WO2023130229A1 - 一种电极组件、电池及电子装置 - Google Patents

一种电极组件、电池及电子装置 Download PDF

Info

Publication number
WO2023130229A1
WO2023130229A1 PCT/CN2022/070166 CN2022070166W WO2023130229A1 WO 2023130229 A1 WO2023130229 A1 WO 2023130229A1 CN 2022070166 W CN2022070166 W CN 2022070166W WO 2023130229 A1 WO2023130229 A1 WO 2023130229A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
region
metal part
battery
electrode assembly
Prior art date
Application number
PCT/CN2022/070166
Other languages
English (en)
French (fr)
Other versions
WO2023130229A9 (zh
Inventor
闫东阳
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to CN202280003967.8A priority Critical patent/CN115606034A/zh
Priority to PCT/CN2022/070166 priority patent/WO2023130229A1/zh
Publication of WO2023130229A1 publication Critical patent/WO2023130229A1/zh
Publication of WO2023130229A9 publication Critical patent/WO2023130229A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the technical field of electrochemical devices, in particular to an electrode assembly, a battery and an electronic device.
  • lithium-ion batteries Due to its high energy density, high cycle times and long storage time, lithium-ion batteries are widely used in electric vehicles, electric vehicles, smart storage devices, drones and other electronic devices.
  • the purpose of the embodiments of the present disclosure is to provide an electrode assembly, a battery and an electronic device, so as to reduce the probability of thermal failure of the battery and improve the product performance of the battery.
  • a first aspect of the present disclosure provides an electrode assembly.
  • the electrode assembly includes a first conductive part, a second conductive part and a first metal part.
  • the first conductive part includes a first region provided with a conductive material layer, and a second region separated from the first region; the first metal part is connected to the second region by welding, The first metal part has a third area where welding traces are formed; when viewed along a first direction perpendicular to the first surface of the first conductive part, the second area, The direction is vertical and has a first end in a second direction extending from the first region to the second region, and is arranged on the opposite side of the first end in the second direction and is at a distance from the The second end of the conductive material layer is farther than the first end; the third region has a third end in the second direction and is located at the second end in the second direction.
  • the first metal part has a fifth end in the second direction part, and a sixth end part located on the opposite side of the fifth end part in the second direction and closer to the second end part than the fifth end part; along the second direction, the first distance from the third end to the fifth end is different from the second distance from the fourth end to the sixth end.
  • the first metal part and the first conductive part can be connected by welding, and there is a third area at the welding place between the first metal part and the first conductive part, and there is a welding area in the third area. trace.
  • the electrode assembly according to the embodiment of the present disclosure may also have the following additional technical features:
  • the first distance is greater than the second distance. In this way, the side of the first metal part close to the sixth end is easily impacted by the relatively large air pressure in the battery and disconnected from the first conductive part, realizing the disconnection of the battery and further improving the product performance of the battery.
  • the first distance is smaller than the second distance. In this way, the side of the first metal part close to the fifth end is easily impacted by the relatively large air pressure in the battery and disconnected from the first conductive part, realizing the disconnection of the battery and further improving the product performance of the battery.
  • the first metal part has, in a third direction perpendicular to the second direction, a seventh end part away from the second region and in the third direction. an eighth end located upwardly on the opposite side of the seventh end; when viewed along the first direction, the third region includes a ninth end in the third direction and a ninth end in the third direction a tenth end located upwardly on the opposite side of the ninth end and closer to the eighth end than the ninth end; in the third direction, the ninth end to A third distance from the seventh end is not equal to a fourth distance from the tenth end to the eighth end.
  • the third region with welding traces is also not located in the middle of the first metal part, so when the first metal part is welded on the first conductive part, the welding residual stress is at the seventh end of the first metal part
  • the diffusion speeds on the side of the bottom part and the side of the eighth end part are also different, and the larger air pressure in the battery can make the side where the distance between the third region and the first metal part is smaller in the second direction and the side where the distance in the third direction is smaller
  • One side is impacted and disconnected, so that the first metal part is disconnected from the first conductive part, realizing the disconnection of the battery, and further improving the product performance of the battery.
  • the third distance is greater than the fourth distance. In this way, in the third direction, the relatively high air pressure in the battery tends to cause the side of the first metal part close to the eighth end to be impacted and disconnected from the first conductive part.
  • the third distance is smaller than the fourth distance.
  • the relatively high air pressure in the battery is likely to cause the side of the first metal part close to the seventh end to be impacted and disconnected from the first conductive part, realizing the disconnection of the battery and further improving the product performance of the battery.
  • the second conductive portion includes a fourth region provided with a conductive material layer, and a fifth region separated from the fourth region;
  • the electrode assembly further includes a second metal portion , the second metal part is connected to the fifth area by welding, the second metal part includes a sixth area with welding traces; along the direction perpendicular to the second surface of the second conductive part
  • the fifth region has a first side along the second direction and a side opposite to the first side in the second direction and a distance from the conductive material layer a second side farther from the first side
  • the sixth region having a third side in the second direction, and disposed opposite the third side in the second direction and a fourth side that is closer to the second side than the third side
  • the second metal portion has a fifth side in the second direction, and is disposed on the second side in the second direction
  • the fifth side is opposite to the sixth side and the distance from the second side is closer to the sixth side than the fifth side; along the second direction, the third side to the fifth side
  • the electrode assembly provided by the embodiment of the present disclosure further has a second conductive part and a second metal part, the second metal part is welded to the second conductive part, and there is a sixth region at the welding place between the second metal part and the second conductive part, There are welding traces in the sixth area.
  • the side reactions between the electrolyte and the positive or negative electrodes may increase, resulting in more gas, resulting in an increase in internal pressure. Larger air pressure tends to impact and disconnect the side where the distance between the sixth area and the second metal part is smaller, so that the second metal part is disconnected from the second conductive part, and the battery is disconnected, which is beneficial to reduce the thermal failure of the battery The probability of improving the product performance of the battery.
  • the fifth distance is greater than the sixth distance. In this way, the relatively high air pressure in the battery can cause the side of the second metal part close to the sixth side to be impacted and disconnected from the second conductive part, thereby realizing the disconnection of the battery and further improving the product performance of the battery.
  • the fifth distance is smaller than the sixth distance. In this way, the relatively high air pressure in the battery can cause the side of the second metal part close to the fifth side to be impacted and disconnected from the second conductive part, so as to realize the disconnection of the battery and further improve the product performance of the battery.
  • the second metal portion has a seventh side away from the fifth region in a third direction perpendicular to the second direction, and a The eighth side opposite the seventh side; the sixth region, when viewed along the first direction, has a ninth side in the third direction and is disposed on the third side in the third direction The opposite side of the ninth side and the tenth side closer to the eighth side than the ninth side; in the third direction, the seventh distance from the ninth side to the seventh side The eighth distance from the tenth side to the eighth side is not equal.
  • the sixth area with welding marks is also not located in the middle of the second metal part, so when the second metal part is welded on the second conductive part, the welding residual stress is on the seventh side of the second metal part
  • the diffusion speeds on the eighth side and the eighth side are also different, and the larger air pressure in the battery can impact the side with the smaller distance in the second direction and the side with the smaller distance in the third direction between the sixth region and the second metal part. open, so that the second metal part is disconnected from the second conductive part.
  • the seventh distance is greater than the eighth distance.
  • the seventh distance is smaller than the eighth distance.
  • the relatively high air pressure in the battery is likely to cause the side of the second metal part close to the seventh side to be impacted and disconnected from the second conductive part, realizing the disconnection of the battery and further improving the product performance of the battery.
  • a ninth distance from the first end to the fifth end is greater than a ninth distance from the second end to the sixth end. ten distance.
  • the first metal part is not in the middle of the second area. In this way, the relatively high air pressure in the battery can easily cause the side of the first metal part close to the second end to be impacted and disconnected from the first conductive part, thereby realizing the disconnection of the battery and further improving the product performance of the battery.
  • the distance between the first end portion and the fifth end portion is 1 mm to 30 mm, and the distance between the second end portion and the sixth end portion The distance between the ends is 1 mm to 20 mm.
  • the first metal part has a certain distance from both the first end part and the second end part of the first conductive part, which is beneficial to avoid affecting the first metal part during manufacture of the first conductive part.
  • the eleventh distance from the first side to the fifth side is smaller than the twelfth distance from the second side to the sixth side .
  • the welding residual stress on the second metal part tends to concentrate on the side of the second metal part close to the first side, and the relatively high air pressure in the battery tends to cause the side of the second metal part close to the first side to be impacted and to be separated from the first side.
  • the second conductive part is disconnected to realize the disconnection of the battery and further improve the product performance of the battery.
  • the distance between the first side and the fifth side is 1 mm to 30 mm, and the distance between the second side and the sixth side The distance is 1mm to 20mm.
  • the second metal part has a certain distance from both the first side and the second side of the second conductive part, which is beneficial to avoid affecting the second metal part when the second conductive part is manufactured.
  • the distance between the first end and the second end is 10 mm to 40 mm; the first side to the second side The distance between them is 10mm to 40mm.
  • both the second area and the fifth area have sufficient space for accommodating the first metal part and the second metal part, thereby reserving more welding space for the first metal part and the second metal part.
  • the first conductive portion further includes a seventh region away from the first region, and the seventh region is located on a side of the first region away from the second region .
  • the first metal part can be selectively welded to the second area or the seventh area, so that the first metal part can be located in different positions of the first conductive part, which is beneficial to improve the diversity of the electrode assembly.
  • the second conductive portion further includes an eighth region away from the fourth region, and the eighth region is located on a side of the fourth region away from the fifth region. .
  • the second metal part can be selectively welded to the fifth area or the eighth area, so that the second metal part can be located at different positions of the second conductive part, which is beneficial to improve the diversity of the electrode assembly.
  • the first conductive portion is a positive electrode.
  • the first metal part is connected with the positive electrode to serve as the positive electrode lug.
  • the second conductive portion is a negative electrode.
  • the second metal part is connected with the negative pole to serve as the tab of the negative pole.
  • the first conductive part is wound around a first axis and includes multiple layers of the first region along the first direction
  • the second conductive part is wound around The first axis is wound and the second conductive part includes multiple layers of the fourth region along the first direction
  • the first metal part is connected to the outermost first region along the first direction.
  • the second metal portion is connected to the fourth region that is the outermost region along the first direction.
  • a second aspect of the present disclosure provides a battery, the battery includes a casing and the above-mentioned electrode assembly, and the electrode assembly is placed in the casing.
  • the battery provided by the embodiments of the present disclosure is beneficial to improving the product performance of the battery by improving the electrode assembly in the battery.
  • the electrode assembly includes a first conductive part, a second conductive part and a first metal part.
  • the first metal part of the electrode assembly is connected to the first conductive part by welding, and there is a third area at the welding place between the first metal part and the first conductive part, and there are welding traces in the third area. Since there is a first distance between the third end of the third region and the fifth end of the first metal part in the second direction, the distance between the fourth end of the third region and the sixth end of the first metal part There is a second distance, and the first distance is not equal to the second distance.
  • the diffusion speed of the welding residual stress on the fifth end part side and the sixth end part side of the first metal part is different, and the welding residual stress is easy to concentrate on the third area and the sixth end part side.
  • the side where the distance between the first metal parts is smaller. Therefore, when the internal heat of the battery is high, the side reactions between the electrolyte and the positive or negative electrodes may increase, which in turn generates more gas, resulting in an increase in internal air pressure.
  • the larger air pressure can impact and disconnect the side with the smaller distance between the third area and the first metal part, so that the first metal part is disconnected from the first conductive part, and then the battery is disconnected, which is beneficial to reduce the heat generated by the battery. The probability of failure and improve the product performance of the battery.
  • the battery according to the embodiments of the present disclosure may also have the following additional technical features:
  • the material of the housing includes metal.
  • the shell made of metal material is beneficial to protect the internal electrode assembly, thereby improving the reliability of the battery.
  • the battery is a wound battery.
  • a third aspect of the present disclosure provides an electronic device, the electronic device including the above-mentioned battery.
  • the electronic device provided by the embodiments of the present disclosure helps to improve the product performance of the electronic device by improving the electrode assembly of the battery therein.
  • the electrode assembly of the electronic device includes a first conductive part, a second conductive part and a first metal part.
  • the first metal part of the electrode assembly is welded to the first conductive part, and there is a third area at the welding place of the first metal part and the first conductive part, and there are welding traces in the third area.
  • the third area with welding traces is not located in the first
  • the middle position of the metal part that is, the welding trace is not located in the middle position of the first metal part, so when the first metal part is welded on the first conductive part, the welding residual stress is on the fifth end side of the first metal part and the fifth end side of the first metal part.
  • FIG. 1 is a schematic structural diagram of a wound electrode assembly in an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a third area or a sixth area of an embodiment of the present disclosure
  • FIG. 3 is a schematic structural view of the unfolded first conductive part of an embodiment of the present disclosure
  • Fig. 4 is the enlarged schematic diagram of M region in Fig. 3;
  • FIG. 5 is a schematic structural diagram of a second conductive part of an embodiment of the disclosure after being deployed
  • FIG. 6 is an enlarged schematic diagram of the N region in FIG. 5;
  • FIG. 7 is a schematic cross-sectional view along the third direction Y of the battery according to the embodiment of the present disclosure.
  • Electronic device-1 battery-10; housing-11; separator-12; electrode assembly-100; first conductive part-110; first area-111; second area-112; Surface-1101; Second Surface-1201; Fourth Region-114; Fifth Region-115; Sixth Region-116; Seventh Region-117; Eighth Region-118; First End-140; Second End Part-141; Third End-142; Fourth End-143; Fifth End-144; Sixth End-145; Seventh End-146; Eighth End-147; Ninth End - 148; Tenth end - 149; First side - 160; Second side - 161; Third side - 162; Fourth side - 163; Fifth side - 164; Sixth side - 165; Seventh side - 166; Eighth side-167; Ninth side-168; Tenth side-169; First distance-A; Second distance-B; Third distance-C; Fourth distance-D; Fifth distance-E; Sixth distance-F; Seventh distance-G; Eighth distance-H; Ninth distance-I; Tenth distance-J
  • first direction may be any direction in the plane where the first surface is located.
  • the purpose of the embodiments of the present disclosure is to provide an electrode assembly 100 , a battery 10 and an electronic device 1 , so as to reduce the probability of thermal failure of the battery 10 and improve the safety of the battery 10 .
  • the first aspect of the present disclosure provides a wound electrode assembly 100 .
  • the electrode assembly 100 includes a first conductive part 110 , a second conductive part 120 and a first metal part 130 .
  • the first conductive portion 110 includes a first region 111 provided with a conductive material layer, and a second region 112 separated from the first region 111; the first metal portion 130 is connected to the second region 112 by welding, and the first The metal part 130 has a third region 113 of welding traces; when viewed along a first direction perpendicular to the first surface 1101 of the first conductive part 110, the second region 112 is perpendicular to the first direction and along the first region 111 has a first end 140 in the second direction extending to the second region 112 and is located on the opposite side of the first end 140 in the second direction and is farther away from the conductive material layer than the first end 140
  • the second end portion 141; the third region 113 has a third end portion 142 in
  • the distance from the end 141 is closer to the sixth end 145 than the fifth end 144; along the second direction, the first distance A from the third end 142 to the fifth end 144 is the same as that from the fourth end 143 to the sixth end 144.
  • the second distance B of the ends 145 is not equal.
  • the first conductive part 110 and the second conductive part 120 of the electrode assembly 100 in the embodiment of the present disclosure may be a positive electrode sheet or a negative electrode sheet, and the first conductive part 110 and the second conductive part 120 have opposite polarities. That is to say, the first conductive part 110 may be a positive electrode sheet or a negative electrode sheet.
  • the second conductive part 110 may be a negative electrode sheet or a positive electrode sheet, which is not limited in the present disclosure.
  • the electrode assembly 100 may further include a diaphragm 12 located between the first conductive part 110 and the second conductive part 120 .
  • the diaphragm 12 is used to separate the first conductive part 110 and the second conductive part 120 to prevent internal short circuit between the first conductive part 110 and the second conductive part 120 and allow electrolytic ions to freely pass through to form a conductive path.
  • the first conductive part 110 and the second conductive part 120 can be formed into the electrode assembly 100 in various ways, such as a winding type as shown in FIG. 1 , which is not limited by the embodiments of the present disclosure.
  • the electrode assembly 100 may further include a diaphragm 12 located between the first conductive part 110 and the second conductive part 120 .
  • the first direction may be a direction perpendicular to the first surface 1101 of the first conductive portion 110
  • the second direction may be a direction extending from the first region 111 to the second region 112 of the first conductive portion 110
  • the third direction is perpendicular to the first direction and the second direction, respectively. That is, as shown in FIG. 1 and FIG. 2 , the first direction is the illustrated Z-axis direction, the second direction is the illustrated X-axis direction, and the third direction is the illustrated Y-axis direction.
  • the first metal portion 130 is a conductive component leading out the electrodes of the first conductive portion 110 .
  • the first metal part 130 may be a positive pole tab or a negative pole tab.
  • the material of the first metal part 130 may include at least one of aluminum (Al) or an aluminum alloy; when the first metal part 130 is a negative electrode tab, the material of the first metal part 130 The material may include at least one of nickel (Ni), copper (Cu), or nickel-plated copper (Ni—Cu).
  • the diaphragm 12 can be a porous plastic film, and its commonly used materials include polypropylene (PP), polyethylene (PE), copolymers of propylene and ethylene, and homopolymers of polyethylene.
  • the first metal part 130 is connected to the first conductive part 110 by welding, and there is a third region 113 at the welding place between the first metal part 130 and the first conductive part 110.
  • the third region 113 has welding traces inside.
  • the third area 113 is located on the first conductive portion 110 , and the third area 113 refers to an area of a welding area formed by welding the first conductive portion 110 and the first metal portion 130 .
  • the third area 113 may be in an irregular shape, or may be a polygon, such as a quadrangle, a pentagon, and the like. In the embodiment of the present disclosure, for easy understanding, the third area 113 is a rectangle. As shown in FIG.
  • the welding area includes a plurality of welding spots 200 at different positions, wherein, in the second direction X, there are welding spots 201 closest to the first end 140 and welding spots 202 farthest away, passing through the welding spots 201 respectively and the welding spot 202 form two straight lines a and b parallel to the first end 140; in the third direction Y, there is a welding spot 203 closest to the seventh end 146 and a welding spot 204 farthest away, Two straight lines c and d parallel to the seventh end portion 146 are formed through the welding point 203 and the welding point 204 respectively.
  • the connection of the straight line a, the straight line b, the straight line c and the straight line d can form the above-mentioned third region 113 .
  • first distance A between the third end 142 of the third area 113 and the fifth end 144 of the first metal part 130 in the direction from the first area 111 to the second area 112, and the third area 113
  • second distance B between the fourth end 143 of the first metal part 130 and the sixth end 145 of the first metal part 130 , and the first distance A and the second distance B are not equal. That is, in the direction from the first area 111 to the second area 112 , the third area 113 with welding marks is not located in the middle of the first metal part 130 , that is, the welding marks are not located in the middle of the first metal part 130 .
  • the diffusion rate of the welding residual stress on the fifth end part 144 side and the sixth end part 145 side of the first metal part 130 is different, so that the welding residual stress is stronger. It is easy to concentrate on the side where the distance between the third region 113 and the first metal part 130 is smaller. Therefore, when the internal heat of the battery 10 is high, side reactions between the electrolyte and the positive electrode or the negative electrode may increase, thereby generating more gas, resulting in an increase in internal pressure.
  • the larger air pressure can impact and break the side of the third region 113 and the first metal part 130 with a smaller distance, so that the first metal part 130 is disconnected from the first conductive part 110 and realizes the disconnection of the battery 10, which is beneficial to The probability of thermal failure of the battery 10 is reduced, and the product performance of the battery 10 is improved.
  • the first distance A is greater than the second distance B.
  • the first distance A refers to a straight line length along the second direction between the third end portion 142 of the third region 113 and the fifth end portion 144 of the first metal portion 130 .
  • the welding residual stress is easier to concentrate on the side of the first metal part 130 close to the sixth end part 145 . Therefore, when the internal heat of the battery 10 is high, side reactions between the electrolyte and the positive electrode or the negative electrode may increase, thereby generating more gas, resulting in an increase in internal pressure.
  • the relatively high pressure can break the side of the first metal part 130 close to the sixth end part 145 by impact, thereby disconnecting the first metal part 130 from the first conductive part 110 and realizing the disconnection of the battery 10, which is beneficial to reduce the The probability of thermal failure of the battery 10 is improved, and the product performance of the battery 10 is improved.
  • the first distance A is smaller than the second distance B.
  • the welding residual stress is easier to concentrate on the side of the first metal part 130 close to the fifth end part 144 . Therefore, when the internal heat of the battery 10 is high, side reactions between the electrolyte and the positive electrode or the negative electrode may increase, thereby generating more gas, resulting in an increase in internal pressure.
  • the relatively high air pressure can break the side of the first metal part 130 close to the fifth end part 144 by impact, so that the first metal part 130 is disconnected from the first conductive part 110 to realize the disconnection of the battery 10, which is beneficial to reduce the The probability of thermal failure of the battery 10 is improved, and the product performance of the battery 10 is improved.
  • the first metal portion 130 has a seventh end portion 146 away from the second region 112 along the third direction perpendicular to the second direction. and the eighth end portion 147 provided on the opposite side of the seventh end portion 146 in the third direction.
  • the third region 113 includes a ninth end portion 148 in the third direction and is located on the opposite side of the ninth end portion 148 in the third direction and is farther away from the eighth end portion 147 than the ninth end portion.
  • the tenth end 149 nearer the portion 148.
  • the third distance C from the ninth end portion 148 to the seventh end portion 146 is different from the fourth distance D from the tenth end portion 149 to the eighth end portion 147 .
  • the third region 113 with welding marks is not located in the middle of the first metal part 130, so when the first metal part 130 is welded on the first conductive part 110, the welding residue
  • the diffusion speed of the stress on the seventh end 146 side and the eighth end 147 side of the first metal part 130 is also different, and the welding residual stress tends to concentrate in the third region 113 and the first metal part 130 at a shorter distance in the second direction.
  • the size relationship between the third distance C and the fourth distance D in the embodiment of the present disclosure can be flexibly combined with the aforementioned size relationship between the first distance A and the second distance B, so as to flexibly adjust the concentration of welding residue on the first metal part 130 The location of the stressed area.
  • the third distance C is greater than the fourth distance D.
  • welding residual stress tends to concentrate on the side of the first metal part 130 close to the eighth end 147.
  • side reactions between the electrolyte and the positive or negative electrodes may occur. Increase, and then produce more gas, resulting in an increase in internal pressure. Larger air pressure tends to break the side of the first metal part 130 close to the eighth end 147 by impact, so that the first metal part 130 is disconnected from the first conductive part 110 to realize the disconnection of the battery 10, which is beneficial to reduce the The probability of thermal failure of the battery 10 is improved, and the product performance of the battery 10 is improved.
  • the third distance C is smaller than the fourth distance D.
  • welding residual stress tends to concentrate on the side of the first metal part 130 close to the seventh end 146, and when the internal heat of the battery 10 is high, side reactions between the electrolyte and the positive or negative electrodes may occur. Increase, and then produce more gas, resulting in an increase in internal pressure. Larger air pressure tends to break the side of the first metal part 130 close to the seventh end 146 by impact, so that the first metal part 130 is disconnected from the first conductive part 110 to realize the disconnection of the battery 10, which is beneficial to reduce the The probability of thermal failure of the battery 10 is improved, and the product performance of the battery 10 is improved.
  • the electrode assembly 100 also includes a second metal part 150, the second metal part 150 is connected to the fifth region 115 by welding, and the second metal part 150 includes a sixth region 116 with welding traces; along with the second conductive part 120
  • the fifth region 115 has a first side 160 along the second direction and is arranged on the opposite side of the first side 160 in the second direction and is at a distance from the conductive substance
  • the second side 161 of the layer is farther than the first side 160
  • the sixth region 116 has a third side 162 in the second direction, and is located on the opposite side of the third side 162 in the second direction and at a distance from the second
  • the side 161 has a fourth side 163 closer to the third side 162 than the third side 162
  • the second metal part 150 has a fifth side 164 in the second direction, and is arranged on the opposite side of the
  • the electrode assembly 100 provided by the embodiment of the present disclosure further has a second conductive part 120 and a second metal part 150 .
  • the second metal portion 150 is a conductive component leading out the electrodes of the second conductive portion 120 .
  • the second metal part 150 can be a positive pole tab or a negative pole tab, and the polarity of the second metal part 150 is opposite to that of the first metal part 150 .
  • the material of the second metal part 150 can refer to the related description of the material of the first metal part 130 , which will not be repeated here.
  • the second metal part 150 is welded to the second conductive part 120 , and there is a sixth region 116 at the welding place of the second metal part 150 and the second conductive part 120 , and there are welding traces in the sixth region 116 .
  • the sixth area 116 is located on the second conductive portion 120 , and the sixth area 116 refers to the area of the welding area formed by welding the second conductive portion 120 and the second metal portion 150 .
  • the sixth area 116 may be in an irregular shape, or in a polygonal shape, such as a quadrangle, a pentagon, and the like.
  • the third area 116 is a rectangle. As shown in FIG.
  • the welding area includes a plurality of welding spots 200 at different positions, wherein, in the second direction X, there are welding spots 201 closest to the first side 160 and welding spots 202 farthest away, respectively passing through the welding spots 201 and 202.
  • the welding spot 202 forms two straight lines a and b parallel to the first side 160; in the third direction Y, there is a welding spot 203 closest to the seventh side 166 and a welding spot 204 farthest away from the seventh side 166.
  • the point 203 and the welding point 204 form two straight lines c and d parallel to the seventh side 166 .
  • the connection of the straight line a, the straight line b, the straight line c and the straight line d forms the above-mentioned sixth region 116 .
  • the second conductive portion 120 includes a fourth region 114 and a fifth region 115. In the direction from the fourth region 114 to the fifth region 115, the third side 162 of the sixth region 116 is connected to the fifth side of the second metal portion 150. 164 has a fifth distance E, and there is a sixth distance F between the fourth side 163 of the sixth region 116 and the sixth side 165 of the second metal part 150 , and the fifth distance E and the sixth distance F are not equal.
  • the sixth area 116 with welding marks is not located in the middle of the second metal part 150, so when the second metal part 150 is welded to the second conductive part 120 After that, the diffusion speeds of the welding residual stress on the fifth side 164 and the sixth side 165 of the second metal part 150 are different, and the welding residual stress tends to concentrate on the side where the distance between the sixth region 116 and the second metal part 150 is smaller. .
  • the internal heat of the battery 10 is high, side reactions between the electrolyte and the positive electrode or the negative electrode may increase, thereby generating more gas, resulting in an increase in internal air pressure.
  • the larger air pressure can impact and disconnect the side where the distance between the sixth region 116 and the second metal part 150 is small, so that the second metal part 150 is disconnected from the second conductive part 120 and realizes the disconnection of the battery 10, which is beneficial to The probability of thermal failure of the battery 10 is reduced, and the product performance of the battery 10 is improved.
  • the fifth distance E is greater than the sixth distance F.
  • the welding residual stress tends to concentrate on the side of the second metal part 150 close to the sixth side 165.
  • the internal heat of the battery 10 is high, the side reactions between the electrolyte and the positive or negative electrodes may increase, thereby generating less gas. more, resulting in an increase in internal air pressure.
  • the relatively high air pressure can cause the side of the second metal part 150 close to the sixth side 165 to be impacted and disconnected, so that the second metal part 150 is disconnected from the second conductive part 120, and the circuit breaker of the battery 10 is realized, which is beneficial to reduce the battery life. 10, the probability of thermal failure occurs, and the product performance of the battery 10 is improved.
  • the fifth distance E is smaller than the sixth distance F.
  • the welding residual stress tends to concentrate on the side of the second metal part 150 close to the fifth side 164.
  • the side reactions between the electrolyte and the positive or negative electrodes may increase, thereby generating more gas. more, resulting in an increase in internal air pressure.
  • the relatively high air pressure can cause the side of the second metal part 150 close to the fifth side 164 to be impacted and disconnected, so that the second metal part 150 is disconnected from the second conductive part 120 to realize the circuit breaker of the battery 10, which is beneficial to reduce the battery life. 10, the probability of thermal failure occurs, and the product performance of the battery 10 is improved.
  • the second metal portion 150 has a seventh side 166 away from the fifth region 115 in the third direction perpendicular to the second direction, and is disposed on the seventh side 166 in the third direction.
  • the eighth side 167 on the opposite side; the sixth region 116 when viewed along the first direction, has a ninth side 168 in the third direction and is arranged on the opposite side of the ninth side 168 in the third direction and is at a distance from the eighth side 167
  • the tenth side 169 is closer than the ninth side 168.
  • the seventh distance G from the ninth side 168 to the seventh side 166 is different from the eighth distance H from the tenth side 169 to the eighth side 167.
  • the sixth region 116 with welding traces is not located in the middle of the second metal part 150, so when the second metal part 150 is welded on the second conductive part 120, the welding residue
  • the stress diffusion speeds on the seventh side 166 and the eighth side 167 of the second metal part 150 are also different, and the welding residual stress tends to concentrate on the side where the distance between the sixth region 116 and the second metal part 150 in the second direction is smaller and the side with the smaller distance in the third direction.
  • the internal heat of the battery 10 is high, side reactions between the electrolyte and the positive electrode or the negative electrode may increase, thereby generating more gas, resulting in an increase in internal air pressure.
  • the larger air pressure can make the sixth region 116 and the second metal part 150 have a smaller distance in the second direction and the side with a smaller distance in the third direction to impact and break, so that the second metal part 150 and the second metal part 150 can be separated from each other by impact.
  • the two conductive parts 120 are disconnected to realize the disconnection of the battery 10 , thereby reducing the probability of thermal failure of the battery 10 and improving the product performance of the battery 10 .
  • the size relationship between the fifth distance E and the sixth distance F and the size relationship between the seventh distance G and the eighth distance H formed by the second conductive part 120 and the second metal part 150 can also be flexibly combined, so as to flexibly adjust the first distance.
  • the seventh distance G is greater than the eighth distance H.
  • welding residual stress tends to concentrate on the side of the second metal part 150 close to the eighth side 167, and when the internal heat of the battery 10 is high, the side reactions between the electrolyte and the positive or negative electrodes may increase , and more gas is generated, resulting in an increase in internal pressure. Larger air pressure tends to cause the side of the second metal part 150 close to the eighth side 167 to be impacted and disconnected, so that the second metal part 150 is disconnected from the second conductive part 120 to realize the disconnection of the battery 10, which is beneficial to reduce the battery life. 10, the probability of thermal failure occurs, and the product performance of the battery 10 is improved.
  • the seventh distance G is smaller than the eighth distance H.
  • welding residual stress tends to concentrate on the side of the second metal part 150 close to the seventh side 166, and when the internal heat of the battery 10 is high, the side reactions between the electrolyte and the positive or negative electrodes may increase , and more gas is generated, resulting in an increase in internal pressure. Larger air pressure tends to break the side of the second metal part 150 close to the seventh side 166 by impact, so that the second metal part 150 is disconnected from the second conductive part 120 to realize the disconnection of the battery 10, which is beneficial to reduce the battery life. 10, the probability of thermal failure occurs, and the product performance of the battery 10 is improved.
  • the ninth distance I from the first end 140 to the fifth end 144 is greater than the distance I from the second end 141 to the sixth end.
  • the tenth distance J of the portion 145 In this way, the welding residual stress on the first metal part 130 is easy to concentrate on the side of the first metal part 130 close to the second end part 141.
  • the reaction may increase, which in turn produces more gas, resulting in an increase in internal pressure.
  • the distance between the first end 140 and the fifth end 144 is 1 mm to 30 mm
  • the distance between the second end 141 and the sixth end 145 is 1 mm to 30 mm. 1mm to 20mm.
  • the first metal part 130 has a certain distance from the first end 140 and the second end 141 of the first conductive part 110, which helps to reduce the influence of the conductive material layer on the first metal part 130, and also helps to avoid The first conductive part 110 affects the first metal part 130 during manufacturing such as winding.
  • the eleventh distance K from the first side 160 to the fifth side 164 is smaller than the twelfth distance L from the second side 161 to the sixth side 165 .
  • the welding residual stress on the second metal part 150 tends to concentrate on a side of the second metal part 150 close to the first side 160 .
  • side reactions between the electrolyte and the positive electrode or the negative electrode may increase, thereby generating more gas, resulting in an increase in internal air pressure.
  • the distance between the first side 160 to the fifth side 164 is 1 mm to 30 mm, and the distance between the second side 161 to the sixth side 165 is 1 mm to 20 mm.
  • the second metal part 150 has a certain distance from the first side 160 and the second side 161 of the second conductive part 120, which helps to reduce the influence of the conductive material layer on the second metal part 150, and also helps to avoid the second The conductive part 120 affects the second metal part 150 during manufacture.
  • the distance between the first end 140 and the second end 141 is 10mm to 40mm; the distance between the first side 160 and the second side 161 is 10mm to 40mm.
  • Both the second area 112 and the fifth area 115 have enough space for accommodating the first metal part 130 and the second metal part 150, thereby reserving more welding space for the first metal part 130 and the second metal part 150, It is beneficial to improve the reliability of the battery 10 .
  • the first conductive portion 110 further includes a seventh region 117 away from the first region 111 , and the seventh region 117 is located at the side of the first region 111 away from the second region 112 . side.
  • the first metal part 130 can be selected to be welded with the second region 112, or can be selected to be welded with the seventh region 117, so that the first metal part 130 can be located at different positions of the first conductive part 110, which is beneficial to improve the Diversity of the electrode assembly 100 .
  • the second conductive portion 120 further includes an eighth area 118 away from the fourth area 114 , and the eighth area 118 is located at the side of the fourth area 114 away from the fifth area 115 . side.
  • the second metal part 150 can be selected to be welded to the fifth region 115 or to be welded to the eighth region 118, so that the second metal part 150 can be located at different positions of the second conductive part 120, which is beneficial to improve the electrode structure. Variety of components 100 .
  • the first conductive portion 110 is a positive electrode.
  • the first metal portion 130 is connected to the positive electrode to serve as a positive electrode tab. At this time, the first metal part 130 is used to draw out the positive electrode current of the electrode assembly 100 .
  • the second conductive portion 120 is a negative electrode.
  • the second metal portion 150 is connected to the negative electrode to serve as a negative electrode tab.
  • the second metal part 130 is used to lead out the negative electrode current of the electrode assembly 100 .
  • the first conductive part 110 is wound around the first axis and includes a multilayer first region 111 along the first direction
  • the second conductive part 120 is wound around the first axis
  • the second conductive portion 120 includes a multi-layered fourth region 114 along the first direction.
  • the first metal portion 130 is connected to the first region 111 located on the outermost side along the first direction. In this way, the first metal part 130 is located on the outermost side of the electrode assembly 100 , and the pressure on the outermost side is greater than that on other parts of the electrode assembly 100 , which makes it easier to disconnect the first metal part 130 from the first conductive part 110 .
  • the second metal portion 150 is connected to the fourth region 114 located on the outermost side along the first direction. In this way, the second metal part 150 is located at the outermost side of the electrode assembly 100 , and the pressure on the outermost side is greater than that of other parts of the electrode assembly 100 , so that the second metal part 150 is easily disconnected from the second conductive part 120 .
  • the first metal portion 130 is connected to the first region 111 located on the outermost side along the first direction
  • the second metal portion 150 is connected to the fourth region located on the outermost side along the first direction. 114 connections.
  • both the first metal part 130 and the second metal part 150 are located on the outermost side of the electrode assembly 100, and the pressure on the outermost side is greater than that on other parts of the electrode assembly 100, so that it is easy to make the first metal part 130 and the first conductive part 110 is disconnected or the second metal part 150 is disconnected from the second conductive part 120 .
  • the second aspect of the present disclosure provides a battery 10 , as shown in FIG. 7 , which is a schematic cross-sectional view of the battery 10 cut along the Y and Z planes and viewed from the X direction.
  • the battery 10 includes a casing 11 and the above-mentioned electrode assembly 100 , and the electrode assembly 100 is placed in the casing 11 .
  • the casing 11 may be a square casing or a cylindrical casing, which is not limited in this embodiment of the present disclosure.
  • the battery 10 provided by the embodiment of the present disclosure is beneficial to improve the product performance of the battery 10 by improving the electrode assembly 100 therein.
  • the electrode assembly 100 includes a first conductive part 110 , a second conductive part 120 and a first metal part 130 .
  • the first metal part 130 of the electrode assembly 100 is welded to the first conductive part 110, and there is a third area 113 at the welding place between the first metal part 130 and the first conductive part 110, and there are welding traces in the third area 113.
  • first distance A between the third end 142 of the third area 113 and the fifth end 144 of the first metal part 130, and the third end 144 of the third area 113
  • second distance B between the four end portions 143 and the sixth end portion 145 of the first metal portion 130, and the first distance A and the second distance B are not equal, that is, from the first region 111 to the second region 112, the third region 113 with welding marks is not located in the middle of the first metal part 130, that is, the welding marks are not located in the middle of the first metal part 130, so when the first metal part 130 is welded to the first conductive After the welding residual stress is placed on the fifth end portion 144 and the sixth end portion 145 of the first metal portion 130, the diffusion speed is different, and the welding residual stress tends to concentrate between the third region 113 and the first metal portion 130 The smaller side.
  • the material of the housing 11 includes metal.
  • the shell 11 made of metal material is beneficial to protect the electrode assembly 100 inside it, thereby improving the reliability of the battery 10 .
  • the material of the casing 11 is aluminum, iron, or aluminum alloy, etc., which are not limited in the embodiments of the present disclosure.
  • battery 10 is a wound battery. .
  • the high-temperature storage test refers to: the battery is fully charged with 100% SOC, and stored in an environment of 85 degrees for 7 days.
  • High-temperature cycle test refers to: in an ambient temperature of 60 degrees, the battery is charged and discharged from zero power to full power for 300 cycles, the charge rate is 1.3C, and the discharge rate is 1C; among them, the charge rate of 1.3C means that it can be charged 1.3 times in one hour. , the discharge rate 1C means that it takes 1 hour to complete a discharge;
  • the overcharge test refers to charging the battery, the charging current is constant 3 times the rated current of the battery, and when the battery voltage reaches 5V, the constant current is reduced to 0.05 times The rated current of the battery is continuously charged.
  • the pass rate refers to the ratio of the number of batteries without thermal failure to the total number of batteries tested during or after the test, rather than the ratio of the number of batteries with good functions after the test to the total number of batteries tested.
  • the pass rate of the comparative example is 7/20, which means that 13 of the 20 batteries have thermal failure during the test;
  • the pass rate of Example 1 is 20/20, which means that 20 batteries used All the batteries of the embodiments of the present disclosure did not experience isothermal failure during the test. This does not mean that all the batteries still have perfect functions after the test. That is to say, after the test of the 20 batteries of the embodiments of the present disclosure, some or even all of the batteries passed the first conductive part and the first metal part. The fracture of the second conductive part and the second metal part avoids thermal failure, which no longer has the perfect function of the battery.
  • the tab refers to the first metal part 130 or the second metal part 150 in the electrode assembly 100 in the embodiment of the present disclosure
  • A, B, C, and D refer to the first metal part 150 in the embodiment of the present disclosure, respectively.
  • the experimental results show that in the high-temperature storage, high-temperature cycle and overcharge pass rate experiments, there are conditions of thermal failure of the battery, which is not conducive to improving the product performance of the battery.
  • Embodiment 1 A>B and C>D, that is, as shown in FIG. 1, the solder print, that is, the third region 113 is not located in the middle of the first metal part 130 in the second direction and the third direction, and the opposite
  • the comparison of Example 1 shows that in the high-temperature storage, high-temperature cycle and overcharge pass rate experiments, the thermal failure of the battery does not occur in Example 1, which is beneficial to reduce the battery life by breaking the first metal part 130 and the first conductive part 110.
  • the probability of occurrence of thermal failure that is to say, in Embodiment 1, welding residual stress tends to concentrate in the intersection area of the two sides of the first metal part 130 near the sixth end 145 and the eighth end 147, when When the internal heat of the battery 10 is high, side reactions between the electrolyte and the positive electrode or the negative electrode may increase, thereby generating more gas, resulting in an increase in internal air pressure.
  • the larger air pressure can impact and break the intersection area of the two sides near the sixth end 145 and the eighth end 147 of the first metal part 130, so that the first metal part 130 is disconnected from the first conductive part 110, realizing
  • the disconnection of the battery 10 is beneficial to reduce the probability of thermal failure of the battery 10 and improve the product performance of the battery 10 .
  • Comparative Example 1 shows that in the high temperature cycle pass rate test, the pass rate of Comparative Example 1 is 7/20, and the pass rate of Example 2 is 8/20. The probability of thermal failure of the battery in Example 2 is higher than that of Comparative Example 1.
  • the relatively high pressure can make the side of the first metal part 130 close to the sixth end part 145 impact open, so that the first metal part 130 is disconnected from the first conductive part 110, and the circuit breaker of the battery 10 is realized, which is beneficial to reduce the The probability of thermal failure of the battery 10 is reduced, and the product performance of the battery 10 is improved.
  • a third aspect of the present disclosure provides an electronic device 1 including the above-mentioned battery 10 .
  • the electronic device may be, but not limited to, an electric vehicle, a mobile phone, a notebook computer, an electric toy, an electric tool, a battery car, etc. using the battery 10 of the second embodiment of the present disclosure as a power source.
  • the electronic device 1 helps to improve the product performance of the electronic device by improving the electrode assembly 100 of the battery 10 therein.
  • the electrode assembly 100 includes a first conductive part 110 , a second conductive part 120 and a first metal part 130 .
  • the first metal part 130 of the electrode assembly 100 is welded to the first conductive part 110 , and there is a third region 113 at the welding place between the first metal part 130 and the first conductive part 110 , and there are welding traces in the third region 113 .
  • first distance A between the third end 142 of the third area 113 and the fifth end 144 of the first metal part 130, and the third end 144 of the third area 113
  • second distance B between the fourth end portion 143 and the sixth end portion 145 of the first metal portion 130 , and the first distance A and the second distance B are different. That is to say, in the direction from the first region 111 to the second region 112, the third region 113 with welding marks is not located in the middle of the first metal part 130, that is, the welding marks are not located in the middle of the first metal part 130 Location.
  • the diffusion speed of the welding residual stress on the fifth end 144 side and the sixth end 145 side of the first metal part 130 is different, and the welding residual stress is easy to concentrate.
  • the distance between the third region 113 and the first metal part 130 is smaller. Therefore, when the internal heat of the battery 10 is high, side reactions between the electrolyte and the positive electrode or the negative electrode may increase, thereby generating more gas, resulting in an increase in internal pressure.
  • the larger air pressure can impact and disconnect the side with the smaller distance between the third region 113 and the first metal part 130, so that the first metal part 130 is disconnected from the first conductive part 110, thereby realizing the disconnection of the battery 10, thereby effectively It is beneficial to reduce the probability of thermal failure of the battery 10 , thereby improving the product performance of the electronic device 1 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本公开提供了一种电极组件、电池及电子装置。电极组件包括第一导电部、第二导电部及第一金属部。第一导电部包括设有导电物质层的第一区域,以及与第一区域相离的第二区域;第一金属部与第二区域通过焊接方式连接,第一金属部具有形成了焊接痕迹的第三区域;沿与第一导电部的第一表面所垂直的第一方向观察时,第二区域具有第一端部和第二端部;第三区域具有第三端部以及第四端部;第一金属部,在第二方向上具有第五端部,以及在第二方向上设于第五端部对侧且距离第二端部的距离比第五端部更近的第六端部;沿第二方向,第三端部至第五端部的第一距离与第四端部至第六端部的第二距离不等。

Description

一种电极组件、电池及电子装置 技术领域
本公开涉及电化学装置技术领域,特别是涉及一种电极组件、电池及电子装置。
背景技术
由于具有能量密度高、循环次数多及储存时间长等特点,锂离子电池广泛应用于电动车、电动汽车、智能存储设备、无人机等电子设备中。
相关技术中,对电池进行高温储存时,以及电池在过度使用后,由于电池内部化学副反应加重,会导致电池内部产生较多的气体,从而导致电池因内部气压过高对电池的产品性能等产生不良影响。
发明内容
本公开实施例的目的在于提供一种电极组件、电池及电子装置,以降低电池出现热失效的概率,提高电池的产品性能。
本公开第一方面提供了一种电极组件,电极组件包括第一导电部、第二导电部及第一金属部。其中,所述第一导电部包括设有导电物质层的第一区域,以及与所述第一区域相离的第二区域;所述第一金属部与所述第二区域通过焊接方式连接,所述第一金属部具有形成了焊接痕迹的第三区域;沿与所述第一导电部的第一表面所垂直的第一方向观察时,所述第二区域,在沿与所述第一方向垂直且沿所述第一区域向所述第二区域延伸的第二方向上具有第一端部和,在所述第二方向上设于所述第一端部的对侧且距离所述导电物质层的距离比所述第一端部更远的第二端部;所述第三区域,在所述第二方向上具有第三端部,以及在所述第二方向上设于所述第三端部对侧且距离所述第二端部的距离比所述第三端部更近的第四端部;所述第一金属部,在所述第二方向上具有第五端部,以及在所述第二方向上设于所述第五端部对侧且距离所述第二端部的距离比所述第五端部更近的第六端部;沿所述第二方向,所述第三端部至所述第五端部的第一距离与所述第四端部至所述第六端部的第二距离不等。
本公开实施例提供的电极组件中,第一金属部与第一导电部可以通过焊接方式连接,且在第一金属部与第一导电部的焊接处具有第三区域,第三区域内具有焊接痕迹。由于在第二方向上,第三区域的第三端部与第一金属部的第五端部间具有第一距离,且第三区域 的第四端部与第一金属部的第六端部间具有第二距离,且第一距离与第二距离不等,因此当第一金属部焊接于第一导电部上后,焊接残余应力在第一金属部的第五端部侧及第六端部侧的扩散速度不同,焊接残余应力易于集中在第三区域与第一金属部间距离较小的一侧。因此,当电池内部热量较高时,电解液与正极或负极之间的副反应可能增多,进而产生气体较多,导致内部气压增大。较大气压能够使第三区域与第一金属部距离较小的一侧冲击断开,从而使第一金属部与第一导电部断开连接,实现电池的断路,从而有利于降低电池出现热失效的概率,提高电池的寿命和安全。
另外,根据本公开实施例的电极组件,还可具有如下附加的技术特征:
在本公开的一些实施例中,所述第一距离大于所述第二距离。这样,第一金属部的靠近第六端部的一侧易于受到电池内的较大气压冲击而与第一导电部断开,实现电池的断路,进一步提高电池的产品性能。
在本公开的一些实施例中,所述第一距离小于所述第二距离。这样,第一金属部的靠近第五端部的一侧易于受到电池内的较大气压冲击而与第一导电部断开,实现电池的断路,进一步提高电池的产品性能。
在本公开的一些实施例中,所述第一金属部,在沿与所述第二方向垂直的第三方向上,具有与所述第二区域相离的第七端部和在所述第三方向上设于所述第七端部对侧的第八端部;在沿所述第一方向观察时,所述第三区域包括在所述第三方向上的第九端部以及在所述第三方向上设于所述第九端部对侧且距离所述第八端部的距离比所述第九端部更近的第十端部;在所述第三方向上,所述第九端部至所述第七端部的第三距离与所述第十端部至所述第八端部的第四距离不等。
在第三方向上,具有焊接痕迹的第三区域也不位于第一金属部的中间位置,因此当第一金属部焊接于第一导电部上后,焊接残余应力在第一金属部的第七端部侧及第八端部侧的扩散速度也不同,电池内的较大气压能够使第三区域与第一金属部在第二方向的距离较小的一侧以及在第三方向上的距离较小的一侧冲击断开,从而使第一金属部与第一导电部断开连接,实现电池的断路,进一步提高电池的产品性能。
进一步地,所述第三距离大于所述第四距离。这样,在第三方向上,电池内的较大气压易于使第一金属部的靠近第八端部的一侧受冲击而与第一导电部断开。
或者,在本公开另外一些实施例中,所述第三距离小于所述第四距离。这样,在第三方向上,电池内的较大气压易于使第一金属部的靠近第七端部的一侧受冲击而与第一导电部断开,实现电池的断路,进一步提高电池的产品性能。
在本公开的一些实施例中,所述第二导电部包括设有导电物质层的第四区域,以及与所述第四区域相离的第五区域;所述电极组件还包括第二金属部,所述第二金属部与所述第五区域通过焊接方式连接,所述第二金属部包括具有焊接痕迹的第六区域;沿与所述第二导电部的所述第二表面所垂直的第一方向观察时,所述第五区域,在沿所述第二方向上具有第一侧和在所述第二方向上设于所述第一侧的对侧且距离所述导电物质层的距离比所述第一侧更远的第二侧;所述第六区域,在所述第二方向上具有第三侧,以及在所述第二方向上设于所述第三侧对侧且距离所述第二侧的距离比所述第三侧更近的第四侧;所述第二金属部,在所述第二方向上具有第五侧,以及在所述第二方向上设于所述第五侧对侧且距离所述第二侧的距离比所述第五侧更近的第六侧;沿所述第二方向,所述第三侧至所述第五侧的第五距离与所述第四侧至所述第六侧的第六距离不同。
本公开实施例提供的电极组件还具有第二导电部和第二金属部,第二金属部与第二导电部焊接,且在第二金属部与第二导电部的焊接处具有第六区域,第六区域内具有焊接痕迹。当电池内部热量较高时,电解液与正极或负极之间的副反应可能增多,进而产生气体较多,导致内部气压增大。较大气压易于使第六区域与第二金属部距离较小的一侧冲击断开,从而使第二金属部与第二导电部断开连接,实现电池的断路,从而有利于降低电池出现热失效的概率,提高电池的产品性能。
在本公开的一些实施例中,所述第五距离大于所述第六距离。这样,电池内的较大气压能够使第二金属部的靠近第六侧的一侧受冲击而与第二导电部断开,实现电池的断路,进一步提高电池的产品性能。
在本公开的一些实施例中,所述第五距离小于所述第六距离。这样电池内的较大气压能够使第二金属部的靠近第五侧的一侧受冲击而与第二导电部断开,实现电池的断路,进一步提高电池的产品性能。
在本公开的一些实施例中,所述第二金属部在与所述第二方向垂直的第三方向上,具有与所述第五区域相离的第七侧,以及在所述第三方向上设于所述第七侧对侧的第八侧;所述第六区域,在沿所述第一方向观察时,在所述第三方向上具有第九侧以及在所述第三方向上设于所述第九侧的对侧且距离所述第八侧的距离比所述第九侧更近的第十侧;在所述第三方向上,所述第九侧至所述第七侧的第七距离与所述第十侧至所述第八侧的第八距离不等。
在第三方向上,具有焊接痕迹的第六区域也不位于第二金属部的中间位置,因此当第 二金属部焊接于第二导电部上后,焊接残余应力在第二金属部的第七侧及第八侧的扩散速度也不同,电池内的较大气压能够使第六区域与第二金属部在第二方向的距离较小的一侧以及在第三方向上的距离较小的一侧冲击断开,从而使第二金属部与第二导电部断开连接。
进一步地,所述第七距离大于所述第八距离。这样,在第三方向上,电池内的较大气压易于使第二金属部的靠近第八侧的一侧受冲击而与第二导电部断开,实现电池的断路,进一步提高电池的产品性能。
或者,在本公开另外一些实施例中,所述第七距离小于所述第八距离。这样,在第三方向上,电池内的较大气压易于使第二金属部的靠近第七侧的一侧受冲击而与第二导电部断开,实现电池的断路,进一步提高电池的产品性能。
在本公开的一些实施例中,在所述第二方向上,所述第一端部至所述第五端部的第九距离大于所述第二端部至所述第六端部的第十距离。在第二方向上,第一金属部不处于第二区域的中间部位。这样,电池内的较大气压易于使第一金属部的靠近第二端部的一侧受冲击而与第一导电部断开,实现电池的断路,进一步提高电池的产品性能。
在本公开的一些实施例中,在所述第二方向上,所述第一端部至所述第五端部之间的距离为1mm至30mm,所述第二端部至所述第六端部之间的距离为1mm至20mm。这样,第一金属部距离第一导电部的第一端部和第二端部均具有一定的距离,从而有利于避免第一导电部制造时对第一金属部产生影响。
在本公开的一些实施例中,在所述第二方向上,所述第一侧至所述第五侧的第十一距离小于所述第二侧至所述第六侧的第十二距离。这样,第二金属部上的焊接残余应力易于集中在第二金属部的靠近第一侧的一侧,电池内的较大气压易于使第二金属部的靠近第一侧的一侧受冲击而与第二导电部断开,实现电池的断路,进一步提高电池的产品性能。
在本公开的一些实施例中,在所述第二方向上,所述第一侧至所述第五侧之间的距离为1mm至30mm,所述第二侧至所述第六侧之间的距离为1mm至20mm。这样,第二金属部距离第二导电部的第一侧和第二侧均具有一定的距离,从而有利于避免第二导电部制造时对第二金属部产生影响。
在本公开的一些实施例中,在所述第二方向上,所述第一端部至所述第二端部之间的距离为10mm至40mm;所述第一侧至所述第二侧之间的距离为10mm至40mm。这样,第二区域和第五区域均有足够的空间用于容纳第一金属部和第二金属部,从而给第一金属部以及第二金属部预留较多的焊接空间。
在本公开的一些实施例中,所述第一导电部还包括与所述第一区域相离的第七区域,所述第七区域位于所述第一区域远离所述第二区域的一侧。这样,第一金属部既可选择与第二区域焊接,也可以选择与第七区域焊接,使得第一金属部可位于第一导电部的不同的位置,进而有利于提高电极组件的多样性。
在本公开的一些实施例中,所述第二导电部还包括与所述第四区域相离的第八区域,所述第八区域位于所述第四区域远离所述第五区域的一侧。这样,第二金属部既可选择与第五区域焊接,也可以选择与第八区域焊接,使得第二金属部可位于第二导电部的不同的位置,进而有利于提高电极组件的多样性。
在本公开的一些实施例中,所述第一导电部为正极。第一金属部与正极相连,以作为正极极耳。
在本公开的一些实施例中,所述第二导电部为负极。第二金属部与负极相连,以作为负极极耳。
在本公开的一些实施例中,所述第一导电部绕第一轴线卷绕且沿所述第一方向所述第一导电部包括多层所述第一区域,所述第二导电部绕所述第一轴线卷绕且沿所述第一方向所述第二导电部包括多层所述第四区域,所述第一金属部与沿所述第一方向位于最外侧的第一区域连接,和/或所述第二金属部与沿所述第一方向位于最外侧的第四区域连接。这样,第一金属部与第二金属部均位于电极组件的最外侧,最外侧的压力比电极组件其他部位的压力更大,进而易于使第一金属部与第一导电部断开或第二金属部与第二导电部断开。
本公开第二方面提供了一种电池,所述电池包括壳体和上述所述的电极组件,所述电极组件置于所述壳体内。
本公开实施例提供的电池,通过改善电池中的电极组件,进而有利于提高电池的产品性能。电极组件包括第一导电部、第二导电部及第一金属部。电极组件的第一金属部与第一导电部通过焊接方式连接,且在第一金属部与第一导电部的焊接处具有第三区域,第三区域内具有焊接痕迹。由于在第二方向上,第三区域的第三端部与第一金属部的第五端部间具有第一距离,第三区域的第四端部与第一金属部的第六端部间具有第二距离,且第一距离与第二距离不等。因此当第一金属部焊接于第一导电部上后,焊接残余应力在第一金属部的第五端部侧及第六端部侧的扩散速度不同,焊接残余应力易于集中在第三区域与第一金属部间距离较小的一侧。因此,当电池内部热量较高时,电解液与正极或负极之间的副反应可能增多,进而产生气体较多,导致内部气压增大。较大气压能够使第三区域与第 一金属部距离较小的一侧冲击断开,从而使第一金属部与第一导电部断开连接,进而实现电池的断路,从而有利于降低电池出现热失效的概率,提高电池的产品性能。
另外,根据本公开实施例的电池,还可具有如下附加的技术特征:
在本公开的一些实施例中,所述壳体的材料包括金属。金属材料的壳体有利于保护内部的电极组件,从而有利于提高电池的可靠性。
在本公开的一些实施例中,所述电池为卷绕型电池。
本公开第三方面提供了一种电子装置,所述电子装置包括上述所述的电池。
本公开实施例提供的电子装置,通过改善其中的电池的电极组件从而利于提高电子装置的产品性能。电子装置的电极组件包括第一导电部、第二导电部及第一金属部。电极组件的第一金属部与第一导电部焊接,且在第一金属部与第一导电部的焊接处具有第三区域,第三区域内具有焊接痕迹。由于在由第一区域至第二区域的方向上,第三区域的第三端部与第一金属部的第五端部间具有第一距离,且第三区域的第四端部与第一金属部的第六端部间具有第二距离,且第一距离与第二距离不等,也就是在由第一区域至第二区域的方向上,具有焊接痕迹的第三区域不位于第一金属部的中间位置,即焊接痕迹不位于第一金属部的中间位置,因此当第一金属部焊接于第一导电部上后,焊接残余应力在第一金属部的第五端部侧及第六端部侧的扩散速度不同,焊接残余应力易于集中在第三区域与第一金属部间距离较小的一侧。因此,当电池内部热量较高时,电解液与正极或负极之间的副反应可能增多,进而产生气体较多,导致内部气压增大。较大气压能够使第三区域与第一金属部距离较小的一侧冲击断开,从而使第一金属部与第一导电部断开连接,进而实现电池的断路,从而有利于降低电池出现热失效的概率,进而利于提高电子装置的产品性能。
附图说明
为了更清楚地说明本公开实施例和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的实施例。
图1为本公开实施例中一种卷绕型电极组件的结构示意图;
图2为本公开实施例的第三区域或第六区域的结构示意图;
图3为本公开实施例的第一导电部展开后的结构示意图;
图4为图3中M区域的放大示意图;
图5为本公开实施例的第二导电部展开后的结构示意图;
图6为图5中N区域的放大示意图;
图7为本公开实施例的电池的沿第三方向Y的剖面示意图。
附图标记:
电子装置-1;电池-10;壳体-11;隔膜-12;电极组件-100;第一导电部-110;第一区域-111;第二区域-112;第三区域-113;第一表面-1101;第二表面-1201;第四区域-114;第五区域-115;第六区域-116;第七区域-117;第八区域-118;第一端部-140;第二端部-141;第三端部-142;第四端部-143;第五端部-144;第六端部-145;第七端部-146;第八端部-147;第九端部-148;第十端部-149;第一侧-160;第二侧-161;第三侧-162;第四侧-163;第五侧-164;第六侧-165;第七侧-166;第八侧-167;第九侧-168;第十侧-169;第一距离-A;第二距离-B;第三距离-C;第四距离-D;第五距离-E;第六距离-F;第七距离-G;第八距离-H;第九距离-I;第十距离-J;第十一距离-K;第十二距离-L;第二导电部-120;第一金属部-130;第二金属部-150。
具体实施方式
下面对本公开实施例中的技术方案进行清楚、详细地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。除非另有定义,本文所使用的所有的技术和科学术语与属于本公开的技术领域的技术人员通常理解的含义相同。在本公开的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本公开。
下文,将详细地描述本公开的实施方式。但是,本公开可体现为许多不同的形式,并且不应解释为限于本文阐释的示例性实施方式。而是,提供这些示例性实施方式,从而使本公开透彻的和详细的向本领域技术人员传达。
另外,为了简洁和清楚,在附图中,各种组件、层的尺寸或厚度可被放大。遍及全文,相同的数值指相同的要素。如本文所使用,术语“及/或”、“以及/或者”包括一个或多个相关列举项目的任何和所有组合。另外,应当理解,当要素A被称为“连接”要素B时,要素A可直接连接至要素B,或可能存在中间要素C并且要素A和要素B可彼此间接连接。
进一步,当描述本公开的实施方式时使用“可”指“本公开的一个或多个实施方式”。
本文使用的专业术语是为了描述具体实施方式的目的并且不旨在限制本公开。如本文所使用,单数形式旨在也包括复数形式,除非上下文另外明确指出。应进一步理解,术语“包括”,当在本说明书中使用时,指存在叙述的特征、数值、步骤、操作、要素和/或组分, 但是不排除存在或增加一个或多个其他特征、数值、步骤、操作、要素、组分和/或其组合。
空间相关术语,比如“上”等可在本文用于方便描述,以描述如图中阐释的一个要素或特征与另一要素(多个要素)或特征(多个特征)的关系。应理解,除了图中描述的方向之外,空间相关术语旨在包括设备或装置在使用或操作中的不同方向。例如,如果将图中的设备翻转,则描述为在其他要素或特征“上方”或“上”的要素将定向在其他要素或特征的“下方”或“下面”。因此,示例性术语“上”可包括上面和下面的方向。应理解,尽管术语第一、第二、第三等可在本文用于描述各种要素、组分、区域、层和/或部分,但是这些要素、组分、区域、层和/或部分不应受这些术语的限制。这些术语用于区分一个要素、组分、区域、层或部分与另一要素、组分、区域、层或部分。因此,下面讨论的第一要素、组分、区域、层或部分可称为第二要素、组分、区域、层或部分,而不背离示例性实施方式的教导。在本公开中,第一方向可为第一表面所在平面中的任意一方向。
下面对本公开的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
相关技术中,对电池进行高温储存时,以及电池在过度使用后,由于电池内部化学副反应加重,会导致电池内部产生较多的气体,从而导致电池因内部气压过高对电池的产品性能等产生不良影响。
本公开实施例的目的在于提供一种电极组件100、电池10及电子装置1,以利于降低电池10出现热失效的概率,提高电池10的安全性。
如图1、图3和图4所示,本公开第一方面提供了一种卷绕型电极组件100,电极组件100包括第一导电部110、第二导电部120及第一金属部130。其中,第一导电部110包括设有导电物质层的第一区域111,以及与第一区域111相离的第二区域112;第一金属部130与第二区域112通过焊接方式连接,第一金属部130具有焊接痕迹的第三区域113;沿与第一导电部110的第一表面1101所垂直的第一方向观察时,第二区域112,在沿与第一方向垂直且沿第一区域111向第二区域112延伸的第二方向上具有第一端部140和,在第二方向上设于第一端部140的对侧且距离导电物质层的距离比第一端部140更远的第二端部141;第三区域113,在第二方向上具有第三端部142,以及在第二方向上设于第三端部142对侧且距离第二端部141的距离比第三端部142更近的第四端部143;第一金属部130,在第二方向上具有第五端部144,以及在第二方向上设于第五端部144对侧且距离第二端部141的距离比第五端部144更近的第六端部145;沿第二方向,第三端部142 至第五端部144的第一距离A与第四端部143至第六端部145的第二距离B不等。
本公开实施例的电极组件100的第一导电部110和第二导电部120可以为正极片或负极片,且第一导电部110和第二导电部120极性相反。也就是说,第一导电部110可以为正极片,也可以为负极片,相对应的,第二导电部110可以为负极片,也可以为正极片,本公开不作限制。进一步的,如图2所示,电极组件100还可以包括隔膜12,隔膜12位于第一导电部110及第二导电部120之间。隔膜12用来分隔第一导电部110和第二导电部120,以防止第一导电部110与第二导电部120内部短路,并使电解离子自由通过以形成导电通路。第一导电部110及第二导电部120可通过多种方式形成电极组件100,例如如图1所示的卷绕型,本公开实施例也不作限制。在一些实施例中,如图1所示,电极组件100还可以包括隔膜12,隔膜12位于第一导电部110及第二导电部120之间。
本公开实施例中,第一方向可以为垂直于第一导电部110的第一表面1101的方向,第二方向可以为沿第一导电部110的第一区域111向第二区域112延伸的方向,第三方向分别垂直于第一方向和第二方向。也即,如图1和图2所示,第一方向即为图示的Z轴方向,第二方向为图示的X轴方向,第三方向为图示的Y轴方向。
本公开实施例中,第一金属部130为将第一导电部110的电极引出的导电部件。第一金属部130可以为正极极耳或负极极耳。第一金属部130为正极极耳时,第一金属部130的材料可以包括铝(Al)或铝合金中的至少一种,第一金属部130为负极极耳时,第一金属部130的材料可以包括镍(Ni)、铜(Cu)或铜镀镍(Ni-Cu)中的至少一种。
隔膜12可以为一种多孔的塑料薄膜,其常用的材料包括聚丙烯(PP)、聚乙烯(PE)以及丙烯与乙烯的共聚物、聚乙烯均聚物等。
本公开实施例提供的电极组件100中,第一金属部130与第一导电部110焊接连接,且在第一金属部130与第一导电部110的焊接处具有第三区域113,第三区域113内具有焊接痕迹。第三区域113位于第一导电部110上,第三区域113是指由第一导电部110和第一金属部130焊接所形成的焊接区的区域。第三区域113可以是不规则的形状,也可以是多边形,例如四边形、五边形等。在本公开实施例中,为了便于理解,第三区域113为长方形。如图2所示,为第一导电部110的第二区域112和第一金属部130经过焊接形成第三区域113的结构示意图。在焊接区内包括多个不同位置的焊点200,其中,在第二方向X上,具有距离第一端部140距离最近的焊点201和距离最远的焊点202,分别经过焊点201和焊点202形成两条平行于第一端部140的直线a和直线b;在第三方向Y上,具 有距离第七端部146距离最近的焊点203和距离最远的焊点204,分别经过焊点203和焊点204形成两条平行于第七端部146的直线c和直线d。直线a、直线b、直线c和直线d相连可以形成上述的第三区域113。
由于在由第一区域111至第二区域112的方向上,第三区域113的第三端部142与第一金属部130的第五端部144间具有第一距离A,且第三区域113的第四端部143与第一金属部130的第六端部145间具有第二距离B,且第一距离A与第二距离B不等。也就是在由第一区域111至第二区域112的方向上,具有焊接痕迹的第三区域113不位于第一金属部130的中间位置,即焊接痕迹不位于第一金属部130的中间位置。因此当第一金属部130焊接于第一导电部110上后,焊接残余应力在第一金属部130的第五端部144侧及第六端部145侧的扩散速度不同,使得焊接残余应力更易于集中在第三区域113与第一金属部130间距离较小的一侧。因此,当电池10内部热量较高时,电解液与正极或负极之间的副反应可能增多,进而产生气体较多,导致内部气压增大。较大气压可以使第三区域113与第一金属部130距离较小的一侧冲击断开,从而使第一金属部130与第一导电部110断开连接,实现电池10的断路,从而有利于降低电池10出现热失效的概率,提高电池10的产品性能。
如图3及图4所示,在本公开的一些实施例中,第一距离A大于第二距离B。
第一距离A是指第三区域113的第三端部142与第一金属部130的第五端部144沿第二方向的直线长度。这样,焊接残余应力更易于集中在第一金属部130的靠近第六端部145的一侧。因此,当电池10内部热量较高时,电解液与正极或负极之间的副反应可能增多,进而产生气体较多,导致内部气压增大。较大气压能够使第一金属部130的靠近第六端部145的一侧冲击断开,从而使第一金属部130与第一导电部110断开连接,实现电池10的断路,进而有利于降低电池10出现热失效的概率,提高电池10的产品性能。
在本公开的另外一些实施例中,第一距离A小于第二距离B。这样,焊接残余应力更易于集中在第一金属部130的靠近第五端部144的一侧。因此,当电池10内部热量较高时,电解液与正极或负极之间的副反应可能增多,进而产生气体较多,导致内部气压增大。较大气压能够使第一金属部130的靠近第五端部144的一侧冲击断开,从而使第一金属部130与第一导电部110断开连接,实现电池10的断路,进而有利于降低电池10出现热失效的概率,提高电池10的产品性能。
如图3及图4所示,在本公开的一些实施例中,第一金属部130,在沿与第二方向垂 直的第三方向上,具有与第二区域112相离的第七端部146和在第三方向上设于第七端部146对侧的第八端部147。在沿第一方向观察时,第三区域113包括在第三方向上的第九端部148以及在第三方向上设于第九端部148对侧且距离第八端部147的距离比第九端部148更近的第十端部149。在第三方向上,第九端部148至第七端部146的第三距离C与第十端部149至第八端部147的第四距离D不等。
本公开实施例中,在第三方向上,具有焊接痕迹的第三区域113也不位于第一金属部130的中间位置,因此当第一金属部130焊接于第一导电部110上后,焊接残余应力在第一金属部130的第七端部146侧及第八端部147侧的扩散速度也不同,焊接残余应力易于集中在第三区域113与第一金属部130在第二方向的距离较小的一侧以及在第三方向上的距离较小的一侧。
本公开实施例中的第三距离C和第四距离D的大小关系可与前述的第一距离A和第二距离B的大小关系灵活组合,从而灵活调节第一金属部130上易于集中焊接残余应力的区域所在的位置。
例如,当A>B且C>D时,焊接残余应力易于集中在第一金属部130的靠近第六端部145以及靠近第八端部147的两侧交集区域内,当电池10内部热量较高时,电解液与正极或负极之间的副反应可能增多,进而产生气体较多,导致内部气压增大。且内部气压较大时,较大气压能够使第一金属部130的靠近第六端部145以及靠近第八端部147的两侧交集区域冲击断开,从而使第一金属部130与第一导电部110断开连接,实现电池10的断路,从而有利于降低了电池10出现热失效的概率,提高了电池10的产品性能。
当然,容易理解的是,若A>B且C<D时,焊接残余应力易于集中在第一金属部130的靠近第六端部145以及靠近第七端部146的两侧交集区域内。本领域技术人员可根据需求自行设置。
进一步地,如图3及图4所示,第三距离C大于第四距离D。这样,在第三方向上,焊接残余应力易于集中在第一金属部130的靠近第八端部147的一侧,当电池10内部热量较高时,电解液与正极或负极之间的副反应可能增多,进而产生气体较多,导致内部气压增大。较大气压易于使第一金属部130的靠近第八端部147的一侧冲击断开,从而使第一金属部130与第一导电部110断开连接,实现电池10的断路,进而有利于降低电池10出现热失效的概率,提高电池10的产品性能。
或者,在本公开另外一些实施例中,第三距离C小于第四距离D。这样,在第三方向 上,焊接残余应力易于集中在第一金属部130的靠近第七端部146的一侧,当电池10内部热量较高时,电解液与正极或负极之间的副反应可能增多,进而产生气体较多,导致内部气压增大。较大气压易于使第一金属部130的靠近第七端部146的一侧冲击断开,从而使第一金属部130与第一导电部110断开连接,实现电池10的断路,进而有利于降低电池10出现热失效的概率,提高电池10的产品性能。
在本公开的一些实施例中,如图1、图5和图6所示,第二导电部120包括设有导电物质层的第四区域114,以及与第四区域114相离的第五区域115;电极组件100还包括第二金属部150,第二金属部150与第五区域115通过焊接方式连接,第二金属部150包括具有焊接痕迹的第六区域116;沿与第二导电部120的第二表面1201所垂直的第一方向观察时,第五区域115,在沿第二方向上具有第一侧160和,在第二方向上设于第一侧160的对侧且距离导电物质层的距离比第一侧160更远的第二侧161;第六区域116,在第二方向上具有第三侧162,以及在第二方向上设于第三侧162对侧且距离第二侧161的距离比第三侧162更近的第四侧163;第二金属部150,在第二方向上具有第五侧164,以及在第二方向上设于第五侧164对侧且距离第二侧161的距离比第五侧164更近的第六侧165;沿第二方向,第三侧162至第五侧164的第五距离E与第四侧163至第六侧165的第六距离F不同。
本公开实施例提供的电极组件100还具有第二导电部120和第二金属部150。其中,第二金属部150为将第二导电部120的电极引出的导电部件。第二金属部150可以为正极极耳或负极极耳,且第二金属部150与第一金属部150的极性相反。第二金属部150的材料可参照第一金属部130的材料的相关描述,此处不再赘述。
本公开实施例中,第二金属部150与第二导电部120焊接,且在第二金属部150与第二导电部120的焊接处具有第六区域116,第六区域116内具有焊接痕迹。第六区域116位于第二导电部120上,第六区域116是指由第二导电部120和第二金属部150焊接所形成的焊接区的区域。第六区域116可以是不规则的形状,也可以是多边形,例如四边形、五边形等。在本公开实施例中,为了便于理解,第三区域116为长方形。如图2所示,为第二导电部120的第五区域115和第二金属部150经过焊接形成第六区域116的结构示意图。在焊接区内包括多个不同位置的焊点200,其中,在第二方向X上,具有距离第一侧160距离最近的焊点201和距离最远的焊点202,分别经过焊点201和焊点202形成两条平行于第一侧160的直线a和直线b;在第三方向Y上,具有距离第七侧166距离最近 的焊点203和距离最远的焊点204,分别经过焊点203和焊点204形成两条平行于第七侧166的直线c和直线d。直线a、直线b、直线c和直线d相连即形成上述的第六区域116。
第二导电部120包括第四区域114和第五区域115,在由第四区域114至第五区域115的方向上,第六区域116的第三侧162与第二金属部150的第五侧164具有第五距离E,第六区域116的第四侧163与第二金属部150的第六侧165间具有第六距离F,且第五距离E与第六距离F不等。也就是在由第四区域114至第五区域115的方向上,具有焊接痕迹的第六区域116不位于第二金属部150的中间位置,因此当第二金属部150焊接于第二导电部120上后,焊接残余应力在第二金属部150的第五侧164及第六侧165的扩散速度不同,焊接残余应力易于集中在第六区域116与第二金属部150间距离较小的一侧。当电池10内部热量较高时,电解液与正极或负极之间的副反应可能增多,进而产生气体较多,导致内部气压增大。较大气压能够使第六区域116与第二金属部150距离较小的一侧冲击断开,从而使第二金属部150与第二导电部120断开连接,实现电池10的断路,从而有利于降低电池10出现热失效的概率,提高电池10的产品性能。
在本公开的一些实施例中,如图5及图6所示,第五距离E大于第六距离F。这样,焊接残余应力易于集中在第二金属部150的靠近第六侧165的一侧,当电池10内部热量较高时,电解液与正极或负极之间的副反应可能增多,进而产生气体较多,导致内部气压增大。较大气压能够使第二金属部150的靠近第六侧165的一侧冲击断开,从而使第二金属部150与第二导电部120断开连接,实现电池10的断路,进而有利于降低电池10出现热失效的概率,提高电池10的产品性能。
在本公开的另外一些实施例中,第五距离E小于第六距离F。这样,焊接残余应力易于集中在第二金属部150的靠近第五侧164的一侧,当电池10内部热量较高时,电解液与正极或负极之间的副反应可能增多,进而产生气体较多,导致内部气压增大。较大气压能够使第二金属部150的靠近第五侧164的一侧冲击断开,从而使第二金属部150与第二导电部120断开连接,实现电池10的断路,进而有利于降低电池10出现热失效的概率,提高电池10的产品性能。
在本公开的一些实施例中,第二金属部150在与第二方向垂直的第三方向上,具有与第五区域115相离的第七侧166,以及在第三方向上设于第七侧166对侧的第八侧167;第六区域116,在沿第一方向观察时,在第三方向上具有第九侧168以及在第三方向上设于第九侧168的对侧且距离第八侧167的距离比第九侧168更近的第十侧169。在第三方 向上,第九侧168至第七侧166的第七距离G与第十侧169至第八侧167的第八距离H不等。
本公开实施例中,在第三方向上,具有焊接痕迹的第六区域116也不位于第二金属部150的中间位置,因此当第二金属部150焊接于第二导电部120上后,焊接残余应力在第二金属部150的第七侧166及第八侧167的扩散速度也不同,焊接残余应力易于集中在第六区域116与第二金属部150在第二方向的距离较小的一侧以及在第三方向上的距离较小的一侧。当电池10内部热量较高时,电解液与正极或负极之间的副反应可能增多,进而产生气体较多,导致内部气压增大。较大气压能够使第六区域116与第二金属部150在第二方向的距离较小的一侧以及在第三方向上的距离较小的一侧冲击断开,从而使第二金属部150与第二导电部120断开连接,实现电池10的断路,从而有利于降低电池10出现热失效的概率,提高电池10的产品性能。
同样,第二导电部120和第二金属部150所形成的第五距离E与第六距离F的大小关系以及第七距离G与第八距离H的大小关系也可以灵活组合,从而灵活调节第二金属部150上易于集中焊接残余应力的部位的位置。
进一步地,如图5及图6所示,第七距离G大于第八距离H。这样,在第三方向上,焊接残余应力易于集中在第二金属部150的靠近第八侧167的一侧,当电池10内部热量较高时,电解液与正极或负极之间的副反应可能增多,进而产生气体较多,导致内部气压增大。较大气压易于使第二金属部150的靠近第八侧167的一侧冲击断开,从而使第二金属部150与第二导电部120断开连接,实现电池10的断路,进而有利于降低电池10出现热失效的概率,提高电池10的产品性能。
或者,在本公开另外一些实施例中,第七距离G小于第八距离H。这样,在第三方向上,焊接残余应力易于集中在第二金属部150的靠近第七侧166的一侧,当电池10内部热量较高时,电解液与正极或负极之间的副反应可能增多,进而产生气体较多,导致内部气压增大。较大气压易于使第二金属部150的靠近第七侧166的一侧冲击断开,从而使第二金属部150与第二导电部120断开连接,实现电池10的断路,进而有利于降低电池10出现热失效的概率,提高电池10的产品性能。
在本公开的一些实施例中,如图3及图4所示,在第二方向上,第一端部140至第五端部144的第九距离I大于第二端部141至第六端部145的第十距离J。这样,第一金属部130上的焊接残余应力易于集中在第一金属部130的靠近第二端部141的一侧,当电池10 内部热量较高时,电解液与正极或负极之间的副反应可能增多,进而产生气体较多,导致内部气压增大。较大气压易于使第一金属部130的靠近第二端部141的一侧冲击断开,从而使第一金属部130与第一导电部110断开连接,实现电池10的断路,进而有利于降低电池10出现热失效的概率,提高电池10的产品性能。
在本公开的一些实施例中,在第二方向上,第一端部140至第五端部144之间的距离为1mm至30mm,第二端部141至第六端部145之间的距离为1mm至20mm。第一金属部130距离第一导电部110的第一端部140和第二端部141均具有一定的距离,从而有利于降低导电物质层对第一金属部130的影响,同时也有利于避免第一导电部110在制造时如卷绕时对第一金属部130产生影响。
在本公开的一些实施例中,在第二方向上,第一侧160至第五侧164的第十一距离K小于第二侧161至第六侧165的第十二距离L。第二金属部150上的焊接残余应力易于集中在第二金属部150的靠近第一侧160的一侧。当电池10内部热量较高时,电解液与正极或负极之间的副反应可能增多,进而产生气体较多,导致内部气压增大。较大气压易于使第二金属部150的靠近第一侧160的一侧冲击断开,从而使第二金属部150与第二导电部120断开连接,实现电池10的断路,进而有利于降低电池10出现热失效的概率,提高电池10的产品性能。
在本公开的一些实施例中,在第二方向上,第一侧160至第五侧164之间的距离为1mm至30mm,第二侧161至第六侧165之间的距离为1mm至20mm。第二金属部150距离第二导电部120的第一侧160和第二侧161均具有一定的距离,从而有利于降低导电物质层对第二金属部150的影响,同时也有利于避免第二导电部120在制造时对第二金属部150产生影响。
在本公开的一些实施例中,在第二方向上,第一端部140至第二端部141之间的距离为10mm至40mm;第一侧160至第二侧161之间的距离为10mm至40mm。第二区域112和第五区域115均有足够的空间用于容纳第一金属部130和第二金属部150,从而给第一金属部130以及第二金属部150预留较多的焊接空间,有利于提高电池10的可靠性。
在本公开的一些实施例中,如图3所示,第一导电部110还包括与第一区域111相离的第七区域117,第七区域117位于第一区域111远离第二区域112的一侧。这样设置,第一金属部130既可选择与第二区域112焊接,也可以选择与第七区域117焊接,使得第一金属部130可位于第一导电部110的不同的位置,进而有利于提高电极组件100的多样 性。
在本公开的一些实施例中,如图5所示,第二导电部120还包括与第四区域114相离的第八区域118,第八区域118位于第四区域114远离第五区域115的一侧。这样,第二金属部150既可选择与第五区域115焊接,也可以选择与第八区域118焊接,使得第二金属部150可位于第二导电部120的不同的位置,进而有利于提高电极组件100的多样性。
在本公开的一些实施例中,第一导电部110为正极。第一金属部130与正极相连,以作为正极极耳。此时,第一金属部130用于引出电极组件100的正极电流。
在本公开的一些实施例中,第二导电部120为负极。第二金属部150与负极相连,以作为负极极耳。此时,第二金属部130用于引出电极组件100的负极电流。
在本公开的一些实施例中,第一导电部110绕第一轴线卷绕且沿第一方向第一导电部110包括多层第一区域111,第二导电部120绕第一轴线卷绕且沿第一方向第二导电部120包括多层第四区域114。第一金属部130与沿第一方向位于最外侧的第一区域111连接。这样,第一金属部130位于电极组件100的最外侧,最外侧的压力比电极组件100其他部位的压力更大,进而易于使第一金属部130与第一导电部110断开。
或者,在本公开的其他一些实施例中,第二金属部150与沿第一方向位于最外侧的第四区域114连接。这样,第二金属部150位于电极组件100的最外侧,最外侧的压力比电极组件100其他部位的压力更大,进而易于使第二金属部150与第二导电部120断开。
或者,在本公开的其他一些实施例中,第一金属部130与沿第一方向位于最外侧的第一区域111连接,且第二金属部150与沿第一方向位于最外侧的第四区域114连接。这样,第一金属部130与第二金属部150均位于电极组件100的最外侧,最外侧的压力比电极组件100其他部位的压力更大,进而易于使第一金属部130与第一导电部110断开或第二金属部150与第二导电部120断开。
本公开第二方面提供了一种电池10,如图7所示,图7为电池10以Y和Z所在平面剖开并从X方向观察的剖面示意图。电池10包括壳体11和上述的电极组件100,电极组件100置于壳体11内。
壳体11可以是方形壳体,也可以是圆柱形壳体,本公开实施例不作限制。
本公开实施例提供的电池10,通过改善其中的电极组件100来改有利于提高电池10的产品性能。电极组件100包括第一导电部110、第二导电部120及第一金属部130。电极组件100的第一金属部130与第一导电部110焊接,且在第一金属部130与第一导电部 110的焊接处具有第三区域113,第三区域113内具有焊接痕迹。在由第一区域111至第二区域112的方向上,第三区域113的第三端部142与第一金属部130的第五端部144间具有第一距离A,第三区域113的第四端部143与第一金属部130的第六端部145间具有第二距离B,且第一距离A与第二距离B不等,也就是说,在由第一区域111至第二区域112的方向上,具有焊接痕迹的第三区域113不位于第一金属部130的中间位置,即焊接痕迹不位于第一金属部130的中间位置,因此当第一金属部130焊接于第一导电部110上后,焊接残余应力在第一金属部130的第五端部144侧及第六端部145侧的扩散速度不同,焊接残余应力易于集中在第三区域113与第一金属部130间距离较小的一侧。因此,当电池10内部热量较高时,电解液与正极或负极之间的副反应可能增多,进而产生气体较多,导致内部气压增大。较大气压能够使第三区域113与第一金属部130距离较小的一侧冲击断开,从而使第一金属部130与第一导电部110断开连接,进而实现电池10的断路,从而有利于降低电池10出现热失效的概率,提高电池10的产品性能。
在本公开的一些实施例中,壳体11的材料包括金属。金属材料的壳体11有利于保护其内部的电极组件100,从而有利于提高电池10的可靠性。例如,壳体11的材料为铝、铁或铝合金等,本公开实施例不作限制。
在本公开的一些实施例中,电池10为卷绕型电池,。。
具体地,举出多个实施例及对比例来对上述公开的实施方式进行更具体地说明。选定多种由不同电极组件100组成的电池进行各种实验,实验结果如表1所示:
表1焊印位置对电池产品性能的影响
Figure PCTCN2022070166-appb-000001
Figure PCTCN2022070166-appb-000002
在表1中,高温存储试验是指:电池满充100%SOC,85度环境存储7天。高温循环试验是指:在60度环境温度中,使电池充放电由零电量至满电量循环300圈,充电倍率1.3C,放电倍率1C;其中,充电倍率1.3C是指一小时可充电1.3次,放电倍率1C是指完成一次放电需1小时;过充试验是指对电池进行充电,充电电流为恒定的3倍的电池额定电流,充到电池电压至5V时,恒定电流减小至0.05倍的电池额定电流持续充电。
通过率是指在试验过程中或者试验结束后,不发生热失效的电池数量与进行试验的电池总数的比值,而不是试验后还具备完好功能的电池数量与进行试验的电池总数的比值。例如,在高温循环实验中,对比例的通过率为7/20,即表明20个电池在试验时有13个发生热失效现象;实施例1的通过率为20/20,即表明20个采用本公开实施例的电池在试验时全部未发生等热失效现象。这不代表所有电池在试验后还具备完好功能,也就是说,20个本公开实施例的电池在试验后,其中的一部分、甚至全部电池通过第一导电部与第一金属部的断裂或第二导电部与第二金属部的断裂而避免发生热失效情况,其已不具备电池的完好功能。
电池尺寸中,极耳即是指本公开实施例中的电极组件100中的第一金属部130或第二金属部150;A、B、C、D则分别是指本公开实施例中的第一距离、第二距离、第三距离和第四距离。
对比例1中,A=B且C=D,即是指:焊印也即第三区域113在第二方向上和第三方向上均位于第一金属部130的中间,这样,焊接残余应力在第一金属部130的两侧的扩散速度相同。实验结果表明,在高温储存、高温循环和过充通过率实验中,均存在电池热失效的状况,这样,不利于提高电池的产品性能。
实施例1中,A>B且C>D,即如图1所示,焊印也即第三区域113在第二方向上和第三方向上均不位于第一金属部130的中部,与对比例1进行对比表明,在高温储存、高温循环和过充通过率实验中,实施例1未发生电池热失效状况,其通过第一金属部130和第一导电部110的断裂从而有利于降低电池出现热失效状况的概率,也就是说,在实施例1中,焊接残余应力易于集中在第一金属部130的靠近第六端部145以及靠近第八端部147的两侧交集区域内,当电池10内部热量较高时,电解液与正极或负极之间的副反应可能增多,进而产生气体较多,导致内部气压增大。较大气压能够使第一金属部130的靠近第 六端部145以及靠近第八端部147的两侧交集区域冲击断开,从而使第一金属部130与第一导电部110断开连接,实现电池10的断路,从而有利于降低了电池10出现热失效的概率,提高了电池10的产品性能。
实施例2中,A>B且C=D,即,第三区域113在第二方向上不位于第一金属部130的中部,在第三方向上位于第一金属部130的中部。与对比例1进行对比表明,在高温循环通过率实验中,对比例1通过率为7/20,实施例2的通过率为8/20,实施例2发生电池热失效的概率比对比例1低,其通过第一金属部130和第一导电部110断裂从而有利于降低电池出现热失效情况的概率,也就是说,在实施例2中,焊接残余应力易于集中在第一金属部130的靠近第六端部145的一侧,当电池10内部热量较高时,电解液与正极或负极之间的副反应可能增多,进而产生气体较多,导致内部气压增大。较大气压能够使第一金属部130的靠近第六端部145的一侧冲击断开,从而使第一金属部130与第一导电部110断开连接,实现电池10的断路,从而有利于降低了电池10出现热失效的概率,提高了电池10的产品性能。
本公开第三方面提供了一种电子装置1,电子装置1包括上述的电池10。
电子装置可以但不限于是使用本公开第二方面实施例的电池10作为电源的电动车辆、手机、笔记本电脑、电动玩具、电动工具、电瓶车等等。
本公开实施例提供的电子装置1,通过改善其中的电池10的电极组件100来有利于提高电子装置的产品性能。电极组件100包括第一导电部110、第二导电部120及第一金属部130。电极组件100的第一金属部130与第一导电部110焊接,且在第一金属部130与第一导电部110的焊接处具有第三区域113,第三区域113内具有焊接痕迹。在由第一区域111至第二区域112的方向上,第三区域113的第三端部142与第一金属部130的第五端部144间具有第一距离A,第三区域113的第四端部143与第一金属部130的第六端部145间具有第二距离B,且第一距离A与第二距离B不等。也就是说,在由第一区域111至第二区域112的方向上,具有焊接痕迹的第三区域113不位于第一金属部130的中间位置,即焊接痕迹不位于第一金属部130的中间位置。因此当第一金属部130焊接于第一导电部110上后,焊接残余应力在第一金属部130的第五端部144侧及第六端部145侧的扩散速度不同,焊接残余应力易于集中在第三区域113与第一金属部130间距离较小的一侧。因此,当电池10内部热量较高时,电解液与正极或负极之间的副反应可能增多,进而产生气体较多,导致内部气压增大。较大气压能够使第三区域113与第一金属部130距离较 小的一侧冲击断开,从而使第一金属部130与第一导电部110断开连接,进而实现电池10的断路,从而有利于降低电池10出现热失效的概率,进而利于提高电子装置1的产品性能。
以上所述仅为本公开的较佳实施例,并不用以限制本公开,凡在本公开的原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开保护的范围之内。

Claims (26)

  1. 一种电极组件,包括第一导电部、第二导电部及第一金属部,其中:
    所述第一导电部包括设有导电物质层的第一区域,以及与所述第一区域相离的第二区域;
    所述第一金属部与所述第二区域通过焊接方式连接,所述第一金属部包括具有焊接痕迹的第三区域;
    沿与所述第一导电部的第一表面所垂直的第一方向观察时,所述第二区域,在沿与所述第一方向垂直且沿所述第一区域向所述第二区域延伸的第二方向上具有第一端部和,在所述第二方向上设于所述第一端部的对侧且距离所述导电物质层的距离比所述第一端部更远的第二端部;
    所述第三区域,在所述第二方向上具有第三端部,以及在所述第二方向上设于所述第三端部对侧且距离所述第二端部的距离比所述第三端部更近的第四端部;
    所述第一金属部,在所述第二方向上具有第五端部,以及在所述第二方向上设于所述第五端部对侧且距离所述第二端部的距离比所述第五端部更近的第六端部;
    沿所述第二方向,所述第三端部至所述第五端部的第一距离与所述第四端部至所述第六端部的第二距离不等。
  2. 根据权利要求1所述的电极组件,其中,所述第一距离大于所述第二距离。
  3. 根据权利要求1所述的电极组件,其中,所述第一距离小于所述第二距离。
  4. 根据权利要求2或3所述的电极组件,其中:
    所述第一金属部,在沿与所述第二方向垂直的第三方向上,具有与所述第二区域相离的第七端部和,在所述第三方向上设于所述第七端部对侧的第八端部;
    在沿所述第一方向观察时,所述第三区域包括在所述第三方向上的第九端部以及,在所述第三方向上设于所述第九端部对侧且距离所述第八端部的距离比所述第九端部更近的第十端部;
    在所述第三方向上,所述第九端部至所述第七端部的第三距离与所述第十端部至所述第八端部的第四距离不等。
  5. 根据权利要求4所述的电极组件,其特征在于,所述第三距离大于所述第四距离。
  6. 根据权利要求4所述的电极组件,其特征在于,所述第三距离小于所述第四距离。
  7. 根据权利要求1所述的电极组件,其中:
    所述第二导电部包括设有导电物质层的第四区域,以及与所述第四区域相离的第五区域;
    所述电极组件还包括第二金属部,所述第二金属部与所述第五区域通过焊接方式连接,所述第二金属部包括具有焊接痕迹的第六区域;
    沿与所述第二导电部的第二表面所垂直的所述第一方向观察时,所述第五区域,在沿所述第二方向上具有第一侧和,在所述第二方向上设于所述第一侧的对侧且距离所述导电物质层的距离比所述第一侧更远的第二侧;
    所述第六区域,在所述第二方向上具有第三侧,以及在所述第二方向上设于所述第三侧对侧且距离所述第二侧的距离比所述第三侧更近的第四侧;
    所述第二金属部,在所述第二方向上具有第五侧,以及在所述第二方向上设于所述第五侧对侧且距离所述第二侧的距离比所述第五侧更近的第六侧;
    沿所述第二方向,所述第三侧至所述第五侧的第五距离与所述第四侧至所述第六侧的第六距离不同。
  8. 根据权利要求7所述的电极组件,其中,所述第五距离大于所述第六距离。
  9. 根据权利要求7所述的电极组件,其中,所述第五距离小于所述第六距离。
  10. 根据权利要求8或9所述的电极组件,其中:
    所述第二金属部在与所述第二方向垂直的第三方向上,具有与所述第五区域相离的第七侧,以及在所述第三方向上设于所述第七侧对侧的第八侧;
    所述第六区域,在沿所述第一方向观察时,在所述第三方向上具有第九侧以及在所述第三方向上设于所述第九侧的对侧且距离所述第八侧的距离比所述第九侧更近的第十侧;
    在所述第三方向上,所述第九侧至所述第七侧的第七距离与所述第十侧至所述第八侧的第八距离不等。
  11. 根据权利要求10所述的电极组件,其中,所述第七距离大于所述第八距离。
  12. 根据权利要求10所述的电极组件,其中,所述第七距离小于所述第八距离。
  13. 根据权利要求1或7所述的电极组件,其中:
    在所述第二方向上,所述第一端部至所述第五端部的第九距离大于所述第二端部至所述第六端部的第十距离。
  14. 根据权利要求1或7所述的电极组件,其中,在所述第二方向上,所述第一端部至所述第五端部之间的距离为1mm至30mm,所述第二端部至所述第六端部之间的距离为 1mm至20mm。
  15. 根据权利要求7所述的电极组件,其中:
    在所述第二方向上,所述第一侧至所述第五侧的第十一距离小于所述第二侧至所述第六侧的第十二距离。
  16. 根据权利要求7所述的电极组件,其中,在所述第二方向上,所述第一侧至所述第五侧之间的距离为1mm至30mm,所述第二侧至所述第六侧之间的距离为1mm至20mm。
  17. 根据权利要求7所述的电极组件,其中,在所述第二方向上,所述第一端部至所述第二端部之间的距离为10mm至40mm;
    所述第一侧至所述第二侧之间的距离为10mm至40mm。
  18. 根据权利要求1或7所述的电极组件,其中,所述第一导电部还包括与所述第一区域相离的第七区域,所述第七区域位于所述第一区域远离所述第二区域的一侧。
  19. 根据权利要求7所述的电极组件,其中,所述第二导电部还包括与所述第四区域相离的第八区域,所述第八区域位于所述第四区域远离所述第五区域的一侧。
  20. 根据权利要求1或7所述的电极组件,其中,所述第一导电部为正极。
  21. 根据权利要求1或7所述的电极组件,其中,所述第二导电部为负极。
  22. 根据权利要求7所述的电极组件,其中,所述第一导电部绕第一轴线卷绕且沿所述第一方向所述第一导电部包括多层所述第一区域,所述第二导电部绕所述第一轴线卷绕且沿所述第一方向所述第二导电部包括多层所述第四区域,所述第一金属部与沿所述第一方向位于最外侧的第一区域连接,和/或所述第二金属部与沿所述第一方向位于最外侧的第四区域连接。
  23. 一种电池,其中,所述电池包括壳体和权利要求1至22任一项所述的电极组件,所述电极组件置于所述壳体内。
  24. 根据权利要求23所述的电池,其中,所述壳体的材料包括金属。
  25. 根据权利要求23或24所述的电池,其中,所述电池为卷绕型电池。
  26. 一种电子装置,其中,所述电子装置包括权利要求23至25中任一项所述的电池。
PCT/CN2022/070166 2022-01-04 2022-01-04 一种电极组件、电池及电子装置 WO2023130229A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280003967.8A CN115606034A (zh) 2022-01-04 2022-01-04 一种电极组件、电池及电子装置
PCT/CN2022/070166 WO2023130229A1 (zh) 2022-01-04 2022-01-04 一种电极组件、电池及电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/070166 WO2023130229A1 (zh) 2022-01-04 2022-01-04 一种电极组件、电池及电子装置

Publications (2)

Publication Number Publication Date
WO2023130229A1 true WO2023130229A1 (zh) 2023-07-13
WO2023130229A9 WO2023130229A9 (zh) 2023-08-10

Family

ID=84854351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070166 WO2023130229A1 (zh) 2022-01-04 2022-01-04 一种电极组件、电池及电子装置

Country Status (2)

Country Link
CN (1) CN115606034A (zh)
WO (1) WO2023130229A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204991826U (zh) * 2015-08-07 2016-01-20 芜湖天弋能源科技有限公司 一种锂电池正极耳
JP2019061949A (ja) * 2017-09-27 2019-04-18 株式会社豊田自動織機 蓄電装置、及び蓄電装置のレーザ溶接方法
CN210272523U (zh) * 2019-08-13 2020-04-07 新余赣锋电子有限公司 一种极耳与极片的焊接结构
CN212277348U (zh) * 2020-06-03 2021-01-01 新余赣锋电子有限公司 一种防止极片断裂的焊接结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204991826U (zh) * 2015-08-07 2016-01-20 芜湖天弋能源科技有限公司 一种锂电池正极耳
JP2019061949A (ja) * 2017-09-27 2019-04-18 株式会社豊田自動織機 蓄電装置、及び蓄電装置のレーザ溶接方法
CN210272523U (zh) * 2019-08-13 2020-04-07 新余赣锋电子有限公司 一种极耳与极片的焊接结构
CN212277348U (zh) * 2020-06-03 2021-01-01 新余赣锋电子有限公司 一种防止极片断裂的焊接结构

Also Published As

Publication number Publication date
WO2023130229A9 (zh) 2023-08-10
CN115606034A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
US10833372B2 (en) Rectangular secondary battery
JP5055090B2 (ja) 電池モジュール
WO2021073470A1 (zh) 二次电池及其电极构件、电池模块和相关装置
JP2006040901A (ja) 二次電池
KR101629499B1 (ko) 전극조립체 및 이를 포함하는 이차전지
WO2011145205A1 (ja) 二次電池
JPWO2010150458A1 (ja) 電池及び電池パック
WO2024060403A1 (zh) 电池单体、电池、用电装置以及焊接设备
WO2023004823A1 (zh) 卷绕式电极组件、电池单体、电池及用电设备
US11901589B2 (en) Cylindrical secondary battery module
CN112335117B (zh) 电池模块
WO2024093100A1 (zh) 电极极片、电极组件、电池单体、电池和用电设备
WO2021023138A1 (zh) 正极极片及其相关的锂离子电池、装置
WO2023028815A1 (zh) 卷绕式电极组件、电池单体、电池及用电设备
US20140023913A1 (en) Prismatic secondary battery
WO2023130229A1 (zh) 一种电极组件、电池及电子装置
CN217768425U (zh) 极片、电池单体、电池以及用电装置
CN215989130U (zh) 电极组件、电池单体、电池以及用电装置
CN115548590A (zh) 二次电池
CN115189100B (zh) 电极组件、电化学装置及用电设备
WO2023045490A1 (zh) 电极组件及制造方法和系统、电池单体、电池和用电装置
WO2024092520A1 (zh) 电极组件、电池单体、电池以及用电设备
KR101749724B1 (ko) 관통구가 형성된 pcb를 포함하는 전지팩
WO2023221108A1 (zh) 电池单体、电池及用电设备
CN218997009U (zh) 电池单体、电池以及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22917707

Country of ref document: EP

Kind code of ref document: A1