所述第二节点的上行接收链路对应的子载波间隔,SCS_DL_Rx为所述第二节点的下行接收链路对应的子载波间隔。
上述定时信息配置系统的具体实现过程与前述实施例定时信息配置方法的具体实现过程相同,这里不再赘述。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用 于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、电可擦只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、闪存或其他存储器技术、便携式紧凑磁盘只读存储器(Compact Disc Read Only Memory,CD-ROM)、数字多功能盘(Digital Video Disk,DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (78)

  1. 一种定时信息配置方法,包括:
    第一节点预定义或配置第二节点的定时信息;其中,所述定时信息包括以下至少之一:定时模式、基准定时对齐模式、时间提前TA配置模式、TA值、TA值的偏移量、上行发射链路相对于下行发射链路对齐需要提前或延后偏移的正交频分复用OFDM符号的数目、上行接收链路相对于下行接收链路对齐需要提前或延后偏移的OFDM符号的数目。
  2. 根据权利要求1所述的方法,其中,所述定时模式包括以下至少之一:第一定时模式、第二定时模式、第三定时模式、混合定时模式。
  3. 根据权利要求2所述的方法,其中,
    所述第一定时模式包括:所有节点的基准定时均对齐到施主节点的基准定时;
    所述第二定时模式包括:所有节点的基准定时均对齐到施主节点的基准定时,且每一个节点的上行发射定时对齐到每一个节点的基准定时;
    所述第三定时模式包括:所有节点的基准定时均对齐到施主节点的基准定时,且每一个节点的上行接收定时对齐到每一个节点的下行接收定时。
  4. 根据权利要求2所述的方法,其中,所述混合定时模式包括以下至少之一:
    第一时隙内所述第二节点的定时模式为所述第二定时模式;第二时隙内所述第二节点的定时模式为所述第三定时模式;其中,所述第一时隙的时隙索引除以2得到的余数为第一数值,所述第二时隙的时隙索引除以2得到的余数为第二数值,所述第一数值和所述第二数值取值不同,且所述第一数值和所述第二数值为0和1中的任意一个;
    第三时隙内所述第二节点的定时模式为所述第一定时模式;第四时隙内所述第二节点的定时模式为所述第二定时模式;第五时隙内所述第二节点的定时模式为所述第三定时模式;其中,所述第三时隙的时隙索引除以3得到的余数为第三数值,所述第四时隙的时隙索引除以3得到的余数为第四数值,所述第五时隙的时隙索引除以3得到的余数为第五数值,所述第三数值、所述第四数值和所述第五数值取值不同,且所述第三数值、所述第四数值和所述第五数值 为0,1,2中的任意一个;
    同时支持同时发射和同时接收的定时模式。
  5. 根据权利要求2所述的方法,其中,所述第一节点预定义所述第二节点的定时模式包括以下至少之一:
    在包含所述第一节点和所述第二节点之间的链路的各跳链路之间采用时分复用方式的情况下,所述第一节点预定义所述第二节点的定时模式为所述第一定时模式;
    在包含所述第一节点和所述第二节点之间的链路的各跳链路之间采用空分复用方式或频分复用方式,且所述第二节点的上行发射和所述第二节点的下行发射采用同时发射机制的情况下,所述第一节点预定义所述第二节点的定时模式为所述第二定时模式;
    在包含所述第一节点和所述第二节点之间的链路的各跳链路之间采用空分复用方式或频分复用方式,且所述第二节点的上行接收和所述第二节点的下行接收采用同时接收机制的情况下,所述第一节点预定义所述第二节点的定时模式为所述第三定时模式。
  6. 根据权利要求2所述的方法,其中,所述第一节点预定义所述第二节点的定时模式包括以下至少之一:
    所述第一节点预定义第一时间资源内所述第二节点的定时模式为所述第一定时模式;
    所述第一节点预定义第二时间资源内所述第二节点的定时模式为所述第二定时模式;
    所述第一节点预定义第三时间资源内所述第二节点的定时模式为所述第三定时模式。
  7. 根据权利要求6所述的方法,其中,所述第一时间资源为时隙索引除以3得到的余数为第三数值所对应的时隙;
    所述第二时间资源为时隙索引除以3得到的余数为第四数值所对应的时隙;
    所述第三时间资源为时隙索引除以3得到的余数为第五数值所对应的时隙;
    其中,所述第三数值、所述第四数值和所述第五数值取值不同,且所述第 三数值、所述第四数值和所述第五数值为0,1,2中的任意一个。
  8. 根据权利要求2所述的方法,其中,所述第一节点配置所述第二节点的定时模式,包括:
    所述第一节点根据所述第二节点上报的定时模式能力配置所述第二节点的定时模式。
  9. 根据权利要求8所述的方法,其中,所述第一节点根据所述第二节点上报的定时模式能力配置所述第二节点的定时模式包括以下至少之一:
    在所述第二节点上报的定时模式能力为所述第二节点具有第一能力的情况下,所述第一节点配置所述第二节点的定时模式为所述第二定时模式;其中,所述第一能力包括以下任意一个:所述第二节点支持所述第二定时模式;所述第二节点具有上行发射和下行发射的同时发射能力;
    在所述第二节点上报的定时模式能力为所述第二节点不具有所述第一能力的情况下,所述第一节点配置所述第二节点的定时模式为所述第一定时模式或所述第三定时模式;
    在所述第二节点上报的定时模式能力为所述第二节点具有第二能力的情况下,所述第一节点配置所述第二节点的定时模式为所述第三定时模式;其中,所述第二能力包括以下任意一个:所述第二节点支持所述第三定时模式;所述第二节点具有上行接收和下行接收的同时接收能力;
    在所述第二节点上报的定时模式能力为所述第二节点不具有所述第二能力的情况下,所述第一节点配置所述第二节点的定时模式为所述第一定时模式或所述第二定时模式;
    在所述第二节点上报的定时模式能力为所述第二节点具有第三能力的情况下,所述第一节点配置所述第二节点的定时模式为混合定时模式;其中,所述第三能力包括以下任意一个:所述第二节点支持所述混合定时模式;所述第二节点支持上行发射和下行发射同时发射,以及上行接收和下行接收同时接收的定时模式;
    在所述第二节点上报的定时模式能力为所述第二节点不具有所述第三能力的情况下,所述第一节点配置所述第二节点的定时模式为所述第一定时模式。
  10. 根据权利要求1所述的方法,其中,所述第一节点配置所述第二节点的定时模式,包括:
    所述第一节点通过第一信令的方式配置所述第二节点的定时模式;
    或者,所述第一节点通过操作管理维护OAM的方式配置所述第二节点的定时模式。
  11. 根据权利要求10所述的方法,其中,所述第一信令中,采用A比特所表示的2 A个二进制状态中的任意X个二进制状态表示所述第一定时模式、所述第二定时模式、所述第三定时模式和所述混合定时模式中的任意一种定时模式;其中,所述A和所述X为大于或等于1的整数。
  12. 根据权利要求1~11任一项所述的方法,其中,所述基准定时对齐模式为在所述定时模式为第二定时模式的情况下的基准定时对齐模式。
  13. 根据权利要求1~11任一项所述的方法,其中,所述基准定时对齐模式包括以下至少之一:第一基准定时对齐模式、第二基准定时对齐模式、混合基准定时对齐模式。
  14. 根据权利要求13所述的方法,其中,所述第一基准定时对齐模式包括以下至少之一:在第一定时模式和第二定时模式并行执行的情况下,根据所述第一定时模式的基准定时确定节点间的基准定时;在第三定时模式和所述第二定时模式并行执行的情况下,根据所述第三定时模式的基准定时确定节点间的基准定时;
    所述第二基准定时对齐模式包括:根据所述第一节点的基准定时和上行接收定时之间的时间差,和所述第二节点的基准定时和下行接收定时之间的时间差确定节点间的基准定时。
  15. 根据权利要求13所述的方法,其中,所述混合基准定时对齐模式包括:第1次到第N次基准定时对齐采用所述第一基准定时对齐模式,所述第N次基准定时对齐以后采用所述第二基准定时对齐模式;其中,所述N为大于或等于1的整数。
  16. 根据权利要求13所述的方法,其中,所述第一节点配置所述第二节点的基准定时对齐模式,包括:
    所述第一节点通过第二信令的方式配置所述第二节点的基准定时对齐模式;
    或者,所述第一节点通过操作管理维护OAM的方式配置所述第二节点的基准定时对齐模式。
  17. 根据权利要求16所述的方法,其中,所述第二信令中,采用B比特所表示的2 B个二进制状态中的任意Y个二进制状态表示所述第一基准定时对齐模式、所述第二基准定时对齐模式和所述混合基准定时对齐模式中的任意一种模式;其中,所述B和所述Y为大于或等于1的整数。
  18. 根据权利要求13所述的方法,其中,所述第一节点配置所述第二节点的基准定时对齐模式,包括:
    所述第一节点根据所述第二节点上报的基准定时对齐模式能力配置所述第二节点的基准定时对齐模式。
  19. 根据权利要求18所述的方法,其中,所述第一节点根据所述第二节点上报的基准定时对齐模式能力配置所述第二节点的基准定时对齐模式包括以下至少之一:
    在所述第二节点上报的基准定时对齐模式能力为所述第二节点不支持第一定时模式或第三定时模式的情况下,所述第一节点配置所述第二节点的基准定时对齐模式为所述第二基准定时对齐模式;
    在所述第二节点上报的基准定时对齐模式能力为所述第二节点支持所述第一定时模式或所述第三定时模式的情况下,所述第一节点配置所述第二节点的基准定时对齐模式为所述第一基准定时对齐模式。
  20. 根据权利要求1~11任一项所述的方法,其中,所述TA配置模式为在所述定时模式为第三定时模式的情况下的TA配置模式。
  21. 根据权利要求1~11任一项所述的方法,其中,所述TA配置模式包括以下至少之一:第一TA配置模式、第二TA配置模式、第三TA配置模式、兼容模式。
  22. 根据权利要求21所述的方法,其中,所述第一TA配置模式包括:配置绝对负TA;
    所述第二TA配置模式包括:配置相对负TA;
    所述第三TA配置模式包括:符号级对齐对应的正TA。
  23. 根据权利要求21所述的方法,其中,所述兼容模式包括:所述第一节点配置正TA,所述第一节点采用非时隙方式调度所述第二节点。
  24. 根据权利要求21所述的方法,其中,所述第一节点配置所述第二节点的TA配置模式,包括:
    所述第一节点通过第三信令的方式配置所述第二节点的TA配置模式;
    或者,所述第一节点通过操作管理维护OAM的方式配置所述第二节点的TA配置模式。
  25. 根据权利要求24所述的方法,其中,所述第三信令中,采用C比特所表示的2 C个二进制状态中的任意Z个二进制状态表示所述第一TA配置模式、所述第二TA配置模式、所述第三TA配置模式和所述兼容模式中的任意一种模式;其中,所述C和所述Z为大于或等于1的整数。
  26. 根据权利要求21所述的方法,其中,所述第一节点配置所述第二节点的TA配置模式,包括:
    所述第一节点根据所述第二节点上报的TA配置模式能力配置所述第二节点的TA配置模式。
  27. 根据权利要求26所述的方法,其中,所述第一节点根据所述第二节点上报的TA配置模式能力配置所述第二节点的TA配置模式包括以下至少之一:
    在所述第二节点上报的TA配置模式能力为所述第二节点不具有负TA能力的情况下,所述第一节点配置所述第二节点的TA配置模式为所述第三TA配置模式或所述兼容模式;
    在所述第二节点上报的TA配置模式能力为所述第二节点具有负TA能力的情况下,所述第一节点配置所述第二节点的TA配置模式为所述第一TA配置模式或所述第二TA配置模式。
  28. 根据权利要求1~11任一项所述的方法,其中,所述TA值为绝对TA值,所述TA值大于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时提前,所述TA值小于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时延后,所述TA值等于零表示所述第二节点的上行 发射定时相对于所述第二节点的下行接收定时对齐。
  29. 根据权利要求1~11任一项所述的方法,其中,所述TA值的确定包括以下至少之一:
    在所述定时模式为第一定时模式的情况下,第0跳链路的TA值属性为等于0;
    在所述定时模式为第一定时模式的情况下,第i跳链路的TA值属性为大于或等于0,且所述第i跳链路的TA值为2PD(i);其中,所述PD(i)为所述第i跳链路的传播时延,所述i为大于0的正整数;
    在所述定时模式为第二定时模式的情况下,第0跳链路的TA值属性为等于0;
    在所述定时模式为第二定时模式的情况下,第i跳链路的TA值属性为大于或等于0,且所述第i跳链路的TA值为PD(i);其中,所述PD(i)为所述第i跳链路的传播时延,所述i为大于0的正整数;
    在所述定时模式为第三定时模式的情况下,第0跳链路的TA值属性为等于0;
    在所述定时模式为第三定时模式的情况下,第1跳链路的TA值属性为大于或等于0,且所述第i跳链路的TA值为2PD(i);其中,所述PD(i)为所述第i跳链路的传播时延,所述i为大于0的正整数;
    在所述定时模式为第三定时模式,且PD(i-1)小于或等于2PD(i)的情况下,第i跳链路的TA值属性为大于或等于0,且所述第i跳链路的TA值为2PD(i)-PD(i-1);其中,所述PD(i)为所述第i跳链路的传播时延;
    在所述定时模式为第三定时模式,且PD(i-1)大于或等于2PD(i)的情况下,第i跳链路的TA值属性为小于或等于0,且所述第i跳链路的TA值为-(PD(i-1)-2PD(i)),其中,所述i为大于0的正整数,所述PD(i)为所述第i跳链路的传播时延。
  30. 根据权利要求1~11任一项所述的方法,其中,所述第一节点配置所述第二节点的TA值,包括:
    所述第一节点通过指示信息比特配置所述第二节点的TA值。
  31. 根据权利要求30所述的方法,其中,所述指示信息比特包括(D+1)比特,其中,D比特表示所述TA值的数值,1比特表示所述TA值属性;其中,所述D为大于或等于1的整数。
  32. 根据权利要求30所述的方法,其中,所述TA值包括以下至少之一:
    在所述TA值对应的比特区间为第一子区间的情况下,表示所述TA值属性为大于或等于0;
    在所述TA值对应的比特区间为第二子区间的情况下,表示所述TA值属性为小于或等于0;
    其中,所述第一子区间和所述第二子区间的并集为时间提前量命令TAC中的TA值区间。
  33. 根据权利要求1~11任一项所述的方法,其中,所述TA值的偏移量为相对于一个特定时刻TA值的偏移量,所述特定时刻TA值与所述TA值的偏移量的和值大于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时提前,所述特定时刻TA值与所述TA值的偏移量的和值小于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时延后,所述特定时刻TA值与所述TA值的偏移量的和值等于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时对齐。
  34. 根据权利要求33所述的方法,其中,所述TA值的偏移量所对应的时间颗粒度与所述TA值所对应的时间颗粒度不同。
  35. 根据权利要求33所述的方法,其中,所述TA值的偏移量为相对于最新TA值的偏移量;
    其中,所述偏移量独立于随机接入响应RAR中的时间提前量命令TAC,或独立于媒体访问控制单元MAC CE中的TAC;或者,所述偏移量与所述RAR中的TAC或所述MAC CE中的TAC存在嵌套关系。
  36. 根据权利要求35所述的方法,其中,所述偏移量与所述RAR中的TAC或所述MAC CE中的TAC存在嵌套关系,包括:
    将所述RAR中的TAC或所述MAC CE中的TAC中的TA值区间扩展成第三子区间和第四子区间的并集;其中,所述第三子区间表示所述RAR中的TAC 或所述MAC CE中的TAC中的TA值,所述第四子区间表示所述TA值的偏移量。
  37. 根据权利要求1~11任一项所述的方法,其中,所述第一节点配置所述第二节点的TA值的偏移量,包括:
    所述第一节点通过第四信令的方式配置所述第二节点的TA值的偏移量;
    或者,所述第一节点通过操作管理维护OAM的方式配置所述第二节点的TA值的偏移量。
  38. 根据权利要求1~11任一项所述的方法,其中,所述OFDM符号的时间长度根据以下任意一个确定:
    min{SCS_UL_Tx,SCS_DL_Tx};min{SCS_UL_Rx,SCS_DL_Rx};
    其中,所述SCS_UL_Tx为所述第二节点的上行发射链路对应的子载波间隔,所述SCS_DL_Tx为所述第二节点的下行发射链路对应的子载波间隔,所述SCS_UL_Rx为所述第二节点的上行接收链路对应的子载波间隔,所述SCS_DL_Rx为所述第二节点的下行接收链路对应的子载波间隔。
  39. 一种定时信息配置方法,包括:
    第二节点采用预定义方式或被配置方式确定定时信息;其中,所述定时信息包括以下至少之一:定时模式、基准定时对齐模式、时间提前TA配置模式、TA值、TA值的偏移量、上行发射链路相对于下行发射链路对齐需要提前或延后偏移的正交频分复用OFDM符号的数目、上行接收链路相对于下行接收链路对齐需要提前或延后偏移的OFDM符号的数目。
  40. 根据权利要求39所述的方法,其中,所述定时模式包括以下至少之一:第一定时模式、第二定时模式、第三定时模式、混合定时模式。
  41. 根据权利要求40所述的方法,其中,
    所述第一定时模式包括:所有节点的基准定时均对齐到施主节点的基准定时;
    所述第二定时模式包括:所有节点的基准定时均对齐到施主节点的基准定时,且每一个节点的上行发射定时对齐到每一个节点的基准定时;
    所述第三定时模式包括:所有节点的基准定时均对齐到施主节点的基准定 时,且每一个节点的上行接收定时对齐到每一个节点的下行接收定时。
  42. 根据权利要求40所述的方法,其中,所述混合定时模式包括以下至少之一:
    第一时隙内所述第二节点的定时模式为所述第二定时模式;第二时隙内所述第二节点的定时模式为所述第三定时模式;其中,所述第一时隙的时隙索引除以2得到的余数为第一数值,所述第二时隙的时隙索引除以2得到的余数为第二数值,所述第一数值和所述第二数值取值不同,且所述第一数值和所述第二数值为0和1中的任意一个;
    第三时隙内所述第二节点的定时模式为所述第一定时模式;第四时隙内所述第二节点的定时模式为所述第二定时模式;第五时隙内所述第二节点的定时模式为所述第三定时模式;其中,所述第三时隙的时隙索引除以3得到的余数为第三数值,所述第四时隙的时隙索引除以3得到的余数为第四数值,所述第五时隙的时隙索引除以3得到的余数为第五数值,所述第三数值、所述第四数值和所述第五数值取值不同,且所述第三数值、所述第四数值和所述第五数值为0,1,2中的任意一个;
    同时支持同时发射和同时接收的定时模式。
  43. 根据权利要求40所述的方法,其中,所述第二节点采用预定义方式确定定时模式包括以下至少之一:
    在包含所述第一节点和所述第二节点之间的链路的各跳链路之间采用时分复用方式的情况下,所述第二节点预定义所述定时模式为所述第一定时模式;
    在包含所述第一节点和所述第二节点之间的链路的各跳链路之间采用空分复用方式或频分复用方式,且所述第二节点的上行发射和所述第二节点的下行发射采用同时发射机制的情况下,所述第二节点预定义所述定时模式为所述第二定时模式;
    在包含所述第一节点和所述第二节点之间的链路的各跳链路之间采用空分复用方式或频分复用方式,且所述第二节点的上行接收和所述第二节点的下行接收采用同时接收机制的情况下,所述第二节点预定义所述定时模式为所述第三定时模式。
  44. 根据权利要求40所述的方法,其中,所述第二节点采用预定义方式确 定定时模式包括以下至少之一:
    所述第二节点预定义第一时间资源内所述定时模式为所述第一定时模式;
    所述第二节点预定义第二时间资源内所述定时模式为所述第二定时模式;
    所述第二节点预定义第三时间资源内所述定时模式为所述第三定时模式。
  45. 根据权利要求44所述的方法,其中,所述第一时间资源为时隙索引除以3得到的余数为第三数值所对应的时隙;
    所述第二时间资源为时隙索引除以3得到的余数为第四数值所对应的时隙;
    所述第三时间资源为时隙索引除以3得到的余数为第五数值所对应的时隙;
    其中,所述第三数值、所述第四数值和所述第五数值取值不同,且所述第三数值、所述第四数值和所述第五数值为0,1,2中的任意一个。
  46. 根据权利要求40所述的方法,还包括:所述第二节点上报所述第二节点的定时模式能力。
  47. 根据权利要求39所述的方法,其中,所述第二节点采用被配置方式确定定时模式,包括:
    所述第二节点接收第一信令,根据所述第一信令确定所述定时模式;
    或者,所述第二节点通过操作管理维护OAM的方式确定所述定时模式。
  48. 根据权利要求47所述的方法,其中,所述第一信令中,采用A比特所表示的2 A个二进制状态中的任意X个二进制状态表示所述第一定时模式、所述第二定时模式、所述第三定时模式和所述混合定时模式中的任意一种定时模式;其中,所述A和所述X为大于或等于1的整数。
  49. 根据权利要求39~48任一项所述的方法,其中,所述基准定时对齐模式为在所述定时模式为第二定时模式的情况下的基准定时对齐模式。
  50. 根据权利要求39~48任一项所述的方法,其中,所述基准定时对齐模块包括以下至少之一:第一基准定时对齐模式、第二基准定时对齐模式、混合基准定时对齐模式。
  51. 根据权利要求50所述的方法,其中,所述第一基准定时对齐模式包括以下至少之一:在第一定时模式和第二定时模式并行执行的情况下,根据所述 第一定时模式的基准定时确定节点间的基准定时;在第三定时模式和所述第二定时模式并行执行的情况下,根据所述第三定时模式的基准定时确定节点间的基准定时;
    所述第二基准定时对齐模式包括:根据所述第一节点的基准定时和上行接收定时之间的时间差,和所述第二节点的基准定时和下行接收定时之间的时间差确定节点间的基准定时。
  52. 根据权利要求50所述的方法,其中,所述混合基准定时对齐模式包括:第1次到第N次基准定时对齐采用所述第一基准定时对齐模式,所述第N次基准定时对齐以后采用所述第二基准定时对齐模式;其中,所述N为大于或等于1的整数。
  53. 根据权利要求50所述的方法,其中,所述第二节点采用被配置方式确定所述基准定时对齐模式,包括:
    所述第二节点接收第二信令,根据所述第二信令确定所述基准定时对齐模式;
    或者,所述第二节点通过操作管理维护OAM的方式确定所述基准定时对齐模式。
  54. 根据权利要求53所述的方法,其中,所述第二信令中,采用B比特所表示的2 B个二进制状态中的任意Y个二进制状态表示所述第一基准定时对齐模式、所述第二基准定时对齐模式和所述混合基准定时对齐模式中的任意一种模式;其中,所述B和所述Y为大于或等于1的整数。
  55. 根据权利要求39~48任一项所述的方法,还包括:所述第二节点上报所述第二节点的基准定时对齐模式能力。
  56. 根据权利要求39~48任一项所述的方法,其中,所述TA配置模式为在所述定时模式为第三定时模式的情况下的TA配置模式。
  57. 根据权利要求39~48任一项所述的方法,其中,所述TA配置模式包括以下至少之一:第一TA配置模式、第二TA配置模式、第三TA配置模式、兼容模式。
  58. 根据权利要求57所述的方法,其中,所述第一TA配置模式包括:配 置绝对负TA;
    所述第二TA配置模式包括:配置相对负TA;
    所述第三TA配置模式包括:符号级对齐对应的正TA。
  59. 根据权利要求58所述的方法,其中,所述兼容模式包括:所述第一节点配置正TA,所述第一节点采用非时隙方式调度所述第二节点。
  60. 根据权利要求59所述的方法,其中,所述第二节点采用被配置方式确定所述TA配置模式,包括:
    所述第二节点接收第三信令,根据所述第三信令确定所述第二节点的TA配置模式;
    或者,所述第二节点通过操作管理维护OAM的方式确定所述第二节点的TA配置模式。
  61. 根据权利要求60所述的方法,其中,所述第三信令中,采用C比特所表示的2 C个二进制状态中的任意Z个二进制状态表示所述第一TA配置模式、所述第二TA配置模式、所述第三TA配置模式和所述兼容模式中的任意一种模式;其中,所述C和所述Z为大于或等于1的整数。
  62. 根据权利要求39~48任一项所述的方法,还包括:所述第二节点上报所述第二节点的TA配置模式能力。
  63. 根据权利要求39~48任一项所述的方法,其中,所述TA值为绝对TA值,所述TA值大于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时提前,所述TA值小于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时延后,所述TA值等于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时对齐。
  64. 根据权利要求39~48任一项所述的方法,其中,所述TA值的确定包括以下至少之一:
    在所述定时模式为第一定时模式的情况下,第0跳链路的TA值属性为等于0;
    在所述定时模式为第一定时模式的情况下,第i跳链路的TA值属性为大于或等于0,且所述第i跳链路的TA值为2PD(i);其中,所述PD(i)为所述 第i跳链路的传播时延,所述i为大于0的正整数;
    在所述定时模式为第二定时模式的情况下,第0跳链路的TA值属性为等于0;
    在所述定时模式为第二定时模式的情况下,第i跳链路的TA值属性为大于或等于0,且所述第i跳链路的TA值为PD(i);其中,所述PD(i)为所述第i跳链路的传播时延;
    在所述定时模式为第三定时模式的情况下,第0跳链路的TA值属性为等于0;
    在所述定时模式为第三定时模式的情况下,第1跳链路的TA值属性为大于或等于0,且所述第i跳链路的TA值为2PD(i);其中,所述PD(i)为所述第i跳链路的传播时延,所述i为大于0的正整数;
    在所述定时模式为第三定时模式,且PD(i-1)小于或等于2PD(i)的情况下,第i跳链路的TA值属性为大于或等于0,且所述第i跳链路的TA值为2PD(i)-PD(i-1);其中,所述PD(i)为所述第i跳链路的传播时延,所述i大于0;
    在所述定时模式为第三定时模式,且PD(i-1)大于或等于2PD(i)的情况下,第i跳链路的TA值属性为小于或等于0,且所述第i跳链路的TA值为-(PD(i-1)-2PD(i)),其中,所述PD(i)为所述第i跳链路的传播时延,所述i为大于0的正整数。
  65. 根据权利要求39~48任一项所述的方法,其中,所述第二节点采用被配置方式确定所述第二节点的TA值,包括:
    所述第二节点接收指示信息比特,根据所述指示信息比特确定所述第二节点的TA值;
    或者,所述第二节点根据配置的TA值对应的比特区间确定TA值属性;
    或者,所述第二节点根据当前跳链路的传播时延确定所述TA值属性。
  66. 根据权利要求65所述的方法,其中,所述指示信息比特包括(D+1)比特,其中,D比特表示所述TA值的数值,1比特表示所述TA值属性;其中,所述D为大于或等于1的整数。
  67. 根据权利要求65所述的方法,其中,所述第二节点根据配置的TA值对应的比特区间确定所述TA值属性包括以下至少之一:
    在所述TA值对应的比特区间为第一子区间的情况下,确定所述TA值属性为大于或等于0;
    在所述TA值对应的比特区间为第二子区间的情况下,确定所述TA值属性为小于或等于0;
    其中,所述第一子区间和所述第二子区间的并集为时间提前量命令TAC中的TA值区间。
  68. 根据权利要求39~48任一项所述的方法,其中,所述TA值的偏移量为相对于一个特定时刻TA值的偏移量,所述特定时刻TA值与所述TA值的偏移量的和值大于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时提前,所述特定时刻TA值与所述TA值的偏移量的和值小于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时延后,所述特定时刻TA值与所述TA值的偏移量的和值等于零表示所述第二节点的上行发射定时相对于所述第二节点的下行接收定时对齐。
  69. 根据权利要求68所述的方法,其中,所述TA值的偏移量所对应的时间颗粒度与所述TA值所对应的时间颗粒度不同。
  70. 根据权利要求68所述的方法,其中,所述TA值的偏移量为相对于最新TA值的偏移量;
    其中,所述偏移量独立于随机接入响应RAR中的时间提前量命令TAC,或独立于媒体访问控制单元MAC CE中的TAC;或者,所述偏移量与所述RAR中的TAC或所述MAC CE中的TAC存在嵌套关系。
  71. 根据权利要求70所述的方法,其中,所述偏移量与所述RAR中的TAC或所述MAC CE中的TAC存在嵌套关系,包括:
    将所述RAR中的TAC或所述MAC CE中的TAC中的TA值区间扩展成第三子区间和第四子区间的并集;其中,所述第三子区间表示所述RAR中的TAC或所述MAC CE中的TAC中的TA值,所述第四子区间表示所述TA值的偏移量。
  72. 根据权利要求39~48任一项所述的方法,其中,所述第二节点采用被配置方式确定所述TA值的偏移量,包括:
    所述第二节点接收第四信令,根据所述第四信令确定所述TA值的偏移量;
    或者,所述第二节点通过操作管理维护OAM的方式确定所述第二节点的TA值的偏移量。
  73. 根据权利要求39~48任一项所述的方法,其中,所述OFDM符号的时间长度根据以下任意一个确定:
    min{SCS_UL_Tx,SCS_DL_Tx};min{SCS_UL_Rx,SCS_DL_Rx};
    其中,所述SCS_UL_Tx为所述第二节点的上行发射链路对应的子载波间隔,所述SCS_DL_Tx为所述第二节点的下行发射链路对应的子载波间隔,所述SCS_UL_Rx为所述第二节点的上行接收链路对应的子载波间隔,所述SCS_DL_Rx为所述第二节点的下行接收链路对应的子载波间隔。
  74. 一种定时信息配置装置,包括:
    配置模块,设置为预定义或配置第二节点的定时信息;其中,所述定时信息包括以下至少之一:定时模式、基准定时对齐模式、时间提前TA配置模式、TA值、TA值的偏移量、上行发射链路相对于下行发射链路对齐需要提前或延后偏移的正交频分复用OFDM符号的数目、上行接收链路相对于下行接收链路对齐需要提前或延后偏移的OFDM符号的数目。
  75. 一种定时信息配置装置,包括:
    确定模块,设置为采用预定义方式或被配置方式确定第二节点的定时信息;其中,所述定时信息包括以下至少之一:定时模式、基准定时对齐模式、时间提前TA配置模式、TA值、TA值的偏移量、上行发射链路相对于下行发射链路对齐需要提前或延后偏移的正交频分复用OFDM符号的数目、上行接收链路相对于下行接收链路对齐需要提前或延后偏移的OFDM符号的数目。
  76. 一种定时信息配置装置,包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,所述指令被所述处理器执行,实现如权利要求1~73任一项所述的方法。
  77. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机 程序,所述计算机程序被处理器执行实现如权利要求1~73任一项所述的方法。
  78. 一种定时信息配置系统,包括:
    第一节点,设置为预定义或配置第二节点的定时信息;
    第二节点,设置为采用预定义方式或被配置方式确定所述第二节点的定时信息;
    其中,所述定时信息包括以下至少之一:定时模式、基准定时对齐模式、时间提前TA配置模式、TA值、TA值的偏移量、上行发射链路相对于下行发射链路对齐需要提前或延后偏移的正交频分复用OFDM符号的数目、上行接收链路相对于下行接收链路对齐需要提前或延后偏移的OFDM符号的数目。
PCT/CN2019/124440 2018-12-12 2019-12-11 定时信息配置方法、装置、存储介质和系统 WO2020119700A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2021120277A RU2769943C1 (ru) 2018-12-12 2019-12-11 Способ, устройство и система для конфигурации информации синхронизации и носитель данных
EP19895686.4A EP3896903A4 (en) 2018-12-12 2019-12-11 TIME INFORMATION TRANSMISSION METHOD, DEVICE AND SYSTEM, AND STORAGE MEDIUM
KR1020217021721A KR102672745B1 (ko) 2018-12-12 2019-12-11 타이밍 정보 구성 방법, 장치, 저장매체 및 시스템
US17/413,482 US20220070810A1 (en) 2018-12-12 2019-12-11 Timing information configuration method, device and system, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811518172.2 2018-12-12
CN201811518172.2A CN110535677B (zh) 2018-12-12 2018-12-12 一种定时信息配置方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2020119700A1 true WO2020119700A1 (zh) 2020-06-18

Family

ID=68659142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124440 WO2020119700A1 (zh) 2018-12-12 2019-12-11 定时信息配置方法、装置、存储介质和系统

Country Status (6)

Country Link
US (1) US20220070810A1 (zh)
EP (1) EP3896903A4 (zh)
KR (1) KR102672745B1 (zh)
CN (1) CN110535677B (zh)
RU (1) RU2769943C1 (zh)
WO (1) WO2020119700A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110535677B (zh) * 2018-12-12 2023-05-02 中兴通讯股份有限公司 一种定时信息配置方法、装置和系统
US20220132453A1 (en) * 2019-02-13 2022-04-28 Apple Inc. Broadcasting schemes of tdelta information in fifth generation (5g) new radio (nr) integrated access and backhaul (iab) network
WO2021023623A1 (en) * 2019-08-02 2021-02-11 Telefonaktiebolaget Lm Ericsson (Publ) Integrated access and backhaul node resource timing
WO2021093208A1 (en) * 2020-02-14 2021-05-20 Zte Corporation A method for transmitting information for determining time difference information among nodes of a network
CN115413045B (zh) * 2020-02-25 2024-06-04 Oppo广东移动通信有限公司 信息传输方法、终端设备和网络设备
JP2024503850A (ja) * 2021-01-15 2024-01-29 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 伝送タイミング決定方法及び装置
CN114765788A (zh) * 2021-01-15 2022-07-19 华为技术有限公司 一种参数的传输方法和装置
CN114286434A (zh) * 2021-12-16 2022-04-05 中国信息通信研究院 一种全双工iab上行传输方法和设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170093785A (ko) * 2014-12-12 2017-08-16 소니 주식회사 장치
US20170288845A1 (en) * 2016-03-31 2017-10-05 Telefonaktiebolaget Lm Ericsson (Publ) Application of Timing Advance Command in Wireless Communication Device in Enhanced Coverage Mode
CN108289325A (zh) * 2017-01-09 2018-07-17 中兴通讯股份有限公司 上行和下行传输对齐的方法及装置
CN108293236A (zh) * 2015-11-30 2018-07-17 瑞典爱立信有限公司 用于重定义无线通信网络的时间对齐定时器的方法、对应的用户设备以及网络节点
WO2018212526A1 (ko) * 2017-05-14 2018-11-22 엘지전자 주식회사 무선 통신 시스템에서 사이드링크 신호를 송신하는 방법 및 장치
CN110535677A (zh) * 2018-12-12 2019-12-03 中兴通讯股份有限公司 一种定时信息配置方法、装置和系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101267419B (zh) * 2007-03-16 2011-09-21 富士通株式会社 一种用于ofdm符号定时的时间提前量调节方法及装置
CN101682897B (zh) * 2007-06-05 2013-01-02 富士通株式会社 发送控制方法以及移动站间通信的控制方法、无线基站和移动站
US8635347B2 (en) * 2010-01-26 2014-01-21 Ray W. Sanders Apparatus and method for synchronized networks
CN102143586B (zh) * 2010-02-01 2015-06-03 中兴通讯股份有限公司 一种回程链路上行控制信道的处理方法和系统
KR101374832B1 (ko) * 2011-04-13 2014-03-17 울산대학교 산학협력단 기지국, 모바일 노드, 모바일 노드경로 탐색 방법 및 그 시스템
KR101579697B1 (ko) * 2011-07-29 2015-12-22 블랙베리 리미티드 디바이스 내 공존 간섭 회피의 향상
TWI500344B (zh) * 2011-09-30 2015-09-11 Alcatel Lucent A method of configuring the timing of the advance group and / or the time synchronization timer
RU2014149766A (ru) * 2012-05-10 2016-07-10 Телефонактиеболагет Л М Эрикссон (Пабл) Способ и устройство сокращения погрешностей тайминга в восходящей линии связи
US9325480B2 (en) * 2013-07-10 2016-04-26 Google Technology Holdings LLC Methods and device for performing device-to-device communication
EP3175657B1 (en) * 2014-08-01 2019-02-27 Sun Patent Trust Transmission timing control for d2d communication
WO2016138664A1 (en) * 2015-03-05 2016-09-09 Qualcomm Incorporated Coordination between macro cell and small cell to handle interference for flexible duplex system
CN107872417B (zh) * 2016-09-28 2022-03-01 中兴通讯股份有限公司 数据发送、接收方法及装置
WO2018107500A1 (zh) * 2016-12-16 2018-06-21 广东欧珀移动通信有限公司 资源映射的方法和通信设备
CN111989904B (zh) * 2018-04-04 2022-04-05 华为技术有限公司 数据传输方法、终端设备及网络设备
CN112913294A (zh) * 2018-10-25 2021-06-04 苹果公司 Iab网络中定时超前(ta)偏移的信令
US11012964B2 (en) * 2018-11-02 2021-05-18 Nokia Technologies Oy Timing advance control for IAB

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170093785A (ko) * 2014-12-12 2017-08-16 소니 주식회사 장치
CN108293236A (zh) * 2015-11-30 2018-07-17 瑞典爱立信有限公司 用于重定义无线通信网络的时间对齐定时器的方法、对应的用户设备以及网络节点
US20170288845A1 (en) * 2016-03-31 2017-10-05 Telefonaktiebolaget Lm Ericsson (Publ) Application of Timing Advance Command in Wireless Communication Device in Enhanced Coverage Mode
CN108289325A (zh) * 2017-01-09 2018-07-17 中兴通讯股份有限公司 上行和下行传输对齐的方法及装置
WO2018212526A1 (ko) * 2017-05-14 2018-11-22 엘지전자 주식회사 무선 통신 시스템에서 사이드링크 신호를 송신하는 방법 및 장치
CN110535677A (zh) * 2018-12-12 2019-12-03 中兴通讯股份有限公司 一种定时信息配置方法、装置和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3896903A4

Also Published As

Publication number Publication date
KR20210102380A (ko) 2021-08-19
CN110535677A (zh) 2019-12-03
EP3896903A1 (en) 2021-10-20
KR102672745B1 (ko) 2024-06-05
CN110535677B (zh) 2023-05-02
US20220070810A1 (en) 2022-03-03
EP3896903A4 (en) 2022-08-24
RU2769943C1 (ru) 2022-04-11

Similar Documents

Publication Publication Date Title
WO2020119700A1 (zh) 定时信息配置方法、装置、存储介质和系统
US20230024023A1 (en) Apparatus and method for handling bandwidth part configuration for random access channel procedure in wireless communication system
US11765670B2 (en) Method and apparatus for transmission timing, base station, and computer readable storage medium
US9420564B2 (en) Apparatus and method for dynamic communication resource allocation for device to-device communications in a wireless communication system
DK2641342T3 (en) Apparatus and method to reduce interference between frequency of shared duplex and time shared duplex signals in a communication system
US8797955B2 (en) Duplex communication method, terminal scheduling method and system
US10142094B2 (en) Synchronization error reduction in common public radio interface (CPRI) passive optical networks (PONs)
US11638166B2 (en) Route discovery in a telecommunication network
US20130308524A1 (en) Distributed interference management algorithm
US20190200384A1 (en) Signal sending method and apparatus, and resource notification method and apparatus
CN112584518A (zh) 一种资源确定方法及装置
US20240064671A1 (en) Informing in groups of iab mt-du resource misalignment
JP7488368B2 (ja) リソース多重化方法及び装置
CN111107620B (zh) 基准定时的确定方法及装置、存储介质和电子装置
CN103391533A (zh) 载波聚合系统中终端上报多时间提前量能力的方法和装置
WO2023041064A1 (zh) 时间参数确定方法、设备和存储介质
CN112954805B (zh) 一种资源配置方法、上报方法及设备
RU2774976C1 (ru) Способ и устройство для выбора времени передачи, базовая станция и машиночитаемый носитель данных
JP2018191077A (ja) 無線ネットワークシステムおよび通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217021721

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019895686

Country of ref document: EP

Effective date: 20210712