WO2021073470A1 - 二次电池及其电极构件、电池模块和相关装置 - Google Patents

二次电池及其电极构件、电池模块和相关装置 Download PDF

Info

Publication number
WO2021073470A1
WO2021073470A1 PCT/CN2020/120341 CN2020120341W WO2021073470A1 WO 2021073470 A1 WO2021073470 A1 WO 2021073470A1 CN 2020120341 W CN2020120341 W CN 2020120341W WO 2021073470 A1 WO2021073470 A1 WO 2021073470A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive layer
conductive
uncoated
electrode
area
Prior art date
Application number
PCT/CN2020/120341
Other languages
English (en)
French (fr)
Inventor
盛长亮
张子格
薛庆瑞
李伟
李静
王鹏翔
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP20877137.8A priority Critical patent/EP3944396A4/en
Publication of WO2021073470A1 publication Critical patent/WO2021073470A1/zh
Priority to US17/562,928 priority patent/US20220123443A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the embodiments of the present application relate to the field of batteries, and in particular to a secondary battery and its electrode components, battery modules and related devices.
  • lithium ion batteries are widely used in electronic devices such as mobile phones and notebook computers due to their high energy density and environmental friendliness.
  • electronic devices such as mobile phones and notebook computers due to their high energy density and environmental friendliness.
  • the application of lithium-ion batteries has been rapidly expanded to gasoline-electric hybrid vehicles, ships, and energy storage systems.
  • the electrode member of a secondary battery generally includes a current collector and an active material layer coated on the surface of the current collector.
  • some electrode components choose a multilayer structure current collector.
  • the current collector includes an insulating base and a conductive layer provided on both surfaces of the insulating base, and the active material layer is coated on The surface of the conductive layer.
  • the two conductive layers are separated by the insulating substrate, so the currents on the two conductive layers cannot flow together, which affects the overcurrent capability of the electrode member.
  • various aspects of the present application provide a secondary battery and its electrode member, battery module, and related devices, which can improve the overcurrent capability and safety performance of the electrode member.
  • the first aspect of the present application provides an electrode member, which includes a current collector, an active material layer, an adapter sheet, and an electrode lead.
  • the current collector includes an insulating substrate, a first conductive layer and a second conductive layer, and the first conductive layer and the second conductive layer are respectively arranged on two surfaces of the insulating substrate.
  • Both the first conductive layer and the second conductive layer include a coated area and an uncoated area.
  • the coated area is coated with an active material layer, and the uncoated area is not coated with an active material layer.
  • the size of the current collector along the length direction is larger than that along the length direction.
  • the dimension in the width direction, and the uncoated area is located on the side of the coated area along the length direction.
  • the adapter sheet includes a first conductive member and a second conductive member, the first conductive member and the second conductive member are respectively connected to the uncoated area of the first conductive layer and the uncoated area of the second conductive layer, and the first conductive member The member is connected to the second conductive member.
  • the electrode lead is connected to the adapter sheet, and one end of the electrode lead in the width direction exceeds the uncoated area.
  • the thickness of the conductive layer can be reduced, the risk of short circuits can be reduced, the safety performance can be improved, the size of the uncoated area can be reduced, and the flow area between the conductive element and the uncoated area can be increased, thereby improving the electrode structure.
  • the over-current capability can be provided.
  • the adapter sheet further includes a connecting portion, and the connecting portion is connected between the first conductive member and the second conductive member.
  • the connecting portion is bent and arranged around the end of the uncoated area in the length direction, or the connecting portion is bent and arranged around the end of the uncoated area in the width direction.
  • the electrode lead is fixed to the connection part by welding, bonding, and riveting.
  • the connection part may connect the first conductive member and the second conductive member, thereby collecting the currents of the first conductive layer and the second conductive layer together.
  • the electrode lead is connected to the first conductive member, and the electrode lead does not extend beyond the uncoated area along the length direction.
  • the thickness of the electrode lead is greater than the thickness of the first conductive member.
  • the uncoated area of the first conductive layer is located at the end of the first conductive layer along the length direction.
  • the uncoated area of the second conductive layer is located at the end of the second conductive layer along the length direction.
  • the multiple uncoated regions of the first conductive layer include a first uncoated region and a second uncoated region.
  • the multiple uncoated regions of the second conductive layer include a third uncoated region and a fourth uncoated region;
  • the plurality of adapter plates includes a first adapter plate and a second adapter plate;
  • the first conductive element of the first transfer sheet is connected to the first uncoated area of the first conductive layer, and the second conductive element of the first transfer sheet is connected to the third uncoated area of the second conductive layer.
  • the first conductive element of the second transfer sheet is connected to the second uncoated area of the first conductive layer, and the second conductive element of the second transfer sheet is connected to the fourth uncoated area of the second conductive layer.
  • At least one of the first transition piece and the second transition piece is connected with an electrode lead.
  • a plurality of transfer pieces can increase the conductive path between the first conductive layer and the second conductive layer, and improve the current-converging ability.
  • the first uncoated area and the second uncoated area are respectively located at both ends of the first conductive layer along the length direction.
  • the third uncoated area and the fourth uncoated area are respectively located at both ends of the second conductive layer along the length direction.
  • a second aspect of the present application provides a secondary battery including an electrode assembly including a separator and an electrode member.
  • the separator separates the positive electrode member and the negative electrode member to avoid short circuits.
  • the separator and the electrode member are wound into one body along a central axis parallel to the width direction. In the width direction, the diaphragm extends beyond the adapter plate.
  • the third aspect of the present application provides a battery module, which includes a plurality of secondary batteries.
  • a fourth aspect of the present application provides a device using a secondary battery as a power source, which includes a main body and a plurality of secondary batteries, and the plurality of secondary batteries are arranged in the main body.
  • the above-described secondary battery and its electrode members, battery modules and related devices can reduce the thickness of the conductive layer by providing an insulating base.
  • the conductive layer When a foreign body pierces the electrode member of a secondary battery, because the conductive layer has a small thickness, the conductive layer generates less burrs at the part pierced by the foreign body, and it is difficult to pierce the separator, thereby reducing the risk of short circuit and improving safety performance.
  • the first conductive member and the second conductive member of the transfer sheet can collect the current on the first conductive layer and the second conductive layer together, thereby improving the overcurrent capability of the electrode member.
  • the uncoated area and the coated area of the conductive layer are arranged along the length direction, which can reduce the limitation on the size of the uncoated area, increase the flow area between the conductive element and the uncoated area, thereby improving the electrode structure The over-current capability.
  • Fig. 1 is a schematic diagram of an embodiment of an electrode assembly of a secondary battery according to the present application.
  • Fig. 2 is a schematic diagram of a first embodiment of an electrode member according to the present application.
  • Fig. 3 is a front view of the electrode member of Fig. 2.
  • Fig. 4 is a cross-sectional view of the electrode member of Fig. 3 taken along the line A-A.
  • Fig. 5 is a schematic diagram of a second embodiment of an electrode member according to the present application.
  • Fig. 6 is a front view of the electrode member of Fig. 5.
  • Fig. 7 is a cross-sectional view of the electrode member of Fig. 5 taken along the line B-B.
  • Fig. 8 is a schematic diagram of a third embodiment of an electrode member according to the present application.
  • Fig. 9 is a front view of the electrode member of Fig. 8.
  • Fig. 10 is a cross-sectional view of the electrode member of Fig. 9 taken along line C-C.
  • Fig. 11 is a schematic diagram of a fourth embodiment of an electrode member according to the present application.
  • Fig. 12 is a front view of the electrode member of Fig. 11.
  • Fig. 13 is a schematic diagram of a fifth embodiment of an electrode member according to the present application.
  • Fig. 14 is a front view of the electrode member of Fig. 13.
  • Fig. 15 is a cross-sectional view of the electrode member of Fig. 14 taken along the line D-D.
  • Fig. 16 is a cross-sectional view of the electrode member of Fig. 14 taken along the line E-E.
  • Fig. 17 is a schematic diagram of a sixth embodiment of an electrode member according to the present application.
  • Fig. 18 is a schematic diagram of a seventh embodiment of an electrode member according to the present application.
  • Fig. 19 is a front view of the electrode member of Fig. 18.
  • Fig. 20 is a schematic diagram of an eighth embodiment of an electrode member according to the present application.
  • Fig. 21 is a front view of the electrode member of Fig. 20.
  • Fig. 22 is a schematic diagram of a ninth embodiment of an electrode member according to the present application.
  • Fig. 23 is a cross-sectional view of the electrode member of Fig. 22 taken along the line F-F.
  • Fig. 24 is a schematic diagram of a tenth embodiment of an electrode member according to the present application.
  • Fig. 25 is a cross-sectional view of the electrode member of Fig. 24 taken along line G-G.
  • Fig. 26 is a schematic diagram of an eleventh embodiment of an electrode member according to the present application.
  • Fig. 27 is a front view of the electrode member of Fig. 26.
  • Fig. 28 is a schematic diagram of a twelfth embodiment of an electrode member according to the present application.
  • Fig. 29 is a front view of the electrode member of Fig. 28.
  • FIG. 30 is a schematic diagram of a secondary battery according to an embodiment of the present application.
  • Fig. 31 is a schematic diagram of a battery module according to an embodiment of the present application.
  • Fig. 32 is a schematic diagram of a device using a secondary battery as a power source according to an embodiment of the present application.
  • the present application provides a device using a secondary battery as a power source, which includes a main body and a plurality of secondary batteries 7, and the plurality of secondary batteries 7 are arranged on the main body.
  • the device can be a ship, a vehicle, etc.
  • the vehicle is a new energy vehicle, which may be a pure electric vehicle, a hybrid vehicle or a range-extended vehicle.
  • the main body of the vehicle is provided with a drive motor, which is electrically connected to the secondary battery 7, and the secondary battery 7 provides electric energy.
  • the drive motor is connected to the wheels on the main body of the vehicle through a transmission mechanism to drive the vehicle to travel.
  • the secondary battery 7 is a lithium ion battery.
  • the present application also provides a battery module.
  • the battery module includes a plurality of secondary batteries 7, and the plurality of secondary batteries 7 are arranged in sequence.
  • the battery module may further include end plates and side plates. There are two end plates and are respectively disposed at both ends of the plurality of secondary batteries 7 in the arrangement direction, and there are two side plates and are respectively disposed on two of the plurality of secondary batteries 7. side.
  • the two end plates and the two side plates are connected together to form a substantially rectangular frame, and the frame can accommodate and fix a plurality of secondary batteries 7.
  • the secondary battery 7 of the embodiment of the present application includes an electrode assembly 6.
  • the electrode assembly 6 is a core component of the secondary battery 7 to realize the charging and discharging function.
  • the electrode assembly 6 includes an electrode member 1 and a separator 2.
  • the electrode assembly 6 has a wound structure.
  • the positive electrode member, the negative electrode member, and the separator 2 are all belt-shaped structures.
  • the positive electrode member, the separator 2 and the negative electrode member are sequentially stacked and wound two or more turns to form the electrode assembly 6, and the electrode assembly 6 is flat. shape.
  • the electrode assembly 6 has a laminated structure. Specifically, both the positive electrode member and the negative electrode member are provided in a plurality, and the plurality of positive electrode members and the plurality of negative electrode members are alternately stacked, and the separator 2 separates the adjacent positive electrode member and the negative electrode member.
  • the secondary battery 7 of the present application may be a soft-pack battery, and the electrode assembly 6 of the soft-pack battery is directly packaged in a packaging bag.
  • the packaging bag can be aluminum plastic film.
  • the secondary battery 7 of the present application may also be a hard shell battery.
  • the hard shell battery further includes a case 3, a top cover 4 and electrode terminals 5.
  • the housing 3 may have a hexahedral shape or other shapes.
  • a receiving cavity is formed inside the casing 3 to contain the electrode assembly 6 and the electrolyte.
  • the housing 3 has an opening at one end, and the electrode assembly 6 can be placed into the receiving cavity of the housing 3 through the opening.
  • the housing 3 may be made of conductive metal materials such as aluminum or aluminum alloy.
  • the top cover 4 may be connected to the case 3 by welding or the like, so as to cover the opening of the case 3 to enclose the electrode assembly 6 in the case 3.
  • the electrode terminal 5 is provided on the top cover 4 and is electrically connected to the electrode member 1.
  • Fig. 2 is a schematic diagram of a first embodiment of an electrode member according to the present application.
  • Fig. 3 is a front view of the electrode member of Fig. 2.
  • Fig. 4 is a cross-sectional view of the electrode member of Fig. 3 taken along the line A-A.
  • the electrode member 1 includes a current collector 11, an active material layer 12, an adapter sheet 13 and an electrode lead 14.
  • the current collector 11 includes an insulating base 111, a first conductive layer 112, and a second conductive layer 113.
  • the first conductive layer 112 and the second conductive layer 113 are respectively disposed on two surfaces of the insulating base 111.
  • the material of the insulating base 111 can be a polyethylene terephthalate (PET) film or a polypropylene (PP) film.
  • the current collector 11 may have a belt-like structure, and the size of the current collector 11 along the length direction X is larger than the size along the width direction Y.
  • the separator 2 and the electrode member 1 are wound along a central axis parallel to the width direction Y into one body.
  • the material of the first conductive layer 112 and the second conductive layer 113 is selected from at least one of metal conductive materials and carbon-based conductive materials; metal conductive materials, for example, aluminum, copper, nickel, titanium, silver, nickel-copper alloy, aluminum At least one of zirconium alloys, carbon-based conductive materials, for example, at least one of graphite, acetylene black, graphene, and carbon nanotubes.
  • the first conductive layer 112 may be formed on the surface of the insulating base 111 by at least one of vapor deposition and electroless plating.
  • the vapor deposition method is preferably a physical vapor deposition (Physical Vapor Deposition, PVD) method, such as a thermal evaporation method (Thermal Vaporation Deposition).
  • the second conductive layer 113 is formed on the surface of the insulating base 111 by at least one of vapor deposition and electroless plating.
  • the active material layer 12 may be provided on the surface of the first conductive layer 112 and the surface of the second conductive layer 113 by coating.
  • the active material such as lithium manganate, lithium iron phosphate
  • binder, conductive agent, and solvent can be made into a slurry, and then the slurry can be coated on the surface of the first conductive layer 12 and the surface of the second conductive layer 113 , The active material layer 12 is formed after the slurry is cured.
  • the active material layer 12 covers only a partial area of the first conductive layer 12 and a partial area of the second conductive layer 113.
  • both the first conductive layer 112 and the second conductive layer 113 include a coated area 114 and an uncoated area 115, the coated area 114 is coated with the active material layer 12, and the uncoated area 115 is not coated with the active material layer. 12.
  • the thickness of the insulating base 111 may be 1 micrometer ( ⁇ m) to 20 ⁇ m, and the thickness of the first conductive layer 112 and the second conductive layer 113 may be 0.1 ⁇ m to 10 ⁇ m. Since the first conductive layer 112 and the second conductive layer 113 are relatively thin, the burrs generated by the first conductive layer 112 and the second conductive layer 113 are small in the process of cutting the electrode member 1, and it is difficult to pierce more than ten micrometers.
  • the diaphragm 2 avoids short circuits and improves safety performance.
  • the first conductive layer 112 and the second conductive layer 113 are exposed to the foreign matter.
  • the burr generated at the pierced part is small, and it is difficult to pierce the diaphragm 2, thereby avoiding short circuit and improving safety performance.
  • the transfer sheet 13 includes a first conductive member 131 and a second conductive member 132.
  • the first conductive member 131 and the second conductive member 132 are respectively connected to the uncoated area 115 of the first conductive layer 112 and the uncoated area of the second conductive layer 113.
  • the coating area 115 is applied, and the first conductive member 131 is connected to the second conductive member 132.
  • the first conductive member 131 and the second conductive member 132 can collect the current on the first conductive layer 112 and the second conductive layer 113 together, thereby improving the overcurrent capability of the electrode member 1.
  • the size of the electrode member 1 in the width direction Y is small. If the uncoated area 115 is provided to one side of the coated area 114 in the width direction Y, the size of the uncoated area 115 in the width direction Y is also small. . When the first conductive member 131 is connected to the uncoated region 115 of the first conductive layer 112, the overcurrent area between the first conductive member 131 and the uncoated region 115 is small, resulting in a deviation of the overcurrent capability of the electrode member 1 low.
  • the flow area between the second conductive member 132 and the uncoated region 115 of the second conductive layer 113 is also relatively small.
  • the uncoated area 115 is located on the side of the coated area 114 along the length direction X in some embodiments. At this time, the uncoated region 115 and the coated region 114 may have the same width. Therefore, the present application can increase the flow area between the first conductive member 131 and the uncoated region 115 and the second conductive member 132 and The flow area between the uncoated regions 115 of the first conductive layer 113 is thereby to improve the flow capacity of the electrode member 1.
  • the electrode lead 14 is connected to the adapter sheet 13, and one end of the electrode lead 14 in the width direction Y extends beyond the uncoated area 115.
  • the portion of the electrode lead 14 beyond the uncoated region 115 can be electrically connected to the electrode terminal 5 so as to draw the current of the electrode member 1 out of the secondary battery 7.
  • the transfer sheet 13 further includes a connecting portion 133 connected between the first conductive member 131 and the second conductive member 132.
  • the connecting portion 133 is bent around the end of the uncoated region 115 in the width direction Y.
  • the transfer sheet 13 may be formed by connecting two metal foils, both of which include a first area and a second area.
  • the first area of the two metal foils is connected to the first conductive layer 112 and the second conductive layer, respectively. 113 contact, the second areas of the two metal foils both extend beyond the current collector 11 in the width direction Y, and the second areas of the two metal foils are welded together to form the first welding area W1.
  • the first area of one metal foil is the first conductive member 131
  • the first area of the other metal foil is the second conductive member 132
  • the second areas of the two metal foils form the connecting portion 133.
  • the connecting portion 133 may connect the first conductive member 131 and the second conductive member 132 to collect the currents of the first conductive layer 112 and the second conductive layer 113 together.
  • the electrode lead 14 is fixed to the first conductive member 131 by welding, bonding, and riveting.
  • the electrode lead 14, the first conductive member 131, and the first conductive layer 112 are welded to form a second welding area W2.
  • the electrode lead 14, the first conductive member 131, and the first conductive layer 112 can be connected together by one welding.
  • the electrode lead 14 does not extend beyond the uncoated area 115 along the length direction X. At this time, in the length direction X, the electrode lead 14 does not take up additional space.
  • the current on the electrode lead 14 is generally greater than the current on the first conductive member 131, so in order to ensure the consistency of the overcurrent, the thickness of the electrode lead 14 is greater than the thickness of the first conductive member 131. In some embodiments, increasing the thickness of the electrode lead 14 can also reduce electrical resistance and reduce heat generation.
  • the electrode lead 14 passes out of the packaging bag to be electrically connected to other components, thereby realizing the charging and discharging of the secondary battery 7.
  • the electrode lead 14 with a larger thickness can facilitate the electrical connection of the secondary battery 7 with other components.
  • the uncoated area 115 of the first conductive layer 112 is located at the end of the first conductive layer 112 along the length direction X; the uncoated area 115 of the second conductive layer 113 is located at the end of the second conductive layer 113 along the length direction X. 1, after the electrode member 1 is wound and formed, the electrode lead 14 is close to the winding center of the electrode assembly 6; in the soft pack battery, the electrode lead 14 can be passed out of the packaging bag without bending.
  • the separator 2 separates the positive electrode member and the negative electrode member to avoid short circuits.
  • the width direction Y if the transition piece 13 of the positive electrode member exceeds the separator 2, the portion that exceeds the separator 2 is easily bent and contacts the negative electrode member, thereby causing a risk of short circuit.
  • the adaptor sheet 13 of the negative electrode member exceeds the separator 2, the risk of short circuit will also be caused. Therefore, in the electrode assembly 6 of the present application, along the width direction Y, the diaphragm 2 extends beyond the adapter sheet 13.
  • Fig. 5 is a schematic diagram of a second embodiment of an electrode member according to the present application.
  • Fig. 6 is a front view of the electrode member of Fig. 5.
  • Fig. 7 is a cross-sectional view of the electrode member of Fig. 5 taken along the line B-B.
  • the first conductive member 131 and the first conductive layer 112 are welded to form a third welding area W3.
  • the third welding area W3 the flow area between the first conductive member 131 and the first conductive layer 112 can be further increased, the resistance can be reduced, and the heat accumulation can be reduced.
  • the third welding area W3 has a strip shape, and the number can be one or more.
  • Fig. 8 is a schematic diagram of a third embodiment of an electrode member according to the present application.
  • Fig. 9 is a front view of the electrode member of Fig. 8.
  • Fig. 10 is a cross-sectional view of the electrode member of Fig. 9 taken along line C-C.
  • the adapter plate 13 of the third embodiment is an integral component.
  • the adapter sheet 13 is formed by bending a metal foil sheet. Specifically, a metal foil sheet is bent into a U-shaped structure and covered on the current collector 11. The area of a metal foil in contact with the first conductive layer 112 forms the first conductive element 131, the area of a metal foil in contact with the second conductive layer 113 forms the second conductive element 132, and the area of a metal foil in contact with the current collector 11 The area on the outer side in the width direction Y forms a connecting portion 133.
  • the integrated transition piece 13 can reduce the welding process.
  • Fig. 11 is a schematic diagram of a fourth embodiment of an electrode member according to the present application.
  • Fig. 12 is a front view of the electrode member of Fig. 11.
  • the connecting portion 133 of the adapter sheet 13 of the fourth embodiment is located on the outer side of the current collector 11 in the length direction X. At this time, the connecting portion 133 is bent and arranged around the end of the uncoated area 115 in the length direction X.
  • the electrode member 1 is usually in a wound state.
  • the size of the electrode member 1 in the width direction Y is more precious than the size of the electrode member 1 in the length direction X. That is, the size of the electrode member 1 in the width direction Y has a greater influence on the volume of the electrode assembly 6.
  • the connecting portion 133 occupies a space in the length direction X; after the electrode member 1 is wound into shape, the connecting portion 133 has a small influence on the volume of the electrode assembly 6. Therefore, compared with the third embodiment, the fourth embodiment can reduce the volume of the electrode assembly 6 and increase the energy density.
  • Fig. 13 is a schematic diagram of a fifth embodiment of an electrode member according to the present application.
  • Fig. 14 is a front view of the electrode member of Fig. 13.
  • Fig. 15 is a cross-sectional view of the electrode member of Fig. 14 taken along the line D-D.
  • Fig. 16 is a cross-sectional view of the electrode member of Fig. 14 taken along the line E-E.
  • uncoated regions 115 of the first conductive layer 112 there are multiple uncoated regions 115 of the first conductive layer 112, and there may be one or more coated regions 114 of the first conductive layer 112.
  • uncoated regions 115 and coated regions 114 are alternately arranged along the length direction X.
  • uncoated regions 115 of the second conductive layer 113 there are multiple uncoated regions 115 of the second conductive layer 113, and the coated regions 114 of the second conductive layer 113 may be one or more. In the second conductive layer 113, uncoated regions 115 and coated regions 114 are alternately arranged along the length direction X.
  • the plurality of uncoated regions 115 of the first conductive layer 112 includes a first uncoated region 115a and a second uncoated region 115b, and the plurality of uncoated regions 115 of the second conductive layer 113 includes a third uncoated region 115c and the fourth uncoated area 115d.
  • the plurality of adapter pieces 13 includes a first adapter piece 13 a and a second adapter piece 13 b.
  • the first conductive member 131 of the first transfer sheet 13a is connected to the first uncoated area 115a of the first conductive layer 112, and the second conductive member 132 of the first transfer sheet 13a is connected to the third conductive layer 113 Uncoated area 115c.
  • the first conductive member 131 of the second transfer sheet 13b is connected to the second uncoated area 115b of the first conductive layer 112, and the second conductive member 132 of the second transfer sheet 13b is connected to the fourth conductive layer 113 Uncoated area 115d.
  • the connecting portion 133 of the first adapter piece 13a may be arranged on the outer side of the current collector 11 in the width direction Y
  • the connecting portion 133 of the second adapter piece 13b may be arranged on the outer side of the current collector 11 in the width direction Y.
  • At least one of the first transition piece 13a and the second transition piece 13b is connected to the electrode lead 14.
  • the electrode lead 14 is welded on the first transfer sheet 13a.
  • the plurality of transfer sheets 13 can increase the conductive path between the first conductive layer 112 and the second conductive layer 113, and improve the current sinking ability.
  • the first uncoated area 115a and the second uncoated area 115b are located at both ends of the first conductive layer 112 along the length direction X, respectively.
  • the coating area 114 is one and connects the first uncoated area 115a and the second uncoated area 115b. There is only one coating area 114 of the first conductive layer 112, which can simplify the coating process.
  • the third uncoated area 115c and the fourth uncoated area 115d are located at both ends of the second conductive layer 113 along the length direction X, respectively.
  • the coating area 114 is one and connects the third uncoated area 115c and the fourth uncoated area 115d.
  • Fig. 17 is a schematic diagram of a sixth embodiment of an electrode member according to the present application.
  • the electrode lead 14 is connected to both the first transition piece 13 a and the second transition piece 13 b of the sixth embodiment.
  • the two electrode leads 14 can improve the overcurrent capability of the electrode member 1.
  • Fig. 18 is a schematic diagram of a seventh embodiment of an electrode member according to the present application.
  • Fig. 19 is a front view of the electrode member of Fig. 18.
  • the second uncoated area 115b of the seventh embodiment is located between the two coated areas 114, and the fourth uncoated area 115d is located between the two coated areas. Between 114.
  • Fig. 20 is a schematic diagram of an eighth embodiment of an electrode member according to the present application.
  • Fig. 21 is a front view of the electrode member of Fig. 20.
  • the structure of the adapter sheet 13 of the eighth embodiment is different.
  • the connecting portion 133 of the first adapter piece 13a may be arranged on the outer side of the current collector 11 along the length direction X
  • the connecting portion 133 of the second adapter piece 13b may be arranged on the outer side of the current collector 11 along the length direction X.
  • Fig. 22 is a schematic diagram of a ninth embodiment of an electrode member according to the present application.
  • Fig. 23 is a cross-sectional view of the electrode member of Fig. 22 taken along the line F-F.
  • the electrode lead 14 of the ninth embodiment is fixed to the connecting portion 133 by welding, bonding, and riveting.
  • the electrode lead 14 is welded to the connecting portion 133 to form the fourth welding area W4, and the first conductive member 131 is welded to the first conductive layer 112 to form the third welding area W3.
  • the electrode lead 14 has a larger thickness, and welding generates more heat. In this embodiment, the electrode lead 14 is only welded to the connecting portion 133 of the adapter sheet 13, which can reduce the heat transmitted to the insulating base 111 of the current collector 11.
  • Fig. 24 is a schematic diagram of a tenth embodiment of an electrode member according to the present application.
  • Fig. 25 is a cross-sectional view of the electrode member of Fig. 24 taken along line G-G.
  • the electrode lead 14 in the tenth embodiment is fixed to the connecting portion 133 by welding, bonding, and riveting.
  • the first conductive member 131 is welded to the first conductive layer 112 to form the third welding area W3, and the electrode lead 14 is welded to the connecting portion 133 to form the fourth welding area W4.
  • the electrode lead 14 has a larger thickness, and welding generates more heat. In this embodiment, the electrode lead 14 is only welded to the connecting portion 133 of the adapter sheet 13, which can reduce the heat transmitted to the insulating base 111 of the current collector 11.
  • the connecting portion 133 does not occupy space in the width direction Y, which can reduce the volume of the electrode assembly 6 and increase the energy density.
  • Fig. 26 is a schematic diagram of an eleventh embodiment of an electrode member according to the present application.
  • Fig. 27 is a front view of the electrode member of Fig. 26.
  • the eleventh embodiment there are multiple uncoated regions 115 of the first conductive layer 112, and there may be one or more coated regions 114 of the first conductive layer 112. In the first conductive layer 112, uncoated regions 115 and coated regions 114 are alternately arranged along the length direction X.
  • uncoated regions 115 of the second conductive layer 113 there are multiple uncoated regions 115 of the second conductive layer 113, and the coated regions 114 of the second conductive layer 113 may be one or more. In the second conductive layer 113, uncoated regions 115 and coated regions 114 are alternately arranged along the length direction X.
  • the plurality of uncoated regions 115 of the first conductive layer 112 includes a first uncoated region 115a and a second uncoated region 115b, and the plurality of uncoated regions 115 of the second conductive layer 113 includes a third uncoated region 115c and the fourth uncoated area 115d.
  • the plurality of adapter pieces 13 includes a first adapter piece 13 a and a second adapter piece 13 b.
  • the first conductive member 131 of the first transfer sheet 13a is connected to the first uncoated area 115a of the first conductive layer 112, and the second conductive member 132 of the first transfer sheet 13a is connected to the third conductive layer 113 Uncoated area 115c.
  • the first conductive member 131 of the second transfer sheet 13b is connected to the second uncoated area 115b of the first conductive layer 112, and the second conductive member 132 of the second transfer sheet 13b is connected to the fourth conductive layer 113 Uncoated area 115d.
  • the connecting portion 133 of the first adapter piece 13a may be arranged on the outer side of the current collector 11 along the length direction X
  • the connecting portion 133 of the second adapter piece 13b may be arranged on the outer side of the current collector 11 along the length direction X.
  • At least one of the first transition piece 13a and the second transition piece 13b is connected to the electrode lead 14.
  • the electrode lead 14 is welded on the first transfer sheet 13a.
  • the plurality of transfer sheets 13 can increase the conductive path between the first conductive layer 112 and the second conductive layer 113, and improve the current sinking ability.
  • Fig. 28 is a schematic diagram of a twelfth embodiment of an electrode member according to the present application.
  • Fig. 29 is a front view of the electrode member of Fig. 28.
  • the second uncoated area 115b of the twelfth embodiment is located between the two coated areas 114, and the fourth uncoated area 115d is located between the two coated areas. 114 between districts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

一种二次电池(7)及其电极构件(1)、电池模块和相关装置。电极构件(1)包括集流体(11)、活性物质层(12)、转接片(13)和电极引线(14)。集流体(11)包括绝缘基体(111)、第一导电层(112)和第二导电层(113),第一导电层(112)和第二导电层(113)设置于绝缘基体(111)。第一导电层(112)和第二导电层(113)均包括涂覆区(114)和未涂覆区(115),涂覆区(114)涂覆有活性物质层(12),未涂覆区(115)未涂覆活性物质层(12),集流体(11)沿长度方向(X)的尺寸大于沿宽度方向(Y)的尺寸,且未涂覆区(115)位于涂覆区(114)沿长度方向(X)的侧方。转接片(13)包括第一导电件(131)和第二导电件(132),第一导电件(131)和第二导电件(132)分别连接于第一导电层(112)的未涂覆区(115)和第二导电层(113)的未涂覆区(115),且第一导电件(131)连接于第二导电件(132)。电极引线(14)连接于转接片(13),且电极引线(14)沿宽度方向(Y)的一端超出未涂覆区(115)。

Description

二次电池及其电极构件、电池模块和相关装置
本申请要求于2019年10月16日提交中国专利局、申请号为201921737502.7、发明名称为“二次电池及其电极构件、电池模块和使用二次电池作为电源的装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施方式涉及电池领域,尤其涉及一种二次电池及其电极构件、电池模块和相关装置。
背景技术
二次电池如锂离子电池由于能量密度高,环境友好等优点被广泛应用于移动电话、笔记本电脑等电子装置。近年来,为了应对环境问题,汽油价格问题,以及能量存储问题,锂离子电池的应用已经快速扩展到油电混动车辆、轮船以及能量存储系统等。
二次电池的电极构件通常包括集流体和涂覆在集流体表面的活性物质层。为了提高二次电池的安全性能,一些电极构件选择一种多层结构的集流体,例如,所述集流体包括绝缘基体和设置于绝缘基体两个表面的导电层,而活性物质层涂覆于导电层的表面。然而,两个导电层被绝缘基体隔开,所以两个导电层上的电流无法汇流,影响电极构件的过流能力。
发明内容
鉴于背景技术中存在的问题,本申请的多个方面提供一种二次电池及其电极构件、电池模块和相关装置,其能提高电极构件的过流能力和安全性能。
本申请的第一方面提供了一种电极构件,其包括集流体、活性物质层、转接片和电极引线。集流体包括绝缘基体、第一导电层和第二导电层,第一导电层和第二导电层分别设置于绝缘基体的两个表面。第一导电层和第二导电层均包括涂覆区和未涂覆区,涂覆区涂覆有活性物质层,未涂覆区未涂覆活性物质层,集流体沿长度方向的尺寸大于沿宽度方向的尺寸,并且未涂覆区位于涂覆区沿长度方向的侧方。转接片包括第一导电件和第二导电件,第一导电件和第二导电件分别连接于第一导电层的未涂覆区和第二导电层的未涂覆区,且第一导电件连接于第二导电件。电极引线连接于转接片,且电极引线沿宽度方向的一端超出未涂覆区。
因此,可以减小导电层的厚度,降低短路风险,提高安全性能,减小对未涂覆区的尺寸的限制,增大导电件与未涂覆区之间的过流面积,从而提高电极构件的过流能力。
在一些实施例中,转接片还包括连接部,连接部连接于第一导电件和第二导电件之间。连接部围绕未涂覆区沿长度方向的端部弯折设置,或者,连接部围绕未涂覆区沿宽度方向的端部弯折设置。电极引线通过焊接、粘接以及铆接的方式固定于连接部。连接部可以将第一导电件和第二导电件连接,从而将第一导电层和第二导电层的电流汇集在一起。
在一些实施例中,电极引线连接于第一导电件,且电极引线沿长度方向不超出未涂覆区。
在一些实施例中,电极引线的厚度大于第一导电件的厚度。
在一些实施例中,第一导电层的未涂覆区位于第一导电层沿长度方向的端部。第二导电层的未涂覆区位于第二导电层沿长度方向的端部。
在一些实施例中,第一导电层的未涂覆区为多个,且第一导电层的多个未涂覆区包括第一未涂覆区和第二未涂覆区。第二导电层的未涂覆区为多个,且第二导电层的多个未涂覆区包括第三未涂覆区和第四未涂覆区;
转接片为多个,且多个转接片包括第一转接片和第二转接片;
第一转接片的第一导电件连接于第一导电层的第一未涂覆区,第一转接片的第二导电件连接于第二导电层的第三未涂覆区。第二转接片的第一导电件连接于第一导电层的第二未涂覆区,第二转接片的第二导电件连接于第二导电层的第四未涂覆区。第一转接片和第二转接片中的至少一个连接有电极引线。多个转接片可以增加第一导电层和第二导电层之间的导电路径,提高汇流能力。
在一些实施例中,第一未涂覆区和第二未涂覆区分别位于第一导电层沿长度方向的两端。第三未涂覆区和第四未涂覆区分别位于第二导电层沿长度方向的两端。
本申请的第二方面提供了一种二次电池,其包括电极组件,电极组件包括隔膜和的电极构件。隔膜将正极构件和负极构件隔开,以避免短路。
在一些实施例中,隔膜和电极构件沿平行于宽度方向的中心轴卷绕为一体。在宽度方向上,隔膜超出转接片。
本申请对的第三方面提供了电池模块,其包括的二次电池,二次电池为多个。
本申请的第四方面提供了一种使用二次电池作为电源的装置,其包括主体以及多个的二次电池,多个二次电池设置于主体。
上述描述的二次电池及其电极构件、电池模块和相关装置通过设置绝缘基体,可以减小导电层的厚度。当异物刺穿二次电池的电极构件时,由于导电层厚度较小,因此导电层在被异物刺穿的部位产生的毛刺较小,很难刺破隔膜,从而降低短路风险,提高安全性能。转接片的第一导电件和第二导电件能够将第一导电层和第二导电层上的电流汇集在一起,从而改善电极构件的过流能力。导电层的未涂覆区和涂覆区沿长度方向布置,这样可以减小 对未涂覆区的尺寸的限制,增大导电件与未涂覆区之间的过流面积,从而提高电极构件的过流能力。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为根据本申请的二次电池的电极组件的一实施例的示意图。
图2为根据本申请的电极构件的第一实施例的示意图。
图3为图2的电极构件的前视图。
图4为图3的电极构件沿线A-A作出的剖视图。
图5为根据本申请的电极构件的第二实施例的示意图。
图6为图5的电极构件的前视图。
图7为图5的电极构件沿线B-B作出的剖视图。
图8为根据本申请的电极构件的第三实施例的示意图。
图9为图8的电极构件的前视图。
图10为图9的电极构件沿线C-C作出的剖视图。
图11为根据本申请的电极构件的第四实施例的示意图。
图12为图11的电极构件的前视图。
图13为根据本申请的电极构件的第五实施例的示意图。
图14为图13的电极构件的前视图。
图15为图14的电极构件沿线D-D作出的剖视图。
图16为图14的电极构件沿线E-E作出的剖视图。
图17为根据本申请的电极构件的第六实施例的示意图。
图18为根据本申请的电极构件的第七实施例的示意图。
图19为图18的电极构件的前视图。
图20为根据本申请的电极构件的第八实施例的示意图。
图21为图20的电极构件的前视图。
图22为根据本申请的电极构件的第九实施例的示意图。
图23为图22的电极构件沿线F-F作出的剖视图。
图24为根据本申请的电极构件的第十实施例的示意图。
图25为图24的电极构件沿线G-G作出的剖视图。
图26为根据本申请的电极构件的第十一实施例的示意图。
图27为图26的电极构件的前视图。
图28为根据本申请的电极构件的第十二实施例的示意图。
图29为图28的电极构件的前视图。
图30为根据本申请实施例的二次电池的示意图。
图31为根据本申请实施例的电池模块的示意图。
图32为根据本申请实施例的使用二次电池作为电源的装置的示意图。
其中,附图标记说明如下:
1电极构件                     2隔膜
11集流体                      3壳体
111绝缘基体                   4顶盖板
112第一导电层                 5电极端子
113第二导电层                 6电极组件
114涂覆区                     7二次电池
115未涂覆区                   W1第一焊接区
115a第一未涂覆区              W2第二焊接区
115b第二未涂覆区              W3第三焊接区
115c第三未涂覆区              W4第四焊接区
115d第四未涂覆区              X长度方向
12活性物质层                  Y宽度方向
13转接片                      Z厚度方向
131第一导电件
132第二导电件
133连接部
13a第一转接片
13b第二转接片
14电极引线
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请的描述中,除非另有明确的规定和限定,术语“第一”、“第 二”、“第三”等仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”是指两个以上(包括两个);除非另有规定或说明,术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接,或电连接,或信号连接;“连接”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本说明书的描述中,需要理解的是,本申请实施例所描述的“上”、“下”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。下面通过具体的实施例并结合附图对本申请做进一步的详细描述。
本申请提供了一种使用二次电池作为电源的装置,其包括主体以及多个二次电池7,多个二次电池7设置于主体。装置可为轮船、车辆等。例如,参照图32,车辆为新能源汽车,其可以为纯电动汽车,也可以混合动力汽车或增程式汽车。车辆的主体设置有驱动电机,驱动电机与二次电池7电连接,由二次电池7提供电能,驱动电机通过传动机构与车辆的主体上的车轮连接,从而驱动汽车行进。二次电池7为锂离子电池。
本申请还提供了一种电池模块,参照图31,电池模块包括多个二次电池7,多个二次电池7依次排列。电池模块还可包括端板和侧板,端板为两个且分别设置于多个二次电池7沿排列方向的两端,侧板为两个且分别设置于多个二次电池7的两侧。两个端板和两个侧板连接在一起并形成大体为矩形的框架,框架能够收容和固定多个二次电池7。
本申请实施例的二次电池7包括电极组件6。电极组件6是二次电池7实现充放电功能的核心部件。参照图1,电极组件6包括电极构件1和隔膜2。电极构件1为多个,多个电极构件1包括正极构件和负极构件,隔膜2将正极构件和负极构件隔开。
在一些实施例中,电极组件6为卷绕式结构。具体地,参照图1,正极构件、负极构件和隔膜2均为带状结构,将正极构件、隔膜2和负极构件依次层叠并卷绕两圈以上以形成电极组件6,并且电极组件6呈扁平状。
在替代地实施例中,电极组件6为叠片式结构。具体地,正极构件和负极构件均设置为多个,且多个正极构件和多个负极构件交替层叠,隔膜2将相邻的正极构件和负极构件隔开。
本申请的二次电池7可为软包电池,软包电池的电极组件6直接封装在包装袋内。包装袋可为铝塑膜。
本申请的二次电池7还可为硬壳电池。参照图30,硬壳电池还包括壳体3、顶盖板4和电极端子5。壳体3可具有六面体形状或其它形状。壳体3内部形成收容腔,以容纳电极组件6和电解液。壳体3在一端形成开口,而电极组件6可经由开口放置到壳体3的收容腔。壳体3可由铝或铝合金等导电金属的材料制成。顶盖板4可通过焊接等方式连接到壳体3,从而覆盖壳体3的开口,以将电极组件6封闭在壳体3内。电极端子5设置于顶盖板4并与电极构件1电连接。
下面以不同的实施例详细描述本申请的电极构件1。
图2为根据本申请的电极构件的第一实施例的示意图。图3为图2的电极构件的前视图。图4为图3的电极构件沿线A-A作出的剖视图。
参照图2至图4,在第一实施例中,电极构件1包括集流体11、活性物质层12、转接片13和电极引线14。
集流体11包括绝缘基体111、第一导电层112和第二导电层113,第一导电层112和第二导电层113分别设置于绝缘基体111的两个表面。绝缘基体111材质可为聚对苯二甲酸乙二醇酯(PET)膜或聚丙烯(PP)膜。
集流体11可为带状结构,且集流体11沿长度方向X的尺寸大于沿宽 度方向Y的尺寸。在卷绕式的电极组件6中,隔膜2和电极构件1沿平行于宽度方向Y的中心轴卷绕为一体。
第一导电层112和第二导电层113的材料选自金属导电材料、碳基导电材料中的至少一种;金属导电材料,例如,铝、铜、镍、钛、银、镍铜合金、铝锆合金中的至少一种,碳基导电材料,例如,石墨、乙炔黑、石墨烯、碳纳米管中的至少一种。
第一导电层112可通过气相沉积法(vapor deposition)、化学镀(electroless plating)中的至少一种形成于绝缘基体111的表面。其中,气相沉积法优选物理气相沉积法(Physical Vapor Deposition,PVD),例如热蒸发法(Thermal Evaporation Deposition)。同样地,第二导电层113通过气相沉积法(vapor deposition)、化学镀(electroless plating)中的至少一种形成于绝缘基体111的表面。
活性物质层12可通过涂布的方式设置到第一导电层112的表面和第二导电层113的表面。可将活性材料(例如锰酸锂、磷酸铁锂)、粘结剂、导电剂及溶剂制成浆料,然后将浆料涂布在第一导电层12的表面和第二导电层113的表面,浆料固化后形成活性物质层12。
活性物质层12仅覆盖第一导电层12的部分区域和第二导电层113的部分区域。具体地,第一导电层112和第二导电层113均包括涂覆区114和未涂覆区115,涂覆区114涂覆有活性物质层12,未涂覆区115未涂覆活性物质层12。
绝缘基体111的厚度可为1微米(μm)~20μm,第一导电层112和第二导电层113的厚度可为0.1μm~10μm。由于第一导电层112和第二导电层113较薄,所以在裁切电极构件1的过程中,第一导电层112和第二导电层113产生的毛刺较小,很难刺破十几微米的隔膜2,从而避免短路,提高安全性能。在一些实施例中当异物刺穿二次电池7的电极构件1时,由于第一导 电层112和第二导电层113厚度较小,因此第一导电层112和第二导电层113在被异物刺穿的部位产生的毛刺较小,很难刺破隔膜2,从而避免短路,提高安全性能。
转接片13包括第一导电件131和第二导电件132,第一导电件131和第二导电件132分别连接于第一导电层112的未涂覆区115和第二导电层113的未涂覆区115,且第一导电件131连接于第二导电件132。第一导电件131和第二导电件132能够将第一导电层112和第二导电层113上的电流汇集在一起,从而改善电极构件1的过流能力。
电极构件1在宽度方向Y上的尺寸较小,如果将未涂覆区115设置到涂覆区114沿宽度方向Y的一侧,那么未涂覆区115在宽度方向Y上的尺寸也较小。当第一导电件131连接到第一导电层112的未涂覆区115时,第一导电件131与未涂覆区115之间的过流面积较小,导致电极构件1的过流能力偏低。
同样地,第二导电件132与第二导电层113的未涂覆区115之间的过流面积也较小。
因此,在本申请中,未涂覆区115在一些实施例中位于涂覆区114沿长度方向X的侧方。此时,未涂覆区115和涂覆区114可具有相同的宽度,因此,本申请可以增大第一导电件131与未涂覆区115之间的过流面积以及第二导电件132与第一导电层113的未涂覆区115之间的过流面积,从而提高电极构件1的过流能力。
电极引线14连接于转接片13,且电极引线14沿宽度方向Y的一端超出未涂覆区115。电极引线14的超出未涂覆区115的部分能够电连接于电极端子5,从而将电极构件1的电流引出二次电池7的外部。
转接片13还包括连接部133,连接部133连接于第一导电件131和第二导电件132之间。连接部133围绕未涂覆区115沿宽度方向Y的端部弯折 设置。转接片13可由两个金属箔片连接而成,两个金属箔片均包括第一区域和第二区域,两个金属箔片的第一区域分别与第一导电层112和第二导电层113接触,两个金属箔片的第二区域均在宽度方向Y上超出集流体11,且两个金属箔片的第二区域焊接在一起并形成第一焊接区W1。
其中,一个金属箔片的第一区域即为第一导电件131,另一个金属箔片的第一区域即为第二导电件132,两个金属箔片的第二区域形成连接部133。
连接部133可以将第一导电件131和第二导电件132连接,从而将第一导电层112和第二导电层113的电流汇集在一起。
电极引线14通过焊接、粘接以及铆接的方式固定于第一导电件131。在一些实施例中,电极引线14、第一导电件131和第一导电层112焊接并形成第二焊接区W2。此时,通过一次焊接即可将电极引线14、第一导电件131和第一导电层112连接在一起。
电极引线14沿长度方向X不超出未涂覆区115。此时,在长度方向X上,电极引线14不会额外地占用空间。
电极引线14上的电流通常大于第一导电件131上的电流,所以为了保证过流的一致性,电极引线14的厚度大于第一导电件131的厚度。在一些实施例中,增大电极引线14的厚度,还可以降低电阻,减少产热。
在软包电池中,电极引线14从包装袋中穿出,以与其它的构件电连接,进而实现二次电池7的充放电。较大厚度的电极引线14可以便于二次电池7与其它构件的电连接。
第一导电层112的未涂覆区115位于第一导电层112沿长度方向X的端部;第二导电层113的未涂覆区115位于第二导电层113沿长度方向X的端部。参照图1,当电极构件1卷绕成型后,电极引线14靠近电极组件6的卷绕中心;在软包电池中,电极引线14无需弯折,即可从包装袋中穿出。
在电极组件6中,隔膜2将正极构件和负极构件隔开,以避免短路。在宽度方向Y上,如果正极构件的转接片13超出隔膜2,那么其超出隔膜2的部分容易弯折并与负极构件接触,从而引发短路风险。同样地,如果负极构件的转接片13超出隔膜2,也会引发短路风险。因此,在本申请的电极组件6中,沿宽度方向Y,隔膜2超出转接片13。
下面对本申请的电极构件的第二实施例进行说明。为了简化描述,以下仅主要介绍其它实施例与第一实施例的不同之处,未描述的部分可以参照第一实施例进行理解。
图5为根据本申请的电极构件的第二实施例的示意图。图6为图5的电极构件的前视图。图7为图5的电极构件沿线B-B作出的剖视图。
参照图5至图7,与第一实施例相比,在第二实施例中,第一导电件131和第一导电层112焊接并形成第三焊接区W3。通过设置第三焊接区W3,可以进一步增大第一导电件131和第一导电层112之间的过流面积,降低电阻,减少热聚集。第三焊接区W3为条形,且数量可为一个或多个。
图8为根据本申请的电极构件的第三实施例的示意图。图9为图8的电极构件的前视图。图10为图9的电极构件沿线C-C作出的剖视图。
参照图8至图10,与第一实施例相比,第三实施例的转接片13为一体式构件。转接片13由一个金属箔片弯折而成。具体地,一个金属箔片弯折为U形结构并包覆在集流体11上。一个金属箔片的与第一导电层112接触的区域形成第一导电件131,一个金属箔片的与第二导电层113接触的区域形成第二导电件132,一个金属箔片的位于集流体11沿宽度方向Y的外侧的区域形成连接部133。
与第一实施例相比,一体式的转接片13可以减少焊接工艺。
图11为根据本申请的电极构件的第四实施例的示意图。图12为图11 的电极构件的前视图。
参照图11和图12,与第三实施例相比,第四实施例的转接片13的连接部133位于集流体11沿长度方向X的外侧。此时,连接部133围绕未涂覆区115沿长度方向X的端部弯折设置。
在电极组件6中,电极构件1通常为卷绕状态。相对于电极构件1在长度方向X上的尺寸,电极构件1在宽度方向Y上的尺寸更为宝贵。也就是说,电极构件1在宽度方向Y上的尺寸对电极组件6的体积影响较大。
在第四实施例中,连接部133在长度方向X上占用空间;当电极构件1卷绕成型后,连接部133对电极组件6的体积的影响较小。因此,与第三实施例相比,第四实施例可以降低电极组件6的体积,提高能量密度。
图13为根据本申请的电极构件的第五实施例的示意图。图14为图13的电极构件的前视图。图15为图14的电极构件沿线D-D作出的剖视图。图16为图14的电极构件沿线E-E作出的剖视图。
参照图13-16,在第五实施例中,第一导电层112的未涂覆区115为多个,第一导电层112的涂覆区114可为一个或多个。在第一导电层112中,未涂覆区115和涂覆区114沿长度方向X交替布置。
第二导电层113的未涂覆区115均为多个,第二导电层113的涂覆区114可为一个或多个。在第二导电层113中,未涂覆区115和涂覆区114沿长度方向X交替布置。
第一导电层112的多个未涂覆区115包括第一未涂覆区115a和第二未涂覆区115b,第二导电层113的多个未涂覆区115包括第三未涂覆区115c和第四未涂覆区115d。
转接片13为多个,且多个转接片13包括第一转接片13a和第二转接片13b。第一转接片13a的第一导电件131连接于第一导电层112的第一未涂 覆区115a,第一转接片13a的第二导电件132连接于第二导电层113的第三未涂覆区115c。第二转接片13b的第一导电件131连接于第一导电层112的第二未涂覆区115b,第二转接片13b的第二导电件132连接于第二导电层113的第四未涂覆区115d。
第一转接片13a的连接部133可设置于集流体11沿宽度方向Y的外侧,第二转接片13b的连接部133可设置于集流体11沿宽度方向Y的外侧。
第一转接片13a和第二转接片13b中的至少一个连接有电极引线14。在本实施例中,第一转接片13a上焊接有电极引线14。
在本实施例中,多个转接片13可以增加第一导电层112和第二导电层113之间的导电路径,提高汇流能力。
第一未涂覆区115a和第二未涂覆区115b分别位于第一导电层112沿长度方向X的两端。涂覆区114为一个且连接第一未涂覆区115a和第二未涂覆区115b。第一导电层112的涂覆区114为一个,这样可以简化涂覆工艺。
第三未涂覆区115c和第四未涂覆区115d分别位于第二导电层113沿长度方向X的两端。涂覆区114为一个且连接第三未涂覆区115c和第四未涂覆区115d。第二导电层113的涂覆区114为一个,这样可以简化涂覆工艺。
图17为根据本申请的电极构件的第六实施例的示意图。
参照图17,与第五实施例相比,第六实施例的第一转接片13a和第二转接片13b均连接有电极引线14。两个电极引线14可以提高电极构件1的过流能力。
图18为根据本申请的电极构件的第七实施例的示意图。图19为图18的电极构件的前视图。
参照图18和图19,与第六实施例相比,第七实施例的第二未涂覆区115b位于两个涂覆区114之间,第四未涂覆区115d位于两个涂覆区之间114。
在本实施例中,第一导电层112的涂覆区114为多个,第二导电层113的涂覆区114为多个。
图20为根据本申请的电极构件的第八实施例的示意图。图21为图20的电极构件的前视图。
参照图20-21,与第五实施例相比,第八实施例的转接片13的结构不同。具体地,第一转接片13a的连接部133可设置于集流体11沿长度方向X的外侧,第二转接片13b的连接部133可设置于集流体11沿长度方向X的外侧。
图22为根据本申请的电极构件的第九实施例的示意图。图23为图22的电极构件沿线F-F作出的剖视图。
参照图22-23,与第三实施例相比,第九实施例的电极引线14通过焊接、粘接以及铆接的方式固定于连接部133。
在一些实施例中,电极引线14焊接于连接部133并形成第四焊接区W4,第一导电件131焊接于第一导电层112并形成第三焊接区W3。
电极引线14具有较大的厚度,焊接会产生较多的热量。在本实施例中,电极引线14仅与转接片13的连接部133焊接,可以减少传动到集流体11的绝缘基体111的热量。
图24为根据本申请的电极构件的第十实施例的示意图。图25为图24的电极构件沿线G-G作出的剖视图。
参照图24-25,与第四实施例相比,第十实施例中的电极引线14通过焊接、粘接以及铆接的方式固定于连接部133。
在一些实施例中,第一导电件131焊接于第一导电层112并形成第三焊接区W3,电极引线14焊接于连接部133并形成第四焊接区W4。
电极引线14具有较大的厚度,焊接会产生较多的热量。在本实施例中, 电极引线14仅与转接片13的连接部133焊接,可以减少传动到集流体11的绝缘基体111的热量。
同时,连接部133不会在宽度方向Y上占用空间,可以减小电极组件6的体积,提高能量密度。
图26为根据本申请的电极构件的第十一实施例的示意图。图27为图26的电极构件的前视图。
与第十实施例相比,在第十一实施例中,第一导电层112的未涂覆区115为多个,第一导电层112的涂覆区114可为一个或多个。在第一导电层112中,未涂覆区115和涂覆区114沿长度方向X交替布置。
第二导电层113的未涂覆区115均为多个,第二导电层113的涂覆区114可为一个或多个。在第二导电层113中,未涂覆区115和涂覆区114沿长度方向X交替布置。
第一导电层112的多个未涂覆区115包括第一未涂覆区115a和第二未涂覆区115b,第二导电层113的多个未涂覆区115包括第三未涂覆区115c和第四未涂覆区115d。
转接片13为多个,且多个转接片13包括第一转接片13a和第二转接片13b。第一转接片13a的第一导电件131连接于第一导电层112的第一未涂覆区115a,第一转接片13a的第二导电件132连接于第二导电层113的第三未涂覆区115c。第二转接片13b的第一导电件131连接于第一导电层112的第二未涂覆区115b,第二转接片13b的第二导电件132连接于第二导电层113的第四未涂覆区115d。
第一转接片13a的连接部133可设置于集流体11沿长度方向X的外侧,第二转接片13b的连接部133可设置于集流体11沿长度方向X的外侧。
第一转接片13a和第二转接片13b中的至少一个连接有电极引线14。 在本实施例中,第一转接片13a上焊接有电极引线14。
在本实施例中,多个转接片13可以增加第一导电层112和第二导电层113之间的导电路径,提高汇流能力。
图28为根据本申请的电极构件的第十二实施例的示意图。图29为图28的电极构件的前视图。
参照图2—29,与第十一实施例相比,第十二实施例的第二未涂覆区115b位于两个涂覆区114之间,第四未涂覆区115d位于两个涂覆区之间114。
在本实施例中,第一导电层112的涂覆区114为多个,第二导电层113的涂覆区114为多个。

Claims (11)

  1. 一种电极构件(1),包括集流体(11)、活性物质层(12)、转接片(13)和电极引线(14);
    所述集流体(11)包括绝缘基体(111)、第一导电层(112)和第二导电层(113),所述第一导电层(112)和所述第二导电层(113)分别设置于所述绝缘基体(111)的两个表面;
    所述第一导电层(112)和所述第二导电层(113)均包括涂覆区(114)和未涂覆区(115),所述涂覆区(114)涂覆有活性物质层(12),所述未涂覆区(115)未涂覆活性物质层(12),所述集流体(11)沿长度方向(X)的尺寸大于沿宽度方向(Y)的尺寸,并且所述未涂覆区(115)位于所述涂覆区(114)沿长度方向(X)的侧方;
    所述转接片(13)包括第一导电件(131)和第二导电件(132),所述第一导电件(131)和所述第二导电件(132)分别连接于所述第一导电层(112)的所述未涂覆区(115)和所述第二导电层(113)的所述未涂覆区(115),且第一导电件(131)连接于第二导电件(132);
    所述电极引线(14)连接于所述转接片(13),且所述电极引线(14)沿所述宽度方向(Y)的一端超出所述未涂覆区(115)。
  2. 根据权利要求1所述的电极构件(1),转接片(13)还包括连接部(133),所述连接部(133)连接于所述第一导电件(131)和所述第二导电件(132)之间;
    所述连接部(133)围绕所述未涂覆区(115)沿所述长度方向(X)的端部弯折设置,或者,所述连接部(133)围绕所述未涂覆区(115)沿所述宽度方向(Y)的端部弯折设置;
    所述电极引线(14)通过焊接、粘接以及铆接的方式固定于所述连接部(133)。
  3. 根据权利要求1或2所述的电极构件(1),所述电极引线(14)连接于所述第一导电件(131),且所述电极引线(14)沿所述长度方向(X)不超出所述未涂覆区(115)。
  4. 根据权利要求1-3中任意一项所述的电极构件(1),其特征在于,所述电极引线(14)的厚度大于所述第一导电件(131)的厚度。
  5. 根据权利要求1-4中任意一项所述的电极构件(1),所述第一导电层(112)的未涂覆区(115)位于所述第一导电层(112)沿长度方向(X)的端部;
    所述第二导电层(113)的未涂覆区(115)位于所述第二导电层(113)沿长度方向(X)的端部。
  6. 根据权利要求1-5中任一项所述的电极构件(1),
    所述第一导电层(112)的所述未涂覆区(115)为多个,且所述第一导电层(112)的多个未涂覆区(115)包括第一未涂覆区(115a)和第二未涂覆区(115b);
    所述第二导电层(113)的所述未涂覆区(115)为多个,且所述第二导电层(113)的多个未涂覆区(115)包括第三未涂覆区(115c)和第四未涂覆区(115d);
    所述转接片(13)为多个,且多个转接片(13)包括第一转接片(13a) 和第二转接片(13b);
    所述第一转接片(13a)的所述第一导电件(131)连接于所述第一导电层(112)的第一未涂覆区(115a),所述第一转接片(13a)的所述第二导电件(132)连接于所述第二导电层(113)的所述第三未涂覆区(115c);
    所述第二转接片(13b)的所述第一导电件(131)连接于所述第一导电层(112)的第二未涂覆区(115b),所述第二转接片(13b)的所述第二导电件(132)连接于所述第二导电层(113)的第四未涂覆区(115d);
    所述第一转接片(13a)和所述第二转接片(13b)中的至少一个连接有所述电极引线(14)。
  7. 根据权利要求6所述的电极构件(1),
    所述第一未涂覆区(115a)和所述第二未涂覆区(115b)分别位于所述第一导电层(112)沿长度方向(X)的两端;
    所述第三未涂覆区(115c)和所述第四未涂覆区(115d)分别位于所述第二导电层(113)沿长度方向(X)的两端。
  8. 一种二次电池,包括电极组件,所述电极组件包括隔膜(2)和权利要求1-7中任一项所述的电极构件(1)。
  9. 根据权利要求8所述的二次电池,
    所述隔膜(2)和所述电极构件(1)沿平行于所述宽度方向(Y)的中心轴卷绕为一体;
    在所述宽度方向(Y)上,所述隔膜(2)超出转接片(13)。
  10. 一种电池模块,包括根据权利要求8或9所述的二次电池,所述二次电池为多个。
  11. 一种使用二次电池作为电源的装置,包括一个或多个如权利要求8或9所述的二次电池,所述一个或多个二次电池用于提供电能。
PCT/CN2020/120341 2019-10-16 2020-10-12 二次电池及其电极构件、电池模块和相关装置 WO2021073470A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20877137.8A EP3944396A4 (en) 2019-10-16 2020-10-12 SECONDARY BATTERY, ELECTRODE ELEMENT THEREOF, BATTERY MODULE AND ASSOCIATED DEVICE
US17/562,928 US20220123443A1 (en) 2019-10-16 2021-12-27 Secondary battery and electrode member thereof, battery module, and related apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201921737502.7 2019-10-16
CN201921737502.7U CN210805919U (zh) 2019-10-16 2019-10-16 二次电池及其电极构件、电池模块和使用二次电池的装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/562,928 Continuation US20220123443A1 (en) 2019-10-16 2021-12-27 Secondary battery and electrode member thereof, battery module, and related apparatus

Publications (1)

Publication Number Publication Date
WO2021073470A1 true WO2021073470A1 (zh) 2021-04-22

Family

ID=71227930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120341 WO2021073470A1 (zh) 2019-10-16 2020-10-12 二次电池及其电极构件、电池模块和相关装置

Country Status (4)

Country Link
US (1) US20220123443A1 (zh)
EP (1) EP3944396A4 (zh)
CN (1) CN210805919U (zh)
WO (1) WO2021073470A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210805919U (zh) * 2019-10-16 2020-06-19 宁德时代新能源科技股份有限公司 二次电池及其电极构件、电池模块和使用二次电池的装置
CN219350311U (zh) * 2020-06-25 2023-07-14 株式会社村田制作所 二次电池
CN214043710U (zh) * 2020-12-28 2021-08-24 珠海冠宇电池股份有限公司 一种正极片及锂离子电池
CN114843519A (zh) * 2022-05-26 2022-08-02 东莞锂威能源科技有限公司 集流体、正极片、负极片、叠片电芯、电池及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255754A (ja) * 1997-03-12 1998-09-25 Japan Storage Battery Co Ltd 電池用極板の集電体とリードとの接続構造及び電池
JP2006260892A (ja) * 2005-03-16 2006-09-28 Dainippon Printing Co Ltd 非水電解液二次電池用電極板、その製造方法、及び非水電解液二次電池
CN101345322A (zh) * 2007-07-11 2009-01-14 日产自动车株式会社 层叠型电池
WO2017222296A1 (ko) * 2016-06-22 2017-12-28 삼성에스디아이 주식회사 이차 전지
CN108963311A (zh) * 2018-07-13 2018-12-07 宁德时代新能源科技股份有限公司 二次电池及其极片
CN110335984A (zh) * 2019-06-28 2019-10-15 宁德新能源科技有限公司 一种分叉式极耳、电极组件以及电池
CN210805919U (zh) * 2019-10-16 2020-06-19 宁德时代新能源科技股份有限公司 二次电池及其电极构件、电池模块和使用二次电池的装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255754A (ja) * 1997-03-12 1998-09-25 Japan Storage Battery Co Ltd 電池用極板の集電体とリードとの接続構造及び電池
JP2006260892A (ja) * 2005-03-16 2006-09-28 Dainippon Printing Co Ltd 非水電解液二次電池用電極板、その製造方法、及び非水電解液二次電池
CN101345322A (zh) * 2007-07-11 2009-01-14 日产自动车株式会社 层叠型电池
WO2017222296A1 (ko) * 2016-06-22 2017-12-28 삼성에스디아이 주식회사 이차 전지
CN108963311A (zh) * 2018-07-13 2018-12-07 宁德时代新能源科技股份有限公司 二次电池及其极片
CN110335984A (zh) * 2019-06-28 2019-10-15 宁德新能源科技有限公司 一种分叉式极耳、电极组件以及电池
CN210805919U (zh) * 2019-10-16 2020-06-19 宁德时代新能源科技股份有限公司 二次电池及其电极构件、电池模块和使用二次电池的装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3944396A4 *

Also Published As

Publication number Publication date
US20220123443A1 (en) 2022-04-21
EP3944396A1 (en) 2022-01-26
CN210805919U (zh) 2020-06-19
EP3944396A4 (en) 2022-08-17

Similar Documents

Publication Publication Date Title
WO2021073470A1 (zh) 二次电池及其电极构件、电池模块和相关装置
JP5186529B2 (ja) リチウム二次電池
US10833372B2 (en) Rectangular secondary battery
US8815426B2 (en) Prismatic sealed secondary cell and method of manufacturing the same
US11121439B2 (en) Secondary battery
JP2011071109A (ja) 電池
CN113366682B (zh) 电化学装置及电子装置
KR101629499B1 (ko) 전극조립체 및 이를 포함하는 이차전지
US11855304B2 (en) Secondary battery
CN112864534B (zh) 电芯组件、电芯模组、电池及使用电池的装置
US10177351B2 (en) Rechargeable battery
KR20120031606A (ko) 부식방지용 보호층이 선택적으로 형성된 전극리드, 및 이를 포함하는 이차전지
WO2021226756A1 (zh) 二次电池及其制造方法、电池模块以及装置
CN112821014A (zh) 电芯、电芯组件及电池
WO2024104297A1 (zh) 电芯、二次电池及用电设备
CN111293268B (zh) 电池
CN113924674A (zh) 二次电池
JP7479104B1 (ja) 電極シート及び2次電池
CN217468707U (zh) 电化学装置及用电设备
WO2024079945A1 (ja) リチウム2次電池
CN214625315U (zh) 电芯、电芯组件及电池
WO2023130229A1 (zh) 一种电极组件、电池及电子装置
US20230163426A1 (en) Battery cell
WO2023279257A1 (zh) 电化学装置及电子装置
WO2023004830A1 (zh) 电池极片、电极组件、电池单体、电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20877137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020877137

Country of ref document: EP

Effective date: 20211022

NENP Non-entry into the national phase

Ref country code: DE