WO2023130209A1 - 显示装置及后视镜 - Google Patents

显示装置及后视镜 Download PDF

Info

Publication number
WO2023130209A1
WO2023130209A1 PCT/CN2022/070090 CN2022070090W WO2023130209A1 WO 2023130209 A1 WO2023130209 A1 WO 2023130209A1 CN 2022070090 W CN2022070090 W CN 2022070090W WO 2023130209 A1 WO2023130209 A1 WO 2023130209A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
display device
light
switching screen
polarizer
Prior art date
Application number
PCT/CN2022/070090
Other languages
English (en)
French (fr)
Inventor
李文波
张怀平
黄晓东
赵玉强
刘金豆
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/070090 priority Critical patent/WO2023130209A1/zh
Priority to CN202280000013.1A priority patent/CN116710325A/zh
Publication of WO2023130209A1 publication Critical patent/WO2023130209A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/02Rear-view mirror arrangements
    • B60R1/08Rear-view mirror arrangements involving special optical features, e.g. avoiding blind spots, e.g. convex mirrors; Side-by-side associations of rear-view and other mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/12Mirror assemblies combined with other articles, e.g. clocks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present disclosure relates to the field of display technology, in particular to a display device and a rearview mirror.
  • streaming media rearview mirrors formed by applying the display device to the rearview mirror of the car can present the picture behind the vehicle.
  • streaming media rearview mirrors have the advantages of large field of vision and anti-glare. Therefore, streaming media rearview mirrors are gradually favored by people.
  • a display device in one aspect, includes a display panel, a mirror switching screen, a first photosensitive sensor, a first flexible circuit board and a driving board.
  • the mirror switching screen is arranged on the light emitting side of the display panel.
  • the first photosensitive sensor is configured to sense in real time the light intensity of ambient light on a side of the mirror switching screen away from the display panel.
  • the first flexible circuit board includes a binding part, a component part and a wiring part, the binding part is electrically connected to the mirror switching screen, and the first photosensitive sensor is arranged on the component part close to the On one side of the mirror switching screen, the wiring part is provided with a wiring electrically connected to the binding pad of the binding part and the first photosensitive sensor.
  • the driving board is electrically connected to the wiring part of the first flexible circuit board.
  • both the binding part and the component part are located at the end of the wiring part close to the mirror switching screen, and there is a gap between the binding part and the component part .
  • the binding part is close to the boundary of the component part, and the minimum distance between the boundary of the component part close to the binding part is 25.55mm-25.95mm.
  • the driving board is also electrically connected to the display panel.
  • the display device further includes a second flexible circuit board, the second flexible circuit board is electrically connected to the display panel and the driving board, and the driving board can pass through the first flexible circuit board.
  • the circuit board and the second flexible circuit board are bent to a side of the display panel away from the mirror switching screen.
  • the mirror switching screen includes a reflective polarizer, a first transparent substrate, a first transparent electrode layer, a first alignment film, A liquid crystal layer, a second alignment film, a second transparent electrode layer, a second transparent substrate and a first absorbing polarizer.
  • the transmission axis of the reflective polarizer is approximately perpendicular to the absorption axis of the first absorptive polarizer
  • the orientation direction of the first alignment film is approximately parallel to the transmission axis of the reflective polarizer
  • the alignment direction of the second alignment film is approximately parallel to the absorption axis of the first absorption polarizer.
  • the reflective polarizer includes any one of a multilayer reflective polarizer, a reflective polarizer, an optical brightness enhancement film, or a metal mesh reflective polarizer.
  • the orthographic projection of the first transparent substrate on the reference plane is located within the orthographic projection of the second transparent substrate on the reference plane.
  • the reference plane is a plane where a surface of the mirror switching screen away from the display panel is located.
  • the first photosensitive sensor includes a base and a photosensitive chip
  • the first surface of the base is provided with a mounting groove
  • the photosensitive chip is arranged in the mounting groove
  • the first surface of the base is provided with a mounting groove.
  • the two surfaces are provided with photosensitive holes
  • the photosensitive chip is configured to sense the light intensity of the ambient light on the side of the mirror switching screen away from the display panel through the photosensitive holes; the first surface and the The second surface is two opposite surfaces of the base.
  • the first surface of the base is connected to the first flexible circuit board, and the second surface of the base is bonded to a side of the first step close to the display panel.
  • the center of the orthographic projection of the first photosensitive sensor on the reference plane substantially coincides with the center of the orthographic projection of the first step on the reference plane.
  • the mirror switching screen includes a display area and a peripheral area located on at least one side of the display area; the display device further includes a light-shielding layer, and the light-shielding layer is disposed on the second transparent substrate away from One side of the display panel, and the light shielding layer covers the peripheral area.
  • the light-shielding layer is disposed between the second transparent substrate and the first absorbing polarizer, and the first absorbing polarizer at least partially covers the light-shielding layer.
  • both the light-shielding layer and the first absorbing polarizer are disposed on the surface of the second transparent substrate away from the display panel, and the orthographic projection of the light-shielding layer on the reference plane is the same as The orthographic projections on the reference surface of the first absorbing polarizer are close to each other and two boundaries approximately coincide or have a gap.
  • the light-shielding layer is provided with an avoidance hole, and the orthographic projection of the photosensitive sensor on the reference plane is located within the orthographic projection of the avoidance hole on the reference plane; wherein, the reference plane is the The mirror switching screen is away from the plane where the surface of the display panel is located.
  • the material of the light-shielding layer includes ink and/or metal.
  • the thickness of the light shielding layer is 6.5 ⁇ m ⁇ 7.5 ⁇ m.
  • the display device further includes a second absorbing polarizer, the second absorbing polarizer is disposed between the display panel and the mirror switching screen, and the second absorbing polarizer
  • the absorption axis is approximately perpendicular to the transmission axis of the reflective polarizer.
  • an edge portion of the second transparent substrate beyond the first transparent substrate forms a first step.
  • the orthographic projection of the second absorptive polarizer on the reference plane is located within the orthographic projection of the display panel on the reference plane, and the display panel exceeds the edge portion of the second absorptive polarizer
  • a second step is formed, and the orthographic projection of the first step on the reference plane at least partially coincides with the orthographic projection of the second step on the reference plane.
  • the display device further includes a supporting member, one end of the supporting member at least abuts against the first flexible circuit board, and the other end abuts against the second step.
  • the first flexible circuit board extends to the backlight side of the display panel on a side of the support member away from the second absorbing polarizer.
  • the display device further includes a second photosensitive sensor, the second photosensitive sensor is disposed on the side of the display panel away from the mirror switching screen, and the second photosensitive sensor is configured to sense Measure the light intensity of the ambient light on the backlight side of the display panel.
  • the driving board is also electrically connected to the second photosensitive sensor.
  • a display device in another aspect, includes a display panel, a first photosensitive sensor, a first circuit board and a driving board.
  • the first photosensitive sensor is configured to sense in real time the light intensity of ambient light on the light emitting side of the display panel.
  • the first circuit board includes a binding part, a component part and a wiring part, the first photosensitive sensor is arranged on the component part, and the wiring part is provided with pins and wires of the binding part. The wires electrically connected to the first photosensitive sensor.
  • the driving board is electrically connected to the wiring portion of the first circuit board, and the driving board is also electrically connected to the display panel.
  • a rearview mirror includes the display device described in any one of the above embodiments.
  • FIG. 1 is a structural diagram of a display device according to some embodiments.
  • Figure 2 is a cross-sectional view along the section line A-A' in Figure 1;
  • Fig. 3 is another kind of cross-sectional view along section line A-A' in Fig. 1;
  • Fig. 4 is another cross-sectional view along section line A-A' in Fig. 1;
  • Fig. 5 is a structural diagram of the connection between the display panel and the second flexible circuit board of the display device according to some embodiments.
  • FIG. 6 is a cross-sectional view along section line B-B' of FIG. 5 according to some embodiments.
  • Fig. 7 is a cross-sectional view along section line B-B' in Fig. 5 according to other embodiments;
  • Figure 8 is a block diagram of a display device according to some embodiments.
  • FIG. 9 is a structural diagram of a first flexible circuit board of a display device according to some embodiments.
  • Figure 10 is a structural diagram of a rearview mirror according to some embodiments.
  • Fig. 11 is a cross-sectional view along the section line BB' in Fig. 9 .
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • connection may be used in describing some embodiments to indicate that two or more elements are in direct physical or electrical contact with each other.
  • electrically connected may be used when describing some embodiments to indicate that two or more components are in direct electrical contact.
  • electrically connected may also mean that two or more components are not in direct contact with each other, but still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the context herein.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and both include the following combinations of A, B and C: A only, B only, C only, A and B A combination of A and C, a combination of B and C, and a combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • Exemplary embodiments are described herein with reference to cross-sectional and/or plan views that are idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations in shape from the drawings as a result, for example, of manufacturing techniques and/or tolerances are contemplated.
  • example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing.
  • parallel As used herein, “parallel”, “perpendicular”, and “equal” include the stated situation and the situation similar to the stated situation, the range of the similar situation is within the acceptable deviation range, wherein the The stated range of acceptable deviation is as determined by one of ordinary skill in the art taking into account the measurement in question and errors associated with measurement of the particular quantity (ie, limitations of the measurement system).
  • “parallel” includes absolute parallelism and approximate parallelism, wherein the acceptable deviation range of approximate parallelism can be, for example, a deviation within 5°; Deviation within 5°.
  • “Equal” includes absolute equality and approximate equality, where the difference between the two that may be equal is less than or equal to 5% of either within acceptable tolerances for approximate equality, for example.
  • a display device 100 which can be a TV, a mobile phone, a computer, a notebook computer, a tablet computer, a personal digital assistant (Personal Digital Assistant, PDA for short), a vehicle-mounted Computers, car rearview mirrors, etc.
  • a display device 100 can be a TV, a mobile phone, a computer, a notebook computer, a tablet computer, a personal digital assistant (Personal Digital Assistant, PDA for short), a vehicle-mounted Computers, car rearview mirrors, etc.
  • PDA Personal Digital Assistant
  • the display device 100 may be a liquid crystal display device (Liquid Crystal Display, LCD for short); the display device 100 may also be an electroluminescence display device or a photoluminescence display device.
  • the electroluminescent display device may be an organic electroluminescent display device (Organic Light-Emitting Diode, OLED for short) or a quantum dot electroluminescent display device (Quantum Dot Light Emitting Diodes, referred to as QLED).
  • the display device 100 is a photoluminescence display device
  • the photoluminescence display device may be a quantum dot photoluminescence display device.
  • the display device 100 includes a display module 1 and a mirror switching screen 2 located on the light emitting side of the display module 1 .
  • the mirror switching screen 2 is configured to switch between a high transmission state and a high reflection state. Among them, when the mirror switching screen 2 is in a state of high transmission, the display screen of the display module 1 can be transmitted through the mirror switching screen 2 to realize the display function; when the mirror switching screen 2 is in a high reflection state, the external light is transmitted by the mirror switching screen 2 Reflection presents a mirror image.
  • the mirror switching screen 2 in order to avoid the interference between the display screen of the display module 1 and the mirror image presented by the mirror switching screen 2 to cause ghosting, when the display screen of the module 1 is displayed, the mirror switching screen 2 is in a high transmission state, and the transmission The ratio is greater than or equal to 90%; when the display module 1 is not displaying a picture, the mirror switching screen 2 is in a highly reflective state, and the reflectivity is greater than or equal to 40%.
  • the display module 1 sequentially includes a second absorbing polarizer 3 and other electronic accessories such as a display panel 12 .
  • the display device 100 is a liquid crystal display device
  • the display device 100 further includes a backlight assembly configured to provide the display panel 12 with light required for displaying images.
  • the orthographic projection of the display panel 12 on the reference plane is located within the orthographic projection of the mirror switching screen 2 on the reference plane. It should be noted that the reference plane is the plane where the surface of the mirror switching screen 2 away from the display panel 12 is located.
  • the display panel 12 includes a display area A1 and a peripheral area A2 located on at least one side of the display area A1 .
  • the display area A1 is an area for displaying images, and the display area A1 is configured to provide sub-pixels P.
  • the peripheral area A2 is an area where images are not displayed, and the peripheral area A2 can be configured to arrange various signal lines required for displaying images; the peripheral area A2 can also be configured to arrange gates that output scanning signals to the sub-pixels P in the display area A1.
  • the display panel 12 is an electroluminescent display panel. As shown in FIG. 6 , the electroluminescent display panel includes a display substrate 121 and an encapsulation layer 122 for encapsulating the display substrate 121 .
  • the encapsulation layer 122 may be an encapsulation film, or an encapsulation substrate.
  • each sub-pixel of the above-mentioned display substrate 121 includes a light emitting device disposed on the first substrate Sub1 and a pixel driving circuit, and the pixel driving circuit includes a plurality of thin film transistors 1210 .
  • the thin film transistor 1210 includes an active layer, a source, a drain, a gate and a gate insulating layer, and the source and the drain are respectively in contact with the active layer.
  • the light-emitting device includes an anode 1211, a light-emitting functional layer 1212, and a cathode 1213.
  • the anode 1211 is electrically connected to the source or drain of the thin-film transistor 1210 as a driving transistor in a plurality of thin-film transistors 1210. In FIG. 6, the anode 1211 and the thin-film transistor 1210 The drain electrical connection is shown for illustration.
  • the display substrate 121 further includes a pixel defining layer 1214, and the pixel defining layer 1214 includes a plurality of opening areas, and one light emitting device is disposed in one opening area.
  • the light-emitting functional layer 1212 only includes a light-emitting layer.
  • the luminescent functional layer 1212 includes, in addition to the luminescent layer, an electron transport layer (election transporting layer, ETL for short), an electron injection layer (election injection layer, EIL for short), a hole transport layer (hole transporting layer). layer (HTL for short) and a hole injection layer (HIL for short).
  • the display substrate 121 further includes a flat layer 1215 disposed between the thin film transistor 1210 and the anode 1211 .
  • the display substrate 121 further includes a first protective layer 1216 , and the first protective layer 1216 is disposed on a side of the cathode 1213 away from the first substrate Sub1 .
  • the display panel 12 is a liquid crystal display panel. As shown in FIG. Liquid crystal cell 125.
  • Each sub-pixel P (refer to FIG. 5 ) of the array substrate 123 includes a thin film transistor 1230 and a pixel electrode 1231 on the first substrate Sub1.
  • the pixel electrode 1231 is electrically connected to the source or the drain of the thin film transistor 1230 .
  • the pixel electrode 1231 is electrically connected to the drain of the thin film transistor 1230 for illustration.
  • the array substrate 123 further includes a common electrode 1232 disposed on the first substrate Sub1 .
  • the pixel electrode 1231 and the common electrode 1232 may be disposed on the same layer.
  • both the pixel electrode 1231 and the common electrode 1232 have a comb structure including a plurality of strip-shaped sub-electrodes.
  • the pixel electrode 1231 and the common electrode 1232 may also be disposed on different layers.
  • a first insulating layer 1233 is disposed between the pixel electrode 1231 and the common electrode 1232 .
  • a second insulating layer 1234 is disposed between the common electrode 1232 and the thin film transistor 1230 .
  • the cell substrate 14 includes a second substrate Sub2 and a common electrode 1232, and the common electrode 1232 is disposed on the second substrate Sub2.
  • the liquid crystal display panel further includes a color filter layer CF and a black matrix pattern BM.
  • the color filter layer CF at least includes a red photoresist unit disposed in the red sub-pixel, a green photoresist unit disposed in the green sub-pixel, and a blue photoresist unit disposed in the blue sub-pixel.
  • the black matrix pattern BM is configured to separate the light emitted from different sub-pixels, and has the function of reducing reflected light generated after external ambient light enters the liquid crystal display panel.
  • the liquid crystal display panel further includes an upper polarizer 126 disposed on the side of the cell-aligning substrate 124 away from the liquid crystal cell 125 , and a lower polarizer 127 disposed on the side of the array substrate 123 away from the liquid crystal cell 127 .
  • the upper polarizer 126 (see FIG. 7 ) and the second absorbing polarizer 3 (see FIG. 2 ) can be the same polarizer.
  • the liquid crystal cell 125 includes an alignment film, a sealant, and liquid crystal molecules.
  • the alignment film is used to configure the initial arrangement of the liquid crystal molecules
  • the sealant is used to prevent liquid crystal molecules from leaking, support and connect the first substrate Sub1 and the second substrate. Sub2, the present disclosure will not describe in detail here.
  • the mirror switching screen 2 includes a reflective polarizer 21, a first transparent substrate 22, and a first transparent electrode layer 23 arranged in sequence. , a first alignment film 24 , a liquid crystal layer 25 , a second alignment film 26 , a second transparent electrode layer 27 , a second transparent substrate 28 and a first absorption polarizer 29 .
  • liquid crystal layer 25 includes a sealant 251 and liquid crystal molecules located between the sealant 251 , the first alignment film 24 and the second alignment film 26 , which will not be described in detail in this disclosure.
  • the sealant 251 is provided with a filling port, through which the filling port
  • the liquid crystal molecules are poured between the frame sealant 251 , the first alignment film 24 and the second alignment film 26 , and finally the filling port is sealed by the sealant to prevent the liquid crystal molecules from flowing out.
  • the frame sealant 251 may be provided with multiple filling ports to improve production efficiency; for example, the frame sealant 251 is provided with two fill ports.
  • the reflective polarizer 21 includes a multilayer reflective polarizer film (Advance polarizer film, referred to as: APF), a reflective polarizer mirror (Reflector polarizer mirror, referred to as: RPM), an optical brightness enhancement film (Dual brightness enhancement film, Abbreviation: DBEF) or any one of the metal mesh reflective polarizing film.
  • APF Advanced polarizer film
  • RPM Reflector polarizer mirror
  • DBEF optical brightness enhancement film
  • the transmission axis of the reflective polarizer 21 is approximately perpendicular to the absorption axis of the first absorbing polarizer 29
  • the orientation direction of the first alignment film 24 is approximately parallel to the transmission axis of the reflective polarizer 21
  • the second The alignment direction of the alignment film 26 is substantially parallel to the absorption axis of the first absorption polarizer 29 . That is to say, the long-axis direction of the liquid crystal molecules in the liquid crystal layer 25 close to the first alignment film 24 is approximately parallel to the transmission axis of the reflective polarizer 21, and the long-axis direction of the liquid crystal molecules in the liquid crystal layer 25 close to the second alignment film 26 is substantially parallel to the transmission axis of the reflective polarizer 21.
  • the absorption axes of the first absorbing polarizer 29 are roughly parallel, the liquid crystal molecules are arranged in layers, the molecules in the layers are arranged in the same direction, the directions of the liquid crystal molecules in the layers are misaligned, and the overall molecular structure is helical.
  • the unpolarized light on the side of the mirror switching screen 2 away from the display panel 12 and the unpolarized light emitted by the display panel 12 can be decomposed into first polarized light and second polarized light whose polarization directions are perpendicular to each other.
  • the polarization direction of the polarized light is roughly parallel to the absorption axis of the first absorption polarizer 29, that is, it is roughly perpendicular to the transmission axis of the reflective polarizer 21, and the polarization direction of the second polarized light is parallel to the absorption axis of the first absorption polarizer 29.
  • the axis is approximately vertical, that is, approximately parallel to the transmission axis of the reflective polarizer 21 .
  • the unpolarized light on the side of the mirror switching screen 2 away from the display panel 12 is emitted to the first absorbing type polarizer 29, the first polarized light of the unpolarized light is absorbed by the first absorbing polarizer 29, the second polarized light passes through the first absorbing polarizer 29, the second alignment film 26 enters the liquid crystal layer 25, passes through After the liquid crystal layer 25, the polarization direction of the second polarized light is deflected by 90° and converted into the first polarized light.
  • the polarization direction of the first polarized light is approximately perpendicular to the transmission axis of the reflective polarizer 21.
  • An alignment film 24 is reflected back to the liquid crystal layer 25 by the reflective polarizer 21, and after passing through the liquid crystal layer 25 again, the polarization direction of the first polarized light is deflected by 90° and converted into a second polarized light, and the second polarized light passes through the second polarized light
  • the alignment film 26 and the first absorbing polarizer 29 radiate to the outside. At this time, if each layer is an ideal dielectric material, the attenuation of light tends to zero, and the reflectivity of the mirror switching screen 2 reaches the highest, and the reflectivity is greater than or equal to 40%, and the mirror switching screen 2 is in the mirror state with the highest reflectance .
  • the liquid crystal molecules are arranged along the direction of the electric field, for example, the liquid crystal molecules overcome the first alignment film 24 and the The anchoring force of the second alignment film 26, under the situation of approximately vertical alignment (the long axis direction of the liquid crystal molecules is approximately parallel to the thickness direction of the mirror switching screen 2), the optical rotation of the liquid crystal molecules disappears, that is, the liquid crystal layer 25 is opposite to the polarized light.
  • the modulation has no effect, and the polarized light still passes in the original direction.
  • the unpolarized light emitted by the display panel 12 is incident on the reflective polarizer 21, the first polarized light of the unpolarized light is reflected by the reflective polarizer 21, and the second polarized light passes through the reflective polarizer.
  • the sheet 21 and the first alignment film 24 enter the liquid crystal layer 25. After passing through the liquid crystal layer 25, the polarization direction of the second polarized light remains unchanged, and the second polarized light passes through the second alignment film 26 and the first absorbing polarizer 29 to emit to the outside world.
  • each layer is an ideal dielectric material, the attenuation of light tends to zero, the transmittance of the mirror switching screen 2 reaches the highest, and the transmittance is greater than or equal to 90%, and the mirror switch screen 2 is in a transparent state with the highest transmittance .
  • the transmission axis of the reflective polarizer 21 is approximately perpendicular to the absorption axis of the first absorbing polarizer 29
  • the orientation direction of the first alignment film 24 is approximately parallel to the transmission axis of the reflective polarizer 21
  • the second The alignment direction of the alignment film 26 is substantially parallel to the absorption axis of the first absorption polarizer 29 .
  • the polarizer 3 is disposed between the display panel 12 and the mirror switching screen 2 , and the absorption axis of the second absorbing polarizer 3 is substantially perpendicular to the transmission axis of the reflective polarizer 21 .
  • the first polarized light of the non-polarized light emitted by the display panel 12 is absorbed by the second absorbing polarizer 3, and the second polarized light passes through the second absorbing polarizer in turn.
  • the polarizer 3, the reflective polarizer 21, the first alignment film 24, the liquid crystal layer 25, the second alignment film 26, and the first absorption polarizer 29 radiate to the outside, so as to avoid the first non-polarized light emitted by the display panel 12.
  • the polarized light is reflected by the reflective polarizer 21 onto the display panel 12 , and the reflection again causes interference to the display screen and affects the display effect.
  • the upper polarizer 126 in FIG. 7 and the second absorbing polarizer 3 in FIG. 2 may be the same polarizer.
  • the second absorbing polarizer 3 may be a circular polarizer on the light emitting side of the electroluminescent display panel.
  • the opposite two main surfaces of the polarizer are provided with adhesive films respectively. and a protective film
  • the protective film is provided with an operation sticker extending out of the protective film.
  • the display device 100 further includes a first photosensitive sensor 41 and a driving board 5 .
  • the first photosensitive sensor 41 is configured to sense the light intensity of the ambient light on the side of the mirror switching screen 2 away from the display panel 12 in real time.
  • the driving board 5 is electrically connected with the first photosensitive sensor 41 and the mirror switching screen 2 .
  • the drive board 5 is configured to send a first control signal to the mirror switching screen 2 in order to reduce the The mirror surface switches the reflectivity of the screen 2 so as to achieve the purpose of anti-glare.
  • the first preset light intensity may be set according to actual conditions, which is not specifically limited in the present disclosure.
  • the driving board 5 can also be configured such that the light intensity of the ambient light on the side of the mirror switching screen 2 away from the display panel 12 is the same as the ambient light on the side of the display panel 12 away from the mirror switching screen 2 .
  • a corresponding control signal is sent to the mirror switching screen 2 to reduce the reflectivity of the mirror switching screen 2, thereby achieving the purpose of anti-glare.
  • the display device 100 further includes a second photosensitive sensor 42 , and the second photosensitive sensor 42 is disposed on a side of the display panel 12 away from the mirror switching screen 2 .
  • the second photosensitive sensor 42 is configured to sense the light intensity of the ambient light on the backlight side of the display panel 12 in real time.
  • the driving board 5 is also electrically connected to the second photosensitive sensor 42, and the driving board 5 is also configured such that the difference between the light intensity sensed by the second photosensitive sensor 42 and the light intensity sensed by the first photosensitive sensor 41 is greater than or equal to the first photosensitive sensor 41. 2.
  • a third control signal is sent to the mirror switching screen 2 to reduce the reflectivity of the mirror switching screen 2 to achieve anti-glare.
  • the second preset light intensity may be set according to actual conditions, which is not specifically limited in the present disclosure.
  • the driving board 5 can also perform multiple judgments on the light intensity sensed by the first photosensitive sensor 41 and a plurality of preset light intensities. The process of each judgment is to judge whether the light intensity sensed by the first photosensitive sensor 41 is greater than or equal to the corresponding preset light intensity, and when the light intensity sensed by the first photosensitive sensor 41 is greater than or equal to the corresponding preset light intensity, a corresponding control signal is sent to switch the reflectivity of the mirror surface 2 down to the corresponding range.
  • the display device 100 further includes a first flexible circuit board 6, and the first flexible circuit board 6 includes a binding part 61, a component part 62 and a wiring part 63, the binding part 61 is electrically connected to the mirror switching screen 2, the first photosensitive sensor 41 is arranged on the surface of the component part 62 close to the mirror switching screen 2, and the wiring part 63 is provided with a bonding pad 610 with the binding part 61
  • the wiring electrically connected to the first photosensitive sensor 41 which is configured to transmit the control signal of the mirror switching screen 2 and the sensing signal of the first photosensitive sensor 41, and the driving board 5 through the first flexible circuit board
  • the wiring portion 63 of 6 is electrically connected to the first photosensitive sensor 41 and the mirror switching screen 2 respectively.
  • the first photosensitive sensor 41 and the circuit wiring connected to the driving board 5, and the circuit wiring connecting the mirror switching screen 2 to the driving board 5 are integrated on the same flexible circuit board, which can save the cost of the circuit wiring. Arrange the space and reduce the cost of materials.
  • a first connecting portion 631 is provided at the end of the wiring portion 63 of the first flexible circuit board 6 away from the mirror switching screen 2 , and the first connecting portion 631 is electrically connected to the corresponding interface of the driving board 5 .
  • the driving board 5 can be bent to the side of the display panel 12 away from the mirror switching screen 2 through the first flexible circuit board 6 .
  • both the binding part 61 and the component part 62 are located at the end of the wiring part 63 close to the mirror switching screen 2, which can improve the regularity of the circuit wiring arrangement and improve
  • the regularity of the routing portion 63 reduces the area occupied by the routing portion 63 .
  • the component part 62 is less affected by the crimping process; After the fixed connection, the extrusion force between the first photosensitive sensor 41 and the mirror switching screen 2 can be reduced, and the reliability can be improved.
  • the minimum distance between the boundary of the binding portion 61 close to the component portion 62 and the boundary of the component portion 62 close to the binding portion 61 is 25.55 mm ⁇ 25.95 mm.
  • the binding part 61 is close to the boundary of the component part 62, and the minimum distance between the boundary of the component part 62 close to the binding part 61 is any one of 25.55mm, 25.65mm, 25.75mm, 25.85mm and 25.95mm By.
  • the above-mentioned orthographic projection of the first transparent substrate 22 on the reference plane is located within the orthographic projection of the second transparent substrate 28 on the reference plane.
  • the edge portion of the second transparent substrate 28 beyond the first transparent substrate 22 forms a first step 280
  • the side of the first step 280 close to the display panel 12 is provided with binding pins
  • the binding portion of the first flexible circuit board 6 61 is provided with a bonding pad 610
  • the bonding pad 610 is electrically connected to the bonding pin.
  • the first photosensitive sensor 41 is connected to the surface of the first step 280 close to the display panel 12 .
  • the first photosensitive sensor 41 includes a base 411 and a photosensitive chip 412, the first surface 411A of the base 411 is provided with a mounting groove, and the photosensitive chip 412 is arranged in the mounting groove Inside, the second surface 411B of the base 411 is provided with a photosensitive hole 413 , and the photosensitive chip 412 is configured to sense the light intensity of the ambient light on the side of the mirror switching screen 2 away from the display panel 12 through the photosensitive hole 413 .
  • the first surface 411A and the second surface 411B are two opposite surfaces of the base 411 .
  • the first surface 411A of the base 411 is connected to the first flexible circuit board 6
  • the second surface 411B of the base 411 is bonded to the side of the first step 280 close to the display panel 12 .
  • the bonding avoids the photosensitive hole 413 to ensure the accuracy of the photosensitive chip 412 sensing the light intensity of the ambient light on the side of the mirror switching screen 2 away from the display panel 12 .
  • the mirror switching screen 2 includes a photosensitive area, and the orthographic projection of the first photosensitive sensor 41 on the mirror switching screen 2 at least partially overlaps with the photosensitive area.
  • At least part of the area corresponding to the first step 280 of the mirror switching screen 2 is a photosensitive area, that is, at least part of the area of the edge portion of the second transparent substrate 28 beyond the first transparent substrate 22 is not treated to ensure light transmission.
  • a photosensitive area that is, at least part of the area of the edge portion of the second transparent substrate 28 beyond the first transparent substrate 22 is not treated to ensure light transmission.
  • only the second transparent substrate itself is provided in this area, and the orthographic projection of the first photosensitive sensor 41 on the mirror switching screen 2 is located in the photosensitive area.
  • a light hole is provided on the first step 280, and the area corresponding to the light hole is a photosensitive area, that is, a hole is made on the edge portion of the second transparent substrate 28 beyond the first transparent substrate 22 to form a light hole.
  • the hole is used as a photosensitive area; the first photosensitive sensor 41 includes a base 411 and a photosensitive chip 412, and the boundary of the photosensitive hole 413 on the base 411 is approximately coincident with the boundary of the light-through hole in the orthographic projection of the mirror switching screen 2.
  • the photosensitive area can be provided with a light guide structure configured to guide the ambient light on the side of the mirror switching screen 2 away from the display panel 12 to the photosensitive chip 412 of the first photosensitive sensor 41 .
  • the light guiding structure is arranged in the above-mentioned light hole, so as to transmit the ambient light on the side of the mirror switching screen 2 away from the display panel 12 to the photosensitive chip 412 of the first photosensitive sensor 41, so as to reduce the loss in the process of ambient light transmission.
  • the precision of the photosensitive chip 412 sensing the light intensity of the ambient light on the side of the mirror switching screen 2 away from the display panel 12 is ensured.
  • the display side of the display device 100 can intuitively see the first photosensitive sensor 41.
  • the first photosensitive sensor The center of the orthographic projection of the sensor 41 on the reference plane approximately coincides with the center of the orthographic projection of the first step 280 on the reference plane. In this way, the display device 100 is distributed symmetrically on the left and right sides of the first photosensitive sensor 41 , and the overall structure is regular and more beautiful.
  • the orthographic projections of the display panel 12 and the mirror switching screen 2 on the reference plane are roughly trapezoidal, and the longest side of the two parallel sides of the trapezoid is the first side. boundary.
  • the edge portion of the second transparent substrate 28 close to the first boundary exceeds the edge portion of the first transparent substrate 22 close to the first boundary, forming a first step 280 .
  • the area of the first step 280 is larger, which facilitates the installation of the first photosensitive sensor 41 and facilitates the electrical connection between the binding part 61 and the mirror switching screen 2 .
  • “approximately trapezoidal” means that the shape of the orthographic projection of the display panel 12 and the mirror switching screen 2 on the reference plane is generally a trapezoidal shape, but is not limited to a standard trapezoidal shape. That is, the "trapezoid” here includes not only a basic trapezoidal shape, but also a trapezoidal-like shape in consideration of process conditions. For example, the corners of the trapezoid are curved, that is, the corners are smooth, so that the orthographic projection of the display panel 12 and the mirror switching screen 2 on the reference plane has a rounded trapezoid shape in plan view.
  • the display device 100 is applied to a rearview mirror 10 of an automobile (refer to FIG. 10 ).
  • the outer contour of the rearview mirror 10 is roughly trapezoidal, and its lower boundary is the first boundary. That is to say, the first step 280 is correspondingly located at the lower edge of the mirror switching screen 2 , and the flexible circuit board 6 is electrically connected to the mirror switching screen 2 at the lower side of the mirror switching screen 2 .
  • the orthographic projection of the second absorbing polarizer 3 on the reference plane is located within the orthographic projection of the display panel 12 on the reference plane, and the display panel 12 exceeds the second absorbing polarizer.
  • the edge portion of 3 forms the second step 120
  • the orthographic projection of the first step 280 on the reference plane at least partially coincides with the orthographic projection of the second step 120 on the reference plane.
  • the orthographic projection of the first step 280 on the reference plane approximately coincides with the orthographic projection of the second step 120 on the reference plane.
  • the first flexible circuit board 6 is bound and electrically connected to the first step 280 at the area where the first step 280 overlaps with the second step 120 .
  • the display device 100 further includes a support member 9, one end of the support member 9 at least abuts against the first flexible circuit board 6, and the other end abuts against the second step 120, so as to support the first flexible circuit board 6 to the supporting role.
  • one end of the support member 9 can abut against the first flexible circuit board 6 and the first step 280 , and the other end abuts against the second step 120 , so that the supporting force provided by the support member 9 to the first flexible circuit board 6 Larger, higher support effect.
  • the orthographic projection of the cell substrate 124 and the liquid crystal cell 125 on the reference plane can be roughly the same as the orthographic projection of the second absorbing polarizer 3 on the reference plane. Overlap; the orthographic projection of the cell substrate 124 and the liquid crystal cell 125 on the reference plane is located in the orthographic projection of the array substrate 123 on the reference plane, and the edge portion of the array substrate 123 beyond the second absorbing polarizer 3 forms a second step 120.
  • FIG. 2 takes the display panel 12 as an example of a liquid crystal display panel (the liquid crystal cell 125 is not shown in FIG. 2 ).
  • the material of the support member 9 may be an opaque material, or a light-shielding film may be provided on the side wall of the support member 9 .
  • the supporting member 9 can effectively avoid light leakage while ensuring the supporting performance.
  • the modulus of elasticity of the support member 9 is greater than or equal to 3GPa.
  • the material of the support member 9 includes at least one of foam, polyimide (Polyimide, PI for short) and polyethylene terephthalate (PET for short) plastic.
  • the above-mentioned first flexible circuit board 6 extends to the backlight side of the display panel 12 on the side of the support member 9 away from the second absorbing polarizer 3 , which has a simple structure and is easy to manufacture.
  • the driving board 5 is also electrically connected to the display panel 12, and the driving board 5 is also configured to drive the display panel 12 to display in response to the operator's instruction to display an image; and, switch to the mirror surface
  • the screen 2 sends a second control signal to make the mirror switching screen 2 transmit the display image of the display panel 12 .
  • the control circuit for driving the display panel 12 to display and the control circuit for driving the state switching of the mirror switching screen 2 are all integrated on the same driving board 5, which can further save the layout space of the circuit wiring , Reduce material costs.
  • the display device 100 further includes a second flexible circuit board 7 , and the second flexible circuit board 7 is electrically connected to the display panel 12 and the driving board 5 .
  • the driving board 5 can be located on the side of the display panel 12 away from the mirror switching screen 2 , so as to reduce the frame of the display panel 12 .
  • part of the integrated circuits may also be arranged on the second flexible circuit board 7 , for example, the timing control circuit is arranged on the second flexible circuit board 7 , and the present disclosure is not limited thereto.
  • the end of the second flexible circuit board 7 away from the display panel 12 is provided with a second connection portion 71 , and the second connection portion 71 is electrically connected to the corresponding interface of the driving board 5 .
  • the mirror switching screen 2 includes a display area B1 and a peripheral area B2 located on at least one side of the display area B1, and Figure 5 takes the peripheral area B2 surrounding the display area B1 as an example hint.
  • the display area B1 is a light-transmitting area of the mirror switching screen 2 , and the display area B1 is configured to set liquid crystal molecules in the liquid crystal layer 25 .
  • the peripheral area B2 can be configured to arrange various signal lines and sealing glue 251 required by the mirror switching screen 2 .
  • the shape of the sealing glue 251 is relatively irregular, which will greatly affect the visual effect. Based on this, in order to improve the visual effect, as shown in FIG. 1 and FIG. 2 , the display device 100 further includes a light-shielding layer 8 disposed on a side of the second transparent substrate 28 away from the display panel 1 .
  • the light-shielding layer 8 is disposed between the second transparent substrate 28 and the first absorbing polarizer 29, and the first absorbing polarizer 29 at least partially covers the light-shielding layer 8, for example, the first absorbing The polarizer 29 completely covers the light-shielding layer 8 .
  • the light shielding layer 8 covers the peripheral region B2 of the mirror switching screen 2 to prevent light leakage.
  • the light-shielding layer 8 is disposed between the second transparent substrate 28 and the first absorbing polarizer 29, without affecting the flatness of the first absorbing polarizer 29 away from the display panel 12, and the light-shielding layer 8 is screen printed
  • the process is formed on the surface of the second transparent substrate 28 away from the display panel 12 , the adhesion between the light-shielding layer 8 and the second transparent substrate 28 is stronger, the light-shielding layer 8 is not easy to fall off, and the reliability is higher.
  • both the shading layer 8 and the first absorbing polarizer 29 are disposed on the surface of the second transparent substrate 28 away from the display panel 1 , and the orthographic projection of the shading layer 8 on the reference plane is consistent with the first absorbing polarizer 29 .
  • the two boundaries where the orthographic projections of the polarizer 29 on the reference plane are close to each other are approximately coincident, or the two boundaries where the orthographic projection of the light-shielding layer 8 on the reference plane and the orthographic projection of the first absorbing polarizer 29 on the reference plane are close to each other There are gaps in between.
  • the light shielding layer 8 covers the peripheral region B2 of the mirror switching screen 2 to prevent light leakage.
  • the light shielding layer 8 is disposed on a side of the first absorbing polarizer 29 away from the display panel 1 .
  • the light shielding layer 8 covers the peripheral region B2 of the mirror switching screen 2 to prevent light leakage.
  • the light-shielding layer 8 can be formed on the surface of the second transparent substrate 28 away from the display panel 12 through a screen printing process or a sputtering process, so as to realize a narrow frame design of the display device 100 .
  • the material of the light-shielding layer 8 includes ink and/or metal.
  • the material of the light-shielding layer 8 is mirror silver ink or metallic ink. In this way, when the mirror switching screen 2 is in a highly reflective state, the use of mirror silver ink or metallic ink can make the light-shielding layer 8 and the display area B1 of the mirror switching screen 2 basically consistent, and the mirror display effect is better.
  • the material of the light-shielding layer 8 is volatile dry ink.
  • the polymer substance is dissolved in a solvent and printed on the surface of the second transparent substrate 28 away from the display panel 12 to form an ink film; the solvent in the ink film diffuses in the atmosphere due to the effect of vapor pressure, forming a liquid on the surface of the ink film. film, and then evaporates through the liquid film.
  • the drying process the drying can be accelerated by blowing.
  • the material of the light-shielding layer 8 is volatile dry ink, the process is simple, and the production speed is fast.
  • the material of the light-shielding layer 8 is UV-curable ink.
  • the UV-curable ink is printed on the surface of the second transparent substrate 28 away from the display panel 12; after being irradiated by ultraviolet rays, the ultraviolet ink undergoes a photochemical reaction, and can be completely cured within a few seconds.
  • the materials of the UV-curable ink may include photopolymerizable resin, initiator, colorant and auxiliary agent.
  • the material of the light-shielding layer 8 is oxidative drying ink.
  • the oxidation-drying ink is printed on the surface of the second transparent substrate 28 away from the display panel 12; since the oxidation-drying ink contains a polymer with a small molecular weight, it is oxidized in the air, and is oxidized by heat, light or chemical reaction of reactive substances. It reacts and solidifies to form a polymer film (light-shielding layer 8).
  • the thickness of the light shielding layer 8 is 6.5 ⁇ m ⁇ 7.5 ⁇ m. In this way, the influence of adding the light-shielding layer 8 on the overall thickness of the display device 100 can be reduced while ensuring light-shielding.
  • the thickness of the light shielding layer 8 is any one of 6.5 ⁇ m, 7 ⁇ m and 7.5 ⁇ m.
  • the minimum width S2 of the light shielding layer 8 is 4.3mm ⁇ 4.7mm, and the maximum width S1 of the light shielding layer 8 is 8.89mm ⁇ 9.29mm.
  • the minimum width S2 of the light shielding layer 8 is any one of 4.3mm, 4.4mm, 4.5mm, 4.6mm and 4.7mm, and the maximum width S1 of the light shielding layer 8 is 8.89mm, 8.99mm, 9.09mm, 9.19mm Either of mm and 9.29mm.
  • the width direction is different according to the location of the light shielding layer 8 .
  • the orthographic projection of the light-shielding layer 8 on the reference plane is strip-shaped, and the above-mentioned width direction refers to a direction parallel to the reference plane and perpendicular to the extending direction of the light-shielding layer 8 .
  • the light-shielding layer 8 can be connected by a plurality of strip-shaped sub-shading patterns to form a closed ring as shown in FIG. at this time.
  • the extension directions of different sub-shading patterns are different, and the corresponding width directions are also different.
  • the display device 100 is applied to the rearview mirror 10 of a car (refer to FIG. 10 ), and the first step 280 is correspondingly located at the lower boundary of the display device 100 .
  • the width of the light-shielding layer 8 corresponding to the lower border of the display device 100 is 8.89mm-9.29mm, and the width of the light-shielding layer 8 corresponding to the rest of the border of the display device 100 is 4.3mm-4.7mm.
  • the above-mentioned light-shielding layer 8 is provided with an escape hole 81, and the orthographic projection of the photosensitive sensor 41 on the reference plane at least partially overlaps with the orthographic projection of the avoidance hole 81 on the reference plane, so that Ensure that the photosensitive sensor 41 can receive the ambient light from the outside.
  • the orthographic projection of the photosensitive sensor 41 on the reference plane is located within the orthographic projection of the avoidance hole 81 on the reference plane, so as to prevent the light shielding layer 8 from sensing the side of the mirror switching screen 2 away from the display panel 12 to the first photosensitive sensor 41 Affected by the light intensity of the ambient light.
  • the diameter of the escape hole 81 is 2.5mm-2.9mm.
  • the diameter of the escape hole 81 is any one of 2.5 mm, 2.6 mm, 2.7 mm, 2.8 mm, and 2.9 mm.
  • the maximum dimension L of the display device 100 ranges from 239.64 mm to 240.04 mm.
  • the first direction X is substantially parallel to the side of the display device 100 .
  • the range of the largest dimension L of the display device 100 is any one of 239.64 mm, 239.74 mm, 239.84 mm, 239.94 mm and 240.04 mm.
  • the maximum dimension W of the display device 100 ranges from 61.2 mm to 61.6 mm.
  • the second direction Y is substantially perpendicular to the first direction X.
  • the maximum dimension W of the display device 100 ranges from any one of 61.2 mm, 61.3 mm, 61.4 mm, 61.5 mm and 61.6 mm.
  • the display device 100 is applied to a rearview mirror 10 of a car, the outer contour of the rearview mirror 10 is roughly trapezoidal, the size of the lower boundary of the display device 100 is greater than the size of the upper boundary, and the first direction X is in the same direction as the upper boundary.
  • the lower boundaries of the display device 100 are substantially parallel.
  • the size L of the display device 100 is 239.84 mm
  • the size W of the display device 100 is 61.4 mm.
  • approximately trapezoidal means that the shape of the outer contour of the rearview mirror 10 is generally trapezoidal, but it is not limited to a standard trapezoidal shape. That is, the "trapezoid” here includes not only a basic trapezoidal shape, but also a trapezoidal-like shape in consideration of process conditions. For example, the corners of the trapezoid are curved, that is, the corners are smooth, so that the outer contour of the rearview mirror 10 is a trapezoid with rounded corners in plan view.
  • Some embodiments of the present disclosure also provide a display device including a display panel, a first photosensitive sensor, a first circuit board, and a driving board.
  • the light emitting side of the display panel can be switched between a high transmission state and a high reflection state.
  • the display image can be transmitted through the display panel to realize the display function;
  • the light-emitting side of the display panel is in a state of high reflection, the external light is reflected by the display panel to present a mirror image.
  • the display panel of the display device may include the display panel 12 and the mirror switching screen 2 of the display device 100 described in the above embodiments.
  • the specific features and structures can be referred to above.
  • the present disclosure is in I won't go into details here.
  • the first circuit board includes a binding part, a component part and a wiring part
  • the first photosensitive sensor is arranged on the component part
  • the wiring part is provided with a bonding pad of the binding part and is electrically connected to the first photosensitive sensor the routing.
  • the driving board is electrically connected with the display panel through the wiring part of the first circuit board.
  • the first circuit board of the display device provided by the embodiment of the present disclosure may include the first flexible circuit board 6 of the display device 100 described in the above embodiment, and the specific features and structures can be referred to above, and the present disclosure is in I won't go into details here.
  • the driving board of the display device provided by the embodiments of the present disclosure may include the driving board 5 of the display device 100 described in the above embodiments. For specific features and structures, reference may be made to the above, and the present disclosure will not repeat them here.
  • the display device provided by the embodiments of the present disclosure may be combined with other features and structures included in the display device 100 described in the above embodiments in a suitable manner, and the present disclosure will not repeat them here.
  • some embodiments of the present disclosure further provide a rearview mirror 10 , and the rearview mirror 10 includes the display device 100 described in any one of the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示装置,包括显示面板、镜面切换屏、第一光敏传感器、第一柔性电路板和驱动板。所述镜面切换屏设置于所述显示面板的出光侧。所述第一光敏传感器被配置为实时感测所述镜面切换屏远离所述显示面板的一侧的环境光的光线强度。所述第一柔性电路板包括绑定部、元器件部和走线部,所述绑定部与所述镜面切换屏电连接,所述第一光敏传感器设置于所述元器件部靠近所述镜面切换屏的一侧,所述走线部设有与所述绑定部的绑定焊盘和所述第一光敏传感器电连接的走线。所述驱动板与所述第一柔性电路板的走线部电连接。

Description

显示装置及后视镜 技术领域
本公开涉及显示技术领域,尤其涉及一种显示装置及后视镜。
背景技术
随着显示技术的发展,显示设备已经广泛应用于各种领域。其中,将显示设备应用于汽车的后视镜形成的流媒体后视镜,可以将车辆后方的画面呈现出来。相较于传统的镜面后视镜,流媒体后视镜具有视野大、防眩光等优点,因此,流媒体后视镜逐渐受到人们的青睐。
发明内容
一方面,提供一种显示装置。所述显示装置包括显示面板、镜面切换屏、第一光敏传感器、第一柔性电路板和驱动板。所述镜面切换屏设置于所述显示面板的出光侧。所述第一光敏传感器被配置为实时感测所述镜面切换屏远离所述显示面板的一侧的环境光的光线强度。所述第一柔性电路板包括绑定部、元器件部和走线部,所述绑定部与所述镜面切换屏电连接,所述第一光敏传感器设置于所述元器件部靠近所述镜面切换屏的一侧,所述走线部设有与所述绑定部的绑定焊盘和所述第一光敏传感器电连接的走线。所述驱动板与所述第一柔性电路板的走线部电连接。
在一些实施例中,所述绑定部与所述元器件部均位于所述走线部靠近所述镜面切换屏的端部,且所述绑定部与所述元器件部之间具有缝隙。
在一些实施例中,所述绑定部靠近所述元器件部的边界,与所述元器件部靠近所述绑定部的边界之间的最小距离为25.55mm~25.95mm。
在一些实施例中,所述驱动板还与所述显示面板电连接。
在一些实施例中,所述显示装置还包括第二柔性电路板,所述第二柔性电路板与所述显示面板和所述驱动板电连接,且所述驱动板能够通过所述第一柔性电路板和所述第二柔性电路板弯折至所述显示面板远离所述镜面切换屏的一侧。
在一些实施例中,沿所述显示面板指向所述镜面切换屏的方向,所述镜面切换屏包括依次设置的反射型偏光片、第一透明基板、第一透明电极层、第一配向膜、液晶层、第二配向膜、第二透明电极层、第二透明基板和第一吸收型偏光片。其中,所述反射型偏光片的透过轴与所述第一吸收型偏光片的吸收轴大致垂直,所述第一配向膜的取向方向与所述反射型偏光片的透过轴大致平行,所述第二配向膜的取向方向与第一吸收型偏光片的吸收轴大致 平行。
在一些实施例中,所述反射型偏光片包括多层膜反射式偏光片、反射式偏光镜、光学增亮膜片或金属网丝反射型偏光膜中的任一种。
在一些实施例中,所述第一透明基板在参考面上的正投影,位于所述第二透明基板在所述参考面上的正投影内。所述参考面为所述镜面切换屏远离所述显示面板的表面所在的平面。其中,所述第二透明基板超出所述第一透明基板的边缘部分形成第一台阶,所述第一台阶靠近所述显示面板的一侧设有绑定引脚,所述第一柔性电路板的绑定部设有绑定焊盘,所述绑定焊盘与所述绑定引脚电连接。
在一些实施例中,所述第一光敏传感器包括基座和光敏芯片,所述基座的第一表面设有安装槽,所述光敏芯片设置于所述安装槽内,所述基座的第二表面设有感光孔,所述光敏芯片被配置为,通过所述感光孔感测所述镜面切换屏远离所述显示面板的一侧的环境光的光线强度;所述第一表面和所述第二表面为所述基座相对的两个表面。其中,所述基座的第一表面与所述第一柔性电路板连接,所述基座的第二表面与所述第一台阶靠近所述显示面板的一侧粘接。
在一些实施例中,所述第一光敏传感器在所述参考面上的正投影的中心,与所述第一台阶在所述参考面上的正投影的中心大致重合。
在一些实施例中,所述镜面切换屏包括显示区和位于所述显示区的至少一侧的周边区;所述显示装置还包括遮光层,所述遮光层设置于所述第二透明基板远离所述显示面板的一侧,且所述遮光层覆盖所述周边区。
在一些实施例中,所述遮光层设置于所述第二透明基板和所述第一吸收型偏光片之间,所述第一吸收型偏光片至少部分覆盖所述遮光层。
在一些实施例中,所述遮光层和所述第一吸收型偏光片均设置于所述第二透明基板远离所述显示面板的表面,所述遮光层在所述参考面上的正投影与所述第一吸收型偏光片所述参考面上的正投影相互靠近的两边界近似重合或具有间隙。
在一些实施例中,所述遮光层设有避让孔,所述光敏传感器在参考面的正投影,位于所述避让孔在所述参考面的正投影内;其中,所述参考面为所述镜面切换屏远离所述显示面板的表面所在的平面。
在一些实施例中,所述遮光层的材料包括油墨和/或金属。
在一些实施例中,所述遮光层的厚度为6.5μm~7.5μm。
在一些实施例中,所述显示装置还包括第二吸收型偏光片,所述第二吸 收型偏光片设置于所述显示面板与所述镜面切换屏之间,所述第二吸收型偏光片的吸收轴与所述反射型偏光片的透过轴大致垂直。
在一些实施例中,所述第二透明基板超出所述第一透明基板的边缘部分形成第一台阶。所述第二吸收型偏光片在所述参考面上的正投影,位于所述显示面板在所述参考面上的正投影内,所述显示面板超出所述第二吸收型偏光片的边缘部分形成第二台阶,且所述第一台阶在所述参考面上的正投影,与所述第二台阶在所述参考面上的正投影至少部分重合。所述显示装置还包括支撑件,所述支撑件的一端至少与所述第一柔性电路板抵靠,另一端与所述第二台阶抵靠。
在一些实施例中,所述第一柔性电路板在所述支撑件远离所述第二吸收型偏光片的一侧延伸至所述显示面板的背光侧。
在一些实施例中,所述显示装置还包括第二光敏传感器,所述第二光敏传感器设置于所述显示面板远离所述镜面切换屏的一侧,所述第二光敏传感器被配置为实时感测所述显示面板的背光侧的环境光的光线强度。所述驱动板还与所述第二光敏传感器电连接。
另一方面,提供一种显示装置。所述显示装置包括显示面板、第一光敏传感器、第一电路板和驱动板。其中,所述第一光敏传感器被配置为实时感测所述显示面板的出光侧的环境光的光线强度。所述第一电路板包括绑定部、元器件部和走线部,所述第一光敏传感器设置于所述元器件部,所述走线部设有与所述绑定部的引脚和所述第一光敏传感器电连接的走线。所述驱动板与所述第一电路板的走线部电连接,所述驱动板还与所述显示面板电连接。
又一方面,提供一种后视镜。所述后视镜包括上述任一实施例所述的显示装置。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的显示装置的结构图;
图2为图1中沿剖面线A-A'处的一种剖视图;
图3为图1中沿剖面线A-A'处的另一种剖视图;
图4为图1中沿剖面线A-A'处的再一种剖视图;
图5为根据一些实施例的显示装置的显示面板与第二柔性电路板连接的结构图;
图6为根据一些实施例的图5中沿剖面线B-B'的剖视图;
图7为根据另一些实施例的图5中沿剖面线B-B'的剖视图;
图8为根据一些实施例的显示装置的框图;
图9为根据一些实施例的显示装置的第一柔性电路板的结构图;
图10为根据一些实施例的后视镜的结构图;
图11为图9中沿剖面线B-B'处的剖视图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”和“电连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“电连接”以表明两个或两个以上部件有直接电接触。然而,术语“电连接”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里 所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
如图1所示,本公开的一些实施例提供一种显示装置100,该显示装置100可以为电视、手机、电脑、笔记本电脑、平板电脑、个人数字助理(Personal Digital Assistant,简称PDA)、车载电脑、汽车后视镜等。
其中,显示装置100可以为液晶显示装置(Liquid Crystal Display,简称LCD);显示装置100也可以为电致发光显示装置或光致发光显示装置。在 显示装置100为电致发光显示装置的情况下,电致发光显示装置可以为有机电致发光显示装置(Organic Light-Emitting Diode,简称OLED)或量子点电致发光显示装置(Quantum Dot Light Emitting Diodes,简称QLED)。在显示装置100为光致发光显示装置的情况下,光致发光显示装置可以为量子点光致发光显示装置。
如图2所示,显示装置100包括显示模组1和位于显示模组1的出光侧的镜面切换屏2,镜面切换屏2被配置为,能够在高透射状态和高反射状态之间切换。其中,当镜面切换屏2处于高透射状态下,显示模组1的显示画面可以透射出镜面切换屏2,实现显示功能;当镜面切换屏2处于高反射状态下,外界的光由镜面切换屏2反射呈现镜像。
需要说明的是,为避免显示模组1的显示画面与镜面切换屏2呈现的镜像产生干扰而出现重影,在显示模组1的显示画面时,镜面切换屏2处于高透射状态,透过率大于或等于90%;在显示模组1不显示画面时,镜面切换屏2处于高反射状态,反射率大于或等于40%。
在一些实施例中,如图2所示,沿镜面切换屏2指向显示模组1的方向,显示模组1依次包括第二吸收型偏光片3和显示面板12等其它电子配件。在显示装置100为液晶显示装置的情况下,显示装置100还包括背光组件,背光组件被配置为向显示面板12提供显示画面所需要的光线。
其中,显示面板12在参考面上的正投影,位于镜面切换屏2在参考面上的正投影内。需要说明的是,参考面为镜面切换屏2远离显示面板12的表面所在的平面。
在一些实施例中,如图5所示,显示面板12包括显示区A1和位于显示区A1至少一侧的周边区A2。
此处,显示区A1为显示图像的区域,显示区A1被配置为设置亚像素P。周边区A2为不显示图像的区域,周边区A2可以被配置为布置显示画面所需要的各种信号线;周边区A2也可以被配置为布置向显示区A1的亚像素P输出扫描信号的栅极驱动电路、以及向显示区A1的亚像素P输出数据信号的源极驱动电路等。
在一些实施例中,显示面板12为电致发光显示面板,如图6所示,电致发光显示面板包括显示基板121以及用于封装显示基板121的封装层122。
此处,封装层122可以为封装薄膜,也可以为封装基板。
如图6所示,上述的显示基板121的每个亚像素均包括设置于第一衬底Sub1上的发光器件和像素驱动电路,像素驱动电路包括多个薄膜晶体管1210。 薄膜晶体管1210包括有源层、源极、漏极、栅极及栅绝缘层,源极和漏极分别与有源层接触。发光器件包括阳极1211、发光功能层1212以及阴极1213,阳极1211和多个薄膜晶体管1210中作为驱动晶体管的薄膜晶体管1210的源极或漏极电连接,图6中以阳极1211和薄膜晶体管1210的漏极电连接进行示意。
显示基板121还包括像素界定层1214,像素界定层1214包括多个开口区,一个发光器件设置于一个开口区中。
在一些实施例中,发光功能层1212仅包括发光层。在另一些实施例中,发光功能层1212除包括发光层外,还包括电子传输层(election transporting layer,简称ETL)、电子注入层(election injection layer,简称EIL)、空穴传输层(hole transporting layer,简称HTL)和空穴注入层(hole injection layer,简称HIL)中的至少一个。
在一些实施例中,如图6所示,显示基板121还包括设置于薄膜晶体管1210和阳极1211之间的平坦层1215。
在一些实施例中,如图6所示,显示基板121还包括第一保护层1216,第一保护层1216设置于阴极1213背离第一衬底Sub1的一侧。
在一些实施例中,显示面板12为液晶显示面板,如图7所示,液晶显示面板包括相对设置的阵列基板123和对盒基板124、以及设置于阵列基板123和对盒基板124之间的液晶盒125。
阵列基板123的每个亚像素P(参阅图5)均包括位于第一衬底Sub1上的薄膜晶体管1230和像素电极1231。像素电极1231与薄膜晶体管1230的源极或漏极电连接,图7中以像素电极1231和薄膜晶体管1230的漏极电连接进行示意。
在一些实施例中,如图7所示,阵列基板123还包括公共电极1232,公共电极1232设置于第一衬底Sub1上。
示例性地,像素电极1231和公共电极1232可以设置于同一层,在此情况下,像素电极1231和公共电极1232均为包括多个条状子电极的梳齿结构。
示例性地,像素电极1231和公共电极1232也可以设置于不同层,在此情况下,如图7所示,像素电极1231和公共电极1232之间设置有第一绝缘层1233。
此外,在公共电极1232设置于薄膜晶体管1230和像素电极1231之间的情况下,如图7所示,公共电极1232与薄膜晶体管1230之间设置有第二绝缘层1234。
在另一些实施例中,对盒基板14包括第二衬底Sub2和公共电极1232,公共电极1232设置于第二衬底Sub2上。
如图7所示,液晶显示面板还包括彩色滤光层CF和黑矩阵图案BM。其中,彩色滤光层CF至少包括设置于红色亚像素中的红色光阻单元、设置于绿色亚像素中的绿色光阻单元以及设置于蓝色亚像素中的蓝色光阻单元。黑矩阵图案BM被配置为将从不同亚像素发出的光间隔开,并且具有减少外界环境光进入液晶显示面板内部后产生反射光线的作用。
如图7所示,液晶显示面板还包括设置于对盒基板124远离液晶盒125一侧的上偏光片126,以及设置于阵列基板123远离液晶盒127一侧的下偏光片127。
需要说明的是,上偏光片126(参阅图7)与第二吸收型偏光片3(参阅图2)可以为同一偏光片。此外,液晶盒125包括配向膜、封框胶和液晶分子,配向膜用于配置液晶分子的初始排列方式,封框胶用于防止液晶分子泄露、支撑并连接第一衬底Sub1和第二衬底Sub2,本公开在此不做详细说明。
在一些实施例中,如图2所示,沿显示面板12指向镜面切换屏2的方向,镜面切换屏2包括依次设置的反射型偏光片21、第一透明基板22、第一透明电极层23、第一配向膜24、液晶层25、第二配向膜26、第二透明电极层27、第二透明基板28和第一吸收型偏光片29。
需要说明的是,液晶层25包括封框胶251和位于封框胶251、第一配向膜24和第二配向膜26之间的液晶分子,本公开在此不做详细说明。
此处,在形成液晶层25的过程中,需要先形成封框胶251以及、第一配向膜24和第二配向膜26,其中,封框胶251上设有灌晶口,通过灌晶口将液晶分子灌入至封框胶251、第一配向膜24和第二配向膜26之间,最后通过封孔胶将灌晶口封住,防止液晶分子流出。需要说明的是,封框胶251可以设有多个灌晶口,以提高生产效率;示例性地,封框胶251上设有两个灌晶口。
其中,反射型偏光片21包括多层膜反射式偏光片(Advance polarizer film,简称:APF)、反射式偏光镜(Reflector polarizer mirror,简称:RPM)、光学增亮膜片(Dual brightness enhancement film,简称:DBEF)或金属网丝反射型偏光膜中的任一种。
示例性地,反射型偏光片21的透过轴与第一吸收型偏光片29的吸收轴大致垂直,第一配向膜24的取向方向与反射型偏光片21的透过轴大致平行,第二配向膜26的取向方向与第一吸收型偏光片29的吸收轴大致平行。也就是说,液晶层25靠近第一配向膜24的液晶分子的长轴方向与反射型偏光片 21的透过轴大致平行,液晶层25靠近第二配向膜26的液晶分子的长轴方向与第一吸收型偏光片29的吸收轴大致平行,液晶分子呈层状排列,层内分子排列方向相同,层与层之间的液晶分子排列方向相错位,整体分子结构呈现螺旋状。
其中,镜面切换屏2远离显示面板12的一侧的非偏振光以及显示面板12所发出的非偏振光,均可以被分解为偏振方向相互垂直的第一偏振光和第二偏振光,第一偏振光的偏振方向与第一吸收型偏光片29的吸收轴大致平行,即与反射型偏光片21的透过轴大致垂直,第二偏振光的偏振方向与第一吸收型偏光片29的吸收轴大致垂直,即与反射型偏光片21的透过轴大致平行。
在显示装置100处于自然状态(第一透明电极层23和第二透明电极层27之间没有产生电场)下,镜面切换屏2远离显示面板12的一侧的非偏振光,射向第一吸收型偏光片29,该非偏振光的第一偏振光被第一吸收型偏光片29吸收,第二偏振光透过第一吸收型偏光片29、第二配向膜26进入液晶层25,穿过液晶层25后,第二偏振光的偏振方向偏转90°转化为第一偏振光,该第一偏振光的偏振方向与反射型偏光片21的透过轴大致垂直,第一偏振光透过第一配向膜24被反射型偏光片21反射回液晶层25,再次穿过液晶层25后,第一偏振光的偏振方向偏转90°转化为第二偏振光,该第二偏振光透过第二配向膜26、第一吸收型偏光片29射向外界。此时,如果各层均为理想的介质材料,光的衰减会趋向于零,镜面切换屏2的反射率达到最高,反射率大于或等于40%,镜面切换屏2处于反射率最高的镜面状态。
在显示装置100处于显示状态(第一透明电极层23和第二透明电极层27之间具有较强的电场)下,液晶分子沿着电场方向排列,例如,液晶分子克服第一配向膜24和第二配向膜26锚定作用力,呈现大致垂直排列的情况下(液晶分子的长轴方向与镜面切换屏2的厚度方向大致平行),液晶分子的旋光性消失,即液晶层25对偏振光的调制不起作用,偏振光仍以原来的方向经过。在这种情况下,显示面板12所发出的非偏振光,射向反射型偏光片21,该非偏振光的第一偏振光被反射型偏光片21反射,第二偏振光透过反射型偏光片21、第一配向膜24进入液晶层25,穿过液晶层25后,第二偏振光的偏振方向不变,第二偏振光透过第二配向膜26、第一吸收型偏光片29射向外界。此时,如果各层均为理想的介质材料,光的衰减会趋向于零,镜面切换屏2的透射率达到最高,透射率大于或等于90%,镜面切换屏2处于透射率最高的透明状态。
由上述可知,反射型偏光片21的透过轴与第一吸收型偏光片29的吸收 轴大致垂直,第一配向膜24的取向方向与反射型偏光片21的透过轴大致平行,第二配向膜26的取向方向与第一吸收型偏光片29的吸收轴大致平行。以这种方式设置,在自然状态下,镜面切换屏2呈现反射率最高的镜面状态,显示装置100可以清晰的呈现外界环境的镜像;在显示画面时,镜面切换屏2呈现透射率最高的透明状态,显示装置100可以清晰的呈现显示画面,耗电量较低。
此外,为了避免显示面板12反射的光与显示面板12发出的光产生干扰,在一些实施例中,如图2所示,上述显示装置100还包括第二吸收型偏光片3,第二吸收型偏光片3设置于显示面板12与镜面切换屏2之间,第二吸收型偏光片3的吸收轴与反射型偏光片21的透过轴大致垂直。在这种情况下,在显示装置100处于显示状态下,显示面板12所发出的非偏振光的第一偏振光被第二吸收型偏光片3吸收,第二偏振光依次穿过第二吸收型偏光片3、反射型偏光片21、第一配向膜24、液晶层25、第二配向膜26以及第一吸收型偏光片29射向外界,避免显示面板12所发出的非偏振光的第一偏振光被反射型偏光片21反射到显示面板12上,再次反射对显示画面造成干扰,影响显示效果。
需要说明的是,在显示面板12为液晶显示面板的情况下,图7中的上偏光片126与图2中的第二吸收型偏光片3可以为同一偏光片。在显示面板12为电致发光显示面板的情况下,第二吸收型偏光片3可以为电致发光显示面板出光侧的圆偏光片。
其中,在安装偏光片(包括第一吸收型偏光片29、第二吸收型偏光片3、反射型偏光片21等)的过程中,偏光片相对的两个主表面分别设有包括粘接膜和保护膜,保护膜的上设有延伸出保护膜外的操作贴片。在安装偏光片时,操作员可以捏住操作贴片,将偏光片对位粘接到载体上,最后揭掉操作贴片及保护膜,即可形成偏光片,操作简单,工艺难度低。
在一些实施例中,如图8和图9所示,显示装置100还包括第一光敏传感器41和驱动板5。
其中,第一光敏传感器41被配置为实时感测镜面切换屏2远离显示面板12的一侧的环境光的光线强度。驱动板5与第一光敏传感器41和镜面切换屏2电连接。
在一些实施例中,驱动板5被配置为,在第一光敏传感器41感测的光线强度大于或等于第一预设光线强度的情况下,向镜面切换屏2发送第一控制信号,以降低镜面切换屏2的反射率,从而达到防眩目的目的。
需要说明的是,第一预设光线强度可以根据实际情况进行设定,本公开不做具体限定。
在另一些实施例中,驱动板5还可以被配置为,在镜面切换屏2远离显示面板12的一侧的环境光的光线强度,与显示面板12远离镜面切换屏2的一侧的环境光的光线强度之差,大于或等于第二预设光线强度的情况下,向镜面切换屏2发送相应的控制信号,以降低镜面切换屏2的反射率,从而达到防眩目的。
示例性地,如图2和图8所示,显示装置100还包括第二光敏传感器42,第二光敏传感器42设置于显示面板12远离镜面切换屏2的一侧。其中,第二光敏传感器42被配置为实时感测显示面板12的背光侧的环境光的光线强度。驱动板5还与第二光敏传感器42电连接,驱动板5还被配置为,在第二光敏传感器42感测的光线强度与第一光敏传感器41感测的光线强度之差,大于或等于第二预设光线强度的情况下,向镜面切换屏2发送第三控制信号,以降低镜面切换屏2的反射率,从而达到防眩目的。
需要说明的是,第二预设光线强度可以根据实际情况进行设定,本公开不做具体限定。
此外,上述驱动板5还可以针对第一光敏传感器41感测的光线强度与多个预设光线强度进行多次判断,每次判断的过程为,判断第一光敏传感器41感测的光线强度是否大于或等于相应的预设光线强度,并在第一光敏传感器41感测的光线强度大于或等于相应的预设光线强度的情况下,发送相应的控制信号,以将镜面切换屏2的反射率降低至相应的范围内。
在一些实施例中,如图1、图2和图9所示,显示装置100还包括第一柔性电路板6,第一柔性电路板6包括绑定部61、元器件部62和走线部63,绑定部61与镜面切换屏2电连接,第一光敏传感器41设置于元器件部62靠近镜面切换屏2的表面,走线部63设有与绑定部61的绑定焊盘610和第一光敏传感器41电连接的走线,该走线被配置为传输镜面切换屏2的控制信号以及第一光敏传感器41的感测信号的走线,及驱动板5通过第一柔性电路板6的走线部63分别与第一光敏传感器41及镜面切换屏2电连接。在这种情况下,第一光敏传感器41及其与驱动板5连接的电路走线、镜面切换屏2与驱动板5连接的电路走线集成在同一柔性电路板上,可以节省电路走线的布置空间,降低物料成本。
需要说明的是,第一柔性电路板6的走线部63远离镜面切换屏2的一端设有第一连接部631,第一连接部631与驱动板5对应的接口电连接。其中, 驱动板5能够通过第一柔性电路板6弯折至显示面板12远离镜面切换屏2的一侧。
其中,绑定部61、元器件部62以及走线部63的相对位置关系并不唯一。示例性地,如图1和图9所示,绑定部61与元器件部62均位于走线部63靠近镜面切换屏2的端部,这样可以提高电路走线排布的规律性,提高走线部63的规整性,降低走线部63所占用面积。在此基础上,绑定部61与元器件部62之间具有缝隙SL,以使绑定部61与元器件部62相互分离。这样的话,在将绑定部61与镜面切换屏2通过压接工艺绑定的过程中,元器件部62受到压接工艺的影响较小;并且,在绑定部61与镜面切换屏2绑定连接后,可以降低第一光敏传感器41与镜面切换屏2之间的挤压力,提高可靠性。
示例性地,绑定部61靠近元器件部62的边界,与元器件部62靠近绑定部61的边界之间的最小距离为25.55mm~25.95mm。例如,绑定部61靠近元器件部62的边界,与元器件部62靠近绑定部61的边界之间的最小距离为25.55mm、25.65mm、25.75mm、25.85mm和25.95mm中的任一者。
在一些实施例中,参阅图2和图9,上述第一透明基板22在参考面上的正投影,位于第二透明基板28在参考面上的正投影内。其中,第二透明基板28超出第一透明基板22的边缘部分形成第一台阶280,第一台阶280靠近显示面板12的一侧设有绑定引脚,第一柔性电路板6的绑定部61设有绑定焊盘610,绑定焊盘610与绑定引脚电连接。
在此基础上,第一光敏传感器41与第一台阶280靠近显示面板12的表面连接。示例性地,如图2、图9和图11所示,第一光敏传感器41包括基座411和光敏芯片412,基座411的第一表面411A设有安装槽,光敏芯片412设置于安装槽内,基座411的第二表面411B设有感光孔413,光敏芯片412被配置为,通过感光孔413感测镜面切换屏2远离显示面板12的一侧的环境光的光线强度。第一表面411A和第二表面411B为基座411相对的两个表面。
其中,基座411的第一表面411A与第一柔性电路板6连接,基座411的第二表面411B与第一台阶280靠近显示面板12的一侧粘接。此处,粘接避让开上述感光孔413,以保证光敏芯片412感测镜面切换屏2远离显示面板12的一侧的环境光的光线强度的精度。
这里,镜面切换屏2包括感光区,第一光敏传感器41在镜面切换屏2的正投影与感光区至少部分重合。
示例性地,镜面切换屏2的第一台阶280对应的区域中至少部分为感光区,即第二透明基板28超出第一透明基板22的边缘部分中至少部分区域不 做任何处理以确保透光性,例如在该区域仅设置有第二透明基板本身,第一光敏传感器41在镜面切换屏2的正投影位于感光区内。
示例性地,第一台阶280上设有通光孔,该通光孔对应的区域为感光区,即在第二透明基板28超出第一透明基板22的边缘部分上进行开孔,形成通光孔作为感光区;第一光敏传感器41包括基座411和光敏芯片412,基座411上的感光孔413的边界在镜面切换屏2的正投影,与通光孔的边界近似重合。
在此基础上,上述感光区可以设置导光结构,导光结构被配置为,将镜面切换屏2远离显示面板12的一侧的环境光,传导至第一光敏传感器41的光敏芯片412。例如,导光结构设置于上述通光孔内,以将镜面切换屏2远离显示面板12的一侧的环境光传导至第一光敏传感器41的光敏芯片412,降低环境光传导过程中的损失,保证光敏芯片412感测镜面切换屏2远离显示面板12的一侧的环境光的光线强度的精度。
由于第一光敏传感器41需要接收外界环境光,显示装置100的显示侧可以直观的看到第一光敏传感器41,为了提高显示装置100的规整性,如图1和图9所示,第一光敏传感器41在参考面上的正投影的中心,与第一台阶280在参考面上的正投影的中心大致重合。这样的话,显示装置100在第一光敏传感器41的左右两侧对称分布,整体结构规整,更加美观。
在一些实施例中,如图1和图2所示,上述显示面板12和镜面切换屏2在参考面的正投影大致为梯形,该梯形相互平行的两条边中最长的边为第一边界。在此基础上,第二透明基板28靠近第一边界的边缘部分超出第一透明基板22靠近第一边界的边缘部分,形成第一台阶280。以这种方式设置,第一台阶280的区域较大,便于设置第一光敏传感器41以及便于绑定部61与镜面切换屏2的电连接。
需要说明的是,“大致为梯形”是指,显示面板12和镜面切换屏2在参考面的正投影的形状整体上呈梯形形状,但是并不局限为标准的梯形。即,这里的“梯形”不但包括基本梯形的形状,而且考虑到工艺条件,还包括类似于梯形的形状。例如,梯形的拐角处为弯曲状,即拐角处平滑,使得显示面板12和镜面切换屏2在参考面的正投影在平面图的形状为圆角梯形。
示例性地,显示装置100应用于汽车的后视镜10(参阅图10),后视镜10的外轮廓大致为梯形,其下边界即为第一边界。也就是说,第一台阶280对应位于镜面切换屏2的下边缘,柔性电路板6在镜面切换屏2的下侧与镜面切换屏2电连接。
在一些实施例中,如图2所示,第二吸收型偏光片3在参考面上的正投 影,位于显示面板12在参考面上的正投影内,显示面板12超出第二吸收型偏光片3的边缘部分形成第二台阶120,且第一台阶280在参考面上的正投影,与第二台阶120在参考面上的正投影至少部分重合。例如,第一台阶280在参考面上的正投影,与第二台阶120在参考面上的正投影大致重合。其中,第一柔性电路板6在第一台阶280与第二台阶120重合的区域与第一台阶280绑定电连接。在这种情况下,显示装置100还包括支撑件9,支撑件9的一端至少与第一柔性电路板6抵靠,另一端与第二台阶120抵靠,以对第一柔性电路板6起到支撑的作用。示例性地,支撑件9的一端可以与第一柔性电路板6以及第一台阶280抵靠,另一端与第二台阶120抵靠,这样支撑件9对第一柔性电路板6提供的支撑力较大,支撑效果较高。
需要说明的是,在显示面板12为液晶显示面板的情况下,对盒基板124和液晶盒125在参考面上的正投影,可以与第二吸收型偏光片3在参考面上的正投影大致重合;对盒基板124和液晶盒125在参考面上的正投影,位于阵列基板123在参考面上的正投影内,且阵列基板123超出第二吸收型偏光片3的边缘部分形成第二台阶120。在显示面板12为电致发光显示面板的情况下,显示面板12超出第二吸收型偏光片3,且显示面板12超出第二吸收型偏光片3边缘部分形成第二台阶120。其中,图2中以显示面板12为液晶显示面板为例进行示意(图2中未示意出液晶盒125)。
在此基础上,如图2所示,支撑件9的材料可以是不透光的材料,也可以在支撑件9的侧壁上设有遮光膜。这样的话,支撑件9在保证支撑性能的同时,还可以有效避免漏光。
其中,支撑件9的弹性模量大于或等于3GPa。示例性地,支撑件9的材料包括泡棉、聚酰亚胺(Polyimide,简称PI)和聚对苯二甲酸类(Polyethylene terephthalate,简称PET)塑料中的至少一种。
此外,参阅图2,上述第一柔性电路板6在支撑件9远离第二吸收型偏光片3的一侧延伸至显示面板12的背光侧,结构简单,便于制作。
在一些实施例中,参阅图8,驱动板5还与显示面板12电连接,驱动板5还被配置为,响应于操作者指示显示影像的操作,驱动显示面板12显示;以及,向镜面切换屏2发送第二控制信号,以使镜面切换屏2透射显示面板12的显示画面。在这种情况下,用于驱动显示面板12显示的控制电路、以及用于驱动镜面切换屏2状态切换的控制电路均集成在同一驱动板5上,这样可以进一步地节省电路走线的布置空间,降低物料成本。
在此基础上,如图8所示,显示装置100还包括第二柔性电路板7,第二 柔性电路板7与显示面板12和驱动板5电连接。其中,通过弯折工艺将第二柔性电路板7弯折,可以使驱动板5位于显示面板12远离镜面切换屏2的一侧,以缩减显示面板12的边框。
需要说明的是,部分集成电路也可以设置在第二柔性电路板7上,例如,时序控制电路设置在第二柔性电路板7,本公开不限于此。此外,第二柔性电路板7远离显示面板12的端部设有第二连接部71,第二连接部71与驱动板5对应的接口电连接。
可以理解的是,如图1和图2所示,镜面切换屏2包括显示区B1和位于显示区B1的至少一侧的周边区B2,附图5以周边区B2包围显示区B1为例进行示意。
此处,显示区B1为镜面切换屏2的透光区域,显示区B1被配置为设置液晶层25中液晶分子。周边区B2可以被配置为布置镜面切换屏2所需的各种信号线以及封框胶251等。
其中,封框胶251的形状相对不规则,会大大影响视觉效果。基于此,为了提升视觉效果,如图1和图2所示,上述显示装置100还包括遮光层8,遮光层8设置于第二透明基板28远离显示面板1的一侧。
示例性地,如图2所示,遮光层8设置于第二透明基板28和第一吸收型偏光片29之间,第一吸收型偏光片29至少部分覆盖遮光层8,例如,第一吸收型偏光片29完全覆盖遮光层8。其中,遮光层8覆盖镜面切换屏2的周边区B2,以防止漏光。此外,遮光层8设置于第二透明基板28和第一吸收型偏光片29之间,不影响第一吸收型偏光片29远离显示面板12一侧的平整性,且遮光层8通过丝网印刷工艺形成在第二透明基板28远离显示面板12的表面,遮光层8与第二透明基板28之间的附着力更强,遮光层8不易脱落,可靠性更高。
示例性地,如图3所示,遮光层8和第一吸收型偏光片29均设置于第二透明基板28远离显示面板1的表面,遮光层8在参考面上的正投影与第一吸收型偏光片29在参考面上的正投影相互靠近的两边界近似重合,或遮光层8在参考面上的正投影与第一吸收型偏光片29在参考面上的正投影相互靠近的两边界之间具有间隙。其中,遮光层8覆盖镜面切换屏2的周边区B2,以防止漏光。
示例性地,如图4所示,遮光层8设置于第一吸收型偏光片29远离显示面板1的一侧。其中,遮光层8覆盖镜面切换屏2的周边区B2,以防止漏光。
这里,遮光层8可以通过丝网印刷工艺或溅射工艺形成在第二透明基板 28远离显示面板12的表面,以实现显示装置100的窄边框设计。遮光层8的材料包括油墨和/或金属。示例性地,遮光层8的材料为镜面银油墨或金属色油墨。以这种方式设置,在镜面切换屏2处于高反射状态下,采用镜面银油墨或金属色油墨均可以使得遮光层8与镜面切换屏2的显示区B1保持基本一致,镜面显示效果更佳。
例如,遮光层8的材料为挥发性干燥油墨。详细地,将高分子物质溶解于溶剂并印刷至第二透明基板28远离显示面板12的表面,形成墨膜;墨膜中的溶剂因蒸汽压的作用扩散在大气中,在墨膜表面形成液膜,然后通过液膜挥发。其中,在干燥的过程中,可以通过吹风加速干燥。这里,遮光层8的材料采用挥发性干燥油墨,工艺简单,生产速度快。
例如,遮光层8的材料为紫外光固化型油墨。详细地,将紫外光固化型油墨印刷至第二透明基板28远离显示面板12的表面;经过紫外线照射,紫外线油墨产生光化学反应,在几秒钟之内,即可完全固化。这里,紫外光固化型油墨的材料可以包括光聚合树脂、引发剂、色料及助剂。
又例如,遮光层8的材料为氧化干燥型油墨。详细地,将氧化干燥型油墨印刷至第二透明基板28远离显示面板12的表面;由于氧化干燥型油墨含有分子量较小的聚合物,在空气中氧化,通过热、光或反应性物质的化学反应而固化,形成高分子膜(遮光层8)。
在一些实施例中,上述遮光层8的厚度为6.5μm~7.5μm。这样,可以以在保证遮光的情况下,降低增加遮光层8对显示装置100整体厚度的影响。示例性地,上述遮光层8的厚度为6.5μm、7μm和7.5μm中的任一种。
在一些实施例中,参阅图1,遮光层8的最小宽度S2为4.3mm~4.7mm,遮光层8的最大宽度S1为8.89mm~9.29mm。示例性地,遮光层8的最小宽度S2为4.3mm、4.4mm、4.5mm、4.6mm和4.7mm中的任一者,遮光层8的最大宽度S1为8.89mm、8.99mm、9.09mm、9.19mm和9.29mm中的任一者。
需要说明的是,在限定宽度方向时,宽度方向根据遮光层8的所在位置不同而不同。示例性地,遮光层8在参考面上的正投影为条状,上述宽度方向指的是平行于参考面,且垂直于遮光层8的延伸方向的方向。例如,遮光层8可以由多段条状的子遮光图案相接形成如图1中所示的封闭环形,每个子遮光图案沿一个方向延伸,并对应镜面切换屏2的一个边界设置。此时。不同的子遮光图案的延伸方向不同,对应宽度方向也不同。
例如,显示装置100应用于汽车的后视镜10(参阅图10),第一台阶280 对应位于显示装置100的下边界。显示装置100的下边界对应的遮光层8的宽度为8.89mm~9.29mm,显示装置100其余的边界对应的遮光层8的宽度为4.3mm~4.7mm。
可以理解的是,如图1和图9所示,上述遮光层8设有避让孔81,光敏传感器41在参考面的正投影,与避让孔81在参考面的正投影至少部分交叠,以保证光敏传感器41可以接收到外界的环境光。示例性地,光敏传感器41在参考面的正投影,位于避让孔81在参考面的正投影内,以避免遮光层8对第一光敏传感器41感测镜面切换屏2远离显示面板12的一侧的环境光的光线强度造成影响。其中,避让孔81的直径为2.5mm~2.9mm。例如,避让孔81的直径为2.5mm、2.6mm、2.7mm、2.8mm和2.9mm中的任一者。
在一些实施例中,参阅图1,沿第一方向X,显示装置100的最大尺寸L的范围为239.64mm~240.04mm。第一方向X与显示装置100的侧边大致平行。示例性地,沿第一方向X,显示装置100的最大尺寸L的范围为239.64mm、239.74mm、239.84mm、239.94mm和240.04mm中的任一者。
在一些实施例中,参阅图1,沿第二方向Y,显示装置100的最大尺寸W的范围为61.2mm~61.6mm。第二方向Y与第一方向X大致垂直。示例性地,沿第二方向Y,显示装置100的最大尺寸W的范围为61.2mm、61.3mm、61.4mm、61.5mm和61.6mm中的任一者。
例如,参阅图1和图10,显示装置100应用于汽车的后视镜10,后视镜10的外轮廓大致为梯形,显示装置100下边界的尺寸大于上边界的尺寸,第一方向X与显示装置100的下边界大致平行。此时,沿第一方向X,显示装置100的尺寸L为239.84mm,沿第二方向Y,显示装置100的尺寸W为61.4mm。
需要说明的是,“大致为梯形”是指,后视镜10的外轮廓的形状整体上呈梯形形状,但是并不局限为标准的梯形。即,这里的“梯形”不但包括基本梯形的形状,而且考虑到工艺条件,还包括类似于梯形的形状。例如,梯形的拐角处为弯曲状,即拐角处平滑,使得后视镜10的外轮廓在平面图的形状为圆角梯形。
本公开的一些实施例还提供一种显示装置,该显示装置包括显示面板、第一光敏传感器、第一电路板和驱动板。
这里,显示面板的出光侧能够在高透射状态和高反射状态之间切换。其中,当显示面板的出光侧处于高透射状态下,显示画面可以透射出显示面板,实现显示功能;当显示面板的出光侧处于高反射状态下,外界的光由显示面板反射呈现镜像。
需要说明的是,本公开实施例所提供的显示装置的显示面板可以包括上述实施例所述的显示装置100的显示面板12和镜面切换屏2,具体特征、结构可以参考上文,本公开在此不做赘述。
其中,第一电路板包括绑定部、元器件部和走线部,第一光敏传感器设置于元器件部,走线部设有与绑定部的绑定焊盘和第一光敏传感器电连接的走线。驱动板通过第一电路板的走线部与显示面板电连接。
需要说明的是,本公开实施例所提供的显示装置的第一电路板可以包括上述实施例所述的显示装置100的第一柔性电路板6,具体特征、结构可以参考上文,本公开在此不做赘述。此外,本公开实施例所提供的显示装置的驱动板可以包括上述实施例所述的显示装置100的驱动板5,具体特征、结构可以参考上文,本公开在此不做赘述。
本公开实施例所提供的显示装置,可以与上述实施例所述的显示装置100所包括的其他特征、结构以合适的方式结合,本公开在此不做赘述。
如图8和图10所示,本公开的一些实施例还提供一种后视镜10,该后视镜10包括上述任一实施例所述的显示装置100。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种显示装置,包括:
    显示面板;
    镜面切换屏,设置于所述显示面板的出光侧;
    第一光敏传感器,被配置为实时感测所述镜面切换屏远离所述显示面板的一侧的环境光的光线强度;
    第一柔性电路板,包括绑定部、元器件部和走线部,所述绑定部与所述镜面切换屏电连接,所述第一光敏传感器设置于所述元器件部靠近所述镜面切换屏的一侧,所述走线部设有与所述绑定部的引脚和所述第一光敏传感器电连接的走线;
    驱动板,与所述第一柔性电路板的走线部电连接。
  2. 根据权利要求1所述的显示装置,其中,所述绑定部与所述元器件部均位于所述走线部靠近所述镜面切换屏的端部,且所述绑定部与所述元器件部之间具有缝隙。
  3. 根据权利要求2所述的显示装置,其中,所述绑定部靠近所述元器件部的边界,与所述元器件部靠近所述绑定部的边界之间的最小距离为25.55mm~25.95mm。
  4. 根据权利要求1~3中任一项所述的显示装置,其中,所述驱动板还与所述显示面板电连接。
  5. 根据权利要求4所述的显示装置,还包括:
    第二柔性电路板,与所述显示面板和所述驱动板电连接,且所述驱动板能够通过所述第一柔性电路板和所述第二柔性电路板弯折至所述显示面板远离所述镜面切换屏的一侧。
  6. 根据权利要求1~5中任一项所述的显示装置,其中,沿所述显示面板指向所述镜面切换屏的方向,所述镜面切换屏包括依次设置的反射型偏光片、第一透明基板、第一透明电极层、第一配向膜、液晶层、第二配向膜、第二透明电极层、第二透明基板和第一吸收型偏光片;
    其中,所述反射型偏光片的透过轴与所述第一吸收型偏光片的吸收轴大致垂直,所述第一配向膜的取向方向与所述反射型偏光片的透过轴大致平行,所述第二配向膜的取向方向与第一吸收型偏光片的吸收轴大致平行。
  7. 根据权利要求6所述的显示装置,其中,所述反射型偏光片包括多层膜反射式偏光片、反射式偏光镜、光学增亮膜片或金属网丝反射型偏光膜中的任一种。
  8. 根据权利要求6或7所述的显示装置,其中,所述第一透明基板在参 考面上的正投影,位于所述第二透明基板在所述参考面上的正投影内;所述参考面为所述镜面切换屏远离所述显示面板的表面所在的平面;
    其中,所述第二透明基板超出所述第一透明基板的边缘部分形成第一台阶,所述第一台阶靠近所述显示面板的一侧设有绑定引脚,所述第一柔性电路板的绑定部设有绑定焊盘,所述绑定焊盘与所述绑定引脚电连接。
  9. 根据权利要求8所述的显示装置,其中,所述第一光敏传感器包括基座和光敏芯片,所述基座的第一表面设有安装槽,所述光敏芯片设置于所述安装槽内,所述基座的第二表面设有感光孔,所述光敏芯片被配置为,通过所述感光孔感测所述镜面切换屏远离所述显示面板的一侧的环境光的光线强度;所述第一表面和所述第二表面为所述基座相对的两个表面;
    其中,所述基座的第一表面与所述第一柔性电路板连接,所述基座的第二表面与所述第一台阶靠近所述显示面板的一侧粘接。
  10. 根据权利要求8或9所述的显示装置,其中,所述第一光敏传感器在所述参考面上的正投影的中心,与所述第一台阶在所述参考面上的正投影的中心大致重合。
  11. 根据权利要求6~10中任一项所述的显示装置,其中,所述镜面切换屏包括显示区和位于所述显示区的至少一侧的周边区;所述显示装置还包括:
    遮光层,设置于所述第二透明基板远离所述显示面板的一侧,且所述遮光层覆盖所述周边区。
  12. 根据权利要求11所述的显示装置,其中,所述遮光层设置于所述第二透明基板和所述第一吸收型偏光片之间;所述第一吸收型偏光片至少部分覆盖所述遮光层。
  13. 根据权利要求11所述的显示装置,其中,所述遮光层和所述第一吸收型偏光片均设置于所述第二透明基板远离所述显示面板的表面,所述遮光层在所述参考面上的正投影与所述第一吸收型偏光片所述参考面上的正投影相互靠近的两边界近似重合或具有间隙。
  14. 根据权利要求11所述的显示装置,其中,所述遮光层设有避让孔,所述光敏传感器在参考面的正投影,与所述避让孔在所述参考面的正投影至少部分交叠;其中,所述参考面为所述镜面切换屏远离所述显示面板的表面所在的平面。
  15. 根据权利要求11~14中任一项所述的显示装置,其中,所述遮光层的材料包括油墨和/或金属。
  16. 根据权利要求11~15中任一项所述的显示装置,其中,所述遮光层 的厚度为6.5μm~7.5μm。
  17. 根据权利要求6~16中任一项所述的显示装置,还包括:
    第二吸收型偏光片,设置于所述显示面板与所述镜面切换屏之间,所述第二吸收型偏光片的吸收轴与所述反射型偏光片的透过轴大致垂直。
  18. 根据权利要求17所述的显示装置,其中,所述第二透明基板超出所述第一透明基板的边缘部分形成第一台阶;
    所述第二吸收型偏光片在所述参考面上的正投影,位于所述显示面板在所述参考面上的正投影内,所述显示面板超出所述第二吸收型偏光片的边缘部分形成第二台阶,且所述第一台阶在所述参考面上的正投影,与所述第二台阶在所述参考面上的正投影至少部分重合;
    所述显示装置还包括:
    支撑件,所述支撑件的一端至少与所述第一柔性电路板抵靠,另一端与所述第二台阶抵靠。
  19. 根据权利要求18所述的显示装置,其中,所述第一柔性电路板在所述支撑件远离所述第二吸收型偏光片的一侧延伸至所述显示面板的背光侧。
  20. 根据权利要求1~19中任一项所述的显示装置,还包括:
    第二光敏传感器,设置于所述显示面板远离所述镜面切换屏的一侧;所述第二光敏传感器被配置为实时感测所述显示面板的背光侧的环境光的光线强度;所述驱动板还与所述第二光敏传感器电连接。
  21. 一种显示装置,包括:
    显示面板;
    第一光敏传感器,被配置为实时感测所述显示面板的出光侧的环境光的光线强度;
    第一电路板,包括绑定部、元器件部和走线部,所述第一光敏传感器设置于所述元器件部,所述走线部设有与所述绑定部的引脚和所述第一光敏传感器电连接的走线;
    驱动板,与所述第一电路板的走线部电连接,所述驱动板还与所述显示面板电连接。
  22. 一种后视镜,包括如权利要求1~21中任一项所述的显示装置。
PCT/CN2022/070090 2022-01-04 2022-01-04 显示装置及后视镜 WO2023130209A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/070090 WO2023130209A1 (zh) 2022-01-04 2022-01-04 显示装置及后视镜
CN202280000013.1A CN116710325A (zh) 2022-01-04 2022-01-04 显示装置及后视镜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/070090 WO2023130209A1 (zh) 2022-01-04 2022-01-04 显示装置及后视镜

Publications (1)

Publication Number Publication Date
WO2023130209A1 true WO2023130209A1 (zh) 2023-07-13

Family

ID=87072799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070090 WO2023130209A1 (zh) 2022-01-04 2022-01-04 显示装置及后视镜

Country Status (2)

Country Link
CN (1) CN116710325A (zh)
WO (1) WO2023130209A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106163873A (zh) * 2014-04-01 2016-11-23 金泰克斯公司 自动显示镜组件
CN106573575A (zh) * 2014-07-31 2017-04-19 松下知识产权经营株式会社 电子反射镜装置
CN108462767A (zh) * 2018-02-07 2018-08-28 维沃移动通信有限公司 一种光敏组件和移动终端
CN109689435A (zh) * 2016-09-29 2019-04-26 株式会社村上开明堂 车辆用监视器内后视镜
CN210062828U (zh) * 2019-07-01 2020-02-14 深圳秋田微电子股份有限公司 防眩目后视镜及汽车
CN112927627A (zh) * 2021-04-06 2021-06-08 京东方科技集团股份有限公司 一种显示装置及后视镜
CN113109958A (zh) * 2020-01-09 2021-07-13 株式会社村上开明堂 镜显示装置
CN214523571U (zh) * 2021-03-18 2021-10-29 深圳秋田微电子股份有限公司 防眩目后视镜及汽车

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106163873A (zh) * 2014-04-01 2016-11-23 金泰克斯公司 自动显示镜组件
CN106573575A (zh) * 2014-07-31 2017-04-19 松下知识产权经营株式会社 电子反射镜装置
CN109689435A (zh) * 2016-09-29 2019-04-26 株式会社村上开明堂 车辆用监视器内后视镜
CN108462767A (zh) * 2018-02-07 2018-08-28 维沃移动通信有限公司 一种光敏组件和移动终端
CN210062828U (zh) * 2019-07-01 2020-02-14 深圳秋田微电子股份有限公司 防眩目后视镜及汽车
CN113109958A (zh) * 2020-01-09 2021-07-13 株式会社村上开明堂 镜显示装置
CN214523571U (zh) * 2021-03-18 2021-10-29 深圳秋田微电子股份有限公司 防眩目后视镜及汽车
CN112927627A (zh) * 2021-04-06 2021-06-08 京东方科技集团股份有限公司 一种显示装置及后视镜

Also Published As

Publication number Publication date
CN116710325A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
JP3898012B2 (ja) 表示装置
US7369209B2 (en) Bendable display apparatus and method of manufacturing the same
US6697138B2 (en) Transflective liquid crystal display device and manufacturing method for the same
US10921624B2 (en) Display panel and method for manufacturing the same
JP3993221B2 (ja) 表示装置
US11575111B2 (en) Optical film group, display assembly and display device
US20060187385A1 (en) Flexible transflective device and manufacturing method thereof
KR20020081105A (ko) 전기 광학 장치, 그 제조 방법 및 전자 기기
KR20070009761A (ko) 액정표시장치와 그 제조방법
US6833900B2 (en) Electro-optical device and electronic apparatus
US20220199959A1 (en) Display panel and formation method thereof, and display apparatus
US9110323B2 (en) Liquid crystal display device
KR20070043487A (ko) 플렉서블 액정표시장치와 이의 제조방법
WO2023130209A1 (zh) 显示装置及后视镜
WO2018157744A1 (zh) 反射式显示面板及其制造方法、显示装置
US11526043B2 (en) Display device having DAM pattern with trench
KR20230134029A (ko) 표시 장치의 제조방법
CN110729338B (zh) 一种显示面板及其制作方法、显示装置
JP2007256586A (ja) 表示装置及び電子機器
KR20220100956A (ko) 수동 디스플레이 영역을 갖는 디스플레이
CN114545677B (zh) 反射式显示模组及显示装置
CN111554828B (zh) 一种显示基板及其制备方法、显示装置
US11538271B2 (en) Display panel, manufacturing method, and display device
US20230225175A1 (en) Display panel
US20240172533A1 (en) Display device and method for manufacturing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000013.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22917690

Country of ref document: EP

Kind code of ref document: A1