WO2023130972A1 - 一种盾构机掘进拼装同步施工的控制系统及控制方法 - Google Patents

一种盾构机掘进拼装同步施工的控制系统及控制方法 Download PDF

Info

Publication number
WO2023130972A1
WO2023130972A1 PCT/CN2022/140973 CN2022140973W WO2023130972A1 WO 2023130972 A1 WO2023130972 A1 WO 2023130972A1 CN 2022140973 W CN2022140973 W CN 2022140973W WO 2023130972 A1 WO2023130972 A1 WO 2023130972A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
propulsion
assembly
shield
excavation
Prior art date
Application number
PCT/CN2022/140973
Other languages
English (en)
French (fr)
Inventor
王辉
王开强
孙庆
冯文强
王志云
朱晓冬
崔立山
邢朋飞
王畅
崔健
刘汉凯
Original Assignee
中建三局集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210015376.4A external-priority patent/CN114183157B/zh
Application filed by 中建三局集团有限公司 filed Critical 中建三局集团有限公司
Publication of WO2023130972A1 publication Critical patent/WO2023130972A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/06Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/06Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
    • E21D9/093Control of the driving shield, e.g. of the hydraulic advancing cylinders

Definitions

  • the invention relates to the technical field of shield machines, in particular to a control system and a control method for tunneling, assembling and synchronous construction of shield machines.
  • the technical solution adopted in the present invention is: a control system for tunneling and assembling synchronous construction of a shield machine, including an operation console 1, a propulsion cylinder control module 2, an assembly cylinder control module 3 and a shield machine, the
  • the shield machine includes a front propulsion cylinder 5, a rear assembling cylinder 7, a cutterhead 8, a front shield 9, a middle shield 10, a tail shield 11 and a segment assembly machine 12, and the propulsion cylinder control module 2 and the assembly cylinder control module 3 is electrically connected to the console 1;
  • the propulsion cylinder control module 2 is composed of a propulsion system control unit 201, a propulsion system calculation unit 202, and a propulsion cylinder acquisition unit 203.
  • the propulsion system control unit 201 is electrically connected to the propulsion actuator 4, and the propulsion actuator 4 is connected to the propulsion actuator.
  • the front propulsion cylinder 5 is connected to control the action of the front propulsion cylinder 5, and the propulsion cylinder acquisition unit 203 is electrically connected to the front propulsion cylinder 5 for collecting stroke parameters and pressure of the front propulsion cylinder 5. parameters and transmit them to the propulsion system computing unit 202 in real time;
  • the assembly cylinder control module 3 is composed of an assembly system control unit 301, an assembly system calculation unit 302, and an assembly cylinder acquisition unit 303.
  • the assembly system control unit 301 is electrically connected to the assembly actuator 6, and the assembly actuator 6 is connected to the assembly actuator.
  • the rear assembled oil cylinder 7 is connected to control the action of the rear assembled oil cylinder 7, and the assembled oil cylinder acquisition unit 303 is electrically connected with the rear assembled oil cylinder 7, and is used to collect stroke parameters and pressure of the rear assembled oil cylinder 7 parameters and passed to the assembly system calculation unit 302 and the propulsion system calculation unit 202;
  • the console 1 includes a partition control knob 101, a mode selection button 102, a synchronous excavation mode function switch button 103, a conventional excavation mode function selection button 104, and a start button 105.
  • the shield machine includes two types of synchronous excavation mode and conventional mode. Operating mode.
  • the front shield 9 is provided with a cutter head 8, and the front propulsion cylinder 5 is composed of multiple propulsion cylinders, the piston rod end of each propulsion cylinder is connected with the front shield 9, and the cylinder end is connected with the middle Shield 10 is connected, and the rear assembled oil cylinder 7 is composed of multiple assembled oil cylinders.
  • the cylinder end of each assembled oil cylinder is installed on the middle shield 10, and its piston rod extends into the tail shield 11 after passing through the middle shield 10. Among them, it is used to support the shield segment 13, and the segment assembly machine 12 is installed at the tail end of the middle shield 10 and inside the tail shield 11, and is used for assembling the shield segment 13.
  • each propulsion cylinder is independently controlled by the propulsion actuator 4 according to the instructions of the propulsion system control unit 201.
  • the propulsion system control unit 201 will automatically adjust the thrust of the corresponding propulsion cylinder and the propulsion speed of the shield machine;
  • partition control knob 101 is arranged on the right side of the console 1 panel, and the partition control knob 101 is electrically connected with the propulsion system control unit 201 and the assembly system control unit 301 respectively, and is used to set the thrust of the propulsion cylinder and the assembly cylinder And the overall propulsion speed of the shield machine.
  • the mode selection button 102 is arranged on the left side of the console 1 panel, including two gears of synchronous and conventional, and the mode selection button 102 is electrically connected with the propulsion system control unit 201 and the assembly system control unit 301 respectively, Used to switch between the synchronous excavation mode and the conventional mode;
  • the synchronous excavation mode is specifically that the excavation of the shield machine and the segment assembly work are performed simultaneously, and the conventional mode is specifically that the excavation of the shield machine and the segment assembly work are performed step by step.
  • start button 105 is arranged below the mode selection button 102, and the start button 105 is electrically connected with the propulsion actuator 4 and the assembling actuator 6 respectively, and is used to control the operation of the propulsion actuator 4 and the assembling actuator 6. Start and stop.
  • the conventional excavation mode function selection button 104 is set between the mode selection knob 102 and the partition control knob 101, including two gears of excavation and assembly, the conventional excavation mode function selection button 104 and the assembly actuator 6 electrical connections, used to control the switching between the tunneling work of the shield machine and the segment assembly work in the normal mode.
  • the propulsion system calculation unit 202 judges in real time the serial number of the assembled cylinder currently performing the retraction action according to the stroke parameters and pressure parameters of the rear assembled cylinder 7 and sends it to the propulsion system control unit 201, which is controlled by the propulsion system control unit 201.
  • the propulsion cylinder corresponding to the serial number reduces the thrust, and controls other propulsion cylinders to automatically compensate the total thrust, so as to ensure that the overall propulsion speed of the shield machine is consistent with the setting value of the partition control knob 101;
  • the calculation unit 302 of the assembly system calculates in real time the bending moment generated when the assembly cylinder currently performing the retraction action is retracted according to the stroke parameters and pressure parameters of the rear assembly cylinder 7, and sets the pressure value of each assembly cylinder to pass it on.
  • the assembly system control unit 301 controls the pressure value of other assembly cylinders to slowly rise to the set value within 500ms, and then locks the rear assembly cylinder 7 to keep the shield posture stable.
  • a control method for tunneling and assembling synchronous construction of a shield machine comprising the following steps:
  • step S1 judging whether the mode selection button is in the synchronous gear, if so, then execute step S2, if not, then execute step S9;
  • the front propulsion cylinder pushes the cutter head and front shield forward, the middle shield and tail shield remain stationary, and the rear assembly cylinder cooperates with the segment assembly machine to synchronously assemble segments in the tail shield;
  • the assembly system calculation unit calculates in real time the bending moment generated when the assembly cylinder currently performing the retraction action is retracted, and sets the pressure value of each assembly cylinder, and the assembly system control unit controls the pressure value of other assembly cylinders slowly within 500ms After rising to the set value, lock the rear assembly cylinder;
  • the present invention has the following main advantages:
  • the propulsion system and the assembly system are relatively independent.
  • the structures such as the front shield, the middle shield, the propulsion cylinder, and the assembly cylinder are subject to a single force.
  • the propulsion system can freely adjust the propulsion speed and attitude during synchronous excavation, while the middle shield and the assembly system remain stationary. When the segment is assembled, it is helpful to prevent the segment from being damaged and ensure the quality of the assembly.
  • Fig. 3 is the schematic diagram of operating platform of the present invention.
  • Fig. 4 is a schematic diagram of slope control of the rear assembled oil cylinder of the present invention.
  • Fig. 6 is a schematic diagram of the pressure control of the rear assembled oil cylinder according to the embodiment of the present invention.
  • Fig. 7 is a flow chart of the control method of the present invention.
  • each step/component described in this application can be split into more steps/components, and two or more steps/components or part of the operations of steps/components can also be combined into a new Step/component, to realize the object of the present invention.
  • a control system for tunneling and assembling synchronous construction of a shield machine includes an operation console 1, a propulsion cylinder control module 2, an assembly cylinder control module 3 and a shield machine, the propulsion cylinder control module 2 and the assembly cylinder
  • the control module 3 is electrically connected with the console 1 .
  • the propulsion cylinder control module 2 is composed of a propulsion system control unit 201, a propulsion system calculation unit 202, and a propulsion cylinder acquisition unit 203.
  • the propulsion system control unit 201 is electrically connected to the propulsion actuator 4, and the propulsion actuator 4 is connected to the propulsion actuator.
  • the front propulsion cylinder 5 is connected to control the action of the front propulsion cylinder 5, and the propulsion cylinder acquisition unit 203 is electrically connected to the front propulsion cylinder 5 for collecting stroke parameters and pressure of the front propulsion cylinder 5. parameters and transmit them to the propulsion system computing unit 202 in real time;
  • the assembly cylinder control module 3 is composed of an assembly system control unit 301, an assembly system calculation unit 302, and an assembly cylinder acquisition unit 303.
  • the assembly system control unit 301 is electrically connected to the assembly actuator 6, and the assembly actuator 6 is connected to the assembly actuator.
  • the rear assembled oil cylinder 7 is connected to control the action of the rear assembled oil cylinder 7, and the assembled oil cylinder acquisition unit 303 is electrically connected with the rear assembled oil cylinder 7, and is used to collect stroke parameters and pressure of the rear assembled oil cylinder 7 parameters and passed to the assembly system calculation unit 302 and the propulsion system calculation unit 202;
  • the shield machine includes two working modes: a synchronous tunneling mode and a conventional mode.
  • the synchronous tunneling mode is specifically that the tunneling of the shield machine and the segment assembly work are carried out synchronously.
  • the conventional mode is specifically the tunneling and pipe assembly of the shield machine. The piece assembly work is carried out step by step.
  • the shield machine includes a front propulsion cylinder 5 , a rear assembly cylinder 7 , a cutter head 8 , a front shield 9 , a middle shield 10 , a tail shield 11 and a segment assembly machine 12 .
  • the front shield 9 is provided with a cutterhead 8, and the front propulsion cylinder 5 is composed of multiple propulsion cylinders, the piston rod end of each propulsion cylinder is connected with the front shield 9, and the cylinder end is connected with the middle Shield 10 is connected, and the rear assembled oil cylinder 7 is composed of multiple assembled oil cylinders.
  • the cylinder end of each assembled oil cylinder is installed on the middle shield 10, and its piston rod extends into the tail shield 11 after passing through the middle shield 10. Among them, it is used to support the shield segment 13, and the segment assembly machine 12 is installed at the tail end of the middle shield 10 and inside the tail shield 11, and is used for assembling the shield segment 13.
  • each propulsion cylinder is independently controlled by the propulsion actuator 4 according to the instructions of the propulsion system control unit 201.
  • the propulsion system control unit 201 will automatically adjust the thrust of the corresponding propulsion cylinder and the propulsion speed of the shield machine to avoid damage to the segment due to local force;
  • each assembled oil cylinder is independently controlled by the assembled actuator 6 according to the instructions of the assembled system control unit 301.
  • the assembled oil cylinder acquisition unit 303 will alarm And transmit the alarm signal to the propulsion system control unit 201, and the propulsion system control unit 201 will also automatically adjust the thrust of the corresponding propulsion cylinder and the propulsion speed of the shield machine.
  • the console 1 includes a partition control knob 101 , a mode selection button 102 , a synchronous excavation mode function switch button 103 , a conventional excavation mode function selection button 104 and a start button 105 .
  • the partition control knob 101 is arranged on the right side of the console 1 panel, and the partition control knob 101 is electrically connected to the propulsion system control unit 201 and the assembly system control unit 301 respectively;
  • the partition control knob 101 is used to set the thrust of each propulsion cylinder and the overall propulsion speed of the shield machine, and transmit the thrust signal and propulsion speed signal to the propulsion system control unit 201;
  • the mode selection button 102 is arranged on the left side of the console 1 panel, including two gears of synchronous and conventional, and the mode selection button 102 is electrically connected with the propulsion system control unit 201 and the assembly system control unit 301 respectively for switching The synchronous excavation mode and conventional mode;
  • the start button 105 is located below the mode selection button 102, and the start button 105 is electrically connected to the propulsion actuator 4 and the assembling actuator 6 respectively, and is used to control the start and stop of the propulsion actuator 4 and the assembling actuator 6;
  • the synchronous excavation mode function switching button 103 is located on the left side of the mode selection button 102, including three gears of excavation, shield body reset and cutterhead retraction. 4. Electrical connection of assembly actuator 6;
  • the shield machine starts the excavation and segment assembly work synchronously, after the excavation and assembly work is completed, when the synchronous excavation mode function switching button 103 is rotated When it reaches the "shield body reset" gear, the middle shield and the tail shield are reset.
  • the synchronous excavation mode function switch button 103 is rotated to the "cutterhead retreat” gear, the front propulsion cylinder 5 drives the front shield 9 and the front shield. The cutter head 8 is retracted.
  • the conventional excavation mode function selector 104 is located between the mode selector 102 and the partition control knob 101, including two gears of excavation and assembly, and the conventional excavation mode function selector 104 is electrically connected to the assembly actuator 6 ;
  • the propulsion system calculation unit 202 judges the serial number of the assembled cylinder currently performing the retraction action in real time according to the stroke parameters and pressure parameters of the rear assembled cylinder 7, and sends the serial number to the propulsion system control unit 201, which is controlled by the propulsion system control unit 201
  • the thrust of the propulsion cylinder corresponding to the serial number is reduced (specifically, the thrust of the propulsion cylinder corresponding to the position of the assembled cylinder of the serial number is reduced, and the thrust of the propulsion cylinder at a position 180 degrees opposite to this position is simultaneously reduced), so as to reduce the thrust during synchronous construction.
  • the propulsion system control unit 201 controls the other propulsion cylinders to automatically compensate the total thrust according to the pressure signal of the front propulsion cylinder 5 transmitted by the propulsion cylinder acquisition unit 203, so as to ensure the The overall propulsion speed of the machine is consistent with the set value of the partition control knob 101; (because the front propulsion cylinder 5 adopts the speed control mode, after the speed is set, the cylinder speed remains rigid, and the cylinder pressure changes with the load change, and the corresponding control After the propulsion cylinder pressure is reduced, the total thrust is automatically compensated by other cylinders)
  • the calculation unit 302 of the assembly system calculates in real time the bending moment generated when the assembly cylinder currently performing the retraction action is retracted according to the stroke parameters and pressure parameters of the rear assembly cylinder 7, and sets the pressure of each assembly cylinder supported on the segment value, and then transmit the pressure value to the assembly system control unit 301, and the assembly system control unit 301 controls the pressure value of other assembly cylinders to rise slowly to the set value within 500ms, and then locks the rear assembly cylinder 7 to keep the shield Body posture is stable.
  • the rear assembling oil cylinder 7 adopts a ramp control method, the ramp time is 500 ms, the assembling system control unit 301 controls the assembling actuator 6, and realizes that the pressure drops slowly when the rear assembling oil cylinder 7 is retracted, and at the same time, it is active according to the setting
  • the pressure value controls the pressure of other rear assembled cylinders 7 to rise slowly, and then locks the rear assembled cylinders 7 supported on the segments to keep the posture of the shield body stable
  • the embodiment of the present application also provides a control method for synchronous construction of shield machine tunneling and assembly, based on the above-mentioned control system for tunneling and assembly of shield machine synchronous construction, as shown in Figure 7, specifically includes the following step:
  • step S1 judging whether the mode selection button is in the synchronous gear, if so, then execute step S2, if not, then execute step S9;
  • the front propulsion cylinder pushes the cutter head and front shield forward, the middle shield and tail shield remain stationary, and the rear assembly cylinder cooperates with the segment assembly machine to synchronously assemble segments in the tail shield;
  • the propulsion system computing unit judges in real time the serial number of the assembled cylinder currently performing the retraction action, the propulsion system control unit controls the propulsion cylinder corresponding to the serial number to reduce the thrust, and controls other propulsion cylinders to automatically compensate the total thrust;
  • the assembly system calculation unit calculates in real time the bending moment generated when the assembly cylinder currently performing the retraction action is retracted, and sets the pressure value of each assembly cylinder, and the assembly system control unit controls the pressure value of other assembly cylinders slowly within 500ms After rising to the set value, lock the rear assembly cylinder;
  • step S7 judging whether the pressure value of each propulsion cylinder and each assembly cylinder is lower than the preset limit value, if yes, execute step S8, if not, the propulsion system control unit automatically reduces the thrust of the front propulsion cylinder;
  • step S8 judge whether the excavation work and the segment assembly work have been completed, if so, then rotate the synchronous excavation mode function switch button to the shield body reset gear, and press the start button, the middle shield and the tail shield are assembled from the rear. Advance the reset (the next cycle can be carried out after the reset is completed), if not, then repeat step S3;

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

本发明涉及盾构机技术领域,具体涉及一种盾构机掘进拼装同步施工的控制系统及控制方法。该控制系统包括操作台、推进油缸控制模块、拼装油缸控制模块、推进执行机构、拼装执行机构、前部推进油缸、后部拼装油缸。本发明能够实现盾构机掘进与拼装同步进行,同时能灵活调整盾构机姿态,适应转弯调向及小曲线半径转弯掘进需求,并可在推进及姿态调整的过程中保持推进速度与姿态的稳定,实现真正意义上的盾构机连续作业,并且同步掘进模式与常规模式可通过模式选择钮快速切换,当遇到不适合同步掘进模式的情况时可快速恢复到常规模式进行掘进。

Description

一种盾构机掘进拼装同步施工的控制系统及控制方法 技术领域
本发明涉及盾构机技术领域,具体涉及一种盾构机掘进拼装同步施工的控制系统及控制方法。
背景技术
近年来,城市地铁建设飞速发展,降低工程造价逐渐成为了社会要求,对于盾构隧道工程而言是期望通过使用可以减少竖井数量的长距离施工和高速度施工等方式来缩短工程的施工时间。目前盾构工程还是采用盾构掘进与管片拼装分步进行的原则进行施工,施工效率无法得到提升。为了缓解困局,同时进行掘进作业和管片拼装作业的高速度施工工法也就成为了一个共同研究的课题。
目前,市场上逐渐出现采用长行程油缸或利用拼装K块的时间进行连续掘进同步拼装的盾构机。但是长行程油缸式连续掘进同步拼装盾构机由于推进油缸需要同时进行推进、拼装、姿态调整等多种工序,在同步拼装缺失油缸之后其余推进油缸的推力分配是一个重要的难点,而在推进过程中推力、姿态需要时刻变化以适应不同地层及推进线路,如果推进油缸推力分配不合理将会出现推进速度不稳、姿态突变、管片破损、盾尾卡盾等一些列的问题,严重影响施工质量。
发明内容
本发明要解决的技术问题在于针对上述现有技术存在的不足,提供一种盾构机掘进拼装同步施工的控制系统及控制方法,能够实现盾构机掘进与拼装同步进行,同时能灵活调整盾构机姿态,并可在推进及姿态调整的过程中保持推进速度与姿态的稳定。
为解决上述技术问题,本发明采用的技术方案是:一种盾构机掘进拼装同步施工的控制系统,包括操作台1、推进油缸控制模块2、拼装油缸控制模块3和盾构机,所述盾构机包括前部推进油缸5、后部拼装油缸7、刀盘8、前盾9、中盾10、尾盾11和管片拼装机12,所述推进油缸控制模块2和拼装油缸控制模块3与所述操作台1电连接;
所述推进油缸控制模块2由推进系统控制单元201、推进系统计算单元202、推进油缸采集单元203组成,所述推进系统控制单元201与推进执行机构4电连接,所述推进执行机构4与所述前部推进油缸5相连,用于控制前部推进油缸5的动作,所述推进油缸采集单元203与所述前部推进油缸5电连接,用于采集前部推进油缸5的行程参数和压力参数并实时传递给所述推进系统计算单元202;
所述拼装油缸控制模块3由拼装系统控制单元301、拼装系统计算单元302、拼装油缸采集单元303组成,所述拼装系统控制单元301与拼装执行机构6电连接,所述拼装执行机构6与所述后部拼装油缸7相连,用于控制后部拼装油缸7的动作,所述拼装油缸采集单元303与所述后部拼装油缸7电连接,用于采集后部拼装油缸7的行程参数和压力参数并传递给所述拼装系统计算单元302和所述推进系统计算单元202;
所述操作台1包括分区控制旋钮101、模式选择钮102、同步掘进模式功能切换钮103、常规掘进模式功能选择钮104和启动按钮105,所述盾构机包括同步掘进模式和常规模式两种工作模式。
进一步的,所述前盾9上设有刀盘8,所述前部推进油缸5由多支推进油缸组成,每支推进油缸的活塞杆端均与前盾9连接、缸体端均与中盾10连接,所述后部拼装油缸7由多支拼装油缸组成,每支拼装油缸的缸体端均安装于所述中盾10上,其活塞杆穿过中盾10后伸入尾盾11中,用于支撑盾构管片13,所述管片拼装机12安装于所述中盾10尾端且位于尾盾11内,用于拼装盾构管片13。
进一步的,所述每支推进油缸由推进执行机构4根据推进系统控制单元201的指令单独控制其伸缩和锁死,当单支推进油缸的压力参数超过预设限值A时,推进系统控制单元201会自动调整相应推进油缸的推力和盾构机推进速度;
所述每支拼装油缸由拼装执行机构6根据拼装系统控制单元301的指令单独控制其伸缩和锁死,当单支拼装油缸的压力参数超过预设限值B时,推进系统控制单元201会自动 调整相应推进油缸的推力和盾构机推进速度。
进一步的,所述分区控制旋钮101设于操作台1面板的右侧,分区控制旋钮101分别与推进系统控制单元201、拼装系统控制单元301电连接,用于设定推进油缸和拼装油缸的推力以及盾构机整体的推进速度。
进一步的,所述模式选择钮102设于操作台1面板的左侧,包括同步和常规两个档位,所述模式选择钮102分别与推进系统控制单元201、拼装系统控制单元301电连接,用于切换所述同步掘进模式和常规模式;
所述同步掘进模式具体为盾构机的掘进与管片拼装工作同步进行,所述常规模式具体为盾构机的掘进与管片拼装工作分步进行。
进一步的,所述启动按钮105设于所述模式选择钮102下方,所述启动按钮105分别与推进执行机构4、拼装执行机构6电连接,用于控制推进执行机构4和拼装执行机构6的启停。
进一步的,所述同步掘进模式功能切换钮103设于所述模式选择钮102左侧,包括掘进、盾体复位和刀盘回退三个档位,所述同步掘进模式功能切换钮103分别与推进执行机构4、拼装执行机构6电连接,用于在同步掘进模式下控制盾构机掘进拼装工作的启动、掘进拼装完成后中盾及尾盾的复位和刀盘跟随前盾的缩回。
进一步的,所述常规掘进模式功能选择钮104设于所述模式选择钮102和分区控制旋钮101之间,包括掘进和拼装两个档位,所述常规掘进模式功能选择钮104与拼装执行机构6电连接,用于在常规模式下控制盾构机掘进工作和管片拼装工作的切换。
进一步的,所述推进系统计算单元202根据后部拼装油缸7的行程参数和压力参数实时判断当前执行缩回动作的拼装油缸序号并发送给推进系统控制单元201,由推进系统控制单元201控制该序号对应的推进油缸减小推力,并控制其他推进油缸自动补偿总推力,以确保盾构机整体的推进速度与分区控制旋钮101的设定值一致;
所述拼装系统计算单元302根据后部拼装油缸7的行程参数和压力参数实时计算当前执行缩回动作的拼装油缸缩回时产生的弯矩,并设定每支拼装油缸的压力值将其传递给拼装系统控制单元301,由拼装系统控制单元301控制其他拼装油缸的压力值在500ms内缓慢上升至设定值后,锁死后部拼装油缸7,以保持盾体姿态稳定。
一种盾构机掘进拼装同步施工的控制方法,基于如上所述的控制系统,包括如下步骤:
S1,判断模式选择钮是否处于同步档位,若是,则执行步骤S2,若否,则执行步骤S9;
S2,旋转同步掘进模式功能切换钮至掘进档位,调整分区控制旋钮设定盾构机整体的推进速度,并按下启动按钮;
S3,前部推进油缸推动刀盘和前盾向前掘进,中盾和尾盾保持静止,后部拼装油缸配合管片拼装机在尾盾内同步进行管片拼装;
S4,推进系统计算单元实时判断当前执行缩回动作的拼装油缸序号,推进系统控制单元控制该序号对应的推进油缸减小推力,并控制其他推进油缸自动补偿总推力;
S6,拼装系统计算单元实时计算当前执行缩回动作的拼装油缸缩回时产生的弯矩,并设定每支拼装油缸的压力值,拼装系统控制单元控制其他拼装油缸的压力值在500ms内缓慢上升至设定值后,锁死后部拼装油缸;
S7,判断每支推进油缸和每支拼装油缸的压力值是否均低于预设限值,若是,则执行步骤S8,若否,则推进系统控制单元自动降低前部推进油缸的推力;
S8,判断掘进工作与管片拼装工作是否均已完成,若是,则旋转同步掘进模式功能切换钮至盾体复位档位,并按下启动按钮,中盾及尾盾由后部拼装油缸向前推进复位,若否,则重复执行步骤S3;
S9,旋转常规掘进模式功能选择钮至掘进档位,调整分区控制旋钮设定盾构机整体的推进速度,并按下启动按钮,后部拼装油缸推动盾构机实现向前掘进;
S10,旋转常规掘进模式功能选择钮至拼装档位,并按下启动按钮,后部拼装油缸配 合管片拼装机在尾盾内进行管片拼装。
本发明与现有技术相比具有以下主要的优点:
1、推进系统与拼装系统相对独立,前盾、中盾、推进油缸、拼装油缸等结构受力单一,推进系统可在同步掘进时自由调整推进速度及姿态,同时中盾及拼装系统保持静止,管片拼装时有助于防止管片破损,保证拼装质量。
2、推进油缸可自动感知缩回拼装油缸的序号,同步降低该位置及180度相对位置的推进油缸的推力,并监测拼装系统支撑油缸的压力,当压力过大时,自动降低推进油缸推力,并且分区推进油缸采用速度控制模式,速度设定完毕之后,油缸速度保持刚性,油缸压力随负载变化而变化,对应的推进油缸压力降低后,总推力由其他油缸自动补偿,通过该种控制方式可减小同步施工突然缩回拼装油缸时产生的冲击,在连续掘进时保持前盾掘进速度、姿态稳定。
3、拼装油缸伸出或缩回时压力的缓升、缓降,在拼装油缸斜坡控制缩回时,同时其余的支撑油缸压力缓慢以一定梯度上升,形成瞬时压力梯度,抵御弯矩,并减少缩回拼装油缸时产生的冲击,其后,将拼装系统油缸锁死,保持中盾姿态稳定。
4、通过控制台可实现同步掘进模式、常规掘进模式的快速切换。
附图说明
图1是本发明控制系统的整体示意图;
图2是本发明盾构机的示意图;
图3是本发明操作台的示意图;
图4是本发明后部拼装油缸斜坡控制示意图;
图5是本发明实施例前部推进油缸压力控制示意图;
图6是本发明实施例后部拼装油缸压力控制示意图;
图7是本发明控制方法的流程图。
图中:1、操作台;2、推进油缸控制模块;3、拼装油缸控制模块;4、推进执行机构;5、前部推进油缸;6、拼装执行机构;7、后部拼装油缸;8、刀盘;9、前盾;10、中盾; 11、尾盾;12、管片拼装机;13、盾构管片;101、分区控制旋钮;102、模式选择钮;103、同步掘进模式功能切换钮;104、常规掘进模式功能选择钮;105、启动按钮;201、推进系统控制单元;202、推进系统计算单元;203、推进油缸采集单元;301、拼装系统控制单元;302、拼装系统计算单元;303、拼装油缸采集单元。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
需要指出,根据实施的需要,可将本申请中描述的各个步骤/部件拆分为更多步骤/部件,也可将两个或多个步骤/部件或者步骤/部件的部分操作组合成新的步骤/部件,以实现本发明的目的。
一、控制系统整体结构
如图1所示,一种盾构机掘进拼装同步施工的控制系统,包括操作台1、推进油缸控制模块2、拼装油缸控制模块3和盾构机,所述推进油缸控制模块2和拼装油缸控制模块3与所述操作台1电连接。
所述推进油缸控制模块2由推进系统控制单元201、推进系统计算单元202、推进油缸采集单元203组成,所述推进系统控制单元201与推进执行机构4电连接,所述推进执行机构4与所述前部推进油缸5相连,用于控制前部推进油缸5的动作,所述推进油缸采集单元203与所述前部推进油缸5电连接,用于采集前部推进油缸5的行程参数和压力参数并实时传递给所述推进系统计算单元202;
所述拼装油缸控制模块3由拼装系统控制单元301、拼装系统计算单元302、拼装油缸采集单元303组成,所述拼装系统控制单元301与拼装执行机构6电连接,所述拼装执行机构6与所述后部拼装油缸7相连,用于控制后部拼装油缸7的动作,所述拼装油缸采 集单元303与所述后部拼装油缸7电连接,用于采集后部拼装油缸7的行程参数和压力参数并传递给所述拼装系统计算单元302和所述推进系统计算单元202;
所述盾构机包括同步掘进模式和常规模式两种工作模式,所述同步掘进模式具体为盾构机的掘进与管片拼装工作同步进行,所述常规模式具体为盾构机的掘进与管片拼装工作分步进行。
二、盾构机结构
如图2所示,所述盾构机包括前部推进油缸5、后部拼装油缸7、刀盘8、前盾9、中盾10、尾盾11和管片拼装机12。
具体的,所述前盾9上设有刀盘8,所述前部推进油缸5由多支推进油缸组成,每支推进油缸的活塞杆端均与前盾9连接、缸体端均与中盾10连接,所述后部拼装油缸7由多支拼装油缸组成,每支拼装油缸的缸体端均安装于所述中盾10上,其活塞杆穿过中盾10后伸入尾盾11中,用于支撑盾构管片13,所述管片拼装机12安装于所述中盾10尾端且位于尾盾11内,用于拼装盾构管片13。
进一步的,所述每支推进油缸由推进执行机构4根据推进系统控制单元201的指令单独控制其伸缩和锁死,当单支推进油缸的压力参数超过预设限值A时,推进系统控制单元201会自动调整相应推进油缸的推力和盾构机推进速度,避免管片由于局部受力导致的损坏;
所述每支拼装油缸由拼装执行机构6根据拼装系统控制单元301的指令单独控制其伸缩和锁死,当单支拼装油缸的压力参数超过预设限值B时,拼装油缸采集单元303会报警并将报警信号传递给推进系统控制单元201,推进系统控制单元201也会自动调整相应推进油缸的推力和盾构机推进速度。
三、操作台结构
如图3所示,所述操作台1包括分区控制旋钮101、模式选择钮102、同步掘进模式功能切换钮103、常规掘进模式功能选择钮104和启动按钮105。
具体的,所述分区控制旋钮101设于操作台1面板的右侧,分区控制旋钮101分别与推进系统控制单元201、拼装系统控制单元301电连接;
在同步掘进模式下,所述分区控制旋钮101用于设定每支推进油缸的推力和盾构机整体的推进速度,并将推力信号和推进速度信号传递给推进系统控制单元201;
在常规模式下,所述分区控制旋钮101用于设定每支拼装油缸的推力和盾构机整体的推进速度,并将推力信号和推进速度信号传递给装系统控制单元301。
所述模式选择钮102设于操作台1面板的左侧,包括同步和常规两个档位,所述模式选择钮102分别与推进系统控制单元201、拼装系统控制单元301电连接,用于切换所述同步掘进模式和常规模式;
所述启动按钮105设于所述模式选择钮102下方,所述启动按钮105分别与推进执行机构4、拼装执行机构6电连接,用于控制推进执行机构4和拼装执行机构6的启停;
所述同步掘进模式功能切换钮103设于所述模式选择钮102左侧,包括掘进、盾体复位和刀盘回退三个档位,所述同步掘进模式功能切换钮103分别与推进执行机构4、拼装执行机构6电连接;
在同步掘进模式下,当同步掘进模式功能切换钮103旋至“掘进”档时,盾构机同步启动掘进与管片拼装工作,在掘进拼装工作完成后,当同步掘进模式功能切换钮103旋至“盾体复位”档时,中盾及尾盾进行复位,当同步掘进模式功能切换钮103旋至“刀盘回退”档时,前部推进油缸5带动前盾9及前盾上的刀盘8缩回。
所述常规掘进模式功能选择钮104设于所述模式选择钮102和分区控制旋钮101之间,包括掘进和拼装两个档位,所述常规掘进模式功能选择钮104与拼装执行机构6电连接;
在常规模式下,当常规掘进模式功能选择钮104旋至“掘进”档时,盾构机继续执行掘进工作,当常规掘进模式功能选择钮104旋至“拼装”档时,盾构机从掘进工作切换为管片拼装工作。
进一步的,在连续掘进同步拼装时:
所述推进系统计算单元202根据后部拼装油缸7的行程参数和压力参数实时判断当前执行缩回动作的拼装油缸序号,并将该序号发送给推进系统控制单元201,由推进系统控制单元201控制该序号对应的推进油缸减小推力(具体为减小该序号拼装油缸对应位置的推进油缸的推力,并同步降低与该位置呈180度相对位置的推进油缸的推力),以减小同步施工时突然缩回后部拼装油缸7时产生的冲击,同时推进系统控制单元201根据推进油缸采集单元203传入的前部推进油缸5的压力信号,控制其他推进油缸自动补偿总推力,以确保盾构机整体的推进速度与分区控制旋钮101的设定值一致;(由于前部推进油缸5采用速度控制模式,速度设定完毕之后,油缸速度保持刚性,油缸压力随负载变化而变化,控制对应的推进油缸压力降低后,总推力由其他油缸自动补偿)
所述拼装系统计算单元302根据后部拼装油缸7的行程参数和压力参数实时计算当前执行缩回动作的拼装油缸缩回时产生的弯矩,并设定每支支撑在管片上拼装油缸的压力值,然后将该压力值传递给拼装系统控制单元301,由拼装系统控制单元301控制其他拼装油缸的压力值在500ms内缓慢上升至设定值,然后锁死后部拼装油缸7,以保持盾体姿态稳定。(如图4所示,后部拼装油缸7采用斜坡控制方式,斜坡时间500ms,拼装系统控制单元301控制拼装执行机构6,实现后部拼装油缸7回缩时压力缓降,同时主动根据设定的压力值控制其他后部拼装油缸7压力缓升,之后使支撑在管片上的后部拼装油缸7锁死,保持盾体姿态稳定)
四、盾构机掘进拼装同步施工的控制方法
基于同一发明构思,本申请实施例还提供了一种盾构机掘进拼装同步施工的控制方法,基于上述的一种盾构机掘进拼装同步施工的控制系统,如图7所示,具体包括如下步骤:
S1,判断模式选择钮是否处于同步档位,若是,则执行步骤S2,若否,则执行步骤S9;
S2,旋转同步掘进模式功能切换钮至掘进档位,调整分区控制旋钮设定盾构机整体的 推进速度,并按下启动按钮;
S3,前部推进油缸推动刀盘和前盾向前掘进,中盾和尾盾保持静止,后部拼装油缸配合管片拼装机在尾盾内同步进行管片拼装;
S4,推进系统计算单元实时判断当前执行缩回动作的拼装油缸序号,推进系统控制单元控制该序号对应的推进油缸减小推力,并控制其他推进油缸自动补偿总推力;
S6,拼装系统计算单元实时计算当前执行缩回动作的拼装油缸缩回时产生的弯矩,并设定每支拼装油缸的压力值,拼装系统控制单元控制其他拼装油缸的压力值在500ms内缓慢上升至设定值后,锁死后部拼装油缸;
(本实施例中,如图5~6所示,在后部拼装油缸7中7#、8#、9#、10#油缸斜坡控制缩回时,同时其余的支撑在管片上的后部拼装油缸压力缓慢以一定梯度上升,其后,将支撑在管片上的后部拼装油缸锁死,保持盾体姿态稳定。同时,推进油缸控制模块2控制前盾以一定的速度及姿态向前掘进,并自动感知缩回拼装油缸序号,同步降低该位置,及180度相对位置的前部推进油缸5的推力,即前部推进油缸5中上区a和下区d的压力)
S7,判断每支推进油缸和每支拼装油缸的压力值是否均低于预设限值,若是,则执行步骤S8,若否,则推进系统控制单元自动降低前部推进油缸的推力;
S8,判断掘进工作与管片拼装工作是否均已完成,若是,则旋转同步掘进模式功能切换钮至盾体复位档位,并按下启动按钮,中盾及尾盾由后部拼装油缸向前推进复位(复位完成后可进行下一个循环),若否,则重复执行步骤S3;
S9,旋转常规掘进模式功能选择钮至掘进档位,调整分区控制旋钮设定盾构机整体的推进速度,并按下启动按钮,后部拼装油缸推动盾构机实现向前掘进;
S10,判断掘进工作已完成后,旋转常规掘进模式功能选择钮至拼装档位,并按下启动按钮,后部拼装油缸配合管片拼装机在尾盾内进行管片拼装(循环切换常规掘进模式功能选择钮102的掘进档位和拼装档位,直至完成全部的掘进工作与管片拼装工作)。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种盾构机掘进拼装同步施工的控制系统,包括操作台(1)、推进油缸控制模块(2)、拼装油缸控制模块(3)和盾构机,所述盾构机包括前部推进油缸(5)、后部拼装油缸(7)、刀盘(8)、前盾(9)、中盾(10)、尾盾(11)和管片拼装机(12),其特征在于:所述推进油缸控制模块(2)和拼装油缸控制模块(3)与所述操作台(1)电连接;
    所述推进油缸控制模块(2)由推进系统控制单元(201)、推进系统计算单元(202)、推进油缸采集单元(203)组成,所述推进系统控制单元(201)与推进执行机构(4)电连接,所述推进执行机构(4)与所述前部推进油缸(5)相连,用于控制前部推进油缸(5)的动作,所述推进油缸采集单元(203)与所述前部推进油缸(5)电连接,用于采集前部推进油缸(5)的行程参数和压力参数并实时传递给所述推进系统计算单元(202);
    所述拼装油缸控制模块(3)由拼装系统控制单元(301)、拼装系统计算单元(302)、拼装油缸采集单元(303)组成,所述拼装系统控制单元(301)与拼装执行机构(6)电连接,所述拼装执行机构(6)与所述后部拼装油缸(7)相连,用于控制后部拼装油缸(7)的动作,所述拼装油缸采集单元(303)与所述后部拼装油缸(7)电连接,用于采集后部拼装油缸(7)的行程参数和压力参数并传递给所述拼装系统计算单元(302)和所述推进系统计算单元(202);
    所述操作台(1)包括分区控制旋钮(101)、模式选择钮(102)、同步掘进模式功能切换钮(103)、常规掘进模式功能选择钮(104)和启动按钮(105),所述盾构机包括同步掘进模式和常规模式两种工作模式。
  2. 根据权利要求1所述的一种盾构机掘进拼装同步施工的控制系统,其特征在于:所述前盾(9)上设有刀盘(8),所述前部推进油缸(5)由多支推进油缸组成,每支推进油缸的活塞杆端均与前盾(9)连接、缸体端均与中盾(10)连接,所述后部拼装油缸(7)由多支拼装油缸组成,每支拼装油缸的缸体端均安装于所述中盾(10)上,其活塞杆穿过中盾(10)后伸入尾盾(11)中,用于支撑盾构管片(13),所述管片拼装机(12)安装 于所述中盾(10)尾端且位于尾盾(11)内,用于拼装盾构管片(13)。
  3. 根据权利要求2所述的一种盾构机掘进拼装同步施工的控制系统,其特征在于:所述每支推进油缸由推进执行机构(4)根据推进系统控制单元(201)的指令单独控制其伸缩和锁死,当单支推进油缸的压力参数超过预设限值A时,推进系统控制单元(201)会自动调整相应推进油缸的推力和盾构机推进速度;
    所述每支拼装油缸由拼装执行机构(6)根据拼装系统控制单元(301)的指令单独控制其伸缩和锁死,当单支拼装油缸的压力参数超过预设限值B时,推进系统控制单元(201)会自动调整相应推进油缸的推力和盾构机推进速度。
  4. 根据权利要求1所述的一种盾构机掘进拼装同步施工的控制系统,其特征在于:所述分区控制旋钮(101)设于操作台(1)面板的右侧,分区控制旋钮(101)分别与推进系统控制单元(201)、拼装系统控制单元(301)电连接,用于设定推进油缸和拼装油缸的推力以及盾构机整体的推进速度。
  5. 根据权利要求1所述的一种盾构机掘进拼装同步施工的控制系统,其特征在于:所述模式选择钮(102)设于操作台(1)面板的左侧,包括同步和常规两个档位,所述模式选择钮(102)分别与推进系统控制单元(201)、拼装系统控制单元(301)电连接,用于切换所述同步掘进模式和常规模式;
    所述同步掘进模式具体为盾构机的掘进与管片拼装工作同步进行,所述常规模式具体为盾构机的掘进与管片拼装工作分步进行。
  6. 根据权利要求1所述的一种盾构机掘进拼装同步施工的控制系统,其特征在于:所述启动按钮(105)设于所述模式选择钮(102)下方,所述启动按钮(105)分别与推进执行机构(4)、拼装执行机构(6)电连接,用于控制推进执行机构(4)和拼装执行机构(6)的启停。
  7. 根据权利要求1所述的一种盾构机掘进拼装同步施工的控制系统,其特征在于:所 述同步掘进模式功能切换钮(103)设于所述模式选择钮(102)左侧,包括掘进、盾体复位和刀盘回退三个档位,所述同步掘进模式功能切换钮(103)分别与推进执行机构(4)、拼装执行机构(6)电连接,用于在同步掘进模式下控制盾构机掘进拼装工作的启动、掘进拼装完成后中盾及尾盾的复位和刀盘跟随前盾的缩回。
  8. 根据权利要求1所述的一种盾构机掘进拼装同步施工的控制系统,其特征在于:所述常规掘进模式功能选择钮(104)设于所述模式选择钮(102)和分区控制旋钮(101)之间,包括掘进和拼装两个档位,所述常规掘进模式功能选择钮(104)与拼装执行机构(6)电连接,用于在常规模式下控制盾构机掘进工作和管片拼装工作的切换。
  9. 根据权利要求1所述的一种盾构机掘进拼装同步施工的控制系统,其特征在于:所述推进系统计算单元(202)根据后部拼装油缸(7)的行程参数和压力参数实时判断当前执行缩回动作的拼装油缸序号并发送给推进系统控制单元(201),由推进系统控制单元(201)控制该序号对应的推进油缸减小推力,并控制其他推进油缸自动补偿总推力,以确保盾构机整体的推进速度与分区控制旋钮(101)的设定值一致;
    所述拼装系统计算单元(302)根据后部拼装油缸(7)的行程参数和压力参数实时计算当前执行缩回动作的拼装油缸缩回时产生的弯矩,并设定每支拼装油缸的压力值将其传递给拼装系统控制单元(301),由拼装系统控制单元(301)控制其他拼装油缸的压力值在500ms内缓慢上升至设定值后,锁死后部拼装油缸(7),以保持盾体姿态稳定。
  10. 一种盾构机掘进拼装同步施工的控制方法,基于权利要求1~9任一项所述的控制系统,其特征在于,包括如下步骤:
    S1,判断模式选择钮是否处于同步档位,若是,则执行步骤S2,若否,则执行步骤S9;
    S2,旋转同步掘进模式功能切换钮至掘进档位,调整分区控制旋钮设定盾构机整体的推进速度,并按下启动按钮;
    S3,前部推进油缸推动刀盘和前盾向前掘进,中盾和尾盾保持静止,后部拼装油缸配 合管片拼装机在尾盾内同步进行管片拼装;
    S4,推进系统计算单元实时判断当前执行缩回动作的拼装油缸序号,推进系统控制单元控制该序号对应的推进油缸减小推力,并控制其他推进油缸自动补偿总推力;
    S6,拼装系统计算单元实时计算当前执行缩回动作的拼装油缸缩回时产生的弯矩,并设定每支拼装油缸的压力值,拼装系统控制单元控制其他拼装油缸的压力值在500ms内缓慢上升至设定值后,锁死后部拼装油缸;
    S7,判断每支推进油缸和每支拼装油缸的压力值是否均低于预设限值,若是,则执行步骤S8,若否,则推进系统控制单元自动降低前部推进油缸的推力;
    S8,判断掘进工作与管片拼装工作是否均已完成,若是,则旋转同步掘进模式功能切换钮至盾体复位档位,并按下启动按钮,中盾及尾盾由后部拼装油缸向前推进复位,若否,则重复执行步骤S3;
    S9,旋转常规掘进模式功能选择钮至掘进档位,调整分区控制旋钮设定盾构机整体的推进速度,并按下启动按钮,后部拼装油缸推动盾构机实现向前掘进;
    S10,旋转常规掘进模式功能选择钮至拼装档位,并按下启动按钮,后部拼装油缸配合管片拼装机在尾盾内进行管片拼装。
PCT/CN2022/140973 2022-01-07 2022-12-22 一种盾构机掘进拼装同步施工的控制系统及控制方法 WO2023130972A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210015376.4 2022-01-07
CN202220032265.X 2022-01-07
CN202220032265 2022-01-07
CN202210015376.4A CN114183157B (zh) 2022-01-07 2022-01-07 一种盾构机掘进拼装同步施工的控制系统及控制方法

Publications (1)

Publication Number Publication Date
WO2023130972A1 true WO2023130972A1 (zh) 2023-07-13

Family

ID=87073084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140973 WO2023130972A1 (zh) 2022-01-07 2022-12-22 一种盾构机掘进拼装同步施工的控制系统及控制方法

Country Status (1)

Country Link
WO (1) WO2023130972A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146762A (ja) * 2003-11-19 2005-06-09 Tobishima Corp シールド掘進組立同時施工法
JP2008088705A (ja) * 2006-10-02 2008-04-17 Tekken Constr Co Ltd シ−ルド工法およびシ−ルド掘進機
CN103821529A (zh) * 2014-03-12 2014-05-28 上海市机械施工集团有限公司 矩形盾构机土压平衡控制系统及其方法
CN110847922A (zh) * 2019-12-13 2020-02-28 中国铁建重工集团股份有限公司 运行控制装置及掘进设备
CN111810173A (zh) * 2020-07-24 2020-10-23 上海隧道工程有限公司 盾构掘进和管片拼装同步的施工方法
CN111810174A (zh) * 2020-07-24 2020-10-23 上海隧道工程有限公司 推拼同步模式下盾构推进系统顶力分配计算方法
CN112096390A (zh) * 2020-09-09 2020-12-18 上海隧道工程有限公司 基于同步推拼方式的拼装机背景速度提供系统及方法
CN112727477A (zh) * 2021-01-20 2021-04-30 中建三局集团有限公司 一种铰接滑筒式连续掘进盾构机及其施工方法
CN114183157A (zh) * 2022-01-07 2022-03-15 中建三局集团有限公司 一种盾构机掘进拼装同步施工的控制系统及控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146762A (ja) * 2003-11-19 2005-06-09 Tobishima Corp シールド掘進組立同時施工法
JP2008088705A (ja) * 2006-10-02 2008-04-17 Tekken Constr Co Ltd シ−ルド工法およびシ−ルド掘進機
CN103821529A (zh) * 2014-03-12 2014-05-28 上海市机械施工集团有限公司 矩形盾构机土压平衡控制系统及其方法
CN110847922A (zh) * 2019-12-13 2020-02-28 中国铁建重工集团股份有限公司 运行控制装置及掘进设备
CN111810173A (zh) * 2020-07-24 2020-10-23 上海隧道工程有限公司 盾构掘进和管片拼装同步的施工方法
CN111810174A (zh) * 2020-07-24 2020-10-23 上海隧道工程有限公司 推拼同步模式下盾构推进系统顶力分配计算方法
CN112096390A (zh) * 2020-09-09 2020-12-18 上海隧道工程有限公司 基于同步推拼方式的拼装机背景速度提供系统及方法
CN112727477A (zh) * 2021-01-20 2021-04-30 中建三局集团有限公司 一种铰接滑筒式连续掘进盾构机及其施工方法
CN114183157A (zh) * 2022-01-07 2022-03-15 中建三局集团有限公司 一种盾构机掘进拼装同步施工的控制系统及控制方法

Similar Documents

Publication Publication Date Title
JP5903493B2 (ja) 伸縮可能式クローラ車台及び当該車台を備える工事機器
WO2017012420A1 (zh) 一种六杆机构的多功能工程属具
CN201090229Y (zh) 机载式支护机
CN100559013C (zh) 掘锚钻复合机
CN114183157B (zh) 一种盾构机掘进拼装同步施工的控制系统及控制方法
EP3872299B1 (en) Robot-supported flexible-arm boring machine capable of excavating tunnel with arbitrary cross section
CN100559015C (zh) 掘锚一体化的掘锚机
CN107339110B (zh) 一种带双六足推进器和双三足支撑器的全自动tbm掘进装置
CN103790191A (zh) 混合驱动变胞机构挖掘机械
WO2023130972A1 (zh) 一种盾构机掘进拼装同步施工的控制系统及控制方法
CN102913268A (zh) 巷道掘进机移动支护支架
CN112554899A (zh) 一种硬岩隧道掘进机
CN202508798U (zh) 一种插拔销机构、插销式伸缩臂及起重机
CN109826134A (zh) 一种多功能全液压公路防撞护栏打拔钻一体车
CN219489436U (zh) 一种用于拱锚一体台车的组合臂架
CN203729354U (zh) 混合驱动变胞机构挖掘机械
CN210396739U (zh) 隧道多功能掘进机
JP5601762B2 (ja) アウトリガ装置
CN110847922A (zh) 运行控制装置及掘进设备
CN204059450U (zh) 破挖一体式挖掘式装载机
CN110905544A (zh) 一种脉冲射流辅助式掘进机
CN115788078A (zh) 大跨度钢结构桁架高空滚轴滑移装置
CN211081864U (zh) 掘进设备
CN109838244B (zh) 一种可折叠的大面积操作平台装置
CN210440035U (zh) 一种悬臂式机载临时支护装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918415

Country of ref document: EP

Kind code of ref document: A1