WO2020063958A1 - 信号发送、资源确定方法、装置、终端、基站和存储介质 - Google Patents

信号发送、资源确定方法、装置、终端、基站和存储介质 Download PDF

Info

Publication number
WO2020063958A1
WO2020063958A1 PCT/CN2019/108969 CN2019108969W WO2020063958A1 WO 2020063958 A1 WO2020063958 A1 WO 2020063958A1 CN 2019108969 W CN2019108969 W CN 2019108969W WO 2020063958 A1 WO2020063958 A1 WO 2020063958A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
spatialrelationinfo
resource
value
communication node
Prior art date
Application number
PCT/CN2019/108969
Other languages
English (en)
French (fr)
Inventor
王瑜新
鲁照华
蒋创新
李儒岳
吴昊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020063958A1 publication Critical patent/WO2020063958A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present invention relate to, but are not limited to, the field of network communication, for example, to but not limited to a signal transmission method, a resource determination method, a device, a terminal, a base station, and a storage medium.
  • the Physical Downlink Control Channel (PDCCH) is used to carry Downlink Control Information (DCI), where DCI can include the above , Downlink scheduling information, and uplink power control information.
  • DCI Downlink Control Information
  • the DCI format is divided into DCI formats 0, 1, 1A, 1B, 1C, 1D, 2, 2A, 3, 3A, etc., and later evolved to LTE-A Release 12 (LTE-A version 12) and DCI was added. format 2B, 2C, 2D to support a variety of different applications and transmission modes.
  • high-frequency (30-300GHz) carrier communications based on underutilization have become an important communication to solve future high-speed data communications.
  • the available bandwidth of high-frequency carrier communication is large, which can provide efficient high-speed data communication.
  • a large technical challenge faced by high-frequency carrier communication is relatively low-frequency signals.
  • High-frequency signals have very large fading in space. Although high-frequency signals can cause outdoor fading loss problems in outdoor communications, due to their As the wavelength decreases, more antennas can usually be used, so that beam-based communication can be used to compensate for fading loss in space.
  • hybrid beamforming is preferred, that is, the RF beam and the digital beam form the final beam together.
  • NR New Radio Access Technology
  • a large number of antennas will be configured to form a downlink transmission beam to compensate for the spatial fading of high frequency communication.
  • the second communication node is also the same.
  • a large number of antennas will also be configured to form an uplink transmission beam.
  • the transmission of a measurement reference signal Sounding Reference Signal, referred to as SRS
  • SRS Signal Reference Signal
  • the signal transmission and resource determination method, device, terminal, base station, and storage medium provided by the embodiments of the present invention mainly solve the technical problem that the related art lacks the SRS transmission configuration in the high-frequency communication system.
  • an embodiment of the present invention provides a signal sending method, which includes: determining a configuration of a measurement reference signal SRS of a second communication node; determining a condition for sending the SRS based on the configuration of the SRS; For the sending condition of the SRS, the SRS is sent uplink.
  • An embodiment of the present invention further provides a signal sending device, including: a configuration determining module, configured to determine a configuration of a measurement reference signal SRS of a second communication node; and a sending configuration module, configured to determine a configuration based on the configuration of the SRS.
  • the sending condition of the SRS is described; a sending module is configured to send the SRS in an uplink based on the sending condition of the SRS.
  • An embodiment of the present invention further provides a terminal.
  • the terminal includes a processor, a memory, and a communication bus.
  • the communication bus is used to implement connection and communication between the processor and the memory.
  • the processor is used to execute one or more computer programs stored in the memory. In order to realize the steps of the above-mentioned signal transmission method.
  • An embodiment of the present invention further provides a computer storage medium.
  • the computer-readable storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to implement the steps of the foregoing signal sending method.
  • the second communication node determines a resource for sending an uplink signal by itself based on signaling configuration or in a predefined manner; and then based on Determine the resources and send the uplink signal, so as to realize the condition configuration of the SRS uplink transmission.
  • FIG. 1 is a flowchart of a signal sending method according to a first embodiment of the present invention
  • FIG. 2 is a reference diagram of an SRS uplink transmission beam in each embodiment of the present invention.
  • FIG. 3 is a reference diagram of an SRS uplink transmission beam in each embodiment of the present invention.
  • FIG. 4 is a reference diagram of an SRS uplink transmission beam in each embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a composition of a signal sending device in an eleventh embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a composition of a signal resource determining device in a twelfth embodiment of the present invention.
  • FIG. 7 is a schematic composition diagram of a terminal in a thirteenth embodiment of the present invention.
  • FIG. 8 is a schematic composition diagram of a terminal in a fourteenth embodiment of the present invention.
  • the first communication node such as an evolved base station (e-Node-B, referred to as eNB) may configure the second communication node device, such as a user equipment (User Equipment) (referred to as UE), or the second communication node device through downlink control information. Accepting the configuration of higher layers is also called configuring the UE through higher layer signaling.
  • e-Node-B evolved base station
  • UE user equipment
  • downlink control information User Equipment
  • Accepting the configuration of higher layers is also called configuring the UE through higher layer signaling.
  • the measurement reference signal (Sounding Reference Signal, abbreviated as SRS) is a signal for measuring wireless channel information (Channel State Information, abbreviated as CSI) between the second communication node device and the first communication node.
  • SRS Sending Reference Signal
  • CSI Wireless Channel Information
  • the UE periodically sends an uplink SRS on the last data symbol of the transmission subframe according to the frequency band, frequency domain position, sequence cyclic shift, period, and subframe offset indicated by the eNB.
  • the eNB determines the uplink CSI of the UE according to the received SRS, and performs operations such as frequency domain selection scheduling and closed-loop power control according to the obtained CSI.
  • non-precoded SRS should be used, that is, the antenna-specific SRS, and the physical uplink shared channel (Physical Uplink Shared Channel) (Referred to as PUSCH) for a demodulation reference signal (Demodulation Reference Signal, referred to as DMRS) is pre-coded.
  • the first communication node can estimate the original uplink CSI by receiving the non-precoded SRS, and the DMRS that has been precoded cannot make the first communication node estimate the original uplink CSI.
  • the SRS resources required by each UE will increase, which will cause the number of UEs that can be multiplexed in the system to decrease at the same time.
  • the UE can send SRS through two triggering methods: high-level signaling (also called trigger through trigger 0) or downlink control information (also called trigger through trigger 1). Periodic SRS triggered based on high-level signaling is based on downlink. Control information triggers aperiodic SRS. In LTE-A Release 10, a non-periodical SRS transmission method is added, which improves the utilization of SRS resources to a certain extent and increases the flexibility of resource scheduling.
  • the uses of SRS are divided into beam management, codebook, non-codebook, and antenna switching.
  • its transmission beam may be associated with the downlink channel state information reference signal (CSI-RS) reception beam, or the aperiodic SRS transmission beam may be calculated based on the CSI-RS.
  • CSI-RS downlink channel state information reference signal
  • the first communication node may be a macro cell base station, a small cell base station or transmission node, a transmitting node in a high-frequency communication system, a transmitting node in an IoT system, and the like
  • the second communication node may be a user terminal. (UE), mobile phone, portable device, automobile and other communication nodes.
  • the uplink signal may be an SRS, or an uplink demodulation reference signal, or an uplink signal for random access, or a PUSCH signal, or a phase tracking reference signal.
  • the information of the antenna or antenna group may be identification information of the antenna or antenna group, port information of the antenna or antenna group, or beam identification information corresponding to the antenna or antenna group.
  • frequency range 1 450MHz-6000MHz is defined as frequency range 1 (FR1), that is, the low-frequency range
  • FR2 frequency range 2
  • the transmission beam can also be referred to as a spatial transmission filter (spatial domain transmission filter) or quasi co-location (QCL) information; the receiving beam can also be referred to as a spatial domain transmission filter (spatial domain reception / receive filter) or quasi co-location QCL) information.
  • a spatial transmission filter spatial domain transmission filter
  • QCL quasi co-location
  • This embodiment provides a signal sending method. Please refer to FIG. 1.
  • the method includes:
  • the second communication node determines a resource for sending an uplink signal by itself based on a signaling configuration or in a predefined manner.
  • the resource includes at least one of the following: a time domain resource and an air domain resource.
  • the time-domain resources include: For a second communication node configured with at least one measurement reference signal SRS resource configuration, when the high-level parameter resource type resourceType in the SRS resource is set to non- In the period, for the SRS under the first configuration condition, the time domain resource for sending the SRS is a time domain resource that satisfies the following SRS transmission conditions.
  • the SRS transmission conditions include: the last symbol of the physical downlink control channel PDCCH that triggers the SRS transmission and the SRS resource.
  • the minimum time interval between the first symbols of N is N2 + A, where A is a natural number.
  • N 2 is the timing interval between the PDCCH symbol and the PUSCH symbol for scheduling the PUSCH, and is the preparation time of the PUSCH, and its value can refer to section 6.4 in the 5G NR standard TS38.214.
  • the first configuration condition may include at least one of the following:
  • the usage usage of the SRS resource set in frequency range 2 is set as a codebook
  • Usage in the SRS resource set is set to a non-codebook in frequency range 2;
  • the usage of the SRS resource set in frequency range 2 is set to antenna switching
  • Usage in the SRS resource set is set to beam management in frequency range 2.
  • the value of A may be positively related to the number of SRS resources included in the SRS resource set. In other words, the larger the number of SRS resources included in the SRS resource set, the larger the value of A is.
  • the value of A may be related to the configuration of the spatial relationship information SpatialRelationInfo.
  • the configuration of SpatialRelationInfo includes: the configuration of SpatialRelationInfo or not, or the number of configurations of SpatialRelationInfo.
  • the value of A that is related to the configuration of SpatialRelationInfo may include any of the following:
  • A 42 or A ⁇ 42, otherwise A> 42;
  • A 42 or A ⁇ 42, otherwise A> 42;
  • the value of A may be related to whether the configuration value of SpatialRelationInfo in each SRS resource is the same.
  • the value of A may be related to whether the configuration value of SpatialRelationInfo in each SRS resource is the same, including:
  • the value of A may be determined in at least one of the following ways:
  • the first communication node configures the value of A based on the capability report of the second communication node
  • the value of A is obtained based on the capability of the second communication node
  • the value of A is associated with a preset parameter. For example, the minimum time interval K between the last symbol of the PDCCH triggering the aperiodic CSI-RS and the aperiodic CSI-RS transmission is included.
  • the method for determining the value of A includes: when only one of the physical uplink control channel PUCCH, physical uplink shared channel PUSCH, and SRS of the second communication node is activated, a spatialRelationInfo value is configured, or PUCCH
  • a spatialRelationInfo value is configured, or PUCCH
  • A is 0 or B1; otherwise, A The capabilities of the two communication nodes are obtained, or the value of A is B2.
  • the value of B1 and B2 is a fixed positive integer or obtained based on the capability of the second communication node, and B2> B1.
  • the activated spatialRelationInfo is obtained according to the finally selected spatial relationship information, and the spatial relationship information is used for PUCCH resources configured by media access control unit MAC CE signaling or radio resource control RRC signaling, Or SRS resources for PUSCH.
  • the airspace resources include at least one of the following: a transmission beam and an airspace transmission filter spatial domain transmission filter.
  • determining the airspace resources of the SRS may include:
  • the second communication node uses the same airspace transmission filter as the nearest aperiodic CSI-RS airspace reception filter to send SRS resources.
  • the nearest aperiodic CSI-RS spatial domain reception filter may include at least one of the following:
  • a spatial reception filter for aperiodic CSI-RS before the aperiodic SRS is sent at least N symbols;
  • the value of N may be obtained based on one capability of the second communication node, or obtained based on at least two capabilities of the second communication node.
  • a second communication node determines a resource for sending an uplink signal based on a signaling configuration or in a predefined manner.
  • the resource includes at least one of the following: a time domain resource and an air domain. Resources; and then send uplink signals based on the determined resources, thereby realizing the conditional configuration of SRS uplink transmission.
  • This embodiment provides a method for configuring a transmission timing in an SRS uplink transmission condition in a second communication node.
  • the usage in the frequency range 2 is configured as beam management
  • the minimum time interval between the last symbol of the PDCCH that triggers aperiodic SRS transmission and the first symbol of the SRS resource is N2 + A; where: A is an integer greater than or equal to 0, and the value of A increases as the number of SRS resources included in the SRS resource set increases.
  • This embodiment provides a method for configuring a transmission timing in an SRS uplink transmission condition in a second communication node.
  • the usage in the frequency range 2 is configured as beam management, codebook, non- For SRS of at least one of codebook and antenna switching, the minimum time interval between the last symbol of the PDCCH that triggers aperiodic SRS transmission and the first symbol of the SRS resource is N2 + A; where A is greater than or equal to An integer of 0.
  • the value of A is related to whether the parameter SpatialRelationInfo in the resource is configured or the number of configured SpatialRelationInfo. For example:
  • This embodiment provides a method for configuring a transmission timing in an SRS uplink transmission condition in a second communication node.
  • the usage in the frequency range 2 is configured as beam management, codebook, non- For SRS of at least one of codebook and antenna switching, the minimum time interval between the last symbol of the PDCCH that triggers aperiodic SRS transmission and the first symbol of the SRS resource is N2 + A, where A is greater than or equal to An integer of 0.
  • the value of A is related to whether the SpatialRelationInfo configuration value in multiple resources is the same. For example:
  • This embodiment provides a method for configuring a transmission timing in an SRS uplink transmission condition in a second communication node.
  • the usage in the frequency range 2 is configured as beam management, codebook, non- For SRS of at least one of codebook and antenna switching, the minimum time interval between the last symbol of the PDCCH that triggers aperiodic SRS transmission and the first symbol of the SRS resource is N2 + A, where A is greater than or equal to An integer of 0, the first communication node reports the value of configuration A based on the capabilities of the second communication node, or the value of A is associated with an existing parameter value, for example, a PDCCH containing an aperiodic CSI-RS trigger The minimum time interval K between the last symbol and the aperiodic CSI-RS transmission.
  • This embodiment provides a method for sending an uplink signal.
  • the second communication node determines a resource for sending an uplink signal by itself based on a signaling configuration or in a predefined manner.
  • the second communication node sends an uplink signal based on the determined resource.
  • the resources include at least one of the following: time domain resources and airspace resources.
  • the usage in the frequency range 2 is configured as beam management, codebook, non- For the SRS of at least one of the codebook and antenna switching, the minimum time interval between the last symbol of the PDCCH that triggers aperiodic SRS transmission and the first symbol of the SRS resource is N2 + A.
  • the value method includes: if the physical uplink control channel (PUCCH) and / or physical uplink shared channel (PUSCH) and / or SRS of the second communication node has only one activated spatialRelationInfo value configured, or PUCCH and / or PUSCH and / Or, if the SRS shares the same beam, or if the spatialRelationInfo of the SRS is the same as the spatialRelationInfo of the PUCCH and / or PUSCH, then the value of A is 0 or B1; otherwise, the value of A is obtained based on the capabilities of the second communication node, or The value of A is B2. Among them, the value of B1 and B2 is a fixed positive integer or obtained based on the capability of the second communication node, and B2> B1.
  • the activated spatialRelationInfo is obtained by referring to the finally selected spatial relationship information, and the spatial relationship information is used for a PUCCH resource configured by a medium access control unit MAC CE signaling or a radio resource control RRC signaling or an SRS resource for PUSCH. .
  • This embodiment provides a method for configuring a transmission beam in an SRS uplink transmission condition in a second communication node.
  • the transmission beam of this SRS resource is the same as the nearest aperiodic CSI-RS.
  • the receiving beams are the same.
  • the latest aperiodic CSI-RS involved above is the most recent aperiodic CSI-RS before the PDCCH that triggered the aperiodic SRS. Please refer to FIG. 2 for details.
  • This embodiment provides a method for configuring a transmission beam in an SRS uplink transmission condition in a second communication node.
  • the transmission beam of this SRS resource is the same as the nearest aperiodic CSI-RS.
  • the receiving beams are the same, where the nearest aperiodic CSI-RS is the most recent aperiodic CSI-RS before the aperiodic SRS is transmitted. Please refer to FIG. 3 for details.
  • N is an integer greater than or equal to zero.
  • the value of N is obtained based on one capability of the second communication node, or obtained based on a combination of multiple capabilities of the second communication node.
  • This embodiment provides a method for configuring a transmission beam in an SRS uplink transmission condition in a second communication node.
  • the transmission beam of this SRS resource is the same as the nearest aperiodic CSI-RS.
  • the receiving beams are the same, wherein the receiving beam used by the most recent aperiodic CSI-RS is the receiving beam information indicated by the most recently triggered aperiodic CSI-RS PDCCH before transmitting the aperiodic SRS. Please refer to FIG. 4 for details.
  • This embodiment provides a method for determining a signal resource.
  • the method includes:
  • the first communication node determines a resource for sending the measurement reference signal SRS by the second communication node through a signaling configuration method or according to a predefined method, where the resource includes at least one of the following: a time domain resource and an air domain resource.
  • the time domain resource when the resource includes a time domain resource, includes: For a second communication node configured with at least one SRS resource configuration, when a high-level parameter resource type (resourceType) in the SRS resource is set to aperiodic For the SRS under the first configuration condition, the time domain resource for sending the SRS is a time domain resource that satisfies the following SRS sending conditions.
  • the SRS sending conditions include: the last symbol of the physical downlink control channel PDCCH that triggers SRS sending and the SRS resource.
  • the minimum time interval between the first symbols of N is N2 + A, where A is zero or a positive integer.
  • the first configuration condition includes at least one of the following:
  • Usage in the SRS resource set is set as a codebook in frequency range 2;
  • Usage in the SRS resource set is set to a non-codebook in frequency range 2;
  • the usage of the SRS resource set in frequency range 2 is set to antenna switching
  • Usage in the SRS resource set in frequency range 2 is set to beam management
  • the value of A is positively related to the number of SRS resources included in the SRS resource set.
  • the value of A is related to the configuration of SpatialRelationInfo.
  • the configuration of SpatialRelationInfo includes: the configuration of SpatialRelationInfo or not, or the number of configurations of SpatialRelationInfo.
  • the value of A that is related to the configuration of SpatialRelationInfo includes any one of the following:
  • A 42 or A ⁇ 42, otherwise A> 42;
  • A 42 or A ⁇ 42, otherwise A> 42;
  • the value of A is related to whether the configuration value of SpatialRelationInfo in each SRS resource is the same.
  • whether the value of A is the same as the configuration value of SpatialRelationInfo in each SRS resource includes:
  • the value of A is configured by the first communication node based on the capability report of the second communication node, or the value of A is obtained based on the capability of the second communication node, or the value of A and the preset value Parameter association.
  • the method for determining the value of A includes: if only one of the physical uplink control channel PUCCH, physical uplink shared channel PUSCH, and SRS of the second communication node is configured with an activated spatialRelationInfo value, or PUCCH, PUSCH When at least two of SRS and SRS share the same beam, or when the spatialRelationInfo of SRS is the same as the spatialRelationInfo of PUCCH and / or PUSCH, A is set to 0; otherwise, the value of A is based on the value of the second communication node. Ability to get.
  • the activated spatialRelationInfo is obtained according to the finally selected spatial relationship information, and the spatial relationship information is used for PUCCH resources configured by the medium access control unit MAC CE signaling or radio resource control RRC signaling or for PUSCH. SRS resources.
  • the airspace resources include at least one of the following: a transmission beam and an airspace transmission filter.
  • determining the airspace resources of the SRS includes:
  • the second communication node uses the same airspace transmission filter as the nearest aperiodic CSI-RS airspace reception filter to send SRS resources.
  • the nearest aperiodic CSI-RS spatial domain reception filter includes at least one of the following:
  • a spatial reception filter for aperiodic CSI-RS before the aperiodic SRS is sent at least N symbols;
  • the value of N may be obtained based on one capability of the second communication node, or may be obtained based on a combination of multiple capabilities of the second communication node.
  • the signal sending device includes:
  • a configuration determining module 51 is configured to determine a resource for sending an uplink signal by itself based on a signaling configuration or in a predefined manner, wherein the resource includes at least one of the following: a time domain resource and an air domain resource;
  • the sending module 52 is configured to send an uplink signal based on the determined resource.
  • the time-domain resources include: For a second communication node configured with at least one measurement reference signal SRS resource configuration, when the high-level parameter resource type resourceType in the SRS resource is set to non- In the period, for the SRS under the first configuration condition, the time domain resource for sending the SRS is a time domain resource that satisfies the following SRS transmission conditions.
  • the SRS transmission conditions include: the last symbol of the physical downlink control channel PDCCH that triggers the SRS transmission and the SRS resource.
  • the minimum time interval between the first symbols of N is N2 + A, where A is a natural number.
  • N 2 is the timing interval between the PDCCH symbol and the PUSCH symbol for scheduling the PUSCH, and is the preparation time of the PUSCH, and its value can refer to section 6.4 in the 5G NR standard TS38.214.
  • the first configuration condition may include at least one of the following:
  • the usage usage of the SRS resource set in frequency range 2 is set as a codebook
  • Usage in the SRS resource set is set to a non-codebook in frequency range 2;
  • the usage of the SRS resource set in frequency range 2 is set to antenna switching
  • Usage in the SRS resource set is set to beam management in frequency range 2.
  • the value of A may be positively related to the number of SRS resources included in the SRS resource set. In other words, the larger the number of SRS resources included in the SRS resource set, the larger the value of A is.
  • the value of A may be related to the configuration of the spatial relationship information SpatialRelationInfo.
  • the configuration of SpatialRelationInfo includes: the configuration of SpatialRelationInfo or not, or the number of configurations of SpatialRelationInfo.
  • the value of A that is related to the configuration of SpatialRelationInfo may include any of the following:
  • A 42 or A ⁇ 42, otherwise A> 42;
  • A 42 or A ⁇ 42, otherwise A> 42;
  • the value of A may be related to whether the configuration value of SpatialRelationInfo in each SRS resource is the same.
  • the value of A may be related to whether the configuration value of SpatialRelationInfo in each SRS resource is the same, including:
  • the value of A may be determined in at least one of the following ways:
  • the first communication node configures the value of A based on the capability report of the second communication node
  • the value of A is obtained based on the capability of the second communication node
  • the value of A is associated with a preset parameter. For example, the minimum time interval K between the last symbol of the PDCCH triggering the aperiodic CSI-RS and the aperiodic CSI-RS transmission is included.
  • the method for determining the value of A includes: when only one of the physical uplink control channel PUCCH, physical uplink shared channel PUSCH, and SRS of the second communication node is activated, a spatialRelationInfo value is configured, or PUCCH When at least two of the three, PUSCH, and SRS share the same beam, or when the spatialRelationInfo of SRS is the same as the spatialRelationInfo of PUCCH and / or PUSCH, then the value of A is 0; otherwise, the value of A is based on the second communication The capabilities of the nodes are obtained.
  • the activated spatialRelationInfo is obtained according to the finally selected spatial relationship information, and the spatial relationship information is used for PUCCH resources configured by media access control unit MAC CE signaling or radio resource control RRC signaling, Or SRS resources for PUSCH.
  • the airspace resources include at least one of the following: a transmission beam and an airspace transmission filter spatial domain transmission filter.
  • determining the airspace resources of the SRS may include:
  • the second communication node uses the same airspace transmission filter as the nearest aperiodic CSI-RS airspace reception filter to send SRS resources.
  • the nearest aperiodic CSI-RS spatial domain reception filter may include at least one of the following:
  • a spatial reception filter for aperiodic CSI-RS before the aperiodic SRS is sent at least N symbols;
  • the value of N may be obtained based on one capability of the second communication node, or obtained based on at least two capabilities of the second communication node.
  • the signal resource determining device includes:
  • the resource configuration module 61 is configured to determine a resource for sending the measurement reference signal SRS by the second communication node in a signaling configuration manner or according to a predefined manner, where the resource includes at least one of the following: time domain resources and air domain resources.
  • the time domain resource when the resource includes a time domain resource, includes: For a second communication node configured with at least one SRS resource configuration, when a high-level parameter resource type (resourceType) in the SRS resource is set to aperiodic For the SRS under the first configuration condition, the time domain resource for sending the SRS is a time domain resource that satisfies the following SRS sending conditions.
  • the SRS sending conditions include: the last symbol of the physical downlink control channel PDCCH that triggers SRS sending and the SRS resource.
  • the minimum time interval between the first symbols of N is N2 + A, where A is zero or a positive integer.
  • the first configuration condition includes at least one of the following:
  • Usage in the SRS resource set is set as a codebook in frequency range 2;
  • Usage in the SRS resource set is set to a non-codebook in frequency range 2;
  • the usage of the SRS resource set in frequency range 2 is set to antenna switching
  • Usage in the SRS resource set in frequency range 2 is set to beam management
  • the value of A is positively related to the number of SRS resources included in the SRS resource set.
  • the value of A is related to the configuration of SpatialRelationInfo.
  • the configuration of SpatialRelationInfo includes: the configuration of SpatialRelationInfo or not, or the number of configurations of SpatialRelationInfo.
  • the value of A that is related to the configuration of SpatialRelationInfo includes any one of the following:
  • A 42 or A ⁇ 42, otherwise A> 42;
  • A 42 or A ⁇ 42, otherwise A> 42;
  • the value of A is related to whether the configuration value of SpatialRelationInfo in each SRS resource is the same.
  • whether the value of A is the same as the configuration value of SpatialRelationInfo in each SRS resource includes:
  • the value of A is configured by the first communication node based on the capability report of the second communication node, or the value of A is obtained based on the capability of the second communication node, or the value of A and the preset value Parameter association.
  • the method for determining the value of A includes: if only one of the physical uplink control channel PUCCH, physical uplink shared channel PUSCH, and SRS of the second communication node is configured with an activated spatialRelationInfo value, or PUCCH, PUSCH When at least two of SRS and SRS share the same beam, or when the spatialRelationInfo of SRS is the same as the spatialRelationInfo of PUCCH and / or PUSCH, A is set to 0; otherwise, the value of A is based on the Ability to get.
  • the activated spatialRelationInfo is obtained according to the finally selected spatial relationship information, and the spatial relationship information is used for PUCCH resources configured by the medium access control unit MAC CE signaling or radio resource control RRC signaling or for PUSCH. SRS resources.
  • the airspace resources include at least one of the following: a transmission beam and an airspace transmission filter.
  • determining the airspace resources of the SRS includes:
  • the second communication node uses the same airspace transmission filter as the nearest aperiodic CSI-RS airspace reception filter to send SRS resources.
  • the nearest aperiodic CSI-RS spatial domain reception filter includes at least one of the following:
  • a spatial reception filter for aperiodic CSI-RS before the aperiodic SRS is sent at least N symbols;
  • the value of N may be obtained based on one capability of the second communication node, or obtained based on a combination of multiple capabilities of the second communication node.
  • This embodiment also provides a terminal. As shown in FIG. 7, it includes a first processor 71, a first memory 72, and a first communication bus 73, where:
  • the first communication bus 73 is configured to implement connection and communication between the first processor 71 and the first memory 72.
  • the first processor 71 is configured to execute one or more computer programs stored in the first memory 72 to implement the steps of the signal sending method in the foregoing embodiments, and details are not described herein again.
  • the base station includes a second processor 81, a second memory 82, and a second communication bus 83, where:
  • the second communication bus 83 is configured to implement connection and communication between the second processor 81 and the second memory 82;
  • the second processor 81 is configured to execute one or more computer programs stored in the second memory 82 to implement the steps of the signal resource determination method in the foregoing embodiments, and details are not described herein again.
  • This embodiment also provides a computer-readable storage medium that is implemented in any method or technology for storing information, such as computer-readable instructions, data structures, computer program modules, or other data. Volatile or non-volatile, removable or non-removable media.
  • Computer-readable storage media include, but are not limited to, RAM (Random Access Memory), ROM (Read-Only Memory, Read-Only Memory), EEPROM (Electrically Erasable, Programmable, Read-Only Memory, and Erasable Programmable Read-Only Memory) ), Flash memory or other memory technology, CD-ROM (Compact Disc Read-Only Memory), digital versatile disk (DVD) or other optical disk storage, magnetic box, magnetic tape, disk storage or other magnetic storage devices, Or any other medium that can be used to store desired information and can be accessed by a computer.
  • the computer-readable storage medium in this embodiment may be used to store one or more computer programs, and the stored one or more computer programs may be executed by a processor to implement at least one step of the signal sending method in the foregoing embodiments. Or at least one step of the signal resource determination method.
  • This embodiment also provides a computer program (or computer software), which can be distributed on a computer-readable medium and executed by a computable device to implement at least one of the signal sending methods in the foregoing embodiments. Step, or at least one step of the signal resource determination method.
  • This embodiment also provides a computer program product including a computer-readable device, where the computer-readable device stores the computer program as shown above.
  • the computer-readable device in this embodiment may include a computer-readable storage medium as shown above.
  • a communication medium typically contains computer-readable instructions, data structures, computer program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium. Therefore, this application is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种信号发送、资源确定方法、装置、终端、基站和存储介质,通过第二通信节点基于信令配置,或者按照预定义的方式,确定自身发送上行信号的资源;然后基于确定的资源,发送上行信号。

Description

信号发送、资源确定方法、装置、终端、基站和存储介质
本申请要求在2018年09月28日提交中国专利局、申请号为201811142396.8的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及但不限于网络通信领域,例如涉及但不限于信号发送、资源确定方法、装置、终端、基站和存储介质。
背景技术
在长期演进(Long Term Evolution,简称为LTE)中,物理下行控制信道(Physical Downlink Control Channel,简称为PDCCH)用于承载下行控制信息(Downlink Control Information,简称为DCI),其中,DCI可包括上、下行调度信息,以及上行功率控制信息。DCI格式(format)分为DCI format 0、1、1A、1B、1C、1D、2、2A、3,3A等,后面演进至LTE-A Release 12(LTE-A版本12)中又增加了DCI format 2B、2C、2D以支持多种不同的应用和传输模式。
随着通信技术的发展,数据业务需求量不断增加,可用的低频载波也已经非常稀缺,由此,基于还未充分利用的高频(30~300GHz)载波通信成为解决未来高速数据通信的重要通信手段之一。高频载波通信的可用带宽很大,可以提供有效的高速数据通信。但是,高频载波通信面临的一个很大的技术挑战就是相对低频信号,高频信号在空间的衰落非常大,虽然会导致高频信号在室外的通信出现了空间的衰落损耗问题,但是由于其波长的减小,通常可以使用更多的天线,从而可以基于波束进行通信以补偿在空间的衰落损耗。
但是,当天线数增多时,由于此时需要每个天线都有一套射频链路,基于数字波束成型也带来了增加成本和功率损耗的问题。因此,目前的研究中比较倾向于混合波束赋形,即射频波束和数字波束共同形成最终的波束。
在新的无线接入技术(New Radio Access Technology,简称NR)中,高频通信系统除了第一通信节点会配置大量的天线形成下行传输波束以补偿高频通信的空间衰落,第二通信节点同样也会配置大量的天线形成上行传输波束,此时测量参考信号(Sounding Reference Signal,简称为SRS)的发送也将会采用波束的形式发送。如何定义SRS的发送条件,是一个待解决的问题,相关技术中还没有对应的实现方案。
发明内容
本发明实施例提供的信号发送、资源确定方法、装置、终端、基站和存储 介质,主要解决的技术问题是相关技术中缺乏高频通信系统中SRS发送配置的问题。
为解决上述技术问题,本发明实施例提供一种信号发送方法,包括:确定第二通信节点的测量参考信号SRS的配置情况;基于所述SRS的配置情况,确定所述SRS的发送条件;基于所述SRS的发送条件,上行发送所述SRS。
本发明实施例还提供一种信号发送装置,包括:配置确定模块,用于确定第二通信节点的测量参考信号SRS的配置情况;发送配置模块,用于基于所述SRS的配置情况,确定所述SRS的发送条件;发送模块,用于基于所述SRS的发送条件,上行发送所述SRS。
本发明实施例还提供一种终端,终端包括处理器、存储器以及通信总线;通信总线用于实现处理器和存储器之间的连接通信;处理器用于执行存储器中存储的一个或者多个计算机程序,以实现上述的信号发送方法的步骤。
本发明实施例还提供一种计算机存储介质,计算机可读存储介质存储有一个或者多个程序,一个或者多个程序可被一个或者多个处理器执行,以实现上述的信号发送方法的步骤。
本申请的有益效果是:
根据本发明实施例提供的信号发送、资源确定方法、装置、终端、基站和存储介质,通过第二通信节点基于信令配置,或者按照预定义的方式,确定自身发送上行信号的资源;然后基于确定的资源,发送上行信号,从而实现了SRS上行发送的条件配置。
本申请其他特征和相应的有益效果在说明书的后面部分进行阐述说明,且应当理解,至少部分有益效果从本申请说明书中的记载变的显而易见。
附图说明
图1为本发明第一实施例中的信号发送方法流程图;
图2为本发明各实施例中SRS上行发送波束参考图;
图3为本发明各实施例中SRS上行发送波束参考图;
图4为本发明各实施例中SRS上行发送波束参考图;
图5为本发明第十一实施例中的信号发送装置组成示意图;
图6为本发明第十二实施例中的信号资源确定装置组成示意图;
图7为本发明第十三实施例中的终端组成示意图;
图8为本发明第十四实施例中的终端组成示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,下面通过具体实施 方式结合附图对本发明实施例作可选的详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
第一通信节点,例如演进型基站(e-Node-B,简称为eNB)可以通过下行控制信息配置第二通信节点设备,例如用户设备(User Equipment,简称为UE),或者第二通信节点设备接受高层(higher layers)的配置,也称为通过高层信令来配置UE。
测量参考信号(Sounding Reference Signal,简称为SRS)是一种第二通信节点设备与第一通信节点间用来测量无线信道信息(Channel State Information,简称为CSI)的信号。在长期演进系统中,UE按照eNB指示的频带、频域位置、序列循环移位、周期和子帧偏置等参数,定时在发送子帧的最后一个数据符号上发送上行SRS。eNB根据接收到的SRS判断UE上行的CSI,并根据得到的CSI进行频域选择调度、闭环功率控制等操作。
在LTE-A Release 10(LTE-A版本10)的研究中提出:在上行通信中,应该使用非预编码的SRS,即:天线专有的SRS,而对物理上行共享信道(Physical Uplink Shared Channel,简称为PUSCH)的用于解调的参考信号(De Modulation Reference Signal,简称为DMRS)则进行预编码。第一通信节点通过接收非预编码的SRS,可估计出上行的原始CSI,而经过了预编码的DMRS则不能使第一通信节点估计出上行原始的CSI。此时,当UE使用多天线发送非预编码的SRS时,每个UE所需要的SRS资源都会增加,也就造成了系统内可以同时复用的UE数量下降。UE可通过高层信令(也称为通过trigger type 0触发)或下行控制信息(也称为通过trigger type 1触发)这两种触发方式发送SRS,基于高层信令触发的为周期SRS,基于下行控制信息触发的为非周期SRS。在LTE-A Release 10中增加了非周期发送SRS的方式,一定程度上改善了SRS资源的利用率,提高资源调度的灵活性。
目前,SRS的用途分为波束管理、码本、非码本、天线切换。对于非周期SRS,其发送波束可以跟下行的信道状态信息参考信号(CSI-RS)的接收波束关联,也可以基于CSI-RS计算非周期SRS的发送波束。
第一通信节点可以为宏小区的基站、小小区(small cell)的基站或传输节点、高频通信系统中的发送节点、物联网系统中的发送节点等节点,第二通信节点可以为用户终端(UE)、手机、便携设备、汽车等通信系统中的节点。
上行信号可以为SRS,或者为上行解调参考信号,或者为进行随机接入的上行信号,或者为PUSCH信号,或者为相位跟踪参考信号。
天线或天线组的信息可以是天线或天线组的标识信息、天线或天线组的端口信息,也可以是天线或天线组对应的波束标识信息。
对于频率范围的定义,将450MHz–6000MHz定义为频率范围1(frequency range 1,FR1),即低频范围,将24250MHz–52600MHz定义为频率范围2(frequency range 2,FR2),即高频范围。
发送波束,又可称为空域发送滤波器(spatial domain transmission filter)或准共址(QCL)信息;接收波束,又可称为空域发送滤波器(spatial domain reception/receive filter)或准共址(QCL)信息。
第一实施例
本实施例提供了一种信号发送方法,请参考图1,该方法包括:
S101、第二通信节点基于信令配置,或者按照预定义的方式,确定自身发送上行信号的资源;其中,资源包括如下至少之一:时域资源、空域资源;
S102、基于确定的资源,发送上行信号。
在一些实施例中,当资源包括时域资源时,时域资源包括:对于被配置至少一个测量参考信号SRS资源配置的第二通信节点,当SRS资源中的高层参数资源类型resourceType被设置为非周期时,对于第一配置条件下的SRS,发送SRS的时域资源为满足如下SRS发送条件的时域资源,SRS发送条件包括:触发SRS发送的物理下行控制信道PDCCH的最后一个符号与SRS资源的第一个符号之间的最小时间间隔为N2+A,其中A为自然数。N 2为调度PUSCH的PDCCH符号与PUSCH符号的时序间隔,为PUSCH的准备时间,其取值可参考5G NR标准TS38.214中的6.4章节。
在一些实施例中,第一配置条件可以包括如下至少之一:
在频率范围2中SRS资源集中的用法usage被设置为码本;
在频率范围2中SRS资源集中的usage被设置为非码本;
在频率范围2中SRS资源集中的usage被设置为天线切换;
在频率范围2中SRS资源集中的usage被设置为波束管理。
在一些实施例中,A的取值大小可以与SRS资源集中所包括的SRS资源数量正相关。换言之,SRS资源集中所包括的SRS资源数量越多,A的取值越大。
在一些实施例中,A的取值可以与空间关系信息SpatialRelationInfo的配置情况相关。
在一些实施例中,SpatialRelationInfo的配置情况包括:SpatialRelationInfo的配置与否,或SpatialRelationInfo的配置数量。
例如,A的取值与SpatialRelationInfo的配置情况相关可以包括如下任意之一:
若第二通信节点未被配置SpatialRelationInfo,则A=42或A<42,否则A>42;
若已配置的SpatialRelationInfo数量小于第一预设阈值,则A=42或A<42,否则A>42;
若第二通信节点未被配置SpatialRelationInfo,则A<42,否则A=42或A>42;
若已配置的SpatialRelationInfo数量小于第二预设阈值,则A<42,否则A=42或A>42。
在一些实施例中,A的取值可以与各SRS资源中SpatialRelationInfo的配置值是否相同相关。
例如,A的取值可以与各SRS资源中SpatialRelationInfo的配置值是否相同相关包括:
若SpatialRelationInfo的配置值相同,则A<42或A=42,否则A>42;
或,如果若SpatialRelationInfo的配置值相同,则A<42,否则A>42或A=42。
在一些实施例中,A的取值可以通过如下方式中至少之一确定:
第一通信节点基于第二通信节点的能力上报来配置A的取值;
A的取值基于第二通信节点的能力得到;
A的取值与预设参数关联。例如,包含有触发非周期CSI-RS的PDCCH的最后一个符号与非周期CSI-RS发送的最小时间间隔K。
在一些实施例中,确定所述A的取值的方法包括:当第二通信节点的物理上行控制信道PUCCH、物理上行共享信道PUSCH、SRS三者中只有一个激活的spatialRelationInfo值被配置,或者PUCCH、PUSCH、SRS三者中至少两者共享相同的波束,或者SRS的spatialRelationInfo与PUCCH和/或PUSCH的spatialRelationInfo取值相同时,则A的取值为0或B1;否则,A的取值基于第二通信节点的能力得到,或A的取值为B2。其中,B1、B2的取值为某个固定的正整数或基于第二通信节点的能力得到,B2>B1。
在一些实施例中,所述激活的spatialRelationInfo根据最终选择出的空间关系信息得到,所述空间关系信息用于通过介质访问控制控制单元MAC CE信令或无线资源控制RRC信令配置的PUCCH资源,或用于PUSCH的SRS资源。
当资源包括空域资源时,空域资源包括如下至少之一:发送波束、空域发送滤波器spatial domain transmission filter。
在一些实施例中,确定SRS的空域资源可以包括:
若SRS资源中的SpatialRelationInfo被配置为非周期无线信道信息参考信号CSI-RS的ID或索引时,第二通信节点使用与最近的非周期CSI-RS的空域接收滤波器相同的空域发送滤波器发送SRS资源。
在一些实施例中,最近的非周期CSI-RS的空域接收滤波器可以包括如下至少之一:
触发非周期SRS发送的PDCCH之前最近的非周期CSI-RS的空域接收滤波器;
发送非周期SRS之前最近的非周期CSI-RS的空域接收滤波器;
发送非周期SRS的符号位置至少N个符号之前的非周期CSI-RS的空域接收滤波器;
发送非周期SRS之前最近的触发非周期CSI-RS的PDCCH所指示的空域接收滤波器。
在一些实施例中,N的取值可以基于第二通信节点的一种能力得到,或者基于第二通信节点的至少两种能力组合得到。
本实施例提供了一种信号发送方法,通过第二通信节点基于信令配置,或者按照预定义的方式,确定自身发送上行信号的资源;其中,资源包括如下至少之一:时域资源、空域资源;然后基于确定的资源,发送上行信号,从而实现了SRS上行发送的条件配置。
第二实施例
本实施例提供了一种第二通信节点中,SRS上行的发送条件中,发送时机的配置方法。
第二通信节点在第二通信节点被配置一个或多个SRS资源配置,且SRS资源中的高层参数资源类型(resourceType)被设置为非周期时,对于频率范围2中的用途被配置为波束管理、码本、非码本、天线切换中的至少一种的SRS,触发非周期SRS发送的PDCCH的最后一个符号与SRS资源的第一个符号之间的最小时间间隔为N2+A;其中,A为大于或等于0的整数,且A的取值随着SRS资源集中所包括的SRS资源数量的增加而增大。
第三实施例
本实施例提供了一种第二通信节点中,SRS上行的发送条件中,发送时机的配置方法。
第二通信节点被配置一个或多个SRS资源配置,且SRS资源中的高层参数资源类型(resourceType)被设置为非周期时,对于频率范围2中的用途被配置为波束管理、码本、非码本、天线切换中的至少一种的SRS,触发非周期SRS发送的PDCCH的最后一个符号与SRS资源的第一个符号之间的最小时间间隔为N2+A;其中,A为大于或等于0的整数,A的取值与resource中的参数SpatialRelationInfo是否有配置或者已配置的SpatialRelationInfo数量有关,例如:
如果UE没有被配置SpatialRelationInfo,则A=42或A<42;如果有配置SpatialRelationInfo,则A>42。如果已配置的SpatialRelationInfo数量小于某个阈 值,比如阈值为2或4,则A=42或A<42;否则A>42。
或者,如果UE没有被配置SpatialRelationInfo,则A<42;如果有配置SpatialRelationInfo,则A=42或A>42。如果已配置的SpatialRelationInfo数量小于某个阈值,比如阈值为2或4,则A<42;否则A=42或A>42。
第四实施例
本实施例提供了一种第二通信节点中,SRS上行的发送条件中,发送时机的配置方法。
第二通信节点被配置一个或多个SRS资源配置,且SRS资源中的高层参数资源类型(resourceType)被设置为非周期时,对于频率范围2中的用途被配置为波束管理、码本、非码本、天线切换中的至少一种的SRS,触发非周期SRS发送的PDCCH的最后一个符号与SRS资源的第一个符号之间的最小时间间隔为N2+A,其中,A为大于或等于0的整数,A的取值与多个resource中SpatialRelationInfo配置值是否相同有关,例如:
如果配置值相同,则A<42或A=42;如果配置值不同,则A>42。
或者,如果配置值相同,则A<42;如果配置值不同,则A>42或A=42。
第五实施例
本实施例提供了一种第二通信节点中,SRS上行的发送条件中,发送时机的配置方法。
第二通信节点被配置一个或多个SRS资源配置,且SRS资源中的高层参数资源类型(resourceType)被设置为非周期时,对于频率范围2中的用途被配置为波束管理、码本、非码本、天线切换中的至少一种的SRS,触发非周期SRS发送的PDCCH的最后一个符号与SRS资源的第一个符号之间的最小时间间隔为N2+A,其中,A为大于或等于0的整数,第一通信节点基于第二通信节点的能力上报配置A的取值,或者,A的取值关联某个现有的参数值,例如:包含有触发非周期CSI-RS的PDCCH的最后一个符号与非周期CSI-RS发送的最小时间间隔K。
第六实施例
本实施例提供了一种上行信号的发送方法,第二通信节点基于信令配置,或者按照预定义的方式,确定自身发送上行信号的资源。第二通信节点基于所述确定的资源发送上行信号。其中,所述资源包括以下至少之一:时域资源、空域资源。
第二通信节点被配置一个或多个SRS资源配置,且SRS资源中的高层参数 资源类型(resourceType)被设置为非周期时,对于频率范围2中的用途被配置为波束管理、码本、非码本、天线切换中的至少一种的SRS,触发非周期SRS发送的PDCCH的最后一个符号与SRS资源的第一个符号之间的最小时间间隔为N2+A,其中,确定所述A的取值的方法包括:如果第二通信节点的物理上行控制信道(PUCCH)和/或物理上行共享信道(PUSCH)和/或SRS只有一个激活的spatialRelationInfo值被配置,或者PUCCH和/或PUSCH和/或SRS共享相同的波束,或者SRS的spatialRelationInfo与PUCCH和/或PUSCH的spatialRelationInfo取值相同时,则A的取值为0或B1;否则,A的取值基于第二通信节点的能力得到,或A的取值为B2。其中,B1、B2的取值为某个固定的正整数或基于第二通信节点的能力得到,B2>B1。
所述激活的spatialRelationInfo参考最终选择出的空间关系信息得到,所述空间关系信息用于通过介质访问控制控制单元MAC CE信令或无线资源控制RRC信令配置的PUCCH资源或用于PUSCH的SRS资源。
第七实施例
本实施例提供了一种第二通信节点中,SRS上行的发送条件中,发送波束的配置方法。
当第二通信节点的非周期SRS资源中的参数SpatialRelationInfo被配置为非周期CSI-RS的ID或非周期CSI-RS的索引时,则此SRS资源的发送波束与最近的非周期CSI-RS的接收波束相同,其中,上述所涉及的最近的非周期CSI-RS为触发非周期SRS的PDCCH之前最近的非周期CSI-RS,具体请参考图2。
第八实施例
本实施例提供了一种第二通信节点中,SRS上行的发送条件中,发送波束的配置方法。
当第二通信节点的非周期SRS资源中的参数SpatialRelationInfo被配置为非周期CSI-RS的ID或非周期CSI-RS的索引时,则此SRS资源的发送波束与最近的非周期CSI-RS的接收波束相同,其中,所述最近的非周期CSI-RS为发送非周期SRS之前最近的非周期CSI-RS,具体请参考图3。
或者为发送非周期SRS的符号位置至少N个符号之前的非周期CSI-RS,其中,N为大于或等于0的整数。所述N的取值基于第二通信节点的一种能力得到,或者基于第二通信节点的多种能力组合得到。
第九实施例
本实施例提供了一种第二通信节点中,SRS上行的发送条件中,发送波束 的配置方法。
当第二通信节点的非周期SRS资源中的参数SpatialRelationInfo被配置为非周期CSI-RS的ID或非周期CSI-RS的索引时,则此SRS资源的发送波束与最近的非周期CSI-RS的接收波束相同,其中,所述最近的非周期CSI-RS所使用的接收波束为发送非周期SRS之前的最近的触发非周期CSI-RS的PDCCH所指示的接收波束信息,具体请参考图4。
第十实施例
本实施例提供了一种信号资源确定方法,该方法包括:
第一通信节点通过信令配置的方式,或者按照预定义的方式,确定第二通信节点发送测量参考信号SRS的资源;其中,资源包括如下至少之一:时域资源、空域资源。
在一些实施例中,当资源包括时域资源时,时域资源包括:对于被配置至少一个SRS资源配置的第二通信节点,当SRS资源中的高层参数资源类型(resourceType)被设置为非周期时,对于第一配置条件下的SRS,发送SRS的时域资源为满足如下SRS发送条件的时域资源,SRS的发送条件包括:触发SRS发送的物理下行控制信道PDCCH的最后一个符号与SRS资源的第一个符号之间的最小时间间隔为N2+A,其中A为零或正整数。
在一些实施例中,第一配置条件包括如下至少之一:
在频率范围2中SRS资源集中的usage被设置为码本;
在频率范围2中SRS资源集中的usage被设置为非码本;
在频率范围2中SRS资源集中的usage被设置为天线切换;
在频率范围2中SRS资源集中的usage被设置为波束管理;
在一些实施例中,A的取值大小与SRS资源集中所包括的SRS资源数量正相关。
在一些实施例中,A的取值与SpatialRelationInfo的配置情况相关。
在一些实施例中,SpatialRelationInfo的配置情况包括:SpatialRelationInfo的配置与否,或SpatialRelationInfo的配置数量。
在一些实施例中,A的取值与SpatialRelationInfo的配置情况相关包括如下任意之一:
若第二通信节点未被配置SpatialRelationInfo,则A=42或A<42,否则A>42;
若已配置的SpatialRelationInfo数量小于第一预设阈值,则A=42或A<42,否则A>42;
若第二通信节点未被配置SpatialRelationInfo,则A<42,否则A=42或A>42;
若已配置的SpatialRelationInfo数量小于第二预设阈值,则A<42,否则A=42 或A>42。
在一些实施例中,A的取值与各SRS资源中SpatialRelationInfo的配置值是否相同相关。
在一些实施例中,A的取值与各SRS资源中SpatialRelationInfo的配置值是否相同相关包括:
若SpatialRelationInfo的配置值相同,则A<42或A=42,否则A>42;
或,若SpatialRelationInfo的配置值相同,则A<42,否则A>42或A=42。
在一些实施例中,A的取值通过第一通信节点基于第二通信节点的能力上报来配置,或者,A的取值基于第二通信节点的能力得到,或者,A的取值与预设参数关联。
在一些实施例中,确定A的取值的方法包括:如果第二通信节点的物理上行控制信道PUCCH、物理上行共享信道PUSCH、SRS三者中只有一个激活的spatialRelationInfo值被配置,或者PUCCH、PUSCH、SRS三者中至少两者共享相同的波束,或者SRS的spatialRelationInfo与PUCCH和/或PUSCH的spatialRelationInfo取值相同时,则A的取值为0;否则,A的取值基于第二通信节点的能力得到。
在一些实施例中,激活的spatialRelationInfo根据最终选择出的空间关系信息得到,空间关系信息用于通过介质访问控制控制单元MAC CE信令或无线资源控制RRC信令配置的PUCCH资源或用于PUSCH的SRS资源。
在一些实施例中,当资源包括空域资源时,空域资源包括如下至少之一:发送波束、空域发送滤波器。
在一些实施例中,确定SRS的空域资源包括:
若SRS资源中的SpatialRelationInfo被配置为非周期无线信道信息参考信号CSI-RS的ID或索引时,第二通信节点使用与最近的非周期CSI-RS的空域接收滤波器相同的空域发送滤波器发送SRS资源。
在一些实施例中,最近的非周期CSI-RS的空域接收滤波器包括如下至少之一:
触发非周期SRS发送的PDCCH之前最近的非周期CSI-RS的空域接收滤波器;
发送非周期SRS之前最近的非周期CSI-RS的空域接收滤波器;
发送非周期SRS的符号位置至少N个符号之前的非周期CSI-RS的空域接收滤波器;
发送非周期SRS之前最近的触发非周期CSI-RS的PDCCH所指示的空域接收滤波器。
在一些实施例中,N的取值可以基于第二通信节点的一种能力得到,或者 基于第二通信节点的多种能力组合得到。
第十一实施例
本实施例提供了一种信号发送装置,请参考图5,该信号发送装置包括:
配置确定模块51,用于基于信令配置,或者按照预定义的方式,确定自身发送上行信号的资源;其中,资源包括如下至少之一:时域资源、空域资源;
发送模块52,用于基于确定的资源,发送上行信号。
在一些实施例中,当资源包括时域资源时,时域资源包括:对于被配置至少一个测量参考信号SRS资源配置的第二通信节点,当SRS资源中的高层参数资源类型resourceType被设置为非周期时,对于第一配置条件下的SRS,发送SRS的时域资源为满足如下SRS发送条件的时域资源,SRS发送条件包括:触发SRS发送的物理下行控制信道PDCCH的最后一个符号与SRS资源的第一个符号之间的最小时间间隔为N2+A,其中A为自然数。N 2为调度PUSCH的PDCCH符号与PUSCH符号的时序间隔,为PUSCH的准备时间,其取值可参考5G NR标准TS38.214中的6.4章节。
在一些实施例中,第一配置条件可以包括如下至少之一:
在频率范围2中SRS资源集中的用法usage被设置为码本;
在频率范围2中SRS资源集中的usage被设置为非码本;
在频率范围2中SRS资源集中的usage被设置为天线切换;
在频率范围2中SRS资源集中的usage被设置为波束管理。
在一些实施例中,A的取值大小可以与SRS资源集中所包括的SRS资源数量正相关。换言之,SRS资源集中所包括的SRS资源数量越多,A的取值越大。
在一些实施例中,A的取值可以与空间关系信息SpatialRelationInfo的配置情况相关。
在一些实施例中,SpatialRelationInfo的配置情况包括:SpatialRelationInfo的配置与否,或SpatialRelationInfo的配置数量。
例如,A的取值与SpatialRelationInfo的配置情况相关可以包括如下任意之一:
若第二通信节点未被配置SpatialRelationInfo,则A=42或A<42,否则A>42;
若已配置的SpatialRelationInfo数量小于第一预设阈值,则A=42或A<42,否则A>42;
若第二通信节点未被配置SpatialRelationInfo,则A<42,否则A=42或A>42;
若已配置的SpatialRelationInfo数量小于第二预设阈值,则A<42,否则A=42或A>42。
在一些实施例中,A的取值可以与各SRS资源中SpatialRelationInfo的配置 值是否相同相关。
例如,A的取值可以与各SRS资源中SpatialRelationInfo的配置值是否相同相关包括:
若SpatialRelationInfo的配置值相同,则A<42或A=42,否则A>42;
或,如果若SpatialRelationInfo的配置值相同,则A<42,否则A>42或A=42。
在一些实施例中,A的取值可以通过如下方式中至少之一确定:
第一通信节点基于第二通信节点的能力上报来配置A的取值;
A的取值基于第二通信节点的能力得到;
A的取值与预设参数关联。例如,包含有触发非周期CSI-RS的PDCCH的最后一个符号与非周期CSI-RS发送的最小时间间隔K。
在一些实施例中,确定所述A的取值的方法包括:当第二通信节点的物理上行控制信道PUCCH、物理上行共享信道PUSCH、SRS三者中只有一个激活的spatialRelationInfo值被配置,或者PUCCH、PUSCH、SRS三者中至少两者共享相同的波束,或者SRS的spatialRelationInfo与PUCCH和/或PUSCH的spatialRelationInfo取值相同时,则A的取值为0;否则,A的取值基于第二通信节点的能力得到。
在一些实施例中,所述激活的spatialRelationInfo根据最终选择出的空间关系信息得到,所述空间关系信息用于通过介质访问控制控制单元MAC CE信令或无线资源控制RRC信令配置的PUCCH资源,或用于PUSCH的SRS资源。
当资源包括空域资源时,空域资源包括如下至少之一:发送波束、空域发送滤波器spatial domain transmission filter。
在一些实施例中,确定SRS的空域资源可以包括:
若SRS资源中的SpatialRelationInfo被配置为非周期无线信道信息参考信号CSI-RS的ID或索引时,第二通信节点使用与最近的非周期CSI-RS的空域接收滤波器相同的空域发送滤波器发送SRS资源。
在一些实施例中,最近的非周期CSI-RS的空域接收滤波器可以包括如下至少之一:
触发非周期SRS发送的PDCCH之前最近的非周期CSI-RS的空域接收滤波器;
发送非周期SRS之前最近的非周期CSI-RS的空域接收滤波器;
发送非周期SRS的符号位置至少N个符号之前的非周期CSI-RS的空域接收滤波器;
发送非周期SRS之前最近的触发非周期CSI-RS的PDCCH所指示的空域接收滤波器。
在一些实施例中,N的取值可以基于第二通信节点的一种能力得到,或者 基于第二通信节点的至少两种能力组合得到。
第十二实施例
本实施例提供了一种信号资源确定装置,请参考图6,该信号资源确定装置包括:
资源配置模块61,用于通过信令配置的方式,或者按照预定义的方式,确定第二通信节点发送测量参考信号SRS的资源;其中,资源包括如下至少之一:时域资源、空域资源。
在一些实施例中,当资源包括时域资源时,时域资源包括:对于被配置至少一个SRS资源配置的第二通信节点,当SRS资源中的高层参数资源类型(resourceType)被设置为非周期时,对于第一配置条件下的SRS,发送SRS的时域资源为满足如下SRS发送条件的时域资源,SRS的发送条件包括:触发SRS发送的物理下行控制信道PDCCH的最后一个符号与SRS资源的第一个符号之间的最小时间间隔为N2+A,其中A为零或正整数。
在一些实施例中,第一配置条件包括如下至少之一:
在频率范围2中SRS资源集中的usage被设置为码本;
在频率范围2中SRS资源集中的usage被设置为非码本;
在频率范围2中SRS资源集中的usage被设置为天线切换;
在频率范围2中SRS资源集中的usage被设置为波束管理;
在一些实施例中,A的取值大小与SRS资源集中所包括的SRS资源数量正相关。
在一些实施例中,A的取值与SpatialRelationInfo的配置情况相关。
在一些实施例中,SpatialRelationInfo的配置情况包括:SpatialRelationInfo的配置与否,或SpatialRelationInfo的配置数量。
在一些实施例中,A的取值与SpatialRelationInfo的配置情况相关包括如下任意之一:
若第二通信节点未被配置SpatialRelationInfo,则A=42或A<42,否则A>42;
若已配置的SpatialRelationInfo数量小于第一预设阈值,则A=42或A<42,否则A>42;
若第二通信节点未被配置SpatialRelationInfo,则A<42,否则A=42或A>42;
若已配置的SpatialRelationInfo数量小于第二预设阈值,则A<42,否则A=42或A>42。
在一些实施例中,A的取值与各SRS资源中SpatialRelationInfo的配置值是否相同相关。
在一些实施例中,A的取值与各SRS资源中SpatialRelationInfo的配置值是 否相同相关包括:
若SpatialRelationInfo的配置值相同,则A<42或A=42,否则A>42;
或,若SpatialRelationInfo的配置值相同,则A<42,否则A>42或A=42。
在一些实施例中,A的取值通过第一通信节点基于第二通信节点的能力上报来配置,或者,A的取值基于第二通信节点的能力得到,或者,A的取值与预设参数关联。
在一些实施例中,确定A的取值的方法包括:如果第二通信节点的物理上行控制信道PUCCH、物理上行共享信道PUSCH、SRS三者中只有一个激活的spatialRelationInfo值被配置,或者PUCCH、PUSCH、SRS三者中至少两者共享相同的波束,或者SRS的spatialRelationInfo与PUCCH和/或PUSCH的spatialRelationInfo取值相同时,则A的取值为0;否则,A的取值基于第二通信节点的能力得到。
在一些实施例中,激活的spatialRelationInfo根据最终选择出的空间关系信息得到,空间关系信息用于通过介质访问控制控制单元MAC CE信令或无线资源控制RRC信令配置的PUCCH资源或用于PUSCH的SRS资源。
在一些实施例中,当资源包括空域资源时,空域资源包括如下至少之一:发送波束、空域发送滤波器。
在一些实施例中,确定SRS的空域资源包括:
若SRS资源中的SpatialRelationInfo被配置为非周期无线信道信息参考信号CSI-RS的ID或索引时,第二通信节点使用与最近的非周期CSI-RS的空域接收滤波器相同的空域发送滤波器发送SRS资源。
在一些实施例中,最近的非周期CSI-RS的空域接收滤波器包括如下至少之一:
触发非周期SRS发送的PDCCH之前最近的非周期CSI-RS的空域接收滤波器;
发送非周期SRS之前最近的非周期CSI-RS的空域接收滤波器;
发送非周期SRS的符号位置至少N个符号之前的非周期CSI-RS的空域接收滤波器;
发送非周期SRS之前最近的触发非周期CSI-RS的PDCCH所指示的空域接收滤波器。
在一些实施例中,N的取值可以基于第二通信节点的一种能力得到,或者基于第二通信节点的多种能力组合得到。
第十三实施例
本实施例还提供了一种终端,参见图7所示,其包括第一处理器71、第一 存储器72以及第一通信总线73,其中:
第一通信总线73用于实现第一处理器71和第一存储器72之间的连接通信;
第一处理器71用于执行第一存储器72中存储的一个或者多个计算机程序,以实现上述各实施例中的信号发送方法的步骤,这里不再赘述。
第十四实施例
本实施例还提供了一种基站,参见图8所示,其包括第二处理器81、第二存储器82以及第二通信总线83,其中:
第二通信总线83用于实现第二处理器81和第二存储器82之间的连接通信;
第二处理器81用于执行第二存储器82中存储的一个或者多个计算机程序,以实现上述各实施例中的信号资源确定方法的步骤,这里不再赘述。
本实施例还提供了一种计算机可读存储介质,该计算机可读存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、计算机程序模块或其他数据)的任何方法或技术中实施的易失性或非易失性、可移除或不可移除的介质。计算机可读存储介质包括但不限于RAM(Random Access Memory,随机存取存储器),ROM(Read-Only Memory,只读存储器),EEPROM(Electrically Erasable Programmable read only memory,带电可擦可编程只读存储器)、闪存或其他存储器技术、CD-ROM(Compact Disc Read-Only Memory,光盘只读存储器),数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。
本实施例中的计算机可读存储介质可用于存储一个或者多个计算机程序,其存储的一个或者多个计算机程序可被处理器执行,以实现上述各实施例中的信号发送方法的至少一个步骤,或信号资源确定方法的至少一个步骤。
本实施例还提供了一种计算机程序(或称计算机软件),该计算机程序可以分布在计算机可读介质上,由可计算装置来执行,以实现上述各实施例中的信号发送方法的至少一个步骤,或信号资源确定方法的至少一个步骤。
本实施例还提供了一种计算机程序产品,包括计算机可读装置,该计算机可读装置上存储有如上所示的计算机程序。本实施例中该计算机可读装置可包括如上所示的计算机可读存储介质。
可见,本领域的技术人员应该明白,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件(可以用计算装置可执行的计算机程序代码来实现)、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分; 例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。
此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、计算机程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。所以,本申请不限制于任何特定的硬件和软件结合。
以上内容是结合例如实施方式对本发明实施例所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本申请的保护范围。

Claims (37)

  1. 一种信号发送方法,包括:
    第二通信节点基于信令配置,或者按照预定义的方式,确定所述第二通信节点自身发送上行信号的资源;
    基于确定的所述资源,发送上行信号。
  2. 如权利要求1所述的信号发送方法,其中,所述资源包括时域资源,所述时域资源包括:对于被配置至少一个测量参考信号SRS资源配置的第二通信节点,在SRS资源中的高层参数资源类型resourceType被设置为非周期的情况下,对于第一配置条件下的SRS,发送SRS的时域资源为满足SRS发送条件的时域资源;所述SRS发送条件包括:触发所述SRS发送的物理下行控制信道PDCCH的最后一个符号与所述SRS资源的第一个符号之间的最小时间间隔为N2+A,其中N 2为调度PUSCH的PDCCH符号与PUSCH符号的时序间隔,A为自然数。
  3. 如权利要求2所述的信号发送方法,其中,所述第一配置条件包括如下至少之一:
    在频率范围2中SRS资源集中的用法usage被设置为码本;
    在频率范围2中SRS资源集中的usage被设置为非码本;
    在频率范围2中SRS资源集中的usage被设置为天线切换;
    在频率范围2中SRS资源集中的usage被设置为波束管理;
    其中,所述频率范围2为24250MHz–52600MHz。
  4. 如权利要求2所述的信号发送方法,其中,所述A的取值大小与SRS资源集中所包括的SRS资源数量正相关。
  5. 如权利要求2所述的信号发送方法,其中,所述A的取值与空间关系信息SpatialRelationInfo的配置情况相关。
  6. 如权利要求5所述的信号发送方法,其中,所述SpatialRelationInfo的配置情况包括:所述SpatialRelationInfo的配置与否,或所述SpatialRelationInfo的配置数量。
  7. 如权利要求5所述的信号发送方法,其中,所述A的取值与SpatialRelationInfo的配置情况相关包括如下任意之一:
    在所述第二通信节点未被配置SpatialRelationInfo的情况下,A=42或A<42;在所述第二通信节点被配置SpatialRelationInfo的情况下,A>42;
    在已配置的SpatialRelationInfo数量小于第一预设阈值的情况下,A=42或A<42;在已配置的SpatialRelationInfo数量大于或等于第一预设阈值的情况下,A>42;
    在所述第二通信节点未被配置SpatialRelationInfo的情况下,A<42;在所述第二通信节点被配置SpatialRelationInfo的情况下,A=42或A>42;
    在已配置的SpatialRelationInfo数量小于第二预设阈值的情况下,A<42;在已配置的SpatialRelationInfo数量大于或等于第二预设阈值的情况下,A=42或A>42。
  8. 如权利要求2所述的信号发送方法,其中,所述A的取值与至少一个SRS资源中SpatialRelationInfo的配置值是否相同相关。
  9. 如权利要求8所述的信号发送方法,其中,所述A的取值与至少一个SRS资源中SpatialRelationInfo的配置值是否相同相关包括:
    在至少一个SRS资源中SpatialRelationInfo的配置值相同的情况下,A<42或A=42;在至少一个SRS资源中SpatialRelationInfo的配置值不相同的情况下,A>42;
    或,在至少一个SRS资源中SpatialRelationInfo的配置值相同的情况下,A<42;在至少一个SRS资源中SpatialRelationInfo的配置值不相同的情况下,A>42或A=42。
  10. 如权利要求2所述的信号发送方法,其中,所述A的取值通过如下方式中至少之一确定:
    第一通信节点基于第二通信节点的能力上报来配置所述A的取值;
    所述A的取值基于第二通信节点的能力得到;
    所述A的取值与预设参数关联。
  11. 如权利要求2所述的信号发送方法,其中,确定所述A的取值的方法包括:
    在满足以下之一条件的情况下,A的取值为0或B1:
    第二通信节点的物理上行控制信道PUCCH、物理上行共享信道PUSCH、SRS三者中只有一个激活的spatialRelationInfo值被配置;PUCCH、PUSCH、SRS三者中至少两者共享相同的波束;SRS的spatialRelationInfo与PUCCH和PUSCH中至少一种的spatialRelationInfo取值相同;
    在以下所有条件都不满足的情况下,A的取值基于第二通信节点的能力得到,或A的取值为B2:
    第二通信节点的物理上行控制信道PUCCH、物理上行共享信道PUSCH、SRS三者中只有一个激活的spatialRelationInfo值被配置;PUCCH、PUSCH、SRS三者中至少两者共享相同的波束;SRS的spatialRelationInfo与PUCCH和PUSCH中至少一种的spatialRelationInfo取值相同;
    其中,B1、B2的取值为正整数,且B2>B1。
  12. 如权利要求11所述的信号发送方法,其中,所述激活的spatialRelationInfo根据最终选择出的空间关系信息得到,所述空间关系信息用于通过介质访问控制控制单元MAC CE信令或无线资源控制RRC信令配置的 PUCCH资源,或用于PUSCH的SRS资源。
  13. 如权利要求1所述的信号发送方法,其中,所述资源包括空域资源,所述空域资源包括如下至少之一:发送波束、空域发送滤波器spatial domain transmission filter、空域接收滤波器spatial domain reception filter。
  14. 如权利要求13所述的信号发送方法,其中,确定所述SRS的空域资源包括:
    在所述SRS资源中的SpatialRelationInfo被配置为非周期无线信道信息参考信号CSI-RS的ID或索引的情况下,第二通信节点使用与最近的非周期CSI-RS的空域接收滤波器相同的空域发送滤波器发送所述SRS资源。
  15. 如权利要求14所述的信号发送方法,其中,所述最近的非周期CSI-RS的空域接收滤波器包括如下至少之一:
    触发非周期SRS发送的PDCCH之前最近的非周期CSI-RS的空域接收滤波器;
    发送非周期SRS之前最近的非周期CSI-RS的空域接收滤波器;
    发送非周期SRS的符号位置至少N个符号之前的非周期CSI-RS的空域接收滤波器;
    发送非周期SRS之前最近的触发非周期CSI-RS的PDCCH所指示的空域接收滤波器。
  16. 如权利要求15所述的信号发送方法,其中,所述N的取值基于第二通信节点的一种能力得到,或者基于第二通信节点的至少两种能力组合得到。
  17. 一种上行信号资源确定方法,包括:
    第一通信节点通过信令配置的方式,或者按照预定义的方式,确定第二通信节点发送测量参考信号SRS的资源。
  18. 如权利要求17所述的信号资源确定方法,其中,所述资源包括时域资源,所述时域资源包括:对于被配置至少一个SRS资源配置的第二通信节点,在SRS资源中的高层参数资源类型resourceType被设置为非周期的情况下,对于第一配置条件下的SRS,发送SRS的时域资源为满足如下SRS发送条件的时域资源,所述SRS的发送条件包括:触发所述SRS发送的物理下行控制信道PDCCH的最后一个符号与所述SRS资源的第一个符号之间的最小时间间隔为N2+A,其中N 2为调度PUSCH的PDCCH符号与PUSCH符号的时序间隔,A为零或正整数。
  19. 如权利要求18所述的信号资源确定方法,其中,所述第一配置条件包括如下至少之一:
    在频率范围2中SRS资源集中的usage被设置为码本;
    在频率范围2中SRS资源集中的usage被设置为非码本;
    在频率范围2中SRS资源集中的usage被设置为天线切换;
    在频率范围2中SRS资源集中的usage被设置为波束管理;
    其中,所述频率范围2为24250MHz–52600MHz。
  20. 如权利要求18所述的信号资源确定方法,其中,所述A的取值大小与SRS资源集中所包括的SRS资源数量正相关。
  21. 如权利要求18所述的信号资源确定方法,其中,所述A的取值与SpatialRelationInfo的配置情况相关。
  22. 如权利要求21所述的信号资源确定方法,其中,所述SpatialRelationInfo的配置情况包括:所述SpatialRelationInfo的配置与否,或所述SpatialRelationInfo的配置数量。
  23. 如权利要求21所述的信号资源确定方法,其中,所述A的取值与SpatialRelationInfo的配置情况相关包括如下任意之一:
    在若所述第二通信节点未被配置SpatialRelationInfo的情况下,A=42或A<42;在所述第二通信节点被配置SpatialRelationInfo的情况下,A>42;
    在已配置的SpatialRelationInfo数量小于第一预设阈值的情况下,A=42或A<42;在已配置的SpatialRelationInfo数量大于或等于第一预设阈值的情况下,A>42;
    在所述第二通信节点未被配置SpatialRelationInfo的情况下,A<42;在所述第二通信节点被配置SpatialRelationInfo的情况下,A=42或A>42;
    在已配置的SpatialRelationInfo数量小于第二预设阈值的情况下,A<42;在已配置的SpatialRelationInfo数量大于或等于第二预设阈值的情况下,A=42或A>42。
  24. 如权利要求18所述的信号资源确定方法,其中,所述A的取值与SRS资源中SpatialRelationInfo的配置值是否相同相关。
  25. 如权利要求24所述的信号资源确定方法,其中,所述A的取值与SRS资源中SpatialRelationInfo的配置值是否相同相关包括:
    在SRS资源中SpatialRelationInfo的配置值相同的情况下,A<42或A=42;在SRS资源中SpatialRelationInfo的配置值不相同的情况下,A>42;
    或,在SRS资源中SpatialRelationInfo的配置值相同的情况下,A<42;在SRS资源中SpatialRelationInfo的配置值不相同的情况下,A>42或A=42。
  26. 如权利要求18所述的信号资源确定方法,其中,所述A的取值通过第一通信节点基于第二通信节点的能力上报来配置,或者,所述A的取值基于第二通信节点的能力得到,或者,所述A的取值与预设参数关联。
  27. 如权利要求18所述的信号资源确定方法,其中,确定所述A的取值的方法包括:
    在以下之一的情况下,A的取值为0或B1:
    第二通信节点的物理上行控制信道PUCCH、物理上行共享信道PUSCH、SRS三者中只有一个激活的spatialRelationInfo值被配置;PUCCH、PUSCH、SRS三者中至少两者共享相同的波束;SRS的spatialRelationInfo与PUCCH和PUSCH中至少一种的spatialRelationInfo取值相同;
    在以下所有条件都不满足的情况下,A的取值基于第二通信节点的能力得到,或A的取值为B2:
    第二通信节点的物理上行控制信道PUCCH、物理上行共享信道PUSCH、SRS三者中只有一个激活的spatialRelationInfo值被配置;PUCCH、PUSCH、SRS三者中至少两者共享相同的波束;SRS的spatialRelationInfo与PUCCH和PUSCH中至少一种的spatialRelationInfo取值相同;
    其中,B1、B2的取值为正整数,且B2>B1。
  28. 如权利要求27所述的信号资源确定方法,其中,所述激活的spatialRelationInfo根据最终选择出的空间关系信息得到,所述空间关系信息用于通过介质访问控制控制单元MAC CE信令或无线资源控制RRC信令配置的PUCCH资源或用于PUSCH的SRS资源。
  29. 如权利要求17所述的信号资源确定方法,其中,所述资源包括空域资源,所述空域资源包括如下至少之一:发送波束、空域发送滤波器、空域接收滤波器。
  30. 如权利要求29所述的信号资源确定方法,其中,确定所述SRS的空域资源包括:
    在所述SRS资源中的SpatialRelationInfo被配置为非周期无线信道信息参考信号CSI-RS的ID或索引的情况下,第二通信节点使用与最近的非周期CSI-RS的空域接收滤波器相同的空域发送滤波器发送所述SRS资源。
  31. 如权利要求30所述的信号资源确定方法,其中,所述最近的非周期CSI-RS的空域接收滤波器包括如下至少之一:
    触发非周期SRS发送的PDCCH之前最近的非周期CSI-RS的空域接收滤波器;
    发送非周期SRS之前最近的非周期CSI-RS的空域接收滤波器;
    发送非周期SRS的符号位置至少N个符号之前的非周期CSI-RS的空域接收滤波器;
    发送非周期SRS之前最近的触发非周期CSI-RS的PDCCH所指示的空域接收滤波器。
  32. 如权利要求31所述的信号资源确定方法,其中,所述N的取值基于第二通信节点的一种能力得到,或者基于第二通信节点的多种能力组合得到。
  33. 一种信号发送装置,包括:
    配置确定模块(51),设置为基于信令配置,或者按照预定义的方式,确定所述第二通信节点自身发送上行信号的资源;其中,所述资源包括如下至少之一:时域资源、空域资源;
    发送模块(52),设置为基于确定的所述资源,发送上行信号。
  34. 一种信号资源确定装置,包括:
    资源配置模块(61),设置为通过信令配置的方式,或者按照预定义的方式,确定第二通信节点发送测量参考信号SRS的资源;其中,所述资源包括如下至少之一:时域资源、空域资源。
  35. 一种终端,所述网络设备包括第一处理器(71)、第一存储器(72)以及第一通信总线(73);
    所述第一通信总线(73)设置为实现第一处理器(71)和第一存储器(72)之间的连接通信;
    所述第一处理器(71)设置为执行第一存储器(72)中存储的至少一个计算机程序,以实现如权利要求1-16中任一项所述的信号发送方法。
  36. 一种基站,所述基站网络设备包括第二处理器(81)、第二存储器(82)以及第二通信总线(83);
    所述第二通信总线(83)设置为实现第二处理器(81)和第二存储器(82)之间的连接通信;
    所述第二处理器(81)设置为执行第二存储器(82)中存储的至少一个计算机程序,以实现如权利要求17-32中任一项所述的信号资源确定方法。
  37. 一种计算机可读存储介质,所述计算机可读存储介质存储有至少一个计算机程序,所述至少一个计算机程序可被至少一个处理器执行,以实现如权利要求1-16中任一项所述的信号发送方法,或如权利要求17-32中任一项所述的信号资源确定方法。
PCT/CN2019/108969 2018-09-28 2019-09-29 信号发送、资源确定方法、装置、终端、基站和存储介质 WO2020063958A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811142396.8A CN110535593B (zh) 2018-09-28 2018-09-28 信号发送、资源确定方法、装置、终端、基站和存储介质
CN201811142396.8 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020063958A1 true WO2020063958A1 (zh) 2020-04-02

Family

ID=68658944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108969 WO2020063958A1 (zh) 2018-09-28 2019-09-29 信号发送、资源确定方法、装置、终端、基站和存储介质

Country Status (2)

Country Link
CN (1) CN110535593B (zh)
WO (1) WO2020063958A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111130742B (zh) * 2019-12-27 2021-12-03 北京紫光展锐通信技术有限公司 上行srs传输方法、装置及存储介质
CN111901079A (zh) * 2020-01-03 2020-11-06 中兴通讯股份有限公司 参考信号发送、接收方法、装置、通信节点及介质
WO2021248449A1 (en) * 2020-06-12 2021-12-16 Lenovo (Beijing) Limited Methods and apparatus for configuring csi-rs resource for srs resource set
WO2023019466A1 (zh) * 2021-08-18 2023-02-23 Oppo广东移动通信有限公司 无线通信的方法和终端设备
WO2023035184A1 (zh) * 2021-09-09 2023-03-16 Oppo广东移动通信有限公司 无线通信的方法和终端设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204549A1 (ko) * 2015-06-19 2016-12-22 삼성전자 주식회사 무선 통신 시스템에서 기준 신호 전송 방법 및 장치
WO2018128365A1 (ko) * 2017-01-05 2018-07-12 엘지전자(주) 무선 통신 시스템에서 물리 상향링크 제어 채널 전송 방법 및 이를 위한 장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107888255B (zh) * 2016-09-30 2023-07-14 中兴通讯股份有限公司 上行参考信号的发送方法、装置及系统,基站和终端
CN108289324A (zh) * 2017-01-09 2018-07-17 中兴通讯股份有限公司 发送功率的确定方法、装置及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204549A1 (ko) * 2015-06-19 2016-12-22 삼성전자 주식회사 무선 통신 시스템에서 기준 신호 전송 방법 및 장치
US20180183556A1 (en) * 2015-06-19 2018-06-28 Samsung Electronics Co., Ltd. Method and apparatus for transmitting reference signal in wireless communication system
WO2018128365A1 (ko) * 2017-01-05 2018-07-12 엘지전자(주) 무선 통신 시스템에서 물리 상향링크 제어 채널 전송 방법 및 이를 위한 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SONY: "Summary of SRS", 3GPP TSG RAN WGI MEETING #94, R1-1809814, 24 August 2018 (2018-08-24), pages 22, 35, 36, 40, 46 - 48, XP051517171 *

Also Published As

Publication number Publication date
CN110535593B (zh) 2022-12-02
CN110535593A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
US11637667B2 (en) Method and apparatus for transmitting and receiving uplink signal, storage medium, and electronic device
JP6730521B2 (ja) 無線通信システムにおけるcsi報告を遂行するための方法及びそのための装置
AU2018342485B2 (en) Information transmission method and apparatus
WO2021073508A1 (zh) 传输方法、装置、第一通信节点、第二通信节点及介质
JP6657474B2 (ja) 無線通信システムにおけるcsi報告を遂行するための方法及びそのための装置
WO2019170089A1 (zh) 信息传输的方法、装置和通信节点
CN113541905B (zh) 信道配置、功控方法和装置、用户设备、基站及存储介质
CN111510267B (zh) 波束指示的方法和通信装置
WO2020063958A1 (zh) 信号发送、资源确定方法、装置、终端、基站和存储介质
US11088796B2 (en) Method and device for indicating uplink reference signal information, and storage medium
CN108112065B (zh) 发送功率的确定、信令配置方法及装置、终端、基站
WO2018202215A1 (zh) 配置上行信号的方法及装置、确定上行信号的方法及装置
WO2020253713A1 (zh) 路损参考信号指示方法及装置、终端、基站及存储介质
RU2713603C1 (ru) Способ и устройство для пропуска передачи транспортного блока в зависимости от передачи управляющей информации восходящего канала
US20220303077A1 (en) PRB Bundling Extension
EP3860091B1 (en) Information receiving method and device and information sending method and device
KR20220129516A (ko) 수신을 처리하기 위한 기기 및 방법
CN108123785B (zh) 通信方法及系统
US11159290B2 (en) Device and method for handling a sounding reference signal transmission
CN116783840A (zh) 对多trp场景中波束组报告的增强
EP4150834A1 (en) Signaling support for enhanced frequency hopping for ap srs
CN115715456A (zh) 用于上行链路发送波束选择的方法和装置
KR102489182B1 (ko) 통신 방법 및 시스템
WO2020030158A1 (zh) 上行信号的资源确定方法、设备和计算机可读存储介质
CN108631835B (zh) 一种传输方式的信令指示方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.08.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19866236

Country of ref document: EP

Kind code of ref document: A1