WO2023131086A1 - 确定电池荷电状态的方法、装置、电子设备及存储介质 - Google Patents

确定电池荷电状态的方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2023131086A1
WO2023131086A1 PCT/CN2022/144211 CN2022144211W WO2023131086A1 WO 2023131086 A1 WO2023131086 A1 WO 2023131086A1 CN 2022144211 W CN2022144211 W CN 2022144211W WO 2023131086 A1 WO2023131086 A1 WO 2023131086A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
battery
state
correction
corrections
Prior art date
Application number
PCT/CN2022/144211
Other languages
English (en)
French (fr)
Inventor
李玉涛
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2023131086A1 publication Critical patent/WO2023131086A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of battery management, and in particular to a method, device, electronic equipment and storage medium for determining the state of charge of a battery.
  • the state of charge of the battery is an important indicator for evaluating the current state of the battery. Whether it is the calculation of the SOC of the ternary battery or the calculation of the SOC of the lithium iron phosphate battery, after multiple cycles (Cycle) use, the calculation of the SOC of the battery has a large deviation, which in turn reduces the accuracy of the battery SOC calculation.
  • the present application provides a method, device, electronic equipment and storage medium for determining the state of charge of a battery, which can improve the accuracy of battery SOC calculation.
  • the embodiment of the present application provides a method for determining the state of charge of a battery, the method comprising: determining the number of charge/discharge cycles experienced by the battery between two state of charge corrections, the number of charge/discharge cycles experienced by the battery, The first state of charge before the current correction, the second state of charge after the current correction of the battery; the current correction is the second correction in the two state of charge corrections; according to the charging/discharging The number of cycles, the first state of charge, the second state of charge, the first unit system error obtained when the battery was previously corrected, and the second unit system error when the current correction occurred for the battery Error, the previous correction is the first correction in the two state of charge corrections; based on the second unit system error, the battery after the current correction and before the next state of charge correction The state of charge of the battery is corrected to obtain the corrected state of charge of the battery.
  • the first unit systematic error of the battery is determined to determine the second unit systematic error of the battery when the current correction occurs, and then based on the second unit systematic error, the state of charge of the battery is corrected after the current correction and before the next state of charge correction. In this way, the corrected state of charge of the battery can be obtained.
  • the unit system error of the battery in each cycle can be obtained, and then the system standard error is corrected to each cycle of the battery after this state of charge correction and before the next state of charge correction
  • the calculation accuracy of the battery state of charge can be greatly improved, and then the problem of increasing the cumulative error of the battery state of charge caused by no chance of correction for a long time can be solved.
  • a new unit system error will be obtained, so that the system error can change with the continuous correction of the state of charge of the battery, making the system error adaptive and further improving the battery charge. Accuracy of electrical state calculations.
  • the correcting the state of charge of the battery after the current correction and before the next state of charge correction based on the second unit system error includes: determining that the current correction occurs The rate of change of the battery from the third state of charge to the fourth state of charge after and before the next state of charge correction; based on the product of half of the second unit system error and the rate of change, the first Result: using the first result to correct the fourth state of charge.
  • the unit system error corresponding to the current correction is decomposed by the rate of change of the battery state of charge twice after the current correction and before the next state of charge correction, and then the decomposed results are used to calculate the change rate according to the preset state of charge change step.
  • the state of charge of the long-term battery is corrected, and the real-time correction of the state of charge of the battery based on the unit system error is realized, thereby improving the accuracy of the calculation of the state of charge of the battery.
  • the method before correcting the SOC of the battery after the current correction and before the next SOC correction based on the second unit system error, the method further includes: Acquire the actual balanced capacity value corresponding to the battery, the actual balanced capacity value is the capacity value of a certain battery that is erased between two revisions of the battery pack where the battery is located; The actual balanced capacity value corresponding to the battery is added to the second unit systematic error to obtain the added second unit systematic error.
  • the actual balanced capacity value corresponding to the battery during the charging and discharging process is introduced, and the actual balanced capacity value is added to the calculated unit system error.
  • the balance problem of the battery is also taken into consideration, so as to further improve the accuracy of calculating the state of charge of the battery.
  • the first state of charge, the second state of charge, and the first unit system error obtained when the battery was last corrected determine The second unit systematic error when the current correction occurs to the battery includes: obtaining a second result based on the difference between the second state of charge and the first state of charge; A quotient of the number of charge/discharge cycles is used to obtain a third result; based on the sum of the third result and the first unit systematic error, the second unit systematic error is determined.
  • the difference between the second state of charge of the battery before the current correction and the first state of charge of the battery after the current correction, and then the charge/discharge cycle experienced by the battery between the current correction and the previous correction The quotient of the number, and then the sum of the first unit systematic error obtained in the previous correction, can obtain the second unit systematic error in the current correction, so as to update the corresponding unit systematic error in each state of charge correction. , making the system error self-adaptive, and further improving the accuracy of battery state-of-charge calculation.
  • the determining the number of charging/discharging cycles experienced by the battery between two state-of-charge corrections includes: determining the accumulated charge/discharge cycles of the battery between two state-of-charge corrections Discharge capacity; based on the quotient of the charge/discharge capacity and the battery's own capacity, the number of charge/discharge cycles experienced by the battery between the two state-of-charge corrections is determined.
  • the number of charge/discharge cycles experienced by the battery between two state-of-charge corrections is determined by the accumulated charge/discharge capacity of the battery between two state-of-charge corrections and the battery's own capacity, because the accumulated charge/discharge capacity can be accurately Obtaining, therefore, can also more accurately obtain the number of charge/discharge cycles experienced by the battery between two SOC corrections, thereby improving the accuracy of battery SOC calculations.
  • the two state-of-charge corrections are two adjacent state-of-charge corrections of the battery during charging and discharging; the determination that the battery is between the two state-of-charge corrections cumulative charge/discharge capacity, comprising: when the two state-of-charge corrections occur when the battery is at a high state of charge, based on the charging current and charge of the battery between the two state-of-charge corrections A product of time to determine the cumulative charge capacity of the battery between the two SOC corrections; the high SOC is a SOC higher than 50%; when the two SOC corrections occur When the battery is in a low state of charge, determining that the battery is between the two state of charge corrections based on the product of the discharge current and the discharge time of the battery between the two state of charge corrections Cumulative discharge capacity; said low state of charge is a state of charge below 50%.
  • the charging/discharging capacity of the battery can be obtained more accurately, thereby improving the accuracy of calculating the state of charge of the battery.
  • the correcting the SOC of the battery after the current correction and before the next SOC correction based on the second unit system error includes: when the second unit When the system error is within the preset valid range, based on the second unit system error, correcting the state of charge of the battery after the current correction and before the next state of charge correction; the method further includes : When the second unit system error is not within the preset effective range, based on the first unit system error, perform the state of charge of the battery after the current correction and before the next state of charge correction Make corrections.
  • the unit system error calculated at the current correction is within the preset valid range, only when the unit system error calculated at the current correction is within the preset valid range, it is based on the unit system error calculated at the current correction.
  • the SOC of the battery is corrected after the current correction and before the next SOC correction.
  • the SOC of the battery after the current correction and before the next SOC correction is based on the unit system error calculated at the previous correction. Make corrections. In this way, correcting the state of charge of the battery by using a wrong unit system error can be avoided, and the accuracy of calculating the state of charge of the battery can be further improved.
  • the first unit system error is: a charge and discharge test obtained after charging and discharging tests on multiple battery packs An average systematic error over a cycle; or, a systematic error determined based on an accuracy error of a current sensor connected to the battery; or, zero.
  • the system error corresponding to the first SOC correction is set, that is, the initial value of the system error is set, so that in the subsequent SOC correction, It can ensure continuous adaptive correction of the system error corresponding to each state of charge correction, that is, the second unit system error.
  • the embodiment of the present application provides a device for determining the state of charge of a battery, the device comprising: a determination module, configured to determine the number of charge/discharge cycles experienced by the battery between two state of charge corrections , the first state of charge of the battery before the current correction, and the second state of charge of the battery after the current correction; the current correction is the second correction in the two state of charge corrections; calculation A module, configured to determine the occurrence of the battery according to the number of charge/discharge cycles, the first state of charge, the second state of charge, and the first unit system error obtained when the battery was corrected last time.
  • the second unit systematic error at the time of the current correction, the previous correction is the first correction in the two state of charge corrections; a correction module is configured to, based on the second unit systematic error, correct the occurred Correcting the state of charge of the battery after the current correction and before the next state of charge correction, to obtain the corrected state of charge of the battery.
  • the embodiment of the present application provides an electronic device, including: a processor, a memory, and a bus; wherein, the processor and the memory complete communication with each other through the bus; the processor is used to call Program instructions in the memory to perform the method of the first aspect.
  • an embodiment of the present application provides a computer-readable storage medium, which is characterized by comprising: a stored program; wherein, when the program is running, the device where the storage medium is located is controlled to execute the method in the first aspect .
  • FIG. 1 is a schematic flow chart of a method for determining the state of charge of a battery in an embodiment of the present application
  • Fig. 2 is a schematic flow chart of determining the number of charge/discharge cycles in the embodiment of the present application
  • Fig. 3 is a schematic flow chart of determining the unit systematic error in the embodiment of the present application.
  • FIG. 4 is a schematic flow chart of correcting the state of charge of the battery in the embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a device for determining the state of charge of a battery in an embodiment of the present application
  • Fig. 6 is a schematic structural diagram II of the device for determining the state of charge of the battery in the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an electronic device in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a complete process for determining the state of charge of a battery in an embodiment of the present application.
  • an embodiment means that a particular feature or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the occurrences of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It is understood explicitly and implicitly by those skilled in the art that the embodiments described herein can be combined with other embodiments.
  • multiple refers to more than two (including two), similarly, “multiple groups” refers to more than two groups (including two), and “multiple pieces” refers to More than two pieces (including two pieces).
  • the calculation of power battery SOC is an important indicator for evaluating the current state of the battery.
  • the SOC of the ternary battery it is usually calculated using the method of ampere-hour integration + closed-loop algorithm, and a certain correction strategy is used to correct the error.
  • the SOC of the lithium iron phosphate battery it is usually calculated using the ampere-hour integral method, and a certain correction strategy is also used to correct the error.
  • the weight factor found through the weight table also has errors.
  • the weight factor itself also has errors. In this way, the weighting factor is used to correct the current current of the battery, and the corrected current is no longer true and accurate. Furthermore, if the SOC is calculated through the corrected current, an error will be introduced again, and the accuracy of the battery SOC calculation will still be reduced.
  • the inventor found that using the ampere-hour integration method to calculate the SOC of the battery, and correcting the calculated SOC with a certain correction strategy, the reason for the inaccurate calculation of the battery SOC is that: in the actual use of the battery, The interval between two corrections is long, which leads to the accumulation of SOC errors when the battery has no chance to correct for a long time. That is to say, in the case of continuous use of the battery, or when the battery has undergone multiple cycles (Cycle, refers to the accumulation of a nominal charge capacity and discharge capacity of the battery) without correction opportunities, it mainly depends on safety Time integration is used to calculate SOC.
  • the embodiments of the present application provide a method, device, electronic device, and storage medium for determining the state of charge of a battery, by determining the number of charging/discharging cycles and the subsequent The state of charge before and after the first state of charge correction, and then through the determined number of charge/discharge cycles, state of charge, and the unit system error calculated during the previous state of charge correction, calculate the next state of charge correction (that is, the current state of charge correction The unit system error corresponding to the state of charge correction), and then based on the currently calculated unit system error, any state of charge of the battery before the next state of charge correction is corrected.
  • the state of charge of the battery is corrected in real time, so that the obtained corrected state of charge of the battery does not have accumulated errors. It can be seen that using the method, device, electronic device, and storage medium for determining the state of charge of a battery provided in the embodiments of the present application can improve the accuracy of calculating the state of charge of a battery.
  • the method, device, electronic device, and storage medium for determining the state of charge of the battery provided in the embodiments of the present application can be applied to a battery management system (Battery Management System, BMS), and can also be used to calculate other battery SOC. in the device.
  • BMS Battery Management System
  • Specific usage scenarios of the method, device, electronic device, and storage medium for determining the state of charge of a battery provided in the embodiments of the present application are not limited here.
  • Fig. 1 is a schematic flowchart of a method for determining the state of charge of a battery in an embodiment of the present application. Referring to Fig. 1, the method may include:
  • S101 Determine the number of charging/discharging cycles experienced by the battery between two SOC corrections, the first SOC of the battery before the current correction, and the second SOC of the battery after the current correction.
  • the current correction is the second correction in the two state of charge corrections.
  • the correction refers to the correction of the parameter of the state of charge of the battery, that is, state of charge correction.
  • state of charge correction For example, a battery is repeatedly charged and discharged during use. When the battery is discharged, its state of charge changes from 100% to 0%, and when it is recharged, its state of charge changes from 0% to 90%. At this time, a correction may be made to the state of charge of the battery. When the state of charge is corrected to 91%. Next, the battery is re-discharged from 91% to 10% SOC, and recharged from 10% to 87% SOC, at which point one more correction may be made for the battery's SOC.
  • the state of charge of the battery may also be corrected when the battery is in a relatively low state of charge, and the specific timing for performing state of charge correction is not limited here.
  • the battery may have experienced multiple charge and discharge processes, that is, the number of charge/discharge cycles.
  • the number of charging cycles is 1, after two charging processes, the number of charging cycles is 2, and so on.
  • the number of discharge cycles is 1, after two discharge processes, the number of discharge cycles is 2, and so on.
  • the way to obtain the number of charging/discharging cycles it can be determined by dividing the accumulated charging/discharging capacity of the battery between two state-of-charge corrections by the battery's own capacity, or it can be determined from the record of the charging/discharging cycle number of the battery. obtained from the list.
  • the specific manner of obtaining the number of charging/discharging cycles is not limited here.
  • the battery's state of charge Before and after a correction is made to the battery's state of charge, the battery's state of charge will be slightly adjusted. For example: before a certain correction is made to the battery's state of charge, the battery's state of charge is 20%. After this correction to the battery's state of charge, the battery's state of charge becomes 19.5%. The above 20% can be regarded as the first state of charge of the battery before the current correction occurs. The above 19.5% can be considered as the second state of charge of the battery after the current correction. As for the specific way of obtaining the first state of charge and the second state of charge, it can be directly obtained through the records in the battery management system, or can be obtained through the measurement of the ammeter and the ampere-hour algorithm. The specific manner of obtaining the first state of charge and the second state of charge is not limited here.
  • S102 According to the number of charge/discharge cycles, the first state of charge, the second state of charge, and the first unit systematic error obtained when the battery was previously corrected, determine the second unit systematic error when the battery is currently corrected.
  • the previous correction is the first correction in the two state of charge corrections.
  • the first state-of-charge before the current correction, and the second state-of-charge after the current correction combine the battery with the previous state-of-charge
  • the first unit systematic error obtained during correction can be used to obtain the second unit systematic error when the battery is currently corrected.
  • the first unit system error and the second unit system error refer to the corrected average state of charge when the battery undergoes a charge/discharge cycle.
  • the second state of charge can be directly subtracted from the first state of charge, and then divided by the number of charge/discharge cycles, plus the first unit system error, the result obtained can be used as the current correction corresponding Second unit systematic error.
  • preprocessing such as unit conversion can also be performed on the above parameters first, and then some specific parameter values can be added to perform the above calculation.
  • the specific manner of obtaining the second unit system error when the battery is currently corrected is not limited here.
  • S103 Based on the second unit systematic error, correct the state of charge of the battery after the current correction and before the next state of charge correction, to obtain the corrected state of charge of the battery.
  • the time between the current correction and the next state of charge correction can be calculated based on the second unit system error.
  • Each state of charge of the battery is corrected in real time.
  • the battery SOC changes from 100% to 0%, and then from 0% to 85%
  • the battery undergoes the first SOC correction.
  • the battery performs a second state of charge correction.
  • the state of charge of the battery changes from 90% to 15%, and then from 15% to 87%
  • the battery performs a third state of charge correction.
  • the obtained second unit systematic error is 1%.
  • the battery state of charge changes from 85% to 10%, and then from 10% to 90%.
  • the method for determining the state of charge of the battery uses the number of charge/discharge cycles experienced by the battery between two state of charge corrections, the first state of charge of the battery before the current correction, The second state of charge of the battery after the current correction and the first unit systematic error obtained when the battery was previously corrected are determined to determine the second unit systematic error of the battery when the current correction occurs, and then based on the second unit systematic error, the current The SOC of the battery is corrected after the correction and before the next SOC correction. In this way, the corrected state of charge of the battery can be obtained.
  • the unit system error of the battery in each cycle can be obtained, and then the system standard error is corrected to each cycle of the battery after this state of charge correction and before the next state of charge correction
  • the calculation accuracy of the battery state of charge can be greatly improved, and then the problem of increasing the cumulative error of the battery state of charge caused by no chance of correction for a long time can be solved.
  • a new unit system error will be obtained, so that the system error can change with the continuous correction of the state of charge of the battery, making the system error adaptive and further improving the battery charge. Accuracy of electrical state calculations.
  • the charging and discharging performance of the battery can be estimated more accurately, the frequency of overcharging or overdischarging of the battery can be reduced, and the use safety of the battery can be improved.
  • it is possible to accurately predict the remaining power of the battery improve the estimation accuracy of the mileage of the electric vehicle, and relieve the user's mileage anxiety to a large extent. And, it can accurately predict the remaining charging time of the battery to improve user experience.
  • the first unit system error that is, the initial value i of the unit system error of a single cycle, can be manually set as an initial value.
  • the initial value i of the unit systematic error can be determined in any one of the following three ways, but not limited to.
  • Method A1 Carry out charge and discharge tests on multiple battery packs, calculate the average system error within one charge and discharge cycle based on the correction amount during the charge and discharge process, and use it as the system error.
  • the initial value of the unit system error, the first unit system error corresponding to the first state of charge correction is: the average system error within one charge and discharge cycle obtained after charging and discharging tests on multiple battery packs.
  • Way A2 Calculate the system error with reference to the accuracy error of the current sensor for measuring the battery.
  • the initial value of the unit system error, the first unit system error corresponding to the first SOC correction is: the system error determined based on the accuracy error of the current sensor connected to the battery.
  • Mode A3 directly set the system error to 0.
  • the initial value of the unit system error, the first unit system error corresponding to the first SOC correction is: 0.
  • the accumulated charge/discharge capacity of the battery between two SOC corrections may be divided by the battery's own capacity. In this way, the number of charge/discharge cycles experienced by the battery between two state-of-charge corrections is obtained.
  • Fig. 2 is a schematic flow chart of determining the number of charging/discharging cycles in the embodiment of the present application, as shown in Fig. 2, step S101 may specifically include:
  • S201 Determine the accumulative charge/discharge capacity of the battery between two SOC corrections.
  • the battery may have gone through one charge-discharge process or multiple charge-discharge processes between two state-of-charge corrections. During a charge and discharge process, the battery will release or absorb the corresponding amount of electricity, that is, the charge/discharge capacity. The accumulative amount of electricity released or absorbed by the battery during all charge and discharge processes experienced between two SOC corrections is the accumulated charge/discharge capacity of the battery between two SOC corrections.
  • the SOC when a battery undergoes the first SOC correction, its SOC is 85%. Then the state of charge of the battery changes from 85% to 5%, and then from 5% to 85%. At this time, the battery performs the second state of charge correction. Then, the accumulative charge/discharge capacity of the battery between the first SOC correction and the second SOC correction corresponds to 80.
  • the two state-of-charge corrections may be two adjacent state-of-charge corrections, or two non-adjacent state-of-charge corrections.
  • the cumulative charge/discharge capacity is calculated separately.
  • two SOC corrections are required to occur when the battery is at a high SOC (state of charge higher than 50%), ie, a high-end correction.
  • two SOC corrections are required to occur when the battery is in a low SOC (state of charge below 50%), ie, when the low-end correction is made. This is because: the state of charge of the battery may not be able to charge to 100% every time when charging, and it may stop charging when the state of charge is 85%.
  • the calculation of the accumulated charging/discharging capacity mainly includes the following three situations.
  • Case B2 When the two SOC corrections occur when the battery is at a high SOC, based on the product of the charging current and the charging time of the battery between the two SOC corrections, it is determined that the battery is between the two SOC corrections. accumulated charging capacity.
  • a high state of charge is a state of charge higher than 50%.
  • C represents the accumulative charging capacity from the current second high-end correction to the next high-end correction
  • C 0 represents the initial capacity of the battery at the time of the current second high-end correction.
  • the unit of C and C 0 can be Ah.
  • Case B3 When two SOC corrections occur when the battery is in a low state of charge, based on the product of the battery’s discharge current and discharge time between the two SOC corrections, it is determined that the battery is accumulated discharge capacity.
  • the low state of charge is a state of charge lower than 50%.
  • D represents the cumulative discharge capacity from the current low-end correction to the next low-end correction
  • D 0 represents the initial capacity of the battery at the current low-end correction.
  • the unit of D and D 0 can be Ah.
  • S202 Based on the quotient of the charging/discharging capacity and the battery's own capacity, determine the number of charging/discharging cycles experienced by the battery between two SOC corrections.
  • N c represents the number of charging cycles experienced between the current high-end correction and the previous high-end correction, and its unit is 1.
  • c represents the accumulated charging capacity of the current high-end correction and the previous high-end correction.
  • the battery capacity here refers to the capacity of the battery itself.
  • N d represents the number of discharge cycles experienced between the current low-end correction and the previous low-end correction, and its unit is 1.
  • d represents the cumulative discharge capacity of the current low-end correction and the previous low-end correction.
  • the battery capacity here also refers to the capacity of the battery itself.
  • the number of charge/discharge cycles experienced by the battery between two SOC corrections is determined by the accumulated charge/discharge capacity of the battery between two SOC corrections and the battery’s own capacity.
  • the battery/discharge capacity can be accurately obtained, therefore, the number of charge/discharge cycles experienced by the battery between two state-of-charge corrections can also be obtained more accurately, thereby improving the accuracy of battery state-of-charge calculation.
  • the capacity can make the acquisition of the charging/discharging capacity of the battery more accurate, thereby improving the accuracy of the calculation of the battery state of charge.
  • the unit systematic error when the current correction of the battery occurs that is, the second unit systematic error
  • the number of charge/discharge cycles that the battery has experienced between two state-of-charge corrections the battery current
  • the first state of charge before the correction, the second state of charge after the current correction of the battery, combined with the first unit system error when the battery was corrected last time are calculated using a specific calculation method, and the current state of the battery can be obtained.
  • the unit system error when correcting is calculated using a specific calculation method, and the current state of the battery can be obtained.
  • the unit system error when the battery is currently corrected that is, the second unit system error can be obtained through the following steps.
  • Step D1 Obtain a second result based on the difference between the second state of charge and the first state of charge.
  • Step D2 Obtain a third result based on the quotient of the second result and the number of charge/discharge cycles.
  • Step D3 Determine a second unit systematic error based on the sum of the third result and the first unit systematic error.
  • the unit system error X corresponding to a certain state of charge correction of the battery can also be obtained from two aspects, that is, when the battery is corrected at the high end and when the battery is corrected at the low end.
  • Aspect E1 High-end correction for the battery state of charge.
  • the first high-end correction that is, the first high-state-of-charge correction
  • the second high-end correction that is, the second high-charge state correction
  • X2 is the unit system error corresponding to the second high state of charge correction
  • X1 is the unit system error corresponding to the first high charge state correction
  • sc21 is the battery charge after the second high charge state correction State of charge
  • sc20 is the state of charge of the battery before the second high state of charge correction
  • Nc2 is the number of charging cycles experienced between the first high state of charge correction and the second high state of charge correction.
  • the third high-end correction that is, the third high-charge state correction
  • X3 is the unit system error corresponding to the third high charge state correction
  • X2 is the unit system error corresponding to the second high charge state correction
  • sc32 is the battery charge after the third high charge state correction
  • the state of charge sc30 is the state of charge of the battery before the third high state of charge correction
  • Nc3 is the number of charging cycles experienced between the second high charge state of charge correction and the third high charge state of charge correction.
  • Aspect E2 Low end correction for battery state of charge.
  • the first low-end correction that is, the first low-charge state correction
  • the second low-end correction that is, the second low-charge state correction
  • Y2 is the unit system error corresponding to the second low charge state correction
  • Y1 is the unit system error corresponding to the first low charge state correction
  • sd21 is the battery charge after the second low charge state correction State of charge
  • sd20 is the state of charge of the battery before the second low state of charge correction
  • Nd2 is the number of discharge cycles experienced between the first low charge state of charge correction and the second low charge state of charge correction.
  • the third low-end correction that is, the third low-charge state correction
  • Y3 is the unit system error corresponding to the third low charge state correction
  • Y2 is the unit system error corresponding to the second low charge state correction
  • sd32 is the battery charge after the third low charge state correction State of charge
  • sd30 is the state of charge of the battery before the third low state of charge correction
  • Nd3 is the number of discharge cycles experienced between the second low charge state of charge correction and the third low charge state of charge correction.
  • the determination and update of the unit system error Y corresponding to the fourth and subsequent low charge state corrections are the same as the above method, and so on.
  • Fig. 3 is a schematic flow chart of determining the unit systematic error in the embodiment of the present application, referring to Fig. 3, after step S102, or before step S103, the method may also include:
  • the actual balanced capacity value is the capacity value of a certain battery that is erased between two revisions of the battery pack where the battery is located is more than that of other batteries.
  • the capacity value of battery A is 90.5%
  • the capacity value of battery B is 90%
  • the capacity value of battery C is 90%.
  • the capacity value of battery A is 0.5% more than that of battery B and battery C.
  • this 0.5% is the corresponding capacity value of battery A that needs to be balanced at this time.
  • the corresponding capacity values of battery B and battery C that need to be balanced at this time are 0.
  • the balanced capacity of the battery A is 0.3% between the two corrections
  • the actual balanced capacity value of the battery A between the two corrections is 0.3%.
  • the number of charge/discharge cycles experienced by the battery between two state-of-charge corrections, the first state-of-charge of the battery before the current correction, the second state-of-charge of the battery after the current correction, and the previous correction of the battery After calculating the second unit system error when the current battery correction occurs, the battery system needs to record when the correction occurs, and between two corrections , the state of charge of the battery system balanced, that is, the actual balanced capacity value. Furthermore, the actual equalized capacity value is added to the second unit systematic error calculated above. In this way, the second unit systematic error of the final battery when the current correction occurs is obtained.
  • the unit system error calculated during the current correction can be divided into several parts, and the specified charge The electric step length is corrected for the corresponding state of charge of the battery.
  • step S103 may specifically include:
  • Step F1 Determine the change rate of the battery from the third state of charge to the fourth state of charge after the current correction and before the next state of charge correction.
  • Step F2 Obtain a first result based on the product of half of the second unit systematic error and the rate of change.
  • Step F3 Using the first result to correct the fourth state of charge.
  • the rate of change of the other value relative to the certain value is determined.
  • the battery state of charge changes from 90% to 89%, then the rate of change is 1%.
  • the unit systematic error obtained at the current correction is divided by 2, and then multiplied by the rate of change.
  • the reason why it is divided by 2 is because: the SOC correction of the battery discharging process and the SOC correction of the charging process need to be processed separately.
  • correction may refer to adding the correction amount to the state of charge, or may refer to subtracting the correction amount from the state of charge, which needs to be based on the change of the charge state of the charge before and after correction depends.
  • Facet G1 During battery discharge.
  • (r-1)% is the state of charge of the battery after discharge
  • X is the updated unit system error. Dividing by 2 here is because the state of charge is corrected from the perspective of discharge alone. Multiply by 1% here. That's because the state of charge of the battery has dropped by 1%.
  • Facet G2 During battery charging.
  • (r+1)% is the state of charge of the battery after charging
  • X is the updated unit system error. Dividing by 2 here is because the state of charge is corrected from the perspective of discharge alone. Multiply by 1% here. That's because the state of charge of the battery has gone up by 1%.
  • the unit system error corresponding to the current correction is decomposed through the rate of change of the battery state of charge twice after the current correction and before the next state of charge correction, and then the decomposed results are used to compare the The state of charge of the battery is corrected according to the change step of the state of charge, and the real-time correction of the state of charge of the battery based on the unit system error is realized, thereby improving the accuracy of the calculation of the state of charge of the battery.
  • the accuracy of the real-time correction of the battery state of charge based on the unit system error needs to be confirmed whether the currently calculated unit system error is accurate before the real-time correction of the battery state of charge based on the unit system error .
  • FIG. 4 is a schematic flow chart of correcting the state of charge of the battery in the embodiment of the present application.
  • the method may further include:
  • S402 Correct the state of charge of the battery after the current correction and before the next state of charge correction based on the first unit system error.
  • the unit system error calculated at the current correction that is, the second unit system error is within the preset effective range, it means that the fluctuation of the unit system error is reasonable, and there is no problem with the calculation result, then, based on the second unit system error, the occurrence The state of charge of the battery is corrected after the current correction and before the next state of charge correction.
  • the unit system error calculated during the current correction that is, the second unit system error is not within the preset effective range, it means that the fluctuation of the unit system error is abnormal, and there is a problem with the calculation result. Then, it is no longer based on the current correction.
  • the calculated unit system error is used to correct the state of charge of the battery after the current correction and before the next state of charge correction. At this time, it is necessary to correct the SOC of the battery after the current correction and before the next SOC correction based on the first unit systematic error, that is, the unit systematic error calculated during the previous correction.
  • the preset effective range here can be [-1%, 1%] or [-2%, 2%].
  • the specific effective range interval needs to be determined according to the actual situation of the battery and the actual requirements of the correction, and is not specifically limited here.
  • the unit system error calculated during the current correction is within the preset effective range, only when the unit system error calculated during the current correction is within the preset effective range, it is calculated based on the current correction
  • the calculated unit system error is used to correct the state of charge of the battery after the current correction and before the next state of charge correction.
  • the SOC of the battery after the current correction and before the next SOC correction is based on the unit system error calculated at the previous correction. Make corrections. In this way, correcting the state of charge of the battery by using a wrong unit system error can be avoided, and the accuracy of calculating the state of charge of the battery can be further improved.
  • an embodiment of the present application further provides a device for determining the state of charge of a battery.
  • Fig. 5 is a schematic structural diagram of a device for determining the state of charge of a battery in an embodiment of the present application. Referring to Fig. 5, the device may include:
  • a determining module 501 configured to determine the number of charging/discharging cycles experienced by the battery between two state-of-charge corrections, the first state-of-charge of the battery before the current correction, and the first state of charge after the current correction of the battery. Two state of charge; the current correction is the second correction in the two state of charge corrections;
  • Calculation module 502 configured to determine said The second unit system error when the battery undergoes the current correction, and the previous correction is the first correction in the two state-of-charge corrections;
  • the correction module 503 is configured to correct the state of charge of the battery after the current correction and before the next state of charge correction based on the second unit system error, and obtain the corrected state of charge of the battery state.
  • Fig. 6 is a schematic diagram of the second structure of the device for determining the state of charge of the battery in the embodiment of the present application. Referring to Fig. 6, the device may include:
  • a capacity determination unit 6011 configured to determine the accumulative charge/discharge capacity of the battery between the two state-of-charge corrections
  • the capacity determination unit 6011 is specifically configured to: when the two state-of-charge corrections occur When the battery is in a high state of charge, determining that the battery is between the two state of charge corrections based on the product of the charging current and the charging time of the battery between the two state of charge corrections cumulative charge capacity; the high state of charge is a state of charge higher than 50%; when the two state of charge corrections occur when the battery is in a low state of charge, based on the battery being in the two The product of the discharge current and the discharge time between the second state of charge corrections determines the accumulated discharge capacity of the battery between the two state of charge corrections; the low state of charge is a state of charge lower than 50% state.
  • the first unit system error is: the average system error within one charge and discharge cycle obtained after charging and discharging tests on multiple battery packs ; or, a systematic error determined based on an accuracy error of a current sensor connected to the battery; or, 0.
  • the number of cycles determination unit 6012 is configured to determine the number of charge/discharge cycles experienced by the battery between the two state-of-charge corrections based on the quotient of the charge/discharge capacity and the battery's own capacity.
  • Calculation module 602 comprising:
  • the first calculation unit 6021 is configured to obtain a second result based on the difference between the second state of charge and the first state of charge;
  • the second calculation unit 6022 is configured to obtain a third result based on the quotient of the second result and the number of charge/discharge cycles;
  • the third calculation unit 6023 is configured to determine the second unit systematic error based on the sum of the third result and the first unit systematic error.
  • the equalization value acquisition unit 6031 is used to acquire the actual equalized capacity value corresponding to the battery.
  • the actual equalized capacity value of the battery pack where the battery is located is erased between two corrections.
  • the balance value correcting unit 6032 is configured to add the actual balanced capacity value corresponding to the battery to the second unit system error to obtain the added second unit system error.
  • Amending module 604 comprising:
  • a rate of change determination unit 6041 configured to determine the rate of change of the battery from the third state of charge to the fourth state of charge after the current correction and before the next state of charge correction;
  • a correction amount calculation unit 6042 configured to obtain a first result based on the product of half of the second unit systematic error and the rate of change;
  • a real-time correction unit 6043 configured to use the first result to correct the fourth state of charge.
  • the correction module 604 is specifically configured to, when the second unit system error is within a preset effective range, based on the second unit system error, perform the current correction and before the next state of charge correction.
  • the state of charge of the battery is corrected;
  • the correction module 604 is further configured to: when the second unit system error is not within the preset effective range, based on the first unit system error, correct the current correction and before the next SOC correction The state of charge of the battery is corrected.
  • the embodiment of the present application also provides an electronic device.
  • 7 is a schematic structural diagram of an electronic device in the embodiment of the present application.
  • the electronic device may include: a processor 701, a memory 702, and a bus 703; communication; the processor 701 is used to call the program instructions in the memory 702, so as to execute the method in one or more embodiments above.
  • an embodiment of the present application also provides a computer-readable storage medium, which may include: a stored program; wherein, when the program is running, the device where the storage medium is located is controlled to execute the above-mentioned one or more embodiments.
  • Determining the battery state of charge mainly includes six major steps, specifically:
  • Method 1 Based on charging and discharging tests on multiple sets of Pack systems, the average system error value of a Cycle throughput is obtained, and this error value is used as the initial value of the system error;
  • Method 2 Set the initial value of the system error with reference to the accuracy error of the current sensor
  • Method 3 The initial value of the system error is set as 0;
  • a single Cycle standard system error participates in the method of correcting the SOC calculation process.
  • the actual calculation result should not be very high, and an effective range should be set, such as ⁇ 1%.
  • an effective range should be set, such as ⁇ 1%.
  • the calculation of the system error will be continuously corrected with the use of the vehicle, so that the error correction of the SOC shows adaptability, and can ensure a high SOC calculation accuracy throughout the life cycle.
  • Fig. 8 is a schematic diagram of a complete process for determining the state of charge of the battery in the embodiment of the present application. Referring to Fig. 8, the method may include:
  • step S804 Determine whether the SOC correction condition is satisfied; if yes, execute step S805; if no, return to step S803.
  • S805 Record the difference before and after the SOC correction.
  • step S808 Determine whether the new unit systematic error is within a reasonable range; if yes, return to step S802; if not, execute step S809 and step S802.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请提供一种确定电池荷电状态的方法、装置、电子设备及存储介质,该方法包括:确定电池在两次荷电状态修正之间经历的充/放电循环数、电池发生当前修正前的第一荷电状态、电池发生当前修正后的第二荷电状态;当前修正为两次荷电状态修正中的第二次修正;根据充/放电循环数、第一荷电状态、第二荷电状态、电池发生前次修正时得到的第一单位系统误差,确定电池发生当前修正时的第二单位系统误差,前次修正为两次荷电状态修正中的第一次修正;基于第二单位系统误差,对发生当前修正后以及下一次荷电状态修正前电池的荷电状态进行修正,得到修正后的电池的荷电状态。能够提高电池荷电状态计算的准确性。

Description

确定电池荷电状态的方法、装置、电子设备及存储介质
相关申请的交叉引用
本申请要求享有于2022年01月07日提交的名称为“确定电池荷电状态的方法、装置、电子设备及存储介质”的中国专利申请202210016785.6的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池管理技术领域,尤其涉及一种确定电池荷电状态的方法、装置、电子设备及存储介质。
背景技术
电池的荷电状态(State Of Charge)是评估电池当前状态的一个重要指标。无论是三元电芯SOC的计算,还是磷酸铁锂电芯SOC的计算,均存在多次循环(Cycle)使用后,电芯SOC的计算出现较大偏差,进而降低电池SOC计算的准确性。
发明内容
鉴于上述问题,本申请提供一种确定电池荷电状态的方法、装置、电子设备及存储介质,能够提高电池SOC计算的准确性。
第一方面,本申请实施例提供了一种确定电池荷电状态的方法,所述方法包括:确定所述电池在两次荷电状态修正之间经历的充/放电循环数、所述电池发生当前修正前的第一荷电状态、所述电池发生当前修正后的第二荷电状态;所述当前修正为所述两次荷电状态修正中的第二次修正;根据所述充/放电循环数、所述第一荷电状态、所述第二荷电状态、所述电池发生前次修正时得到的第一单位系统误差,确定所述电池发生所述当前修正时的第二单位系统误差,所述前次修正为所述两次荷电状态修正中的第一次修正;基于所述第二单位系统误差,对发生所述当前修正后以及下一次荷电状态修正前所述电池的荷电状态进行修正,得到修正后的所述电池的荷电状态。
通过电池在两次荷电状态修正之间经历的充/放电循环数、电池发生当前修正前的第一荷电状态、电池发生当前修正后的第二荷电状态以及电池发生前次修正时得到的第一单位系统误差,确定电池发生当前修正时的第二单位系统误差,进而基于第二单位系统误差,对发生当前修正后以及下一次荷电状态修正前电池的荷电状态进行修正。这样,就能够得到修正后的电池的荷电状态。通过引入系统误差的概念,能够获得电池在每个循环中的单位系统误差,进而在本次荷电状态修正后以及下一次荷电状态修正前,将系统标准误差修正到电池的每一个循环过程的计算中,能够较大程度地提高电池荷电状态地计算精度,进而解决长时间无修正机会导致的电池荷电状态累计误差增大的问题。并且,随着每一次荷电状态的修正,都会得到一个新的单位系统误差,使得系统误差能够随着电池的荷电状态的不断修正而变化,使得系统误差具备自适应性,进一步提高电池荷电状态计算的准确性。
在一些实施例中,所述基于所述第二单位系统误差,对发生所述当前修正后以及下一次荷电状态修正前所述电池的荷电状态进行修正,包括:确定发生所述当前修正后以及下一次荷电状态修正前所述电池从第三荷电状态变为第四荷电状态的变化率;基于所述第二单位系统误差的一半与所述变化率之积,得到第一结果;采用所述第一结果对所述第四荷电状态进行修正。
通过发生当前修正后以及下一次荷电状态修正前电池两次的荷电状态的变化率,对当前修正对应的单位系统误差进行分解,进而采用分解后的结果对按照预设荷电状态变化步长的电池的荷电状态进行修正,实现了基于单位系统误差对电池荷电状态的实时修正,进而提高了电池荷电状态计算的准确性。
在一些实施例中,在所述基于所述第二单位系统误差,对发生所述当前修正后以及下一次荷电状态修正前所述电池的荷电状态进行修正之前,所述方法还包括:获取所述电池对应的实际被 均衡容量值,所述实际被均衡容量值为所述电池所处的电池包两次修正之间抹去的某电池中多于其它电池的容量值;将所述电池对应的实际被均衡容量值添加到所述第二单位系统误差中,得到添加后的第二单位系统误差。
在确定电池发生当前修正时的单位系统误差的过程中,引入该电池在充放电过程中对应的实际被均衡容量值,并将该实际被均衡容量值加入到计算出的单位系统误差中。这样,在后续对电池的荷电状态进行修正的过程中,还考虑到电池的均衡问题,进一步提高电池荷电状态计算的准确性。
在一些实施例中,所述根据所述充/放电循环数、所述第一荷电状态、所述第二荷电状态、所述电池发生前次修正时得到的第一单位系统误差,确定所述电池发生所述当前修正时的第二单位系统误差,包括:基于所述第二荷电状态与所述第一荷电状态之差,得到第二结果;基于所述第二结果与所述充/放电循环数之商,得到第三结果;基于所述第三结果与所述第一单位系统误差之和,确定所述第二单位系统误差。
当电池发生当前修正时,通过当前修正前电池的第二荷电状态与当前修正后电池的第一荷电状态之差,进而与电池在当前修正与前次修正之间经历的充/放电循环数之商,进而与前次修正时得到的第一单位系统误差之和,就能够得到当前修正时的第二单位系统误差,从而实现对每一次荷电状态修正时对应的单位系统误差进行更新,使得系统误差具备自适应性,进一步提高电池荷电状态计算的准确性。
在一些实施例中,所述确定所述电池在两次荷电状态修正之间经历的充/放电循环数,包括:确定所述电池在所述两次荷电状态修正之间累计的充/放电容量;基于所述充/放电容量和所述电池的自身容量之商,确定所述电池在所述两次荷电状态修正之间经历的充/放电循环数。
通过电池在两次荷电状态修正之间累计的充/放电容量和电池的自身容量确定电池在两次荷电状态修正之间经历的充/放电循环数,由于累计的充/放电容量能够精准获取,因此,也能够更加准确地得到电池在两次荷电状态修正之间经历的充/放电循环数,进而提高电池荷电状态计算的准确性。
在一些实施例中,所述两次荷电状态修正为所述电池在充放电过程中两次相邻的荷电状态修正;所述确定所述电池在所述两次荷电状态修正之间累计的充/放电容量,包括:当所述两次荷电状态修正发生在所述电池处于高荷电状态时,基于所述电池在所述两次荷电状态修正之间的充电电流与充电时间之积,确定所述电池在所述两次荷电状态修正之间累计的充电容量;所述高荷电状态为高于50%的荷电状态;当所述两次荷电状态修正发生在所述电池处于低荷电状态时,基于所述电池在所述两次荷电状态修正之间的放电电流与放电时间之积,确定所述电池在所述两次荷电状态修正之间累计的放电容量;所述低荷电状态为低于50%的荷电状态。
采用相邻的两次荷电状态修正之间的数据,以及分别获取充/放电容量,并且在电池进行高端修正时获取累计的充电容量,以及在电池进行低端修正时获取累计的放电容量,能够使得电池的充/放电容量的获取更加精准,进而提高电池荷电状态计算的精准性。
在一些实施例中,所述基于所述第二单位系统误差,对发生所述当前修正后以及下一次荷电状态修正前所述电池的荷电状态进行修正,包括:当所述第二单位系统误差位于预设的有效范围内时,基于所述第二单位系统误差,对发生所述当前修正后以及下一次荷电状态修正前所述电池的荷电状态进行修正;所述方法还包括:当所述第二单位系统误差没有位于预设的有效范围内时,基于所述第一单位系统误差,对发生所述当前修正后以及下一次荷电状态修正前所述电池的荷电状态进行修正。
通过判断当前修正时计算出的单位系统误差是否位于预设的有效范围内,只有在当前修正时计算出的单位系统误差位于预设的有效范围时,才基于当前修正时计算出的单位系统误差对发生当前修正后以及下一次荷电状态修正前电池的荷电状态进行修正。而在当前修正时计算出的单位系统误差没有位于预设的有效范围时,就基于前次修正时计算出的单位系统误差对发生当前修正后以及下一次荷电状态修正前电池的荷电状态进行修正。这样,能够避免采用错误的单位系统误差对电池的荷电状态进行修正,进一步提高电池荷电状态计算的准确性。
在一些实施例中,当所述前次修正为所述电池运行开始后的第一次修正时,所述第一单位系统误差为:对多个电池包进行充放电测试后得到的一个充放电循环内的平均系统误差;或者,基于与所述电池连接的电流传感器的精度误差确定的系统误差;或者,0。
在对电池进行第一次荷电状态修正及其之前,通过设置第一次荷电状态修正时对应的系统误差,即对系统误差进行初始值设置,这样,在后续的荷电状态修正时,能够确保持续对每一次荷电状态修正时对应的系统误差,即第二单位系统误差进行自适应的修正。
第二方面,本申请实施例提供了一种确定电池荷电状态的装置,所述装置包括:确定模块,用于确定所述电池在两次荷电状态修正之间经历的充/放电循环数、所述电池发生当前修正前的第一荷电状态、所述电池发生当前修正后的第二荷电状态;所述当前修正为所述两次荷电状态修正中的第二次修正;计算模块,用于根据所述充/放电循环数、所述第一荷电状态、所述第二荷电状态、所述电池发生前次修正时得到的第一单位系统误差,确定所述电池发生所述当前修正时的第二单位系统误差,所述前次修正为所述两次荷电状态修正中的第一次修正;修正模块,用于基于所述第二单位系统误差,对发生所述当前修正后以及下一次荷电状态修正前所述电池的荷电状态进行修正,得到修正后的所述电池的荷电状态。
第三方面,本申请实施例提供了一种电子设备,包括:处理器、存储器、总线;其中,所述处理器、所述存储器通过所述总线完成相互间的通信;所述处理器用于调用所述存储器中的程序指令,以执行第一方面中的方法。
第四方面,本申请实施例提供了一种计算机可读存储介质,其特征在于,包括:存储的程序;其中,在所述程序运行时控制所述存储介质所在设备执行第一方面中的方法。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请实施例中确定电池荷电状态的方法的流程示意图;
图2为本申请实施例中确定充/放电循环数的流程示意图;
图3为本申请实施例中确定单位系统误差的流程示意图;
图4为本申请实施例中对电池荷电状态进行修正的流程示意图;
图5为本申请实施例中确定电池荷电状态的装置的结构示意图一;
图6为本申请实施例中确定电池荷电状态的装置的结构示意图二;
图7为本申请实施例中电子设备的结构示意图;
图8为本申请实施例中确定电池荷电状态的完整流程示意图。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申 请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
目前,动力电池SOC的计算是评估电池当前状态的一个重要指标。对于三元电芯SOC的计算,通常使用安时积分+闭环算法的方式进行计算,并配合一定的修正策略来修正误差。而对于磷酸铁锂电芯SOC的计算而言,通常使用安时积分的方式进行计算,也配合一定的修正策略来修正误差。
对于上述两种SOC的计算方式,在电池运行一段时间后,电池的SOC均会出现较大的偏差,进而导致后续应用中出现以下问题:
1、对电池性能的估算出现偏差或者错误,引起电池的过充或者过放,进而影响电池的使用安全和寿命;
2、基于SOC预测的电池剩余电量不准确,导致使用电池供能的电动车辆的里程估算出现较大偏差,进而引起用户里程焦虑;
3、基于SOC预测的电池剩余充电时间不准确,影响用户体验。
针对电池运行一段时间后,电池的SOC出现较大的偏差,进而引发的上述一些列问题,现有还采用了另一技术方案,具体步骤如下:
1、获取电池的当前温度、当前电流值、循环次数;
2、根据电池的当前温度、当前电流值、循环次数,查找电池管理系统的权重表,获得权重因子;
3、根据获得的权重因子,对电池的当前电流值进行修正,并且,根据修正后的当前电流值,计算SOC值。
然而,在实际应用中,电池管理系统采集的当前温度、当前电流值都具有一定的误差,因此,通过权重表查找出的权重因子也存在误差。并且,权重因子本身也存在误差。这样,使用权重因子修正电池的当前电流,修正后的电流也不再是真实准确的。进而再通过修正后的电流计算SOC,会再次引入误差,还是会降低电池SOC计算的准确性。
发明人经过研究发现,使用安时积分方式计算电池的SOC,并配合一定的修正策略对计 算出的SOC进行修正,仍然会造成电池SOC计算的不准确的原因在于:在电池的实际使用中,两次修正之间间隔的时间较长,进而导致电池长时间无修正机会时SOC误差会累计。也就是说,在电池连续使用的情况下,或者,在电池进行了多个循环(Cycle,是指电池累计了一个标称充电容量和放电容量)而无修正机会的情况下,其主要依靠安时积分进行SOC的计算,此时会因为电流采样误差的不断积累,以及叠加电池采样和电池包的系统运行误差,就会导致SOC的计算出现较大偏差。并且,时间越长,SOC计算出现的偏差越大,进而导致电池SOC计算的准确性降低。
有鉴于此,本申请实施例提供一种确定电池荷电状态的方法、装置、电子设备及存储介质,通过在电池的两次荷电状态修正之间,确定电池的充/放电循环数以及后一次荷电状态修正前后的荷电状态,进而通过确定的充/放电循环数、荷电状态以及前一次荷电状态修正时计算出的单位系统误差,计算后一次荷电状态修正(即当前进行的荷电状态修正)时对应的单位系统误差,进而基于当前计算出的单位系统误差对下一次荷电状态修正前电池的任意一个荷电状态进行修正。也就是说,对当前荷电状态修正后,下一次荷电状态修正前,电池的荷电状态进行实时修正,这样,得到的修正后的电池的荷电状态就不会出现积累的误差。可见,采用本申请实施例提供的确定电池荷电状态的方法、装置、电子设备及存储介质,能够提高电池荷电状态计算的准确性。
在实际应用中,本申请实施例提供的确定电池荷电状态的方法、装置、电子设备及存储介质可以应用于电池管理系统(Battery Management System,BMS)中,也可以用于计算电池SOC的其它设备中。对于本申请实施例提供的确定电池荷电状态的方法、装置、电子设备及存储介质的具体使用场景,此处不做限定。
接下来,首先对本申请实施例提供的确定电池荷电状态的方法进行详细说明。
图1为本申请实施例中确定电池荷电状态的方法的流程示意图,参见图1所示,该方法可以包括:
S101:确定电池在两次荷电状态修正之间经历的充/放电循环数、电池发生当前修正前的第一荷电状态、电池发生当前修正后的第二荷电状态。
其中,当前修正为两次荷电状态修正中的第二次修正。
当电池出厂后并投入到实际使用中时,电池每经历一段时间就会被修正一次。这里的修正是指对电池的荷电状态这一参数进行修正,即荷电状态修正。举例来说,电池在使用的过程中会反复经历充放电。当电池放电,其荷电状态从100%变为0%,再充电,其荷电状态从0%变为90%,此时,可能会为电池的荷电状态进行一次修正,例如将电池此时的荷电状态修正为91%。接下来,电池再放电,其荷电状态从91%变为10%,再充电,其荷电状态从10%变为87%,此时,可能会为电池的荷电状态再进行一次修正。当然,也可以在电池处于较低的荷电状态时为电池的荷电状态进行修正,对于进行荷电状态修正的具体时机,此处不做限定。
在电池经历两次荷电状态修正之间,可能经历了多次充放电过程,即充/放电循环数。经历一次充电过程,充电循环数就是1,经历两次充电过程,充电循环数就是2,以此类推。以及,经历一次放电过程,放电循环数就是1,经历两次放电过程,放电循环数就是2,以此类推。而对于充/放电循环数的获取方式,可以通过电池在两次荷电状态修正之间累计的充/放电容量除以电池的自身容量确定,也可以从记录有电池的充/放电循环数的列表中获取。对于充/放电循环数的具体获取方式,此处不做限定。
在对电池的荷电状态进行修正的前后,电池的荷电状态会发生微小的调整。例如:在对电池的荷电状态进行某一次修正之前,电池的荷电状态为20%。在对电池的荷电状态进行该次修正之后,电池的荷电状态变为19.5%。上述的20%就可以认为是电池发生当前修正前的第一荷电状态。而上述的19.5%就可以认为是电池发生当前修正后的第二荷电状态。而对于获取第一荷电状态和第二荷电状态的具体方式,可以通过电池管理系统中的记录直接获取,也可以通过电流表测量以及安时算法获取。对于获取第一荷电状态和第二荷电状态的具体方式,此处不做限定。
S102:根据充/放电循环数、第一荷电状态、第二荷电状态、电池发生前次修正时得到的第一单位系统误差,确定电池发生当前修正时的第二单位系统误差。
其中,前次修正为两次荷电状态修正中的第一次修正。
在获取到电池在两次荷电状态修正之间经历的充/放电循环数、发生当前修正前的第一荷电状态、发生当前修正后的第二荷电状态之后,再结合电池发生前次修正时得到的第一单位系统误差,就能够得到电池发生当前修正时的第二单位系统误差。
这里的第一单位系统误差和第二单位系统误差,即单位系统误差,是指电池经历一次充/放电循环时,修正的平均的荷电状态。
在具体实施过程中,可以直接将第二荷电状态减去第一荷电状态,再除以充/放电循环数,再加上第一单位系统误差,得到的结果就可以作为当前修正对应的第二单位系统误差。当然,还可以先对上述参数进行单位转换等预处理,然后加入一些特定的参数值进行上述计算。对于获取电池发生当前修正时的第二单位系统误差的具体方式,此处不做限定。
S103:基于第二单位系统误差,对发生当前修正后以及下一次荷电状态修正前电池的荷电状态进行修正,得到修正后的电池的荷电状态。
在得到了电池发生当前修正时的第二单位系统误差后,在对电池进行下一次荷电状态修正之前,就可以基于第二单位系统误差,对当前修正至下一次荷电状态修正之间的电池的各个荷电状态进行实时修正了。
举例来说,假设当电池的荷电状态从100%变为0%,再从0%变为85%时,电池进行了第一次荷电状态修正。接着,当电池的荷电状态从85%变为10%,再从10%变为90%时,电池又进行了第二次荷电状态修正。再接着,当电池的荷电状态从90%变为15%,再从15%变为87%时,电池又进行了第三次荷电状态修正。并且,在电池进行第二次荷电状态修正时,求得的第二单位系统误差为1%。那么,在电池经过第二次荷电状态修正后,以及到达第三次荷电状态修正前,即电池的荷电状态从85%变为10%,再从10%变为90%这段时间内,就可以基于1%的第二单位系统误差,对85%-10%-90%这段区间内的各个荷电状态进行实时修正。例如:将1%除以2,得到0.5%。再将0.5%分为若干份,以及提前将0%-100%的荷电状态分为若干份,进而将单位系统误差融入到计算过程中。这样,就完成了电池两次荷电状态修正间电池荷电状态的修正。
由上述内容可知,本申请实施例提供的确定电池荷电状态的方法,通过电池在两次荷电状态修正之间经历的充/放电循环数、电池发生当前修正前的第一荷电状态、电池发生当前修正后的第二荷电状态以及电池发生前次修正时得到的第一单位系统误差,确定电池发生当前修正时的第二单位系统误差,进而基于第二单位系统误差,对发生当前修正后以及下一次荷电状态修正前电池的荷电状态进行修正。这样,就能够得到修正后的电池的荷电状态。通过引入系统误差的概念,能够获得电池在每个循环中的单位系统误差,进而在本次荷电状态修正后以及下一次荷电状态修正前,将系统标准误差修正到电池的每一个循环过程的计算中,能够较大程度地提高电池荷电状态地计算精度,进而解决长时间无修正机会导致的电池荷电状态累计误差增大的问题。并且,随着每一次荷电状态的修正,都会得到一个新的单位系统误差,使得系统误差能够随着电池的荷电状态的不断修正而变化,使得系统误差具备自适应性,进一步提高电池荷电状态计算的准确性。
由于电池荷电状态计算的准确性提高,因此,能够更加准确地估算电池的充放电性能,减少电池过充或过放频率,提高电池的使用安全。并且,能够准确地预测电池的剩余电量,提高电动车辆里程的估算精度,较大程度地缓解用户的里程焦虑。以及,能够准确地预测电池的剩余充电时间,提升用户体验。
进一步地,作为对图1所示方法的细化和扩展,接下来对上述步骤S101-S103以及扩展步骤进行详细说明。
基于上述实施例,当电池开始运行后还没有发生荷电状态修正时,或者,当电池发生第一次荷电状态修正时,在这两种情况下,并不存在前次修正,进而无法获得第一单位系统误差。因此,在电池发生第一次荷电状态修正及其之前,第一单位系统误差,即单个循环的单位系统误差的初始值i,可以通过人工进行初始值设定。
具体来说,单位系统误差的初始值i可以但不限于采用以下三种方式中的任意一种方式确 定。
方式A1:对多个电池包进行充放电测试,基于充放电过程中的修正量计算出一个充放电循环内的平均系统误差,并作为系统误差。
也就是说,单位系统误差的初始值,第一次荷电状态修正时对应的第一单位系统误差为:对多个电池包进行充放电测试后得到的一个充放电循环内的平均系统误差。
方式A2:参照对电池进行测量的电流传感器的精度误差计算系统误差。
也就是说,单位系统误差的初始值,第一次荷电状态修正时对应的第一单位系统误差为:基于与电池连接的电流传感器的精度误差确定的系统误差。
方式A3:直接将系统误差设置为0。
也就是说,单位系统误差的初始值,第一次荷电状态修正时对应的第一单位系统误差为:0。
由上述内容可知,在对电池进行第一次荷电状态修正及其之前,通过设置第一次荷电状态修正时对应的系统误差,即对系统误差进行初始值设置,这样,在后续的荷电状态修正时,能够确保持续对每一次荷电状态修正时对应的系统误差,即第二单位系统误差进行自适应的修正。
基于上述实施例,为了确定电池在两次荷电状态修正之间经历的充/放电循环数,可以将电池在两次荷电状态修正之间累计的充/放电容量除以电池的自身容量。这样,就得到了电池在两次荷电状态修正之间经历的充/放电循环数。
图2为本申请实施例中确定充/放电循环数的流程示意图,参见图2所示,步骤S101具体可以包括:
S201:确定电池在两次荷电状态修正之间累计的充/放电容量。
电池在两次荷电状态修正之间,可能经历了一次充放电过程,也可能经历了多次充放电过程。在一次充放电过程中,电池就会放出或者吸收相应的电量,即充/放电容量。而将电池在两次荷电状态修正之间所经历的所有充放电过程中放出或者吸收的电量进行累计,就是电池在两次荷电状态修正之间累计的充/放电容量。
举例来说,电池在第一次荷电状态修正时,其荷电状态为85%。之后电池的荷电状态从85%变为5%,再从5%变为85%。此时,电池进行第二次荷电状态修正。那么,电池在第一次荷电状态修正与第二次荷电状态修正之间累计的充/放电容量对应为80。
这里需要说明的是,两次荷电状态修正可以是相邻的两次荷电状态修正,也可以是不相邻的两次荷电状态修正。以及,累计的充/放电容量是分别进行计算的。并且,在计算累计的充电容量时,需要两次荷电状态修正发生在电池处于高荷电状态(荷电状态高于50%),即高端修正时。在计算累计的放电容量时,需要两次荷电状态修正发生在电池处于低荷电状态(荷电状态低于50%),即低端修正时。这是因为:电池在充电时其荷电状态不一定每次都能够充到100%,可能在荷电状态为85%时就停止了充电。以及,电池在放电时其荷电状态不一定每次都能够放到0%,可能在荷电状态为10%时就停止了放电,继而开始充电。这样,能够确保更加准确地获得电池在两次荷电状态修正之间累计的充/放电容量。
具体的,累计的充/放电容量的计算主要包括以下三种情况。
情况B1:在电池第一次开始运行,并且未发生第一次荷电状态修正之前,累计充电容量C和累计放电容量D一直保持为0。
情况B2:当两次荷电状态修正发生在电池处于高荷电状态时,基于电池在两次荷电状态修正之间的充电电流与充电时间之积,确定电池在两次荷电状态修正之间累计的充电容量。
其中,高荷电状态为高于50%的荷电状态。
也就是说,当电池的荷电状态发生第一次高端修正(例如:荷电状态大于85%)时,开 始累计计算充电容量C。具体计算公式为:
C=C 0+|充电电流|×时间   公式(1)
其中,C表示当前次高端修正到下一次高端修正累计的充电容量,C 0表示当前次高端修正时电池的初始容量。C与C 0的单位可以是Ah。
当电池的荷电状态发生下一次高端修正时,记录此时累计的充电容量,即C,假设记录为c。c被记录后,就将C清0。而后下一次高端修正与下两次高端修正之间累计的充电容量也按照上述方式计算。
情况B3:当两次荷电状态修正发生在电池处于低荷电状态时,基于电池在两次荷电状态修正之间的放电电流与放电时间之积,确定电池在两次荷电状态修正之间累计的放电容量。
其中,低荷电状态为低于50%的荷电状态。
也就是说,当电池的荷电状态发生第一次低端修正(例如:荷电状态小于20%)时,开始累计计算放电容量D。具体计算公式为:
D=D 0+|放电电流|×时间   公式(2)
其中,D表示当前次低端修正到下一次低端修正累计的放电容量,D 0表示当前次低端修正时电池的初始容量。D与D 0的单位可以是Ah。
当电池的荷电状态发生下一次低端修正时,记录此时累计的放电容量,即D,假设记录为d。d被记录后,就将D清0。而后下一次低端修正与下两次低端修正之间累计的放电容量也按照上述方式计算。
这样,就实现了电池在两次荷电状态修正之间累计的充/放电容量的计算。
S202:基于充/放电容量和电池的自身容量之商,确定电池在两次荷电状态修正之间经历的充/放电循环数。
同样的,电池在两次荷电状态修正之间经历的充/放电循环数也是分开计算的。
情况C1:当电池的荷电状态发生第二次及其以上的高端修正时,当前高端修正与前一次高端修正之间经历的充电循环数可以通过以下公式计算:
Figure PCTCN2022144211-appb-000001
其中,N c表示当前高端修正与前一次高端修正之间经历的充电循环数,其单位为1。c表示当前高端修正与前一次高端修正累计的充电容量。这里的电池容量就是指电池的自身容量。
情况C2:当电池的荷电状态发生第二次及其以上的低端修正时,当前低端修正与前一次低端修正之间经历的放电循环数可以通过以下公式计算:
Figure PCTCN2022144211-appb-000002
其中,N d表示当前低端修正与前一次低端修正之间经历的放电循环数,其单位为1。d表示当前低端修正与前一次低端修正累计的放电容量。这里的电池容量也是指电池的自身容量。
当然,还可以通过其它方式确定电池在两次荷电状态修正之间累计的充/放电容量以及经历的充/放电循环数。例如:从电池管理系统中直接查表获取等。对于获得累计的充/放电容量以及经历的充/放电循环数的具体方式,此处不做限定。
由上述内容可知,通过电池在两次荷电状态修正之间累计的充/放电容量和电池的自身容量确定电池在两次荷电状态修正之间经历的充/放电循环数,由于累计的充/放电容量能够精准获取,因此,也能够更加准确地得到电池在两次荷电状态修正之间经历的充/放电循环数,进而提高电池荷电状态计算的准确性。以及,采用相邻的两次荷电状态修正之间的数据,以及分别获取充/放电 容量,并且在电池进行高端修正时获取累计的充电容量,以及在电池进行低端修正时获取累计的放电容量,能够使得电池的充/放电容量的获取更加精准,进而提高电池荷电状态计算的精准性。
基于上述实施例,为了确定电池发生当前修正时的单位系统误差,即第二单位系统误差,可以将前面获得的电池在两次荷电状态修正之间经历的充/放电循环数、电池发生当前修正前的第一荷电状态、电池发生当前修正后的第二荷电状态,再结合电池发生前次修正时的第一单位系统误差,采用特定的计算方式进行计算,就能够得到电池发生当前修正时的单位系统误差。
具体来说,电池发生当前修正时的单位系统误差,即第二单位系统误差可以通过以下步骤获得。
步骤D1:基于第二荷电状态与第一荷电状态之差,得到第二结果。
步骤D2:基于第二结果与充/放电循环数之商,得到第三结果。
步骤D3:基于第三结果与第一单位系统误差之和,确定第二单位系统误差。
也就是说,在电池发生当前修正时,首先,使用当前修正前电池的第二荷电状态减去当前修正后电池的第一荷电状态;然后,再除以电池在当前修正与前次修正之间经历的充/放电循环数;最后,与前次修正时得到的第一单位系统误差相加。这样,就得到了当前修正时的第二单位系统误差了。
同样的,电池在某一次荷电状态修正时对应的单位系统误差X也可以从两个方面获得,即在电池进行高端修正时,以及在电池进行低端修正时。
下面就以电池每一次进行高端修正或低端修正时,对每一次荷电状态修正时对应的单位系统误差X的确定及更新进行阐述。
方面E1:对于电池荷电状态的高端修正。
(1)当电池从开始运行,到发生第一次高端修正时,第一次高端修正,也就是第一次高荷电状态修正,其对应的单位系统误差X就是初始值。即X0=X1=i。
(2)当电池发生第二次高端修正时,第二次高端修正,也就是第二次高荷电状态修正,其对应的单位系统误差X就被更新为X2=X1+(sc21-sc20)/Nc2。
其中,X2为第二次高荷电状态修正时对应的单位系统误差,X1为第一次高荷电状态修正时对应的单位系统误差,sc21为第二次高荷电状态修正后电池的荷电状态,sc20为第二次高荷电状态修正前电池的荷电状态,Nc2为第一次高荷电状态修正与第二次高荷电状态修正之间经历的充电循环数。
(3)当电池发生第三次高端修正时,第三次高端修正,也就是第三次高荷电状态修正,其对应的单位系统误差X就被更新为X3=X2+(sc32-sc30)/Nc3。
其中,X3为第三次高荷电状态修正时对应的单位系统误差,X2为第二次高荷电状态修正时对应的单位系统误差,sc32为第三次高荷电状态修正后电池的荷电状态,sc30为第三次高荷电状态修正前电池的荷电状态,Nc3为第二次高荷电状态修正与第三次高荷电状态修正之间经历的充电循环数。
第四次及其之后的高荷电状态修正时对应的单位系统误差X的确定与更新与上述方式相同,可以以此类推。
方面E2:对于电池荷电状态的低端修正。
(1)当电池从开始运行,到发生第一次低端修正时,第一次低端修正,也就是第一次低荷电状态修正,其对应的单位系统误差Y就是初始值。即Y0=Y1=i。
(2)当电池发生第二次低端修正时,第二次低端修正,也就是第二次低荷电状态修正,其对应的单位系统误差Y就被更新为Y2=Y1+(sd21-sd20)/Nd2。
其中,Y2为第二次低荷电状态修正时对应的单位系统误差,Y1为第一次低荷电状态修正 时对应的单位系统误差,sd21为第二次低荷电状态修正后电池的荷电状态,sd20为第二次低荷电状态修正前电池的荷电状态,Nd2为第一次低荷电状态修正与第二次低荷电状态修正之间经历的放电循环数。
(3)当电池发生第三次低端修正时,第三次低端修正,也就是第三次低荷电状态修正,其对应的单位系统误差Y就被更新为Y3=Y2+(sd32-sd30)/Nd3。
其中,Y3为第三次低荷电状态修正时对应的单位系统误差,Y2为第二次低荷电状态修正时对应的单位系统误差,sd32为第三次低荷电状态修正后电池的荷电状态,sd30为第三次低荷电状态修正前电池的荷电状态,Nd3为第二次低荷电状态修正与第三次低荷电状态修正之间经历的放电循环数。
第四次及其之后的低荷电状态修正时对应的单位系统误差Y的确定与更新与上述方式相同,可以以此类推。
当然,还可以采用其它方式获取荷电状态修正时对应的单位系统误差。例如:在上述的具体计算过程中加入一个用于调试的系数等。对于获取荷电状态修正时对应的单位系统误差的具体方式,此处不做限定。
由上述内容可知,当电池发生当前修正时,通过当前修正前电池的第二荷电状态与当前修正后电池的第一荷电状态之差,进而与电池在当前修正与前次修正之间经历的充/放电循环数之商,进而与前次修正时得到的第一单位系统误差之和,就能够得到当前修正时的第二单位系统误差,从而实现对每一次荷电状态修正时对应的单位系统误差进行更新,使得系统误差具备自适应性,进一步提高电池荷电状态计算的准确性。
基于上述实施例,为了确保每一次荷电状态修正时对应计算出的单位系统误差的准确性,进而提高电池荷电状态计算的准确性。在采用上述方式计算单位系统误差时,还需要将电池在充放电过程中的均衡问题考虑在内。
图3为本申请实施例中确定单位系统误差的流程示意图,参见图3所示,在步骤S102之后,或者在步骤S103之前,该方法还可以包括:
S301:获取电池对应的实际被均衡容量值。
其中,实际被均衡容量值为电池所处的电池包两次修正之间抹去的某电池中多于其它电池的容量值。
在电池包充放电过程中,由于电池的制造工艺或者电池的使用环境,会导致电池包中各电池的容量存在微小差异。为了确保电池包中各电池都能够充分地进行充放电,因此需要使得电池包中各电池地容量尽量相同。这就需要将电池包中容量较多的电池中多于其它电池的容量抹去,这个多出的需要抹去的容量值就是该电池需要被均衡的容量值。
举例来说,假设电池包中存在电池A、电池B、电池C。在电池包充放电过程中,某一时刻,电池A的容量值为90.5%,电池B的容量值为90%,电池C的容量值为90%。可以看出,电池A的容量值多于电池B以及电池C 0.5%。那么,这个0.5%就是电池A此时对应的需要被均衡的容量值。而电池B和电池C此时对应的需要被均衡的容量值就是0。当两次修正之间,电池A的被均衡掉的容量为0.3%时,那么电池A在两次修正之间实际被均衡容量值即为0.3%。
S302:将电池对应的实际被均衡容量值添加到第二单位系统误差中,得到添加后的第二单位系统误差。
在通过电池在两次荷电状态修正之间经历的充/放电循环数,电池发生当前修正前的第一荷电状态,电池发生当前修正后的第二荷电状态,以及电池发生前次修正时得到的第一单位系统误差计算出电池发生当前修正时的第二单位系统误差后,由于均衡是一个耗时和缓慢的过程,因此,电池系统需要记录在发生修正时,两次修正之间,电池系统均衡掉的荷电状态,即实际被均衡容量值。进而将该实际被均衡容量值加入到上述计算出的第二单位系统误差中。这样,就得到了最终的电池发生当前修正时的第二单位系统误差。
由上述内容可知,在确定电池发生当前修正时的单位系统误差的过程中,引入该电池在充放电过程中对应的实际被均衡容量值,并将该实际被均衡容量值加入到计算出的单位系统误差中。这样,在后续对电池的荷电状态进行修正的过程中,还考虑到电池的均衡问题,进一步提高电池荷电状态计算的准确性。
基于上述实施例,为了实现对当前修正后,下一次荷电状态修正前的电池的荷电状态的修正,可以将当前修正时计算出的单位系统误差拆分为若干份,并按照指定的荷电步长,为电池对应的荷电状态进行修正。
具体来说,步骤S103具体可以包括:
步骤F1:确定发生当前修正后以及下一次荷电状态修正前电池从第三荷电状态变为第四荷电状态的变化率。
步骤F2:基于第二单位系统误差的一半与变化率之积,得到第一结果。
步骤F3:采用第一结果对第四荷电状态进行修正。
也就是说,在当前修正到下一次荷电状态修正这段时间,当电池的荷电状态从某一数值变化到另一个数值时,首先,确定另一个数值相对于某一个数值的变化率。例如:电池的荷电状态从90%变为89%,那么变化率就是1%。再例如:电池的荷电状态从90%变为85%,那么变化率就是5%。然后,将当前修正时得到的单位系统误差除以2,再与变化率相乘。之所以除以2,是因为:需要将电池放电过程的荷电状态修正与充电过程的荷电状态修正分开处理。最后,使用得到的结果对上述的另一个数值进行修正。这样,就实现了对当前修正后,下一次荷电状态修正前的电池的荷电状态的修正。
这里需要指出的是,上述的修正可以是指将修正量与荷电状态相加,也可以是指将修正量与荷电状态相减,这需要根据修正前后的电荷的荷电状态的变化情况而定。
同样的,对于电池荷电状态的修正,也需要分别从放电和充电这两个方面进行。
方面G1:在电池放电过程中。
当电池的荷电状态从r%下降到(r-1)%时,荷电状态被修正为:(r-1)%+X/2*1%。
其中,(r-1)%为电池放电后的荷电状态,X为更新后的单位系统误差。这里除以2,就是因为单从放电的角度对荷电状态进行的修正。这里乘以1%。就是因为电池的荷电状态下降了1%。
方面G2:在电池充电过程中。
当电池的荷电状态从r%上升到(r+1)%时,荷电状态被修正为:(r+1)%+X/2*1%。
其中,(r+1)%为电池充电后的荷电状态,X为更新后的单位系统误差。这里除以2,就是因为单从放电的角度对荷电状态进行的修正。这里乘以1%。就是因为电池的荷电状态上升了1%。
当然,还可以采用其它方式基于单位系统误差对荷电状态进行修正。例如:在上述的具体计算过程中加入一个用于调试的系数等。对于基于单位系统误差对荷电状态进行修正的具体方式,此处不做限定。
按照上述计算过程,当电池进行一个循环的充电和放电时,累计的充电容量和累计的放电容量都分别达到100%,整个循环中电池荷电状态的修正量就是:X/2*1%*100+X/2*1%*100。这刚好就是前面计算出的单位系统误差X。可见,采用本申请实施例提供的确定电池荷电状态的方法对电池的荷电状态进行的实时修正,是能够很好的实现对电池的荷电状态进行修正的。
由上述内容可知,通过发生当前修正后以及下一次荷电状态修正前电池两次的荷电状态的变化率,对当前修正对应的单位系统误差进行分解,进而采用分解后的结果对按照预设荷电状态变化步长的电池的荷电状态进行修正,实现了基于单位系统误差对电池荷电状态的实时修正,进而提高了电池荷电状态计算的准确性。
基于上述实施例,在基于单位系统误差对电池的荷电状态进行实时修正的准确性,需要在 基于单位系统误差对电池的荷电状态进行实时修正之前,确认当前计算出的单位系统误差是否准确。
具体来说,图4为本申请实施例中对电池荷电状态进行修正的流程示意图,参见图4所示,在步骤S103之前,该方法还可以包括:
S401:判断第二单位系统误差是否位于预设的有效范围内;若是,则执行步骤S103;若否,则执行步骤S402。
S402:基于第一单位系统误差,对发生当前修正后以及下一次荷电状态修正前电池的荷电状态进行修正。
如果当前修正时计算出的单位系统误差,即第二单位系统误差处于预设的有效范围内,说明单位系统误差的波动合理,计算结果没有问题,那么,就可以基于第二单位系统误差对发生当前修正后以及下一次荷电状态修正前电池的荷电状态进行修正。
而如果当前修正时计算出的单位系统误差,即第二单位系统误差没有处于预设的有效范围内,说明单位系统误差的波动异常,计算结果存在问题,那么,就不再基于当前修正时计算出的单位系统误差对发生当前修正后以及下一次荷电状态修正前电池的荷电状态进行修正。此时需要基于第一单位系统误差,即前次修正时计算出的单位系统误差对发生当前修正后以及下一次荷电状态修正前电池的荷电状态进行修正。
这里的预设的有效范围,可以是[-1%,1%],也可以是[-2%,2%]。具体的有效范围区间需要根据电池的实际情况以及修正的实际要求而定,此处不做具体限定。
由上述内容可知,通过判断当前修正时计算出的单位系统误差是否位于预设的有效范围内,只有在当前修正时计算出的单位系统误差位于预设的有效范围时,才基于当前修正时计算出的单位系统误差对发生当前修正后以及下一次荷电状态修正前电池的荷电状态进行修正。而在当前修正时计算出的单位系统误差没有位于预设的有效范围时,就基于前次修正时计算出的单位系统误差对发生当前修正后以及下一次荷电状态修正前电池的荷电状态进行修正。这样,能够避免采用错误的单位系统误差对电池的荷电状态进行修正,进一步提高电池荷电状态计算的准确性。
基于同一发明构思,作为对上述方法的实现,本申请实施例还提供了一种确定电池荷电状态的装置。图5为本申请实施例中确定电池荷电状态的装置的结构示意图一,参见图5所示,该装置可以包括:
确定模块501,用于确定所述电池在两次荷电状态修正之间经历的充/放电循环数、所述电池发生当前修正前的第一荷电状态、所述电池发生当前修正后的第二荷电状态;所述当前修正为所述两次荷电状态修正中的第二次修正;
计算模块502,用于根据所述充/放电循环数、所述第一荷电状态、所述第二荷电状态、所述电池发生前次修正时得到的第一单位系统误差,确定所述电池发生所述当前修正时的第二单位系统误差,所述前次修正为所述两次荷电状态修正中的第一次修正;
修正模块503,用于基于所述第二单位系统误差,对发生所述当前修正后以及下一次荷电状态修正前所述电池的荷电状态进行修正,得到修正后的所述电池的荷电状态。
进一步地,作为对图5所示装置的细化和扩展,本申请实施例还提供了一种确定电池荷电状态的装置。图6为本申请实施例中确定电池荷电状态的装置的结构示意图二,参见图6所示,该装置可以包括:
确定模块601,包括:
容量确定单元6011,用于确定所述电池在所述两次荷电状态修正之间累计的充/放电容量;
当所述两次荷电状态修正为所述电池在充放电过程中两次相邻的荷电状态修正时,所述容量确定单元6011,具体用于:当所述两次荷电状态修正发生在所述电池处于高荷电状态时,基于所述电池在所述两次荷电状态修正之间的充电电流与充电时间之积,确定所述电池在所述两次荷电状态修正之间累计的充电容量;所述高荷电状态为高于50%的荷电状态;当所述两次荷电状态修 正发生在所述电池处于低荷电状态时,基于所述电池在所述两次荷电状态修正之间的放电电流与放电时间之积,确定所述电池在所述两次荷电状态修正之间累计的放电容量;所述低荷电状态为低于50%的荷电状态。
当所述前次修正为所述电池运行开始后的第一次修正时,所述第一单位系统误差为:对多个电池包进行充放电测试后得到的一个充放电循环内的平均系统误差;或者,基于与所述电池连接的电流传感器的精度误差确定的系统误差;或者,0。
循环数确定单元6012,用于基于所述充/放电容量和所述电池的自身容量之商,确定所述电池在所述两次荷电状态修正之间经历的充/放电循环数。
计算模块602,包括:
第一计算单元6021,用于基于所述第二荷电状态与所述第一荷电状态之差,得到第二结果;
第二计算单元6022,用于基于所述第二结果与所述充/放电循环数之商,得到第三结果;
第三计算单元6023,用于基于所述第三结果与所述第一单位系统误差之和,确定所述第二单位系统误差。
校正模块603,包括:
均衡值获取单元6031,用于获取所述电池对应的实际被均衡容量值,所述实际被均衡容量值为所述电池所处的电池包两次修正之间抹去的某电池中多于其它电池的容量值;
均衡值校正单元6032,用于将所述电池对应的实际被均衡容量值添加到所述第二单位系统误差中,得到添加后的第二单位系统误差。
修正模块604,包括:
变化率确定单元6041,用于确定发生所述当前修正后以及下一次荷电状态修正前所述电池从第三荷电状态变为第四荷电状态的变化率;
修正量计算单元6042,用于基于所述第二单位系统误差的一半与所述变化率之积,得到第一结果;
实时修正单元6043,用于采用所述第一结果对所述第四荷电状态进行修正。
修正模块604,具体用于当所述第二单位系统误差位于预设的有效范围内时,基于所述第二单位系统误差,对发生所述当前修正后以及下一次荷电状态修正前所述电池的荷电状态进行修正;
修正模块604,还用于当所述第二单位系统误差没有位于预设的有效范围内时,基于所述第一单位系统误差,对发生所述当前修正后以及下一次荷电状态修正前所述电池的荷电状态进行修正。
这里需要指出的是,以上装置实施例的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果。对于本申请装置实施例中未披露的技术细节,请参照本申请方法实施例的描述而理解。
基于同一发明构思,本申请实施例还提供了一种电子设备。图7为本申请实施例中电子设备的结构示意图,参见图7所示,该电子设备可以包括:处理器701、存储器702、总线703;其中,处理器701、存储器702通过总线703完成相互间的通信;处理器701用于调用存储器702中的程序指令,以执行上述一个或多个实施例中的方法。
这里需要指出的是,以上电子设备实施例的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果。对于本申请电子设备实施例中未披露的技术细节,请参照本申请方法实施例的描述而理解。
基于同一发明构思,本申请实施例还提供了一种计算机可读存储介质,该存储介质可以包括:存储的程序;其中,在程序运行时控制存储介质所在设备执行上述一个或多个实施例中的方法。
这里需要指出的是,以上存储介质实施例的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果。对于本申请存储介质实施例中未披露的技术细节,请参照本申请方法实施例的描述而理解。
最后,对本申请实施例中确定电池荷电状态的完整过程进行说明。
确定电池荷电状态主要包括六大步骤,具体为:
1、单个Cycle标准系统误差X的初始值i的设定(三种方法,任选其一)。
方法一:基于对多套Pack系统进行充放电测试,得出一个Cycle吞吐量的平均系统误差值,将此误差值作为系统误差的初始值;
方法二:参照电流传感器的精度误差进行系统误差的初始值设定;
方法三:系统误差的初始值按照0进行设定;
2、两次SOC修正之间的累计充电容量C和累计放电容量D的计算方法。
(1)当系统第一次开始运行时,在未发生SOC修正之前,C和D一直保持为0;
(2)当SOC发生第1次高端修正时(如SOC>85%),开始累计计算C,公式为:C=C+|充电电流|×时间,单位均为Ah,当SOC发生第2次高端修正时,记录此时的累计的C值,假设为c。累计的C值被记录后,C值清0,重新按上述方式累计计算,以此类推;
(3)当SOC发生第1次低端修正时(如SOC<20%),开始累计计算D,公式为:D=D+|放电电流|×时间,单位均为Ah,当SOC发生第2次低端修正时,记录此时的累计的D值,假设为d。累计的D值被记录后,D值清0,重新按上述方式累计计算,以此类推。
3、两次SOC修正之间的充电Cycle数和放电Cycle数的计算方法。
(1)当SOC发生第2次及以上的高端修正时,得出此次运行的Cycle数为Nc=c/电芯容量,单位为1;
(2)当SOC发生第2次及以上的低端修正时,得出此次运行的Cycle数为Nd=d/电芯容量,单位为1。
4、单个Cycle标准系统误差X的计算与更新。
(1)当系统从运行开始,SOC高端修正次数或者SOC低端修正次数均≤1时,X的值一直保持为初始值,设X0=X1=i;
(2)当系统发生第2次高端修正时,记录修正前SOC为sc1,修正后SOC为sc2,则单位系统误差X2=X1+(sc2-sc1)/Nc;
当系统发生第3次高端修正时,记录修正前SOC为sc3,修正后SOC为sc4,则单位系统误差X被更新为X3=X2+(sc4-sc3)/Nc;
如上,以此类推。
(3)当系统发生第2次低端修正时,记录修正前SOC为sd1,修正后SOC为sd2,则单位系统误差X2=X1+(sd2-sd1)/Nd;
当系统发生第3次低端修正时,记录修正前SOC为sd3,修正后SOC为sd4,则单位系统误差X被更新为X3=X2+(sd4–sd3)/Nd;
如上,以此类推。
5、单个Cycle标准系统误差参与修正SOC计算过程的方法。
系统误差按照线性均匀的原则参与到SOC的计算过程中,举例如下:
(1)当系统放电时,SOC从r%下降到(r-1)%,则SOC的计算结果应被修正为(r-1)%+X/2*1%;
(2)当系统充电时,SOC从r%上升到(r+1)%,则SOC的计算结果应被修正为(r+1)%+X/2*1%。
按照如上的过程计算方法,当进行一个Cycle的充电和放电,也即充电累计的SOC和放电累计的SOC分别达到100%时,整个SOC的计算过程累计被修正的量即为:X/2*1%*100+X/2*1%*100=X。
6、单个Cycle标准系统误差异常情况处理方法。
对于该提案中的标准系统误差X,其实际计算的结果应不会很高,应设定一个有效范围,比如±1%,当更新后的值超出该范围时,应保持上一个有效值X。
这样,基于系统误差检测提高SOC的计算精度,能够达到如下效果:
1、能够准确估算电芯的充放电性能,减少电芯过充和过放频率,提高电芯的使用安全。
2、能够准确的预测电池的剩余电量,提高里程的估算精度,较大程度患疾厄用户的里程焦虑。
3、基于SOC预测的剩余充电时间不准确,影响用户体验。
以及,系统误差的计算会随着车辆的使用而不断被修正,从而使得SOC的误差修正表现出适应性,能够实现全生命周期都能保证较高的SOC计算精度。
图8为本申请实施例中确定电池荷电状态的完整流程示意图,参见图8所示,该方法可以包括:
S801:确定单位系统误差初值。
S802:采用单位系统误差对荷电状态进行修正。
S803:计算累计充放电容量。
S804:判断是否满足SOC修正条件;若是,则执行步骤S805:若否,则返回步骤S803。
S805:记录SOC修正前后的差值。
S806:清零累计充放电容量。
S807:计算新的单位系统误差。
S808:判断新的单位系统误差是否在合理范围内;若是,返回步骤S802:若否,则执行步骤S809以及步骤S802。
S809:单位系统误差恢复初值。
最后应说明的是,以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (11)

  1. 一种确定电池荷电状态的方法,其特征在于,所述方法包括:
    确定所述电池在两次荷电状态修正之间经历的充/放电循环数、所述电池发生当前修正前的第一荷电状态、所述电池发生当前修正后的第二荷电状态;所述当前修正为所述两次荷电状态修正中的第二次修正;
    根据所述充/放电循环数、所述第一荷电状态、所述第二荷电状态、所述电池发生前次修正时得到的第一单位系统误差,确定所述电池发生所述当前修正时的第二单位系统误差,所述前次修正为所述两次荷电状态修正中的第一次修正;
    基于所述第二单位系统误差,对发生所述当前修正后以及下一次荷电状态修正前所述电池的荷电状态进行修正,得到修正后的所述电池的荷电状态。
  2. 根据权利要求1所述的方法,其特征在于,所述基于所述第二单位系统误差,对发生所述当前修正后以及下一次荷电状态修正前所述电池的荷电状态进行修正,包括:
    确定发生所述当前修正后以及下一次荷电状态修正前所述电池从第三荷电状态变为第四荷电状态的变化率;
    基于所述第二单位系统误差的一半与所述变化率之积,得到第一结果;
    采用所述第一结果对所述第四荷电状态进行修正。
  3. 根据权利要求1或2所述的方法,其特征在于,在所述基于所述第二单位系统误差,对发生所述当前修正后以及下一次荷电状态修正前所述电池的荷电状态进行修正之前,所述方法还包括:
    获取所述电池对应的实际被均衡容量值,所述实际被均衡容量值为所述电池所处的电池包两次修正之间抹去的某电池中多于其它电池的容量值;
    将所述电池对应的实际被均衡容量值添加到所述第二单位系统误差中,得到添加后的第二单位系统误差。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述根据所述充/放电循环数、所述第一荷电状态、所述第二荷电状态、所述电池发生前次修正时得到的第一单位系统误差,确定所述电池发生所述当前修正时的第二单位系统误差,包括:
    基于所述第二荷电状态与所述第一荷电状态之差,得到第二结果;
    基于所述第二结果与所述充/放电循环数之商,得到第三结果;
    基于所述第三结果与所述第一单位系统误差之和,确定所述第二单位系统误差。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述确定所述电池在两次荷电状态修正之间经历的充/放电循环数,包括:
    确定所述电池在所述两次荷电状态修正之间累计的充/放电容量;
    基于所述充/放电容量和所述电池的自身容量之商,确定所述电池在所述两次荷电状态修正之间经历的充/放电循环数。
  6. 根据权利要求5所述的方法,其特征在于,所述两次荷电状态修正为所述电池在充放电过程中两次相邻的荷电状态修正;所述确定所述电池在所述两次荷电状态修正之间累计的充/放电容量,包括:
    当所述两次荷电状态修正发生在所述电池处于高荷电状态时,基于所述电池在所述两次荷电状态修正之间的充电电流与充电时间之积,确定所述电池在所述两次荷电状态修正之间累计的充电容量;所述高荷电状态为高于50%的荷电状态;
    当所述两次荷电状态修正发生在所述电池处于低荷电状态时,基于所述电池在所述两次荷电状态修正之间的放电电流与放电时间之积,确定所述电池在所述两次荷电状态修正之间累计的放电容量;所述低荷电状态为低于50%的荷电状态。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述基于所述第二单位系统误差,对发生所述当前修正后以及下一次荷电状态修正前所述电池的荷电状态进行修正,包括:
    当所述第二单位系统误差位于预设的有效范围内时,基于所述第二单位系统误差,对发生所述当前修正后以及下一次荷电状态修正前所述电池的荷电状态进行修正;
    所述方法还包括:
    当所述第二单位系统误差没有位于预设的有效范围内时,基于所述第一单位系统误差,对发生 所述当前修正后以及下一次荷电状态修正前所述电池的荷电状态进行修正。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,当所述前次修正为所述电池运行开始后的第一次修正时,所述第一单位系统误差为:
    对多个电池包进行充放电测试后得到的一个充放电循环内的平均系统误差;或者,
    基于与所述电池连接的电流传感器的精度误差确定的系统误差;或者,
    0。
  9. 一种确定电池荷电状态的装置,其特征在于,所述装置包括:
    确定模块,用于确定所述电池在两次荷电状态修正之间经历的充/放电循环数、所述电池发生当前修正前的第一荷电状态、所述电池发生当前修正后的第二荷电状态;所述当前修正为所述两次荷电状态修正中的第二次修正;
    计算模块,用于根据所述充/放电循环数、所述第一荷电状态、所述第二荷电状态、所述电池发生前次修正时得到的第一单位系统误差,确定所述电池发生所述当前修正时的第二单位系统误差,所述前次修正为所述两次荷电状态修正中的第一次修正;
    修正模块,用于基于所述第二单位系统误差,对发生所述当前修正后以及下一次荷电状态修正前所述电池的荷电状态进行修正,得到修正后的所述电池的荷电状态。
  10. 一种电子设备,其特征在于,包括:处理器、存储器、总线;其中,所述处理器、所述存储器通过所述总线完成相互间的通信;所述处理器用于调用所述存储器中的程序指令,以执行如权利要求1至8中任一项所述的方法。
  11. 一种计算机可读存储介质,其特征在于,包括:存储的程序;其中,在所述程序运行时控制所述存储介质所在设备执行如权利要求1至8中任一项所述的方法。
PCT/CN2022/144211 2022-01-07 2022-12-30 确定电池荷电状态的方法、装置、电子设备及存储介质 WO2023131086A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210016785.6 2022-01-07
CN202210016785.6A CN115840148B (zh) 2022-01-07 2022-01-07 确定电池荷电状态的方法、装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023131086A1 true WO2023131086A1 (zh) 2023-07-13

Family

ID=85574619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/144211 WO2023131086A1 (zh) 2022-01-07 2022-12-30 确定电池荷电状态的方法、装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN115840148B (zh)
WO (1) WO2023131086A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080030169A1 (en) * 2006-08-03 2008-02-07 Nissan Motor Co., Ltd. Battery remaining capacity detecting apparatus and battery remaining capacity detecting method
CN109061481A (zh) * 2018-06-28 2018-12-21 奇瑞汽车股份有限公司 电池的荷电状态确定方法、装置及存储介质
CN110888065A (zh) * 2018-09-10 2020-03-17 宁德时代新能源科技股份有限公司 电池包荷电状态修正方法和装置
CN111965558A (zh) * 2020-07-22 2020-11-20 宝能(广州)汽车研究院有限公司 Soh值的获取方法及系统、电动汽车及计算机可读存储介质
CN113484762A (zh) * 2021-07-16 2021-10-08 东风柳州汽车有限公司 电池健康状态估算方法、装置、设备及存储介质
CN113608128A (zh) * 2021-06-30 2021-11-05 博科能源系统(深圳)有限公司 荷电状态估算方法、计算机设备及计算机存储介质

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100669477B1 (ko) * 2005-12-22 2007-01-16 삼성에스디아이 주식회사 배터리의 soc 보정 방법 및 이를 이용한 배터리 관리시스템
CN102074757B (zh) * 2010-12-24 2013-02-13 惠州市亿能电子有限公司 一种锂离子电池荷电状态的估算方法
WO2012098968A1 (ja) * 2011-01-17 2012-07-26 プライムアースEvエナジー株式会社 二次電池の充電状態推定装置
JP6558108B2 (ja) * 2015-07-09 2019-08-14 株式会社豊田自動織機 蓄電装置及び蓄電方法
CN105353313B (zh) * 2015-09-28 2020-07-28 欣旺达电子股份有限公司 电池荷电状态的估算方法和装置
CN106932728B (zh) * 2017-03-31 2019-09-20 奇瑞新能源汽车技术有限公司 电池荷电状态soc修正方法、装置及电动汽车
CN208432706U (zh) * 2018-04-08 2019-01-25 深圳市海德森科技股份有限公司 电动车锂电池的荷电状态估算系统
KR20200107614A (ko) * 2019-03-08 2020-09-16 삼성전자주식회사 배터리 장치의 충전 상태를 결정하기 위한 전자 장치 및 상기 전자 장치의 동작 방법
CN109782175B (zh) * 2019-03-11 2021-05-11 威马智慧出行科技(上海)有限公司 电动汽车电池容量校正测试方法及电子设备
CN109870655B (zh) * 2019-03-26 2019-12-03 上海工程技术大学 一种用于锂电池soc的估算方法
CN110988690B (zh) * 2019-04-25 2021-03-09 宁德时代新能源科技股份有限公司 电池健康状态修正方法、装置、管理系统以及存储介质
CN110988701B (zh) * 2019-04-25 2021-04-30 宁德时代新能源科技股份有限公司 电池可用能量确定方法、装置、管理系统以及存储介质
CN110967646B (zh) * 2019-05-24 2021-03-30 宁德时代新能源科技股份有限公司 Soc修正方法和装置、电池管理系统和存储介质
WO2021224990A1 (ja) * 2020-05-08 2021-11-11 Tdk株式会社 二次電池の制御システム、電池パックおよび二次電池の制御方法
CN113009346B (zh) * 2021-03-01 2023-01-03 惠州市德赛电池有限公司 电池系统及其soc值修正方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080030169A1 (en) * 2006-08-03 2008-02-07 Nissan Motor Co., Ltd. Battery remaining capacity detecting apparatus and battery remaining capacity detecting method
CN109061481A (zh) * 2018-06-28 2018-12-21 奇瑞汽车股份有限公司 电池的荷电状态确定方法、装置及存储介质
CN110888065A (zh) * 2018-09-10 2020-03-17 宁德时代新能源科技股份有限公司 电池包荷电状态修正方法和装置
CN111965558A (zh) * 2020-07-22 2020-11-20 宝能(广州)汽车研究院有限公司 Soh值的获取方法及系统、电动汽车及计算机可读存储介质
CN113608128A (zh) * 2021-06-30 2021-11-05 博科能源系统(深圳)有限公司 荷电状态估算方法、计算机设备及计算机存储介质
CN113484762A (zh) * 2021-07-16 2021-10-08 东风柳州汽车有限公司 电池健康状态估算方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN115840148A (zh) 2023-03-24
CN115840148B (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
US10330735B2 (en) State estimation device and state estimation method
EP3890097B1 (en) Charging method and device
WO2017016385A1 (zh) 电池荷电状态值的估算方法及装置
JP6714838B2 (ja) 状態推定装置及び状態推定方法
JP6655801B2 (ja) リチウムイオン二次電池の寿命推定装置
EP2957921B1 (en) Method and system for estimating soc of battery
US20140125345A1 (en) Condition estimation device and method of estimating condition
CN113030742B (zh) 电池容量的估算方法、装置及设备
WO2015059746A1 (ja) 電池システム
CN104977537A (zh) 电池soc的确定方法及使用该方法的电池管理系统
WO2023159708A1 (zh) 一种电池常带电自保养的控制方法及常带电自保养的电池
CN113009346A (zh) 电池系统及其soc值修正方法
CN100458461C (zh) 一种电池电量监测方法、用于该方法的电子装置和电路
CN108693473B (zh) 电池健康状态soh的检测方法及装置
JP2020043084A (ja) 蓄電素子管理装置、蓄電素子モジュール、車両および蓄電素子管理方法
WO2023131086A1 (zh) 确定电池荷电状态的方法、装置、电子设备及存储介质
CN113419185A (zh) 一种锂离子动力蓄电池的单体容量检测方法和系统
CN116626526A (zh) 电池健康状态的检测方法、装置、终端及存储介质
JP2013029445A (ja) バッテリ管理装置及び電力供給システム
TWI472784B (zh) 用於計算電池荷電狀態的系統及方法
KR101352841B1 (ko) 전지 soc 추정 방법 및 시스템
CN113419182A (zh) 一种锂离子动力蓄电池的检测系统
KR102672694B1 (ko) 저장 매체를 이용한 배터리 관리 시스템의 soc 보정방법
CN116754946B (zh) 电池稳定性评估方法、装置、设备、存储介质及系统
CN114966437B (zh) 基于单体电池容量差异极值的串联电池组soc估算方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE