WO2023130611A1 - 柔性集流体芯层、集流体、极片和电池及其制备方法 - Google Patents

柔性集流体芯层、集流体、极片和电池及其制备方法 Download PDF

Info

Publication number
WO2023130611A1
WO2023130611A1 PCT/CN2022/087607 CN2022087607W WO2023130611A1 WO 2023130611 A1 WO2023130611 A1 WO 2023130611A1 CN 2022087607 W CN2022087607 W CN 2022087607W WO 2023130611 A1 WO2023130611 A1 WO 2023130611A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
layer
porous conductive
conductive layer
core layer
Prior art date
Application number
PCT/CN2022/087607
Other languages
English (en)
French (fr)
Inventor
庄志
石广钦
熊磊
虞少波
刘连静
杨强
姚志刚
陈宇
费海洁
晏小祥
程跃
Original Assignee
上海恩捷新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海恩捷新材料科技有限公司 filed Critical 上海恩捷新材料科技有限公司
Publication of WO2023130611A1 publication Critical patent/WO2023130611A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of batteries, and in particular relates to a flexible current collector core layer, a current collector, pole pieces, a battery and a preparation method thereof.
  • the inner part of the insulating support And the conductive layer constitutes the core layer structure, and the outer layer is the flexible current collector of the conductive metal layer.
  • the overall mass density of the current collector of the composite structure is reduced, which can significantly improve the overall energy density of the battery.
  • the polymer used in the current collector The flexibility of the material part is better, which can effectively reduce the phenomenon of "powder dropping" of the pole piece caused by mechanical deformation and internal expansion of the active material.
  • CN111384404 A is a kind of ultra-light conductive agent fluid, specifically discloses that a kind of support layer adopts the material of the resistance positive temperature effect that resistance temperature rises and increases, namely PCT (Positive Temperature Coefficient) material, in
  • the conductive enhancement layer graphene film is deposited on the surface of the supporting layer PCT material to form a graphene/polymer PTC film/graphene sandwich structure, and then the film surface is drilled with a laser to prepare a flexible superconducting current collector with high porosity.
  • the method can obtain a graphene conductive layer on the surface using a laser drilling method. This method uses a laser drilling method to obtain a porous structure. However, this method will greatly increase the cost during large-scale and rapid production, and the difficulty is quite high.
  • Patent literature discloses a composite current collector and its preparation method, and a secondary battery, specifically disclosing a method of coating a conductive polymer layer on an insulating support layer, and then plating a metal layer on the conductive polymer layer. , to obtain a composite current collector.
  • the conductive polymer layer is coated on the surface of the insulating support layer, and the coating method is adopted, but this method is prone to peeling between the two layers, and the cost of the conductive adhesive is high, which is not conducive to Used in mass production.
  • the first object of the present invention is to provide a flexible current collector core layer, which uses the first polyolefin material or/and flame-retardant polyolefin material as the material of the insulating support layer, and makes the melting point of the first polyolefin material not high
  • the second polyolefin material and the conductive filler are used as the material of the porous conductive layer, and the production cost is greatly reduced by reducing the non-metallic part in the flexible current collector core layer.
  • the second object of the present invention is to provide a current collector, which is provided with a conductive metal layer on both sides of the porous conductive layer of the aforementioned flexible current collector core layer. Since the surface roughness of the porous conductive layer is very high, for this reason, through other technologies When the conductive metal layer is added by means, additional processing is not required, the preparation process is simplified, and time and cost can be saved.
  • the third object of the present invention is to provide a pole piece, which forms an electrode active material layer on the surface of the aforementioned current collector, and can be made into a pole piece, so that it can be applied to a battery.
  • the fourth object of the present invention is to provide a kind of battery, and it is made positive pole piece and negative pole piece with aforementioned pole piece, and is assembled into battery with separator and electrolytic solution, wherein, the current collector in the pole piece that adopts, its With a flexible current collector core layer, because the porous conductive layer in the flexible current collector core layer has the characteristics of a hole part structure, it can eliminate the stress caused by the internal expansion of the active material in the battery and effectively prolong the service life of the battery. question.
  • the fifth object of the present invention is to provide a method for preparing a flexible current collector core layer. After adding the material of the insulating support layer and the material of the porous conductive layer into the extruder, the mixture is melted and extruded, cast and stretched. process, and a flexible current collector core layer can be obtained, wherein, the stretching temperature is 90-140°C, and the stretching ratio is 1-5 times, so that the porous conductive layer structure on both sides can be stretched at this temperature to obtain the characteristics of a porous structure , to improve its surface roughness, and at the same time, to solve the problem of poor bonding strength between the insulating support layer and the porous conductive layer by means of synchronous extrusion of the die head.
  • the sixth object of the present invention is to provide a method for preparing a flexible current collector, which uses the flexible current collector core layer obtained in the above steps, and forms a conductive metal layer on the surface of the porous conductive layer to produce a current collector.
  • the present invention provides a flexible current collector core layer, comprising:
  • a porous conductive layer is arranged on both sides of the insulating support layer
  • the material of the insulating support layer includes a first polyolefin material or/and a flame-retardant polyolefin material, and the melting point of the polyolefin material in the first polyolefin material and the flame-retardant polyolefin material is not high at 136°C;
  • the material of the porous conductive layer includes a second polyolefin material and a conductive filler.
  • the first polyolefin material and the second polyolefin material are polyethylene, polypropylene, ethylene-vinyl acetate, ethylene-propylene copolymer, ethylene-octene copolymer, polyethylene terephthalate At least one of glycol ester and polybutylene terephthalate, and the first polyolefin material is different from the second polyolefin material.
  • the polyethylene is at least one of high-density polyethylene, low-density polyethylene, and linear low-density polyethylene.
  • the melt index of the high-density polyethylene is 0.7g/10min-2.0g/10min.
  • the melting point of the high-density polyethylene is 125°C-136°C.
  • the low density polyethylene has a melting point of 125°C-130°C.
  • said second polyolefin material is said polypropylene.
  • the melt index of the polypropylene is 4.0g/10min-10.0g/10min.
  • the flame retardant filled in the flame-retardant polyolefin material is at least one of halogen-based flame retardants, phosphorus-based flame retardants, phosphorus-nitrogen-based flame retardants, and inorganic flame retardants.
  • the material of the insulating support layer also includes ethylene-vinyl acetate copolymer.
  • the melting point of the ethylene-vinyl acetate copolymer is 85°C-90°C.
  • the melting point of the first polyolefin material is not higher than 130°C.
  • the insulating support layer is a dense structure without holes.
  • the porosity of the porous conductive layer is 10%-80%.
  • the pore size of the porous conductive layer is 0.02 ⁇ m-1 ⁇ m.
  • the surface roughness of the porous conductive layer is 0.025 ⁇ m-2 ⁇ m.
  • the conductive filler is at least one of carbon-based conductive material or metal oxide material.
  • the carbon-based conductive material is at least one of conductive carbon black, graphite, graphene or carbon nanotubes.
  • the carbon-based conductive material is surface-modified by at least one of a silane coupling agent, a titanate coupling agent, and an aluminate coupling agent.
  • the carbon-based conductive material is a carbon nanotube
  • its diameter is 5 nm-15 nm
  • its length is 0.1 ⁇ m-2 ⁇ m.
  • the metal oxide material includes at least one of metal oxides of Ti, V, Sn, and Zn or metal oxides of Ti, V, Sn, and Zn doped with metal oxides.
  • the metal oxide material is at least one of TiO2, Ti4O7, V2O3, VO2, SnO, SnO2, ZnO-doped whiskers or powder.
  • the conductive filler is particulate matter, its particle size is 10nm-500nm.
  • the conductive filler is whisker or fiber
  • its diameter is 0.005 ⁇ m-2 ⁇ m
  • its length is 0.05 ⁇ m-3 ⁇ m.
  • the mass proportion of the conductive filler in the porous conductive layer is 10%-45%.
  • the thickness of the flexible current collector core layer is 5 ⁇ m-20 ⁇ m.
  • the density of the flexible current collector core layer is 5g/m 2 -15g/m 2 .
  • the thickness ratio of the insulating support layer to the porous conductive layer is 1:0.2-10.
  • the insulating support layer and the porous conductive layer are extruded at one time by multi-layer co-extrusion.
  • the present invention provides a current collector, comprising:
  • a conductive metal layer is arranged on both sides of the porous conductive layer.
  • the material of the conductive metal layer is at least one of aluminum, copper, nickel, titanium, silver, nickel-copper alloy, and aluminum-zirconium alloy.
  • the thickness of the conductive metal layer is 0.5 ⁇ m-3 ⁇ m.
  • the volume resistivity of the conductive metal layer is 15 ⁇ cm-250 ⁇ cm.
  • the present invention provides a pole piece, comprising:
  • An electrode active material layer is formed on the surface of the current collector.
  • the thickness of the current collector is 8 ⁇ m-18 ⁇ m.
  • the density of the current collector is 15g/m 2 -35g/m 2 .
  • the present invention provides a battery, comprising:
  • An electrolyte is filled between the positive pole piece and the negative pole piece, so that the positive pole piece is electrically connected to the negative pole piece.
  • the present invention provides a method for preparing a flexible current collector core layer, comprising the steps of:
  • An insulating support layer material and a porous conductive layer material are respectively fed into an extruder for melting and plasticizing, generating and extruding an insulating support layer molten raw material and a porous conductive layer molten raw material to a die head;
  • the molten raw material of the insulating support layer and the molten raw material of the porous conductive layer are extruded synchronously through the die head and drawn to form a casting film.
  • the structure of the casting die includes an insulating supporting layer and a porous conductive layer , and the porous conductive layer is respectively disposed on both sides of the insulating support layer;
  • the cast film undergoes a stretching procedure to form a flexible current collector core layer, wherein the stretching procedure is longitudinal and transverse stretching, and the stretching temperature is 90°C-140°C, and the stretching ratio is 1 -5 times.
  • the cast film is cooled by a cooling roll to obtain a cast sheet, and the temperature of the cooling roll is 50°C-130°C.
  • the present invention provides a method for preparing a current collector, comprising the steps of:
  • An insulating support layer material and a porous conductive layer material are respectively fed into an extruder for melting and plasticizing, generating and extruding an insulating support layer molten raw material and a porous conductive layer molten raw material to a die head;
  • the molten raw material of the insulating support layer and the molten raw material of the porous conductive layer are extruded synchronously through the die head and drawn to form a casting film.
  • the structure of the casting die includes an insulating supporting layer and a porous conductive layer , and the porous conductive layer is respectively arranged on both sides of the insulating support layer;
  • the cast film undergoes a stretching procedure to form a flexible current collector core layer, wherein the stretching procedure is longitudinal and transverse stretching, and the stretching temperature is 90°C-140°C, and the stretching ratio is 1 -5 times; and
  • a conductive metal layer is respectively formed on the surface of the porous conductive layer on both sides of the flexible current collector core layer through mechanical rolling, bonding, vapor deposition or electroless plating to produce a current collector.
  • the electroless plating includes at least one of alkali plating and acid plating.
  • the cast film is cooled by a cooling roll to obtain a cast sheet, and the temperature of the cooling roll is 50°C-130°C.
  • the beneficial effect of the present invention is that the insulating support layer material and the porous conductive layer are extruded synchronously by the multi-layer extrusion technology, so that the flexible current collector core layer is output as an integral structure, thereby improving the strength of the flexible current collector core layer and increasing the strength of the current collector core layer.
  • the preparation method of the flexible current collector core layer provided by the present invention only needs to go through the processes of mixing and melting extrusion, casting and stretching to obtain a flexible current collector core layer, that is One-time processing and molding simplifies the manufacturing process and greatly reduces production costs.
  • the stretching temperature is 90°C-140°C
  • the melting point of the first polyolefin material used must not be higher than 136°C.
  • the porous conductive layer can produce gaps on the surface while the inner insulating support layer has a dense structure, so as to ensure that the insulating support layer can have good supporting force during the production process and reduce The phenomenon of membrane rupture.
  • FIG. 1 is a schematic structural view of a flexible current collector core layer according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a current collector according to an embodiment of the present invention.
  • Fig. 3 is a schematic structural view of a pole piece according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a battery according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for preparing a flexible current collector core layer according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a method for preparing a current collector according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural view of a flexible current collector core layer according to an embodiment of the present invention.
  • the flexible current collector core layer 1 of the present invention includes an insulating support layer 11 and a porous conductive layer 12, and the porous conductive layer 12 is arranged on both sides of the insulating support layer 11, and the details are as follows:
  • the material of the insulating support layer 11 includes the first polyolefin material or/and the flame-retardant polyolefin material, and the melting point of the polyolefin material in the first polyolefin material and the flame-retardant polyolefin material is not higher than 136°C, preferably In an embodiment, the melting point of the polyolefin material in the first polyolefin material and the flame-retardant polyolefin material may not be higher than 130°C, so that the insulating support layer 11 has a dense structure without holes.
  • the insulating support layer 11 may only use the first polyolefin material, or a blend of the first polyolefin material and the flame-retardant polyolefin material, and, in one embodiment, the material of the insulating support layer 11 may further include ethylene - Vinyl acetate copolymer materials, but not limited thereto.
  • the first polyolefin material can be polyethylene, polypropylene, ethylene-vinyl acetate, ethylene-propylene copolymer, ethylene-octene copolymer, polyethylene terephthalate, polybutylene terephthalate At least one of glycol esters, and preferably, its polyethylene is at least one of high-density polyethylene, low-density polyethylene, and linear low-density polyethylene, but not limited thereto.
  • the flame retardant filled in the flame-retardant polyolefin material is at least one of halogen-based flame retardants, phosphorus-based flame retardants, phosphorus-nitrogen-based flame retardants, and inorganic flame retardants, but not limited thereto.
  • the flame retardant can be decomposed to produce hydrogen halide (HX), so that hydrogen halide eliminates the active free radicals generated by the combustion reaction of polymer materials.
  • the principle of phosphorus flame retardant is that when the phosphorus flame retardant is heated, it can produce a more stable cross-linked solid substance or carbonized layer, and carbonization
  • the formation of the layer can further prevent the pyrolysis of the polymer, and also prevent the internal pyrolysis products from entering the gas phase to participate in the combustion process;
  • the phosphorus element in the phosphorus-nitrogen flame retardant can promote the dehydration of cotton fibers into carbon, and the nitrogen element It has a synergistic effect on improving the flame retardant performance of phosphorus elements; and inorganic flame retardants mainly add inorganic elements with intrinsic flame retardancy to the flame retardant substrate in the form of simple substances or compounds, and form a physical dispersion state with high
  • the polymer is fully mixed, and plays a flame retardant role through chemical or physical changes in the gas phase or condensed phase.
  • the porous structure of the porous conductive layer 12 has a porosity of 10%-80%, a pore size of 0.02 ⁇ m-1 ⁇ m, and a surface roughness of 0.025 ⁇ m-2 ⁇ m, but not here
  • the material of the porous conductive layer 12 includes the second polyolefin material and conductive filler.
  • the second polyolefin material can be polyethylene, polypropylene, ethylene-vinyl acetate, ethylene-propylene copolymer, ethylene-octene copolymer, polyethylene terephthalate, polybutylene terephthalate At least one of glycol esters, in a preferred embodiment, the second polyolefin material can be polypropylene, and the first polyolefin material is different from the second polyolefin material, but not limited thereto.
  • the conductive filler is at least one of carbon-based conductive material or metal oxide material, and the mass proportion of the conductive filler in the porous conductive layer 12 is 10%-45%, and this mass proportion range is very important. If the mass ratio of the conductive filler exceeds 45%, the extrusion process will be affected, so that the porous conductive layer 12 cannot be stretched to form holes. On the contrary, if the mass ratio of the conductive filler is less than 10%, the conductive network cannot be formed.
  • the carbon-based conductive material can be surface-modified by at least one of a silane coupling agent, a titanate coupling agent, and an aluminate coupling agent.
  • the coupling agent added here acts to When the proportion of the carbon-based conductive material is small, that is, when the mass proportion of the carbon-based conductive material in the porous conductive layer 12 is not more than 20%, the added coupling agent can promote the dispersion effect of the carbon-based conductive material in the polymer, Conversely, when the mass ratio of the carbon-based conductive material in the porous conductive layer 12 exceeds 20%, the filler particles can easily form a conductive network. At the same time, whether it is modified or not will not affect other properties of the core layer, but not limited thereto.
  • the carbon-based conductive material is at least one of conductive carbon black, graphite, graphene or carbon nanotubes, and when the carbon-based conductive material is a carbon nanotube, its diameter is 5nm-15nm, and the length 0.1 ⁇ m-2 ⁇ m, but not limited thereto, and the metal oxide material includes at least one of Ti, V, Sn, Zn metal oxides or Ti, V, Sn, Zn metal oxides doped with metal oxides , in one embodiment, the metal oxide material is at least one of TiO2, Ti4O7, V2O3, VO2, SnO, SnO2, whiskers or powder doped with ZnO, wherein, when the conductive filler is a particle, the particle The diameter is 10nm-500nm, or when the conductive filler is whisker or fiber, the diameter is 0.005 ⁇ m-2 ⁇ m, and the length is 0.05 ⁇ m-3 ⁇ m.
  • the thickness ratio of the insulating support layer 11 to the porous conductive layer 12 is 1:0.2-10, and the insulating support layer and the porous conductive layer are extruded at one time by multi-layer co-extrusion, But not limited to this.
  • FIG. 2 is a schematic structural diagram of a current collector according to an embodiment of the present invention.
  • the current collector 2 of the present invention includes the aforementioned flexible current collector core layer 1 and the conductive metal layer 21, and the conductive metal layer 21 is arranged on both sides of the porous conductive layer 11, wherein the material of the conductive metal layer 21 It is at least one of aluminum, copper, nickel, titanium, silver, nickel-copper alloy, and aluminum-zirconium alloy, and the thickness of the conductive metal layer 21 is 0.5 ⁇ m-3 ⁇ m, but not limited thereto.
  • FIG. 3 is a schematic structural diagram of a pole piece according to an embodiment of the present invention.
  • the pole piece 3 of the present invention includes the aforementioned current collector 2 and the electrode active material layer 31 , wherein the electrode active material layer 31 is formed on the surface of the current collector 2 .
  • FIG. 4 is a schematic structural diagram of a battery according to an embodiment of the present invention.
  • the battery 4 of the present invention includes a positive pole piece 41, a negative pole piece 42, a diaphragm 43 and an electrolyte 44, wherein the diaphragm 43 is arranged between the positive pole piece 41 and the negative pole piece 42, and the electrolyte 44 Fill between the positive pole piece 41 and the negative pole piece 42, so that the positive pole piece 41 is electrically connected to the negative pole piece 42, and the details are as follows:
  • the positive pole piece 41 is the aforementioned pole piece 3 and has a positive polarity
  • the negative pole piece 42 is also the aforementioned pole piece 3 and has a negative polarity, but not limited thereto.
  • the separator 43 is a thin film with microporosity and porosity, and its material is mainly PP and PE. Protected against short circuits, but not limited thereto.
  • the main function of the electrolyte solution 44 is to transfer the entire electrochemical reaction ions.
  • FIG. 5 is a flowchart of a method for preparing a flexible current collector core layer according to an embodiment of the present invention.
  • the preparation method of the flexible current collector core layer of the present invention includes the following steps:
  • Step S1 adding an insulating support layer material and a porous conductive layer material to an extruder for melting and plasticizing, generating and extruding an insulating support layer molten raw material and a porous conductive layer molten raw material to a die head;
  • Step S2 The molten raw material of the insulating support layer and the molten raw material of the porous conductive layer are extruded synchronously through the die, and are drawn into a casting film.
  • the structure of the casting die includes an insulating supporting layer and a multilayer a porous conductive layer, and the porous conductive layer is respectively arranged on both sides of the insulating support layer; and
  • Step S3 The cast film undergoes a stretching procedure to generate a flexible current collector core layer, wherein the stretching procedure is longitudinal and transverse stretching, and the stretching temperature is 90°C-140°C, stretching The ratio is 1-5 times.
  • step S1 it is a step of mixing and extruding materials.
  • the insulating support layer material and the porous conductive layer material are respectively added to the extruder to melt and plasticize, so that the molten raw material of the insulating support layer and the molten raw material of the porous conductive layer can be extruded. out to the die.
  • step S2 it is a cast casting step.
  • the molten raw material of the insulating support layer and the molten raw material of the porous conductive layer are extruded synchronously through the die, and are drawn into a cast film.
  • the cast film will form three layers. structure, its sequence is porous conductive layer 12/insulating support layer 11/porous conductive layer 12, that is, the porous conductive layer 12 is respectively arranged on both sides of the insulating support layer 11, in one embodiment, the casting film can pass through 50 °C-130 °C cooling roll cooling to obtain slabs, but not limited thereto.
  • step S3 it is a stretching step.
  • the stretching temperature is 90°C-140°C and the stretching ratio is 1-5 times, the cast film is stretched longitudinally and transversely, and stretched at high temperature. Afterwards, heat setting is carried out to obtain the flexible current collector core layer 1. Therefore, at the stretching temperature, the melting point of the first polyolefin material of the insulating support layer 11 must not be higher than 135°C. In a preferred embodiment, The melting point of the first polyolefin material of the insulating support layer is not higher than 130°C. In this way, the dense structure of the insulating support layer 11 is ensured, and, under stretching, the surface of the porous conductive layer 12 has a hole structure, that is The surface of the flexible current collector core layer 1 will have a hole structure.
  • FIG. 6 is a flowchart of a method for preparing a current collector according to an embodiment of the present invention. As shown in the figure, the steps of the preparation method of the current collector of the present invention are different from the steps of the preparation method of the flexible current collector core layer in that step S4 is further included.
  • Step S4 Form a conductive metal layer on the surface of the porous conductive layer on both sides of the flexible current collector core layer through mechanical rolling, bonding, vapor deposition or electroless plating, to produce a current collector.
  • step S4 it is a metal plating step, and a conductive metal layer 21 of 0.5 ⁇ m-3 ⁇ m is formed on both sides of the flexible current collector core layer 1 through alkalinity, acid plating or a combination of the two processes to obtain the final Collector 2.
  • test method For testing the relevant data of flexible current collector core layer 1 of the present invention, provide following test method:
  • ⁇ v is the volume resistivity of the sample, the unit is ⁇ cm;
  • Rv is the volume resistance of the sample, in ⁇
  • S is the cross-sectional area of the sample perpendicular to the current direction, in cm2;
  • d is the length of the sample parallel to the current direction, in cm.
  • the volume resistivity test of the flexible current collector core layer 1 cannot be directly performed.
  • the pore size and porosity of the porous conductive layer 12 can be tested by a pressurized water method. After obtaining its thickness, the porous conductive layer 12 of a specific size and quality can be cut out and placed in a pressurized water meter.
  • the test pressure ranges from 0psi- 1500psi gradually rises, water is squeezed into the pores under the action of pressure, and the corresponding pressure of water squeezed into different pore diameters follows the Washburn equation, so that a series of pore diameters and porosity can be calculated, but not limited thereto.
  • the material selection is as follows:
  • Insulation support layer 11 high-density polyethylene (HDPE) with a melt index of 2.0g/10min, whose melting point is 136°C and low-density polyethylene (LDPE), whose melting point is 125°C, HDPE and LDPE are mixed to obtain a homogeneous mixture, Among them, HDPE accounts for 60% of the total mass of the material of the insulating support layer, while LDPE accounts for 40%.
  • HDPE high-density polyethylene
  • LDPE low-density polyethylene
  • Porous conductive layer 12 a polypropylene with a melt index of 4.0g/10min-6.0g/10min, and adding 20 parts by weight of acetylene carbon black surface-modified by a titanate coupling agent in 100 parts by weight of polypropylene, wherein, The particle size of acetylene carbon black is 45nm.
  • Blending melt extrusion step put the above-mentioned HDPE and LDPE uniform mixture into the extruder, melt and plasticize to obtain the insulating support layer 11 molten raw material, mix the above-mentioned 100 parts by weight of polypropylene with 20 parts by weight of titanate The acetylene carbon black surface-modified by the coupling agent is added into the extruder, melted and plasticized to obtain the molten raw material of the porous conductive layer 12, and extruded to the die.
  • the molten raw material of the insulating support layer 11 and the molten raw material of the porous conductive layer 12 pass through the die head with a three-layer co-extrusion structure, and can be extruded to obtain a porous conductive layer 12/insulating support layer 11/porous Conductive layer 12 is a casting film with a three-layer structure, and is cooled by a cooling roll at 50°C-130°C to obtain a cast sheet, wherein the thickness ratio of porous conductive layer 12/insulating support layer 11/porous conductive layer 12 is 1:2 :1.
  • Stretching step Preheat the casting film with the three-layer structure of porous conductive layer 12/insulating support layer 11/porous conductive layer 12 obtained above at 90°C, and the preheated cast sheet enters an oven at 135°C
  • the longitudinal and transverse stretching was carried out in the extrusion direction, and the longitudinal stretching was 4 times along the extrusion direction, and the transverse stretching was 2 times, so a flexible current collector core layer 1 with a thickness of 14 ⁇ m was obtained.
  • Metal plating step After forming a thin metal layer by alkalinity, a conductive metal layer 21 of 1 ⁇ m is formed on both sides of the flexible current collector core layer 1 by acid plating, and the conductive metal layer 21 is copper metal layer to obtain a current collector 2 with a total thickness of 16 ⁇ m.
  • the test method is as follows:
  • volume resistivity test the material of porous conductive layer 12, namely the polypropylene of 100 weight parts and the acetylene carbon black of 20 weight parts are added in the extruder, obtain porous conductive layer 12 molten raw materials after melting and plasticizing, and extrude After die-casting, it is cooled by a cooling roll at 50°C-130°C. On the cast sheet obtained, samples are cut for volume resistivity testing.
  • the material selection is as follows:
  • Insulating support layer 11 high-density polyethylene (HDPE) with a melt index of 1.0g/10min, whose melting point is 136°C and low-density polyethylene (LDPE), whose melting point is 125°C, HDPE and LDPE are mixed to obtain a homogeneous mixture, Among them, HDPE accounts for 70% of the total mass of the material of the insulating support layer, while LDPE accounts for 30%.
  • HDPE high-density polyethylene
  • LDPE low-density polyethylene
  • Porous conductive layer 12 a polypropylene with a melt index of 6.0g/10min-8.0g/10min, and adding 35 parts by weight of acetylene carbon black surface-modified by a titanate coupling agent in 100 parts by weight of polypropylene, wherein, The particle size of acetylene carbon black is 45nm.
  • Blending melt extrusion step put the above-mentioned HDPE and LDPE uniform mixture into the extruder, melt and plasticize to obtain the insulating support layer 11 molten raw material, mix the above-mentioned 100 parts by weight of polypropylene with 35 parts by weight of titanate The acetylene carbon black surface-modified by the coupling agent is added into the extruder, melted and plasticized to obtain the molten raw material of the porous conductive layer 12, and extruded to the die.
  • the molten raw material of the insulating support layer 11 and the molten raw material of the porous conductive layer 12 pass through the die head with a three-layer co-extrusion structure, and can be extruded to obtain a porous conductive layer 12/insulating support layer 11/porous Conductive layer 12 is a casting film with a three-layer structure, and is cooled by a cooling roll at 50°C-130°C to obtain a cast sheet, wherein the thickness ratio of porous conductive layer 12/insulating support layer 11/porous conductive layer 12 is 1:2 :1.
  • Stretching step Preheat the casting film with the three-layer structure of porous conductive layer 12/insulating support layer 11/porous conductive layer 12 obtained above at 90°C, and the preheated cast sheet enters an oven at 135°C
  • the longitudinal and transverse stretching was carried out in the extrusion direction, and the longitudinal stretching was 4 times along the extrusion direction, and the transverse stretching was 2 times, so a flexible current collector core layer 1 with a thickness of 14 ⁇ m was obtained.
  • Metal plating step After forming a thin metal layer by alkalinity, a conductive metal layer 21 of 1 ⁇ m is formed on both sides of the flexible current collector core layer 1 by acid plating, and the conductive metal layer 21 is copper metal layer to obtain a current collector 2 with a total thickness of 16 ⁇ m.
  • the test method is as follows:
  • volume resistivity test the material of the porous conductive layer 12, namely the above-mentioned 100 parts by weight of polypropylene and 35 parts by weight of acetylene carbon black, is added to the extruder, melted and plasticized to obtain the molten raw material of the porous conductive layer 12, and extruded After being cast out of the machine die, it is cooled by a cooling roll at 50°C-130°C, and the obtained cast sheet is cut out for volume resistivity testing.
  • the material selection is as follows:
  • Insulating support layer 11 high-density polyethylene (HDPE) with a melt index of 0.7g/10min-1.5g/10min, and a melting point of 126°C-130°C.
  • HDPE high-density polyethylene
  • Porous conductive layer 12 polypropylene with a melt index of 8.0g/10min-10.0g/10min, and 45 parts by weight of acetylene carbon black added to 100 parts by weight of polypropylene, wherein the particle size of acetylene carbon black is 45nm.
  • Mixing and melting extrusion step add the above-mentioned HDPE into the extruder, melt and plasticize to obtain the insulating support layer 11 molten raw material, add the above-mentioned 100 parts by weight of polypropylene and 45 parts by weight of acetylene carbon black into the extruder
  • the porous conductive layer 12 is melted and plasticized to obtain the molten raw material, and extruded to the die head.
  • the molten raw material of the insulating support layer 11 and the molten raw material of the porous conductive layer 12 pass through the die head with a three-layer co-extrusion structure, and can be extruded to obtain a porous conductive layer 12/insulating support layer 11/porous Conductive layer 12 is a casting film with a three-layer structure, and is cooled by a cooling roll at 50°C-130°C to obtain a cast sheet, wherein the thickness ratio of porous conductive layer 12/insulating support layer 11/porous conductive layer 12 is 1:2 :1.
  • Stretching step Preheat the casting film with the three-layer structure of porous conductive layer 12/insulating support layer 11/porous conductive layer 12 obtained above at 90°C, and the preheated cast sheet enters an oven at 135°C
  • the longitudinal and transverse stretching was carried out in the extrusion direction, and the longitudinal stretching was 4 times along the extrusion direction, and the transverse stretching was 2 times, so a flexible current collector core layer 1 with a thickness of 14 ⁇ m was obtained.
  • Metal plating step After forming a thin metal layer by alkalinity, a conductive metal layer 21 of 1 ⁇ m is formed on both sides of the flexible current collector core layer 1 by acid plating, and the conductive metal layer 21 is copper metal layer to obtain a current collector 2 with a total thickness of 16 ⁇ m.
  • the test method is as follows:
  • volume resistivity test the material of the porous conductive layer 12, that is, the above-mentioned 100 parts by weight of polypropylene and 45 parts by weight of acetylene carbon black, is added to the extruder, melted and plasticized to obtain the molten raw material of the porous conductive layer 12, and extruded After being cast out of the machine die, it is cooled by a cooling roll at 50°C-130°C, and the obtained cast sheet is cut out for volume resistivity testing.
  • the material selection is as follows:
  • Insulation support layer 11 high-density polyethylene (HDPE) with a melt index of 2.0g/10min, whose melting point is 136°C and low-density polyethylene (LDPE), whose melting point is 125°C, HDPE and LDPE are mixed to obtain a homogeneous mixture, Among them, HDPE accounts for 60% of the total mass of the material of the insulating support layer, and LDPE accounts for 40%.
  • HDPE high-density polyethylene
  • LDPE low-density polyethylene
  • Porous conductive layer 12 polypropylene with a melt index of 4.0g/10min-6.0g/10min, and 25 parts by weight of conductive carbon black added to 100 parts by weight of polypropylene, wherein the particle size of conductive carbon black is 33nm.
  • Mixing and melting extrusion step Add the above-mentioned HDPE and LDPE EVA uniform mixture into the extruder, melt and plasticize to obtain the insulating support layer 11 molten raw material, mix the above-mentioned 100 parts by weight of polypropylene and 25 parts by weight of conductive carbon The black is added into the extruder, melted and plasticized to obtain the molten raw material of the porous conductive layer 12, and extruded to the die.
  • the molten raw material of the insulating support layer 11 and the molten raw material of the porous conductive layer 12 pass through the die head with a three-layer co-extrusion structure, and can be extruded to obtain a porous conductive layer 12/insulating support layer 11/porous Conductive layer 12 is a casting film with a three-layer structure, and is cooled by a cooling roll at 50°C-130°C to obtain a cast sheet, wherein the thickness ratio of porous conductive layer 12/insulating support layer 11/porous conductive layer 12 is 1:2 :1.
  • Stretching step Preheat the casting film with the three-layer structure of porous conductive layer 12/insulating support layer 11/porous conductive layer 12 obtained above at 90°C, and the preheated cast sheet enters an oven at 135°C
  • the longitudinal and transverse stretching is carried out in the extrusion direction, the longitudinal stretching is 4.2 times along the extrusion direction, and the transverse stretching is 2.2 times, so the flexible current collector core layer 1 with a thickness of 12 ⁇ m is obtained.
  • a 1 ⁇ m conductive metal layer 21 is formed on both sides of the flexible current collector core layer 1 by acid plating.
  • the conductive metal layer 21 is a copper metal layer to obtain a current collector 2 with a total thickness of 14 ⁇ m.
  • the test method is as follows:
  • volume resistivity test the material of the porous conductive layer 12, that is, the above-mentioned 100 parts by weight of polypropylene and 25 parts by weight of conductive carbon black, is added to the extruder, melted and plasticized to obtain the molten raw material of the porous conductive layer 12, and extruded After being cast out of the machine die, it is cooled by a cooling roll at 50°C-130°C, and the obtained cast sheet is cut out for volume resistivity testing.
  • the material selection is as follows:
  • Insulating support layer 11 high-density polyethylene (HDPE) with a melt index of 2.0g/10min, whose melting point is 136°C and low-density polyethylene (LDPE), whose melting point is 126°C, and ethylene-vinyl acetate copolymer (EVA ), the melting point of which is 86°C, mixing HDPE, LDPE and EVA to obtain a uniform mixture, wherein HDPE accounts for 70% of the total mass of the material of the insulating support layer, LDPE then accounts for 20%, and EVA then accounts for 10%.
  • HDPE high-density polyethylene
  • LDPE low-density polyethylene
  • EVA ethylene-vinyl acetate copolymer
  • Porous conductive layer 12 a polypropylene with a melt index of 4.0g/10min-6.0g/10min, and adding 12 parts by weight of carbon nanotubes to 100 parts by weight of polypropylene, wherein the diameter of the carbon nanotubes is 5nm-15nm, length 0.1 ⁇ m-2 ⁇ m.
  • Blending melt extrusion step put the above-mentioned HDPE, LDPE and EVA homogeneous mixture into the extruder, melt and plasticize to obtain the insulating support layer 11 molten raw material, mix the above-mentioned 100 parts by weight of polypropylene with 12 parts by weight of carbon The nanotubes are fed into the extruder, melted and plasticized to obtain molten raw materials for the porous conductive layer 12, and extruded to the die.
  • the molten raw material of the insulating support layer 11 and the molten raw material of the porous conductive layer 12 pass through the die head with a three-layer co-extrusion structure, and can be extruded to obtain a porous conductive layer 12/insulating support layer 11/porous Conductive layer 12 is a casting film with a three-layer structure, and is cooled by a cooling roll at 50°C-130°C to obtain a cast sheet, wherein the thickness ratio of porous conductive layer 12/insulating support layer 11/porous conductive layer 12 is 1:1 :1.
  • Stretching step Preheat the casting film with the three-layer structure of porous conductive layer 12/insulating support layer 11/porous conductive layer 12 obtained above at 90°C, and the preheated cast sheet enters an oven at 135°C
  • the longitudinal and transverse stretching was carried out in the extrusion direction, and the longitudinal stretching was 4.5 times along the extrusion direction, and the transverse stretching was 2.8 times, so a flexible current collector core layer 1 with a thickness of 9 ⁇ m was obtained.
  • Metal plating step After forming a thin metal layer by alkalinity, a conductive metal layer 21 of 0.75 ⁇ m is formed on both sides of the flexible current collector core layer 1 by acid plating. This conductive metal layer 21 is Copper metal layer to obtain a current collector 2 with a total thickness of 10.5 ⁇ m.
  • the test method is as follows:
  • volume resistivity test the material of the porous conductive layer 12, that is, the above-mentioned 100 parts by weight of polypropylene and 12 parts by weight of carbon nanotubes are added to the extruder, melted and plasticized to obtain the molten raw material of the porous conductive layer 12, and extruded After being cast out of the machine die, it is cooled by a cooling roll at 50°C-130°C, and the obtained cast sheet is cut out for volume resistivity testing.
  • the material selection is as follows:
  • Insulation support layer 11 high-density polyethylene (HDPE) with a melt index of 2.0g/10min, whose melting point is 136°C and low-density polyethylene (LDPE), whose melting point is 125°C, HDPE and LDPE are mixed to obtain a homogeneous mixture, Among them, HDPE accounts for 70% of the total mass of the material of the insulating support layer, while LDPE accounts for 30%.
  • HDPE high-density polyethylene
  • LDPE low-density polyethylene
  • Porous conductive layer 12 a polypropylene with a melt index of 4.0g/10min-6.0g/10min, and adding 6 parts by weight of carbon nanotubes and 10 parts by weight of conductive carbon black to 100 parts by weight of polypropylene, wherein the carbon nanotubes
  • the diameter of the tube is 5 nm-15 nm, the length is 0.1 ⁇ m-2 ⁇ m, and the particle size of the conductive carbon black is 33 nm.
  • Blending melt extrusion step Add the above-mentioned HDPE and LDPE homogeneous mixture into the extruder, melt and plasticize to obtain the insulating support layer 11 molten raw material, mix the above-mentioned 100 parts by weight of polypropylene, 6 parts by weight of carbon nanotubes Add 10 parts by weight of conductive carbon black into the extruder, melt and plasticize the porous conductive layer 12 to obtain molten raw materials, and extrude to the die.
  • the molten raw material of the insulating support layer 11 and the molten raw material of the porous conductive layer 12 pass through the die head with a three-layer co-extrusion structure, and can be extruded to obtain a porous conductive layer 12/insulating support layer 11/porous Conductive layer 12 is a casting film with a three-layer structure, and is cooled by a cooling roll at 50°C-130°C to obtain a cast sheet, wherein the thickness ratio of porous conductive layer 12/insulating support layer 11/porous conductive layer 12 is 2:3 :2.
  • Stretching step Preheat the casting film with the three-layer structure of porous conductive layer 12/insulating support layer 11/porous conductive layer 12 obtained above at 90°C, and the preheated cast sheet enters an oven at 135°C
  • the longitudinal and transverse stretching was carried out in the extrusion direction, and the longitudinal stretching was 4.5 times along the extrusion direction, and the transverse stretching was 2.8 times, so a flexible current collector core layer 1 with a thickness of 9 ⁇ m was obtained.
  • Metal plating step After forming a thin metal layer by alkalinity, a conductive metal layer 21 of 1 ⁇ m is formed on both sides of the flexible current collector core layer 1 by acid plating, and the conductive metal layer 21 is copper metal layer to obtain a current collector 2 with a total thickness of 11 ⁇ m.
  • the test method is as follows:
  • volume resistivity test the material of the porous conductive layer 12, namely the polypropylene of 100 parts by weight, the carbon nanotube of 6 parts by weight and the conductive carbon black of 10 parts by weight are added in the extruder, and the porous conductive layer is obtained after melting and plasticizing.
  • Layer 12 melts the raw material, and casts it through the die head of the extruder, and then cools it through a cooling roll at 50°C-130°C. On the obtained cast sheet, a sample is cut for volume resistivity testing.
  • the material selection is as follows:
  • Insulation support layer 11 high-density polyethylene (HDPE) with a melt index of 2.0g/10min, whose melting point is 136°C and low-density polyethylene (LDPE), whose melting point is 125°C, HDPE and LDPE are mixed to obtain a homogeneous mixture, Among them, HDPE accounts for 75% of the total mass of the material of the insulating support layer, while LDPE accounts for 25%.
  • HDPE high-density polyethylene
  • LDPE low-density polyethylene
  • Porous conductive layer 12 a polypropylene with a melt index of 8.0g/10min-10.0g/10min, and adding 10 parts by weight of zinc oxide whiskers (ZnOw) and acetylene carbon black of 10 parts by weight to 100 parts by weight of polypropylene, wherein, the zinc oxide whisker (ZnOw) has a diameter of 0.05 ⁇ m-1 ⁇ m, a length of 0.5 ⁇ m-3 ⁇ m, and a particle size of acetylene carbon black of 45 nm.
  • Blending and melting extrusion step Add the above-mentioned HDPE and LDPE uniform mixture into the extruder, melt and plasticize to obtain the insulating support layer 11 molten raw material, mix the above-mentioned 100 parts by weight of polypropylene, 10 parts by weight of zinc oxide crystal Whiskers (ZnOw) and 10 parts by weight of acetylene carbon black are added into the extruder, melted and plasticized to obtain the porous conductive layer 12 molten raw material, and extruded to the die.
  • ZnOw zinc oxide crystal Whiskers
  • the molten raw material of the insulating support layer 11 and the molten raw material of the porous conductive layer 12 pass through the die head with a three-layer co-extrusion structure, and can be extruded to obtain a porous conductive layer 12/insulating support layer 11/porous Conductive layer 12 is a casting film with a three-layer structure, and is cooled by a cooling roll at 50°C-130°C to obtain a cast sheet, wherein the thickness ratio of porous conductive layer 12/insulating support layer 11/porous conductive layer 12 is 1:1 :1.
  • Stretching step Preheat the casting film with the three-layer structure of porous conductive layer 12/insulating support layer 11/porous conductive layer 12 obtained above at 90°C, and the preheated cast sheet enters an oven at 135°C
  • the longitudinal and transverse stretching was carried out in the extrusion direction, and the longitudinal stretching was 3.8 times along the extrusion direction, and the transverse stretching was 2 times, so a flexible current collector core layer 1 with a thickness of 15 ⁇ m was obtained.
  • Metal plating step After forming a thin metal layer by alkalinity, a conductive metal layer 21 of 0.5 ⁇ m is formed on both sides of the flexible current collector core layer 1 by acid plating. This conductive metal layer 21 is Copper metal layer to obtain a current collector 2 with a total thickness of 16 ⁇ m.
  • the test method is as follows:
  • volume resistivity test the material of porous conductive layer 12, namely the above-mentioned 100 parts by weight of polypropylene, 10 parts by weight of zinc oxide whiskers (ZnOw) and acetylene carbon black of 10 parts by weight are added in the extruder, melted and plasticized Afterwards, the porous conductive layer 12 is obtained by melting the raw material, which is cast through the die of an extruder and then cooled by a cooling roll at 50° C. to 130° C. On the obtained cast sheet, samples are cut for volume resistivity testing.
  • ZnOw zinc oxide whiskers
  • acetylene carbon black 10 parts by weight
  • the material selection is as follows:
  • Insulating support layer 11 high-density polyethylene (HDPE) with a melt index of 0.7g/10min-1.5g/10min, whose melting point is 126°C-130°C, ethylene-vinyl acetate copolymer (EVA), whose melting point is 86°C and silane-coated ammonium polyphosphate, mixing 90 parts by weight of HDPE, 10 parts by weight of EVA and 40 parts by weight of silane-coated ammonium polyphosphate to obtain a uniform mixture.
  • HDPE high-density polyethylene
  • EVA ethylene-vinyl acetate copolymer
  • Porous conductive layer 12 polypropylene with a melt index of 4.0g/10min-6.0g/10min, and 25 parts by weight of conductive carbon black added to 100 parts by weight of polypropylene, wherein the particle size of conductive carbon black is 33nm.
  • Blending melt extrusion step add the above-mentioned homogeneous mixture of 90 parts by weight of HDPE, 10 parts by weight of EVA and 40 parts by weight of silane-coated ammonium polyphosphate into the extruder, and obtain an insulating support layer after melting and plasticizing 11 Melt the raw material, add 100 parts by weight of polypropylene and 25 parts by weight of conductive carbon black into the extruder, and melt and plasticize to obtain a porous conductive layer. 12 Melt the raw material and extrude it to the die.
  • the molten raw material of the insulating support layer 11 and the molten raw material of the porous conductive layer 12 pass through the die head with a three-layer co-extrusion structure, and can be extruded to obtain a porous conductive layer 12/insulating support layer 11/porous Conductive layer 12 is a casting film with a three-layer structure, and is cooled by a cooling roll at 50°C-130°C to obtain a cast sheet, wherein the thickness ratio of porous conductive layer 12/insulating support layer 11/porous conductive layer 12 is 1:1 :1.
  • Stretching step Preheat the casting film with the three-layer structure of porous conductive layer 12/insulating support layer 11/porous conductive layer 12 obtained above at 90°C, and the preheated cast sheet enters an oven at 135°C
  • the longitudinal and transverse stretching is performed in the extrusion direction, and the longitudinal stretching is 3.8 times along the extrusion direction, and the transverse stretching is 2 times, so a flexible current collector core layer 1 with a thickness of 14 ⁇ m is obtained.
  • Metal plating step After forming a thin metal layer by alkalinity, a conductive metal layer 21 of 1 ⁇ m is formed on both sides of the flexible current collector core layer 1 by acid plating, and the conductive metal layer 21 is copper metal layer to obtain a current collector 2 with a total thickness of 16 ⁇ m.
  • the test method is as follows:
  • volume resistivity test the material of the porous conductive layer 12, that is, the above-mentioned 100 parts by weight of polypropylene and 25 parts by weight of conductive carbon black, is added to the extruder, melted and plasticized to obtain the molten raw material of the porous conductive layer 12, and extruded After being cast out of the machine die, it is cooled by a cooling roll at 50°C-130°C, and the obtained cast sheet is cut out for volume resistivity testing.
  • the material selection is as follows:
  • Insulating support layer 11 high-density polyethylene (HDPE) with a melt index of 0.7g/10min-1.5g/10min, whose melting point is 126°C-130°C, ethylene-vinyl acetate copolymer (EVA), whose melting point is 86°C
  • HDPE high-density polyethylene
  • EVA ethylene-vinyl acetate copolymer
  • ammonium polyphosphate the HDPE of 95 parts by weight, the EVA of 5 parts by weight and the ammonium polyphosphate of 15 parts by weight are mixed to obtain a homogeneous mixture.
  • Porous conductive layer 12 a polypropylene with a melt index of 8.0g/10min-10.0g/10min, and adding 10 parts by weight of zinc oxide whiskers (ZnOw) and acetylene carbon black of 10 parts by weight to 100 parts by weight of polypropylene, wherein, the zinc oxide whisker (ZnOw) has a diameter of 0.05 ⁇ m-1 ⁇ m, a length of 0.5 ⁇ m-3 ⁇ m, and a particle size of acetylene carbon black of 45 nm.
  • melt extrusion step Add the above-mentioned homogeneous mixture of 95 parts by weight of HDPE, 5 parts by weight of EVA and 15 parts by weight of ammonium polyphosphate into the extruder, melt and plasticize to obtain the insulating support layer 11 molten raw material 100 parts by weight of the above-mentioned polypropylene, 10 parts by weight of zinc oxide whiskers (ZnOw) and 10 parts by weight of acetylene carbon black are added to the extruder, melted and plasticized to obtain the molten raw material for the porous conductive layer 12, and extruded to the die.
  • ZnOw zinc oxide whiskers
  • the molten raw material of the insulating support layer 11 and the molten raw material of the porous conductive layer 12 pass through the die head with a three-layer co-extrusion structure, and can be extruded to obtain a porous conductive layer 12/insulating support layer 11/porous Conductive layer 12 is a casting film with a three-layer structure, and is cooled by a cooling roll at 50°C-130°C to obtain a cast sheet, wherein the thickness ratio of porous conductive layer 12/insulating support layer 11/porous conductive layer 12 is 1:1 :1.
  • Stretching step Preheat the casting film with the three-layer structure of porous conductive layer 12/insulating support layer 11/porous conductive layer 12 obtained above at 90°C, and the preheated cast sheet enters an oven at 135°C
  • the longitudinal and transverse stretching is performed in the extrusion direction, and the longitudinal stretching is 3.8 times along the extrusion direction, and the transverse stretching is 2 times, so a flexible current collector core layer 1 with a thickness of 14 ⁇ m is obtained.
  • Metal plating step After forming a thin metal layer by alkalinity, a conductive metal layer 21 of 1 ⁇ m is formed on both sides of the flexible current collector core layer 1 by acid plating, and the conductive metal layer 21 is copper metal layer to obtain a current collector 2 with a total thickness of 16 ⁇ m.
  • the test method is as follows:
  • volume resistivity test the material of porous conductive layer 12, namely the above-mentioned 100 parts by weight of polypropylene, 10 parts by weight of zinc oxide whiskers (ZnOw) and acetylene carbon black of 10 parts by weight are added in the extruder, melted and plasticized Afterwards, the porous conductive layer 12 is obtained by melting the raw material, which is cast through the die of an extruder and then cooled by a cooling roll at 50° C. to 130° C. On the obtained cast sheet, samples are cut for volume resistivity testing.
  • ZnOw zinc oxide whiskers
  • acetylene carbon black 10 parts by weight
  • the material selection is as follows:
  • Insulation support layer 11 high-density polyethylene (HDPE) with a melt index of 2.0g/10min, whose melting point is 136°C and low-density polyethylene (LDPE), whose melting point is 125°C, HDPE and LDPE are mixed to obtain a homogeneous mixture, Among them, HDPE accounts for 60% of the total mass of the material of the insulating support layer, while LDPE accounts for 40%.
  • HDPE high-density polyethylene
  • LDPE low-density polyethylene
  • Porous conductive layer 12 polypropylene with a melt index of 4.0g/10min-6.0g/10min, and 8 parts by weight of acetylene carbon black added to 100 parts by weight of polypropylene, wherein the particle size of acetylene carbon black is 45nm.
  • melt extrusion step add the above-mentioned homogeneous mixture of HDPE and LDPE into the extruder, melt and plasticize to obtain the insulating support layer 11 molten raw material, mix the above-mentioned 100 parts by weight of polypropylene and 8 parts by weight of acetylene carbon The black is added into the extruder, melted and plasticized to obtain the molten raw material of the porous conductive layer 12, and extruded to the die.
  • the molten raw material of the insulating support layer 11 and the molten raw material of the porous conductive layer 12 pass through the die head with a three-layer co-extrusion structure, and can be extruded to obtain a porous conductive layer 12/insulating support layer 11/porous Conductive layer 12 is a casting film with a three-layer structure, and is cooled by a cooling roll at 50°C-130°C to obtain a cast sheet, wherein the thickness ratio of porous conductive layer 12/insulating support layer 11/porous conductive layer 12 is 1:2 :1.
  • Stretching step Preheat the casting film with the three-layer structure of porous conductive layer 12/insulating support layer 11/porous conductive layer 12 obtained above at 90°C, and the preheated cast sheet enters an oven at 135°C
  • the longitudinal and transverse stretching was carried out in the extrusion direction, and the longitudinal stretching was 4 times along the extrusion direction, and the transverse stretching was 2 times, so a flexible current collector core layer 1 with a thickness of 14 ⁇ m was obtained.
  • the volume resistivity of the porous conductive layer on the surface of the flexible current collector core layer is relatively high, so no copper metal layer was electroplated.
  • the test method is as follows:
  • volume resistivity test the material of the porous conductive layer 12, that is, the above-mentioned 100 parts by weight of polypropylene and 8 parts by weight of acetylene carbon black is added in the extruder, and the molten raw material of the porous conductive layer 12 is obtained after melting and plasticizing, and extruded After being cast out of the machine die, it is cooled by a cooling roll at 50°C-130°C, and the obtained cast sheet is cut out for volume resistivity testing.
  • the material selection is as follows:
  • Insulation support layer 11 high-density polyethylene (HDPE) with a melt index of 2.0g/10min, whose melting point is 136°C and low-density polyethylene (LDPE), whose melting point is 125°C, HDPE and LDPE are mixed to obtain a homogeneous mixture, Among them, HDPE accounts for 60% of the total mass of the material of the insulating support layer, while LDPE accounts for 40%.
  • HDPE high-density polyethylene
  • LDPE low-density polyethylene
  • Porous conductive layer 12 a polypropylene with a melt index of 4.0g/10min-6.0g/10min, and adding 10 parts by weight of acetylene carbon black surface-modified by a titanate coupling agent in 100 parts by weight of polypropylene, wherein, The particle size of acetylene carbon black is 45nm.
  • Blending melt extrusion step add the above-mentioned homogeneous mixture of HDPE and LDPE into the extruder, melt and plasticize to obtain the molten raw material of the insulating support layer 11, mix the above-mentioned 100 parts by weight of polypropylene with 8 parts by weight of titanic acid
  • the acetylene carbon black surface-modified by the ester coupling agent is added into the extruder, melted and plasticized to obtain the molten raw material of the porous conductive layer 12, and extruded to the die.
  • the molten raw material of the insulating support layer 11 and the molten raw material of the porous conductive layer 12 pass through the die head with a three-layer co-extrusion structure, and can be extruded to obtain a porous conductive layer 12/insulating support layer 11/porous Conductive layer 12 is a casting film with a three-layer structure, and is cooled by a cooling roll at 50°C-130°C to obtain a cast sheet, wherein the thickness ratio of porous conductive layer 12/insulating support layer 11/porous conductive layer 12 is 1:2 :1.
  • Stretching step Preheat the casting film with the three-layer structure of porous conductive layer 12/insulating support layer 11/porous conductive layer 12 obtained above at 90°C, and the preheated cast sheet enters an oven at 135°C
  • the longitudinal and transverse stretching was carried out in the extrusion direction, and the longitudinal stretching was 4 times along the extrusion direction, and the transverse stretching was 2 times, so a flexible current collector core layer 1 with a thickness of 14 ⁇ m was obtained.
  • Metal plating step After forming a thin metal layer by alkalinity, a conductive metal layer 21 of 1 ⁇ m is formed on both sides of the flexible current collector core layer 1 by acid plating, and the conductive metal layer 21 is copper metal layer to obtain a current collector 2 with a total thickness of 16 ⁇ m.
  • the test method is as follows:
  • volume resistivity test the material of the porous conductive layer 12, that is, the above-mentioned 100 parts by weight of polypropylene and 10 parts by weight of acetylene carbon black, is added to the extruder, and melted and plasticized to obtain the molten raw material of the porous conductive layer 12, and extruded After being cast out of the machine die, it is cooled by a cooling roll at 50°C-130°C, and the obtained cast sheet is cut out for volume resistivity testing.
  • the volume resistivity is the resistance of each unit volume of the porous conductive layer 12 to the current, and is used to represent the electrical properties of the porous conductive layer 12. For this reason, the higher the volume resistivity is, the lower the conductive efficiency is. It can be seen from Table 1 that the volume resistivity of Comparative Example 1-2 is much higher than that of Example 1-9, that is, the conductive efficiency of the porous conductive layer 12 of Comparative Example 1-2 is low.
  • Comparative Example 1-2 it can be seen that the difference between the two lies in the ratio of acetylene carbon black in the porous conductive layer 12, but when the ratio of acetylene carbon black in both is lower than 20%, and the ratio of acetylene carbon black in Comparative Example 2
  • the acetylene carbon black used is surface-modified by a titanate coupling agent. It can be seen that under the modification, the volume resistivity of the conductive layer of Comparative Example 2 compared with Comparative Example 1 decreased by nearly 95%. In Example 1, the proportion of acetylene carbon black is just 20%, and the acetylene carbon black is surface-modified by a titanate coupling agent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

一种柔性集流体芯层(1)及其制备方法、集流体(2)及其制备方法、极片(3)和电池(4)。柔性集流体芯层(1)包括一绝缘支撑层(11)及一多孔导电层(12),多孔导电层(12)设置于绝缘支撑层(11)的两侧,绝缘支撑层(11)的材料包括一第一聚烯烃材料或/及一阻燃聚烯烃材料,第一聚烯烃材料及阻燃聚烯烃材料中的聚烯烃材料的熔点不高于136℃,多孔导电层(12)的材料包括一第二聚烯烃材料与一导电填料。将绝缘支撑层(11)的材料与多孔导电层(12)的材料经混料熔融挤出、流延铸片与拉伸的制程,拉伸制程中,拉伸温度为90℃-140℃,即可获得柔性集流体芯层(1)。

Description

柔性集流体芯层、集流体、极片和电池及其制备方法 技术领域
本发明属于电池领域,特别是涉及一种柔性集流体芯层、集流体、极片和电池及其制备方法。
背景技术
随着人们对锂电池整体能量密度的要求越来越高,金属结构集流体对提升电池的能量密度带来了不利的影响逐渐受到重视,为解决此问题,近年来,以内部为绝缘支撑层及导电层构成芯层结构,且,外层为导电的金属层的柔性集流体为趋势,复合结构的集流体整体质量密度降低,可显着提升电池整体能量密度,同时集流体中采用的聚合物部分柔韧性更好,可有效减轻机械形变与活性物质内部膨胀造成的极片“掉粉”现象。
专利文献(CN111384404 A)中公开了一种超轻导电剂流体,具体公开了一种支撑层采用电阻温度升高而增大的电阻正温度效应的材料,即PCT(Positive Temperature Coefficient)材料,在支撑层PCT材料表面沉积导电增强层石墨烯薄膜,形成石墨烯/高分子PTC薄膜/石墨烯夹层结构,然后采用激光对膜面进行打孔,制备得到高孔隙率的柔性超导电集流体,该方法可以得到表面具有石墨烯导电层的采用激光打孔方式,该方法采用激光打孔的方式获得多孔结构,惟此一方式于大规模快速生产时,将大幅提升成本,且难度相当高。
专利文献(CN 112510210 A)公开了一种复合集流体及其制备方法、二次电池,具体公开了一种在绝缘支撑层上涂布导电高分子层,然后在导电高分子层上镀金属层,得到复合集流体,该方法中导电高分子层涂布于绝缘支撑层表面,采用涂布方式,惟此种方式于两层之间容易有剥离现象,且导电胶成本较高,亦不利于大规模生产使用。
现有的技术中,采用特殊加工手段比如激光打孔等制备多孔柔性集流体,或于柔性聚合物支撑层上涂布增加导电层的技术,皆存在着成本高、层间剥离脱落、工艺复杂或量产难度较高等问题。
发明内容
本发明的第一目的在于提供一种柔性集流体芯层,其以第一聚烯烃材料或/及阻燃聚烯烃材料作为绝缘支撑层的材料,且,使得第一聚烯烃材料的熔点不高于136℃,同时,以第 二聚烯烃材料与导电填料作为多孔导电层的材料,且通过降低柔性集流体芯层中非金属的部分,大幅降低生产成本。
本发明的第二目的在于提供一种集流体,其于前述的柔性集流体芯层的多孔导电层的两侧设置导电金属层,由于多孔导电层表面粗糙度很高,为此,通过其他技术手段增加导电金属层时,将不需要在进行额外的加工,简化制备流程,而可节省时间成本。
本发明的第三目的在于提供一种极片,其于前述的集流体表面形成电极活性材料层,而可制成极片,使其可应用于电池。
本发明的第四目的在于提供一种电池,其以前述的极片制成正极极片与负极极片,并以隔膜及电解液组装成电池,其中,采用的极片中的集流体,其具有柔性集流体芯层,由于柔性集流体芯层中的多孔导电层存在孔洞部分结构的特征,而可以消除电池中活性物质内部膨胀产生的应力,有效延长电池使用寿命,因而更优化上述所提之问题。
本发明的第五目的在于提供一种柔性集流体芯层制备方法,将绝缘支撑层的材料与多孔导电层的材料加入挤出机后,经混料熔融挤出、流延铸片与拉伸制程,而可取得柔性集流体芯层,其中,拉伸温度90-140℃,拉伸比1-5倍,使得两侧的多孔导电层结构依靠此温度下拉伸得到其具有孔洞结构的特征,而提升其表面粗糙度,同时,以模头同步挤出的方式,以解决绝缘支撑层与多孔导电层粘结强度不好的问题。
本发明的第六目的在于提供一种柔性集流体制备方法,其采用前述的步骤取得的柔性集流体芯层,并于其中的多孔导电层的表面形成导电金属层,而可产生集流体。
为达成上述的第一目的,本发明提供一种柔性集流体芯层,包括:
一绝缘支撑层;及
一多孔导电层,设置于所述绝缘支撑层的两侧;
其中,所述绝缘支撑层的材料包括一第一聚烯烃材料或/及一阻燃聚烯烃材料,所述第一聚烯烃材料及所述阻燃聚烯烃材料中的聚烯烃材料的熔点不高于136℃;
其中,所述多孔导电层的材料包括一第二聚烯烃材料与一导电填料。
优选的,所述第一聚烯烃材料及所述第二聚烯烃材料为聚乙烯、聚丙烯、乙烯-醋酸乙烯酯、乙烯-丙烯共聚物、乙烯-辛烯共聚物、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯中的至少种,且,所述第一聚烯烃材料与所述第二聚烯烃材料不同。
优选的,所述聚乙烯为高密度聚乙烯、低密度聚乙烯、线性低密度聚乙烯中的至少一种。
优选的,所述高密度聚乙烯的熔融指数为0.7g/10min-2.0g/10min。
优选的,所述高密度聚乙烯的熔點為125℃-136℃。
优选的,所述低密度聚乙烯的熔點為125℃-130℃。
优选的,所述第二聚烯烃材料为所述聚丙烯。
优选的,所述聚丙烯的熔融指数为4.0g/10min-10.0g/10min。
优选的,所述阻燃聚烯烃材料中填充的阻燃剂为卤系阻燃剂、磷系阻燃剂、磷氮系阻燃剂、无机阻燃剂中的至少一种。
优选的,所述绝缘支撑层的材料还包括乙烯-醋酸乙烯共聚物。
优选的,所述乙烯-醋酸乙烯共聚物的熔點為85℃-90℃。优选的,所述第一聚烯烃材料的熔点不高于130℃。
优选的,所述绝缘支撑层为无孔洞的密实结构。
优选的,所述多孔导电层的孔隙率为10%-80%。
优选的,所述多孔导电层的孔径大小为0.02μm-1μm。
优选的,所述多孔导电层的表面粗糙度为0.025μm-2μm。
优选的,所述导电填料为碳基导电材料或金属氧化物材料中的至少一种。
优选的,所述碳基导电材料为导电炭黑、石墨、石墨烯或碳纳米管中的至少一种。
优选的,所述碳基导电材料经硅烷偶联剂、钛酸酯类偶联剂、铝酸酯类偶联剂中的至少一种进行表面改性。
优选的,所述碳基导电材料为碳纳米管时,其直径5nm-15nm,长度0.1μm-2μm。
优选的,所述金属氧化物材料包括Ti、V、Sn、Zn的金属氧化物或掺杂金属氧化物的Ti、V、Sn、Zn的金属氧化物的至少一种。
优选的,所述金属氧化物材料为TiO2、Ti4O7、V2O3、VO2、SnO、SnO2、掺杂ZnO的晶须或者粉体中的至少一种。
优选的,所述导电填料为颗粒物时,其粒径为10nm-500nm。
优选的,所述导电填料为晶须或纤维时,其直径为0.005μm-2μm,长度为0.05μm-3μm。
优选的,所述导电填料于所述多孔导电层中的质量占比为10%-45%。
优选的,所述柔性集流体芯层的厚度为5μm-20μm。
优选的,所述柔性集流体芯层的密度為5g/m 2-15g/m 2
优选的,所述绝缘支撑层与所述多孔导电层的厚度比为1:0.2-10。
优选的,所述绝缘支撑层与所述多孔导电层采用多层共挤的方式一次挤出成型。
为达成上述的第二目的,本发明提供一种集流体,包括:
权利要求1-22中任一种的所述柔性集流体芯层;及
一导电金属层,设置于所述多孔导电层的两侧。
优选的,所述导电金属层的材料为铝、铜、镍、钛、银、镍铜合金、铝锆合金中的至少一种。
优选的,所述导电金属层的厚度为0.5μm-3μm。
优选的,所述导电金属层的体积电阻率为15Ω·cm-250Ω·cm。
为达成上述的第三目的,本发明提供一种极片,包括:
权利要求23-25中任一权利要求的所述集流体;及
一电极活性材料层,形成于所述集流体的表面。
优选的,所述集流体的厚度为8μm-18μm。
优选的,所述集流体的密度为15g/m 2-35g/m 2。为达成上述的第四目的,本发明提供一种电池,包括:
一正极极片,如权利要求26中的所述极片,且,所述极片具有正极极性;
一负极极片,如权利要求26中的所述极片,且,所述极片具有负极极性;
一隔膜,设置于所述正极极片与所述负极极片之间,以隔离所述正极极片与所述负极极片;及
一电解液,填充于所述正极极片与所述负极极片之间,使得所述正极极片与所述负极极片电性连接。
为达成上述的第五目的,本发明提供一种柔性集流体芯层的制备方法,包括步骤:
一绝缘支撑层材料与一多孔导电层材料分别加入一挤出机中进行熔融塑化,生成并挤出一绝缘支撑层熔融原料与一多孔导电层熔融原料至一模头;
所述绝缘支撑层熔融原料与所述多孔导电层熔融原料经所述模头同步挤出,并经牵引成为一流延膜,所述流延模的结构包含一绝缘支撑层与一多孔导电层,且所述多孔导电层分别设置于所述绝缘支撑层的两侧;及
所述流延膜经一拉伸程序,生成一柔性集流体芯层,其中,所述拉伸程序为纵向和横向拉伸,且,拉伸温度为90℃-140℃,拉伸比为1-5倍。
优选的,所述流延膜经冷却辊冷却得到铸片,且,冷却辊温度为50℃-130℃。
为达成上述的第六目的,本发明提供一种集流体的制备方法,包括步骤:
一绝缘支撑层材料与一多孔导电层材料分别加入一挤出机中进行熔融塑化,生成并挤出 一绝缘支撑层熔融原料与一多孔导电层熔融原料至一模头;
所述绝缘支撑层熔融原料与所述多孔导电层熔融原料经所述模头同步挤出,并经牵引成为一流延膜,所述流延模的结构包含一绝缘支撑层与一多孔导电层,且所述多孔导电层分别设置于所述绝缘支撑层的两侧;
所述流延膜经一拉伸程序,生成一柔性集流体芯层,其中,所述拉伸程序为纵向和横向拉伸,且,拉伸温度为90℃-140℃,拉伸比为1-5倍;及
经机械辊轧、粘结、气相沉积法或化学镀的制程于所述柔性集流体芯层两侧的多孔导电层的表面分别形成一导电金属层,产生一集流体。
优选的,所述化学镀包括碱镀、酸镀中的至少一种。
优选的,所述流延膜经冷却辊冷却得到铸片,且,冷却辊温度为50℃-130℃。本发明的有益效果在于以多层挤出技术,将绝缘支撑层材料与多孔导电层同步挤出,使得柔性集流体芯层为整体结构输出,从而提升柔性集流体芯层的强度,而增加集流体的使用寿命,再者,本发明提供的柔性集流体芯层的制备方法,仅需要经混料熔融挤出、流延铸片与拉伸的制程,即可获得柔性集流体芯层,即一次性加工成型,简化制程,而大幅降低生产成本,且于拉伸制程中,由于拉伸温度为90℃-140℃,其采用的第一聚烯烃材料的熔点必须不高于136℃,此时,在进行拉伸程序时,才可以在多孔导电层于表面产生空隙的同时,使得内部的绝缘支撑层为密实结构,以保证生产过程中,绝缘支撑层可具有良好的支撑力,而降低破膜的现象。
附图说明
图1为本发明一实施例的柔性集流体芯层的结构示意图;
图2为本发明一实施例的集流体的结构示意图;
图3为本发明一实施例的极片的结构示意图;
图4为本发明一实施例的电池的结构示意图;
图5为本发明一实施例的柔性集流体芯层的制备方法流程图;及
图6为本发明一实施例的集流体的制备方法流程图。
具体实施方式
为让本发明上述及/或其他目的、功效、特征更明显易懂,下文特举较佳实施方式,作详细说明于下:
请参阅图1,其为本发明之一实施例的柔性集流体芯层的结构示意图。如图所示,本发明的柔性集流体芯层1包括绝缘支撑层11与多孔导电层12,且,多孔导电层12设置于绝缘支撑层11的两侧,并详细说明如下:
绝缘支撑层11的材料包括第一聚烯烃材料或/及阻燃聚烯烃材料,且,第一聚烯烃材料及阻燃聚烯烃材料中的聚烯烃材料的熔点不高于136℃,于较佳实施例中,第一聚烯烃材料及阻燃聚烯烃材料中的聚烯烃材料的熔点更可以不高于130℃,使得绝缘支撑层11为无孔洞的密实结构,于一实施例中,绝缘支撑层11的材料可以只使用第一聚烯烃材料,或者同时采用第一聚烯烃材料及阻燃聚烯烃材料的共混物,且,于一实施例中,绝缘支撑层11的材料更可以包括乙烯-醋酸乙烯共聚物材料,但不在此限。
其中,第一聚烯烃材料可为聚乙烯、聚丙烯、乙烯-醋酸乙烯酯、乙烯-丙烯共聚物、乙烯-辛烯共聚物、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯中的至少一种,且,优选的,其聚乙烯为高密度聚乙烯、低密度聚乙烯、线性低密度聚乙烯中的至少一种,但不在此限。
其中,阻燃聚烯烃材料中填充的阻燃剂为卤系阻燃剂、磷系阻燃剂、磷氮系阻燃剂、无机阻燃剂中的至少一种,但不在此限,卤系阻燃剂可分解产生卤化氢(HX),使得卤化氢消除高分子材料燃烧反应产生活性自由基,例如卤化氢(HX)与火焰中链反应活性物质作用,使得上述游离基浓度降低,从而减缓或终止燃烧的链式反应,达到阻燃的目的;磷系阻燃剂的作用原理在于当磷系阻燃剂受热时,能产生结构更趋稳定的交联状固体物质或碳化层,而碳化层的形成能进一步阻止聚合物热解,且,亦能阻止其内部的热分解产生物进入气相参与燃烧过程;磷氮系阻燃剂中的磷元素能促进棉纤维脱水成碳,而氮元素对提高磷元素的阻燃性能具有协同效率;及无机阻燃剂主要是把具有本质阻燃性的无机元素以单质或化合物的形式添加到被阻燃的基材中,以物理分散状态与高聚物充分混合,在气相或凝聚相通过化学或物理变化起到阻燃作用。
于一实施例中,多孔导电层12的孔洞结构中,其孔隙率为10%-80%,且,孔径大小为0.02μm-1μm,同时,其表面粗糙度为0.025μm-2μm,但不在此限,其中,多孔导电层12的材料包括第二聚烯烃材料与导电填料。
其中,第二聚烯烃材料可为聚乙烯、聚丙烯、乙烯-醋酸乙烯酯、乙烯-丙烯共聚物、乙烯-辛烯共聚物、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯中的至少一种,于较佳实施例中,第二聚烯烃材料可采用聚丙烯,且,第一聚烯烃材料与第二聚烯烃材料不同,但不在此限。
其中,导电填料为碳基导电材料或金属氧化物材料中的至少一种,且,导电填料于多孔导电层12中的质量占比为10%-45%,此一质量占比范围相当重要,导电填料的质量占比若超出45%将影响挤出加工的过程,使得多孔导电层12无法拉伸成孔,反之,导电填料的质量占比若低于10%则无法形成导电网络。
于一实施例,碳基导电材料可经硅烷偶联剂、钛酸酯类偶联剂、铝酸酯类偶联剂中的至少一种进行表面改性,此处添加的偶联剂作用在于当碳基导电材料比例较少时,即碳基导电材料于多孔导电层12中的质量占比不大于20%时,添加的偶联剂能促进碳基导电材料在聚合物中的分散效果,反之,当碳基导电材料于多孔导电层12中的质量占比超过20%时,填料颗粒之间已经很容易构成导电网络,因此碳基导电材料的表面改性与否,其作用效果差异并不大,同时,改性与否亦不影响芯层的其他性能,但不在此限。
于一实施例中,碳基导电材料为导电炭黑、石墨、石墨烯或碳纳米管中的至少一种,又,碳基导电材料为碳纳米管时,其直径为5nm-15nm,及长度为0.1μm-2μm,但不在此限,而金属氧化物材料包括Ti、V、Sn、Zn的金属氧化物或掺杂金属氧化物的Ti、V、Sn、Zn的金属氧化物的至少一种,于一实施例中,金属氧化物材料为TiO2、Ti4O7、V2O3、VO2、SnO、SnO2、掺杂ZnO的晶须或者粉体中的至少一种,其中,当导电填料为颗粒物时,其粒径为10nm-500nm,或当导电填料为晶须或纤维时,其直径为0.005μm-2μm,及长度为0.05μm-3μm。
于一实施例中,绝缘支撑层11与多孔导电层12的厚度比为1:0.2-10,且,所述绝缘支撑层与所述多孔导电层采用多层共挤的方式一次挤出成型,但不在此限。
请参阅图2,其为本发明之一实施例的集流体的结构示意图。如图所示,本发明的集流体2包括前述的柔性集流体芯层1及导电金属层21,且,导电金属层21设置于多孔导电层11的两侧,其中,导电金属层21的材料为铝、铜、镍、钛、银、镍铜合金、铝锆合金中的至少一种,且,导电金属层21的厚度为0.5μm-3μm,但不在此限。
请参阅图3,其为本发明之一实施例的极片的结构示意图。如图所示,本发明的极片3包括前述的集流体2及电极活性材料层31,其中,电极活性材料层31形成于集流体2的表面。
请参阅图4,其为本发明之一实施例的电池的结构示意图。如图所示,本发明的电池4包括正极极片41、负极极片42、隔膜43及电解液44,其中,隔膜43设置于正极极片41与负极极片42之间,而电解液44则填充于正极极片41与负极极片42之间,使得正极极片41与负极极片42电性连接,并详细说明如下:
于一实施中,正极极片41为前述的极片3,且,具有正极极性,而负极极片42同样为前述的极片3,且,具有负极极性,但不在此限。
于一实施中,隔膜43为具有微孔性及多孔性的薄膜,其材质以PP、PE为主,主要功能是关闭或阻断通道,而可隔离正极极片41与负极极片42,以防止短路,但不在此限。
于一实施中,电解液44主要功能为传递整个电化学反应离子。
请参阅图5,其为本发明之一实施例的柔性集流体芯层的制备方法流程图。如图所示,本发明柔性集流体芯层的制备方法,包括步骤如下:
步骤S1:一绝缘支撑层材料与一多孔导电层材料分别加入一挤出机中进行熔融塑化,生成并挤出一绝缘支撑层熔融原料与一多孔导电层熔融原料至一模头;
步骤S2:所述绝缘支撑层熔融原料与所述多孔导电层熔融原料经所述模头同步挤出,并经牵引成为一流延膜,所述流延模的结构包含一绝缘支撑层与一多孔导电层,且所述多孔导电层分别设置于所述绝缘支撑层的两侧;及
步骤S3:所述流延膜经一拉伸程序,生成一柔性集流体芯层,其中,所述拉伸程序为纵向和横向拉伸,且,拉伸温度为90℃-140℃,拉伸比为1-5倍。
如步骤S1所示,其为混料熔融挤出步骤,于挤出机分别加入绝缘支撑层材料与多孔导电层材料进行熔融塑化,而可产生绝缘支撑层熔融原料与多孔导电层熔融原料挤出至模头。
如步骤S2所示,其为流延铸片步骤,绝缘支撑层熔融原料与多孔导电层熔融原料通过模头同步挤出,且经过牵引成为流延膜,此时,流延膜将形成三层结构,其顺序依序为多孔导电层12/绝缘支撑层11/多孔导电层12,即多孔导电层12分别设置于绝缘支撑层11的两侧,于一实施例中,流延膜可经过50℃-130℃的冷却辊冷却得到铸片,但不在此限。
如步骤S3所示,其为拉伸步骤,于拉伸温度为90℃-140℃,拉伸比为1-5倍的情况下,将流延膜进行纵向和横向拉伸,于高温拉伸后进行热定型,而可得到柔性集流体芯层1,为此,于该拉伸温度下,绝缘支撑层11的第一聚烯烃材料熔点必须不高于135℃,较佳的实施例中,绝缘支撑层的第一聚烯烃材料熔点不高于130℃,如此一来,从而保证了绝缘支撑层11密实的结构,且,在拉伸下,使得多孔导电层12的表面具有孔洞结构,即柔性集流体芯层1的表面将具有孔洞结构。
请参阅图6,其为本发明之一实施例的集流体的制备方法流程图。如图所示,本发明集流体的制备方法,其步骤与柔性集流体芯层的制备方法的步骤差异在于,更包含步骤S4。
步骤S4:经机械辊轧、粘结、气相沉积法或化学镀的制程于所述柔性集流体芯层两侧的多孔导电层的表面分别形成一导电金属层,产生一集流体。
如步骤S4所示,其为镀金属层步骤,通过碱度、酸镀或者两种工艺结合,在柔性集流体芯层1的两侧表面形成0.5μm-3μm的导电金属层21,得到最终的集流体2。
为测试本发明的柔性集流体芯层1的相关数据,提供以下测试方法:
1.体积电阻率测量:
参考公式:
Figure PCTCN2022087607-appb-000001
其中,ρv为试样的体积电阻率,单位为Ω·cm;
Rv为试样的体积电阻,单位为Ω;
S为垂直电流方向的试样横截面积,单位为cm2;及
d为平行电流方向的试样长度,单位为cm。
由于柔性集流体芯层1的多孔导电层12设置于绝缘支撑层11的两侧,因此不能对柔性集流体芯层1直接进行体积电阻率测试,为方便检测多孔导电层12的体积电阻率,需要对每个实施例中的多孔导电层12的材料进行单独挤出后,收集铸片,进而进裁切样品进行检测。
2.多孔导电层12的整体孔径大小与孔隙率测试方法:
于一实施例中,可采用压水法测试多孔导电层12的孔径和孔隙率,取得其厚度后,裁取特定尺寸质量的多孔导电层12,放入压水仪中,测试压力从0psi-1500psi逐渐升高,水在压力的作用下,被挤入孔道内,挤入不同孔径内的水对应的压力遵循Washburn方程,从而可以计算一系列的孔径孔与孔隙率,但不在此限。
为进一步了解本发明,下面结合具体实施方式对本发明的优选方案进行描述,以利于本领域技术人员理解本发明。
实施例1
材料选择如下:
绝缘支撑层11:熔融指数为2.0g/10min的高密度聚乙烯(HDPE),其熔点为136℃与低密度聚乙烯(LDPE),其熔点为125℃,将HDPE与LDPE混合得到均匀混合物,其中HDPE占绝缘支撑层的材料总质量的60%,而LDPE则占比40%。
多孔导电层12:熔融指数为4.0g/10min-6.0g/10min的聚丙烯,并于100重量份的聚丙烯添加20重量份经钛酸酯偶联剂表面改性的乙炔炭黑,其中,乙炔炭黑粒径45nm。
制备步骤如下:
1.混料熔融挤出步骤:将上述HDPE与LDPE均匀混合物加入挤出机中,熔融塑化后得到绝缘支撑层11熔融原料,将上述100重量份的聚丙烯与20重量份经钛酸酯偶联剂表面改 性的乙炔炭黑加入挤出机中,熔融塑化后得到多孔导电层12熔融原料,且挤出至模头。
2.流延铸片步骤:绝缘支撑层11熔融原料与多孔导电层12熔融原料通过具有三层共挤结构的模头中,而可挤出得到具有多孔导电层12/绝缘支撑层11/多孔导电层12三层结构的流延膜,并经50℃-130℃的冷却辊冷却得到铸片,其中,多孔导电层12/绝缘支撑层11/多孔导电层12层的厚度比为1:2:1。
3.拉伸步骤:将上述得到的多孔导电层12/绝缘支撑层11/多孔导电层12三层结构的流延膜,于90℃进行预热,预热后的铸片进入135℃的烘箱中进行纵向与横向拉伸,沿挤出方向纵向拉伸4倍,且,横向拉伸2倍,因此得到厚度为14μm的柔性集流体芯层1。
4.镀金属层步骤:通过碱度形成一层薄金属层后,再通过酸镀在柔性集流体芯层1的两侧表面均形成1μm的导电金属层21,此一导电金属层21为铜金属层,得到总厚度为16μm的集流体2。
测试方法如下:
体积电阻率测试:将多孔导电层12的材料,即100重量份的聚丙烯与20重量份的乙炔炭黑加入挤出机中,熔融塑化后得到多孔导电层12熔融原料,并经挤出机模头流延后经50℃-130℃的冷却辊冷却,取得的铸片上,裁样品进行体积电阻率测试。
实施例2
材料选择如下:
绝缘支撑层11:熔融指数为1.0g/10min的高密度聚乙烯(HDPE),其熔点为136℃与低密度聚乙烯(LDPE),其熔点为125℃,将HDPE与LDPE混合得到均匀混合物,其中HDPE占绝缘支撑层的材料总质量的70%,而LDPE则占比30%。
多孔导电层12:熔融指数为6.0g/10min-8.0g/10min的聚丙烯,并于100重量份的聚丙烯添加35重量份经钛酸酯偶联剂表面改性的乙炔炭黑,其中,乙炔炭黑粒径45nm。
制备步骤如下:
1.混料熔融挤出步骤:将上述HDPE与LDPE均匀混合物加入挤出机中,熔融塑化后得到绝缘支撑层11熔融原料,将上述100重量份的聚丙烯与35重量份经钛酸酯偶联剂表面改性的乙炔炭黑加入挤出机中,熔融塑化后得到多孔导电层12熔融原料,且挤出至模头。
2.流延铸片步骤:绝缘支撑层11熔融原料与多孔导电层12熔融原料通过具有三层共挤结构的模头中,而可挤出得到具有多孔导电层12/绝缘支撑层11/多孔导电层12三层结构的流延膜,并经50℃-130℃的冷却辊冷却得到铸片,其中,多孔导电层12/绝缘支撑层11/多孔导电层12层的厚度比为1:2:1。
3.拉伸步骤:将上述得到的多孔导电层12/绝缘支撑层11/多孔导电层12三层结构的流延膜,于90℃进行预热,预热后的铸片进入135℃的烘箱中进行纵向与横向拉伸,沿挤出方向纵向拉伸4倍,且,横向拉伸2倍,因此得到厚度为14μm的柔性集流体芯层1。
4.镀金属层步骤:通过碱度形成一层薄金属层后,再通过酸镀在柔性集流体芯层1的两侧表面均形成1μm的导电金属层21,此一导电金属层21为铜金属层,得到总厚度为16μm的集流体2。
测试方法如下:
体积电阻率测试:将多孔导电层12的材料,即将上述100重量份的聚丙烯与35重量份的乙炔炭黑加入挤出机中,熔融塑化后得到多孔导电层12熔融原料,并经挤出机模头流延后经50℃-130℃的冷却辊冷却,取得的铸片上,裁样品进行体积电阻率测试。
实施例3
材料选择如下:
绝缘支撑层11:熔融指数为0.7g/10min-1.5g/10min的高密度聚乙烯(HDPE),其熔点为126℃-130℃。
多孔导电层12:熔融指数为8.0g/10min-10.0g/10min的聚丙烯,并于100重量份的聚丙烯添加45重量份的的乙炔炭黑,其中,乙炔炭黑粒径45nm。
1.混料熔融挤出步骤:将上述HDPE加入挤出机中,熔融塑化后得到绝缘支撑层11熔融原料,将上述100重量份的聚丙烯与45重量份的乙炔炭黑加入挤出机中,熔融塑化后得到多孔导电层12熔融原料,且挤出至模头。
2.流延铸片步骤:绝缘支撑层11熔融原料与多孔导电层12熔融原料通过具有三层共挤结构的模头中,而可挤出得到具有多孔导电层12/绝缘支撑层11/多孔导电层12三层结构的流延膜,并经50℃-130℃的冷却辊冷却得到铸片,其中,多孔导电层12/绝缘支撑层11/多孔导电层12层的厚度比为1:2:1。
3.拉伸步骤:将上述得到的多孔导电层12/绝缘支撑层11/多孔导电层12三层结构的流延膜,于90℃进行预热,预热后的铸片进入135℃的烘箱中进行纵向与横向拉伸,沿挤出方向纵向拉伸4倍,且,横向拉伸2倍,因此得到厚度为14μm的柔性集流体芯层1。
4.镀金属层步骤:通过碱度形成一层薄金属层后,再通过酸镀在柔性集流体芯层1两侧表面均形成1μm的导电金属层21,此一导电金属层21为铜金属层,得到总厚度为16μm的集流体2。
测试方法如下:
体积电阻率测试:将多孔导电层12的材料,即将上述100重量份的聚丙烯与45重量份的乙炔炭黑加入挤出机中,熔融塑化后得到多孔导电层12熔融原料,并经挤出机模头流延后经50℃-130℃的冷却辊冷却,取得的铸片上,裁样品进行体积电阻率测试。
实施例4
材料选择如下:
绝缘支撑层11:熔融指数为2.0g/10min的高密度聚乙烯(HDPE),其熔点为136℃与低密度聚乙烯(LDPE),其熔点为125℃,将HDPE与LDPE混合得到均匀混合物,其中,HDPE占绝缘支撑层的材料总质量的60%,LDPE则占比为40%。
多孔导电层12:熔融指数为4.0g/10min-6.0g/10min的聚丙烯,并于100重量份的聚丙烯添加25重量份的导电炭黑,其中,导电炭黑粒径为33nm。
制备步骤如下:
1.混料熔融挤出步骤:将上述HDPE与LDPE EVA均匀混合物加入挤出机中,熔融塑化后得到绝缘支撑层11熔融原料,将上述100重量份的聚丙烯与25重量份的导电炭黑加入挤出机中,熔融塑化后得到多孔导电层12熔融原料,且挤出至模头。
2.流延铸片步骤:绝缘支撑层11熔融原料与多孔导电层12熔融原料通过具有三层共挤结构的模头中,而可挤出得到具有多孔导电层12/绝缘支撑层11/多孔导电层12三层结构的流延膜,并经50℃-130℃的冷却辊冷却得到铸片,其中,多孔导电层12/绝缘支撑层11/多孔导电层12层的厚度比为1:2:1。
3.拉伸步骤:将上述得到的多孔导电层12/绝缘支撑层11/多孔导电层12三层结构的流延膜,于90℃进行预热,预热后的铸片进入135℃的烘箱中进行纵向与横向拉伸,沿挤出方向纵向拉伸4.2倍,且,横向拉伸2.2倍,因此得到厚度为12μm的柔性集流体芯层1。
4.镀金属层步骤:通过酸镀在柔性集流体芯层1两侧表面均形成1μm的导电金属层21,此一导电金属层21为铜金属层,得到总厚度为14μm的集流体2。
测试方法如下:
体积电阻率测试:将多孔导电层12的材料,即将上述100重量份的聚丙烯与25重量份的导电炭黑加入挤出机中,熔融塑化后得到多孔导电层12熔融原料,并经挤出机模头流延后经50℃-130℃的冷却辊冷却,取得的铸片上,裁样品进行体积电阻率测试。
实施例5
材料选择如下:
绝缘支撑层11:熔融指数为2.0g/10min的高密度聚乙烯(HDPE),其熔点为136℃与低 密度聚乙烯(LDPE),其熔点为126℃,及乙烯-醋酸乙烯共聚物(EVA),其熔点为86℃,将HDPE、LDPE与EVA混合得到均匀混合物,其中HDPE占绝缘支撑层的材料总质量的70%,LDPE则占比为20%,及EVA则占比为10%。
多孔导电层12:熔融指数为4.0g/10min-6.0g/10min的聚丙烯,并于100重量份的聚丙烯添加12重量份的碳纳米管,其中,碳纳米管直径为5nm-15nm,长度为0.1μm-2μm。
制备步骤如下:
1.混料熔融挤出步骤:将上述HDPE、LDPE及EVA均匀混合物加入挤出机中,熔融塑化后得到绝缘支撑层11熔融原料,将上述100重量份的聚丙烯与12重量份的碳纳米管加入挤出机中,熔融塑化后得到多孔导电层12熔融原料,且挤出至模头。
2.流延铸片步骤:绝缘支撑层11熔融原料与多孔导电层12熔融原料通过具有三层共挤结构的模头中,而可挤出得到具有多孔导电层12/绝缘支撑层11/多孔导电层12三层结构的流延膜,并经50℃-130℃的冷却辊冷却得到铸片,其中,多孔导电层12/绝缘支撑层11/多孔导电层12层的厚度比为1:1:1。
3.拉伸步骤:将上述得到的多孔导电层12/绝缘支撑层11/多孔导电层12三层结构的流延膜,于90℃进行预热,预热后的铸片进入135℃的烘箱中进行纵向与横向拉伸,沿挤出方向纵向拉伸4.5倍,且,横向拉伸2.8倍,因此得到厚度为9μm的柔性集流体芯层1。
4.镀金属层步骤:通过碱度形成一层薄金属层后,再通过酸镀在柔性集流体芯层1的两侧表面均形成0.75μm的导电金属层21,此一导电金属层21为铜金属层,得到总厚度为10.5μm的集流体2。
测试方法如下:
体积电阻率测试:将多孔导电层12的材料,即将上述100重量份的聚丙烯与12重量份的碳纳米管加入挤出机中,熔融塑化后得到多孔导电层12熔融原料,并经挤出机模头流延后经50℃-130℃的冷却辊冷却,取得的铸片上,裁样品进行体积电阻率测试。
实施例6
材料选择如下:
绝缘支撑层11:熔融指数为2.0g/10min的高密度聚乙烯(HDPE),其熔点为136℃与低密度聚乙烯(LDPE),其熔点为125℃,将HDPE与LDPE混合得到均匀混合物,其中HDPE占绝缘支撑层的材料总质量的70%,而LDPE则占比30%。
多孔导电层12:熔融指数为4.0g/10min-6.0g/10min的聚丙烯,并于100重量份的聚丙烯添加6重量份的碳纳米管与10重量份的导电炭黑,其中,碳纳米管直径为5nm-15nm, 长度为0.1μm-2μm,及导电炭黑粒径为33nm。
制备步骤如下:
1.混料熔融挤出步骤:将上述HDPE与LDPE均匀混合物加入挤出机中,熔融塑化后得到绝缘支撑层11熔融原料,将上述100重量份的聚丙烯、6重量份的碳纳米管与10重量份的导电炭黑加入挤出机中,熔融塑化后得到多孔导电层12熔融原料,且挤出至模头。
2.流延铸片步骤:绝缘支撑层11熔融原料与多孔导电层12熔融原料通过具有三层共挤结构的模头中,而可挤出得到具有多孔导电层12/绝缘支撑层11/多孔导电层12三层结构的流延膜,并经50℃-130℃的冷却辊冷却得到铸片,其中,多孔导电层12/绝缘支撑层11/多孔导电层12层的厚度比为2:3:2。
3.拉伸步骤:将上述得到的多孔导电层12/绝缘支撑层11/多孔导电层12三层结构的流延膜,于90℃进行预热,预热后的铸片进入135℃的烘箱中进行纵向与横向拉伸,沿挤出方向纵向拉伸4.5倍,且,横向拉伸2.8倍,因此得到厚度为9μm的柔性集流体芯层1。
4.镀金属层步骤:通过碱度形成一层薄金属层后,再通过酸镀在柔性集流体芯层1的两侧表面均形成1μm的导电金属层21,此一导电金属层21为铜金属层,得到总厚度为11μm的集流体2。
测试方法如下:
体积电阻率测试:将多孔导电层12的材料,即将上述100重量份的聚丙烯、6重量份的碳纳米管与10重量份的导电炭黑加入挤出机中,熔融塑化后得到多孔导电层12熔融原料,并经挤出机模头流延后经50℃-130℃的冷却辊冷却,取得的铸片上,裁样品进行体积电阻率测试。
实施例7
材料选择如下:
绝缘支撑层11:熔融指数为2.0g/10min的高密度聚乙烯(HDPE),其熔点为136℃与低密度聚乙烯(LDPE),其熔点为125℃,将HDPE与LDPE混合得到均匀混合物,其中HDPE占绝缘支撑层的材料总质量的75%,而LDPE则占比25%。
多孔导电层12:熔融指数为8.0g/10min-10.0g/10min的聚丙烯,并于100重量份的聚丙烯添加10重量份的氧化锌晶须(ZnOw)与10重量份的乙炔炭黑,其中,氧化锌晶须(ZnOw)直径为0.05μm-1μm,长度为0.5μm-3μm,及乙炔炭黑粒径为45nm。
制备步骤如下:
1.混料熔融挤出步骤:将上述HDPE与LDPE均匀混合物加入挤出机中,熔融塑化后得 到绝缘支撑层11熔融原料,将上述100重量份的聚丙烯、10重量份的氧化锌晶须(ZnOw)与10重量份的乙炔炭黑加入挤出机中,熔融塑化后得到多孔导电层12熔融原料,且挤出至模头。
2.流延铸片步骤:绝缘支撑层11熔融原料与多孔导电层12熔融原料通过具有三层共挤结构的模头中,而可挤出得到具有多孔导电层12/绝缘支撑层11/多孔导电层12三层结构的流延膜,并经50℃-130℃的冷却辊冷却得到铸片,其中,多孔导电层12/绝缘支撑层11/多孔导电层12层的厚度比为1:1:1。
3.拉伸步骤:将上述得到的多孔导电层12/绝缘支撑层11/多孔导电层12三层结构的流延膜,于90℃进行预热,预热后的铸片进入135℃的烘箱中进行纵向与横向拉伸,沿挤出方向纵向拉伸3.8倍,且,横向拉伸2倍,因此得到厚度为15μm的柔性集流体芯层1。
4.镀金属层步骤:通过碱度形成一层薄金属层后,再通过酸镀在柔性集流体芯层1的两侧表面均形成0.5μm的导电金属层21,此一导电金属层21为铜金属层,得到总厚度为16μm的集流体2。
测试方法如下:
体积电阻率测试:将多孔导电层12的材料,即将上述100重量份的聚丙烯、10重量份的氧化锌晶须(ZnOw)与10重量份的乙炔炭黑加入挤出机中,熔融塑化后得到多孔导电层12熔融原料,并经挤出机模头流延后经50℃-130℃的冷却辊冷却,取得的铸片上,裁样品进行体积电阻率测试。
实施例8
材料选择如下:
绝缘支撑层11:熔融指数为0.7g/10min-1.5g/10min的高密度聚乙烯(HDPE),其熔点为126℃-130℃、乙烯-醋酸乙烯共聚物(EVA),其熔点为86℃及硅烷包覆聚磷酸铵,将90重量份的HDPE、10重量份的EVA及40重量份的硅烷包覆聚磷酸铵混合得到均匀混合物。
多孔导电层12:熔融指数为4.0g/10min-6.0g/10min的聚丙烯,并于100重量份的聚丙烯添加25重量份的导电炭黑,其中,导电炭黑粒径为33nm。
制备步骤如下:
1.混料熔融挤出步骤:将上述将90重量份的HDPE、10重量份的EVA及40重量份的硅烷包覆聚磷酸铵均匀混合物加入挤出机中,熔融塑化后得到绝缘支撑层11熔融原料,将上述100重量份的聚丙烯、25重量份的导电炭黑加入挤出机中,熔融塑化后得到多孔导电层12熔融原料,且挤出至模头。
2.流延铸片步骤:绝缘支撑层11熔融原料与多孔导电层12熔融原料通过具有三层共挤结构的模头中,而可挤出得到具有多孔导电层12/绝缘支撑层11/多孔导电层12三层结构的流延膜,并经50℃-130℃的冷却辊冷却得到铸片,其中,多孔导电层12/绝缘支撑层11/多孔导电层12层的厚度比为1:1:1。
3.拉伸步骤:将上述得到的多孔导电层12/绝缘支撑层11/多孔导电层12三层结构的流延膜,于90℃进行预热,预热后的铸片进入135℃的烘箱中进行纵向与横向拉伸,沿挤出方向纵向拉伸3.8倍,且,横向拉伸2倍,因此得到厚度为14μm的柔性集流体芯层1。
4.镀金属层步骤:通过碱度形成一层薄金属层后,再通过酸镀在柔性集流体芯层1的两侧表面均形成1μm的导电金属层21,此一导电金属层21为铜金属层,得到总厚度为16μm的集流体2。
测试方法如下:
体积电阻率测试:将多孔导电层12的材料,即将上述100重量份的聚丙烯与25重量份的导电炭黑加入挤出机中,熔融塑化后得到多孔导电层12熔融原料,并经挤出机模头流延后经50℃-130℃的冷却辊冷却,取得的铸片上,裁样品进行体积电阻率测试。
实施例9
材料选择如下:
绝缘支撑层11:熔融指数为0.7g/10min-1.5g/10min的高密度聚乙烯(HDPE),其熔点为126℃-130℃、乙烯-醋酸乙烯共聚物(EVA),其熔点为86℃及聚磷酸铵,将95重量份的HDPE、5重量份的EVA及15重量份的聚磷酸铵混合得到均匀混合物。
多孔导电层12:熔融指数为8.0g/10min-10.0g/10min的聚丙烯,并于100重量份的聚丙烯添加10重量份的氧化锌晶须(ZnOw)与10重量份的乙炔炭黑,其中,氧化锌晶须(ZnOw)直径为0.05μm-1μm,长度为0.5μm-3μm,及乙炔炭黑粒径为45nm。
制备步骤如下:
1.混料熔融挤出步骤:将上述将95重量份的HDPE、5重量份的EVA及15重量份的聚磷酸铵均匀混合物加入挤出机中,熔融塑化后得到绝缘支撑层11熔融原料,将上述100重量份的聚丙烯、10重量份的氧化锌晶须(ZnOw)与10重量份的乙炔炭黑加入挤出机中,熔融塑化后得到多孔导电层12熔融原料,且挤出至模头。
2.流延铸片步骤:绝缘支撑层11熔融原料与多孔导电层12熔融原料通过具有三层共挤结构的模头中,而可挤出得到具有多孔导电层12/绝缘支撑层11/多孔导电层12三层结构的流延膜,并经50℃-130℃的冷却辊冷却得到铸片,其中,多孔导电层12/绝缘支撑层11/ 多孔导电层12层的厚度比为1:1:1。
3.拉伸步骤:将上述得到的多孔导电层12/绝缘支撑层11/多孔导电层12三层结构的流延膜,于90℃进行预热,预热后的铸片进入135℃的烘箱中进行纵向与横向拉伸,沿挤出方向纵向拉伸3.8倍,且,横向拉伸2倍,因此得到厚度为14μm的柔性集流体芯层1。
4.镀金属层步骤:通过碱度形成一层薄金属层后,再通过酸镀在柔性集流体芯层1的两侧表面均形成1μm的导电金属层21,此一导电金属层21为铜金属层,得到总厚度为16μm的集流体2。
测试方法如下:
体积电阻率测试:将多孔导电层12的材料,即将上述100重量份的聚丙烯、10重量份的氧化锌晶须(ZnOw)与10重量份的乙炔炭黑加入挤出机中,熔融塑化后得到多孔导电层12熔融原料,并经挤出机模头流延后经50℃-130℃的冷却辊冷却,取得的铸片上,裁样品进行体积电阻率测试。
在实施例1-9的相同材料与制程中,倘若绝缘支撑层11的第一聚烯烃材料及阻燃聚烯烃材料中的聚烯烃材料的熔点高于136℃时,则于拉伸步骤时,容易导致破膜现象,故其熔点必须在不高于136℃的范围。
对比例1
材料选择如下:
绝缘支撑层11:熔融指数为2.0g/10min的高密度聚乙烯(HDPE),其熔点为136℃与低密度聚乙烯(LDPE),其熔点为125℃,将HDPE与LDPE混合得到均匀混合物,其中HDPE占绝缘支撑层的材料总质量的60%,而LDPE则占比40%。
多孔导电层12:熔融指数为4.0g/10min-6.0g/10min的聚丙烯,并于100重量份的聚丙烯添加8重量份的乙炔炭黑,其中,乙炔炭黑粒径为45nm。
制备步骤如下:
1.混料熔融挤出步骤:将上述将HDPE与LDPE均匀混合物加入挤出机中,熔融塑化后得到绝缘支撑层11熔融原料,将上述100重量份的聚丙烯与8重量份的乙炔炭黑加入挤出机中,熔融塑化后得到多孔导电层12熔融原料,且挤出至模头。
2.流延铸片步骤:绝缘支撑层11熔融原料与多孔导电层12熔融原料通过具有三层共挤结构的模头中,而可挤出得到具有多孔导电层12/绝缘支撑层11/多孔导电层12三层结构的流延膜,并经50℃-130℃的冷却辊冷却得到铸片,其中,多孔导电层12/绝缘支撑层11/多孔导电层12层的厚度比为1:2:1。
3.拉伸步骤:将上述得到的多孔导电层12/绝缘支撑层11/多孔导电层12三层结构的流延膜,于90℃进行预热,预热后的铸片进入135℃的烘箱中进行纵向与横向拉伸,沿挤出方向纵向拉伸4倍,且,横向拉伸2倍,因此得到厚度为14μm的柔性集流体芯层1。
对比例1柔性集流体芯层表面的多孔导电层体积电阻率较高,因此未进行电镀铜金属层。
测试方法如下:
体积电阻率测试:将多孔导电层12的材料,即将上述100重量份的聚丙烯与8重量份的乙炔炭黑加入挤出机中,熔融塑化后得到多孔导电层12熔融原料,并经挤出机模头流延后经50℃-130℃的冷却辊冷却,取得的铸片上,裁样品进行体积电阻率测试。
对比例2
材料选择如下:
绝缘支撑层11:熔融指数为2.0g/10min的高密度聚乙烯(HDPE),其熔点为136℃与低密度聚乙烯(LDPE),其熔点为125℃,将HDPE与LDPE混合得到均匀混合物,其中HDPE占绝缘支撑层的材料总质量的60%,而LDPE则占比40%。
多孔导电层12:熔融指数为4.0g/10min-6.0g/10min的聚丙烯,并于100重量份的聚丙烯添加10重量份经钛酸酯偶联剂表面改性的乙炔炭黑,其中,乙炔炭黑粒径为45nm。
制备步骤如下:
1.混料熔融挤出步骤:将上述将HDPE与LDPE均匀混合物加入挤出机中,熔融塑化后得到绝缘支撑层11熔融原料,将上述100重量份的聚丙烯与8重量份经钛酸酯偶联剂表面改性的乙炔炭黑加入挤出机中,熔融塑化后得到多孔导电层12熔融原料,且挤出至模头。
2.流延铸片步骤:绝缘支撑层11熔融原料与多孔导电层12熔融原料通过具有三层共挤结构的模头中,而可挤出得到具有多孔导电层12/绝缘支撑层11/多孔导电层12三层结构的流延膜,并经50℃-130℃的冷却辊冷却得到铸片,其中,多孔导电层12/绝缘支撑层11/多孔导电层12层的厚度比为1:2:1。
3.拉伸步骤:将上述得到的多孔导电层12/绝缘支撑层11/多孔导电层12三层结构的流延膜,于90℃进行预热,预热后的铸片进入135℃的烘箱中进行纵向与横向拉伸,沿挤出方向纵向拉伸4倍,且,横向拉伸2倍,因此得到厚度为14μm的柔性集流体芯层1。
4.镀金属层步骤:通过碱度形成一层薄金属层后,再通过酸镀在柔性集流体芯层1的两侧表面均形成1μm的导电金属层21,此一导电金属层21为铜金属层,得到总厚度为16μm的集流体2。
测试方法如下:
体积电阻率测试:将多孔导电层12的材料,即将上述100重量份的聚丙烯与10重量份的乙炔炭黑加入挤出机中,熔融塑化后得到多孔导电层12熔融原料,并经挤出机模头流延后经50℃-130℃的冷却辊冷却,取得的铸片上,裁样品进行体积电阻率测试。
表一、各实施例的详细数据
Figure PCTCN2022087607-appb-000002
Figure PCTCN2022087607-appb-000003
综上所述,体积电阻率是多孔导电层12每个单位体积对于电流的阻抗,用来表示多孔导电层12的电性质,为此,通常体积电阻率越高,导电效能就越低,由表一可看出,对比例1-2的体积电阻率相较于实施例1-9高出许多,即对比例1-2的多孔导电层12导电效能较低。
其中,于对比例1-2中可知,两者差异在于乙炔炭黑于多孔导电层12的比例,但两者的乙炔炭黑比例皆低于20%的情况下,且,对比例2中所使用的乙炔炭黑是经钛酸酯偶联剂表面改性,可看出在改性作用下,对比例2相较于对比例1的导电层体积电阻率下降将近95%,且,于实施例1中,其为乙炔炭黑比例恰为20%,且,乙炔炭黑是经钛酸酯偶联剂表面改性,此时,导电层体积电阻率相较对比例1更下降将近98%,可知,当乙炔炭黑于多孔导电层12的比例不高于20%时,偶联剂表面改性对于导电效能的作用非常大。
其中,于实施例8-9中,在绝缘支撑层11添加阻燃聚烯烃材料,因此具有良好的阻燃效果,且,多孔导电层12亦具有较高的导电效能,而可达到本发明的目的。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明构思的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明范围。

Claims (30)

  1. 一种柔性集流体芯层,其特征在于,包括:
    一绝缘支撑层;及
    一多孔导电层,设置于所述绝缘支撑层的两侧;
    其中,所述绝缘支撑层的材料包括一第一聚烯烃材料或/及一阻燃聚烯烃材料,所述第一聚烯烃材料及所述阻燃聚烯烃材料中的聚烯烃材料的熔点不高于136℃;
    其中,所述多孔导电层的材料包括一第二聚烯烃材料与一导电填料。
  2. 如权利要求1所述柔性集流体芯层,其特征在于,所述第一聚烯烃材料及所述第二聚烯烃材料为聚乙烯、聚丙烯、乙烯-醋酸乙烯酯、乙烯-丙烯共聚物、乙烯-辛烯共聚物、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯中的至少一种,且,所述第一聚烯烃材料与所述第二聚烯烃材料不同。
  3. 如权利要求2所述柔性集流体芯层,其特征在于,所述聚乙烯为高密度聚乙烯、低密度聚乙烯、线性低密度聚乙烯中的至少一种。
  4. 如权利要求2所述柔性集流体芯层,其特征在于,所述第二聚烯烃材料为所述聚丙烯。
  5. 如权利要求1所述柔性集流体芯层,其特征在于,所述阻燃聚烯烃材料中填充的阻燃剂为卤系阻燃剂、磷系阻燃剂、磷氮系阻燃剂、无机阻燃剂中的至少一种。
  6. 如权利要求1所述柔性集流体芯层,其特征在于,所述绝缘支撑层的材料还包括乙烯-醋酸乙烯共聚物。
  7. 如权利要求1所述柔性集流体芯层,其特征在于,所述第一聚烯烃材料的熔点不高于130℃。
  8. 如权利要求1所述柔性集流体芯层,其特征在于,所述绝缘支撑层为无孔洞的密实结构。
  9. 如权利要求1所述柔性集流体芯层,其特征在于,所述多孔导电层的孔隙率为10%-80%。
  10. 如权利要求1所述柔性集流体芯层,其特征在于,所述多孔导电层的孔径大小为0.02μm-1μm。
  11. 如权利要求1所述柔性集流体芯层,其特征在于,所述多孔导电层的表面粗糙度为0.025μm-2μm。
  12. 如权利要求1所述柔性集流体芯层,其特征在于,所述导电填料为碳基导电材料或金属氧化物材料中的至少一种。
  13. 如权利要求12所述柔性集流体芯层,其特征在于,所述碳基导电材料为导电炭黑、石 墨、石墨烯或碳纳米管中的至少一种。
  14. 如权利要求13所述柔性集流体芯层,其特征在于,所述碳基导电材料为碳纳米管时,其直径为5nm-15nm,长度为0.1μm-2μm。
  15. 如权利要求12所述柔性集流体芯层,其特征在于,所述金属氧化物材料包括Ti、V、Sn、Zn的金属氧化物或掺杂金属氧化物的Ti、V、Sn、Zn的金属氧化物的至少一种。
  16. 如权利要求12所述柔性集流体芯层,其特征在于,所述金属氧化物材料为TiO2、Ti4O7、V2O3、VO2、SnO、SnO2、掺杂ZnO的晶须或者粉体中的至少一种。
  17. 如权利要求1所述柔性集流体芯层,其特征在于,所述导电填料为颗粒物时,其粒径为10nm-500nm。
  18. 如权利要求1所述柔性集流体芯层,其特征在于,所述导电填料为晶须或纤维时,其直径为0.005μm-2μm,长度为0.05μm-3μm。
  19. 如权利要求1所述柔性集流体芯层,其特征在于,所述导电填料于所述多孔导电层中的质量占比为10%-45%。
  20. 如权利要求1所述柔性集流体芯层,其特征在于,所述柔性集流体芯层的厚度为5μm-20μm。
  21. 如权利要求1所述柔性集流体芯层,其特征在于,所述绝缘支撑层与所述多孔导电层的厚度比为1:0.2-10。
  22. 如权利要求1所述柔性集流体芯层,其特征在于,所述绝缘支撑层与所述多孔导电层采用多层共挤的方式一次挤出成型。
  23. 一种集流体,其特征在于,包括:
    权利要求1-22中任一种的所述柔性集流体芯层;及
    一导电金属层,设置于所述多孔导电层的两侧。
  24. 如权利要求23所述集流体,其特征在于,所述导电金属层的材料为铝、铜、镍、钛、银、镍铜合金、铝锆合金中的至少一种。
  25. 如权利要求23所述集流体,其特征在于,所述导电金属层的厚度为0.5μm-3μm。
  26. 一种极片,其特征在于,包括:
    权利要求23-25中任一权利要求的所述集流体;及
    一电极活性材料层,形成于所述集流体的表面。
  27. 一种电池,其特征在于,包括:
    一正极极片,如权利要求26中的所述极片,且,所述极片具有正极极性;
    一负极极片,如权利要求26中的所述极片,且,所述极片具有负极极性;
    一隔膜,设置于所述正极极片与所述负极极片之间,以隔离所述正极极片与所述负极极片;及
    一电解液,填充于所述正极极片与所述负极极片之间,使得所述正极极片与所述负极极片电性连接。
  28. 一种柔性集流体芯层的制备方法,其特征在于,包括步骤:
    一绝缘支撑层材料与一多孔导电层材料分别加入一挤出机中进行熔融塑化,生成并挤出一绝缘支撑层熔融原料与一多孔导电层熔融原料至一模头;
    所述绝缘支撑层熔融原料与所述多孔导电层熔融原料经所述模头同步挤出,并经牵引成为一流延膜,所述流延模的结构包含一绝缘支撑层与一多孔导电层,且所述多孔导电层分别设置于所述绝缘支撑层的两侧;及
    所述流延膜经一拉伸程序,生成一柔性集流体芯层,其中,所述拉伸程序为纵向和横向拉伸,且,拉伸温度为90℃-140℃,拉伸比为1-5倍。
  29. 一种集流体的制备方法,其特征在于,包括步骤:
    一绝缘支撑层材料与一多孔导电层材料分别加入一挤出机中进行熔融塑化,生成并挤出一绝缘支撑层熔融原料与一多孔导电层熔融原料至一模头;
    所述绝缘支撑层熔融原料与所述多孔导电层熔融原料经所述模头同步挤出,并经牵引成为一流延膜,所述流延模的结构包含一绝缘支撑层与一多孔导电层,且所述多孔导电层分别设置于所述绝缘支撑层的两侧;
    所述流延膜经一拉伸程序,生成一柔性集流体芯层,其中,所述拉伸程序为纵向和横向拉伸,且,拉伸温度为90℃-140℃,拉伸比为1-5倍;及
    经机械辊轧、粘结、气相沉积法或化学镀的制程于所述柔性集流体芯层两侧的多孔导电层的表面分别形成一导电金属层,产生一集流体。
  30. 如权利要求29所述集流体的制备方法,其特征在于,所述化学镀包括碱镀、酸镀中的至少一种。
PCT/CN2022/087607 2022-01-10 2022-04-19 柔性集流体芯层、集流体、极片和电池及其制备方法 WO2023130611A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210020852.1A CN114361461B (zh) 2022-01-10 2022-01-10 柔性集流体芯层、集流体、极片和电池及其制备方法
CN202210020852.1 2022-01-10

Publications (1)

Publication Number Publication Date
WO2023130611A1 true WO2023130611A1 (zh) 2023-07-13

Family

ID=81106903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087607 WO2023130611A1 (zh) 2022-01-10 2022-04-19 柔性集流体芯层、集流体、极片和电池及其制备方法

Country Status (2)

Country Link
CN (1) CN114361461B (zh)
WO (1) WO2023130611A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114361461B (zh) * 2022-01-10 2024-01-16 上海恩捷新材料科技有限公司 柔性集流体芯层、集流体、极片和电池及其制备方法
CN114824160B (zh) * 2022-04-25 2023-10-27 江阴纳力新材料科技有限公司 复合集流体及其制备方法、电极极片和二次电池
CN114899356A (zh) * 2022-06-30 2022-08-12 扬州纳力新材料科技有限公司 一种复合集流体、制备方法、电极极片、电池和电子设备
CN115579479B (zh) * 2022-12-12 2023-07-04 安徽元琛环保科技股份有限公司 一种用作集流体的复合导电膜及其制备方法和应用
CN117012981B (zh) * 2023-07-26 2024-04-16 浙江柔震科技有限公司 复合集流体卷材、极耳焊接方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008665A (ja) * 2000-06-21 2002-01-11 Toray Ind Inc 導電性樹脂シートおよびその製造方法
JP2018098204A (ja) * 2016-12-14 2018-06-21 三洋化成工業株式会社 リチウムイオン二次電池用樹脂集電体及びリチウムイオン二次電池
CN112913054A (zh) * 2018-10-22 2021-06-04 三洋化成工业株式会社 负极用树脂集电体的制造方法、锂离子电池用负极的制造方法以及锂离子电池的制造方法
CN214280014U (zh) * 2020-12-07 2021-09-24 厦门海辰新材料科技有限公司 复合集流体及二次电池
CN113524830A (zh) * 2021-07-09 2021-10-22 浙江南洋科技有限公司 一种锂电池集流体用高拉伸强度聚酯薄膜及其制备方法
CN114361461A (zh) * 2022-01-10 2022-04-15 上海恩捷新材料科技有限公司 柔性集流体芯层、集流体、极片和电池及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213026A (ja) * 1994-11-28 1996-08-20 Katayama Tokushu Kogyo Kk 電池電極基板用金属多孔体、電池電極板およびその製造方法
US6645675B1 (en) * 1999-09-02 2003-11-11 Lithium Power Technologies, Inc. Solid polymer electrolytes
KR101592355B1 (ko) * 2013-08-05 2016-02-11 주식회사 아모그린텍 플렉시블 집전체를 이용한 이차전지 및 플렉시블 집전체의 제조방법
CN105047843B (zh) * 2015-06-26 2018-01-02 深圳市星源材质科技股份有限公司 一种高安全性的多层锂电池隔膜的制备方法
KR101990614B1 (ko) * 2016-09-07 2019-06-18 주식회사 엘지화학 리튬 전극 및 이를 포함하는 리튬 이차 전지
CN106558676A (zh) * 2017-01-17 2017-04-05 上海长园维安电子线路保护有限公司 具有保护功能的锂电池集流体
US10597783B2 (en) * 2017-03-28 2020-03-24 GM Global Technology Operations LLC Lithium cell electrode using surface-modified copper foil current collector
CN109216703A (zh) * 2018-09-06 2019-01-15 珠海光宇电池有限公司 一种柔性多孔集流体及其制备方法
CN110676461A (zh) * 2019-10-14 2020-01-10 湖北文理学院 一种具有柔性自支撑功能的高柔性锂离子电池织物及其制备方法
CN111276701B (zh) * 2020-03-11 2021-06-08 荆门市诺维英新材料科技有限公司 一种集流体及含有该集流体的锂离子电池
CN212303706U (zh) * 2020-07-13 2021-01-05 江苏卓高新材料科技有限公司 含硅负极片以及包含该负极片的锂离子二次电池
CN112510210A (zh) * 2020-12-07 2021-03-16 厦门海辰新材料科技有限公司 复合集流体及其制备方法、二次电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008665A (ja) * 2000-06-21 2002-01-11 Toray Ind Inc 導電性樹脂シートおよびその製造方法
JP2018098204A (ja) * 2016-12-14 2018-06-21 三洋化成工業株式会社 リチウムイオン二次電池用樹脂集電体及びリチウムイオン二次電池
CN112913054A (zh) * 2018-10-22 2021-06-04 三洋化成工业株式会社 负极用树脂集电体的制造方法、锂离子电池用负极的制造方法以及锂离子电池的制造方法
CN214280014U (zh) * 2020-12-07 2021-09-24 厦门海辰新材料科技有限公司 复合集流体及二次电池
CN113524830A (zh) * 2021-07-09 2021-10-22 浙江南洋科技有限公司 一种锂电池集流体用高拉伸强度聚酯薄膜及其制备方法
CN114361461A (zh) * 2022-01-10 2022-04-15 上海恩捷新材料科技有限公司 柔性集流体芯层、集流体、极片和电池及其制备方法

Also Published As

Publication number Publication date
CN114361461B (zh) 2024-01-16
CN114361461A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
WO2023130611A1 (zh) 柔性集流体芯层、集流体、极片和电池及其制备方法
Shen et al. Stratified zinc‐binding strategy toward prolonged cycling and flexibility of aqueous fibrous zinc metal batteries
CN101997102B (zh) 一种锂离子电池隔膜及其制作方法
CN100403581C (zh) 锂电池、锂离子电池安全隔膜及其制造方法
WO2010074151A1 (ja) 電池用セパレータおよび非水系リチウム電池
KR101710293B1 (ko) 카본 부재, 카본 부재의 제조 방법, 레독스 플로우 전지 및 연료 전지
CN102248713B (zh) 一种聚烯微多孔多层隔膜及其制造方法
JP2020057585A (ja) 集電体、極シート及び電気化学デバイス
WO2023246178A1 (zh) 一种原纤化网状电极、固态电解质膜、储能装置及车辆
Liu et al. Recent advances of non-lithium metal anode materials for solid-state lithium-ion batteries
CN115447248B (zh) 复合聚合物膜、其制造方法、金属化复合聚合物膜与应用
JP2010171005A (ja) 電池用セパレータおよび非水系リチウム二次電池
JP6255768B2 (ja) 非水電解質二次電池用セパレータおよびこれを含む非水電解質二次電池
CN112993220A (zh) 一种用于锂离子电池正负极片的功能涂层浆料及其制备方法、锂离子电池
Jiang et al. Strategies and challenges of carbon materials in the practical applications of lithium metal anode: a review
CN114759192A (zh) 层状复合导电材料、制备工艺及集流体
CN115763828A (zh) 聚合物复合膜及其制备方法、复合集流体、极片、二次电池和用电装置
Mao et al. Carbon Foam‐Supported VS2 Cathode for High‐Performance Flexible Self‐Healing Quasi‐Solid‐State Zinc‐Ion Batteries
JP5422374B2 (ja) 電池用セパレータおよび非水系リチウム二次電池
JP6167726B2 (ja) 非水電解質二次電池用セパレータおよびこれを含む非水電解質二次電池
WO2019033360A1 (en) CARBON MICROTUBE COMPOSITE FILM ELECTRODE
WO2024103525A1 (zh) 多层复合聚丙烯材料及其制备方法和应用
Wang et al. Efficient lithium-metal battery based on a graphene oxide-modified heat-resistant gel polymer electrolyte with superior cycling stability and excellent rate capability
CN116376280A (zh) 聚对苯撑苯并二噁唑多孔膜及其制备方法和应用、复合隔膜及电池
JP5153993B2 (ja) 導電性熱可塑性樹脂フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918075

Country of ref document: EP

Kind code of ref document: A1