WO2023127423A1 - 固体酸化物形燃料電池用の電解質シート及び固体酸化物形燃料電池用の単セル - Google Patents

固体酸化物形燃料電池用の電解質シート及び固体酸化物形燃料電池用の単セル Download PDF

Info

Publication number
WO2023127423A1
WO2023127423A1 PCT/JP2022/044868 JP2022044868W WO2023127423A1 WO 2023127423 A1 WO2023127423 A1 WO 2023127423A1 JP 2022044868 W JP2022044868 W JP 2022044868W WO 2023127423 A1 WO2023127423 A1 WO 2023127423A1
Authority
WO
WIPO (PCT)
Prior art keywords
recesses
electrolyte sheet
recess
solid oxide
oxide fuel
Prior art date
Application number
PCT/JP2022/044868
Other languages
English (en)
French (fr)
Inventor
誠司 藤田
裕亮 山田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023127423A1 publication Critical patent/WO2023127423A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an electrolyte sheet for solid oxide fuel cells and a single cell for solid oxide fuel cells.
  • a solid oxide fuel cell is a device that extracts electrical energy through the reaction of fuel electrode: H 2 +O 2 ⁇ ⁇ H 2 O+2e ⁇ and air electrode: (1/2)O 2 +2e ⁇ ⁇ O 2 ⁇ is.
  • a solid oxide fuel cell stacks a plurality of single cells for a solid oxide fuel cell, in which a fuel electrode and an air electrode are provided on an electrolyte sheet for a solid oxide fuel cell made of a ceramic plate, Used as a laminated structure.
  • Patent Document 1 discloses a solid oxide fuel cell comprising an electrolyte layer, an air electrode provided on one surface of the electrolyte layer, and a fuel electrode provided on the other surface of the electrolyte layer.
  • a solid oxide fuel cell is disclosed in which a porous layer made of an electrolyte material is interposed between the electrodes and/or between the electrolyte layer and the fuel electrode.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an electrolyte sheet for a solid oxide fuel cell that can improve the power generation efficiency of the solid oxide fuel cell. is. Another object of the present invention is to provide a single cell for a solid oxide fuel cell having the electrolyte sheet.
  • An electrolyte sheet for a solid oxide fuel cell of the present invention is provided with a plurality of first recesses and a plurality of second recesses having a diameter smaller than that of the first recesses on at least one main surface, and a plurality of the above
  • the first recesses are spaced apart from each other, and the plurality of second recesses are provided between the openings of the adjacent first recesses, the side surfaces of the first recesses, and the bottom surfaces of the first recesses.
  • a single cell for a solid oxide fuel cell of the present invention comprises a fuel electrode, an air electrode, and an electrolyte sheet for a solid oxide fuel cell of the present invention provided between the fuel electrode and the air electrode. and.
  • an electrolyte sheet for solid oxide fuel cells that can improve the power generation efficiency of solid oxide fuel cells.
  • the single cell for solid oxide fuel cells which has the said electrolyte sheet can be provided.
  • FIG. 1 is a schematic plan view showing an example of an electrolyte sheet for a solid oxide fuel cell of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an example of a cross section along line segment A1-A2 of the electrolyte sheet shown in FIG.
  • FIG. 3 is a cross-sectional schematic diagram showing an enlarged first main surface of the electrolyte sheet shown in FIG.
  • FIG. 4 is another example of the electrolyte sheet for the solid oxide fuel cell of the present invention, and is a schematic cross-sectional view showing a mode in which the cross-sectional shape of the first recess is different from that in FIG. FIG.
  • FIG. 5 is still another example of the electrolyte sheet for a solid oxide fuel cell of the present invention, and is a schematic cross-sectional view showing a mode in which the cross-sectional shape of the first recess is different from that of FIGS. 3 and 4.
  • FIG. FIG. 6 is a schematic plan view showing the steps of producing a ceramic green sheet in one example of the method for producing an electrolyte sheet for a solid oxide fuel cell of the present invention.
  • FIG. 7 is a schematic plan view showing a state after FIG. 6 in the step of producing a ceramic green sheet in one example of the method for producing an electrolyte sheet for a solid oxide fuel cell of the present invention.
  • FIG. 8 is a schematic plan view showing a state after FIG.
  • FIG. 9 is a schematic cross-sectional view showing a step of providing sheet through-holes in an example of the method for producing an electrolyte sheet for a solid oxide fuel cell of the present invention.
  • FIG. 10 is a schematic cross-sectional view showing a step of producing an unsintered plate-like body in one example of the method for producing an electrolyte sheet for a solid oxide fuel cell of the present invention.
  • FIG. 11 is a schematic cross-sectional view showing the step of forming the second recess in one example of the method for producing the electrolyte sheet for the solid oxide fuel cell of the present invention.
  • FIG. 12 is a schematic cross-sectional view showing the aspect after FIG. 11 in the step of forming the second recesses in one example of the method of manufacturing the electrolyte sheet for the solid oxide fuel cell of the present invention.
  • FIG. 13 is a schematic cross-sectional view showing the aspect after FIG. 12 in the step of forming the second recesses in one example of the method of manufacturing the electrolyte sheet for the solid oxide fuel cell of the present invention.
  • FIG. 14 is a schematic cross-sectional view showing the aspect after FIG. 13 in the step of providing the second recess in one example of the method of manufacturing the electrolyte sheet for solid oxide fuel cells of the present invention.
  • FIG. 15 is a schematic cross-sectional view showing a step of producing a ceramic plate in one example of the method for producing an electrolyte sheet for a solid oxide fuel cell of the present invention.
  • FIG. 16 is a cross-sectional schematic diagram showing an example of a single cell for the solid oxide fuel cell of the present invention.
  • 17 is a schematic cross-sectional view showing an enlarged interface between the electrolyte sheet and the fuel electrode in the unit cell shown in FIG. 16.
  • FIG. 18 is a schematic cross-sectional view showing an enlarged interface between the electrolyte sheet and the air electrode in the unit cell shown in FIG. 16.
  • FIG. FIG. 19 is a schematic perspective view showing a single cell sample for power generation efficiency measurement.
  • the electrolyte sheet for the solid oxide fuel cell of the present invention and the single cell for the solid oxide fuel cell of the present invention will be described below. It should be noted that the present invention is not limited to the following configurations, and may be modified as appropriate without departing from the gist of the present invention. The present invention also includes a combination of a plurality of individual preferred configurations described below.
  • Electrode sheet for solid oxide fuel cells In the electrolyte sheet for a solid oxide fuel cell of the present invention, a plurality of first recesses and a plurality of second recesses having a smaller diameter than the first recesses are provided on at least one main surface, and the plurality of first recesses are provided on at least one main surface.
  • the recesses are spaced apart from each other, and the plurality of second recesses are provided between the adjacent openings of the first recesses, on the side surfaces of the first recesses, and on the bottom surfaces of the first recesses.
  • FIG. 1 is a schematic plan view showing an example of an electrolyte sheet for a solid oxide fuel cell of the present invention.
  • the electrolyte sheet 10 for solid oxide fuel cells shown in FIG. 1 is made of a ceramic plate.
  • the ceramic plate preferably contains a zirconia sintered body.
  • zirconia sintered bodies examples include zirconia sintered bodies stabilized with oxides of rare earth elements such as scandium and yttrium, and more specifically, sintered zirconia stabilized with scandia. sintered bodies of yttria-stabilized zirconia, and the like.
  • the zirconia sintered body is preferably a scandia-stabilized zirconia sintered body.
  • the ceramic plate-like body constituting the electrolyte sheet 10 includes a sintered body of zirconia stabilized with scandia. Since the electrolyte sheet 10 is made of a ceramic plate-like body containing a scandia-stabilized zirconia sintered body, the conductivity of the electrolyte sheet 10 can be easily increased. In this case, by incorporating the electrolyte sheet 10 into the solid oxide fuel cell, the power generation efficiency of the solid oxide fuel cell can be easily improved.
  • the zirconia sintered body is preferably a cubic zirconia sintered body.
  • the ceramic plate-like body constituting the electrolyte sheet 10 contains a sintered body of cubic zirconia. Since the electrolyte sheet 10 is made of a ceramic plate-like body containing a sintered body of cubic zirconia, the conductivity of the electrolyte sheet 10 can be easily increased. In this case, by incorporating the electrolyte sheet 10 into the solid oxide fuel cell, the power generation efficiency of the solid oxide fuel cell can be easily improved.
  • cubic zirconia sintered bodies include cubic zirconia sintered bodies stabilized with oxides of rare earth elements such as scandium and yttrium, and more specifically, stabilized with scandia. a sintered body of cubic zirconia stabilized with yttria, a sintered body of cubic zirconia stabilized with yttria, and the like.
  • the cubic zirconia sintered body is preferably a scandia-stabilized cubic zirconia sintered body.
  • the ceramic plate-like body that constitutes the electrolyte sheet 10 contains a scandia-stabilized cubic zirconia sintered body.
  • the conductivity of the electrolyte sheet 10 tends to be significantly increased.
  • the power generation efficiency of the solid oxide fuel cell can be significantly improved.
  • the planar shape of the electrolyte sheet 10 when viewed from the thickness direction is, for example, a square shape as shown in FIG.
  • the planar shape of the electrolyte sheet 10 when viewed in the thickness direction is preferably a substantially rectangular shape with rounded corners, and more preferably a substantially square shape with rounded corners.
  • the electrolyte sheet 10 may have all corners rounded, or may have some corners rounded.
  • the electrolyte sheet 10 is preferably provided with through-holes penetrating in the thickness direction. Such through-holes function as gas flow paths when the electrolyte sheet 10 is incorporated into a solid oxide fuel cell.
  • the number of through-holes may be only one, or may be two or more.
  • planar shape of the through-hole when viewed from the thickness direction may be circular or may be any other shape.
  • the position of the through hole is not particularly limited as long as it is a region where the first recess 20 described later and the second recess 30 described later provided between the openings of the first recess 20 are not eliminated.
  • the size of the electrolyte sheet 10 when viewed in the thickness direction is, for example, 50 mm x 50 mm, 100 mm x 100 mm, 110 mm x 110 mm, 120 mm x 120 mm, 200 mm x 200 mm.
  • FIG. 2 is a schematic cross-sectional view showing an example of a cross section along line segment A1-A2 of the electrolyte sheet shown in FIG.
  • At least one main surface of the electrolyte sheet 10 is provided with a plurality of first recesses 20 and a plurality of second recesses 30 smaller in diameter than the first recesses 20 .
  • a plurality of first recesses 20 and a plurality of second recesses 30 are provided on each of the first main surface 10a and the second main surface 10b of the electrolyte sheet 10. .
  • the first concave portion 20 and the first concave portion 20 provided on the second main surface 10b may be provided at positions overlapping in the thickness direction as shown in FIG. 2, or may be provided at positions not overlapping in the thickness direction. may have been
  • the plurality of first recesses 20 and the plurality of second recesses 30 may be provided only on the first main surface 10a of the electrolyte sheet 10, or may be provided only on the second main surface 10b of the electrolyte sheet 10. may be
  • the first recesses 20 and the second recesses 30 provided on the first main surface 10a of the electrolyte sheet 10 will be described below.
  • the recess 30 is also the same.
  • FIG. 3 is a cross-sectional schematic diagram showing an enlarged first main surface of the electrolyte sheet shown in FIG.
  • the plurality of first recesses 20 are provided at intervals. Since the surface area of the first main surface 10a of the electrolyte sheet 10 is increased by providing the plurality of first concave portions 20 on the first main surface 10a of the electrolyte sheet 10, the electrolyte sheet 10 can be used as a solid oxide fuel cell. , the contact area between the electrolyte sheet 10 and the electrode (fuel electrode or air electrode) tends to increase, and as a result, power generation efficiency tends to improve.
  • the plurality of second recesses 30 are arranged between adjacent openings of the first recesses 20 , side surfaces of the first recesses 20 , and is provided on the bottom surface of the Since the plurality of second concave portions 30 are provided on the first main surface 10a of the electrolyte sheet 10, the surface area of the first main surface 10a of the electrolyte sheet 10 is increased. , the contact area between the electrolyte sheet 10 and the electrode (fuel electrode or air electrode) tends to increase, and as a result, power generation efficiency tends to improve.
  • a plurality of second recesses 30 be provided between the openings of adjacent first recesses 20 .
  • a plurality of second recesses 30 are provided on the side surface of the first recess 20 .
  • a plurality of second recesses 30 are provided on the bottom surface of the first recess 20 .
  • the plurality of first concave portions 20 and the plurality of second concave portions 30 are provided on the first main surface 10a, so that the surface area of the first main surface 10a of the electrolyte sheet 10 is large. Therefore, when the electrolyte sheet 10 is incorporated in a solid oxide fuel cell, the contact area between the electrolyte sheet 10 and the electrode (fuel electrode or air electrode) tends to be significantly increased, resulting in power generation Efficiency can be noticeably improved.
  • the interval (pitch) P1 between adjacent first concave portions 20 is preferably 50 ⁇ m or more and 200 ⁇ m or less, more preferably 50 ⁇ m or more and 150 ⁇ m or less, and still more preferably 50 ⁇ m or more and 100 ⁇ m or less.
  • the intervals P1 between adjacent first recesses 20 may be the same, may be different from each other, or may be partially different.
  • the interval between adjacent first recesses is determined by the shortest distance between the openings of adjacent first recesses when viewed from the thickness direction.
  • the diameter of the opening of the first recess is 60 ⁇ m or more.
  • the diameter Q1 of the opening of the first recess 20 is 60 ⁇ m or more. Since the diameter Q1 of the opening of the first concave portion 20 is 60 ⁇ m or more, when the electrolyte sheet 10 is incorporated into the solid oxide fuel cell, the slurry for the electrode (slurry for the fuel electrode or slurry for the air electrode) ) can easily enter the first recess 20 , and also easily enter the second recess 30 provided on the side surface and the bottom surface of the first recess 20 . As a result, in the solid oxide fuel cell, the contact area between the electrolyte sheet 10 and the electrodes tends to increase, and the power generation efficiency tends to improve.
  • the diameter Q1 of the opening of the first recess 20 is preferably 200 ⁇ m or less.
  • the diameter Q1 of the opening of the first recess 20 is preferably 60 ⁇ m or more and 200 ⁇ m or less.
  • the diameters Q1 of the openings of the plurality of first recesses 20 may be the same as each other, may be different from each other, or may be partially different.
  • the diameter of the opening of the first recess is determined as follows. First, an image of the opening of the first recess when viewed from the thickness direction is acquired. Next, by performing image analysis on the obtained image of the opening of the first recess using image analysis software, the equivalent circle diameter of the opening of the first recess is measured. The equivalent circle diameter thus measured is determined as the diameter of the opening of the first recess.
  • the ratio of the diameter of the opening of the first recess to the diameter of the bottom surface of the first recess is 30% or more.
  • the ratio of the diameter Q1 of the opening of the first recess 20 to the diameter R1 of the bottom surface of the first recess 20 is 30% or more. Since the ratio of the diameter Q1 of the opening of the first recess 20 to the diameter R1 of the bottom surface of the first recess 20 is 30% or more, when the electrolyte sheet 10 is incorporated into the solid oxide fuel cell, the electrode for The slurry (the slurry for the fuel electrode or the slurry for the air electrode) easily enters the first recess 20, and further enters the second recess 30 provided on the side surface and bottom surface of the first recess 20. easier. As a result, in the solid oxide fuel cell, the contact area between the electrolyte sheet 10 and the electrodes tends to increase, and the power generation efficiency tends to improve.
  • the ratio of the diameter Q1 of the opening of the first recess 20 to the diameter R1 of the bottom surface of the first recess 20 is preferably 150% or less, more preferably 130% or less.
  • the ratio of the diameter Q1 of the opening of the first recess 20 to the diameter R1 of the bottom surface of the first recess 20 is preferably 30% or more and 150% or less, more preferably 30% or more and 130% or less.
  • the diameters R1 of the bottom surfaces of the plurality of first recesses 20 may be the same as each other, may be different from each other, or may be partially different.
  • the diameter of the bottom surface of the first recess is determined as follows. First, an ultrasonic microscope (C-SAM) is used to apply ultrasonic waves to the inside of the first recess to obtain an image of the inside of the first recess. At this time, for example, by using a transducer of 200 MHz or higher in an ultrasonic microscope, an image of the inside of the first concave portion can be obtained with high accuracy. Next, by performing image analysis on the obtained image of the inside of the first recess with image analysis software, from the lowest point of the bottom surface of the first recess where the second recess is provided toward the opening side The equivalent circular diameter of a cross section perpendicular to the thickness direction is measured at a position 1 ⁇ m apart in the thickness direction. The equivalent circle diameter thus measured is determined as the diameter of the bottom surface of the first recess.
  • C-SAM ultrasonic microscope
  • the diameter Q1 of the opening of the first recess 20 is 60 ⁇ m or more, and the ratio of the diameter Q1 of the opening of the first recess 20 to the diameter R1 of the bottom surface of the first recess 20 is 30% or more.
  • the electrode slurry (the fuel electrode slurry or the air electrode slurry) is likely to enter the first concave portion 20 remarkably.
  • the contact area between the electrolyte sheet 10 and the electrodes tends to be remarkably large, and the power generation efficiency tends to be remarkably improved.
  • the plurality of first recesses 20 and the plurality of second recesses 30 are provided on at least one main surface (both main surfaces in the example shown in FIG. 2).
  • the diameter Q1 of the opening of the first recess 20 is 60 ⁇ m or more, and the ratio of the diameter Q1 of the opening of the first recess 20 to the diameter R1 of the bottom surface of the first recess 20 is 30% or more. It is possible to improve the power generation efficiency of the fuel cell.
  • the diameter Q1 of the opening of the first recess 20 is 60 ⁇ m or more, and the ratio of the diameter Q1 of the opening of the first recess 20 to the diameter R1 of the bottom surface of the first recess 20 is 30% or more.
  • the ratio of the depth of the first recesses to the thickness of the electrolyte sheet is preferably 20% or less.
  • the ratio (100 ⁇ S1/T) of the depth S1 of the first concave portion 20 to the thickness T of the electrolyte sheet 10 is preferably 20% or less.
  • the ratio of the depth S1 of the first recesses 20 to the thickness T of the electrolyte sheet 10 is 20% or less, the substantial thickness of the electrolyte sheet 10 is sufficiently ensured. Strength is less likely to decrease.
  • the ratio of the depth S1 of the first recesses 20 to the thickness T of the electrolyte sheet 10 is preferably 10% or more.
  • the ratio of the depth S1 of the first recesses 20 to the thickness T of the electrolyte sheet 10 is preferably 10% or more and 20% or less.
  • the depths S1 of the plurality of first recesses 20 may be the same as each other, may be different from each other, or may be partially different.
  • the depth of the first recess is the distance between the opening of the first recess and a position 1 ⁇ m away in the thickness direction toward the opening from the lowest point of the bottom surface of the first recess where the second recess is provided. It is determined by the distance in the thickness direction.
  • the position 1 ⁇ m away in the thickness direction toward the opening from the lowest point of the bottom surface of the first recess where the second recess is provided is determined in the same manner as when determining the diameter of the bottom surface of the first recess. be done.
  • the ratio of the depth S1 of the first recesses 20 to the thickness T of the electrolyte sheet 10 is preferably 20% or less for at least one of the first recesses 20; It is particularly preferred that the first recess 20 is filled.
  • the number of first concave portions 20 is not particularly limited as long as it is plural.
  • the first recesses 20 may be provided regularly or may be provided irregularly.
  • the three-dimensional shape of the first concave portion 20 includes, for example, a columnar shape such as a prismatic shape and a columnar shape. Among them, the three-dimensional shape of the first concave portion 20 is preferably a quadrangular prism.
  • the three-dimensional shapes of the plurality of first recesses 20 are preferably the same.
  • the three-dimensional shapes of the plurality of first concave portions 20 may be different from each other, or may be partially different.
  • the interval (pitch) P2 between the adjacent second concave portions 30 is preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the interval P2 between the adjacent second recesses 30 may not be provided.
  • the adjacent second recesses 30 may not be spaced apart and may be in contact with each other.
  • the intervals P2 between adjacent second recesses 30 may be the same, may be different from each other, or may be partially different.
  • the interval between the adjacent second recesses is determined by the shortest distance between the openings of the adjacent second recesses when viewed from the thickness direction.
  • the diameter of the second recess 30 is smaller than the diameter of the first recess 20. More specifically, the diameter Q2 of the opening of the second recess 30 is smaller than the diameter Q1 of the opening of the first recess 20 .
  • the diameter Q2 of the opening of the second recess 30 is preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the ratio of the diameter Q2 of the opening of the second recess 30 to the diameter Q1 of the opening of the first recess 20 is preferably 0.5% or more and 8.5% or less.
  • the diameters Q2 of the openings of the plurality of second recesses 30 may be the same, different, or partly different.
  • the diameter of the opening of the second recess is determined in the same manner as the diameter of the opening of the first recess.
  • the depths S2 of the plurality of second recesses 30 may be the same as each other, may be different from each other, or may be partially different.
  • the depth of the second recess is determined as follows. First, an ultrasonic microscope is used to apply ultrasonic waves to the inside of the second recess to obtain an image of the inside of the second recess. At this time, for example, by using a transducer of 200 MHz or higher in an ultrasonic microscope, an image of the inside of the second concave portion can be obtained with high accuracy. Next, the obtained image of the interior of the second recess is subjected to image analysis using image analysis software to measure the distance in the thickness direction between the lowest point of the second recess and the opening. The distance thus measured is defined as the depth of the second recess.
  • the number of second recesses 30 is not particularly limited as long as it is plural.
  • the second recesses 30 may be provided regularly or may be provided irregularly.
  • the three-dimensional shape of the second concave portion 30 may be, for example, a shape configured with a part of a sphere. That is, the bottom surface of the second recess 30 may be curved. Note that the bottom surface of the second recess 30 may not be curved and may be flat.
  • the three-dimensional shapes of the plurality of second recesses 30 are preferably the same.
  • the three-dimensional shapes of the plurality of second concave portions 30 may be different from each other, or may be partially different.
  • the thickness T of the electrolyte sheet 10 is preferably 200 ⁇ m or less, more preferably 130 ⁇ m or less.
  • the thickness T of the electrolyte sheet 10 is preferably 30 ⁇ m or more, more preferably 50 ⁇ m or more.
  • the thickness T of the electrolyte sheet 10 is preferably 30 ⁇ m or more and 200 ⁇ m or less, more preferably 50 ⁇ m or more and 130 ⁇ m or less.
  • the thickness of the electrolyte sheet is determined as follows. First, in the electrolyte sheet, the thickness of nine arbitrary regions in which the first concave portions are not provided is measured with, for example, a U-shaped steel plate micrometer “PMU-MX” manufactured by Mitutoyo Corporation. Then, the average value calculated from the measured values of the thickness at nine points is determined as the thickness of the electrolyte sheet.
  • PMU-MX U-shaped steel plate micrometer
  • the diameter Q1 of the opening of the first recess 20 is substantially the same as the diameter R1 of the bottom surface of the first recess 20.
  • the diameter Q1 of the opening of the first recess 20 is 60 ⁇ m or more and the ratio of the diameter Q1 of the opening of the first recess 20 to the diameter R1 of the bottom surface of the first recess 20 is 30% or more.
  • the cross-sectional shape of the first recess 20 may be different from that shown in FIG.
  • FIG. 4 is another example of the electrolyte sheet for a solid oxide fuel cell of the present invention, and is a schematic cross-sectional view showing a mode in which the cross-sectional shape of the first recess is different from that in FIG.
  • the cross-sectional shape of the first recesses 20 when viewed in the thickness direction is such that the diameter Q1 of the opening of the first recesses 20 is equal to the diameter R1 of the bottom surface of the first recesses 20. It may be a shape smaller than
  • FIG. 5 is still another example of the electrolyte sheet for a solid oxide fuel cell of the present invention, and is a schematic cross-sectional view showing a mode in which the cross-sectional shape of the first recess is different from that in FIGS.
  • the cross-sectional shape of the first recesses 20 when viewed in the thickness direction is such that the diameter Q1 of the opening of the first recesses 20 is equal to the diameter R1 of the bottom surface of the first recesses 20. It may be a shape larger than .
  • the electrode slurry fuel electrode slurry or From the viewpoint that the slurry for the air electrode easily enters the first recess 20, the cross-sectional shape shown in FIG. 5 is most preferable, and the cross-sectional shape shown in FIG. 3 is the second preferable.
  • An example of the method for producing an electrolyte sheet for a solid oxide fuel cell of the present invention includes steps of preparing a ceramic slurry, forming a ceramic green sheet by molding the ceramic slurry, and forming a ceramic green sheet into a thickness. a step of providing a plurality of sheet through-holes penetrating in a direction and spaced apart from each other; By laminating the ceramic green sheets in the thickness direction, a plurality of first recesses derived from a plurality of sheet through holes are provided on at least one main surface at intervals, and the diameter of the opening of the first recesses is 60 ⁇ m.
  • a step of producing an unsintered plate-shaped body wherein the ratio of the diameter of the opening of the first recess to the diameter of the bottom surface of the first recess is 30% or more;
  • a ceramic slurry is prepared by mixing a ceramic material powder, a binder, a dispersant, an organic solvent, and the like.
  • zirconia powder is used as the ceramic material powder.
  • zirconia powder for example, unsintered zirconia powder stabilized with oxides of rare earth elements such as scandium and yttrium is used. More specifically, unsintered zirconia powder stabilized with scandia, yttria Zirconia unsintered powder stabilized with is used.
  • the zirconia unsintered powder it is preferable to use scandia-stabilized zirconia unsintered powder.
  • scandia-stabilized zirconia unsintered powder electrolyte sheets with high electrical conductivity can be produced.
  • the power generation efficiency of the solid oxide fuel cell can be improved.
  • Cubic zirconia unsintered powder is preferably used as the zirconia unsintered powder.
  • an electrolyte sheet with high electrical conductivity can be produced.
  • the power generation efficiency of the solid oxide fuel cell can be improved.
  • cubic zirconia unsintered powder for example, cubic zirconia unsintered powder stabilized with oxides of rare earth elements such as scandium and yttrium is used, and more specifically, stabilized with scandia. cubic zirconia unsintered powder stabilized with yttria, cubic zirconia unsintered powder stabilized with yttria, and the like are used.
  • the cubic zirconia unsintered powder it is preferable to use scandia-stabilized cubic zirconia unsintered powder.
  • scandia-stabilized cubic zirconia green powders electrolyte sheets with significantly higher electrical conductivity can be produced.
  • the power generation efficiency of the solid oxide fuel cell can be significantly improved.
  • zirconia sintered powder may be used in addition to zirconia unsintered powder.
  • the zirconia sintered powder is prepared, for example, by pulverizing a zirconia sintered body.
  • the zirconia sintered body When pulverizing the zirconia sintered body, it is preferable to perform dry pulverization. According to dry pulverization, the zirconia sintered body can be pulverized with a strong impact force, so that the pulverization efficiency can be easily improved.
  • a jet mill, vibration mill, planetary mill, dry ball mill, fine mill, etc. are used as dry mills for dry milling.
  • zirconia boulders and the like are used as grinding media for dry grinding machines.
  • wet pulverization may be performed instead of dry pulverization, or dry pulverization and wet pulverization may be combined. However, from the viewpoint of pulverization efficiency, only dry pulverization is performed. is preferred.
  • the zirconia sintered body which is the raw material of the zirconia sintered powder, is, for example, sintered zirconia unsintered powder.
  • an electrolyte sheet made of a zirconia sintered body may be used. It is preferable to use an electrolyte sheet or the like incorporated in the battery.
  • the electrolyte sheet is taken out by removing the fuel electrode and the air electrode from a used single cell, a defective single cell, or the like. good too.
  • the sintered body of zirconia for example, a sintered body of zirconia stabilized with an oxide of a rare earth element such as scandium or yttrium is used. More specifically, sintered zirconia stabilized with scandia is used. A body, a sintered body of zirconia stabilized with yttria, or the like is used.
  • the zirconia sintered body it is preferable to use a scandia-stabilized zirconia sintered body. That is, it is preferable to use scandia-stabilized zirconia sintered powder as the zirconia sintered powder.
  • scandia-stabilized zirconia sintered powder electrolyte sheets with high electrical conductivity can be produced. In this case, by incorporating the produced electrolyte sheet into the solid oxide fuel cell, the power generation efficiency of the solid oxide fuel cell can be improved.
  • a cubic zirconia sintered body is preferably used as the zirconia sintered body.
  • cubic zirconia sintered powder is preferably used as the zirconia sintered powder.
  • the cubic zirconia sintered body for example, a cubic zirconia sintered body stabilized with an oxide of a rare earth element such as scandium or yttrium is used. More specifically, the cubic zirconia sintered body is stabilized with scandia. A sintered body of cubic zirconia stabilized with yttria, a sintered body of cubic zirconia stabilized with yttria, and the like are used.
  • the cubic zirconia sintered body it is preferable to use a scandia-stabilized cubic zirconia sintered body. That is, it is preferable to use scandia-stabilized cubic zirconia sintered powder as the zirconia sintered powder.
  • scandia-stabilized cubic zirconia sintered powder electrolyte sheets with significantly higher electrical conductivity can be produced. In this case, by incorporating the produced electrolyte sheet into the solid oxide fuel cell, the power generation efficiency of the solid oxide fuel cell can be significantly improved.
  • FIG. 6 is a schematic plan view showing the steps of producing a ceramic green sheet in one example of the method for producing an electrolyte sheet for a solid oxide fuel cell of the present invention.
  • FIG. 7 is a schematic plan view showing a state after FIG. 6 in the step of producing a ceramic green sheet in one example of the method for producing an electrolyte sheet for a solid oxide fuel cell of the present invention.
  • FIG. 8 is a schematic plan view showing a state after FIG. 7 in the step of producing a ceramic green sheet in one example of the method for producing an electrolyte sheet for a solid oxide fuel cell of the present invention.
  • a ceramic green tape 1t as shown in FIG. 6 is produced by molding a ceramic slurry on one main surface of a carrier film.
  • the tape molding method is preferably used, and the doctor blade method or calendar method is more preferably used.
  • X indicates the casting direction and Y indicates the direction perpendicular to the casting direction when the ceramic slurry is molded by the tape molding method.
  • the ceramic green tape 1t is punched out by a known technique so as to have a predetermined size as shown in FIG. 7, and the carrier film is peeled off to produce a ceramic green sheet 1g as shown in FIG.
  • the order of punching out the ceramic green tape 1t and peeling off the carrier film does not matter.
  • FIG. 9 is a schematic cross-sectional view showing a step of providing sheet through-holes in an example of the method for producing an electrolyte sheet for a solid oxide fuel cell of the present invention.
  • a plurality of sheet through-holes 1h are provided through the ceramic green sheet 1g in the thickness direction and provided at intervals.
  • the diameter of at least one of the openings of the sheet through holes 1h should be 60 ⁇ m or more. Furthermore, in the sheet through hole 1h, the ratio of the diameter of one opening to the diameter of the other opening is set to 30% or more.
  • a laser beam, a drill, or the like is used when providing the sheet through-hole 1h in the ceramic green sheet 1g.
  • the sheet through-hole 1h is provided using a laser beam
  • the sheet through-hole 1h is provided by irradiating one main surface of the ceramic green sheet 1g with a laser beam.
  • the diameter of the opening of the sheet through-hole 1h can be adjusted by adjusting the irradiation conditions of the laser beam, and the cross-sectional shape of the sheet through-hole 1h when viewed along the thickness direction can be changed in the thickness direction. It can be appropriately adjusted to a shape in which the diameter is constant along the thickness direction, a tapered shape in which the diameter decreases (increases) along the thickness direction, or the like.
  • the sheet through-hole 1h is formed by advancing the drill from one main surface of the ceramic green sheet 1g toward the other main surface. At this time, by adjusting the shape of the drill, the processing conditions of the drill, etc., the diameter of the opening of the sheet through-hole 1h can be adjusted, and the cross-sectional shape of the sheet through-hole 1h when viewed along the thickness direction can be changed. , a shape in which the diameter is constant along the thickness direction, a tapered shape in which the diameter decreases (increases) along the thickness direction, or the like.
  • FIG. 10 is a schematic cross-sectional view showing a step of producing an unsintered plate-like body in one example of the method for producing an electrolyte sheet for a solid oxide fuel cell of the present invention.
  • an unsintered plate-like body 1s is produced.
  • one ceramic green sheet 1g provided with a plurality of sheet through-holes 1h, four ceramic green sheets 1g not provided with sheet through-holes 1h, and a plurality of sheet through-holes 1h are provided.
  • the unsintered plate body 1s is produced by laminating the ceramic green sheets 1g one by one in the thickness direction.
  • the thickness of the later-obtained electrolyte sheet (ceramic plate-like body) can be easily controlled.
  • the ceramic green sheet 1g having a plurality of sheet through-holes 1h may be laminated at a position forming at least one main surface of the unsintered plate-like body 1s. That is, when manufacturing the unsintered plate-like body 1s, even if the ceramic green sheet 1g provided with a plurality of sheet through-holes 1h is laminated at a position constituting one main surface of the unsintered plate-like body 1s. Alternatively, it may be laminated at a position constituting the other main surface of the unsintered plate-like body 1s, or as shown in FIG. may
  • a plurality of first recesses 20s derived from the plurality of sheet through-holes 1h are provided at intervals on at least one main surface of the unsintered plate member 1s.
  • a plurality of first recesses 20s are provided at intervals on both main surfaces of the unsintered plate member 1s.
  • the first concave portion 20s is to be the first concave portion 20 in the later obtained electrolyte sheet (ceramic plate-like body 10p, which will be described later). Therefore, when manufacturing the unsintered plate-like body 1s, the diameter of the opening of the first concave portion 20s is 60 ⁇ m or more, and the ratio of the diameter of the opening to the diameter of the bottom surface is 30% or more. , ceramic green sheets 1g provided with a plurality of sheet through-holes 1h are laminated while adjusting the orientation thereof.
  • the number of laminated ceramic green sheets 1g having no sheet through-holes 1h is not particularly limited, and may be four as shown in FIG. 10, or may be other than four.
  • the thicknesses of the plurality of ceramic green sheets 1g used to produce the unsintered plate body 1s may be the same, different, or partly different.
  • a plurality of ceramic green sheets 1g may be laminated and then crimped.
  • FIG. 11 is a schematic cross-sectional view showing the step of forming the second recess in one example of the method for producing the electrolyte sheet for the solid oxide fuel cell of the present invention.
  • FIG. 12 is a schematic cross-sectional view showing the aspect after FIG. 11 in the step of forming the second recesses in one example of the method of manufacturing the electrolyte sheet for the solid oxide fuel cell of the present invention.
  • FIG. 13 is a schematic cross-sectional view showing the aspect after FIG. 12 in the step of forming the second recesses in one example of the method of manufacturing the electrolyte sheet for the solid oxide fuel cell of the present invention.
  • FIG. 14 is a schematic cross-sectional view showing the aspect after FIG. 13 in the step of providing the second recess in one example of the method of manufacturing the electrolyte sheet for solid oxide fuel cells of the present invention.
  • FIGS. 11, 12, 13, and 14 are enlarged views of the manner in which the second concave portion is provided on one main surface of the unsintered plate shown in FIG.
  • a first mold M1 having a plurality of protrusions provided on the surface facing the thickness direction is prepared.
  • a plurality of second recesses 30s having a diameter smaller than that of the first recesses 20s are provided on the bottom surface of one recess 20s.
  • the unsintered plate-shaped body 1s is placed on the fixed plate in the thickness direction. is preferred.
  • a second mold M2 which has a plurality of projections on the surface facing the direction perpendicular to the thickness direction.
  • the first concave portion is formed as shown in FIG.
  • a plurality of second recesses 30s having a diameter smaller than that of the first recesses 20s are provided on the side surface of 20s.
  • the first recesses are formed between the openings of the adjacent first recesses 20s, the side surfaces of the first recesses 20s, and the bottom surface of the first recesses 20s on one main surface of the unsintered plate-shaped body 1s.
  • a plurality of second recesses 30s having a smaller diameter than 20s are provided.
  • first A plurality of second recesses 30s having a diameter smaller than that of the recesses 20s may be provided.
  • the second concave portion 30s is to be the second concave portion 30 in the later obtained electrolyte sheet (ceramic plate-like body 10p to be described later).
  • the interval, diameter, and depth of the second concave portions 30s can be adjusted by adjusting various specifications of the convex portions of the first mold M1 and the second mold M2. , number, arrangement, shape, etc. can be adjusted.
  • the plurality of second recesses 30s are provided between the openings of the adjacent first recesses 20s and on the bottom surface of the first recesses 20s (see FIGS. 11 and 12), they are provided on the side surfaces of the first recesses 20s. (See FIGS. 13 and 14), but the order may be reversed. That is, the plurality of second recesses 30s may be provided on the side surfaces of the first recesses 20s and then provided between the openings of the adjacent first recesses 20s and on the bottom surface of the first recesses 20s.
  • Step of providing through-holes in unsintered plate if the first recessed portion 20s and the second recessed portion 30s provided between the openings of the first recessed portion 20s are not lost in the unsintered plate-shaped body 1s, the unsintered plate-shaped body A non-sintered plate through-hole may be provided that penetrates the body 1s in the thickness direction.
  • a drill when providing the unsintered plate through-holes in the unsintered plate 1s.
  • the unsintered plate-like body piercing hole that penetrates the unsintered plate-like body 1s in the thickness direction make a hole.
  • the shape of the drill, working conditions by the drill, etc. are not particularly limited.
  • the unsintered plate-like body 1s When the unsintered plate-like body 1s is provided with the unsintered plate-like body through-holes, only one or two or more unsintered plate-like body through-holes may be provided.
  • the order of ⁇ the step of providing the second concave portion> and ⁇ the step of providing the unsintered plate through-hole> does not matter.
  • the ⁇ step of providing the unsintered plate-like body through-holes> may be performed after the ⁇ step of providing the second concave portions>, or the ⁇ step of providing the unsintered plate-like body through-holes> may be followed by the ⁇ second step of providing recesses> may be performed.
  • the unsintered plate-like body 1s does not have to be provided with the unsintered plate-like body through-holes. In this case, this step is omitted.
  • FIG. 15 is a schematic cross-sectional view showing a step of producing a ceramic plate in one example of the method for producing an electrolyte sheet for a solid oxide fuel cell of the present invention.
  • the unsintered plate-like body 1 s By firing the unsintered plate-like body 1 s provided with the first recesses 20 s and the second recesses 30 s, the unsintered plate-like body 1 s is sintered to produce a ceramic plate-like body 10 p as shown in FIG. to make.
  • a plurality of first recesses 20 derived from a plurality of first recesses 20s are provided at intervals on both main surfaces of the ceramic plate-like body 10p. Furthermore, in the ceramic plate 10p, the diameter of the opening of the first recess 20 is 60 ⁇ m or more, and the ratio of the diameter of the opening of the first recess 20 to the diameter of the bottom surface of the first recess 20 is 30% or more. becomes.
  • a plurality of second recesses 30 having a diameter smaller than that of the first recesses 20 and derived from a plurality of second recesses 30s are formed on both main surfaces of the ceramic plate-like body 10p. They are provided between the openings of the recesses 20 , the side surfaces of the first recesses 20 , and the bottom surface of the first recesses 20 .
  • the ceramic plate-like body 10p is provided with through-holes penetrating in the thickness direction.
  • an electrolyte sheet made of the ceramic plate 10p is manufactured.
  • the single cell for the solid oxide fuel cell of the present invention comprises a fuel electrode, an air electrode, an electrolyte sheet for the solid oxide fuel cell of the present invention provided between the fuel electrode and the air electrode, Prepare.
  • FIG. 16 is a cross-sectional schematic diagram showing an example of a single cell for the solid oxide fuel cell of the present invention.
  • 17 is a schematic cross-sectional view showing an enlarged interface between the electrolyte sheet and the fuel electrode in the unit cell shown in FIG. 16.
  • FIG. 18 is a schematic cross-sectional view showing an enlarged interface between the electrolyte sheet and the air electrode in the unit cell shown in FIG. 16.
  • a single cell 100 for a solid oxide fuel cell shown in FIG. 16 has a fuel electrode 40, an air electrode 50, and an electrolyte sheet 10.
  • the electrolyte sheet 10 is provided between the fuel electrode 40 and the air electrode 50 .
  • the fuel electrode 40 As the fuel electrode 40, a known fuel electrode for solid oxide fuel cells is used.
  • the air electrode 50 a known air electrode for solid oxide fuel cells is used.
  • the plurality of first recesses 20 and the plurality of second recesses 30 are provided on at least one main surface (both main surfaces in the example shown in FIG. 16).
  • the diameter of the opening of the first recess 20 is 60 ⁇ m or more, and the ratio of the diameter of the opening of the first recess 20 to the diameter of the bottom surface of the first recess 20 is 30% or more.
  • the slurry for the fuel electrode 40 and the slurry for the air electrode 50 are the first It becomes easier to enter the interior of the recess 20 remarkably, and it becomes easier to enter the interior of the second recess 30 provided on the side surface and the bottom surface of the first recess 20 .
  • the contact area between the electrolyte sheet 10 and the fuel electrode 40 tends to be significantly increased as shown in FIG. The contact area tends to become significantly larger.
  • the power generation efficiency tends to be significantly improved.
  • a fuel gas channel for supplying fuel gas to the fuel electrode 40 and an air channel for supplying air to the air electrode 50 are provided. necessary.
  • a fuel gas flow path for supplying the fuel gas to the main surface of the fuel electrode 40 on the side opposite to the electrolyte sheet 10 of the fuel electrode 40 is provided.
  • a method of stacking first separators provided with flow paths may be used.
  • an air flow path for supplying air to the main surface on the side of the air electrode 50 is provided on the main surface of the air electrode 50 opposite to the electrolyte sheet 10.
  • a method of laminating the provided second separators may be mentioned.
  • the constituent material of the first separator and the second separator may be an insulating material such as a ceramic material, or a conductive material such as a metal material.
  • the constituent materials of the first separator and the second separator may be the same or different.
  • examples of the first and second separators include a sintered compact of partially stabilized zirconia.
  • the first separator When the first separator is made of an insulating material, the first separator has at least one through conductor that penetrates in the thickness direction and is connected to the fuel electrode 40 and exposed on the main surface opposite to the fuel electrode 40. is preferably provided. In this case, the fuel electrode 40 can be led out of the first separator through the through conductor.
  • the second separator has at least one through conductor that penetrates in the thickness direction and is connected to the air electrode 50 and exposed on the main surface opposite to the air electrode 50. is preferably provided. In this case, the air electrode 50 can be led out of the second separator via the penetrating conductor.
  • the constituent material of the penetrating conductors provided in the first and second separators is preferably an alloy of silver and palladium or platinum.
  • the constituent material of the penetrating conductor provided in the first separator and the constituent material of the penetrating conductor provided in the second separator may be the same as or different from each other.
  • a slurry for the fuel electrode is prepared by appropriately adding a binder, a dispersant, a solvent, etc. to the powder of the fuel electrode material.
  • a slurry for the air electrode is prepared by appropriately adding a binder, a dispersant, a solvent, etc. to the powder of the air electrode material.
  • the material for the fuel electrode known materials for fuel electrodes for solid oxide fuel cells are used.
  • the material for the air electrode a known air electrode material for solid oxide fuel cells is used.
  • the binder, dispersant, solvent, etc. contained in the slurry for the fuel electrode and the slurry for the air electrode those known in the method of forming the fuel electrode and the air electrode for solid oxide fuel cells are used. be done.
  • the slurry for the fuel electrode is applied to one main surface of the electrolyte sheet, and the slurry for the air electrode is applied to the other main surface of the electrolyte sheet in a predetermined thickness.
  • the electrolyte sheet satisfies the above specifications, at least one of the fuel electrode slurry and the air electrode slurry is likely to enter the first concave portion remarkably. It becomes easy to enter the inside of the 2nd recessed part provided in the side surface and the bottom surface. As a result, in the single cell obtained later, the contact area between the electrolyte sheet and the electrode (fuel electrode or air electrode) tends to increase.
  • the green layer for the fuel electrode and the green layer for the air electrode are fired to form the fuel electrode and the air electrode.
  • Firing conditions such as the firing temperature may be appropriately determined according to the types of materials for the fuel electrode and the air electrode.
  • Example 1 An electrolyte sheet of Example 1 was produced by the following method.
  • Step of preparing ceramic slurry First, an unsintered zirconia powder, a sintered zirconia powder, a binder, a dispersant, and an organic solvent were mixed in predetermined proportions.
  • zirconia unsintered powder scandia-stabilized zirconia unsintered powder was used.
  • zirconia sintered powder a scandia-stabilized zirconia sintered powder prepared by pulverizing a scandia-stabilized zirconia sintered body was used.
  • a ceramic slurry was prepared by stirring the resulting mixture together with media made of partially stabilized zirconia at 1000 rpm for 3 hours.
  • a ceramic green tape was produced by tape-molding a ceramic slurry on one main surface of a carrier film made of polyethylene terephthalate by a known method.
  • the ceramic green tape was punched out by a known method so as to have a predetermined size, and the carrier film was peeled off to produce a ceramic green sheet.
  • a plurality of sheet through-holes penetrating the ceramic green sheet in the thickness direction were formed by irradiating one main surface of the ceramic green sheet with a laser beam.
  • a green plate was made by laminating in the direction.
  • a plurality of first recesses derived from a plurality of sheet through-holes were provided at intervals on both main surfaces of the unsintered plate-like body.
  • a first mold having a plurality of projections on the surface facing the thickness direction was prepared.
  • the first recesses are formed between the openings of the adjacent first recesses and on the bottom surfaces of the first recesses.
  • a plurality of second recesses having a diameter smaller than the diameter of the second recess were provided.
  • a second mold was prepared having a plurality of projections on the surface facing the direction perpendicular to the thickness direction.
  • the second mold is inserted into the first recess, it is pressed against the side surface of the first recess in a direction orthogonal to the thickness direction.
  • a plurality of second recesses with a small .DELTA When pressing the second mold against the unsintered plate-shaped body in the direction perpendicular to the thickness direction, the unsintered plate-shaped body is placed between the two fixed plates in the direction perpendicular to the thickness direction. I set it so that it would be sandwiched.
  • the diameter between the openings of the adjacent first recesses, the side surface of the first recesses, and the bottom surface of the first recesses is larger than that of the first recesses.
  • a plurality of small second recesses were provided.
  • the diameter between the openings of the adjacent first recesses, the side surfaces of the first recesses, and the bottom surface of the first recesses is larger than that of the first recesses.
  • a drill is used to cut the unsintered plate-like body in the thickness direction in a region where the first recess and the second recess provided between the openings of the first recess do not disappear.
  • An unsintered plate through-hole was provided to pass through.
  • the advancing speed was 0.04 mm/rotation and the number of revolutions was 2000 rpm.
  • the unsintered plate-shaped body provided with the first recesses and the second recesses was subjected to a degreasing treatment of holding at 400° C. for a predetermined time in a firing furnace. After the degreasing treatment, the unsintered plate-like body was subjected to sintering treatment in which it was held at 1400° C. for 5 hours in a sintering furnace.
  • the unsintered plate-shaped body was sintered to produce a ceramic plate-shaped body.
  • the electrolyte sheet (ceramic plate-like body) of Example 1 was manufactured.
  • a plurality of first recesses are provided spaced apart from each other, and a plurality of second recesses having a diameter smaller than that of the first recesses are provided between the adjacent first recesses. It was provided between the openings, the side surface of the first recess, and the bottom surface of the first recess.
  • Electrolyte sheets of Examples 2 to 6 and Comparative Examples 1 to 4 were produced in the same manner as the electrolyte sheet of Example 1, except that the various specifications were as shown in Table 1.
  • the "diameter of the opening of the first recess” is “the diameter of the opening”
  • the “ratio of the diameter of the opening of the first recess to the diameter of the bottom surface of the first recess” is the “ratio of the diameter of the opening”.
  • “the ratio of the depth of the first recesses to the thickness of the electrolyte sheet” is abbreviated as the “depth ratio”
  • the “interval between the adjacent first recesses” is abbreviated as the "gap”.
  • FIG. 19 is a schematic perspective view showing a single cell sample for power generation efficiency measurement.
  • the single cell sample 100Z includes an electrolyte sheet 10Z, a fuel electrode 40Z provided on one main surface of the electrolyte sheet 10Z, and an air electrode 50Z provided on the other main surface of the electrolyte sheet 10Z.
  • a first separator 60Z provided on the main surface of the fuel electrode 40Z opposite to the electrolyte sheet 10Z;
  • a second separator 70Z provided on the main surface of the air electrode 50Z opposite to the electrolyte sheet 10Z; had
  • FIG. 19 does not show the surface specifications of the first recess, the second recess, etc. of the electrolyte sheet 10Z.
  • a partially stabilized zirconia sintered body was used as the first separator 60Z.
  • the first separator 60Z was provided with a fuel gas channel for supplying fuel gas to the main surface on the side of the fuel electrode 40Z.
  • the first separator 60Z is provided with a plurality of through-holes, and each through-hole is filled with a conductive paste.
  • a plurality of through conductors are alloys of silver and palladium, or platinum exposed on the main surface were formed.
  • a partially stabilized zirconia sintered body was used as the second separator 70Z.
  • the second separator 70Z was provided with an air flow path for supplying air to the main surface on the air electrode 50Z side.
  • the second separator 70Z is provided with a plurality of through-holes, and each through-hole is filled with a conductive paste.
  • a plurality of through conductors are alloys of silver and palladium, or platinum exposed on the main surface were formed.
  • n is the number of electrons involved in the reaction.
  • V is the voltage within the single cell sample 100Z and was measured as follows.
  • the single cell sample 100Z was placed in a measuring apparatus having a metal terminal jig capable of measuring current and voltage, a fuel gas and air supply mechanism, and a temperature raising mechanism.
  • a plurality of through conductors exposed on the main surface of the first separator 60Z and a plurality of through conductors exposed on the main surface of the second separator 70Z are brought into contact with a metal terminal jig. let me In this state, after the inside of the measuring device was heated to 750° C., the amount of fuel gas calculated so that the fuel utilization rate indicated by Uf was 72.5% was supplied to the fuel electrode 40Z side.
  • the air electrode 50Z side to the air electrode 50Z side, a calculated amount of air was supplied so that the air utilization rate was 30%. Then, under the condition of a current density of 0.4 A/cm 2 , the voltage V in the single cell sample 100Z was measured by a four-probe method using a commercially available potentio/galvanostat.
  • Uf the fuel utilization rate
  • Example 1 in which the diameter of the opening of the first recess is 60 ⁇ m or more, and the ratio of the diameter of the opening of the first recess to the diameter of the bottom surface of the first recess is 30% or more.
  • the electrolyte sheets of 1 to 6 achieved higher power generation efficiency than the electrolyte sheets of Comparative Examples 1 to 4 when incorporated into a single cell.
  • at least one of voltage (V) and fuel utilization rate (Uf) must be set to need to be raised.
  • the fuel utilization rate (Uf) was assumed to be a constant (72.5%) as described above, it was found that the electrolyte sheets of Examples 1 to 6 can increase the voltage (V).
  • the anode slurry and the air electrode slurry are less likely to enter the first concave portion, and as a result, the electrolyte sheet and the fuel Since the contact area with the electrode did not increase and the contact area between the electrolyte sheet and the air electrode did not increase, high power generation efficiency could not be achieved.
  • the slurry for the fuel electrode and the slurry for the air electrode were placed inside the first recess.
  • the contact area between the electrolyte sheet and the fuel electrode did not increase, and furthermore, the contact area between the electrolyte sheet and the air electrode did not increase, so high power generation efficiency could not be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

固体酸化物形燃料電池用の電解質シート10は、複数の第1凹部20と、第1凹部20よりも径が小さい複数の第2凹部30と、が少なくとも一方主面に設けられ、複数の第1凹部20は、互いに間隔P1を空けて設けられ、複数の第2凹部30は、隣り合う第1凹部20の開口部間と、第1凹部20の側面と、第1凹部20の底面と、に設けられ、第1凹部20の開口部の径Q1は、60μm以上であり、第1凹部20の底面の径R1に対する第1凹部20の開口部の径Q1の比率は、30%以上である。

Description

固体酸化物形燃料電池用の電解質シート及び固体酸化物形燃料電池用の単セル
 本発明は、固体酸化物形燃料電池用の電解質シート及び固体酸化物形燃料電池用の単セルに関する。
 固体酸化物形燃料電池(SOFC)は、燃料極:H+O2-→HO+2e、空気極:(1/2)O+2e→O2-の反応により、電気エネルギーを取り出す装置である。固体酸化物形燃料電池は、セラミック板状体からなる固体酸化物形燃料電池用の電解質シート上に燃料極及び空気極が設けられた固体酸化物形燃料電池用の単セルを複数積み重ねて、積層構造にして使用される。
 特許文献1には、電解質層と、この電解質層の一面に設けられた空気極と、電解質層の他面に設けられた燃料極とを備えた固体酸化物形燃料電池において、電解質層と空気極との間および電解質層と燃料極との間の少なくともいずれか一方の間に電解質の材料からなる多孔質層を介在させた、固体酸化物形燃料電池が開示されている。
特開2006-339034号公報
 特許文献1に記載の固体酸化物形燃料電池では、電解質層と電極(空気極及び燃料極の少なくとも一方)との接触面積を大きくするために、電解質層と空気極との間、及び、電解質層と燃料極との間の少なくとも一方の間に、電解質の材料からなる多孔質層を介在させている。しかしながら、特許文献1に記載の固体酸化物形燃料電池では、特許文献1の図3及び図4に示されるように、多孔質層の開口部の径が小さい箇所に電極用のスラリーが入り込みにくいため、電解質層と電極との接触面積が充分に大きくならず、発電効率が向上しにくいおそれがある。
 本発明は、上記の問題を解決するためになされたものであり、固体酸化物形燃料電池の発電効率を向上可能な固体酸化物形燃料電池用の電解質シートを提供することを目的とするものである。また、本発明は、上記電解質シートを有する固体酸化物形燃料電池用の単セルを提供することを目的とするものである。
 本発明の固体酸化物形燃料電池用の電解質シートは、複数の第1凹部と、上記第1凹部よりも径が小さい複数の第2凹部と、が少なくとも一方主面に設けられ、複数の上記第1凹部は、互いに間隔を空けて設けられ、複数の上記第2凹部は、隣り合う上記第1凹部の開口部間と、上記第1凹部の側面と、上記第1凹部の底面と、に設けられ、上記第1凹部の開口部の径は、60μm以上であり、上記第1凹部の底面の径に対する上記第1凹部の開口部の径の比率は、30%以上である、ことを特徴とする。
 本発明の固体酸化物形燃料電池用の単セルは、燃料極と、空気極と、上記燃料極と上記空気極との間に設けられた本発明の固体酸化物形燃料電池用の電解質シートと、を備える、ことを特徴とする。
 本発明によれば、固体酸化物形燃料電池の発電効率を向上可能な固体酸化物形燃料電池用の電解質シートを提供できる。また、本発明によれば、上記電解質シートを有する固体酸化物形燃料電池用の単セルを提供できる。
図1は、本発明の固体酸化物形燃料電池用の電解質シートの一例を示す平面模式図である。 図2は、図1に示す電解質シートの線分A1-A2に沿う断面の一例を示す断面模式図である。 図3は、図2に示す電解質シートの第1主面を拡大して示す断面模式図である。 図4は、本発明の固体酸化物形燃料電池用の電解質シートの別の一例であって、第1凹部の断面形状が図3と異なる態様を示す断面模式図である。 図5は、本発明の固体酸化物形燃料電池用の電解質シートの更に別の一例であって、第1凹部の断面形状が図3及び図4と異なる態様を示す断面模式図である。 図6は、本発明の固体酸化物形燃料電池用の電解質シートの製造方法の一例について、セラミックグリーンシートを作製する工程を示す平面模式図である。 図7は、本発明の固体酸化物形燃料電池用の電解質シートの製造方法の一例について、セラミックグリーンシートを作製する工程で図6の後の態様を示す平面模式図である。 図8は、本発明の固体酸化物形燃料電池用の電解質シートの製造方法の一例について、セラミックグリーンシートを作製する工程で図7の後の態様を示す平面模式図である。 図9は、本発明の固体酸化物形燃料電池用の電解質シートの製造方法の一例について、シート貫通孔を設ける工程を示す断面模式図である。 図10は、本発明の固体酸化物形燃料電池用の電解質シートの製造方法の一例について、未焼結板状体を作製する工程を示す断面模式図である。 図11は、本発明の固体酸化物形燃料電池用の電解質シートの製造方法の一例について、第2凹部を設ける工程を示す断面模式図である。 図12は、本発明の固体酸化物形燃料電池用の電解質シートの製造方法の一例について、第2凹部を設ける工程で図11の後の態様を示す断面模式図である。 図13は、本発明の固体酸化物形燃料電池用の電解質シートの製造方法の一例について、第2凹部を設ける工程で図12の後の態様を示す断面模式図である。 図14は、本発明の固体酸化物形燃料電池用の電解質シートの製造方法の一例について、第2凹部を設ける工程で図13の後の態様を示す断面模式図である。 図15は、本発明の固体酸化物形燃料電池用の電解質シートの製造方法の一例について、セラミック板状体を作製する工程を示す断面模式図である。 図16は、本発明の固体酸化物形燃料電池用の単セルの一例を示す断面模式図である。 図17は、図16に示す単セルにおける電解質シートと燃料極との界面を拡大して示す断面模式図である。 図18は、図16に示す単セルにおける電解質シートと空気極との界面を拡大して示す断面模式図である。 図19は、発電効率測定用の単セル試料を示す斜視模式図である。
 以下、本発明の固体酸化物形燃料電池用の電解質シートと、本発明の固体酸化物形燃料電池用の単セルとについて説明する。なお、本発明は、以下の構成に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更されてもよい。また、以下において記載する個々の好ましい構成を複数組み合わせたものもまた本発明である。
 以下に示す図面は模式図であり、その寸法、縦横比の縮尺等は実際の製品と異なる場合がある。
[固体酸化物形燃料電池用の電解質シート]
 本発明の固体酸化物形燃料電池用の電解質シートでは、複数の第1凹部と、第1凹部よりも径が小さい複数の第2凹部と、が少なくとも一方主面に設けられ、複数の第1凹部は、互いに間隔を空けて設けられ、複数の第2凹部は、隣り合う第1凹部の開口部間と、第1凹部の側面と、第1凹部の底面と、に設けられている。
 本発明の固体酸化物形燃料電池用の電解質シートの一例について、以下に説明する。
 図1は、本発明の固体酸化物形燃料電池用の電解質シートの一例を示す平面模式図である。
 図1に示す固体酸化物形燃料電池用の電解質シート10は、セラミック板状体からなる。
 セラミック板状体は、ジルコニアの焼結体を含むことが好ましい。
 ジルコニアの焼結体としては、例えば、スカンジウム、イットリウム等の希土類元素の酸化物で安定化されたジルコニアの焼結体が挙げられ、より具体的には、スカンジアで安定化されたジルコニアの焼結体、イットリアで安定化されたジルコニアの焼結体等が挙げられる。
 ジルコニアの焼結体は、スカンジアで安定化されたジルコニアの焼結体であることが好ましい。つまり、電解質シート10を構成するセラミック板状体は、スカンジアで安定化されたジルコニアの焼結体を含むことが好ましい。電解質シート10がスカンジアで安定化されたジルコニアの焼結体を含むセラミック板状体からなることにより、電解質シート10の導電率が高まりやすくなる。この場合、電解質シート10が固体酸化物形燃料電池に組み込まれることにより、固体酸化物形燃料電池の発電効率が向上しやすくなる。
 ジルコニアの焼結体は、立方晶系ジルコニアの焼結体であることが好ましい。つまり、電解質シート10を構成するセラミック板状体は、立方晶系ジルコニアの焼結体を含むことが好ましい。電解質シート10が立方晶系ジルコニアの焼結体を含むセラミック板状体からなることにより、電解質シート10の導電率が高まりやすくなる。この場合、電解質シート10が固体酸化物形燃料電池に組み込まれることにより、固体酸化物形燃料電池の発電効率が向上しやすくなる。
 立方晶系ジルコニアの焼結体としては、例えば、スカンジウム、イットリウム等の希土類元素の酸化物で安定化された立方晶系ジルコニアの焼結体が挙げられ、より具体的には、スカンジアで安定化された立方晶系ジルコニアの焼結体、イットリアで安定化された立方晶系ジルコニアの焼結体等が挙げられる。
 立方晶系ジルコニアの焼結体は、スカンジアで安定化された立方晶系ジルコニアの焼結体であることが好ましい。つまり、電解質シート10を構成するセラミック板状体は、スカンジアで安定化された立方晶系ジルコニアの焼結体を含むことが好ましい。電解質シート10がスカンジアで安定化された立方晶系ジルコニアの焼結体を含むセラミック板状体からなることにより、電解質シート10の導電率が顕著に高まりやすくなる。この場合、電解質シート10が固体酸化物形燃料電池に組み込まれることにより、固体酸化物形燃料電池の発電効率が顕著に向上しやすくなる。
 厚み方向から見たときの電解質シート10の平面形状は、例えば、図1に示すような正方形状である。
 図示しないが、厚み方向から見たときの電解質シート10の平面形状は、角部に丸みを有する略矩形状であることが好ましく、角部に丸みを有する略正方形状であることがより好ましい。この場合、電解質シート10は、すべての角部に丸みを有していてもよいし、一部の角部に丸みを有していてもよい。
 図示しないが、電解質シート10には、厚み方向に貫通する貫通孔が設けられていることが好ましい。このような貫通孔は、電解質シート10が固体酸化物形燃料電池に組み込まれたときに、ガスの流路として機能する。
 貫通孔の数は、1つのみであってもよいし、2つ以上であってもよい。
 厚み方向から見たときの貫通孔の平面形状は、円形状であってもよいし、それ以外の形状であってもよい。
 貫通孔の位置は、後述する第1凹部20と、第1凹部20の開口部間に設けられた後述する第2凹部30とが無くならない領域であれば、特に限定されない。
 厚み方向から見たときの電解質シート10のサイズは、例えば、50mm×50mm、100mm×100mm、110mm×110mm、120mm×120mm、200mm×200mm等である。
 図2は、図1に示す電解質シートの線分A1-A2に沿う断面の一例を示す断面模式図である。
 図2に示すように、電解質シート10の少なくとも一方主面には、複数の第1凹部20と、第1凹部20よりも径が小さい複数の第2凹部30と、が設けられている。
 図2に示す例では、好ましい態様として、複数の第1凹部20と複数の第2凹部30とが、電解質シート10の第1主面10a及び第2主面10bの各面に設けられている。
 複数の第1凹部20と複数の第2凹部30とが、電解質シート10の第1主面10a及び第2主面10bの各面に設けられている場合、第1主面10aに設けられた第1凹部20と、第2主面10bに設けられた第1凹部20とは、図2に示すように厚み方向に重なる位置に設けられていてもよいし、厚み方向に重ならない位置に設けられていてもよい。
 なお、複数の第1凹部20と複数の第2凹部30とは、電解質シート10の第1主面10aのみに設けられていてもよいし、電解質シート10の第2主面10bのみに設けられていてもよい。
 以下では、電解質シート10の第1主面10aに設けられた第1凹部20及び第2凹部30について説明するが、電解質シート10の第2主面10bに設けられた第1凹部20及び第2凹部30についても同様である。
 図3は、図2に示す電解質シートの第1主面を拡大して示す断面模式図である。
 図3に示すように、電解質シート10の第1主面10aにおいて、複数の第1凹部20は、互いに間隔を空けて設けられている。電解質シート10の第1主面10aに複数の第1凹部20が設けられていることにより、電解質シート10の第1主面10aの表面積が大きくなるため、電解質シート10が固体酸化物形燃料電池に組み込まれたときに、電解質シート10と電極(燃料極又は空気極)との接触面積が大きくなりやすく、結果的に、発電効率が向上しやすくなる。
 図3に示すように、電解質シート10の第1主面10aにおいて、複数の第2凹部30は、隣り合う第1凹部20の開口部間と、第1凹部20の側面と、第1凹部20の底面と、に設けられている。電解質シート10の第1主面10aに複数の第2凹部30が設けられていることにより、電解質シート10の第1主面10aの表面積が大きくなるため、電解質シート10が固体酸化物形燃料電池に組み込まれたときに、電解質シート10と電極(燃料極又は空気極)との接触面積が大きくなりやすく、結果的に、発電効率が向上しやすくなる。
 図3に示すように、第2凹部30は、隣り合う第1凹部20の開口部間に複数設けられていることが好ましい。
 図3に示すように、第2凹部30は、第1凹部20の側面に複数設けられていることが好ましい。
 図3に示すように、第2凹部30は、第1凹部20の底面に複数設けられていることが好ましい。
 以上のように、電解質シート10において、複数の第1凹部20及び複数の第2凹部30が第1主面10aに設けられていることにより、電解質シート10の第1主面10aの表面積が顕著に大きくなるため、電解質シート10が固体酸化物形燃料電池に組み込まれたときに、電解質シート10と電極(燃料極又は空気極)との接触面積が顕著に大きくなりやすく、結果的に、発電効率が顕著に向上しやすくなる。
 隣り合う第1凹部20の間隔(ピッチ)P1は、好ましくは50μm以上、200μm以下であり、より好ましくは50μm以上、150μm以下であり、更に好ましくは50μm以上、100μm以下である。
 複数の第1凹部20において、隣り合う第1凹部20の間隔P1は、互いに同じであってもよいし、互いに異なっていてもよいし、一部で異なっていてもよい。
 隣り合う第1凹部の間隔は、厚み方向から見たときの、隣り合う第1凹部の開口部間の最短距離で定められる。
 本発明の固体酸化物形燃料電池用の電解質シートにおいて、第1凹部の開口部の径は、60μm以上である。
 第1凹部20の開口部の径Q1は、60μm以上である。第1凹部20の開口部の径Q1が60μm以上であることにより、電解質シート10が固体酸化物形燃料電池に組み込まれる際に、電極用のスラリー(燃料極用のスラリー又は空気極用のスラリー)が第1凹部20の内部に入り込みやすくなり、更には、第1凹部20の側面及び底面に設けられた第2凹部30の内部にも入り込みやすくなる。その結果、固体酸化物形燃料電池において、電解質シート10と電極との接触面積が大きくなりやすいため、発電効率が向上しやすくなる。
 第1凹部20の開口部の径Q1は、好ましくは200μm以下である。
 第1凹部20の開口部の径Q1は、好ましくは60μm以上、200μm以下である。
 複数の第1凹部20の開口部の径Q1は、互いに同じであってもよいし、互いに異なっていてもよいし、一部で異なっていてもよい。
 第1凹部の開口部の径は、以下のようにして定められる。まず、厚み方向から見たときの第1凹部の開口部の画像を取得する。次に、得られた第1凹部の開口部の画像に対して画像解析ソフトで画像解析を行うことにより、第1凹部の開口部の等価円相当径を測定する。そして、このようにして測定された等価円相当径を、第1凹部の開口部の径と定める。
 本発明の固体酸化物形燃料電池用の電解質シートにおいて、第1凹部の底面の径に対する第1凹部の開口部の径の比率は、30%以上である。
 第1凹部20の底面の径R1に対する第1凹部20の開口部の径Q1の比率(100×Q1/R1)は、30%以上である。第1凹部20の底面の径R1に対する第1凹部20の開口部の径Q1の比率が30%以上であることにより、電解質シート10が固体酸化物形燃料電池に組み込まれる際に、電極用のスラリー(燃料極用のスラリー又は空気極用のスラリー)が第1凹部20の内部に入り込みやすくなり、更には、第1凹部20の側面及び底面に設けられた第2凹部30の内部にも入り込みやすくなる。その結果、固体酸化物形燃料電池において、電解質シート10と電極との接触面積が大きくなりやすいため、発電効率が向上しやすくなる。
 第1凹部20の底面の径R1に対する第1凹部20の開口部の径Q1の比率は、好ましくは150%以下であり、より好ましくは130%以下である。
 第1凹部20の底面の径R1に対する第1凹部20の開口部の径Q1の比率は、好ましくは30%以上、150%以下であり、より好ましくは30%以上、130%以下である。
 複数の第1凹部20の底面の径R1は、互いに同じであってもよいし、互いに異なっていてもよいし、一部で異なっていてもよい。
 第1凹部の底面の径は、以下のようにして定められる。まず、超音波顕微鏡(C-SAM)を用いて、第1凹部の内部に超音波を当てることにより、第1凹部の内部の画像を取得する。この際、例えば、超音波顕微鏡において200MHz以上のトランスデューサーを用いることにより、第1凹部の内部の画像を精度よく取得できる。次に、得られた第1凹部の内部の画像に対して画像解析ソフトで画像解析を行うことにより、第2凹部が設けられた第1凹部の底面の最下点から開口部側に向かって厚み方向に1μm離れた位置における、厚み方向に直交する断面の等価円相当径を測定する。そして、このようにして測定された等価円相当径を、第1凹部の底面の径と定める。
 電解質シート10において、第1凹部20の開口部の径Q1が60μm以上であり、かつ、第1凹部20の底面の径R1に対する第1凹部20の開口部の径Q1の比率が30%以上であることにより、電解質シート10が固体酸化物形燃料電池に組み込まれる際に、電極用のスラリー(燃料極用のスラリー又は空気極用のスラリー)が第1凹部20の内部に顕著に入り込みやすくなり、更には、第1凹部20の側面及び底面に設けられた第2凹部30の内部にも入り込みやすくなる。その結果、固体酸化物形燃料電池において、電解質シート10と電極との接触面積が顕著に大きくなりやすいため、発電効率が顕著に向上しやすくなる。
 以上のように、電解質シート10では、複数の第1凹部20及び複数の第2凹部30が少なくとも一方主面(図2に示す例では、両主面)に設けられているとともに、第1凹部20の開口部の径Q1が60μm以上であり、かつ、第1凹部20の底面の径R1に対する第1凹部20の開口部の径Q1の比率が30%以上であることにより、固体酸化物形燃料電池の発電効率を向上可能である。
 電解質シート10では、第1凹部20の開口部の径Q1が60μm以上であり、かつ、第1凹部20の底面の径R1に対する第1凹部20の開口部の径Q1の比率が30%以上であることが、少なくとも1つの第1凹部20について満たされていればよいが、すべての第1凹部20について満たされていることが特に好ましい。
 本発明の固体酸化物形燃料電池用の電解質シートにおいて、電解質シートの厚みに対する第1凹部の深さの比率は、20%以下であることが好ましい。
 電解質シート10の厚みTに対する第1凹部20の深さS1の比率(100×S1/T)は、好ましくは20%以下である。電解質シート10において、第1凹部20の深さS1が大き過ぎると、電解質シート10の実質的な厚みが小さくなり過ぎることにより、電解質シート10の強度が低下するおそれがある。これに対して、電解質シート10の厚みTに対する第1凹部20の深さS1の比率が20%以下である場合、電解質シート10の実質的な厚みが充分に確保されるため、電解質シート10の強度が低下しにくくなる。
 電解質シート10の厚みTに対する第1凹部20の深さS1の比率は、好ましくは10%以上である。
 電解質シート10の厚みTに対する第1凹部20の深さS1の比率は、好ましくは10%以上、20%以下である。
 複数の第1凹部20の深さS1は、互いに同じであってもよいし、互いに異なっていてもよいし、一部で異なっていてもよい。
 第1凹部の深さは、第2凹部が設けられた第1凹部の底面の最下点から開口部側に向かって厚み方向に1μm離れた位置と、第1凹部の開口部との間の厚み方向の距離で定められる。なお、第2凹部が設けられた第1凹部の底面の最下点から開口部側に向かって厚み方向に1μm離れた位置については、第1凹部の底面の径を定める際と同様にして定められる。
 電解質シート10では、電解質シート10の厚みTに対する第1凹部20の深さS1の比率が20%以下であることが、少なくとも1つの第1凹部20について満たされていることが好ましいが、すべての第1凹部20について満たされていることが特に好ましい。
 第1凹部20の数は、複数であれば特に限定されない。
 第1凹部20は、規則的に設けられていてもよいし、不規則的に設けられていてもよい。
 第1凹部20の立体形状としては、例えば、角柱状、円柱状等の柱状が挙げられる。中でも、第1凹部20の立体形状は、四角柱状であることが好ましい。
 複数の第1凹部20の立体形状は、互いに同じであることが好ましい。なお、複数の第1凹部20の立体形状は、互いに異なっていてもよいし、一部で異なっていてもよい。
 隣り合う第2凹部30の間隔(ピッチ)P2は、好ましくは1μm以上、5μm以下である。
 隣り合う第2凹部30の間隔P2は、設けられていなくてもよい。つまり、隣り合う第2凹部30は、間隔を空けて設けられておらず、接していてもよい。
 複数の第2凹部30において、隣り合う第2凹部30の間隔P2は、互いに同じであってもよいし、互いに異なっていてもよいし、一部で異なっていてもよい。
 隣り合う第2凹部の間隔は、厚み方向から見たときの、隣り合う第2凹部の開口部間の最短距離で定められる。
 第2凹部30の径は、第1凹部20の径よりも小さい。より具体的には、第2凹部30の開口部の径Q2は、第1凹部20の開口部の径Q1よりも小さい。
 第2凹部30の開口部の径Q2は、好ましくは1μm以上、5μm以下である。
 第1凹部20の開口部の径Q1に対する第2凹部30の開口部の径Q2の比率(100×Q2/Q1)は、好ましくは0.5%以上、8.5%以下である。
 複数の第2凹部30の開口部の径Q2は、互いに同じであってもよいし、互いに異なっていてもよいし、一部で異なっていてもよい。
 第2凹部の開口部の径は、第1凹部の開口部の径と同様にして定められる。
 複数の第2凹部30の深さS2は、互いに同じであってもよいし、互いに異なっていてもよいし、一部で異なっていてもよい。
 第2凹部の深さは、以下のようにして定められる。まず、超音波顕微鏡を用いて、第2凹部の内部に超音波を当てることにより、第2凹部の内部の画像を取得する。この際、例えば、超音波顕微鏡において200MHz以上のトランスデューサーを用いることにより、第2凹部の内部の画像を精度よく取得できる。次に、得られた第2凹部の内部の画像に対して画像解析ソフトで画像解析を行うことにより、第2凹部の最下点と開口部との間の厚み方向の距離を測定する。そして、このようにして測定された距離を、第2凹部の深さと定める。
 第2凹部30の数は、複数であれば特に限定されない。
 第2凹部30は、規則的に設けられていてもよいし、不規則的に設けられていてもよい。
 第2凹部30の立体形状としては、例えば、球状の一部で構成される形状等が挙げられる。つまり、第2凹部30の底面は、湾曲していてもよい。なお、第2凹部30の底面は、湾曲しておらず、平坦であってもよい。
 複数の第2凹部30の立体形状は、互いに同じであることが好ましい。なお、複数の第2凹部30の立体形状は、互いに異なっていてもよいし、一部で異なっていてもよい。
 電解質シート10の厚みTは、好ましくは200μm以下であり、より好ましくは130μm以下である。
 電解質シート10の厚みTは、好ましくは30μm以上であり、より好ましくは50μm以上である。
 電解質シート10の厚みTは、好ましくは30μm以上、200μm以下であり、より好ましくは50μm以上、130μm以下である。
 電解質シートの厚みは、以下のようにして定められる。まず、電解質シートにおいて、第1凹部が設けられていない領域の任意の9箇所の厚みを、例えば、ミツトヨ社製のU字形鋼板マイクロメータ「PMU-MX」で測定する。そして、9箇所の厚みの測定値から算出された平均値を、電解質シートの厚みと定める。
 図3では、厚み方向に沿う断面を見たときの第1凹部20の断面形状について、第1凹部20の開口部の径Q1が第1凹部20の底面の径R1とほぼ同等である形状を例示したが、第1凹部20の開口部の径Q1が60μm以上であり、かつ、第1凹部20の底面の径R1に対する第1凹部20の開口部の径Q1の比率が30%以上であれば、第1凹部20の断面形状は、図3と異なっていてもよい。
 図4は、本発明の固体酸化物形燃料電池用の電解質シートの別の一例であって、第1凹部の断面形状が図3と異なる態様を示す断面模式図である。
 図4に示す電解質シート10Aのように、厚み方向に沿う断面を見たときの第1凹部20の断面形状は、第1凹部20の開口部の径Q1が第1凹部20の底面の径R1よりも小さい形状であってもよい。
 図5は、本発明の固体酸化物形燃料電池用の電解質シートの更に別の一例であって、第1凹部の断面形状が図3及び図4と異なる態様を示す断面模式図である。
 図5に示す電解質シート10Bのように、厚み方向に沿う断面を見たときの第1凹部20の断面形状は、第1凹部20の開口部の径Q1が第1凹部20の底面の径R1よりも大きい形状であってもよい。
 第1凹部20について、図3、図4、及び、図5に示す断面形状を比較すると、電解質シートが固体酸化物形燃料電池に組み込まれる際に、電極用のスラリー(燃料極用のスラリー又は空気極用のスラリー)が第1凹部20の内部に入り込みやすい観点では、図5に示す断面形状が最も好ましく、図3に示す断面形状が次に好ましい。
[固体酸化物形燃料電池用の電解質シートの製造方法]
 本発明の固体酸化物形燃料電池用の電解質シートの製造方法の一例について、以下に説明する。
 本発明の固体酸化物形燃料電池用の電解質シートの製造方法の一例は、セラミックスラリーを調製する工程と、セラミックスラリーを成形することにより、セラミックグリーンシートを作製する工程と、セラミックグリーンシートを厚み方向に貫通し、かつ、互いに間隔を空けて設けられた複数のシート貫通孔を設ける工程と、複数のシート貫通孔が設けられたセラミックグリーンシートが少なくとも一方主面を構成するように、複数のセラミックグリーンシートを厚み方向に積層することにより、複数のシート貫通孔に由来する複数の第1凹部が少なくとも一方主面に互いに間隔を空けて設けられるとともに、第1凹部の開口部の径が60μm以上であり、かつ、第1凹部の底面の径に対する第1凹部の開口部の径の比率が30%以上である、未焼結板状体を作製する工程と、未焼結板状体に対して、隣り合う第1凹部の開口部間と、第1凹部の側面と、第1凹部の底面とに、第1凹部よりも径が小さい複数の第2凹部を設ける工程と、第1凹部及び第2凹部が設けられた未焼結板状体を焼結させることにより、セラミック板状体を作製する工程と、を備える。
<セラミックスラリーを調製する工程>
 セラミック材料粉末、バインダー、分散剤、有機溶媒等を調合することにより、セラミックスラリーを調製する。
 セラミック材料粉末としては、例えば、ジルコニア粉末が用いられる。
 ジルコニア粉末としては、例えば、スカンジウム、イットリウム等の希土類元素の酸化物で安定化されたジルコニア未焼結粉末が用いられ、より具体的には、スカンジアで安定化されたジルコニア未焼結粉末、イットリアで安定化されたジルコニア未焼結粉末等が用いられる。
 ジルコニア未焼結粉末としては、スカンジアで安定化されたジルコニア未焼結粉末が用いられることが好ましい。スカンジアで安定化されたジルコニア未焼結粉末を用いることにより、導電率の高い電解質シートを製造できる。この場合、製造された電解質シートを固体酸化物形燃料電池に組み込むことにより、固体酸化物形燃料電池の発電効率を向上させることができる。
 ジルコニア未焼結粉末としては、立方晶系ジルコニア未焼結粉末が用いられることが好ましい。立方晶系ジルコニア未焼結粉末を用いることにより、導電率の高い電解質シートを製造できる。この場合、製造された電解質シートを固体酸化物形燃料電池に組み込むことにより、固体酸化物形燃料電池の発電効率を向上させることができる。
 立方晶系ジルコニア未焼結粉末としては、例えば、スカンジウム、イットリウム等の希土類元素の酸化物で安定化された立方晶系ジルコニア未焼結粉末が用いられ、より具体的には、スカンジアで安定化された立方晶系ジルコニア未焼結粉末、イットリアで安定化された立方晶系ジルコニア未焼結粉末等が用いられる。
 立方晶系ジルコニア未焼結粉末としては、スカンジアで安定化された立方晶系ジルコニア未焼結粉末が用いられることが好ましい。スカンジアで安定化された立方晶系ジルコニア未焼結粉末を用いることにより、導電率が顕著に高い電解質シートを製造できる。この場合、製造された電解質シートを固体酸化物形燃料電池に組み込むことにより、固体酸化物形燃料電池の発電効率を顕著に向上させることができる。
 ジルコニア粉末としては、ジルコニア未焼結粉末に加えて、ジルコニア焼結粉末が用いられてもよい。
 ジルコニア焼結粉末は、例えば、ジルコニアの焼結体を粉砕することにより準備される。
 ジルコニアの焼結体を粉砕する際、乾式粉砕を行うことが好ましい。乾式粉砕によれば、ジルコニアの焼結体を強い衝撃力で粉砕できるため、粉砕効率が向上しやすくなる。
 乾式粉砕を行うための乾式粉砕機としては、例えば、ジェットミル、振動ミル、遊星ミル、乾式ボールミル、ファインミル等が用いられる。
 乾式粉砕機用の粉砕メディアとしては、例えば、ジルコニア製玉石等が用いられる。
 ジルコニアの焼結体を粉砕する際、乾式粉砕に代えて湿式粉砕を行ってもよいし、乾式粉砕及び湿式粉砕を組み合わせて行ってもよいが、粉砕効率の観点からは、乾式粉砕のみを行うことが好ましい。
 ジルコニアの焼結体を粉砕することにより、ジルコニア焼結粉末を準備する場合、ジルコニア焼結粉末の原料であるジルコニアの焼結体としては、例えば、ジルコニア未焼結粉末を焼結させたものが用いられる。このようなジルコニアの焼結体としては、ジルコニアの焼結体からなる電解質シートが用いられてもよく、リサイクルの観点から、反り、破断等の不良が生じている電解質シート、固体酸化物形燃料電池に組み込まれている電解質シート等が用いられることが好ましい。固体酸化物形燃料電池に組み込まれている電解質シートを用いる場合、例えば、使用済みの単セル、不良が生じている単セル等から燃料極及び空気極を除去することにより、電解質シートを取り出してもよい。
 ジルコニアの焼結体としては、例えば、スカンジウム、イットリウム等の希土類元素の酸化物で安定化されたジルコニアの焼結体が用いられ、より具体的には、スカンジアで安定化されたジルコニアの焼結体、イットリアで安定化されたジルコニアの焼結体等が用いられる。
 ジルコニアの焼結体としては、スカンジアで安定化されたジルコニアの焼結体が用いられることが好ましい。つまり、ジルコニア焼結粉末としては、スカンジアで安定化されたジルコニア焼結粉末が用いられることが好ましい。スカンジアで安定化されたジルコニア焼結粉末を用いることにより、導電率の高い電解質シートを製造できる。この場合、製造された電解質シートを固体酸化物形燃料電池に組み込むことにより、固体酸化物形燃料電池の発電効率を向上させることができる。
 ジルコニアの焼結体としては、立方晶系ジルコニアの焼結体が用いられることが好ましい。つまり、ジルコニア焼結粉末としては、立方晶系ジルコニア焼結粉末が用いられることが好ましい。立方晶系ジルコニア焼結粉末を用いることにより、導電率の高い電解質シートを製造できる。この場合、製造された電解質シートを固体酸化物形燃料電池に組み込むことにより、固体酸化物形燃料電池の発電効率を向上させることができる。
 立方晶系ジルコニアの焼結体としては、例えば、スカンジウム、イットリウム等の希土類元素の酸化物で安定化された立方晶系ジルコニアの焼結体が用いられ、より具体的には、スカンジアで安定化された立方晶系ジルコニアの焼結体、イットリアで安定化された立方晶系ジルコニアの焼結体等が用いられる。
 立方晶系ジルコニアの焼結体としては、スカンジアで安定化された立方晶系ジルコニアの焼結体が用いられることが好ましい。つまり、ジルコニア焼結粉末としては、スカンジアで安定化された立方晶系ジルコニア焼結粉末が用いられることが好ましい。スカンジアで安定化された立方晶系ジルコニア焼結粉末を用いることにより、導電率が顕著に高い電解質シートを製造できる。この場合、製造された電解質シートを固体酸化物形燃料電池に組み込むことにより、固体酸化物形燃料電池の発電効率を顕著に向上させることができる。
<セラミックグリーンシートを作製する工程>
 図6は、本発明の固体酸化物形燃料電池用の電解質シートの製造方法の一例について、セラミックグリーンシートを作製する工程を示す平面模式図である。図7は、本発明の固体酸化物形燃料電池用の電解質シートの製造方法の一例について、セラミックグリーンシートを作製する工程で図6の後の態様を示す平面模式図である。図8は、本発明の固体酸化物形燃料電池用の電解質シートの製造方法の一例について、セラミックグリーンシートを作製する工程で図7の後の態様を示す平面模式図である。
 まず、セラミックスラリーをキャリアフィルムの一方主面上で成形することにより、図6に示すようなセラミックグリーンテープ1tを作製する。
 セラミックスラリーの成形方法としては、テープ成形法が好ましく用いられ、ドクターブレード法又はカレンダー法がより好ましく用いられる。図6では、セラミックスラリーをテープ成形法で成形した場合の、キャスティング方向をX、キャスティング方向に直交する方向をYで示している。
 そして、セラミックグリーンテープ1tを、図7に示すように所定の大きさになるように既知の手法により打ち抜き、キャリアフィルムを剥離することにより、図8に示すようなセラミックグリーンシート1gを作製する。セラミックグリーンテープ1tの打ち抜きとキャリアフィルムの剥離とについては、順序を問わない。
<シート貫通孔を設ける工程>
 図9は、本発明の固体酸化物形燃料電池用の電解質シートの製造方法の一例について、シート貫通孔を設ける工程を示す断面模式図である。
 図9に示すように、セラミックグリーンシート1gを厚み方向に貫通し、かつ、互いに間隔を空けて設けられた複数のシート貫通孔1hを設ける。
 セラミックグリーンシート1gにシート貫通孔1hを設ける際、シート貫通孔1hの少なくとも一方の開口部の径が60μm以上となるようにする。更に、シート貫通孔1hにおいて、一方の開口部の径に対する他方の開口部の径の比率が30%以上となるようにする。
 セラミックグリーンシート1gにシート貫通孔1hを設ける際、例えば、レーザー光、ドリル等を用いる。
 レーザー光を用いてシート貫通孔1hを設ける場合、例えば、セラミックグリーンシート1gの一方主面にレーザー光を照射することにより、シート貫通孔1hを設ける。この際、レーザー光の照射条件等を調節することにより、シート貫通孔1hの開口部の径を調節できるとともに、厚み方向に沿う断面を見たときのシート貫通孔1hの断面形状を、厚み方向に沿って径が一定である形状、厚み方向に沿って径が小さくなる(大きくなる)テーパー状等に適宜調節できる。
 ドリルを用いてシート貫通孔1hを設ける場合、例えば、セラミックグリーンシート1gの一方主面から他方主面に向けてドリルを進行させることにより、シート貫通孔1hを設ける。この際、ドリルの形状、ドリルによる加工条件等を調節することにより、シート貫通孔1hの開口部の径を調節できるとともに、厚み方向に沿う断面を見たときのシート貫通孔1hの断面形状を、厚み方向に沿って径が一定である形状、厚み方向に沿って径が小さくなる(大きくなる)テーパー状等に適宜調節できる。
<未焼結板状体を作製する工程>
 図10は、本発明の固体酸化物形燃料電池用の電解質シートの製造方法の一例について、未焼結板状体を作製する工程を示す断面模式図である。
 図10に示すように、複数のセラミックグリーンシート1gを厚み方向に積層することにより、未焼結板状体1sを作製する。図10に示す例では、複数のシート貫通孔1hが設けられたセラミックグリーンシート1gを1枚、シート貫通孔1hが設けられていないセラミックグリーンシート1gを4枚、複数のシート貫通孔1hが設けられたセラミックグリーンシート1gを1枚、という順に厚み方向に積層することにより、未焼結板状体1sを作製する。
 未焼結板状体1sを作製する際、複数のセラミックグリーンシート1gを用いることにより、後に得られる電解質シート(セラミック板状体)の厚みを容易に制御できる。
 未焼結板状体1sを作製する際、複数のシート貫通孔1hが設けられたセラミックグリーンシート1gを、未焼結板状体1sの少なくとも一方主面を構成する位置に積層すればよい。つまり、未焼結板状体1sを作製する際、複数のシート貫通孔1hが設けられたセラミックグリーンシート1gを、未焼結板状体1sの一方主面を構成する位置に積層してもよいし、未焼結板状体1sの他方主面を構成する位置に積層してもよいし、図10に示すように未焼結板状体1sの両主面を構成する位置に積層してもよい。
 未焼結板状体1sを作製する際、複数のシート貫通孔1hが設けられたセラミックグリーンシート1gを、未焼結板状体1sの少なくとも一方主面を構成する位置に積層することにより、複数のシート貫通孔1hに由来する複数の第1凹部20sが、未焼結板状体1sの少なくとも一方主面に互いに間隔を空けて設けられることになる。図10に示す例では、未焼結板状体1sの両主面に、複数の第1凹部20sが互いに間隔を空けて設けられることになる。
 第1凹部20sは、後に得られる電解質シート(後述するセラミック板状体10p)において、第1凹部20となるべきものである。そのため、未焼結板状体1sを作製する際、第1凹部20sについて、開口部の径が60μm以上であり、かつ、底面の径に対する開口部の径の比率が30%以上となるように、複数のシート貫通孔1hが設けられたセラミックグリーンシート1gの向きを調節して積層する。
 シート貫通孔1hが設けられていないセラミックグリーンシート1gを積層する枚数は、特に限定されず、図10に示すように4枚であってもよいし、4枚以外であってもよい。
 未焼結板状体1sを作製する際に用いられる複数のセラミックグリーンシート1gの厚みは、互いに同じであってもよいし、互いに異なっていてもよいし、一部で異なっていてもよい。
 未焼結板状体1sを作製する際、複数のセラミックグリーンシート1gを積層した後、圧着してもよい。
<第2凹部を設ける工程>
 図11は、本発明の固体酸化物形燃料電池用の電解質シートの製造方法の一例について、第2凹部を設ける工程を示す断面模式図である。図12は、本発明の固体酸化物形燃料電池用の電解質シートの製造方法の一例について、第2凹部を設ける工程で図11の後の態様を示す断面模式図である。図13は、本発明の固体酸化物形燃料電池用の電解質シートの製造方法の一例について、第2凹部を設ける工程で図12の後の態様を示す断面模式図である。図14は、本発明の固体酸化物形燃料電池用の電解質シートの製造方法の一例について、第2凹部を設ける工程で図13の後の態様を示す断面模式図である。
 図11、図12、図13、及び、図14は、図10に示す未焼結板状体の一方主面に第2凹部を設ける態様を拡大して示している。
 まず、図11に示すように、厚み方向に向いた表面に複数の凸部が設けられた第1金型M1を準備する。
 そして、第1金型M1を、未焼結板状体1sの一方主面に対して厚み方向に押圧することにより、図12に示すように、隣り合う第1凹部20sの開口部間と第1凹部20sの底面とに、第1凹部20sよりも径が小さい複数の第2凹部30sを設ける。第1金型M1を、未焼結板状体1sに対して厚み方向に押圧する際、未焼結板状体1sを、厚み方向において、固定された板上に載るように設置しておくことが好ましい。
 次に、図13に示すように、厚み方向に直交する方向に向いた表面に複数の凸部が設けられた第2金型M2を準備する。
 そして、第2金型M2を、第1凹部20sに挿入した後で、第1凹部20sの側面に対して厚み方向に直交する方向に押圧することにより、図14に示すように、第1凹部20sの側面に、第1凹部20sよりも径が小さい複数の第2凹部30sを設ける。第2金型M2を、未焼結板状体1sに対して厚み方向に直交する方向に押圧する際、未焼結板状体1sを、厚み方向に直交する方向において、2枚の固定された板の間に挟まれるように設置しておくことが好ましい。
 以上により、未焼結板状体1sの一方主面に対して、隣り合う第1凹部20sの開口部間と、第1凹部20sの側面と、第1凹部20sの底面とに、第1凹部20sよりも径が小さい複数の第2凹部30sを設ける。
 同様に、未焼結板状体1sの他方主面に対しても、隣り合う第1凹部20sの開口部間と、第1凹部20sの側面と、第1凹部20sの底面とに、第1凹部20sよりも径が小さい複数の第2凹部30sを設けてもよい。
 第2凹部30sは、後に得られる電解質シート(後述するセラミック板状体10p)において、第2凹部30となるべきものである。
 未焼結板状体1sに第2凹部30sを設ける際、第1金型M1及び第2金型M2の凸部の各種仕様を調節することにより、第2凹部30sの間隔、径、深さ、個数、配置、形状等を調節できる。
 以上では、複数の第2凹部30sを、隣り合う第1凹部20sの開口部間と第1凹部20sの底面とに設けた(図11及び図12参照)後、第1凹部20sの側面に設ける(図13及び図14参照)場合について説明したが、これらの順序は逆でもよい。つまり、複数の第2凹部30sを、第1凹部20sの側面に設けた後、隣り合う第1凹部20sの開口部間と第1凹部20sの底面とに設けてもよい。
 以上では、未焼結板状体1sに第2凹部30sを設ける方法の一例として、金型を利用する方法について説明したが、金型を利用する方法以外の方法を用いてもよい。
<未焼結板状体貫通孔を設ける工程>
 図示しないが、未焼結板状体1sに対して、第1凹部20sと第1凹部20sの開口部間に設けられた第2凹部30sとが無くならない領域であれば、未焼結板状体1sを厚み方向に貫通する未焼結板状体貫通孔を設けてもよい。
 未焼結板状体1sに未焼結板状体貫通孔を設ける場合、ドリルを用いることが好ましい。この場合、例えば、未焼結板状体1sの一方主面から他方主面に向けてドリルを進行させることにより、未焼結板状体1sを厚み方向に貫通する未焼結板状体貫通孔を設ける。ドリルの形状、ドリルによる加工条件等は、特に限定されない。
 未焼結板状体1sに未焼結板状体貫通孔を設ける場合、未焼結板状体貫通孔を、1つのみ設けてもよいし、2つ以上設けてもよい。
 <第2凹部を設ける工程>と<未焼結板状体貫通孔を設ける工程>とについては、順序を問わない。つまり、<第2凹部を設ける工程>の後に<未焼結板状体貫通孔を設ける工程>を行ってもよいし、<未焼結板状体貫通孔を設ける工程>の後に<第2凹部を設ける工程>を行ってもよい。
 なお、未焼結板状体1sに未焼結板状体貫通孔を設けなくてもよい。この場合、本工程は省略される。
<セラミック板状体を作製する工程>
 図15は、本発明の固体酸化物形燃料電池用の電解質シートの製造方法の一例について、セラミック板状体を作製する工程を示す断面模式図である。
 第1凹部20s及び第2凹部30sが設けられた未焼結板状体1sを焼成することにより、未焼結板状体1sを焼結させて、図15に示すようなセラミック板状体10pを作製する。
 図15に示す例において、セラミック板状体10pの両主面には、複数の第1凹部20sに由来する複数の第1凹部20が、互いに間隔を空けて設けられることになる。更に、セラミック板状体10pでは、第1凹部20の開口部の径が60μm以上であり、かつ、第1凹部20の底面の径に対する第1凹部20の開口部の径の比率が30%以上となる。
 図15に示す例において、セラミック板状体10pの両主面には、第1凹部20よりも径が小さく、複数の第2凹部30sに由来する複数の第2凹部30が、隣り合う第1凹部20の開口部間と、第1凹部20の側面と、第1凹部20の底面と、に設けられることになる。
 未焼結板状体1sを焼成する際、脱脂処理及び焼結処理を行うことが好ましい。
 未焼結板状体1sに未焼結板状体貫通孔を設けた場合、セラミック板状体10pには、厚み方向に貫通する貫通孔が設けられることになる。
 以上により、セラミック板状体10pからなる電解質シートが製造される。
[固体酸化物形燃料電池用の単セル]
 本発明の固体酸化物形燃料電池用の単セルは、燃料極と、空気極と、燃料極と空気極との間に設けられた本発明の固体酸化物形燃料電池用の電解質シートと、を備える。
 本発明の固体酸化物形燃料電池用の単セルの一例について、以下に説明する。
 図16は、本発明の固体酸化物形燃料電池用の単セルの一例を示す断面模式図である。図17は、図16に示す単セルにおける電解質シートと燃料極との界面を拡大して示す断面模式図である。図18は、図16に示す単セルにおける電解質シートと空気極との界面を拡大して示す断面模式図である。
 図16に示す固体酸化物形燃料電池用の単セル100は、燃料極40と、空気極50と、電解質シート10と、を有している。電解質シート10は、燃料極40と空気極50との間に設けられている。
 燃料極40としては、公知の固体酸化物形燃料電池用の燃料極が用いられる。
 空気極50としては、公知の固体酸化物形燃料電池用の空気極が用いられる。
 上述したように、電解質シート10では、複数の第1凹部20及び複数の第2凹部30が少なくとも一方主面(図16に示す例では、両主面)に設けられているとともに、第1凹部20の開口部の径が60μm以上であり、かつ、第1凹部20の底面の径に対する第1凹部20の開口部の径の比率が30%以上である。
 電解質シート10が上述した仕様を満たしていることにより、後述するように電解質シート10を用いて単セル100を製造する際に、燃料極40用のスラリーと空気極50用のスラリーとが第1凹部20の内部に顕著に入り込みやすくなり、更には、第1凹部20の側面及び底面に設けられた第2凹部30の内部にも入り込みやすくなる。その結果、単セル100において、図17に示すように電解質シート10と燃料極40との接触面積が顕著に大きくなりやすく、更には、図18に示すように電解質シート10と空気極50との接触面積が顕著に大きくなりやすくなる。以上により、単セル100が組み込まれた固体酸化物形燃料電池において、発電効率が顕著に向上しやすくなる。
 単セル100が固体酸化物形燃料電池に組み込まれる際には、燃料極40に燃料ガスを供給するための燃料ガス流路と、空気極50に空気を供給するための空気流路と、が必要となる。
 単セル100に燃料ガス流路を提供する方法としては、例えば、燃料極40における電解質シート10と反対側の主面上に、燃料極40側の主面に燃料ガスを供給するための燃料ガス流路が設けられた第1セパレータを積層する方法が挙げられる。
 単セル100に空気流路を提供する方法としては、例えば、空気極50における電解質シート10と反対側の主面上に、空気極50側の主面に空気を供給するための空気流路が設けられた第2セパレータを積層する方法が挙げられる。
 第1セパレータ及び第2セパレータの構成材料は、セラミック材料等の絶縁材料であってもよいし、金属材料等の導電材料であってもよい。
 第1セパレータ及び第2セパレータの構成材料は、互いに同じであってもよいし、互いに異なっていてもよい。
 第1セパレータ及び第2セパレータの構成材料が絶縁材料である場合、第1セパレータ及び第2セパレータとしては、例えば、部分安定化ジルコニアの焼結体等が挙げられる。
 第1セパレータの構成材料が絶縁材料である場合、第1セパレータには、厚み方向に貫通して、燃料極40に接続しつつ燃料極40と反対側の主面に露出した少なくとも1つの貫通導体が設けられていることが好ましい。この場合、燃料極40が、貫通導体を介して第1セパレータの外部に導出可能となる。
 第2セパレータの構成材料が絶縁材料である場合、第2セパレータには、厚み方向に貫通して、空気極50に接続しつつ空気極50と反対側の主面に露出した少なくとも1つの貫通導体が設けられていることが好ましい。この場合、空気極50が、貫通導体を介して第2セパレータの外部に導出可能となる。
 第1セパレータ及び第2セパレータに設けられる貫通導体の構成材料は、銀及びパラジウムの合金、又は、白金であることが好ましい。
 第1セパレータに設けられる貫通導体の構成材料と、第2セパレータに設けられる貫通導体の構成材料とは、互いに同じであってもよいし、互いに異なっていてもよい。
[固体酸化物形燃料電池用の単セルの製造方法]
 本発明の固体酸化物形燃料電池用の単セルの製造方法の一例について、以下に説明する。
 まず、燃料極の材料の粉体にバインダー、分散剤、溶媒等を適宜添加することにより、燃料極用のスラリーを調製する。
 また、空気極の材料の粉体にバインダー、分散剤、溶媒等を適宜添加することにより、空気極用のスラリーを調製する。
 燃料極の材料としては、固体酸化物形燃料電池用の燃料極の公知の材料が用いられる。
 空気極の材料としては、固体酸化物形燃料電池用の空気極の公知の材料が用いられる。
 燃料極用のスラリーと空気極用のスラリーとに含まれるバインダー、分散剤、溶媒等としては、固体酸化物形燃料電池用の燃料極及び空気極の形成方法で公知となっているものが用いられる。
 次に、燃料極用のスラリーを電解質シートの一方主面に、空気極用のスラリーを電解質シートの他方主面に、各々所定の厚みで塗工する。この際、電解質シートが上述した仕様を満たしているため、燃料極用のスラリー及び空気極用のスラリーの少なくとも一方は、第1凹部の内部に顕著に入り込みやすくなり、更には、第1凹部の側面及び底面に設けられた第2凹部の内部にも入り込みやすくなる。その結果、後に得られる単セルにおいて、電解質シートと電極(燃料極又は空気極)との接触面積が大きくなりやすくなる。
 そして、これらの塗膜を乾燥させることにより、燃料極用のグリーン層と空気極用のグリーン層とを形成する。
 その後、燃料極用のグリーン層と空気極用のグリーン層とを焼成することにより、燃料極及び空気極を形成する。焼成温度等の焼成条件については、燃料極及び空気極の材料の種類等に応じて適宜決定すればよい。
 以上により、単セルが製造される。
 以下、本発明の固体酸化物形燃料電池用の電解質シートをより具体的に開示した実施例を示す。なお、本発明は、以下の実施例のみに限定されるものではない。
[実施例1]
 実施例1の電解質シートを、以下の方法で製造した。
<セラミックスラリーを調製する工程>
 まず、ジルコニア未焼結粉末、ジルコニア焼結粉末、バインダー、分散剤、及び、有機溶媒を所定の割合で調合した。
 ジルコニア未焼結粉末としては、スカンジアで安定化されたジルコニア未焼結粉末を用いた。
 ジルコニア焼結粉末としては、スカンジアで安定化されたジルコニアの焼結体を粉砕することにより準備された、スカンジアで安定化されたジルコニア焼結粉末を用いた。
 有機溶媒としては、トルエン及びエタノール(重量比7:3)の混合物を用いた。
 そして、得られた調合物を、部分安定化ジルコニアからなるメディアとともに1000回転/分で3時間撹拌することにより、セラミックスラリーを調製した。
<セラミックグリーンシートを作製する工程>
 まず、セラミックスラリーを、ポリエチレンテレフタレートからなるキャリアフィルムの一方主面上で既知の手法によりテープ成形することにより、セラミックグリーンテープを作製した。
 そして、セラミックグリーンテープを、所定の大きさになるように既知の手法により打ち抜き、キャリアフィルムを剥離することにより、セラミックグリーンシートを作製した。
<シート貫通孔を設ける工程>
 セラミックグリーンシートの一方主面にレーザー光を照射することにより、セラミックグリーンシートを厚み方向に貫通する複数のシート貫通孔を設けた。
<未焼結板状体を作製する工程>
 複数のシート貫通孔が設けられたセラミックグリーンシートを1枚、シート貫通孔が設けられていないセラミックグリーンシートを所定枚数、複数のシート貫通孔が設けられたセラミックグリーンシートを1枚、という順に厚み方向に積層することにより、未焼結板状体を作製した。未焼結板状体の両主面には、複数のシート貫通孔に由来する複数の第1凹部が、互いに間隔を空けて設けられた。
<第2凹部を設ける工程>
 まず、厚み方向に向いた表面に複数の凸部が設けられた第1金型を準備した。
 そして、第1金型を、未焼結板状体の一方主面に対して厚み方向に押圧することにより、隣り合う第1凹部の開口部間と第1凹部の底面とに、第1凹部よりも径が小さい複数の第2凹部を設けた。第1金型を、未焼結板状体に対して厚み方向に押圧する際、未焼結板状体を、厚み方向において、固定された板上に載るように設置しておいた。
 次に、厚み方向に直交する方向に向いた表面に複数の凸部が設けられた第2金型を準備した。
 そして、第2金型を、第1凹部に挿入した後で、第1凹部の側面に対して厚み方向に直交する方向に押圧することにより、第1凹部の側面に、第1凹部よりも径が小さい複数の第2凹部を設けた。第2金型を、未焼結板状体に対して厚み方向に直交する方向に押圧する際、未焼結板状体を、厚み方向に直交する方向において、2枚の固定された板の間に挟まれるように設置しておいた。
 以上により、未焼結板状体の一方主面に対して、隣り合う第1凹部の開口部間と、第1凹部の側面と、第1凹部の底面とに、第1凹部よりも径が小さい複数の第2凹部を設けた。
 同様に、未焼結板状体の他方主面に対しても、隣り合う第1凹部の開口部間と、第1凹部の側面と、第1凹部の底面とに、第1凹部よりも径が小さい複数の第2凹部を設けた。
<未焼結板状体貫通孔を設ける工程>
 未焼結板状体に対して、第1凹部と第1凹部の開口部間に設けられた第2凹部とが無くならない領域に、ドリルを用いて、未焼結板状体を厚み方向に貫通する未焼結板状体貫通孔を設けた。
 ドリルによる加工条件については、進行速度を0.04mm/回転、回転数を2000回転/分とした。
<セラミック板状体を作製する工程>
 第1凹部及び第2凹部が設けられた未焼結板状体に対して、焼成炉により400℃で所定の時間保持する脱脂処理を行った。そして、脱脂処理後の未焼結板状体に対して、焼成炉により1400℃で5時間保持する焼結処理を行った。
 このように未焼結板状体を焼成することにより、未焼結板状体を焼結させて、セラミック板状体を作製した。
 以上により、実施例1の電解質シート(セラミック板状体)を製造した。
 実施例1の電解質シートの両主面には、複数の第1凹部が互いに間隔を空けて設けられ、かつ、第1凹部よりも径が小さい複数の第2凹部が、隣り合う第1凹部の開口部間と、第1凹部の側面と、第1凹部の底面と、に設けられていた。
 実施例1の電解質シートの各種仕様は、以下の通り(表1にも記載)であった。
 ・第1凹部の開口部の径:60μm
 ・第1凹部の底面の径に対する第1凹部の開口部の径の比率:70%
 ・電解質シートの厚みに対する第1凹部の深さの比率:10%
 ・隣り合う第1凹部の間隔:70μm
[実施例2~6、及び、比較例1~4]
 各種仕様が表1の通りとなるようにしたこと以外、実施例1の電解質シートと同様にして、実施例2~6、及び、比較例1~4の電解質シートを製造した。
 なお、比較例1の電解質シートを製造する際には、<シート貫通孔を設ける工程>を行わず、電解質シートに第1凹部を設けなかった。
 また、比較例2の電解質シートを製造する際には、<第2凹部を設ける工程>を行わず、電解質シートに第2凹部を設けなかった。
 表1では、「第1凹部の開口部の径」を「開口部の径」、「第1凹部の底面の径に対する第1凹部の開口部の径の比率」を「開口部の径の比率」、「電解質シートの厚みに対する第1凹部の深さの比率」を「深さの比率」、「隣り合う第1凹部の間隔」を「間隔」と簡略化して示す。
[評価]
 実施例1~6、及び、比較例1~4の電解質シートについて、以下の評価を行った。評価結果を、表1に示す。
<発電効率>
 まず、電解質シートを用いて、以下に示す発電効率測定用の単セル試料を作製した。
 図19は、発電効率測定用の単セル試料を示す斜視模式図である。
 図19に示すように、単セル試料100Zは、電解質シート10Zと、電解質シート10Zの一方主面上に設けられた燃料極40Zと、電解質シート10Zの他方主面上に設けられた空気極50Zと、燃料極40Zにおける電解質シート10Zと反対側の主面上に設けられた第1セパレータ60Zと、空気極50Zにおける電解質シート10Zと反対側の主面上に設けられた第2セパレータ70Zと、を有していた。
 なお、図19では、電解質シート10Zの第1凹部、第2凹部等の表面仕様が示されていない。
 第1セパレータ60Zとしては、部分安定化ジルコニアの焼結体を用いた。図示しないが、第1セパレータ60Zには、燃料極40Z側の主面に燃料ガスを供給するための燃料ガス流路が設けられていた。また、図示しないが、第1セパレータ60Zには、複数の貫通孔を設けた後、各々の貫通孔に導電ペーストを充填することにより、燃料極40Zに接続しつつ、燃料極40Zと反対側の主面に露出した複数の貫通導体(好ましい構成材料は、銀及びパラジウムの合金、又は、白金)を形成した。
 第2セパレータ70Zとしては、部分安定化ジルコニアの焼結体を用いた。図示しないが、第2セパレータ70Zには、空気極50Z側の主面に空気を供給するための空気流路が設けられていた。また、図示しないが、第2セパレータ70Zには、複数の貫通孔を設けた後、各々の貫通孔に導電ペーストを充填することにより、空気極50Zに接続しつつ、空気極50Zと反対側の主面に露出した複数の貫通導体(好ましい構成材料は、銀及びパラジウムの合金、又は、白金)を形成した。
 そして、発電効率η=A×V×Uf、という式に基づき、単セル試料100Zの発電効率を測定した。
 Aは、A=n×F/ΔHで定義される定数である。
 nは、反応に関係する電子数である。本評価では、純メタン(CH)換算で8電子反応を起こす都市ガスを燃料として想定し、n=8とした。
 Fは、ファラデー定数であり、本評価では、F=9.648×10C/mоlとした。
 ΔHは、燃焼熱であり、本評価では、ΔH=890.36kJ/mоl(HHV:高位発熱量の場合)、ΔH=802.29kJ/mоl(LHV:低位発熱量の場合)とした。
 以上より、A≒0.867(HHVの場合)、A≒0.962(LHVの場合)と算出されるが、本評価では、A=0.962(LHVの場合)とした。
 Vは、単セル試料100Z内の電圧であり、以下のようにして測定された。まず、電流及び電圧の測定が可能な金属端子治具と、燃料ガス及び空気の供給機構と、昇温機構と、を有する測定装置内に、単セル試料100Zを設置した。次に、単セル試料100Zに対して、第1セパレータ60Zの主面に露出した複数の貫通導体と、第2セパレータ70Zの主面に露出した複数の貫通導体とに、金属端子治具を接触させた。この状態で、測定装置内を750℃まで昇温させた後、燃料極40Z側には、Ufで示される燃料利用率が72.5%となるように計算された量の燃料ガスを供給し、空気極50Z側には、空気利用率が30%となるように計算された量の空気を供給した。そして、電流密度0.4A/cmの条件下で、市販のポテンショ/ガルバノスタットを用いた4端子法により、単セル試料100Z内の電圧Vを測定した。
 上述した通り、Ufは、燃料利用率であり、本評価では、想定値としてUf=72.5%とした。
<強度>
 まず、島津製作所製の精密万能試験機「AGS-X」において、電解質シートを中心にセットし、下部の治具を32.5mmの間隔でセットし、上部の治具を65mmの間隔でセットした。そして、上部の治具を5mm/分の速度で下降させることにより、電解質シートの4点曲げ試験を行い、電解質シートの強度を測定した。判定基準については、比較例1の電解質シートに対する強度の低下率を指標として、以下の通りとした。
 ○(良):強度の低下率が20%未満であった。
 ×(不良):強度の低下率が20%以上であった。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、第1凹部の開口部の径が60μm以上であり、かつ、第1凹部の底面の径に対する第1凹部の開口部の径の比率が30%以上である実施例1~6の電解質シートでは、単セルに組み込まれたときに、比較例1~4の電解質シートよりも高い発電効率を実現できた。ちなみに、単セルにおいて高い発電効率を実現するためには、上述した式(発電効率η=A×V×Uf)からも分かるように、電圧(V)及び燃料利用率(Uf)の少なくとも一方を高めることが求められる。本評価では、上述したように燃料利用率(Uf)を定数(72.5%)と想定したため、実施例1~6の電解質シートによれば、電圧(V)を高められることが分かった。
 更に、電解質シートの厚みに対する第1凹部の深さの比率が20%以下である実施例1、2、3、5、及び、6の電解質シートでは、強度が高かった。
 第1凹部が設けられていない比較例1の電解質シートでは、表面積が充分に大きくならず、高い発電効率を実現できなかった。
 第2凹部が設けられていない比較例2の電解質シートでは、表面積が充分に大きくならず、高い発電効率を実現できなかった。
 第1凹部の開口部の径が60μmよりも小さい比較例3の電解質シートでは、燃料極用のスラリー及び空気極用のスラリーが第1凹部の内部に入り込みにくく、結果的に、電解質シートと燃料極との接触面積が大きくならず、更には、電解質シートと空気極との接触面積が大きくならなかったため、高い発電効率を実現できなかった。
 第1凹部の底面の径に対する第1凹部の開口部の径の比率が30%よりも低い比較例4の電解質シートでは、燃料極用のスラリー及び空気極用のスラリーが第1凹部の内部に入り込みにくく、結果的に、電解質シートと燃料極との接触面積が大きくならず、更には、電解質シートと空気極との接触面積が大きくならなかったため、高い発電効率を実現できなかった。
1g セラミックグリーンシート
1h シート貫通孔
1s 未焼結板状体
1t セラミックグリーンテープ
10、10A、10B、10Z 固体酸化物形燃料電池用の電解質シート(電解質シート)
10a 電解質シートの第1主面
10b 電解質シートの第2主面
10p セラミック板状体
20、20s 第1凹部
30、30s 第2凹部
40、40Z 燃料極
50、50Z 空気極
60Z 第1セパレータ
70Z 第2セパレータ
100 固体酸化物形燃料電池用の単セル(単セル)
100Z 単セル試料
M1 第1金型
M2 第2金型
P1 第1凹部の間隔(ピッチ)
P2 第2凹部の間隔(ピッチ)
Q1 第1凹部の開口部の径
Q2 第2凹部の開口部の径
R1 第1凹部の底面の径
S1 第1凹部の深さ
S2 第2凹部の深さ
T 電解質シートの厚み
X キャスティング方向
Y キャスティング方向に直交する方向

Claims (3)

  1.  複数の第1凹部と、前記第1凹部よりも径が小さい複数の第2凹部と、が少なくとも一方主面に設けられ、
     複数の前記第1凹部は、互いに間隔を空けて設けられ、
     複数の前記第2凹部は、隣り合う前記第1凹部の開口部間と、前記第1凹部の側面と、前記第1凹部の底面と、に設けられ、
     前記第1凹部の開口部の径は、60μm以上であり、
     前記第1凹部の底面の径に対する前記第1凹部の開口部の径の比率は、30%以上である、ことを特徴とする固体酸化物形燃料電池用の電解質シート。
  2.  前記電解質シートの厚みに対する前記第1凹部の深さの比率は、20%以下である、請求項1に記載の電解質シート。
  3.  燃料極と、
     空気極と、
     前記燃料極と前記空気極との間に設けられた請求項1又は2に記載の電解質シートと、を備える、ことを特徴とする固体酸化物形燃料電池用の単セル。
PCT/JP2022/044868 2021-12-27 2022-12-06 固体酸化物形燃料電池用の電解質シート及び固体酸化物形燃料電池用の単セル WO2023127423A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021212706 2021-12-27
JP2021-212706 2021-12-27

Publications (1)

Publication Number Publication Date
WO2023127423A1 true WO2023127423A1 (ja) 2023-07-06

Family

ID=86998571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044868 WO2023127423A1 (ja) 2021-12-27 2022-12-06 固体酸化物形燃料電池用の電解質シート及び固体酸化物形燃料電池用の単セル

Country Status (1)

Country Link
WO (1) WO2023127423A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324190A (ja) * 2005-05-20 2006-11-30 Shinko Electric Ind Co Ltd 固体酸化物型燃料電池およびその製造方法
JP2018067416A (ja) * 2016-10-18 2018-04-26 株式会社日本触媒 固体酸化物形燃料電池用電解質シート

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324190A (ja) * 2005-05-20 2006-11-30 Shinko Electric Ind Co Ltd 固体酸化物型燃料電池およびその製造方法
JP2018067416A (ja) * 2016-10-18 2018-04-26 株式会社日本触媒 固体酸化物形燃料電池用電解質シート

Similar Documents

Publication Publication Date Title
US7351492B2 (en) Solid oxide type fuel cell-use electrode support substrate and production method therefor
KR101608293B1 (ko) 연료전지 셀, 셀 스택, 연료전지 모듈, 및 연료전지 장치
JP2022009365A (ja) セル、セルスタック装置、モジュールおよびモジュール収納装置
WO2023127423A1 (ja) 固体酸化物形燃料電池用の電解質シート及び固体酸化物形燃料電池用の単セル
JP6044717B2 (ja) 電気化学素子用セラミック基体及びその製造方法並びに燃料電池及び燃料電池スタック
JP2007194170A (ja) 平板型固体酸化物形燃料電池およびその作製方法
JP6317710B2 (ja) 固体酸化物形電気化学セル、固体酸化物形電気化学セルの製造方法、固体酸化物形燃料電池、及び高温水蒸気電気分解装置
CN114503318B (zh) 固体氧化物型燃料电池用电解质片、固体氧化物型燃料电池用电解质片的制造方法和固体氧化物型燃料电池用单电池
JP7416285B2 (ja) 固体酸化物形燃料電池用電解質シート、固体酸化物形燃料電池用電解質シートの製造方法、及び、固体酸化物形燃料電池用単セル
CN114207892B (zh) 固体氧化物型燃料电池用电解质片、固体氧化物型燃料电池用电解质片的制造方法及固体氧化物型燃料电池用单电池
JP7255688B2 (ja) 固体酸化物形燃料電池用電解質シート及び固体酸化物形燃料電池用単セル
JP7248125B2 (ja) 固体酸化物形燃料電池用の電解質シート、固体酸化物形燃料電池用の電解質シートの製造方法および固体酸化物形燃料電池用の単セル
CN114175328B (zh) 固体氧化物型燃料电池用的电解质片、固体氧化物型燃料电池用的电解质片的制造方法以及固体氧化物型燃料电池用的单体电池
JP5412534B2 (ja) 複合基板の製造方法および固体酸化物形燃料電池セルの製造方法
JP6317711B2 (ja) 固体酸化物形電気化学セル、固体酸化物形燃料電池、及び高温水蒸気電気分解装置
CN114270583A (zh) 固体氧化物型燃料电池用电解质片、固体氧化物型燃料电池用电解质片的制造方法以及固体氧化物型燃料电池用单电池
Yoon et al. Effect of anode active layer on performance of single step co-fired solid oxide fuel cells (SOFCs)
JP2013149349A (ja) 積層型固体酸化物形燃料電池
JP2009295497A (ja) 複合基板、複合基板の製造方法、固体酸化物形燃料電池セル、固体酸化物形燃料電池および固体酸化物形燃料電池の製造方法
Townsend Enhanced sintering of YSZ ceramics with low level nickel oxide dopants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023570774

Country of ref document: JP

Kind code of ref document: A