WO2023131050A1 - 一种电池单体补液方法 - Google Patents

一种电池单体补液方法 Download PDF

Info

Publication number
WO2023131050A1
WO2023131050A1 PCT/CN2022/143539 CN2022143539W WO2023131050A1 WO 2023131050 A1 WO2023131050 A1 WO 2023131050A1 CN 2022143539 W CN2022143539 W CN 2022143539W WO 2023131050 A1 WO2023131050 A1 WO 2023131050A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
recess
sealing cover
recessed part
outside
Prior art date
Application number
PCT/CN2022/143539
Other languages
English (en)
French (fr)
Inventor
连登伟
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP22918491.6A priority Critical patent/EP4398389A1/en
Publication of WO2023131050A1 publication Critical patent/WO2023131050A1/zh
Priority to US18/644,153 priority patent/US20240275005A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • H01M50/636Closing or sealing filling ports, e.g. using lids
    • H01M50/645Plugs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • H01M50/636Closing or sealing filling ports, e.g. using lids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of new energy technology, in particular to a method for replenishing liquid in a battery cell.
  • the battery forms a sealed space by closing the end cover with the casing, and the electrolyte is provided in the sealed space to provide a charging and discharging environment.
  • the electrolyte is consumed and cannot be replenished, resulting in a decrease in battery performance and a serious decline in life.
  • the present application provides a method for replenishing liquid in a battery cell, so as to replenish electrolyte in the battery cell, improve the performance of the battery cell, and prolong the service life of the battery cell.
  • the embodiments of the present application provide a method for rehydrating a battery cell, including: processing the shell of the battery cell from the outside of the battery cell to form a first concave portion, and making the first concave portion
  • the thickness of the bottom wall is smaller than the thickness of the surrounding casing; the bottom wall of the first recess is pierced from the outside of the battery cell to the inside of the battery cell to form a liquid injection structure; the electrolyte is injected into the battery cell through the liquid injection structure.
  • the first recess is formed by processing the shell of the battery cell from the outside of the battery cell, and the thickness of the bottom wall of the first recess is smaller than the thickness of the surrounding shell, thereby facilitating subsequent processing of the first recess from the outside of the battery cell.
  • the bottom wall is pierced into the battery cell to form a liquid injection structure, through which the electrolyte is injected into the battery cell to replenish the electrolyte in the battery cell and effectively improve the service life of the battery cell.
  • the bottom wall of the battery cell When the bottom wall of the battery cell is pierced, it bends inwards and deforms. Compared with directly machining the liquid injection port on the shell of the battery cell, it will not cause damage to the internal electrolyte due to the generation of metal shavings or other impurities falling into the shell. It is beneficial to ensure the performance of the battery cell in subsequent use.
  • the method further includes: installing a sealing cover in the first recess; sealingly connecting the sealing cover with the first recess.
  • sealingly connecting the sealing cover to the first recess includes: welding an edge of the sealing cover to an edge of the first recess, so as to sealably connect the sealing cover to the first recess.
  • the sealing connection between the sealing cover and the first concave part includes: filling the sealing glue between the sealing cover and the first concave part, so as to make the sealing cover and the first concave part sealingly connected.
  • the way of filling the sealant between the sealing cover and the first recess can ensure the sealing of the inside of the battery cell, improve the convenience of operation, and help improve the efficiency of liquid injection.
  • the method before processing the casing of the battery cell from the outside of the battery cell to form the first concave portion, includes: processing the casing of the battery cell from the outside of the battery cell to form the second concave portion ; Processing the shell of the battery cell from the outside of the battery cell to form a first recess, including: processing the bottom wall of the second recess from the outside of the second recess to form the first recess, and the second recess The area of the bottom wall is greater than the area of the opening of the first recess.
  • the first recess is formed by processing the bottom wall of the second recess, and the area of the bottom wall of the second recess is larger than the area of the opening of the first recess, so that a step is formed between the second recess and the first recess.
  • the method further includes: installing a sealing cover in the second recess; sealingly connecting the sealing cover with the second recess.
  • the sealing connection of the sealing cover and the second recessed part includes: welding the edge of the sealing cover and the edge of the second recessed part, so as to make the sealing connection of the sealing cover and the second recessed part.
  • the structure that melts when the sealing cover is welded to the second depression is restricted at the bottom wall of the second depression, which can avoid The molten structure flows into the casing from the liquid injection structure and affects the electrolyte.
  • a groove is provided on a side of the sealing cover away from the housing; the method further includes releasing welding stress between the sealing cover and the first recess or the second recess through the groove.
  • the welded parts are melted first and then solidified and welded.
  • the molten structure is limited by the unmelted structure during the solidification process and will generate welding stress.
  • the edge of the sealing cover is welded.
  • Part of the melted structure flows and fills between the sealing cover and the side wall of the first recess or the second recess, and the other part flows in the groove, so that the structure melted at the edge of the sealing cover will not be affected by other factors during the solidification process. Structural restrictions, so as to ensure that the welding stress can be released, and enhance the structural stability of the sealing cover after welding.
  • the sealing connection of the sealing cover and the second recessed part includes: filling a sealant between the sealing cover and the second recessed part, so as to seal the sealing connection of the sealing cover and the second recessed part.
  • the way of filling the sealant between the sealing cover and the second concave part can not only ensure the internal sealing of the battery cell, but also improve the convenience of operation, which is beneficial to improve the efficiency of liquid injection.
  • the housing includes an end cover and a casing, and the end cover is disposed on the casing; the casing of the battery cell is processed from the outside of the battery cell to form a first recess, including: The outer part of the body is processed to the end cover to form the first concave part. Since the end cover of the battery cell is generally located on the upper side when the battery cell is placed, the first recess is formed by processing the end cover from the outside of the battery cell, that is, the top of the battery cell is processed on the end cover, which is convenient for controlling the progress of the tool. To improve the precision and efficiency of processing the first concave part.
  • machining the end cap from the outside of the battery cell to form the first recess includes: machining the end cap by using a drill or a milling cutter to form the first recess. Cutting the end cover with a drill bit or milling cutter realizes the processing and forming of the first concave part on the end cover. By controlling the feed rate of the drill bit or milling cutter, the thickness of the processed first concave part is ensured. On the one hand, it is convenient for subsequent processing. The bottom wall of the first concave part is pierced to form a liquid injection structure. On the other hand, it can prevent the first concave part from being over-processed and penetrating the end cap, causing metal shavings or other impurities to fall into the battery cell and affect the electrolyte.
  • the drill bit or the milling cutter is provided with a protective structure; when processing the end cap from the outside of the battery cell to form the first recessed portion, it includes: covering the protective structure on the first recessed portion.
  • when covering the protective structure at the first recessed portion includes: performing dust suction treatment in the protective structure.
  • performing dust suction treatment in the protective structure By vacuuming in the protective structure, it is possible to prevent the metal flying debris generated by cutting from remaining between the cutter head and the inner wall of the first recess, causing scratches to the inner wall of the first recess, and at the same time realize the cutting process of the first recess.
  • the simultaneous cleaning of internal parts and impurities is conducive to improving the efficiency of battery cell replenishment.
  • FIG. 1 is a schematic structural diagram of a vehicle provided in an embodiment of the present application.
  • Fig. 2 is a schematic diagram of the explosive structure of the battery provided in the embodiment of the present application.
  • Fig. 3 is a schematic diagram of an exploded structure of a battery cell provided in an embodiment of the present application.
  • FIG. 4 is a schematic flow chart of a battery cell replenishment method provided in an embodiment of the present application.
  • FIG. 5 is a schematic structural view of a battery cell that uses a battery cell replenishment method provided in an embodiment of the present application for liquid replenishment;
  • Fig. 6 is a schematic structural diagram of a tool for processing the first recess in the battery cell replenishment method provided by the embodiment of the present application;
  • Fig. 7 is a schematic structural diagram of a needle for processing a liquid injection structure in the battery cell replenishment method provided by the embodiment of the present application;
  • Fig. 8 is a schematic structural diagram of a battery cell that uses a battery cell replenishment method provided by another embodiment of the present application.
  • FIG. 9 is a schematic flowchart of some steps in a battery cell replenishment method provided by another embodiment of the present application.
  • FIG. 10 is a schematic structural view of a battery cell that is replenished by using the battery cell replenishment method shown in FIG. 9 ;
  • Fig. 11 is a structural schematic diagram of a cutter for processing the first recessed part and the second recessed part in the battery cell replenishment method shown in Fig. 9;
  • FIG. 12 is a schematic flowchart of some steps in a battery cell replenishment method provided by another embodiment of the present application.
  • Battery cell 100 casing 110, end cap 111, electrode terminal 111a, casing 112, electrode assembly 113, tab 113a, first recess 120, liquid injection structure 130, sealing cover 140, groove 141, second recess Part 150;
  • Cutter 200 first body part 210, cutter head 220, first cutter head 221, second cutter head 222, protective structure 230, dust suction pipeline 240;
  • Needle 300 Needle 300 , second body part 310 , needle part 320 .
  • multiple refers to more than two (including two), similarly, “multiple groups” refers to more than two groups (including two), and “multiple pieces” refers to More than two pieces (including two pieces).
  • Batteries are not only used in energy storage power systems such as hydropower, firepower, wind power and solar power plants, but also widely used in electric vehicles such as electric bicycles, electric motorcycles, electric vehicles, as well as military equipment and aerospace and other fields. With the continuous expansion of battery application fields, its market demand is also constantly expanding.
  • the lithium batteries in order to ensure a good charging and discharging environment inside the battery cell, it is necessary to ensure good sealing when the shell and the end cover are assembled, so that a sealed space is formed between the shell and the end cover and the The electrode assembly and electrolyte are arranged in the sealed space to realize the charging and discharging of the battery cells.
  • the lithium ions on the electrode assembly react with the electrolyte, and as the number of reactions increases, the electrolyte is consumed, and the performance of the battery cell decreases accordingly, and the life expectancy correspondingly occurs attenuation.
  • the present application proposes a method for rehydrating a battery cell, by processing the shell of the battery cell from the outside of the battery cell to form a first depression, the thickness of the bottom wall of the first depression is smaller than the thickness of the surrounding shell, Then, from the outside of the battery cell, the bottom wall of the first recess is pierced into the battery cell to form a liquid injection structure, and the electrolyte is injected into the battery cell through the liquid injection structure to realize the replenishment of the electrolyte in the battery cell. Effectively improve the service life of battery cells.
  • the liquid injection structure formed by piercing through the method proposed in the embodiment of the present application will not produce metal shavings, thereby preventing impurities from falling into the inside of the battery cell.
  • the battery cell rehydration method disclosed in the embodiment of the present application can be applied to various batteries, and the battery can be used in but not limited to electric devices such as vehicles, ships or aircrafts.
  • the battery adopting the method for rehydrating a battery cell provided in the embodiment of the present application can be used as a power source of an electric device, and the electric device can be, but not limited to, a mobile phone, a tablet, a notebook computer, an electric toy, an electric tool, a battery car, an electric car, a ship , spacecraft, etc.
  • electric toys may include fixed or mobile electric toys, such as game consoles, electric car toys, electric boat toys, electric airplane toys, etc.
  • spacecraft may include airplanes, rockets, space shuttles, spaceships, etc.
  • FIG. 1 is a schematic structural diagram of a vehicle 5000 provided by some embodiments of the present application.
  • the vehicle 5000 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle.
  • the interior of the vehicle 5000 is provided with a battery 500 , and the battery 500 may be provided at the bottom, head or tail of the vehicle 5000 .
  • the battery 500 can be used for power supply of the vehicle 5000 , for example, the battery 500 can be used as an operating power source of the vehicle 5000 .
  • the vehicle 5000 may further include a controller 600 and a motor 700 , the controller 600 is used to control the battery 500 to supply power to the motor 700 , for example, for starting, navigating and running the vehicle 5000 .
  • the battery 500 can be used not only as an operating power source for the vehicle 5000, but also as a driving power source for the vehicle 5000, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 5000.
  • FIG. 2 is a schematic diagram of an exploded structure of a battery 500 using the method for rehydrating a battery cell proposed by some embodiments of the present application.
  • the battery 500 includes a case 50 and a battery cell 100 housed in the case 50 .
  • the box body 50 is used to provide accommodating space for the battery cells 100 , and the box body 50 may adopt various structures.
  • the box body 50 may include a first part 51 and a second part 52, the first part 51 and the second part 52 cover each other, and the first part 51 and the second part 52 jointly define a of accommodation space.
  • the second part 52 can be a hollow structure with one end open, and the first part 51 can be a plate-shaped structure, and the first part 51 covers the opening side of the second part 52, so that the first part 51 and the second part 52 jointly define an accommodation space ;
  • the first part 51 and the second part 52 can also be hollow structures with one side opening, and the opening side of the first part 51 is covered by the opening side of the second part 52 .
  • the box body 50 formed by the first part 51 and the second part 52 can be in various shapes, such as a cylinder, a cuboid, and the like.
  • the battery 500 there may be multiple battery cells 100 , and the multiple battery cells 100 may be connected in series, parallel or mixed.
  • a plurality of battery cells 100 can be directly connected in series, in parallel or mixed together, and then the whole of the plurality of battery cells 100 is housed in the box 50; of course, the battery 500 can also be a plurality of battery cells 100
  • the battery modules are firstly connected in series or in parallel or in combination, and then multiple battery modules are connected in series or in parallel or in combination to form a whole and accommodated in the box 50 .
  • the battery 500 may also include other structures, for example, the battery 500 may also include a bus component for realizing electrical connection between multiple battery cells 100 .
  • each battery cell 100 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
  • the battery cell 100 may be in the form of a cylinder, a flat body, a cuboid or other shapes.
  • FIG. 3 is a schematic diagram of an exploded structure of a battery cell 100 in a battery adopting the battery cell replenishment method proposed by some embodiments of the present application.
  • the battery cell 100 refers to the smallest unit constituting a battery.
  • the battery cell 100 includes an end cover 111 , a casing 112 , an electrode assembly 113 and other functional components.
  • the end cap 111 refers to a component that covers the opening of the casing 112 to isolate the internal environment of the battery cell 100 from the external environment.
  • the shape of the end cap 111 can be adapted to the shape of the housing 112 to fit the housing 112 .
  • the end cover 111 can be made of a material with certain hardness and strength (such as aluminum alloy), so that the end cover 111 is not easy to deform when being squeezed and collided, so that the battery cell 100 can have a more With high structural strength, safety performance can also be improved.
  • Functional components such as electrode terminals 111 a may be provided on the end cap 111 .
  • the electrode terminal 111 a may be used to be electrically connected with the electrode assembly 113 for outputting or inputting electric energy of the battery cell 100 .
  • the end cover 111 may also be provided with a pressure relief mechanism for releasing the internal pressure when the internal pressure or temperature of the battery cell 100 reaches a threshold value.
  • the material of the end cap 111 may also be various, for example, copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which is not particularly limited in this embodiment of the present application.
  • an insulator can be provided inside the end cover 111 , and the insulator can be used to isolate the electrical connection components in the housing 112 from the end cover 111 to reduce the risk of short circuit.
  • the insulating member may be plastic, rubber or the like.
  • the casing 112 is a component used to cooperate with the end cap 111 to form an internal environment of the battery cell 100 , wherein the formed internal environment can be used to accommodate the electrode assembly 113 , electrolyte and other components.
  • the housing 112 and the end cover 111 can be independent components, and an opening can be provided on the housing 112 , and the internal environment of the battery cell 100 can be formed by making the end cover 111 cover the opening at the opening. Without limitation, the end cover 111 and the housing 112 may also be integrated.
  • the housing 112 can be in various shapes and sizes, such as cuboid, cylinder, hexagonal prism and so on. Specifically, the shape of the casing 112 may be determined according to the specific shape and size of the electrode assembly 113 .
  • the housing 112 can be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which is not particularly limited in this embodiment of the present application.
  • the electrode assembly 113 is a part where an electrochemical reaction occurs in the battery cell 100 .
  • One or more electrode assemblies 113 may be contained within the case 112 .
  • the electrode assembly 113 is mainly formed by winding or laminating a positive electrode sheet and a negative electrode sheet, and a separator is usually provided between the positive electrode sheet and the negative electrode sheet.
  • the part of the positive electrode sheet and the negative electrode sheet with the active material constitutes the main body of the electrode assembly, and the parts of the positive electrode sheet and the negative electrode sheet without the active material respectively constitute the tab 113a.
  • the positive pole tab and the negative pole tab can be located at one end of the main body together or at two ends of the main body respectively.
  • the positive electrode active material and the negative electrode active material react with the electrolyte, and the tabs 113a are connected to the electrode terminals to form a current loop.
  • the battery cell replenishment method includes:
  • S10 Processing the shell of the battery cell from the outside of the battery cell to form a first recess, so that the thickness of the bottom wall of the first recess is smaller than the thickness of the surrounding shell;
  • the first recess is formed by processing the shell of the battery cell from the outside of the battery cell, wherein the shell of the battery cell may be a housing or an end cover.
  • the setting position of the first concave part can be selected according to the specific structure of the battery cell. Usually, when it is set on the end cover, the end cover will be provided with structures such as explosion-proof valves. If there is a conflict, the liquid injection path can be set at a position away from structures such as explosion-proof valves. In some embodiments, the liquid injection path can be set at one side edge of the end cap, which is not limited in this embodiment of the application.
  • the first concave part When the first concave part is set on the casing, it can be set according to the placement position of the battery cell. Generally, the first concave part is set on the upward position of the casing. The specific setting position will not be repeated here. .
  • the first concave part can be shaped in various ways.
  • FIG. 5 shows a battery cell 100 for rehydration using the battery cell rehydration method provided in an embodiment of the present application.
  • the first concave portion 120 can be formed by cutting the outer surface of the casing 110 of the battery cell 100 with a cutting tool, and the thickness h1 of the bottom wall of the first concave portion 120 is smaller than the thickness h2 of the casing 110, thereby facilitating Subsequently, the bottom wall of the first recess 120 is pierced. Then, the bottom wall of the first concave portion 120 can be pierced by a needle to form the liquid injection structure 130 , so as to implement supplementary injection of electrolyte into the battery cell 100 .
  • the cutting tool 200 may include a first main body 210 and a cutter head 220 disposed at one end of the first main body 210 , the cutter head 220 is in contact with the housing 110 , and the cutter head 220 is relative to the The rotation of the first body part 210 realizes the cutting of the casing 110, and the first concave part 120 is processed by the movement of the cutter head 220 toward the inside of the casing 110.
  • the rotation and movement of the cutter head 220 can be that the cutter head 220 is relatively As the first body part 210 rotates and moves, the cutter 200 may rotate and move as a whole.
  • the metal shavings or other impurities generated in the first recessed part 120 can be removed by cleaning or vacuuming device, so as to avoid metal shavings or other impurities generated in the subsequent piercing of the first recessed part 120 Dropping into the case 110 affects the electrolyte.
  • the first recessed portion 120 since the first recessed portion 120 does not penetrate the casing 110 , debris formed during the cutting process will not fall into the interior of the battery cell 100 .
  • the bottom wall of the first recessed portion 120 is pierced into the battery cell 100 to form a liquid injection structure.
  • the thickness of the bottom wall of the first concave portion on the casing 110 becomes relatively thin, in order to avoid debris falling into the casing when the liquid injection structure 130 is continuously formed by cutting.
  • the liquid injection structure 130 is formed by piercing the bottom wall of the first recess 120 toward the inside of the housing 110 with a needle or other sharp tools.
  • the bottom wall of the first concave portion 120 When the bottom wall of the first concave portion 120 is pierced by a needle or other sharp object, the bottom wall of the first concave portion 120 will bend toward the inside of the housing 110 along with the piercing tool to form a liquid injection structure. During the bending process, Due to the characteristics of the shell material, the pierced part of the bottom wall will not be cut off and fall into the shell, but will continue to be connected with the bottom wall of the first recess 120 . In this way, it is avoided that debris falls into the casing 110 during the process of piercing the casing 110 , causing impurities to be mixed into the electrolyte.
  • the liquid injection structure 130 formed by piercing can be in various shapes, such as: circular, square or elliptical, etc., which are not limited here.
  • the liquid injection structure can be formed in various ways. Please refer to FIG. 7 , which shows a needle 300 for processing the liquid injection structure 130 in the battery cell replenishment method provided by an embodiment of the present application.
  • the needle 300 may include a second body part 310 and a needle part 320. By abutting the needle part 320 against the bottom wall of the first recessed part 120 and piercing the bottom wall of the first recessed part 120 toward the inside of the case 110, the housing 110 is realized. Internal and external communication, so that the injection and replenishment of electrolyte in the casing 110 can be performed through the liquid injection device.
  • the first recess is formed by processing the shell of the battery cell from the outside of the battery cell, the thickness of the bottom wall of the first recess is smaller than the thickness of the surrounding shell, and then the bottom of the first recess is processed from the outside of the battery cell
  • the wall is pierced into the battery cell to form a liquid injection structure, and the electrolyte is injected into the battery cell through the liquid injection structure, so as to realize the replenishment of the electrolyte in the battery cell and effectively improve the service life of the battery cell.
  • the bottom wall When the bottom wall is pierced, it bends inwards and deforms.
  • the method for rehydration of the battery cell further includes:
  • FIG. 8 shows a battery cell 100 for rehydration using a method for rehydrating a battery cell provided by another embodiment of the present application.
  • the sealing cover 140 is installed in the first recessed part 120, and the sealing cover 140 is sealed with the first recessed part 120. , so that the inner space of the casing 110 is sealed.
  • step S50 includes: welding the edge of the sealing cover to the edge of the first recess, so as to make the sealing cover and the first recess sealingly connected.
  • the edge of the sealing cover and the edge of the first recess are melted to fill the gap between the sealing cover and the first recess, and then solidified and welded to form the sealing cover and the first recess. seal.
  • step S50 includes: filling a sealant between the sealing cover and the first recessed portion, so as to make the sealing cover and the first recessed portion sealingly connected.
  • the way of filling the sealant between the sealing cover and the first recess can ensure the sealing of the inside of the battery cell, improve the convenience of operation, and help improve the efficiency of liquid injection.
  • FIG. 9 shows the steps before step S10 and the specific steps of step S10 in the battery cell replenishment method provided by an embodiment of the present application.
  • it before step S10, it also includes:
  • Step S10 includes:
  • FIG. 10 shows a battery cell 100 for rehydration using a battery cell rehydration method provided by another embodiment of the present application.
  • the second recessed portion 150 can be processed on the surface of the housing 110 by a cutting tool, and then the first recessed portion can be processed on the bottom wall of the second recessed portion 150 120.
  • FIG. 11 shows a cross-sectional structure of a tool 200 for processing the first recessed portion 120 and the second recessed portion 150 in the battery cell replenishment method provided by an embodiment of the present application.
  • the cutting tool 200 includes a first body part 210 and a cutter head 220, the cutter head 220 includes a first cutter head 221 and a second cutter head 222, and the first cutter head 221 is located at the end of the second cutter head 222.
  • the radial dimension d1 of the first cutter head 221 is smaller than the radial dimension d2 of the second cutter head 222, so that when the cutter head 220 cuts the casing 110 of the battery cell 100, the first cutter head 221 cuts out the second A concave portion 120 , the second cutter head 222 cuts out the second concave portion 150 .
  • the first recess is formed by processing the bottom wall of the second recess, and the area of the bottom wall of the second recess is larger than the area of the opening of the first recess, so that a step is formed between the second recess and the first recess.
  • the structure facilitates the positioning during liquid injection into the battery cell, and the sealing cover 140 can be better provided through the stepped structure, so that the battery cell after liquid replenishment can be better sealed.
  • the battery cell replenishment method further includes:
  • the sealing cover When the sealing cover is installed in the second recess, since the area of the bottom wall of the second recess is larger than the area of the opening of the first recess, contact is formed between the sealing cover and the side wall and the bottom wall of the second recess , so as to increase the contact area between the sealing cover and the second recessed part, and when the sealing cover and the second recessed part are sealed and connected subsequently, it can ensure good sealing performance inside the battery cell.
  • step S51 includes: welding the edge of the sealing cover to the edge of the second recessed part, so as to seal the sealing cover and the second recessed part.
  • a groove is provided on the side of the sealing cover away from the casing, and the battery cell replenishment method further includes: releasing the welding stress between the sealing cover and the first recess or the second recess through the groove .
  • Part 120 or the side wall of the second recessed part 150 another part flows in the groove 141, so that the structure of the edge melting of the sealing cover 140 will not be restricted by other structures during the solidification process, thereby ensuring that the welding stress can be released.
  • the structural stability of the sealing cover 140 after welding is enhanced.
  • step S51 includes: filling a sealant between the sealing cover and the second recessed part, so as to make the sealing cover and the second recessed part sealingly connected.
  • the way of filling the sealant between the sealing cover and the second concave part can not only ensure the internal sealing of the battery cell, but also improve the convenience of operation, which is beneficial to improve the efficiency of liquid injection.
  • the casing includes an end cap and a casing, and the end cap is disposed on the casing.
  • Step S10 includes: processing the end cap from the outside of the battery cell to form a first recess.
  • the casing 110 includes an end cover 111 and a casing 112. Since the end cover 111 is generally located on the upper side when the battery cell 100 is placed, in order to facilitate the processing of the first recessed part 120, in some implementations, the first recessed portion 120 may be formed on the end cover 111 .
  • the first recess is formed by processing the end cover from the outside of the battery cell, that is, the top of the battery cell is processed on the end cover, which is convenient for controlling the progress of the tool.
  • the location of the liquid injection path can be selected according to the specific structure of the battery cell.
  • the end cover is provided with structures such as explosion-proof valves.
  • the liquid injection path can be set at a position away from structures such as explosion-proof valves.
  • the liquid injection path may be arranged on one side edge of the end cap, which is not limited in this embodiment of the present application.
  • processing the end cap from the outside of the battery cell to form the first recess includes: machining the end cap to form the first recess by using a drill bit or a milling cutter.
  • cutting the end cap with a drill bit or a milling cutter realizes processing and forming the first concave portion on the end cap, and by controlling the feed rate of the drill bit or milling cutter, it is ensured that the thickness of the processed first concave portion is appropriate.
  • the drill bit or the milling cutter is provided with a protective structure, and when the end cap is processed from the outside of the battery cell to form the first concave portion, it includes: connecting the protective structure cover with the first concave portion .
  • the cutter head 220 on the cutter 200 can be a drill bit or a milling cutter, and the cutter 200 is provided with a protective structure 230, and the protective structure 230 is covered around the cutter head 220.
  • the protective structure 230 abuts against the surface of the end cover 111 and covers the area where the first recessed part 120 is processed on the end cover 111, and passes through the cutter head 220 toward the housing 112 moving in the direction to realize the cutting process on the first recessed part 120 .
  • the protective structure at the first recess when covering the protective structure at the first recess, it also includes: performing dust suction treatment in the protective structure.
  • a dust suction pipeline 240 communicating with the inner space of the protective structure 230 can be provided on the cutting tool 200, and the dust suction pipeline 240 is connected to the dust suction device, and the cutting process is performed on the cutter head 220.
  • the dust suction device sucks away the metal flying chips generated in the protective structure 230 through the dust suction pipeline 240 , so as to prevent the metal flying chips from adhering to the cutter head 220 and affecting the first concave portion 120 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Filling, Topping-Up Batteries (AREA)

Abstract

本申请涉及新能源技术领域,具体涉及一种电池单体补液方法,包括:从电池单体的外部对电池单体的外壳进行加工形成第一凹陷部,使第一凹陷部的底壁厚度小于周围外壳的厚度;从电池单体的外部对第一凹陷部的底壁向电池单体内部进行刺穿形成注液结构;通过注液结构向电池单体内注入电解液。通过上述方式,本申请能够向电池单体中补充电解液,提升电池单体的性能,延长电池单体的使用寿命。

Description

一种电池单体补液方法
交叉引用
本申请引用于2022年1月7日递交的名称为“一种电池单体补液方法”的第202210017945.9号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及新能源技术领域,尤其涉及一种电池单体补液方法。
背景技术
节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
随着新能源领域的快速发展,电池的应用领域越来越广泛,因此对于电池的性能和寿命也提出了更高的要求。本申请发明人在研究中发现,电池通过端盖与壳体盖合形成密封空间,密封空间内设置电解液以提供充放电环境,对于锂电池而言,随着锂离子与电解液反应次数的增加,电解液被消耗且无法补充,从而造成电池的性能随之下降,寿命衰减严重。
发明内容
鉴于上述问题,本申请提供一种电池单体补液方法,以能够向电池单体中补充电解液,提升电池单体的性能,延长电池单体的使用寿命。
根据本申请实施例的一个方面,本申请实施例提供了一种电池单体补液方法,包括:从电池单体的外部对电池单体的外壳进行加工形成第一凹陷部,使第一凹陷部的底壁厚度小于周围外壳的厚度;从电池单体的外部对第一凹陷部的底壁向电池单体内部进行刺穿形成注液结构;通过注液结构向电池单体内注入电解液。
通过从电池单体的外部对电池单体的外壳进行加工形成第一凹陷部,第一凹陷部的底壁厚度小于周围外壳的厚度,从而便于后续从电池单体的外部对第一凹陷部的底壁向电池单体内部进行刺穿形成注液结构,通过注液结构向电池单体内注入电解液,实现对电池单体内电解液的补充,有效提升电池单体的使用寿命,第一凹陷部的底壁被刺穿 时向内弯曲形变,相较于直接在电池单体的外壳切削加工注液口而言,不会因产生金属屑或其他杂质掉入外壳内部而对内部的电解液造成影响,有利于保证电池单体后续使用的性能。
在一些示例性实施例中,方法进一步包括:在第一凹陷部内安装密封盖;将密封盖与第一凹陷部密封连接。通过在第一凹陷部内安装密封盖并将密封盖与第一凹陷部密封连接,使得补充完电解液之后的电池单体内部形成密封空间,保证电池单体后续工作的稳定性。
在一些示例性实施例中,将密封盖与第一凹陷部密封连接,包括:将密封盖的边缘与第一凹陷部的边缘焊接,使密封盖与第一凹陷部密封连接。通过将密封盖的边缘与第一凹陷部的边缘焊接,在提升密封盖与第一凹陷部密封性的同时,有效保证了补液后第一凹陷部处结构的稳定性,为后续电池单体的工作提供良好保证。
在一些示例性实施例中,将密封盖与第一凹陷部密封连接,包括:在密封盖与第一凹陷部之间填充密封胶,使密封盖与第一凹陷部密封连接。在密封盖与第一凹陷部之间填充密封胶的方式可以在保证电池单体内部密封性的同时,提升操作的便捷性,有利于提高注液的效率。
在一些示例性实施例中,从电池单体的外部对电池单体的外壳进行加工形成第一凹陷部之前,包括:从电池单体的外部对电池单体的外壳进行加工形成第二凹陷部;从电池单体的外部对电池单体的外壳进行加工形成第一凹陷部,包括:从第二凹陷部的外部对第二凹陷部的底壁进行加工形成第一凹陷部,第二凹陷部的底壁的面积大于第一凹陷部的开口的面积。通过在第二凹陷部的底壁加工形成第一凹陷部,并且第二凹陷部的底壁的面积大于第一凹陷部的开口的面积,使得第二凹陷部与第一凹陷部之间形成台阶结构,便于向电池单体内进行注液操作时的定位,并且通过该台阶结构可以更好地设置密封盖,从而将补液后的电池单体更好地密封。
在一些示例性实施例中,方法进一步包括:在第二凹陷部内安装密封盖;将密封盖与第二凹陷部密封连接。将密封盖安装在第二凹陷部内时,由于第二凹陷部的底壁的面积大于第一凹陷部的开口的面积,使得密封盖与第二凹陷部的侧壁及底壁之间均形成接触,从而增加密封盖与第二凹陷部的接触面积,在后续将密封盖与第二凹陷部密封连接时,可以保证电池单体内部具备良好的密封性。
在一些示例性实施例中,将密封盖与第二凹陷部密封连接,包括:将密封盖的边缘与第二凹陷部的边缘焊接,使密封盖与第二凹陷部密封连接。通过将密封盖的边缘与 第二凹陷部的边缘焊接,在提升密封盖与第一凹陷部密封性的同时,有效保证了补液后第二凹陷部处结构的稳定性,为后续电池单体的工作提供良好保证。并且由于第二凹陷部的底壁的面积大于第一凹陷部的开口的面积,从而密封盖与第二凹陷部焊接时熔化的结构在流动至第二凹陷部的底壁处被限制,可以避免熔化的结构从注液结构处流入外壳中对电解液造成影响。
在一些示例性实施例中,密封盖上远离外壳的一侧设置有凹槽;该方法进一步包括通过凹槽释放密封盖与第一凹陷部或第二凹陷部之间的焊接应力。焊接时被焊件先发生熔化后再进行固化熔接,熔化后的结构在固化过程中受到未熔化结构的限制会产生焊接应力,通过在密封盖背离外壳的一端设置凹槽,使得密封盖边缘焊接时熔化的结构一部分流动并填充于密封盖与第一凹陷部或第二凹陷部的侧壁之间,另一部分流动于凹槽内,使得密封盖边缘熔化的结构在固化过程中不会受到其他结构限制,从而保证焊接应力可以得到释放,增强焊接后密封盖的结构稳定性。
在一些示例性实施例中,将密封盖与第二凹陷部密封连接,包括:在密封盖与第二凹陷部之间填充密封胶,使密封盖与第二凹陷部密封连接。在密封盖与第二凹陷部之间填充密封胶的方式可以在保证电池单体内部密封性的同时,提升操作的便捷性,有利于提高注液的效率。
在一些示例性实施例中,外壳包括端盖和壳体,端盖盖设于壳体上;从电池单体的外部对电池单体的外壳进行加工形成第一凹陷部,包括:从电池单体的外部对端盖进行加工形成第一凹陷部。由于电池单体在放置时端盖一般位于上方,因此通过从电池单体的外部对端盖进行加工形成第一凹陷部,也即电池单体的顶部对端盖进行加工,便于控制刀具的进给量,从而可以提升加工第一凹陷部的精度和效率。
在一些示例性实施例中,从电池单体的外部对端盖进行加工形成第一凹陷部,包括:通过钻头或铣刀对端盖进行加工形成第一凹陷部。通过钻头或铣刀对端盖进行切削实现在端盖上加工形成第一凹陷部,通过控制钻头或铣刀的进给量,确保加工出的第一凹陷部的厚度合适,一方面便于后续从第一凹陷部的底壁进行刺穿形成注液结构,另一方面可以避免引第一凹陷部加工过度而穿透端盖,造成金属屑或其他杂质掉入电池单体内对电解液造成影响。
在一些示例性实施例中,钻头或铣刀上设置有防护结构;从电池单体的外部对端盖进行加工形成第一凹陷部时,包括:将防护结构罩盖于第一凹陷部处。通过在钻头或铣刀上设置防护结构,并将防护结构罩盖于第一凹陷部处,使得在切削加工的过程中, 由于防护结构的罩盖,切削形成的金属飞屑留存在防护结构内,便于在第一凹陷部加工完成后对金属飞屑及其他杂质进行统一处理,避免加工过程中产生的金属飞屑落在外壳上对电池单体的结构造成影响。
在一些示例性实施例中,将防护结构罩盖于第一凹陷部处时,包括:在防护结构内进行吸尘处理。通过在防护结构内进行吸尘处理,可以避免切削产生的金属飞屑残留在刀头部与第一凹陷部的内壁之间对第一凹陷部的内壁造成划伤,同时实现切削加工第一凹陷部和杂质清理的同步进行,有利于提升电池单体补液的效率。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本申请实施例提供的车辆的结构示意图;
图2为本申请实施例提供的电池的爆炸结构示意图;
图3为本申请实施例提供的电池单体的爆炸结构示意图;
图4为本申请实施例提供的电池单体补液方法的流程示意图;
图5为本申请实施例提供的采用电池单体补液方法进行补液的电池单体的结构示意图;
图6为本申请实施例提供的电池单体补液方法中加工第一凹陷部的刀具的结构示意图;
图7为本申请实施例提供的电池单体补液方法中加工注液结构的针具的结构示意图;
图8为本申请另一实施例提供的采用电池单体补液方法进行补液的电池单体的结构示意图;
图9为本申请另一实施例提供的电池单体补液方法中部分步骤的流程示意图;
图10为采用图9所示的电池单体补液方法进行补液的电池单体的结构示意图;
图11为图9所示的电池单体补液方法中加工第一凹陷部和第二凹陷部的刀具的结构示意图;
图12为本申请另一实施例提供的电池单体补液方法中部分步骤的流程示意图。
具体实施方式中的附图标号如下:
车辆5000;
电池500,控制器600,马达700;
箱体50,第一部分51,第二部分52;
电池单体100,外壳110,端盖111,电极端子111a,壳体112,电极组件113,极耳113a,第一凹陷部120,注液结构130,密封盖140,凹槽141,第二凹陷部150;
刀具200,第一主体部210,刀头部220,第一刀头221,第二刀头222,防护结构230,吸尘管路240;
针具300,第二主体部310,针头部320。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
目前,从市场形势的发展来看,电池的应用越加广泛。电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
对于锂电池而言,为了保证电池单体的内部具有良好的充放电环境,在壳体与端盖装配时,需要保证良好的密封性,从而通过壳体与端盖之间形成密封空间并在密封空间内设置电极组件和电解液,实现电池单体的充放电工作。在电池单体充放电工作过程中,电极组件上的锂离子与电解液之间发生反应,并且随着反应次数的增加,电解液被消耗,并且电池单体的性能随之下降,寿命相应发生衰减。
由于需要保证电池单体的密封性,因此在电池单体装配完成后,即使电解液发生消耗,也无法进行后续的补充,从而导致电池单体的寿命较低,并且随着电池单体使用时长的增加,电池单体的性能也随之下降。
基于上述问题,本申请提出一种电池单体补液方法,通过从电池单体的外部对电池单体的外壳进行加工形成第一凹陷部,第一凹陷部的底壁厚度小于周围外壳的厚度, 再从电池单体的外部对第一凹陷部的底壁向电池单体内部进行刺穿形成注液结构,通过注液结构向电池单体内注入电解液,实现对电池单体内电解液的补充,有效提升电池单体的使用寿命。通过本申请实施例提出的方法刺穿形成的注液结构不会产生金属屑,从而避免电池单体内部掉入杂质,第一凹陷部的底壁被刺穿时向内弯曲形变,相较于直接在电池单体的外壳切削加工注液口而言,不会因产生金属屑或其他杂质掉入外壳内部而对内部的电解液造成影响,有利于保证电池单体后续使用的性能。本申请提出的方案不仅适用于首次生产装配的电池单体的注液流程,对于已经进行使用的电池单体而言,同样可以在需要回收维护的电池单体上加工设置相应的第一凹陷部及注液结构,实现对电池单体的二次补液,以提升电池单体的性能,延长电池单体的使用寿命。
本申请实施例公开的电池单体补液方法可以应用于各种电池中,该电池可以但不限用于车辆、船舶或飞行器等用电装置中。
采用本申请实施例提供的电池单体补液方法的电池,可以作为用电装置的电源,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以采用本申请实施例提出的电池单体补液方法的电池用于车辆5000为例进行说明。
请参阅图1,图1为本申请一些实施例提供的车辆5000的结构示意图。车辆5000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆5000的内部设置有电池500,电池500可以设置在车辆5000的底部或头部或尾部。电池500可以用于车辆5000的供电,例如,电池500可以作为车辆5000的操作电源。车辆5000还可以包括控制器600和马达700,控制器600用来控制电池500为马达700供电,例如,用于车辆5000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池500不仅可以作为车辆5000的操作电源,还可以作为车辆5000的驱动电源,代替或部分地代替燃油或天然气为车辆5000提供驱动动力。
请参阅图2,图2为采用本申请一些实施例提出的电池单体补液方法的电池500的爆炸结构示意图。电池500包括箱体50和电池单体100,电池单体100容纳于箱体50内。其中,箱体50用于为电池单体100提供容纳空间,箱体50可以采用多种结构。在一些实施例中,箱体50可以包括第一部分51和第二部分52,第一部分51与第二部分 52相互盖合,第一部分51和第二部分52共同限定出用于容纳电池单体100的容纳空间。第二部分52可以为一端开口的空心结构,第一部分51可以为板状结构,第一部分51盖合于第二部分52的开口侧,以使第一部分51与第二部分52共同限定出容纳空间;第一部分51和第二部分52也可以是均为一侧开口的空心结构,第一部分51的开口侧盖合于第二部分52的开口侧。当然,第一部分51和第二部分52形成的箱体50可以是多种形状,比如,圆柱体、长方体等。
在电池500中,电池单体100可以是多个,多个电池单体100之间可串联或并联或混联,混联是指多个电池单体100中既有串联又有并联。多个电池单体100之间可直接串联或并联或混联在一起,再将多个电池单体100构成的整体容纳于箱体50内;当然,电池500也可以是多个电池单体100先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体50内。电池500还可以包括其他结构,例如,该电池500还可以包括汇流部件,用于实现多个电池单体100之间的电连接。
其中,每个电池单体100可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体100可呈圆柱体、扁平体、长方体或其它形状等。
请参阅图3,图3为采用本申请一些实施例提出的电池单体补液方法的电池中,电池单体100的分解结构示意图。电池单体100是指组成电池的最小单元。如图3,电池单体100包括有端盖111、壳体112、电极组件113以及其他的功能性部件。
端盖111是指盖合于壳体112的开口处以将电池单体100的内部环境隔绝于外部环境的部件。不限地,端盖111的形状可以与壳体112的形状相适应以配合壳体112。在一些实施例中,端盖111可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖111在受挤压碰撞时就不易发生形变,使电池单体100能够具备更高的结构强度,安全性能也可以有所提高。端盖111上可以设置有如电极端子111a等的功能性部件。电极端子111a可以用于与电极组件113电连接,以用于输出或输入电池单体100的电能。在一些实施例中,端盖111上还可以设置有用于在电池单体100的内部压力或温度达到阈值时泄放内部压力的泄压机构。端盖111的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。在一些实施例中,在端盖111的内侧还可以设置有绝缘件,绝缘件可以用于隔离壳体112内的电连接部件与端盖111,以降低短路的风险。示例性的,绝缘件可以是塑料、橡胶等。
壳体112是用于配合端盖111以形成电池单体100的内部环境的组件,其中,形成的内部环境可以用于容纳电极组件113、电解液以及其他部件。壳体112和端盖111可以是独立的部件,可以于壳体112上设置开口,通过在开口处使端盖111盖合开口以形成电池单体100的内部环境。不限地,也可以使端盖111和壳体112一体化。壳体112可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,壳体112的形状可以根据电极组件113的具体形状和尺寸大小来确定。壳体112的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
电极组件113是电池单体100中发生电化学反应的部件。壳体112内可以包含一个或更多个电极组件113。电极组件113主要由正极片和负极片卷绕或层叠放置形成,并且通常在正极片与负极片之间设有隔膜。正极片和负极片具有活性物质的部分构成电极组件的主体部,正极片和负极片不具有活性物质的部分各自构成极耳113a。正极极耳和负极极耳可以共同位于主体部的一端或是分别位于主体部的两端。在电池的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,极耳113a连接电极端子以形成电流回路。
本申请实施例提供的一种电池单体补液方法,具体请参阅图4,图中示出了本申请一实施例提供的电池单体补液方法的流程,该电池单体补液方法包括:
S10:从电池单体的外部对电池单体的外壳进行加工形成第一凹陷部,使第一凹陷部的底壁厚度小于周围外壳的厚度;
S20:从电池单体的外部对第一凹陷部的底壁向电池单体内部进行刺穿形成注液结构;
S30:通过注液结构向电池单体内注入电解液。
在本申请实施例中,通过从电池单体的外部对电池单体的外壳进行加工形成第一凹陷部,其中,电池单体的外壳可以为壳体,也可以为端盖。第一凹陷部的设置位置可以根据电池单体的具体结构进行选择,通常情况下,当设置在端盖上时,端盖会设置有防爆阀等结构,为了避免注液路径与防爆阀等结构产生冲突,可以将注液路径设置在远离防爆阀等结构的位置,在一些实施例中,可以将注液路径设置在端盖的一侧边缘,在本申请实施例中不做限定。当第一凹陷部设置在壳体上时,可以根据电池单体的放置位置进行设置,一般选择将第一凹陷部设置在壳体朝上的位置上,具体的设置位置,在这里不再赘述。
在本申请实施例中,第一凹陷部可以采用多种方式成型,请参阅图5,图中示出了一种采用本申请一实施例提供的电池单体补液方法进行补液的电池单体100。如图中所示,可以通过切削刀具先在电池单体100的外壳110的外表面切削加工形成第一凹陷部120,第一凹陷部120的底壁厚度h1小于外壳110的厚度h2,从而便于后续对第一凹陷部120的底壁进行刺穿。然后可以通过针具将第一凹陷部120的底壁刺穿形成注液结构130,从而实现向电池单体100内部补充注入电解液。
请参阅图6,图中示出了本申请一实施例提供的电池单体补液方法中一种加工第一凹陷部的刀具200的立体结构。如图6中所示,刀具200可以包括第一主体部210和设置于第一主体部210一端的刀头部220,刀头部220与外壳110接触,通过刀头部220沿自身轴线相对于第一主体部210转动实现对外壳110的切削,并且通过刀头部220朝向外壳110内部移动加工出第一凹陷部120,具体地,刀头部220的转动和移动可以是刀头部220相对于第一主体部210转动和移动,也可以刀具200整体转动和移动。在加工完第一凹陷部120之后,可以通过清扫或吸尘装置将第一凹陷部120内产生的金属屑或其他杂质清除掉,避免后续刺穿第一凹陷部120时造成金属屑或其他杂质掉入外壳110中对电解液造成影响。通过首先形成第一凹陷部120,由于第一凹陷部120并没有贯穿外壳110,因此,在切削的过程中形成的碎屑并不会掉入到电池单体100的内部。
当形成第一凹陷部120后,为了对电池单体100进行注液,在第一凹陷部120的底壁上向电池单体100内部进行刺穿形成注液结构。当在外壳110上形成第一凹陷部120后,外壳110上第一凹陷部的底壁的厚度变得比较薄,为了避免继续通过切削的方式形成注液结构130时,造成碎屑掉入壳体内,本申请实施例通过在第一凹陷部120的底壁上以刺针或其他尖锐工具朝外壳110内部的方向刺穿形成注液结构130。当通过刺针或其他尖锐物体刺穿第一凹陷部120的底壁时,第一凹陷部120的底壁会随着刺穿工具朝向外壳110内部进行弯曲形成注液结构,在弯曲的过程中,由于外壳材质的特点,底壁被刺穿的部分不会被切掉而掉落到壳体内,而是会和第一凹陷部120的底壁继续连接在一起。通过这种方式,就避免了在刺穿外壳的过程中,碎屑掉入外壳110内,造成电解液内混入杂质。其中,通过刺穿的方式形成的注液结构130可以为多种形状,比如:圆形、方形或椭圆形等,在这里不做限定。
注液结构的成型可以采用多种方式,请参阅图7,图中示出了本申请一实施例提供的电池单体补液方法中一种加工注液结构130的针具300。针具300可以包括第二主体部310和针头部320,通过将针头部320与第一凹陷部120的底壁抵接并朝向外壳110内部 刺穿第一凹陷部120的底壁,实现外壳110内外部的连通,从而可以通过注液装置进行外壳110内电解液的注入补充。
通过从电池单体的外部对电池单体的外壳进行加工形成第一凹陷部,第一凹陷部的底壁厚度小于周围外壳的厚度,然后再从电池单体的外部对第一凹陷部的底壁向电池单体内部进行刺穿形成注液结构,通过注液结构向电池单体内注入电解液,实现对电池单体内电解液的补充,有效提升电池单体的使用寿命,第一凹陷部的底壁被刺穿时向内弯曲形变,相较于直接在电池单体的外壳切削加工注液口而言,不会因产生金属屑或其他杂质掉入外壳内部而对内部的电解液造成影响,有利于保证电池单体后续使用的性能。
请再次参阅图4,为了保证补液后电池单体内部的密封性能,在本申请的一些实施例中,电池单体补液方法还包括:
S40:在第一凹陷部内安装密封盖;
S50:将密封盖与第一凹陷部密封连接。
请参阅图8,图中示出了采用本申请另一实施例提供的电池单体补液方法进行补液的电池单体100。如图中所示,在通过注液结构130向电池单体100内注入液电解液后,将密封盖140安装在第一凹陷部120内,并将密封盖140与第一凹陷部120密封连接,使得外壳110内部空间密封。
通过在第一凹陷部内安装密封盖并将密封盖与第一凹陷部密封连接,使得补充完电解液之后的电池单体内部形成密封空间,保证电池单体后续工作的稳定性。
在本申请的一些实施例中,步骤S50包括:将密封盖的边缘与第一凹陷部的边缘焊接,使密封盖与第一凹陷部密封连接。
具体地,在焊接时,密封盖的边缘与第一凹陷部的边缘发生熔化后将密封盖与第一凹陷部之间的空隙填充,然后发生固化熔接使密封盖与第一凹陷部相互熔接形成密封。
通过将密封盖的边缘与第一凹陷部的边缘焊接,在提升密封盖与第一凹陷部密封性的同时,有效保证了补液后第一凹陷部处结构的稳定性,为后续电池单体的工作提供良好保证。
在本申请的一些实施例中,步骤S50包括:在密封盖与第一凹陷部之间填充密封胶,使密封盖与第一凹陷部密封连接。
在密封盖与第一凹陷部之间填充密封胶的方式可以在保证电池单体内部密封性的同时,提升操作的便捷性,有利于提高注液的效率。
请参阅图9,图中示出了本申请一实施例提供的电池单体补液方法中步骤S10之前的步骤和步骤S10的具体步骤。在本申请的一些实施例中,步骤S10之前还包括:
S11:从电池单体的外部对电池单体的外壳进行加工形成第二凹陷部;
步骤S10包括:
S12:从第二凹陷部的外部对第二凹陷部的底壁进行加工形成第一凹陷部,第二凹陷部的底壁的面积大于第一凹陷部的开口的面积。
请参阅图10,图中示出了采用本申请另一实施例提供的电池单体补液方法进行补液的电池单体100。如图中所示,在加工第一凹陷部120之前,可以先通过切削刀具在外壳110的表面加工出第二凹陷部150,然后在第二凹陷部150的底壁上加工出第一凹陷部120。
请参阅图11,图中示出了本申请一实施例提供的电池单体补液方法中加工第一凹陷部120和第二凹陷部150的刀具200的剖视结构。如图中所示,刀具200包括第一主体部210和刀头部220,刀头部220包括第一刀头221和第二刀头222,第一刀头221位于第二刀头222的端部,且第一刀头221的径向尺寸d1小于第二刀头222的径向尺寸d2,从而在刀头部220切削电池单体100的外壳110时,通过第一刀头221切削出第一凹陷部120,第二刀头222切削出第二凹陷部150。
通过在第二凹陷部的底壁加工形成第一凹陷部,并且第二凹陷部的底壁的面积大于第一凹陷部的开口的面积,使得第二凹陷部与第一凹陷部之间形成台阶结构,便于向电池单体内进行注液操作时的定位,并且通过该台阶结构可以更好地设置密封盖140,从而将补液后的电池单体更好地密封。
请参阅图12,图中示出了本申请另一实施例提供的电池单体补液方法中进一步的操作步骤。在本申请的一些实施例中,电池单体补液方法进一步包括:
S41:在第二凹陷部内安装密封盖;
S51:将密封盖与第二凹陷部密封连接。
将密封盖安装在第二凹陷部内时,由于第二凹陷部的底壁的面积大于第一凹陷部的开口的面积,使得密封盖与第二凹陷部的侧壁及底壁之间均形成接触,从而增加密封盖与第二凹陷部的接触面积,在后续将密封盖与第二凹陷部密封连接时,可以保证电池单体内部具备良好的密封性。
在本申请的一些实施例中,步骤S51包括:将密封盖的边缘与第二凹陷部的边缘焊接,使密封盖与第二凹陷部密封连接。
通过将密封盖的边缘与第二凹陷部的边缘焊接,在提升密封盖与第一凹陷部密封性的同时,有效保证了补液后第二凹陷部处结构的稳定性,为后续电池单体的工作提供良好保证。并且由于第二凹陷部的底壁的面积大于第一凹陷部的开口的面积,从而密封盖与第二凹陷部焊接时熔化的结构在流动至第二凹陷部的底壁处被限制,可以避免熔化的结构从注液结构处流入外壳中对电解液造成影响。
本申请的一些实施例中,密封盖上远离外壳的一侧设置有凹槽,电池单体补液方法进一步包括:通过凹槽释放密封盖与第一凹陷部或第二凹陷部之间的焊接应力。
如图8及图10中所示,在将密封盖140与第一凹陷部120或第二凹陷部150进行密封焊接时,被焊件先发生熔化后再进行固化熔接,熔化后的结构在固化过程中受到未熔化结构的限制会产生焊接应力,通过在密封盖140背离外壳110的一端设置凹槽141,使得密封盖140边缘焊接时熔化的结构一部分流动并填充于密封盖140与第一凹陷部120或第二凹陷部150的侧壁之间,另一部分流动于凹槽141内,使得密封盖140边缘熔化的结构在固化过程中不会受到其他结构限制,从而保证焊接应力可以得到释放,增强焊接后密封盖140的结构稳定性。
在本申请的一些实施例中,步骤S51包括:将密封盖与第二凹陷部之间填充密封胶,使密封盖与第二凹陷部密封连接。
在密封盖与第二凹陷部之间填充密封胶的方式可以在保证电池单体内部密封性的同时,提升操作的便捷性,有利于提高注液的效率。
在本申请的一些实施例中,外壳包括端盖和壳体,端盖盖设于壳体上,步骤S10包括:从电池单体的外部对端盖进行加工形成第一凹陷部。
请再次参阅图5,如图中所示,外壳110包括端盖111和壳体112,由于电池单体100在放置时端盖111一般位于上方,为了便于加工第一凹陷部120,在一些实施例中,可以在端盖111上加工形成第一凹陷部120。
由于电池单体在放置时端盖一般位于上方,因此通过从电池单体的外部对端盖进行加工形成第一凹陷部,也即电池单体的顶部对端盖进行加工,便于控制刀具的进给量,从而可以提升加工第一凹陷部的精度和效率。该注液路径设置的位置可以根据电池单体的具体结构进行选择。通常情况下,端盖会设置有防爆阀等结构,为了避免注液路径与防爆阀等结构产生冲突,可以将注液路径设置在远离防爆阀等结构的位置,在一些示例性实施例中,可以将注液路径设置在端盖的一侧边缘,在本申请实施例中不做限定。
在本申请的一些实施例中,从电池单体的外部对端盖进行加工形成第一凹陷部包括:通过钻头或铣刀对端盖进行加工形成第一凹陷部。
具体地,通过钻头或铣刀对端盖进行切削实现在端盖上加工形成第一凹陷部,通过控制钻头或铣刀的进给量,确保加工出的第一凹陷部的厚度合适,一方面便于后续从第一凹陷部的底壁进行刺穿形成注液结构,另一方面可以避免引第一凹陷部加工过度而穿透端盖,造成金属屑或其他杂质掉入电池单体内对电解液造成影响。
在本申请的一些实施例中,钻头或铣刀上设置有防护结构,从电池单体的外部对端盖进行加工形成第一凹陷部时,包括:将防护结构罩盖与第一凹陷部处。
请再次参阅图6,如图中所示,刀具200上的刀头部220可以为钻头或铣刀,刀具200上设置有防护结构230,防护结构230罩设于刀头部220的周围,在端盖111上加工第一凹陷部120时,防护结构230抵接于端盖111的表面并将端盖111上加工第一凹陷部120的区域罩盖住,通过刀头部220朝向壳体112的方向移动,实现对第一凹陷部120的切削加工。
通过在钻头或铣刀上设置防护结构,并将防护结构罩盖于第一凹陷部处,使得在切削加工的过程中,由于防护结构的罩盖,切削形成的金属飞屑留存在防护结构内,便于在第一凹陷部加工完成后对金属飞屑及其他杂质进行统一处理,避免加工过程中产生的金属飞屑落在外壳上对电池单体的结构造成影响。
在本申请的一些实施例中,将防护结构罩盖于第一凹陷部处时,还包括:在防护结构内进行吸尘处理。
具体请再次参阅图11,如图中所示,刀具200上可以设置与防护结构230内部空间连通的吸尘管路240,吸尘管路240连通吸尘装置,在刀头部220进行切削加工的同时,吸尘装置通过吸尘管路240将防护结构230内产生的金属飞屑吸走,避免金属飞屑粘接在刀头部220而对第一凹陷部120的造成影响。
通过在防护结构内进行吸尘处理,可以避免切削产生的金属飞屑残留在刀头部与第一凹陷部的内壁之间对第一凹陷部的内壁造成划伤,同时实现切削加工第一凹陷部和杂质清理的同步进行,有利于提升电池单体补液的效率。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参阅前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实 施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (13)

  1. 一种电池单体补液方法,所述方法包括:
    从所述电池单体的外部对所述电池单体的外壳进行加工形成第一凹陷部,使所述第一凹陷部的底壁厚度小于周围所述外壳的厚度;
    从所述电池单体的外部对所述第一凹陷部的底壁向所述电池单体内部进行刺穿形成注液结构;
    通过所述注液结构向所述电池单体内注入电解液。
  2. 根据权利要求1中所述的电池单体补液方法,所述方法进一步包括:
    在所述第一凹陷部内安装密封盖;
    将所述密封盖与所述第一凹陷部密封连接。
  3. 根据权利要求2所述的电池单体补液方法,所述将密封盖与所述第一凹陷部密封连接,包括:
    将所述密封盖的边缘与所述第一凹陷部的边缘焊接,使所述密封盖与所述第一凹陷部密封连接。
  4. 根据权利要求2所述的电池单体补液方法,所述将密封盖与所述第一凹陷部密封连接,包括:
    在所述密封盖与所述第一凹陷部之间填充密封胶,使所述密封盖与所述第一凹陷部密封连接。
  5. 根据权利要求1至4中任意一项所述的电池单体补液方法,所述从电池单体的外部对所述电池单体的外壳进行加工形成第一凹陷部之前,包括:
    从所述电池单体的外部对所述电池单体的外壳进行加工形成第二凹陷部;
    所述从电池单体的外部对所述电池单体的外壳进行加工形成第一凹陷部,包括:
    从所述第二凹陷部的外部对所述第二凹陷部的底壁进行加工形成第一凹陷部,所述第二凹陷部的底壁的面积大于所述第一凹陷部的开口的面积。
  6. 根据权利要求5中所述的电池单体补液方法,所述方法进一步包括:
    在所述第二凹陷部内安装密封盖;
    将所述密封盖与所述第二凹陷部密封连接。
  7. 根据权利要求6所述的电池单体补液方法,所述将密封盖与所述第二凹陷部密封连接,包括:
    将所述密封盖的边缘与所述第二凹陷部的边缘焊接,使所述密封盖与所述第二凹陷部密封连接。
  8. 根据权利要求3或7所述的电池单体补液方法,所述密封盖上远离所述外壳的一侧设置有凹槽;
    所述方法进一步包括:
    通过所述凹槽释放所述密封盖与所述第一凹陷部或第二凹陷部之间的焊接应力。
  9. 根据权利要求6所述的电池单体补液方法,所述将密封盖与所述第二凹陷部密封连接,包括:
    在所述密封盖与所述第二凹陷部之间填充密封胶,使所述密封盖与所述第二凹陷部密封连接。
  10. 根据权利要求1至7中任一项或权利要求9所述的电池单体补液方法,所述外壳包括端盖和壳体,所述端盖盖设于所述壳体上;
    从所述电池单体的外部对所述电池单体的外壳进行加工形成第一凹陷部,包括:
    从所述电池单体的外部对所述端盖进行加工形成第一凹陷部。
  11. 根据权利要求10所述的电池单体补液方法,所述从电池单体的外部对所述端盖进行加工形成第一凹陷部,包括:
    通过钻头或铣刀对所述端盖进行加工形成第一凹陷部。
  12. 根据权利要求11所述的电池单体补液方法,所述钻头或所述铣刀上设置有防护结构;
    所述从所述电池单体的外部对所述端盖进行加工形成第一凹陷部时,包括:
    将所述防护结构罩盖于所述第一凹陷部处。
  13. 根据权利要求12所述的电池单体补液方法,所述将所述防护结构罩盖于所述第一凹陷部处时,包括:
    在所述防护结构内进行吸尘处理。
PCT/CN2022/143539 2022-01-07 2022-12-29 一种电池单体补液方法 WO2023131050A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22918491.6A EP4398389A1 (en) 2022-01-07 2022-12-29 Battery cell electrolyte supply method
US18/644,153 US20240275005A1 (en) 2022-01-07 2024-04-24 Method for supplementing electrolyte solution for battery cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210017945.9 2022-01-07
CN202210017945.9A CN116454568A (zh) 2022-01-07 2022-01-07 一种电池单体补液方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/644,153 Continuation US20240275005A1 (en) 2022-01-07 2024-04-24 Method for supplementing electrolyte solution for battery cell

Publications (1)

Publication Number Publication Date
WO2023131050A1 true WO2023131050A1 (zh) 2023-07-13

Family

ID=87073163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143539 WO2023131050A1 (zh) 2022-01-07 2022-12-29 一种电池单体补液方法

Country Status (4)

Country Link
US (1) US20240275005A1 (zh)
EP (1) EP4398389A1 (zh)
CN (1) CN116454568A (zh)
WO (1) WO2023131050A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102986062A (zh) * 2010-07-09 2013-03-20 日立车辆能源株式会社 密闭型电池
CN206893707U (zh) * 2017-07-10 2018-01-16 江苏海基新能源股份有限公司 注液口密封组件及电池组件
CN108735965A (zh) * 2018-08-08 2018-11-02 力信(江苏)能源科技有限责任公司 一种锂电池盖板用补液结构及其补液方法、锂电池盖板
JP2019036411A (ja) * 2017-08-10 2019-03-07 トヨタ自動車株式会社 密閉型電池
CN212323088U (zh) * 2020-03-31 2021-01-08 深圳市长盈氢能动力科技有限公司 动力电池盖板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102986062A (zh) * 2010-07-09 2013-03-20 日立车辆能源株式会社 密闭型电池
CN206893707U (zh) * 2017-07-10 2018-01-16 江苏海基新能源股份有限公司 注液口密封组件及电池组件
JP2019036411A (ja) * 2017-08-10 2019-03-07 トヨタ自動車株式会社 密閉型電池
CN108735965A (zh) * 2018-08-08 2018-11-02 力信(江苏)能源科技有限责任公司 一种锂电池盖板用补液结构及其补液方法、锂电池盖板
CN212323088U (zh) * 2020-03-31 2021-01-08 深圳市长盈氢能动力科技有限公司 动力电池盖板

Also Published As

Publication number Publication date
EP4398389A1 (en) 2024-07-10
CN116454568A (zh) 2023-07-18
US20240275005A1 (en) 2024-08-15

Similar Documents

Publication Publication Date Title
EP4109664A1 (en) Battery cell, battery, and electric device
WO2023131031A1 (zh) 一种电池单体、电池及用电装置
US20240283118A1 (en) End cap assembly, battery cell, battery, and power consuming device
WO2023020088A1 (zh) 电池单体、电池及用电设备
WO2023088089A1 (zh) 电池的箱体、电池、用电装置及电池的制造设备
US11710872B2 (en) Battery cell, battery, power consumption device and manufacturing device and method for battery cell
EP4092820B1 (en) Battery cell, battery, electrical device, method and equipment for manufacturing battery cells
CN217306722U (zh) 端盖组件、电池单体、电池及用电装置
CN218274967U (zh) 电池单体、电池以及用电装置
US20240212882A1 (en) Cable, battery and electricity consuming device
EP4167368A1 (en) Pressure relief apparatus, battery cell, battery, and power-consuming device
US20240162535A1 (en) Battery cell, battery, and power consuming device
WO2024008054A1 (zh) 电池单体、电池及用电装置
WO2023131050A1 (zh) 一种电池单体补液方法
WO2023134318A1 (zh) 一种连接部件、电池单体、电池及用电装置
CN118044059A (zh) 用于电池单体的端盖组件、电池单体、电池和用电设备
EP4307459A1 (en) Battery cell, battery, electrical device, and manufacturing device and method for battery cell
CN114583341A (zh) 电池单体及其制造方法和制造系统、电池、用电装置
CN117941166A (zh) 电池单体、电池、用电设备、电池单体的制造方法和设备
WO2023133775A1 (zh) 电池单体、电池、用电设备、电池单体的制造方法及设备
WO2023024736A1 (zh) 电极组件、电池单体、电池以及用电装置
JP7430807B2 (ja) 電池セル、電池、電池セルの製造方法及び装置
CN217768700U (zh) 电池单体、电池及用电设备
CN220934362U (zh) 电池单体、电池及用电装置
CN218448249U (zh) 箱体、电池和用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918491

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022918491

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022918491

Country of ref document: EP

Effective date: 20240402

NENP Non-entry into the national phase

Ref country code: DE