WO2023125988A1 - 血液细胞分析仪、方法以及感染标志参数的用途 - Google Patents

血液细胞分析仪、方法以及感染标志参数的用途 Download PDF

Info

Publication number
WO2023125988A1
WO2023125988A1 PCT/CN2022/144232 CN2022144232W WO2023125988A1 WO 2023125988 A1 WO2023125988 A1 WO 2023125988A1 CN 2022144232 W CN2022144232 W CN 2022144232W WO 2023125988 A1 WO2023125988 A1 WO 2023125988A1
Authority
WO
WIPO (PCT)
Prior art keywords
infection
parameter
blood cell
leukocyte
sample
Prior art date
Application number
PCT/CN2022/144232
Other languages
English (en)
French (fr)
Inventor
张晓梅
潘世耀
李进
马玉帅
祁欢
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Publication of WO2023125988A1 publication Critical patent/WO2023125988A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood

Definitions

  • the present application relates to the field of in vitro diagnosis, in particular to a blood cell analyzer, a method for monitoring the development of infection in patients with infection, especially severe infection or sepsis, and the parameters of infection markers in monitoring infected patients, especially severe infection Use in the development of an infectious condition in a patient or septic patient.
  • Sepsis sepsis
  • the incidence of sepsis is high.
  • the fatality rate of sepsis has surpassed that of myocardial infarction, and it has become the main cause of death of non-heart disease patients in the intensive care unit.
  • the mortality rate of sepsis is still as high as 30% to 70%.
  • the cost of sepsis treatment is high, and the consumption of medical resources is large, which seriously affects the quality of life of human beings and poses a huge threat to human health.
  • Microbial culture is considered the most reliable gold standard, which can directly culture and detect bacteria in clinical specimens such as body fluids or blood, thereby interpreting the type and drug resistance of bacteria, which can directly guide clinical medication.
  • the microbial culture method has a long reporting period, the samples are easily contaminated, and the false negative rate is high, which cannot well meet the requirements of rapid and accurate clinical results.
  • CRP C-reactive protein
  • PCT procalcitonin
  • SAA serum amyloid A
  • Serum antigen and antibody detection can confirm specific virus types, but it has limited effect on the situation where the type of pathogen is not clear, and the detection cost is high. Additional inspection fees need to be charged, which increases the financial burden of patients.
  • Routine blood test can prompt the occurrence of infection and identify the type of infection to a certain extent.
  • the blood routine WBC ⁇ Neu% currently used in clinical practice is affected by many aspects, such as being easily affected by other non-infectious inflammatory reactions and normal physiological fluctuations of the body, and cannot accurately and timely reflect the patient's condition. bad.
  • the task of the present application is to provide a blood cell analyzer, a method for monitoring the development of an infection in an infected patient, and the use of infection marker parameters in monitoring the development of an infection in an infected patient.
  • Infection marker parameters with high monitoring effectiveness can be obtained from the original signals of the blood routine detection process, so that users can be provided with the infection condition development of infected patients, especially severe infection patients or sepsis patients, based on the infection marker parameters accurately and quickly Tips for the situation.
  • the first aspect of the present application provides a blood cell analyzer, which includes:
  • a sample suction device used to draw blood samples to be tested from infected patients, especially severe infected patients or patients with sepsis;
  • a sample preparation device for preparing a measurement sample containing a part of the blood sample to be tested, a hemolyzing agent, and a staining agent for leukocyte classification
  • An optical detection device comprising a flow chamber, a light source and a light detector, the flow chamber is used for the measurement sample to pass through, the light source is used to irradiate the measurement sample passing through the flow chamber with light, and the light detector is used for optical information produced upon detection of said assay sample being irradiated with light as it passes through said flow cell; and
  • Processor configured as:
  • the infection marker parameter is used to monitor the infection condition development of the infected patient.
  • the second aspect of the present application also provides a method for monitoring the development of infection in patients with infection, especially in patients with severe infection or sepsis, the method comprising:
  • the third aspect of the present application also provides the use of infection marker parameters in monitoring the development of infection in patients with infection, especially in patients with severe infection or sepsis, wherein the infection is obtained by the following method Flag parameters:
  • An infection marker parameter is obtained based on the at least one white blood cell parameter.
  • the infection marker parameter is calculated based on at least one leukocyte parameter obtained from the detection channel used for leukocyte classification, and based on the infection marker parameter, it is possible to effectively monitor infected patients, especially severely infected patients or The development of infection conditions in patients with sepsis, so as to quickly, accurately and efficiently assist doctors in judging the development of infection conditions in infected patients.
  • Fig. 1 is a schematic structural diagram of a blood cell analyzer according to some embodiments of the present application.
  • Fig. 2 is a schematic structural diagram of an optical detection device according to some embodiments of the present application.
  • Fig. 3 is a two-dimensional scatter diagram of SS-FL of a measurement sample according to some embodiments of the present application.
  • Fig. 4 is a two-dimensional scattergram of SS-FS of a measurement sample according to some embodiments of the present application.
  • Fig. 5 is a three-dimensional scatter diagram of SS-FS-FL of a measurement sample according to some embodiments of the present application.
  • Fig. 6 shows the determination of cell characteristic parameters of neutrophil populations in a sample according to some embodiments of the present application.
  • Fig. 7 is a schematic flow chart of judging the development of an infection condition in an infected patient according to some embodiments of the present application.
  • Fig. 8 is a scatter diagram of abnormal conditions of a measurement sample according to some embodiments of the present application.
  • FIG. 9 is a schematic flowchart of a method for monitoring disease progression of an infected patient according to some embodiments of the present application.
  • Figures 10 to 12 are graphs showing numerical changes of infection marker parameters composed of single white blood cell parameters for monitoring the disease progression of patients with severe infection according to some embodiments of the present application.
  • Fig. 13 is a graph showing numerical changes of infection marker parameters composed of two white blood cell parameters for monitoring the disease progression of patients with severe infection according to some embodiments of the present application.
  • 14 to 16 are graphs showing numerical changes of infection marker parameters composed of single white blood cell parameters used for monitoring the disease progression of sepsis patients according to some embodiments of the present application.
  • Fig. 17 is a graph showing numerical changes of infection marker parameters composed of two white blood cell parameters for monitoring the progression of a sepsis patient according to some embodiments of the present application.
  • Fig. 18 is an algorithm calculation step of the area parameter D_NEU_FLSS_Area of the neutrophil population according to some embodiments of the present application.
  • first ⁇ second ⁇ third involved in the embodiment of this application is only to distinguish similar objects, and does not represent a specific ordering of objects. Understandably, “first ⁇ second ⁇ third Three” are interchangeable in a specific order or sequence where permissible.
  • Scatter diagram It is a two-dimensional or three-dimensional diagram generated by a blood cell analyzer, on which are distributed two-dimensional or three-dimensional characteristic information of multiple particles, where the X-coordinate axis, Y-coordinate axis and The Z coordinate axis represents a characteristic of each particle.
  • the X coordinate axis represents the forward scattered light intensity
  • the Y coordinate axis represents the fluorescence intensity
  • the Z axis represents the side scattered light intensity.
  • the term "scatter plot" used in the present disclosure not only refers to a distribution graph of at least two groups of data in the form of data points in a Cartesian coordinate system, but also includes data arrays, that is, it is not limited by its graphical presentation form.
  • Particle group/cell group distributed in a certain area of the scatter diagram, a particle group formed by multiple particles with the same cell characteristics, such as white blood cell (including all types of white blood cell) groups, and white blood cell subpopulations, such as medium granulocytes, lymphocytes, monocytes, eosinophils, or basophils.
  • white blood cell including all types of white blood cell
  • white blood cell subpopulations such as medium granulocytes, lymphocytes, monocytes, eosinophils, or basophils.
  • Blood shadow fragment particles obtained by dissolving red blood cells and platelets in the blood with a hemolytic agent.
  • blood cell analyzers generally count and classify white blood cells through DIFF channels and/or WNB channels.
  • the blood cell analyzer uses the DIFF channel to classify white blood cells into four types of white blood cells, and classify white blood cells into four types: lymphocytes (Lym), monocytes (Mon), neutrophils (Neu), and eosinophils (Eos). leukocyte.
  • the blood cell analyzer recognizes nucleated red blood cells through the WNB channel, and can simultaneously obtain the number of nucleated red blood cells, white blood cells and basophils.
  • Combining the DIFF channel with the WNB channel can result in five classifications of white blood cells, including lymphocytes (Lym), monocytes (Mon), neutrophils (Neu), eosinophils (Eos), basophils cells (Baso) five types of white blood cells.
  • Lym lymphocytes
  • Mon monocytes
  • Neu neutrophils
  • Eos eosinophils
  • Baso basophils cells
  • the blood cell analyzer used in this application classifies and counts the particles in the blood sample through the flow cytometry technology combining the laser light scattering method and the fluorescent staining method.
  • the principle of the hematology analyzer for detecting blood samples can be, for example, as follows: first draw the blood sample, and treat the blood sample with a hemolytic agent and a fluorescent dye, wherein the red blood cells are destroyed and dissolved by the hemolytic agent, while the white blood cells will not be dissolved, but the fluorescent dye With the help of a hemolytic agent, it can enter the nucleus of the white blood cell and combine with the nucleic acid substances in the nucleus; then the particles in the sample pass through the detection holes irradiated by the laser beam one by one.
  • the characteristics of the particles themselves can block or change the direction of the laser beam, thereby generating scattered light at various angles corresponding to its characteristics, and the scattered light can be obtained after the signal detector receives the particle structure and information about the composition.
  • forward scattered light (Forward scatter, FS) reflects the number and volume of particles
  • side scattered light (Side scatter, SS) reflects the complexity of the internal structure of cells (such as intracellular particles or nuclei)
  • fluorescence (Fluorescence, FL ) reflects the content of nucleic acid substances in cells. Using this light information, the particles in the sample can be classified and counted.
  • Fig. 1 is a schematic structural diagram of a blood cell analyzer according to some embodiments of the present application.
  • the blood cell analyzer 100 includes a sample suction device 110 , a sample preparation device 120 , an optical detection device 130 and a processor 140 .
  • the blood cell analyzer 100 also has a not-shown fluid circuit system, which is used to communicate with the sample suction device 110, the sample preparation device 120 and the optical detection device 130, so as to carry out liquid delivery among these devices.
  • the sample aspirating device 110 is used to aspirate the subject's blood sample to be tested.
  • the sample aspirating device 110 has a sampling needle (not shown) for aspirating a blood sample to be tested.
  • the sample aspirating device 110 may further include a driving device, which is used to drive the sampling needle to quantitatively absorb the blood sample to be tested through the nozzle of the sampling needle.
  • the sample suction device 110 can deliver the sucked blood sample to the sample preparation device 120 .
  • the sample preparation device 120 is used at least to prepare a measurement sample containing a part of a blood sample to be measured, a hemolyzing agent, and a staining agent for leukocyte classification.
  • the hemolytic agent is used to lyse red blood cells in the blood, break the red blood cells into fragments, but keep the shape of the white blood cells basically unchanged.
  • the hemolytic agent may be any one or a combination of cationic surfactants, nonionic surfactants, anionic surfactants, and amphiphilic surfactants.
  • the hemolytic agent may include at least one of alkyl glycosides, triterpene saponins, and steroidal saponins.
  • the staining agent is a fluorescent dye used to classify white blood cells, for example, it can be a fluorescent dye that can classify white blood cells in a blood sample into at least three white blood cell subgroups (monocytes, lymphocytes, and neutrophils). ) fluorescent dyes.
  • the staining agent may include membrane-specific dyes or mitochondria-specific dyes, more details of which can be referred to PCT patent application WO2019/206300A1 filed by the applicant on April 26, 2019, the entire disclosure of which is incorporated by reference merged here.
  • the dyeing agent may include a cationic cyanine compound.
  • a cationic cyanine compound please refer to the Chinese patent application CN101750274A submitted by the applicant on September 28, 2019, the entire disclosure of which is incorporated herein by reference.
  • the sample preparation device 120 may include at least one reaction cell and a reagent supply device (not shown in the figure).
  • the at least one reaction pool is used to receive the blood sample to be tested sucked by the sample suction device 110, and the reagent supply device provides processing reagents (including hemolyzing agent, staining agent, etc.)
  • the blood sample to be tested sucked by the sample device 110 is mixed with the processing reagent supplied by the reagent supply device in the reaction cell to prepare a measurement sample.
  • the at least one reaction cell may include a first reaction cell and a second reaction cell
  • the reagent supply device may include a first reagent supply part and a second reagent supply part.
  • the sample aspirating device 110 is used for partially distributing the aspirated blood samples to be tested to the first reaction pool and the second reaction pool respectively.
  • the first reagent supply part is used to supply the first hemolyzing agent and the first staining agent used for leukocyte classification to the first reaction pool, so as to distribute the part of the blood sample to be tested in the first reaction pool together with the first hemolyzing agent and the first staining agent.
  • the dyes are mixed and reacted to prepare a first measurement sample.
  • the second reagent supply part is used to supply the second hemolyzing agent and the second staining agent for identifying nucleated erythrocytes to the second reaction pool, so that part of the blood sample to be tested is distributed to the second reaction pool together with the second hemolyzing agent and the second staining agent.
  • the second dye is mixed and reacted to prepare a second measurement sample.
  • the optical detection device 130 includes a flow chamber for allowing the measurement sample to pass through, a light source for irradiating the measurement sample passing through the flow chamber with light, and a light detector for detecting The detector is used to detect the optical information generated by the measurement sample when it is irradiated with light when it passes through the flow cell.
  • the first measurement sample and the second measurement sample respectively pass through the flow chamber
  • the light source irradiates the first measurement sample and the second measurement sample respectively passing through the flow chamber
  • the light detector is used to detect the first measurement sample and the second measurement sample.
  • the first optical information and the second optical information generated after the sample is irradiated with light when passing through the flow chamber respectively are measured.
  • the first detection channel also referred to as DIFF channel
  • the second detection channel of red blood cells also referred to as the WNB channel
  • a flow cell refers to a chamber of focused liquid flow suitable for detection of light scattering and fluorescence signals.
  • a particle such as a blood cell
  • Light detectors may be positioned at one or more different angles relative to the incident light beam to detect light scattered by the particle to obtain a light scatter signal. Since different particles have different light scattering properties, the light scattering signal can be used to distinguish different particle populations.
  • light scatter signals detected near the incident light beam are often referred to as forward light scatter signals or small angle light scatter signals. In some embodiments, the forward light scatter signal may be detected from an angle of about 1° to about 10° from the incident beam.
  • the forward light scatter signal may be detected from an angle of about 2° to about 6° from the incident beam.
  • the light scatter signal detected at about 90° to the incident light beam is often referred to as the side light scatter signal.
  • the side light scatter signal may be detected from an angle of about 65° to about 115° from the incident light beam.
  • the fluorescent signal from blood cells stained with a fluorochrome is also typically detected at about 90° to the incident beam.
  • the photodetector may include a forward scattered light detector for detecting forward scattered light signal (or forward scattered light intensity), a side scattered light signal for detecting side scattered light signal (or side scattered light intensity ) side scatter light detector and a fluorescence detector for detecting fluorescence signal (or fluorescence intensity).
  • the optical information may include measuring forward scattered light signals, side scattered light signals and fluorescent signals of particles in the sample.
  • FIG. 2 shows a specific example of the optical detection device 130 .
  • the optical detection device 130 has a light source 101 , a beam shaping component 102 , a flow chamber 103 and a forward scattered light detector 104 sequentially arranged on a straight line.
  • a dichroic mirror 106 is arranged at an angle of 45° to the straight line.
  • Part of the side light emitted by the particles in the flow chamber 103 passes through the dichroic mirror 106 and is captured by the fluorescence detector 105 arranged at the rear of the dichroic mirror 106 at an angle of 45° with the dichroic mirror 106;
  • the side light is reflected by the dichroic mirror 106 and captured by a side scatter light detector 107 arranged in front of the dichroic mirror 106 at an angle of 45° to the dichroic mirror 106 .
  • the processor 140 is used to process and calculate the data to obtain the required results. For example, a two-dimensional scattergram or a three-dimensional scattergram can be generated according to various optical signals collected, and on the scattergram according to gating ) method for particle analysis.
  • the processor 140 can also perform visualization processing on the intermediate calculation result or the final calculation result, and then display it through the display device 150 .
  • the processor 140 is configured to implement the method steps described in detail below.
  • the processor includes but is not limited to a central processing unit (Central Processing Unit, CPU), a micro control unit (Micro Controller Unit, MCU), a field programmable gate array (Field-Programmable Gate Array, FPGA), A device such as a digital signal processor (DSP) used to interpret computer instructions and process data in computer software.
  • the processor is used to execute various computer application programs in the computer-readable storage medium, so that the blood cell analyzer 100 executes corresponding detection procedures and analyzes optical information or optical signals detected by the optical detection device 130 in real time.
  • the blood cell analyzer 100 may further include a first housing 160 and a second housing 170 .
  • the display device 150 may be, for example, a user interface.
  • the optical detection device 130 and the processor 140 are disposed inside the second casing 170 .
  • the sample preparation device 120 is, for example, disposed inside the first housing 160
  • the display device 150 is, for example, disposed on the outer surface of the first housing 160 and used to display the detection results of the hematology analyzer.
  • blood routine detection using a blood cell analyzer can prompt the occurrence of infection and identify the type of infection, but the blood routine WBC ⁇ Neu% currently used in clinical practice is affected by many aspects and cannot accurately and timely reflect patient condition. Moreover, the sensitivity and specificity of the existing technology in the diagnosis and treatment of bacterial infection and sepsis are not good.
  • the inventors have discovered by accident the white blood cell parameters of the DIFF channel, especially the cell characteristic parameters, that can be used to monitor the development of infection with high efficiency through in-depth research on the original signal characteristics of blood routine testing of blood samples from a large number of infected patients.
  • neutrophils and monocytes are the body's first barrier against infection, and are valuable in reflecting the degree of infection; the inventors have found through research that the characteristic parameters of neutrophils can be used to monitor the development of infection conditions, and further Therefore, the characteristic parameters of neutrophils combined with the characteristic parameters of monocytes can realize a more efficient monitoring of infection disease progression. Therefore, the embodiment of the present application first proposes a blood cell analyzer capable of monitoring the development of infection in patients with infection, especially in patients with severe infection or sepsis, including:
  • a sample suction device 110 used to suck blood samples to be tested from infected patients
  • a sample preparation device 120 configured to prepare an assay sample containing the blood sample to be tested, a hemolytic agent and a staining agent for leukocyte classification;
  • the optical detection device 130 includes a flow chamber, a light source and a light detector, the flow chamber is used for the measurement sample to pass through, the light source is used to illuminate the measurement sample passing through the flow chamber with light, and the light detection a device for detecting optical information generated by the measurement sample when it is irradiated with light while passing through the flow chamber; and
  • Processor 140 is configured to:
  • the infection marker parameter is used to monitor the infection condition development of the infected patient.
  • the at least one white blood cell parameter includes a cell characteristic parameter, that is, the at least one white blood cell parameter includes a cell characteristic parameter of the at least one white blood cell particle cluster.
  • the at least one white blood cell parameter includes a cell characteristic parameter of the at least one white blood cell particle cluster.
  • the cell characteristic parameters of the cell population do not include the cell count or classification parameters of the cell population, but include the characteristic parameters reflecting the cell characteristics such as the volume of the cells in the cell population, internal granularity, internal nucleic acid content, etc. .
  • the cell characteristic parameters of the white blood cell cluster can be obtained by analyzing all particle information of the white blood cell cluster, or can be obtained by analyzing part of the particle information of the white blood cell cluster.
  • the cell characteristic parameters of the leukocyte particle cluster can be obtained by distinguishing the part of the sample to be tested that does not overlap with the part of the leukocyte particle cluster in the normal human blood sample that may carry infection characteristic information.
  • the processor 140 may be configured to monitor the development of the infection condition of the infected patient according to the infection marker parameters and output prompt information corresponding to the development of the infection condition.
  • the processor 140 may be configured to output the prompt information to a display device for display.
  • the display device here may be the display device 150 of the hematology analyzer 100 , or other display devices communicatively connected with the processor 140 .
  • the processor 140 may output the prompt information to the display device on the user (doctor) side through the hospital information management system.
  • the processor is further configured to:
  • the blood cell analyzer includes an expert system or is communicatively connected with an expert system; the processor is further configured to: associate the plurality of values of the infection marker parameters with the identity of the infected patient information is sent to the expert system in association; and the expert system is configured to receive and store the plurality of values of the infection signature parameter in association with identity information of the infected patient.
  • the expert system is further configured to: receive a viewing instruction from the user; and in response to the viewing instruction, display the plurality of values of the infection flag parameters on the display in the form of a curve that changes over time. on the device.
  • leukocytes in the measurement sample can be classified into at least monocyte population, neutrophil population, and lymphocyte population based on optical information, and in particular, can be classified into monocyte population, neutrophil population, and neutrophil population. , lymphocyte population and eosinophil population.
  • Fig. 3 is a two-dimensional scatter diagram generated based on the side scattered light signal SS and the fluorescence signal FL in the optical information, and Fig.
  • FIG. 4 is a two-dimensional scatter diagram generated based on the forward scattered light signal FS and the side scattered light signal SS in the optical information
  • Figure 5 is a three-dimensional scattergram generated based on the forward scattered light signal FS, side scattered light signal SS and fluorescence signal FL in the optical information.
  • the at least one leukocyte particle cluster may comprise at least one of monocyte population Mon, neutrophil population Neu, lymphocyte population Lym and eosinophil population Eos in the assay sample.
  • a cell population that is, the at least one white blood cell parameter may include one or more of the cell characteristic parameters of monocyte population Mon, neutrophil population Neu, lymphocyte population Lym, and eosinophil population Eos in the test sample. multiple parameters.
  • the at least one leukocyte particle cluster may include at least one cell population in the monocyte population Mon and the neutrophil population Neu in the assay sample, that is, the at least one leukocyte parameter may include in the assay sample One or more parameters, such as one or two or more than two parameters, among the cell characteristic parameters of monocyte population Mon and neutrophil population Neu.
  • the at least one white blood cell particle cluster may also include a white blood cell population (including all types of white blood cells) Wbc, that is, the at least one white blood cell parameter may include measuring the cell characteristic parameters of the white blood cell population Wbc in the sample.
  • the at least one white blood cell parameter may include one or more of the following parameters: the width of the forward scattered light intensity distribution of the white blood cell particle cluster, the center of gravity of the forward scattered light intensity distribution, the forward scattered light intensity Distribution coefficient of variation, width of side scattered light intensity distribution, center of gravity of side scattered light intensity distribution, coefficient of variation of side scattered light intensity distribution, width of fluorescence intensity distribution, center of gravity of fluorescence intensity distribution, coefficient of variation of fluorescence intensity distribution and the leukocyte particle cluster
  • the area of the distribution region in the two-dimensional scatter plot generated by two light intensities of forward scattered light intensity, side scattered light intensity and fluorescence intensity and the monocyte population in the The volume of the distribution area in a 3D scatterplot generated from side-scattered light intensity and fluorescence intensity.
  • the at least one white blood cell parameter may include one or more of the following parameters, such as one or two parameters: the distribution width of the forward scattered light intensity of the monocyte population in the measurement sample D_MON_FS_W, center of gravity of forward scattered light intensity distribution D_MON_FS_P, coefficient of variation of forward scattered light intensity distribution D_MON_FS_CV, width of side scattered light intensity distribution D_MON_SS_W, center of gravity of side scattered light intensity distribution D_MON_SS_P, coefficient of variation of side scattered light intensity distribution D_MON_SS_CV, fluorescence Intensity distribution width D_MON_FL_W, fluorescence intensity distribution center of gravity D_MON_FL_P, fluorescence intensity distribution coefficient of variation D_MON_FL_CV and the two-dimensional light intensity generated by the monocyte population in forward scattered light intensity, side scattered light intensity and fluorescence intensity
  • the area of the distribution area in the scatter diagram D_MON_FLFS_Area the area of the distribution area of the monocyte population in the two-dimensional scatter diagram generated by
  • the at least one white blood cell parameter may include one or more of the following parameters, such as one or two parameters: the forward scattered light intensity distribution width D_MON_FS_W of the mononuclear cell population in the measurement sample, the forward Scattered light intensity distribution center of gravity D_MON_FS_P, forward scattered light intensity distribution coefficient of variation D_MON_FS_CV, side scattered light intensity distribution width D_MON_SS_W, side scattered light intensity distribution center of gravity D_MON_SS_P, side scattered light intensity distribution coefficient of variation D_MON_SS_CV, fluorescence intensity distribution width D_MON_FL_W , the center of gravity of the fluorescence intensity distribution D_MON_FL_P, the coefficient of variation of the fluorescence intensity distribution D_MON_FL_CV, and the monocyte population in the two-dimensional scatter diagram generated by two light intensities in the forward scattered light intensity, side scattered light intensity and fluorescence intensity
  • the at least one white blood cell parameter may also include determining the classification parameter Mon% or counting parameter Mon# of the monocyte population Mon in the sample or the classification parameter Neu% or counting of the neutrophil population Neu The parameter Neu# or the classification parameter Lym% of the lymphocyte population Lym or the counting parameter Mon#.
  • FIG. 6 shows a cell for measuring the neutrophil population in a sample according to some embodiments of the present application. Characteristic Parameters.
  • D_NEU_FL_W represents the width of the fluorescence intensity distribution of the neutrophil population in the measurement sample, wherein D_NEU_FL_W is equal to the upper limit S1 of the fluorescence intensity distribution of the neutrophil population and the lower limit of the fluorescence intensity distribution of the neutrophil population Difference of S2.
  • D_NEU_FL_P represents the center of gravity of the fluorescence intensity distribution of the neutrophil population in the test sample, that is, the average position of the neutrophils in the FL direction, where D_NEU_FL_P is calculated by the following formula:
  • FL(i) is the fluorescence intensity of the i-th neutrophil.
  • D_NEU_FL_CV represents the coefficient of variation of the fluorescence intensity distribution of the neutrophil population in the measurement sample, wherein D_NEU_FL_CV is equal to dividing D_NEU_FL_W by D_NEU_FL_P.
  • D_NEU_FLSS_Area represents the area of the distribution area of the neutrophil population in the measurement sample in the scattergram generated from the side scattered light intensity and the fluorescence intensity.
  • C1 represents the contour distribution curve of the neutrophil population, for example, the total number of positions within the contour distribution curve C1 can be recorded as the area parameter D_NEU_FLSS_Area of the neutrophil population.
  • the D_NEU_FLSS_Area can also be implemented through the following algorithm steps (FIG. 18):
  • Construct vector V1 (P1-P2) and take P1 as the starting point of the vector, find another particle P3 in the neutrophil (NEU) particle cluster, and construct vector V2 (P1-P3), so that vector V2 (P1- P3) forms the largest angle with the vector V1 (P1-P2);
  • the D_NEU_FLSS_Area is the product of the major axis a and the minor axis b.
  • the volume parameter of the distribution area of the neutrophil population in the three-dimensional scatter diagram generated by the forward scattered light intensity, side scattered light intensity and fluorescence intensity can also be obtained by a corresponding calculation method.
  • infection marker parameters may consist of individual white blood cell parameters.
  • the infection marker parameter may be a linear or non-linear function of individual leukocyte parameters.
  • the infection marker parameter can also be calculated by combining at least two white blood cell parameters, that is, the infection marker parameter is a function of at least two white blood cell parameters, such as a linear function. From the cell type level, for example, neutrophils and monocytes are the first barrier of the body against infection, and they are both valuable in reflecting the degree of infection, so the characteristic parameters of neutrophils and monocytes are used in combination The characteristic parameters of the present invention can improve the efficacy of monitoring, prediction, diagnosis and/or guiding treatment of the present invention.
  • the infection marker parameters may be calculated from white blood cell parameters and other blood cell parameters, that is, the infection marker parameters may be calculated from at least one white blood cell parameter and at least one other blood cell parameter.
  • the other blood cell parameter may be a differential or count parameter of platelets (PLT), nucleated red blood cells (NRBC), or reticulocytes (RET).
  • the processor 140 is further configured to:
  • the infection marker parameter is calculated based on the at least one white blood cell parameter and the at least one second white blood cell parameter.
  • the first leukocyte cluster and the second leukocyte cluster are different from each other, and can be selected from monocyte population Mon, neutrophil population Neu, lymphocyte population Lym, and eosinophil population Eos in the measurement sample. composed of groups.
  • the first leukocyte population is a monocyte population and the second leukocyte population is a neutrophil population.
  • at least one first white blood cell parameter includes at least one cell characteristic parameter of a monocyte population
  • at least one second white blood cell parameter includes at least one cell characteristic parameter of a neutrophil population.
  • the processor 140 may be further configured to combine the at least one first white blood cell parameter and the at least one second white blood cell parameter into an infection marker parameter through a linear function, that is, calculate the infection marker parameter through the following formula :
  • Y represents an infection marker parameter
  • X1 represents a first white blood cell parameter
  • X2 represents a second white blood cell parameter
  • A, B, and C are constants.
  • the at least one first white blood cell parameter and the at least one second white blood cell parameter may also be combined into an infection marker parameter through a nonlinear function, which is not specifically limited in this application.
  • the processor 140 may also be further configured to:
  • Said infection marker parameter is calculated based on said at least two leukocyte parameters, in particular via a linear function.
  • processor 140 may be further configured to monitor the development of an infection in an infected patient by:
  • the processor 140 may be further configured to: when the value of the infection flag parameter obtained through the multiple detections gradually tends to decrease, output prompt information indicating that the condition of the infected patient is getting better ; and when the values of the infection marker parameters obtained through the multiple detections gradually increase in a trend, output prompt information indicating that the infection patient's condition is getting worse.
  • the infection marker parameter values of the patient for several consecutive days, such as 7 days, after the diagnosis of infectious inflammation For example, obtain the infection marker parameter values of the patient for several consecutive days, such as 7 days, after the diagnosis of infectious inflammation.
  • these infection marker parameter values show a downward trend, it is considered that the condition of the infected patient is getting better, so the trend of getting better is given.
  • the processor 140 may be further configured to monitor the development of the infection condition of the infected patient in the following manner:
  • An infected patient is monitored for development of an infection based on a comparison of a previous value of the infection marker parameter to a first threshold and a comparison of the previous value of the infection marker parameter to a current value of the infection marker parameter.
  • the processor 140 may be further configured to, when the previous value of the infection flag parameter is greater than or equal to the first threshold:
  • the output indicates infection A warning message for the patient's condition to worsen
  • the output indicates that the infected patient is getting better but the infection is still relatively low. Heavy prompt message or no prompt message at all;
  • the processor 140 may be configured to: when the previous value of the infection flag parameter is less than the first threshold:
  • the output indicates that the condition of the infected patient fluctuates or the infection may aggravate Prompt information or not output prompt information
  • the first threshold when the infection marker parameters are used to monitor the progress of a patient with a severe infection, the first threshold may be a preset threshold for judging whether the subject has a severe infection. However, when the infection marker parameters are used to monitor the progress of a patient with sepsis, the first threshold may be a preset threshold for judging whether the subject suffers from sepsis.
  • the processor 140 may be further configured to: when the preset characteristic parameter of the at least one white blood cell particle cluster satisfies the preset condition, do not output the value of the infection flag parameter, or output the value of the infection flag parameter and at the same time output prompt information indicating that the value of the infection flag parameter is unreliable, or do not output prompt information corresponding to the development of the infection condition, Or output prompt information corresponding to the development of the infection condition and at the same time output additional information that the prompt information is unreliable.
  • the processor 140 may be configured to: when the total number of particles of the at least one white blood cell cluster is less than a third threshold, not output the value of the infection flag parameter, or output the value of the infection flag parameter value and at the same time output the prompt information indicating that the value of the infection flag parameter is unreliable, or do not output the prompt information corresponding to the development of the infection condition, or output the prompt information corresponding to the development of the infection condition and simultaneously output the additional information that the prompt information is unreliable .
  • the calculation result of the infection marker parameter may be unreliable.
  • the total number of particles of the leukocyte cluster in the measurement sample is too low, which may lead to unreliable infection marker parameters calculated from the leukocyte parameters of the leukocyte mass.
  • the processor 140 may be configured to not output the value of the infection flag parameter, or output the value of the infection flag parameter when the at least one leukocyte particle cluster overlaps with other particle clusters And at the same time output prompt information indicating that the value of the infection flag parameter is unreliable, or output no prompt information corresponding to the development of the infection condition, or output prompt information corresponding to the development of the infection condition and simultaneously output the additional information that the prompt information is unreliable.
  • the leukocyte cluster used overlaps with other leukocyte clusters.
  • the processor 140 can be further configured to: according to whether the infected patient suffers from a specific disease and/or whether there is a preset type of abnormal cells (such as blast cells, abnormal lymphocytes, immature granulocytes, etc.) in the blood sample to be tested to determine whether the infection flag parameters are reliable.
  • a preset type of abnormal cells such as blast cells, abnormal lymphocytes, immature granulocytes, etc.
  • the processor 140 may be configured to not output the value of the infection flag parameter, or output The value of the infection flag parameter and at the same time output prompt information indicating that the value of the infection flag parameter is unreliable, or do not output prompt information corresponding to the development of the infection condition, or output prompt information corresponding to the development of the infection condition and output the prompt at the same time Additional information with unreliable information. Understandably, patients with blood disorders have abnormal blood patterns, making monitoring based on this infection marker parameter unreliable.
  • the processor 140 may acquire whether the patient suffers from a blood disease according to the patient's identity information (for example, including department information).
  • the patient's identity information for example, including department information.
  • the processor 140 may be configured to determine whether there are abnormal cells, especially primitive cells, in the blood sample to be tested according to the optical information.
  • the processor 140 can also be configured to perform data processing on the white blood cell parameters before calculating the infection marker parameters, such as denoising (impurity particles) interference (as shown in Figure 8(c)) or logarithmic processing , in order to more accurately calculate the infection marker parameters, such as avoiding signal changes caused by different instruments and different reagents.
  • the infection marker parameters such as denoising (impurity particles) interference (as shown in Figure 8(c)) or logarithmic processing , in order to more accurately calculate the infection marker parameters, such as avoiding signal changes caused by different instruments and different reagents.
  • the processor 140 may be further configured to configure a priority for each infection flag parameter set according to at least one of infection monitoring effectiveness, parameter stability, and parameter limitation.
  • the processor 140 may be further configured to: configure a priority for each infection flag parameter group at least according to the infection monitoring effectiveness. For example, the processor 140 may configure a priority for each infection flag parameter group only according to the infection monitoring effectiveness; for another example, the processor 140 may configure a priority for each infection flag parameter group according to the infection monitoring effectiveness and parameter stability; another example , the processor 140 may configure a priority for each infection flag parameter group according to infection monitoring effectiveness, parameter stability, and parameter limitation.
  • the parameter stability includes at least one of numerical repeatability, aging stability, temperature stability, and machine-to-machine consistency.
  • numerical repeatability refers to the consistency of the values of the infection marker parameter groups used when the same instrument is used in the same environment to perform multiple repeated tests on the same blood sample to be tested in a short period of time
  • aging stability is Refers to the stability of the value of the infection marker parameter set used when the same instrument is used to detect the same blood sample at different time points in the same environment
  • temperature stability refers to the use of the same instrument under different temperature environments.
  • the stability of the value of the infection marker parameter group used refers to that when the same blood sample to be tested is tested on different instruments in the same environment, Consistency of values for the infection flags parameter set used.
  • the higher the stability of the value of the infection marker parameter set used that is, the smaller the fluctuation of the value
  • the higher the aging stability the higher the priority of the infection flag parameter group.
  • the higher the stability of the value of the infection marker parameter set used that is, the smaller the fluctuation of the value
  • the parameter limitations refer to the range of subjects to which the infection marker parameters are applicable. In some examples, if the scope of subjects to which the infection flag parameter set is applicable is larger, it means that the parameters of the infection flag parameter set are less limited, and accordingly, the priority of the infection flag parameter set is higher.
  • the priorities of the plurality of infection flag parameter groups acquired by the processor 140 are preset, for example, preset according to at least one of infection monitoring effectiveness, parameter stability and parameter limitation.
  • the processor 140 may configure a priority for each infection flag parameter group according to the preset.
  • the priorities of the multiple infection flag parameter sets may be pre-stored in a memory, and the processor 140 may recall the priorities of the multiple infection flag parameter sets from the memory.
  • the inventors of the present application have found through research that there may be abnormal classification results and/or abnormal cells in the blood sample of the subject, which makes the infection marker parameter set used unreliable. Therefore, the blood analyzer provided by the present application can calculate the credibility of the obtained multiple infection marker parameter groups, so as to screen out the More robust set of infection flag parameters.
  • the processor 140 may be configured to calculate the credibility of each infection flag parameter set as follows:
  • the reliability of the infection marker parameter set is calculated according to the classification result of at least one target particle cluster used to obtain the infection marker parameter set and/or according to the abnormal cells in the blood sample to be tested.
  • the classification results may include the count value of the target cluster, the percentage of the count value of the target cluster and another cluster, the degree of overlap between the target cluster and its adjacent clusters (also referred to as adhesion). at least one of the degrees).
  • the degree of overlap between a target cluster and its neighbors may be determined by the distance between the center of gravity of the target cluster and the centers of gravity of its neighbors.
  • the infection flag parameter set obtained through the relevant parameters of the target particle cluster Possibly unreliable, so the confidence in this set of infection flags parameters is low.
  • the processor 140 may be configured to calculate the credibility of all the infection flag parameter groups in the plurality of infection flag parameter groups once, and then calculate the The credibility selects at least one infection flag parameter set therefrom and outputs its parameter value.
  • the processor 140 may be configured to perform the following steps to screen the infection flag parameter set and output its parameter value:
  • the parameter value of the infection flag parameter set is output and the calculation and judgment are stopped.
  • the processor 140 may be further configured to: when the parameter value of the selected infection flag parameter set is greater than the infection positive threshold, output an alarm prompt.
  • normalization processing may be performed on each infection flag parameter group to ensure that the infection positive thresholds of each infection flag parameter are consistent.
  • the processor 140 may also be configured to acquire a plurality of parameters of at least one target particle cluster in the measurement sample from the optical information,
  • the processor may be further configured to:
  • For each infection marker parameter set calculate the reliability of the infection marker parameter set according to the classification result of at least one target particle cluster used to obtain the infection marker parameter set and/or according to the abnormal cells in the blood sample to be tested .
  • the classification result may include, for example, at least one of the count value of the target cluster, the count value percentage of the target cluster and another cluster, and the degree of overlap between the target cluster and its adjacent clusters.
  • the processor 140 may also be configured to determine whether there is an abnormality affecting the evaluation of the infection state in the blood sample to be tested according to the optical information; The information captures infection marker parameters that match the abnormality and are used to assess the infection status of the subject.
  • the optical information can be acquired to exclude Multiple parameters of cell masses other than monocyte mass and neutrophil mass (e.g., lymphocyte mass) and deriving infection markers for assessing infection status of a subject from multiple parameters of other cell mass parameter.
  • a plurality of cell clusters other than cell clusters affected by the blast cells can be obtained from the optical information. parameters, and obtain the infection marker parameters for evaluating the infection status of the subject from the multiple parameters of other cell clusters.
  • the processor may be further configured to:
  • a test-retest order for re-measurement of a blood sample from the subject Prior to obtaining at least one leukocyte parameter of at least one leukocyte particle cluster in the assay sample from the optical information, obtaining a leukocyte count of the subject, and outputting a response to all leukocyte counts when the leukocyte count is less than a predetermined threshold A test-retest order for re-measurement of a blood sample from the subject, wherein the assay based on the retest order has a greater sample volume than the assay used to obtain the optical information;
  • This application also provides another blood analyzer, including a measuring device and a controller:
  • a measurement device for preparing a measurement sample by mixing a subject's blood sample to be tested, a hemolyzing agent, and a staining agent, and optically measuring the measurement sample to obtain optical information of the measurement sample;
  • the controller is configured to: receive a mode setting instruction, and when the mode setting instruction indicates that the blood routine detection mode is selected, control the measurement device to perform optical measurement on the measurement sample of the first measurement amount, so as to obtain the measurement The optical information of the sample, and based on the optical information, acquire and output the blood routine parameters of the measured sample; when the mode setting instruction indicates that the sepsis detection mode is selected, control the measuring device to a value greater than the first measured amount
  • the measurement sample of the second measurement amount is optically measured to obtain optical information of the measurement sample, and at least one leukocyte parameter of at least one leukocyte particle cluster in the measurement sample is obtained from the optical information, based on the
  • the at least one white blood cell parameter obtains an infection marker parameter, and outputs the infection marker parameter, and the infection marker parameter is used for monitoring the infection condition development of the infected patient.
  • the sample analyzer can be controlled to perform a retest action, thereby obtaining more accurate infection marker parameters for monitoring the infection of the patient. Infection progresses.
  • the embodiment of the present application also proposes a method for monitoring the development of infection in patients with infection, especially in patients with severe infection or sepsis.
  • the method 200 includes the following steps:
  • S260 Monitor the development of the infection condition of the infected patient according to the infection marker parameters, and optionally output prompt information corresponding to the development of the infection condition.
  • the method 200 proposed in the embodiment of the present application is especially implemented by the above-mentioned blood cell analyzer 100 proposed in the embodiment of the present application.
  • the at least one white blood cell parameter may include one or more of the cell characteristic parameters of monocyte population, neutrophil population and lymphocyte population in the measurement sample.
  • the at least one white blood cell parameter includes one or more of the cell characteristic parameters of the monocyte population and the neutrophil population in the measurement sample.
  • the at least one white blood cell parameter includes one or more of the following parameters: the width of the forward scattered light intensity distribution of the white blood cell particle cluster, the center of gravity of the forward scattered light intensity distribution, the forward scattered light Intensity distribution coefficient of variation, width of side scattered light intensity distribution, center of gravity of side scattered light intensity distribution, coefficient of variation of side scattered light intensity distribution, width of fluorescence intensity distribution, center of gravity of fluorescence intensity distribution, coefficient of variation of fluorescence intensity distribution and the white blood cell particles
  • the area of the distribution area of the cluster in the two-dimensional scatter diagram generated by two kinds of light intensities in the forward scattered light intensity, the side scattered light intensity and the fluorescence intensity The volume of the distribution area in a 3D scatterplot generated from side-scattered light intensity and fluorescence intensity.
  • the at least one white blood cell parameter includes one or more of the following parameters: the width of the forward scattered light intensity distribution, the center of gravity of the forward scattered light intensity distribution, and the forward scattered light intensity of the mononuclear cell population in the measurement sample.
  • Distribution coefficient of variation, width of side scattered light intensity distribution, center of gravity of side scattered light intensity distribution, coefficient of variation of side scattered light intensity distribution, width of fluorescence intensity distribution, center of gravity of fluorescence intensity distribution, coefficient of variation of fluorescence intensity distribution and the monocyte The area of the distribution area of the population in the two-dimensional scatter plot generated by two light intensities of forward scattered light intensity, side scattered light intensity and fluorescence intensity and the distribution area of the monocyte population in , the volume of the distribution area in the three-dimensional scatter diagram generated by side scattered light intensity and fluorescence intensity; and the forward scattered light intensity distribution width and forward scattered light intensity distribution of the neutrophil population in the measurement sample Center of gravity, coefficient of variation of forward scattered light intensity distribution, width of side scattered light intensity distribution, center of gravity of side scattered light intensity distribution,
  • step S240 and step S250 may include:
  • At least one leukocyte parameter of a first leukocyte cluster in said assay sample and at least one second leukocyte parameter of a second leukocyte cluster in said assay sample are obtained from said optical information, preferably said first leukocyte the particle population is a monocyte population and the second leukocyte population is a neutrophil population;
  • Said infection marker parameter is calculated based on said at least one leukocyte parameter and said at least one second leukocyte parameter, in particular via a linear function.
  • step S240 and step S250 may include:
  • Said infection marker parameter is calculated based on said at least two leukocyte parameters, in particular via a linear function.
  • the development of infection in patients with infection can be monitored by:
  • the progress of infection in patients with infection can be monitored in the following manner:
  • the infected patient is monitored for development of an infection based on a comparison of a previous value of the infection marker parameter to a first threshold and a comparison of the previous value of the infection marker parameter to a current value of the infection marker parameter.
  • the method 200 may further include: when the preset characteristic parameter of the at least one white blood cell cluster satisfies a preset condition, for example, when the total number of particles of the at least one white blood cell cluster is less than the third threshold and /or when the at least one white blood cell particle cluster overlaps with other particle clusters, do not output the value of the infection flag parameter, or output the value of the infection flag parameter and at the same time output a prompt indicating that the value of the infection flag parameter is unreliable information.
  • a preset condition for example, when the total number of particles of the at least one white blood cell cluster is less than the third threshold and /or when the at least one white blood cell particle cluster overlaps with other particle clusters
  • the method 200 may further include: when the patient suffers from a blood disease or there are abnormal cells, especially primitive cells, in the blood sample to be tested, for example, when it is judged according to the optical information that the When there are abnormal cells, especially primitive cells, in the blood sample to be tested, the value of the infection marker parameter is not output, or the value of the infection marker parameter is output and a prompt message indicating that the value of the infection marker parameter is unreliable is output at the same time .
  • the embodiment of the present application also proposes the use of infection marker parameters in monitoring the development of infection in patients with infection, especially severe infection patients or patients with sepsis, wherein the infection marker parameters are obtained by the following method:
  • An infection marker parameter is obtained based on the at least one white blood cell parameter.
  • the BC-6800Plus blood cell analyzer produced by Shenzhen Mindray Biomedical Electronics Co., Ltd. was used to continuously detect the blood samples of 50 patients with severe infection according to the method proposed in the embodiment of this application, so as to monitor the development of severe infection.
  • Table 1 shows the used infection marker parameters and their corresponding experimental data (the average value of the infection marker parameter values of two groups of patients), and Fig. 10 shows the dynamic trend change diagram adopting single parameter D_Neu_FL_W to monitor as the infection marker parameter, Fig. 11 Show the dynamic trend change graph that adopts single parameter D_Mon_SS_W to monitor as the infection flag parameter, Fig. 12 shows the dynamic trend change graph that adopts single parameter D_Neu_FLSS_Area to monitor as the infection flag parameter, and Fig.
  • Table 2 shows the used infection marker parameters and their corresponding experimental data (the median value of the infection marker parameter values of two groups of patients), and Fig. 14 shows the dynamic trend change diagram that adopts single parameter D_Neu_FL_W to monitor as the infection marker parameter, Fig. 15 shows the dynamic trend change diagram adopting single parameter D_Mon_SS_W to monitor as the infection flag parameter, Fig. 16 shows the dynamic trend change diagram adopting the single parameter D_Neu_FLSS_Area to monitor as the infection flag parameter, and Fig.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Ecology (AREA)
  • Dispersion Chemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种血液细胞分析仪(100)、方法以及感染标志参数的用途,血液细胞分析仪(100)包括用于吸取感染患者、尤其是重症感染患者或脓毒症患者的待测血液样本的吸样装置(110)、用于制备测定试样的样本制备装置(120)、用于检测测定试样以获得光学信息的光学检测装置(130)和处理器(140)。处理器(140)被配置为:从光学信息获得测定试样中的至少一个白细胞粒子团的至少一个白细胞参数,基于至少一个白细胞参数获得感染标志参数,并且输出感染标志参数,感染标志参数用于监控感染患者的感染病情发展,实现快速地提供准确有效的用于监控感染病情发展的感染标志参数。

Description

血液细胞分析仪、方法以及感染标志参数的用途 技术领域
本申请涉及体外诊断领域,尤其是涉及血液细胞分析仪、用于监控感染患者、尤其是重症感染患者或脓毒症患者的感染病情发展的方法以及感染标志参数在监控感染患者、尤其是重症感染患者或脓毒症患者的感染病情发展中的用途。
背景技术
感染性疾病是临床上常见的疾病,其中,脓毒症(Sepsis)属于严重的感染性疾病。脓毒症发生率高,全球每年有超过1800万严重脓毒症病例,并且脓毒症的病情凶险,病死率高,全球每天约14,000人死于其并发症。据国外流行病学调查显示,脓毒症的病死率已经超过心肌梗死,成为重症监护病房内非心脏病患者死亡的主要原因。近年来,尽管抗感染治疗和器官功能支持技术取得了进步,但脓毒症的病死率仍高达30%~70%。脓毒症治疗花费高,医疗资源消耗大,严重影响人类的生活质量,已经对人类健康造成巨大威胁。
为此,临床医生需要及时诊断患者是否发生感染,并查找病原体,才能制定有效治疗方案。因此,如何快速早期筛查和诊断感染性疾病成为了临床实验室迫切需要解决的问题。
针对感染性疾病的快速鉴别诊断,业界现有解决方案及其缺点如下:
1、微生物培养:微生物培养被认为是最可靠的金标准,其能直接培养检测出体液或血液等临床标本中的细菌,从而判读细菌的类型和耐药性,由此可直接指导临床用药。但该微生物培养方法报告周期长、标本易受污染且假阴性率高,不能很好的满足临床快速准确出结果的要求。
2、C反应蛋白(c-reactive protein,CRP)、降钙素原(procalcitonin,PCT)和血清淀粉样蛋白(serum amyloid A,SAA)等炎症标志物检测:由于炎症因子如CRP、PCT和SAA等有较好的灵敏度,其被广泛应用于感染性疾病的辅助诊断。但这些炎症标志物检测特异性较弱,而且需要收取额外的检查费用,增加病人经济负担。此外,CRP和PCT受特定疾病所干扰,不能正确反映病人感染状态。例如,CRP生成于肝脏,肝损伤患者的感染患者CRP水平正常,会导致出现假阴性现象。
3、血清抗原抗体检测:血清抗原抗体检测能确认特定病毒类型,但对病原体种类不明确的情境下,作用有限,且检测费用高,需要收取额外的检查费用,增加病人经济负担。
4、血常规检测:血常规检测能够在一定程度上提示感染发生和感染类型鉴别。但临床当前应用的血常规WBC\Neu%等受多方面影响,如容易受其他非感染性炎症反应、机体正常生理波动等影响,不能准确及时地反映患者病情,在感染性疾病中的诊疗价值不佳。
由于脓毒症患者病情波动较大,需要日常监护,防止患者病情加重但又没有及时处理。因此,需要快速且准确地判断脓毒症患者病情进展情况。
发明内容
为了至少部分地解决上述技术问题,本申请的任务在于提供一种血液细胞分析仪、用于监控感染患者的感染病情发展的方法以及感染标志参数在监控感染患者的感染病情发展中的用途,其能够从血常规检测过程的原始信号中获取监控效力较高的感染标志参数,从而能够准确且快速地基于感染标志参数为用户提供感染患者、尤其是重症感染患者或脓 毒症患者的感染病情发展情况的提示。
为了实现本申请的上述任务,本申请第一方面提供一种血液细胞分析仪,该血液细胞分析仪包括:
吸样装置,用于吸取感染患者、尤其是重症感染患者或脓毒症患者的待测血液样本;
样本制备装置,用于制备含有所述待测血液样本的一部分、溶血剂和用于白细胞分类的染色剂的测定试样;
光学检测装置,包括流动室、光源和光检测器,所述流动室用于供所述测定试样通过,所述光源用于用光照射通过所述流动室的测定试样,所述光检测器用于检测所述测定试样在通过所述流动室时被光照射后所产生的光学信息;以及
处理器,被配置为:
从所述光学信息计算所述测定试样中的至少一个白细胞粒子团的至少一个白细胞参数,
基于所述至少一个白细胞参数获得感染标志参数,并且
输出所述感染标志参数,所述感染标志参数用于监控所述感染患者的感染病情发展。
为了实现本申请的上述任务,本申请第二方面还提供一种用于监控感染患者、尤其是重症感染患者或脓毒症患者的感染病情发展的方法,该方法包括:
获取所述患者的待测血液样本;
制备含有所述待测血液样本的一部分、溶血剂和用于白细胞分类的染色剂的测定试样;
使所述测定试样中的粒子逐个通过被光照射的光学检测区,以获得所述测定试样中的粒子在被光照射后所产生光学信息;
从所述光学信息计算所述测定试样中的至少一个白细胞粒子团的至少一个白细胞参数;
基于所述至少一个白细胞参数获得感染标志参数;并且
根据所述感染标志参数监控所述感染患者的感染病情发展。
为了实现本申请的上述任务,本申请第三方面还提供感染标志参数在监控感染患者、尤其是重症感染患者或脓毒症患者的感染病情发展中的用途,其中,通过如下方法获得所述感染标志参数:
获取通过流式细胞术对含有来自感染患者的待测血液样本的一部分、溶血剂和用于白细胞分类的染色剂的测定试样检测得到的至少一个白细胞粒子团的至少一个白细胞参数;以及
基于所述至少一个白细胞参数获得感染标志参数。
在本申请各方面提供的技术方案中,基于从用于白细胞分类的检测通道中获得的至少一个白细胞参数计算感染标志参数,基于该感染标志参数能够有效地监控感染患者、尤其是重症感染患者或脓毒症患者的感染病情发展状况,从而能够实现快速、准确且高效地辅助医生判断感染患者的感染病情发展。
附图说明
下面将结合实施例和附图更清楚阐述本申请。通过对本申请实施例的详细描述,上述优点和其他优点对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式,而不应认为是对本申请的限制。在全部附图中,相同或相似的附图标记表示相同的部件。 在附图中:
图1为根据本申请一些实施例的血液细胞分析仪的结构示意图。
图2为根据本申请一些实施例的光学检测装置的结构示意图。
图3为根据本申请一些实施例的测定试样的SS-FL二维散点图。
图4为根据本申请一些实施例的测定试样的SS-FS二维散点图。
图5为根据本申请一些实施例的测定试样的SS-FS-FL三维散点图。
图6示出根据本申请一些实施例的测定试样中的中性粒细胞群的细胞特征参数。
图7为根据本申请一些实施例判断感染患者的感染病情发展的示意性流程图。
图8为根据本申请一些实施例的测定试样的存在异常情况的散点图。
图9为根据本申请一些实施例的用于监控感染患者的病情发展的方法的示意性流程图。
图10至图12为根据本申请一些实施例的用于监控重症感染患者的病情发展的由单白细胞参数构成的感染标志参数的数值变化曲线图。
图13为根据本申请一些实施例的用于监控重症感染患者的病情发展的由双白细胞参数组合成的感染标志参数的数值变化曲线图。
图14至图16为根据本申请一些实施例的用于监控脓毒症患者的病情发展的由单白细胞参数构成的感染标志参数的数值变化曲线图。
图17为根据本申请一些实施例的用于监控脓毒症患者的病情发展的由双白细胞参数组合成的感染标志参数的数值变化曲线图。
图18为根据本申请一些实施例的中性粒细胞群的面积参数D_NEU_FLSS_Area的一种算法计算步骤。
具体实施方式
下面将结合附图对本申请实施例进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,本申请实施例所涉及的术语“第一\第二\第三”仅仅是区别类似的对象,不代表针对对象的特定排序,可以理解地,“第一\第二\第三”在允许的情况下可以互换特定的顺序或先后次序。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本申请所属领域中的普通技术人员的一般理解相同的意义。
为了方便后续说明,在此首先对下文中所涉及的一些术语进行简要说明如下。
1)散点图:是由血液细胞分析仪生成的一种二维或三维图,其上分布有多个粒子的二维或三维特征信息,其中散点图的X坐标轴、Y坐标轴和Z坐标轴均表征每个粒子的一种特性,例如在一个散点图中,X坐标轴表征前向散射光强度,Y坐标轴表征荧光强度,Z轴坐标轴表征侧向散射光强度。本公开中使用的术语“散点图”不仅指至少两组数据以数据点的形式在直角坐标系中的分布图,也包括数据阵列,即不受其图形呈现形式的局限。
2)粒子团/细胞群:分布在散点图的某一区域,由具有相同细胞特征的多个粒子形成的粒子群体,例如白细胞(包括所有类型的白细胞)群,以及白细胞亚群、例如中性粒细胞群、淋巴细胞群、单核细胞群、嗜酸性粒细胞群或嗜碱性粒细胞群等。
3)血影:是由溶血剂溶解血液中的红细胞和血小板得到的碎片粒子。
目前,血液细胞分析仪一般通过DIFF通道和/或WNB通道对白细胞进行计数和分类。其中,血液细胞分析仪通过DIFF通道对白细胞进行白细胞四分类,将白细胞分类为淋巴细胞(Lym)、单核细胞(Mon)、中性粒细胞(Neu)、嗜酸性粒细胞(Eos)四类白细胞。血液细胞分析仪通过WNB通道对有核红细胞进行识别,能够同时得到有核红细胞计数、白细胞计数和嗜碱性粒细胞计数。将DIFF通道与WNB通道结合可以得出白细胞的五分类结果,包括淋巴细胞(Lym)、单核细胞(Mon)、中性粒细胞(Neu)、嗜酸性粒细胞(Eos)、嗜碱性粒细胞(Baso)五类白细胞。
本申请所使用的血液细胞分析仪通过结合激光散射法和荧光染色法的流式细胞技术对血液样本中的粒子进行分类和计数。在此,血液细胞分析仪检测血液样本的原理例如可以为:首先吸取血液样本,用溶血剂和荧光染料处理血液样本,其中,红细胞被溶血剂破坏溶解,而白细胞不会被溶解,但荧光染料可在溶血剂的帮助下进入白细胞的细胞核并与细胞核中的核酸物质结合;接着样本中的粒子逐个通过被激光束照射的检测孔,当激光束照射粒子时,粒子本身的特性(如体积、染色程度、细胞内容物大小及含量、细胞核密度等)可阻挡或改变激光束的方向,从而产生与其特征相应的各种角度的散射光,这些散射光经信号检测器接收后可以获得粒子结构和组成的相关信息。其中,前向散射光(Forward scatter,FS)反映粒子的数量和体积,侧向散射光(Side scatter,SS)反映细胞内部结构(如细胞内颗粒或细胞核)的复杂程度,荧光(Fluorescence,FL)反映细胞中核酸物质的含量。利用这些光信息可以对样本中的粒子进行分类和计数。
图1为本申请一些实施例的血液细胞分析仪的结构示意图。该血液细胞分析仪100包括吸样装置110、样本制备装置120、光学检测装置130和处理器140。血液细胞分析仪100还具有未示出的液路系统,用于连通吸样装置110、样本制备装置120及光学检测装置130,以便在这些装置之间进行液体输送。
吸样装置110用于吸取受试者的待测血液样本。
在一些实施例中,吸样装置110具有用于吸取待测血液样本的采样针(未示出)。此外,吸样装置110例如还可以包括驱动装置,该驱动装置用于驱动采样针通过采样针的针嘴定量吸取待测血液样本。吸样装置110可将吸取的血液样本输送至样本制备装置120。
样本制备装置120至少用于制备含有待测血液样本的一部分、溶血剂和用于白细胞分类的染色剂的测定试样。
在本申请实施例中,溶血剂用于溶解血液中的红细胞,将红细胞裂解为碎片,但能够保持白细胞的形态基本不变。
在一些实施例中,溶血剂可以是阳离子表面活性剂、非离子表面活性剂、阴离子表面活性剂、两亲性表面活性剂中的任意一种或几种的组合。在另一些实施例中,溶血剂可以包括烷基糖苷、三萜皂苷、甾族皂苷中的至少一种。
在本申请实施例中,染色剂为用于实现白细胞分类的荧光染料,例如可以为能够实现将血液样本中的白细胞分类为至少三个白细胞亚群(单核细胞、淋巴细胞和中性粒细胞)的荧光染料。
在一些实施例中,染色剂可以包括膜特异性染料或线粒体特异性染料,其更多细节可参考申请人于2019年4月26日提交的PCT专利申请WO2019/206300A1,其全部公开内容通过引用合并于此。
在另一些实施例中,染色剂可以包括阳离子花菁化合物,其更多细节可参考申请人于2019年9月28日提交的中国专利申请CN101750274A,其全部公开内容通过引用合并于此。
在一些实施例中,样本制备装置120可以包括至少一个反应池和试剂供应装置(图中未示出)。所述至少一个反应池用于接收由吸样装置110吸取的待测血液样本,所述试剂供应装置将处理试剂(包括溶血剂、染色剂等)提供给所述至少一个反应池,从而由吸样装置110所吸取的待测血液样本与由所述试剂供应装置提供的处理试剂在所述反应池中混合,以制备成测定试样。
例如,所述至少一个反应池可以包括第一反应池和第二反应池,所述试剂供应装置可以包括第一试剂供给部和第二试剂供给部。吸样装置110用于将所吸取的待测血液样本分别部分地分配至第一反应池和第二反应池。第一试剂供给部用于将第一溶血剂和用于白细胞分类的第一染色剂提供给第一反应池,从而分配给第一反应池的部分待测血液样本与第一溶血剂和第一染色剂混合并反应,制备成第一测定试样。第二试剂供给部用于将第二溶血剂和用于识别有核红细胞的第二染色剂提供给第二反应池,从而分配给第二反应池的部分待测血液样本与第二溶血剂和第二染色剂混合并反应,制备成第二测定试样。
光学检测装置130包括流动室、光源和光检测器,所述流动室用于供所述测定试样通过,所述光源用于用光照射分别通过所述流动室的测定试样,所述光检测器用于检测所述测定试样在通过所述流动室时被光照射后所产生的光学信息。
例如,第一测定试样和第二测定试样分别通过流动室,光源照射分别通过流动室的第一测定试样和第二测定试样,光检测器用于检测第一测定试样和第二测定试样在分别通过流动室时被光照射后所产生的第一光学信息和第二光学信息。
在此可以理解的,用于白细胞分类的第一检测通道(也称为DIFF通道)是指光学检测装置130对由样本制备装置120制备的第一测定试样的检测,而用于识别有核红细胞的第二检测通道(也称为WNB通道)是指光学检测装置130对由样本制备装置120制备的第二测定试样的检测。
在本文中,流动室指适于检测光散射信号和荧光信号的聚焦液流的腔室。当一粒子、如一血细胞通过流动室的检测孔时,该粒子将来自光源的被导向该检测孔的入射光束向各方向散射。可以在相对于该入射光束的一个或多个不同角度设置光检测器,以检测被该粒子散射的光,从而得到光散射信号。由于不同的粒子具有不同的光散射特性,因此光散射信号可以用于区分不同的粒子群体。具体地,在入射光束附近所检测的光散射信号通常被称为前向光散射信号或小角度光散射信号。在一些实施例中,该前向光散射信号可以从与入射光束约1°至约10°的角度上进行检测。在其他一些实施例中,该前向光散射信号可以从与入射光束约2°至约6°的角度上进行检测。在与入射光束呈约90°的方向所检测的光散射信号通常被称为侧向光散射信号。在一些实施例中,该侧向光散射信号可以是从与入射光束呈约65°至约115°的角度上进行检测。通常地,来自被荧光染料染色的血细胞所发出的荧光信号一般也在与入射光束呈约90°的方向上进行检测。
在一些实施例中,光检测器可以包括用于检测前向散射光信号(或者前向散射光强度)的前向散射光检测器、用于检测侧向散射光信号(或者侧向散射光强度)的侧向散射光检测器和用于检测荧光信号(或者荧光强度)的荧光检测器。相应地,光学信息可以包括测定试样中的粒子的前向散射光信号、侧向散射光信号和荧光信号。
图2示出光学检测装置130的一个具体示例。该光学检测装置130具有依次布置在一条直线上的光源101、光束整形组件102、流动室103和前向散射光检测器104。在流动室103的一侧,与所述直线成45°角布置有二向色镜106。通过流动室103中的粒子发出的侧向光,一部分透过二向色镜106,被与二向色镜106成45°角布置在二向色镜106后面的荧光检测器105捕获;另一部分侧向光被二向色镜106反射,被与二向色镜106成45°角布置在二向色镜106前面的侧向散射光检测器107捕获。
处理器140用于对数据进行处理和运算,得到所要求的结果,例如可以根据收集的各种光信号生成二维散点图或三维散点图,并在散点图上根据设门(gating)的方法进行粒子分析。处理器140还可以对中间运算结果或最终运算结果进行可视化处理,然后通过显示装置150显示出来。在本申请实施例中,处理器140被配置用于实施以下还要详细描述的方法步骤。
在本申请实施例中,处理器包括但不限于中央处理器(Central Processing Unit,CPU)、微控制单元(Micro Controller Unit,MCU)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、数字信号处理器(DSP)等用于解释计算机指令以及处理计算机软件中的数据的装置。例如,处理器用于执行计算机可读存储介质中的各计算机应用程序,从而使血液细胞分析仪100执行相应的检测流程并实时地分析光学检测装置130所检测到的光学信息或者说光学信号。
此外,血液细胞分析仪100还可以包括第一机壳160和第二机壳170。显示装置150例如可以为用户界面。光学检测装置130及处理器140设置在第二机壳170的内部。样本制备装置120例如设置在第一机壳160的内部,显示装置150例如设置在第一机壳160的外表面并且用于显示血液细胞分析仪的检测结果。
如背景技术中所提到的,利用血液细胞分析仪实现的血常规检测能够提示感染发生和感染类型鉴别,但临床当前应用的血常规WBC\Neu%等受多方面影响,不能准确及时地反映患者病情。而且现有技术在进行细菌感染和脓毒症诊疗方面的灵敏度和特异性均不佳。
基于此背景,发明人通过深入研究大量感染患者的血液样本的血常规检测的原始信号特征,意外发现了能够通过DIFF通道的白细胞参数、尤其是细胞特征参数实现高效力的感染病情发展监控。例如,中性粒细胞和单核细胞是机体抗感染的第一道屏障,在反映感染程度上很有价值;发明人通过研究发现中性粒细胞的特征参数可以用于感染病情发展监控,进一步地,中性粒细胞的特征参数结合单核细胞的特征参数可以实现更高效力的感染病情发展监控。因此,本申请实施例首先提出一种能够监控感染患者、尤其是重症感染患者或脓毒症患者的感染病情发展的血液细胞分析仪,包括:
吸样装置110,用于吸取感染患者的待测血液样本;
样本制备装置120,用于制备含有所述待测血液样本、溶血剂和用于白细胞分类的染色剂的测定试样;
光学检测装置130,包括流动室、光源和光检测器,所述流动室用于供所述测定试样通过,所述光源用于用光照射通过所述流动室的测定试样,所述光检测器用于检测所述测定试样在通过所述流动室时被光照射后所产生的光学信息;以及
处理器140被配置为:
从所述光学信息计算所述测定试样中的至少一个白细胞粒子团的至少一个白细胞参数,
基于所述至少一个白细胞参数获得感染标志参数,并且
输出所述感染标志参数,所述感染标志参数用于监控所述感染患者的感染病情发展。
在此优选的是,所述至少一个白细胞参数包括细胞特征参数,即,所述至少一个白细胞参数包括所述至少一个白细胞粒子团的细胞特征参数。由此能够提供监控效力进一步提高的感染标志参数。
在此应理解的是,细胞群的细胞特征参数不包括细胞群的细胞计数或分类参数,而是包括反映该细胞群中的细胞的体积、内部颗粒度、内部核酸含量等细胞特征的特征参数。
在一些实施例中,白细胞粒子团的细胞特征参数可以通过分析白细胞粒子团的全部粒子信息获得,也可以通过分析白细胞粒子团的部分粒子信息获得。例如,可以通过区别待测样本中与正常人血样本中白细胞粒子团中不重叠的那部分可能携带感染特征信息的粒子信息,获得所述白细胞粒子团的细胞特征参数。
进一步地,处理器140可以被配置为根据所述感染标志参数监控所述感染患者的感染病情发展并输出与感染病情发展相应的提示信息。例如,处理器140可以被配置为将提示信息输出给显示装置进行显示。这里的显示装置可以是血液细胞分析仪100的显示装置150,也可以是与处理器140通信连接的其他显示装置。例如处理器140可以通过医院信息管理系统将提示信息输出至用户(医生)侧的显示装置。
在一些实施例中,所述处理器被进一步配置为:
获取通过至少三次检测在不同时间点来自感染患者的血液样本而获得的所述感染标志参数的值;并且,根据通过所述至少三次检测而获得的所述感染标志参数的值的变化趋势来判断所述感染患者病情是否好转,优选当通过所述至少三次检测而获得的所述感染标志参数的值逐渐趋势性减低时,输出指示所述感染患者病情好转的提示信息。
在一些实施例中,所述血液细胞分析仪包括专家系统或者与专家系统通信连接;所述处理器被进一步配置为:将所述感染标志参数的所述多个值与所述感染患者的身份信息相关联地发送至所述专家系统;以及所述专家系统被配置为与所述感染患者的身份信息相关联地接收并存储所述感染标志参数的所述多个值。
进一步地,所述专家系统被进一步配置为:接收用户的查看指令;以及响应于所述查看指令,将所述感染标志参数的所述多个值以其随时间变化的曲线的形式显示在显示装置上。在一些实施例中,基于光学信息可以将测定试样中的白细胞至少分类为单核细胞群、中性粒细胞群和淋巴细胞群,尤其是可以分类为单核细胞群、中性粒细胞群、淋巴细胞群和嗜酸性粒细胞群。
在一个具体的示例中,如图3至5所示,基于光学信息中的前向散射光信号(或者前向散射光强度)FS、侧向散射光信号(或者侧向散射光强度)SS和荧光信号(或者荧光强度)FL可以将测定试样中的白细胞分类为单核细胞群Mon、中性粒细胞群Neu、淋巴细胞群Lym和嗜酸性粒细胞群Eos。其中,图3为基于光学信息中的侧向散射光信号SS和荧光信号FL生成的二维散点图,图4为基于光学信息中的前向散射光信号FS和侧向散射光信号SS生成的二维散点图,图5为基于光学信息中的前向散射光信号FS、侧向散射光信号SS和荧光信号FL生成的三维散点图。
相应地,在一些实施例中,所述至少一个白细胞粒子团可以包括测定试样中的单核细胞群Mon、中性粒细胞群Neu、淋巴细胞群Lym和嗜酸性粒细胞群Eos中的至少一个细胞群,即所述至少一个白细胞参数可以包括测定试样中的单核细胞群Mon、中性粒细胞群Neu、 淋巴细胞群Lym和嗜酸性粒细胞群Eos的细胞特征参数中的一个或多个参数。
优选的是,所述至少一个白细胞粒子团可以包括测定试样中的单核细胞群Mon和中性粒细胞群Neu中的至少一个细胞群,即所述至少一个白细胞参数可以包括测定试样中的单核细胞群Mon和中性粒细胞群Neu的细胞特征参数中的一个或多个参数、例如一个或两个或二个以上参数。
在另一些实施例中,所述至少一个白细胞粒子团也可以包括白细胞群(包括所有类型的白细胞)Wbc,即所述至少一个白细胞参数可以包括测定试样中的白细胞群Wbc的细胞特征参数。
在一些实施例中,所述至少一个白细胞参数可以包括如下参数中的一个或多个:所述白细胞粒子团的前向散射光强度分布宽度、前向散射光强度分布重心、前向散射光强度分布变异系数、侧向散射光强度分布宽度、侧向散射光强度分布重心、侧向散射光强度分布变异系数、荧光强度分布宽度、荧光强度分布重心、荧光强度分布变异系数以及所述白细胞粒子团在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积和所述单核细胞群在由前向散射光强度、侧向散射光强度和荧光强度生成的三维散点图中的分布区域的体积。
在一些具体的示例中,所述至少一个白细胞参数可以包括下列参数中的一个或多个、例如一个或两个参数:所述测定试样中的单核细胞群的前向散射光强度分布宽度D_MON_FS_W、前向散射光强度分布重心D_MON_FS_P、前向散射光强度分布变异系数D_MON_FS_CV、侧向散射光强度分布宽度D_MON_SS_W、侧向散射光强度分布重心D_MON_SS_P、侧向散射光强度分布变异系数D_MON_SS_CV、荧光强度分布宽度D_MON_FL_W、荧光强度分布重心D_MON_FL_P、荧光强度分布变异系数D_MON_FL_CV以及所述单核细胞群在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积D_MON_FLFS_Area(单核细胞群在由前向散射光强度和荧光强度生成的二维散点图中的分布区域的面积)、D_MON_FLSS_Area(单核细胞群在由侧向散射光强度和荧光强度生成的二维散点图中的分布区域的面积)、D_MON_SSFS_Area(单核细胞群在由前向散射光强度和侧向散射强度生成的二维散点图中的分布区域的面积)和单核细胞群在由前向散射光强度、侧向散射强度和荧光强度生成的三维散点图中的分布区域的体积;所述测定试样中的中性粒细胞群的前向散射光强度分布宽度D_NEU_FS_W、前向散射光强度分布重心D_NEU_FS_P、前向散射光强度分布变异系数D_NEU_FS_CV、侧向散射光强度分布宽度D_NEU_SS_W、侧向散射光强度分布重心D_NEU_SS_P、侧向散射光强度分布变异系数D_NEU_SS_CV、荧光强度分布宽度D_NEU_FL_W、荧光强度分布重心D_NEU_FL_P、荧光强度分布变异系数D_NEU_FL_CV以及所述中性粒细胞群在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积D_NEU_FLFS_Area(中性粒细胞群在由前向散射光强度和荧光强度生成的二维散点图中的分布区域的面积)、D_NEU_FLSS_Area(中性粒细胞群在由侧向散射光强度和荧光强度生成的二维散点图中的分布区域的面积)、D_NEU_SSFS_Area(中性粒细胞群在由前向散射光强度和侧向散射强度生成的二维散点图中的分布区域的面积)和中性粒细胞群在由前向散射光强度、侧向散射强度和荧光强度生成的三维散点图中的分布区域的体积;所述测定试样中的淋巴细胞群的前向散射光强度分布宽度D_LYM_FS_W、前向散射光强度分布重心D_LYM_FS_P、前向散射光强度分布变异系数D_LYM_FS_CV、侧向散射光强度分布宽度D_LYM_SS_W、侧向散射光强 度分布重心D_LYM_SS_P、侧向散射光强度分布变异系数D_LYM_SS_CV、荧光强度分布宽度D_LYM_FL_W、荧光强度分布重心D_LYM_FL_P、荧光强度分布变异系数D_LYM_FL_CV以及所述淋巴细胞群在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积D_LYM_FLFS_Area(淋巴细胞群在由前向散射光强度和荧光强度生成的二维散点图中的分布区域的面积)、D_LYM_FLSS_Area(淋巴细胞群在由侧向散射光强度和荧光强度生成的二维散点图中的分布区域的面积)、D_LYM_SSFS_Area(淋巴细胞群在由前向散射光强度和侧向散射强度生成的二维散点图中的分布区域的面积)和淋巴细胞群在由前向散射光强度、侧向散射强度和荧光强度生成的三维散点图中的分布区域的体积;所述测定试样中的嗜酸性粒细胞群的前向散射光强度分布宽度D_EOS_FS_W、前向散射光强度分布重心D_EOS_FS_P、前向散射光强度分布变异系数D_EOS_FS_CV、侧向散射光强度分布宽度D_EOS_SS_W、侧向散射光强度分布重心D_EOS_SS_P、侧向散射光强度分布变异系数D_EOS_SS_CV、荧光强度分布宽度D_EOS_FL_W、荧光强度分布重心D_EOS_FL_P、荧光强度分布变异系数D_EOS_FL_CV以及所述嗜酸性粒细胞群在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积D_EOS_FLFS_Area嗜酸性粒细胞群在由前向散射光强度和荧光强度生成的二维散点图中的分布区域的面积)、D_EOS_FLSS_Area(嗜酸性粒细胞群在由侧向散射光强度和荧光强度生成的二维散点图中的分布区域的面积)、D_EOS_SSFS_Area(嗜酸性粒细胞群在由前向散射光强度和侧向散射强度生成的二维散点图中的分布区域的面积)和嗜酸性粒细胞群在由前向散射光强度、侧向散射强度和荧光强度生成的三维散点图中的分布区域的面积;以及所述测定试样中的白细胞群的前向散射光强度分布宽度D_WBC_FS_W、前向散射光强度分布重心D_WBC_FS_P、前向散射光强度分布变异系数D_WBC_FS_CV、侧向散射光强度分布宽度D_WBC_SS_W、侧向散射光强度分布重心D_WBC_SS_P、侧向散射光强度分布变异系数D_WBC_SS_CV、荧光强度分布宽度D_WBC_FL_W、荧光强度分布重心D_WBC_FL_P、荧光强度分布变异系数D_WBC_FL_CV以及所述白细胞群在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积D_WBC_FLFS_Area(白细胞群在由前向散射光强度和荧光强度生成的二维散点图中的分布区域的面积)、D_WBC_FLSS_Area(白细胞群在由侧向散射光强度和荧光强度生成的二维散点图中的分布区域的面积)、D_WBC_SSFS_Area(白细胞群在由前向散射光强度和侧向散射强度生成的二维散点图中的分布区域的面积)和白细胞群在由前向散射光强度、侧向散射强度和荧光强度生成的三维散点图中的分布区域的体积。
优选地,所述至少一个白细胞参数可以包括下列参数中的一个或多个、例如一个或两个参数:所述测定试样中的单核细胞群的前向散射光强度分布宽度D_MON_FS_W、前向散射光强度分布重心D_MON_FS_P、前向散射光强度分布变异系数D_MON_FS_CV、侧向散射光强度分布宽度D_MON_SS_W、侧向散射光强度分布重心D_MON_SS_P、侧向散射光强度分布变异系数D_MON_SS_CV、荧光强度分布宽度D_MON_FL_W、荧光强度分布重心D_MON_FL_P、荧光强度分布变异系数D_MON_FL_CV以及所述单核细胞群在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积D_MON_FLFS_Area、D_MON_FLSS_Area、D_MON_SSFS_Area和所述单核细胞群在由前向散射光强度、侧向散射光强度和荧光强度生成的三维散点图中的分布区域的体积;以及所述测定试样中的中性粒细胞群的前向散射光强度分布宽度D_NEU_FS_W、前向散射光强度分布重心D_NEU_FS_P、前 向散射光强度分布变异系数D_NEU_FS_CV、侧向散射光强度分布宽度D_NEU_SS_W、侧向散射光强度分布重心D_NEU_SS_P、侧向散射光强度分布变异系数D_NEU_SS_CV、荧光强度分布宽度D_NEU_FL_W、荧光强度分布重心D_NEU_FL_P、荧光强度分布变异系数D_NEU_FL_CV以及所述中性粒细胞群在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积D_NEU_FLFS_Area、D_NEU_FLSS_Area、D_NEU_SSFS_Area或和所述中性粒细胞群在由前向散射光强度、侧向散射光强度和荧光强度生成的三维散点图中的分布区域的体积。
在另一些实施例中,所述至少一个白细胞参数也可以包括测定试样中的单核细胞群Mon的分类参数Mon%或计数参数Mon#或者中性粒细胞群Neu的分类参数Neu%或计数参数Neu#或者淋巴细胞群Lym的分类参数Lym%或计数参数Mon#。
在此,借助图6说明分布宽度、分布重心、变异系数以及分布区域的面积或体积的含义,其中,图6示出根据本申请一些实施例的测定试样中的中性粒细胞群的细胞特征参数。
如图6所示,D_NEU_FL_W代表测定试样中的中性粒细胞群的荧光强度分布宽度,其中,D_NEU_FL_W等于中性粒细胞群的荧光强度分布上限S1与中性粒细胞群的荧光强度分布下限S2的差值。D_NEU_FL_P代表测定试样中的中性粒细胞群的荧光强度分布重心、即中性粒细胞在FL方向的平均位置,其中,D_NEU_FL_P通过如下公式计算:
其中,FL(i)为第i个中性粒细胞的荧光强度。D_NEU_FL_CV代表测定试样中的中性粒细胞群的荧光强度分布变异系数,其中,D_NEU_FL_CV等于D_NEU_FL_W除以D_NEU_FL_P。
此外,D_NEU_FLSS_Area代表测定试样中的中性粒细胞群在由侧向散射光强度和荧光强度生成的散点图中的分布区域的面积。
在一些实施例中,如图6所示,C1表示中性粒细胞群的轮廓分布曲线,例如可以将位于轮廓分布曲线C1内的位置总数记为该中性粒细胞群的面积参数D_NEU_FLSS_Area。
在另一些实施例中,所述D_NEU_FLSS_Area还可以通过如下算法步骤实现(图18):
从中性粒细胞(NEU)粒子团中随机选取一个粒子P1,并找出与P1距离最远的一个粒子P2;
构建向量V1(P1-P2),并以P1为向量起点,在中性粒细胞(NEU)粒子团中再找出一个粒子P3,并构建向量V2(P1-P3),使得向量V2(P1-P3)与向量V1(P1-P2)成最大夹角;
再以P1为向量起点,在中性粒细胞(NEU)粒子团中再找出一个粒子P4,并构建向量V3(P1-P4),使得向量V3(P1-P4)与向量V1(P1-P2)成最大夹角;
以此类推,分别得到中性粒细胞(NEU)粒子团最外侧的一组粒子P1,P2,P3,P4,…Pn;
使用椭圆拟合粒子点P1,P2,P3,P4,…Pn,并获得该椭圆的长轴a、短轴b;
所述D_NEU_FLSS_Area为所述长轴a和所述短轴b的乘积。
类似的,所述中性粒细胞群在由前向散射光强度、侧向散射光强度和荧光强度生成的三维散点图中的分布区域的体积参数也可以由相应的计算方式得到。
在此可以理解的,其他白细胞参数的定义可以以相应的方式参考图6和图18所示的实施例。
在一些实施例中,感染标志参数可以由单个白细胞参数构成。或者,感染标志参数可 以是单个白细胞参数的线性函数或非线性函数。
在另一些实施例中,感染标志参数也可以由至少两个白细胞参数组合计算而成,即,感染标志参数是至少两个白细胞参数的函数、例如线性函数。从细胞类型层面,例如,中性粒细胞和单核细胞均是机体抗感染的第一道屏障,在反映感染程度上都很有价值,因此组合使用中性粒细胞的特征参数和单核细胞的特征参数能够提高本发明的监控、预测、诊断和/或指导治疗功效。
在另一些实施例中,所述感染标志参数可以由白细胞参数与其他血细胞参数计算而成,即,感染标志参数可以是至少一个白细胞参数与至少一个其他血细胞参数计算而成。所述其他血细胞参数可以为血小板(PLT)、有核红细胞(NRBC)、或网织红细胞(RET)的分类或计数参数。
为此,在一些实施例中,处理器140被进一步配置为:
从所述光学信息计算所述测定试样中的第一白细胞粒子团的至少一个白细胞参数和所述测定试样中的第二白细胞粒子团的至少一个第二白细胞参数;以及
基于所述至少一个白细胞参数和所述至少一个第二白细胞参数计算所述感染标志参数。
在此,第一白细胞粒子团和第二白细胞粒子团彼此不同,并且可以选自由测定试样中的单核细胞群Mon、中性粒细胞群Neu、淋巴细胞群Lym和嗜酸性粒细胞群Eos组成的组。
优选地,第一白细胞粒子团为单核细胞群并且第二白细胞粒子团为中性粒细胞群。相应地,至少一个第一白细胞参数包括单核细胞群的至少一个细胞特征参数,至少一个第二白细胞参数包括中性粒细胞群的至少一个细胞特征参数。
进一步优选的是,处理器140可以被进一步配置为,通过线性函数将所述至少一个第一白细胞参数和所述至少一个第二白细胞参数组合成感染标志参数,即,通过如下公式计算感染标志参数:
Y=A*X1+B*X2+C
其中,Y表示感染标志参数,X1表示第一白细胞参数,X2表示第二白细胞参数,A、B、C为常数。
当然,在其他实施例中,也可以通过非线性函数将所述至少一个第一白细胞参数和所述至少一个第二白细胞参数组合成感染标志参数,本申请对此不做具体限定。
在另一些实施例中,处理器140也可以被进一步配置为:
从所述光学信息计算所述测定试样中的一个白细胞粒子团的至少两个白细胞参数;
基于所述至少两个白细胞参数计算、尤其是通过线性函数计算所述感染标志参数。
接下来描述具体判断患者感染病情发展的一些实施例。
在一些实施例中,处理器140可以被进一步配置为通过如下方式监控感染患者的感染病情发展,即:
获取通过至少三次检测在不同时间点来自感染患者的血液样本而获得的所述感染标志参数的值;并且
根据通过所述多次的检测而获得的所述感染标志参数的值的变化趋势来判断所述感染患者病情是否好转。
在具体的示例中,处理器140可以被进一步配置为:当通过所述多次的检测而获得的所述感染标志参数的值逐渐趋势性减低时,输出指示所述感染患者病情好转的提示信息; 而当通过所述多次的检测而获得的所述感染标志参数的值逐渐趋势性增加时,输出指示所述感染患者病情加重的提示信息。
例如,获取患者在确诊感染性炎症之后连续多日、例如7日的感染标志参数值,当这些感染标志参数值呈现降低趋势时,认为感染患者病情好转,因此给出病情好转的趋势。
在另一些实施例中,处理器140还可以被进一步配置为通过如下方式监控感染患者的感染病情发展:
获取通过对来自感染患者的当前血液样本的当前检测而获得的所述感染标志参数的当前值并且获取通过对来自感染患者的前一次血液样本的前一次检测而获得的所述感染标志参数的在先值;并且
根据所述感染标志参数的在先值与第一阈值的比较以及所述感染标志参数的在先值与所述感染标志参数的当前值的比较来监控感染患者的感染病情发展。
在一个具体的示例中,如图7所示,处理器140可以被进一步配置为,当感染标志参数的在先值大于等于第一阈值时:
如果感染标志参数的当前值(即图7中的本次结果)大于感染标志参数的在先值(即图7中的前一次结果)并且两者的差值大于第二阈值,则输出指示感染患者病情加重的提示信息;
如果感染标志参数的当前值小于感染标志参数的在先值且两者的差值大于第二阈值,并且感染标志参数的当前值小于第一阈值,则输出指示感染患者病情好转并且感染程度下降的提示信息;
如果感染标志参数的当前值小于感染标志参数的在先值且两者的差值大于第二阈值,但感染标志参数的当前值大于等于第一阈值,则输出指示感染患者病情好转但感染仍然较重的提示信息或者不输出任何提示信息;以及
如果感染标志参数的当前值与感染标志参数的在先值的差值不大于第二阈值,则输出指示感染患者病情无明显好转且感染仍然较重的提示信息或者不输出任何提示信息。
进一步地,如图7所示,处理器140可以被配置为:当感染标志参数的在先值小于第一阈值时:
如果感染标志参数的当前值小于感染标志参数的在先值且两者的差值大于第二阈值,则输出指示感染患者病情好转并且感染程度下降的提示信息;
如果感染标志参数的当前值大于感染标志参数的在先值且两者的差值大于第二阈值,并且感染标志参数的当前值大于第一阈值,则输出指示感染患者病情加重并且感染较重的提示信息;
如果感染标志参数的当前值大于感染标志参数的在先值且两者的差值大于第二阈值,但感染标志参数的当前值小于第一阈值,则输出指示感染患者病情波动或感染可能加重的提示信息或者不输出提示信息;以及
如果感染标志参数的当前值与感染标志参数的在先值的差值不大于第二阈值,则输出指示感染患者感染未加重的提示信息或者不输出提示信息。
在图7所示的实施例中,当感染标志参数用于监控重症感染患者的病情发展时,第一阈值可以是用于判断受试者是否患重症感染的预设阈值。而当感染标志参数用于监控脓毒症患者的病情发展时,第一阈值可以是用于判断受试者是否患脓毒症的预设阈值。
接下来描述一些用于进一步确保监控可靠的实施例,但应理解,本申请实施例不限于 此。
为了避免用于计算感染标志参数的白细胞参数本身对监控可靠性造成干扰,在一些实施例中,处理器140可以被进一步配置为:当所述至少一个白细胞粒子团的预设特征参数满足预设条件时,不输出所述感染标志参数的值,或者输出所述感染标志参数的值并且同时输出指示该感染标志参数的值不可靠的提示信息,或者不输出与感染病情发展相应的提示信息,或者输出与感染病情发展相应的提示信息并且同时输出该提示信息不可靠的附加信息。
在一些具体的示例中,处理器140可以被配置为:当所述至少一个白细胞粒子团的粒子总数小于第三阈值时,不输出所述感染标志参数的值,或者输出所述感染标志参数的值并且同时输出指示该感染标志参数的值不可靠的提示信息,或者不输出与感染病情发展相应的提示信息,或者输出与感染病情发展相应的提示信息并且同时输出该提示信息不可靠的附加信息。
也就是说,当白细胞粒子团的粒子总数小于第三阈值时,即白细胞粒子团的粒子较少,粒子表征的信息量有限,此时感染标志参数的计算结果可能不可靠。例如,如图8(a)所示,测定试样中的白细胞团的粒子总数太低,可能导致通过该白细胞团的白细胞参数计算的感染标志参数不可靠。
在此,例如可以通过测定试样的光学信息判断白细胞粒子团的预设特征参数是否异常,例如白细胞粒子团的粒子总数是否低于预设阈值。
在另一些示例中,处理器140可以被配置为,当所述至少一个白细胞粒子团与其他粒子团存在交叠时,不输出所述感染标志参数的值,或者输出所述感染标志参数的值并且同时输出指示该感染标志参数的值不可靠的提示信息,或者不输出与感染病情发展相应的提示信息,或者输出与感染病情发展相应的提示信息并且同时输出该提示信息不可靠的附加信息。
例如,如图8(b)所示,测定试样中的单核细胞团与淋巴细胞团存在交叠,可能导致通过单核细胞团或淋巴细胞团的白细胞参数计算感染标志参数不可靠。
在此,例如可以通过测定试样的光学信息判断所使用的白细胞粒子团与其他白细胞粒子团是否存在交叠。
此外,患者的疾病状况以及患者血液中的异常细胞也可能影响感染标志参数的监控效力。为此,处理器140可以被进一步配置为:根据感染患者是否患有特定疾病和/或根据待测血液样本是否存在预设类型的异常细胞(例如原始细胞、异常淋巴细胞、幼稚粒细胞等)来确定感染标志参数是否可靠。
在一些具体的示例中,处理器140可以被配置为:当感染患者患有血液疾病或者待测血液样本中存在异常细胞、尤其是原始细胞时,不输出所述感染标志参数的值,或者输出所述感染标志参数的值并且同时输出指示该感染标志参数的值不可靠的提示信息,或者不输出与感染病情发展相应的提示信息,或者输出与感染病情发展相应的提示信息并且同时输出该提示信息不可靠的附加信息。可以理解地,患有血液疾病的患者的血象异常,导致基于该感染标志参数的监控不可靠。
处理器140例如可以根据患者的身份信息(例如包括科室信息)来获取该患者是否患有血液疾病。
在一些实施例中,处理器140可以被配置为根据所述光学信息判断待测血液样本中是 否存在异常细胞、尤其是原始细胞。
在其他实施例中,也可以根据WNB通道的光学信息来判断待测血液样本中是否存在异常细胞。
在一些实施例中,处理器140还可以被配置为在计算感染标志参数之前对白细胞参数进行数据处理、例如去噪声(杂质粒子)干扰(如图8(c)所示)或取对数处理,以便更准确地计算的感染标志参数,例如避免不同仪器、不同试剂所引起的信号变化。
下面结合如下一些实施例对处理器140为每个感染标志参数组配置优先级的方式进行说明。在一些实施例中,处理器140可以被进一步配置为:根据感染监控效力、参数稳定性和参数局限性中的至少一种为每个感染标志参数组配置优先级。
在此优选地,处理器140可以被进一步配置为:至少根据所述感染监控效力为每个感染标志参数组配置优先级。例如,处理器140可以仅根据感染监控效力为每个感染标志参数组配置优先级;又例如,处理器140可以根据感染监控效力和参数稳定性为每个感染标志参数组配置优先级;再例如,处理器140可以根据感染监控效力、参数稳定性以及参数局限性为每个感染标志参数组配置优先级。
在一些实施例中,所述参数稳定性包括数值重复性、老化稳定性、温度稳定性和机间一致性中的至少一个。其中,数值重复性是指,在同一环境下使用同一仪器在短时间内对同一待测血液样本进行多次的重复检测时,所使用的感染标志参数组的数值的一致性;老化稳定性是指,在同一环境下使用同一仪器在不同时间点对同一待测血液样本进行检测时,所使用的感染标志参数组的数值的稳定性;温度稳定性是指,在不同的温度环境下使用同一仪器对同一待测血液样本进行检测时,所使用的感染标志参数组的数值的稳定性;机间一致性是指,在同一环境下使用不同的仪器上对同一待测血液样本进行检测时,所使用的感染标志参数组的数值的一致性。
在一些示例中,若在同一环境下使用同一仪器在短时间内对同一待测血液样本进行多次的重复检测时,所使用的感染标志参数组的数值的一致性越高,即数值重复性越高,则该感染标志参数组的优先级越高。
备选或附加地,若在同一环境下使用同一仪器在不同时间点对同一待测血液样本进行检测时,所使用的感染标志参数组的数值的稳定性越高(即数值的波动程度越小),即老化稳定性越高,则该感染标志参数组的优先级越高。
备选或附加地,若在不同的温度环境下使用同一仪器对同一待测血液样本进行检测时,所使用的感染标志参数组的数值的稳定性越高(即数值的波动程度越小),即温度稳定性越高,则该感染标志参数组的优先级越高。
备选或附加地,在同一环境下使用不同的仪器上对同一待测血液样本进行检测时,所使用的感染标志参数组的数值的一致性越高,即机间一致性越高,则该感染标志参数组的优先级越高。
在一些实施例中,所述参数局限性是指感染标志参数所适用的受试者范围。在一些示例中,若感染标志参数组所适用的受试者范围越大,则说明该感染标志参数组的参数局限性越小,相应地,该感染标志参数组的优先级越高。
在一些实施例中,处理器140所获取的所述多个感染标志参数组的优先级是预先设置的,例如根据感染监控效力、参数稳定性和参数局限性中的至少一个预先设置的。在此,处理器140可以根据该预先设置为每个感染标志参数组配置优先级。例如,可以将所述多 个感染标志参数组的优先级预先存储在存储器中,处理器140可以从存储器调用所述多个感染标志参数组的优先级。
接着,结合如下一些实施例对处理器140计算感染标志参数组的可信度的方式进行进一步说明。
本申请的发明人经研究发现,受试者的血液样本中可能存在分类结果异常和/或异常细胞,从而导致所使用的感染标志参数组不可靠。因此,本申请提供的血液分析仪可以为获取的多个感染标志参数组计算其可信度,以便根据每个感染标志参数组的优先级和可信度从多个感染标志参数组中筛选出更可靠的感染标志参数组。
在一些实施例中,处理器140可以被配置为按照如下方式计算每个感染标志参数组的可信度:
根据用于获取感染标志参数组的至少一个目标粒子团的分类结果和/或根据待测血液样本中的异常细胞计算该感染标志参数组的可信度。
在一些实施例中,所述分类结果可以包括目标粒子团的计数值、目标粒子团与另一粒子团的计数值百分比、目标粒子团与其相邻粒子团的交叠程度(也可称为粘连程度)中的至少一个。例如,目标粒子团与其相邻粒子团的交叠程度可以由目标粒子团的重心与其相邻粒子团的重心之间的距离确定。例如,如果目标粒子团的粒子总数、即计数值小于预设阈值,即目标粒子团的粒子较少,粒子表征的信息量有限,此时通过该目标粒子团的相关参数获得的感染标志参数组可能不可靠,因此该感染标志参数组的可信度较低。
接着,结合一些实施例对处理器140筛选感染标志参数组的方式进行进一步说明。
在本申请实施例中,处理器140可以被配置为,一次计算出所述多个感染标志参数组中的所有感染标志参数组的可信度,然后再根据所有感染标志参数组的优先级和可信度从其中选择至少一个感染标志参数组并输出其参数值。
在另一些实施例中,处理器140可以被配置为执行如下步骤以筛选感染标志参数组并输出其参数值:
从光学信息获取测定试样中的至少一个目标粒子团的多个参数;
从多个参数中获取用于评估所述受试者的感染状态的多个感染标志参数组;
按照多个感染标志参数组的优先级,依次计算多个感染标志参数组的可信度并判断该可信度是否达到相应的可信度阈值;
当当前感染标志参数组的可信度达到相应的可信度阈值时,输出该感染标志参数组的参数值并且停止计算和判断。
在一些实施例中,处理器140可以被进一步配置为:当所选择的感染标志参数组的参数值大于感染阳性阈值时,输出报警提示。
在此,例如也可以对各个感染标志参数组做归一化处理,确保各个感染标志参数的感染阳性阈值一致。
在另一些实施例中,处理器140还可以被配置为,从所述光学信息获取所述测定试样中的至少一个目标粒子团的多个参数,
从所述多个参数中获取用于评估所述受试者的感染状态的多个感染标志参数组,
计算所述多个感染标志参数组中的每个感染标志参数组的可信度,根据所述多个感染标志参数组的可信度从所述多个感染标志参数组中选择至少一个感染标志参数组并输出其参数值。
在一些实施例中,所述处理器可以被进一步配置为:
对于每个感染标志参数组,根据用于获取该感染标志参数组的至少一个目标粒子团的分类结果和/或根据所述待测血液样本中的异常细胞计算该感染标志参数组的可信度。
所述分类结果例如可以包括目标粒子团的计数值、目标粒子团与另一粒子团的计数值百分比、目标粒子团与其相邻粒子团的交叠程度中的至少一个。
在另一些实施例中,处理器140还可以被配置为,根据光学信息判断待测血液样本是否存在影响感染状态评估的异常;当判断待测血液样本存在影响感染状态评估的异常时,从光学信息获取与所述异常匹配的且用于评估受试者的感染状态的感染标志参数。
在一个示例中,若判断待测血液样本中存在影响感染状态评估的分类结果异常、例如待测血液样本中单核细胞团与中性粒细胞团存在交叠时,则可以从光学信息获取除单核细胞团和中性粒细胞团之外的其他细胞团(例如淋巴细胞团)的多个参数,并从其他细胞团的多个参数中获取用于评估受试者的感染状态的感染标志参数。
在另一个示例中,若判断待测血液样本中存在影响感染状态评估的异常细胞、例如原始细胞时,则可以从光学信息获取除了受原始细胞影响的细胞团之外的其他细胞团的多个参数,并从其他细胞团的多个参数中获取用于评估受试者的感染状态的感染标志参数。
接着,结合一些实施例对处理器140控制重测的方式进行进一步说明。
在一些实施例中,所述处理器可以被进一步配置为:
在从所述光学信息获得所述测定试样中的至少一个白细胞粒子团的至少一个白细胞参数之前,获取所述受试者的白细胞计数,并且当所述白细胞计数小于预设阈值时输出对所述受试者的血液样本进行重新测定的重测指令,其中,基于所述重测指令的测定的样本测定量大于用于获取所述光学信息的测定的样本测定量;以及
从基于所述重测指令测得的光学信息获得至少另一个白细胞粒子团的至少另一个白细胞参数,并且基于所述至少另一个白细胞参数获得用于监控所述感染患者的感染病情发展的感染标志参数。
本申请还提供了再另一种血液分析仪,包括测定装置和控制器:
测定装置,用于将受试者的待测血液样本、溶血剂和染色剂混合以制备测定试样并且对该测定试样进行光学测定,以获取所述测定试样的光学信息;
控制器,被配置为:接收模式设定指令,当模式设定指令表明选择了血常规检测模式时,控制所述测定装置对第一测定量的测定试样进行光学测定,以获取所述测定试样的光学信息,以及基于该光学信息获取并输出所述测定试样的血常规参数;当模式设定指令表明选择了脓毒症检测模式时,控制所述测定装置对大于第一测定量的第二测定量的测定试样进行光学测定,以获取所述测定试样的光学信息,从所述光学信息获得所述测定试样中的至少一个白细胞粒子团的至少一个白细胞参数,基于所述至少一个白细胞参数获得感染标志参数,以及输出所述感染标志参数,所述感染标志参数用于监控所述感染患者的感染病情发展。
为此,可以在当样本中的白细胞计数小于预设阈值导致测试的参数结果不可靠时,控制样本分析仪执行重测动作,从而获得更准确的感染标志参数,用于监控所述感染患者的感染病情发展。
本申请实施例还提出一种用于监控感染患者、尤其是重症感染患者或脓毒症患者的感染病情发展的方法。如图9所示,所述方法200包括下列步骤:
S210,获取所述感染患者的待测血液样本;
S220,制备含有所述待测血液样本的一部分、溶血剂和用于白细胞分类的染色剂的测定试样;
S230,使所述测定试样中的粒子逐个通过被光照射的光学检测区,以获得所述测定试样中的粒子在被光照射后所产生光学信息;
S240,从所述光学信息获得所述测定试样中的至少一个白细胞粒子团的至少一个白细胞参数;
S250,基于所述至少一个白细胞参数获得感染标志参数;并且
S260,根据所述感染标志参数监控所述感染患者的感染病情发展并可选地输出与感染病情发展相应的提示信息。
本申请实施例提出的方法200尤其是由本申请实施例提出的上述血液细胞分析仪100来实施。
进一步地,所述至少一个白细胞参数可以包括所述测定试样中的单核细胞群、中性粒细胞群和淋巴细胞群的细胞特征参数中的一个或多个。优选所述至少一个白细胞参数包括所述测定试样中的单核细胞群和中性粒细胞群的细胞特征参数中的一个或多个。
在一些具体的实施例中,所述至少一个白细胞参数包括如下参数中的一个或多个:所述白细胞粒子团的前向散射光强度分布宽度、前向散射光强度分布重心、前向散射光强度分布变异系数、侧向散射光强度分布宽度、侧向散射光强度分布重心、侧向散射光强度分布变异系数、荧光强度分布宽度、荧光强度分布重心、荧光强度分布变异系数以及所述白细胞粒子团在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积和所述白细胞粒子团在由前向散射光强度、侧向散射光强度和荧光强度生成的三维散点图中的分布区域的体积。
优选所述至少一个白细胞参数包括下列参数中的一个或多个:所述测定试样中的单核细胞群的前向散射光强度分布宽度、前向散射光强度分布重心、前向散射光强度分布变异系数、侧向散射光强度分布宽度、侧向散射光强度分布重心、侧向散射光强度分布变异系数、荧光强度分布宽度、荧光强度分布重心、荧光强度分布变异系数以及所述单核细胞群在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积和所述单核细胞群在由前向散射光强度、侧向散射光强度和荧光强度生成的三维散点图中的分布区域的体积;以及所述测定试样中的中性粒细胞群的前向散射光强度分布宽度、前向散射光强度分布重心、前向散射光强度分布变异系数、侧向散射光强度分布宽度、侧向散射光强度分布重心、侧向散射光强度分布变异系数、荧光强度分布宽度、荧光强度分布重心、荧光强度分布变异系数以及所述中性粒细胞群在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积和所述中性粒细胞群在由前向散射光强度、侧向散射光强度和荧光强度生成的三维散点图中的分布区域的体积。
在一些实施例中,步骤S240和步骤S250可以包括:
从所述光学信息获得所述测定试样中的第一白细胞粒子团的至少一个白细胞参数和所述测定试样中的第二白细胞粒子团的至少一个第二白细胞参数,优选所述第一白细胞粒子团为单核细胞群并且所述第二白细胞粒子团为中性粒细胞群;
基于所述至少一个白细胞参数和所述至少一个第二白细胞参数计算、尤其是通过线性 函数计算所述感染标志参数。
备选地,步骤S240和步骤S250可以包括:
从所述光学信息获得所述测定试样中的一个白细胞粒子团的至少两个白细胞参数;
基于所述至少两个白细胞参数计算、尤其是通过线性函数计算所述感染标志参数。
在一些实施例中,可以通过如下方式监控感染患者、尤其是重症感染患者或脓毒症患者的感染病情发展:
获取通过连续多次检测在不同时间点来自感染患者的血液样本而获得的所述感染标志参数的值;并且
根据通过所述连续多次的检测而获得的所述感染标志参数的值的变化趋势来判断所述感染患者病情是否好转,优选当通过所述连续多次的检测而获得的所述感染标志参数的值逐渐趋势性减低时,输出指示所述感染患者病情好转的提示信息。
在另一些实施例中,可以通过如下方式监控感染患者、尤其是重症感染患者或脓毒症患者的感染病情发展:
获取通过对来自感染患者的当前血液样本的当前检测而获得的所述感染标志参数的当前值并且获取通过对来自感染患者的前一次血液样本的前一次检测而获得的所述感染标志参数的在先值;并且
根据所述感染标志参数的在先值与第一阈值的比较以及所述感染标志参数的在先值与所述感染标志参数的当前值的比较来监控所述感染患者的感染病情发展。
具体的提示方式可参考上面对图7的描述,在此不再赘述。
在一些实施例中,所述方法200还可以包括:当所述至少一个白细胞粒子团的预设特征参数满足预设条件时,例如当所述至少一个白细胞粒子团的粒子总数小于第三阈值和/或所述至少一个白细胞粒子团与其他粒子团交叠时,不输出所述感染标志参数的值,或者输出所述感染标志参数的值并且同时输出指示该感染标志参数的值不可靠的提示信息。
备选地或附加地,所述方法200还可以包括:当所述患者患有血液疾病或者所述待测血液样本中存在异常细胞、尤其是原始细胞时,例如当根据所述光学信息判断所述待测血液样本中存在异常细胞、尤其是原始细胞时,不输出所述感染标志参数的值,或者输出所述感染标志参数的值并且同时输出指示该感染标志参数的值不可靠的提示信息。
本申请实施例提出的方法200的更多实施例和优点可参考上述对本申请实施例提出的血液细胞分析仪100的描述、尤其是对处理器140所实施的方法步骤的描述,在此不再赘述。
本申请实施例还提出感染标志参数在监控感染患者、尤其是重症感染患者或脓毒症患者的感染病情发展中的用途,其中,通过如下方法获得所述感染标志参数:
获取通过流式细胞术对含有来自感染患者的待测血液样本的一部分、溶血剂和用于白细胞分类的染色剂的测定试样检测得到的至少一个白细胞粒子团的至少一个白细胞参数;以及
基于所述至少一个白细胞参数获得感染标志参数。
本申请实施例提出的感染标志参数在监控感染患者的感染病情发展中的用途的更多实施例和优点可参考上述对本申请实施例提出的血液细胞分析仪100的描述、尤其是对处理器140所实施的方法步骤的描述,在此不再赘述。
接下来通过一些具体的实施例来进一步说明本申请及其优点。
实施例1监控重症感染患者的病情发展
使用深圳迈瑞生物医疗电子股份有限公司生产的BC-6800Plus血液细胞分析仪按照本申请实施例提出的方法对50例重症感染患者的血液样本进行连续检测,以监控重症感染病情发展。根据患者重症感染诊断后第7天病情状况对50例重症感染患者进行分组。若诊断后第7天患者感染程度好转且病情稳定纳入好转组(阳性样本N=26)。若感染程度无明显好转,患者仍处于重症感染阶段或患者死亡则纳入加重组(阴性样本N=24)。表1示出所使用的感染标志参数及其相应实验数据(两组患者的感染标志参数值的平均值),图10示出采用单参数D_Neu_FL_W作为感染标志参数进行监控的动态趋势变化图,图11示出采用单参数D_Mon_SS_W作为感染标志参数进行监控的动态趋势变化图,图12示出采用单参数D_Neu_FLSS_Area作为感染标志参数进行监控的动态趋势变化图,以及图13示出采用D_Mon_SS_W与D_Neu_FLSS_Area的线性组合参数作为感染标志参数进行监控的动态趋势变化图,其中,以重症感染诊断后天数为横轴,两组患者的感染标志参数值的平均值为纵轴。
表1不同感染标志参数及其相应实验数据
Figure PCTCN2022144232-appb-000001
由表1以及图10-13可知,本申请提出的感染标志参数能够用于较有效地监控重症感染患者的感染发展状况。
实施例2监控脓毒症患者的病情发展
使用深圳迈瑞生物医疗电子股份有限公司生产的BC-6800 Plus血液细胞分析仪按照本申请实施例提出的方法对76例脓毒症患者的血液样本进行连续检测,以监控脓毒症病情发展。根据患者脓毒症诊断后第7天病情状况对76例脓毒症患者进行分组。若诊断后第7天患者感染程度好转且病情稳定纳入好转组(阳性样本N=55)。若感染程度无明显好 转,患者仍处于重症感染阶段或患者死亡则纳入加重组(阴性样本N=21)。表2示出所使用的感染标志参数及其相应实验数据(两组患者的感染标志参数值的中位数),图14示出采用单参数D_Neu_FL_W作为感染标志参数进行监控的动态趋势变化图,图15示出采用单参数D_Mon_SS_W作为感染标志参数进行监控的动态趋势变化图,图16示出采用单参数D_Neu_FLSS_Area作为感染标志参数进行监控的动态趋势变化图,以及图17示出采用D_Mon_SS_W与D_Neu_FLSS_Area的线性组合参数作为感染标志参数进行监控的动态趋势变化图,其中,以脓毒症诊断后天数为横轴,两组患者的感染标志参数值的中位数为纵轴。
表2不同感染标志参数及其相应实验数据
Figure PCTCN2022144232-appb-000002
由表2以及图14-17可知,本申请提出的感染标志参数能够用于较有效地监控脓毒症患者的病情发展状况。
以上在说明书、附图以及权利要求书中提及的特征或者特征组合,只要在本申请的范围内是有意义的并且不会相互矛盾,均可以任意相互组合使用或者单独使用。参考本申请实施例提供的血液细胞分析仪所说明的优点和特征以相应的方式适用于本申请实施例提供的血细胞分析方法和感染标志参数的用途,反之亦然。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效变换方案,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (24)

  1. 一种血液细胞分析仪,包括:
    吸样装置,用于吸取感染患者的待测血液样本;
    样本制备装置,用于制备含有所述待测血液样本的一部分、溶血剂和用于白细胞分类的染色剂的测定试样;
    光学检测装置,包括流动室、光源和光检测器,所述流动室用于供所述测定试样通过,所述光源用于用光照射通过所述流动室的测定试样,所述光检测器用于检测所述测定试样在通过所述流动室时被光照射后所产生的光学信息;以及
    处理器,被配置为:
    从所述光学信息计算所述测定试样中的至少一个白细胞粒子团的至少一个白细胞参数,
    基于所述至少一个白细胞参数获得感染标志参数,并且
    输出所述感染标志参数,所述感染标志参数用于监控所述感染患者的感染病情发展,
    所述处理器被进一步配置为,获取通过多次检测在不同时间点来自所述感染患者的血液样本而获得的所述感染标志参数的多个值并将其输出。
  2. 根据权利要求1所述的血液细胞分析仪,其特征在于,所述至少一个白细胞参数包括所述测定试样中的单核细胞群、中性粒细胞群和淋巴细胞群的细胞特征参数中的一个或多个;
    优选所述至少一个白细胞参数包括所述测定试样中的单核细胞群和中性粒细胞群的细胞特征参数中的一个或多个。
  3. 根据权利要求1或2所述的血液细胞分析仪,其特征在于,所述至少一个白细胞参数包括如下参数中的一个或多个:所述白细胞粒子团的前向散射光强度分布宽度、前向散射光强度分布重心、前向散射光强度分布变异系数、侧向散射光强度分布宽度、侧向散射光强度分布重心、侧向散射光强度分布变异系数、荧光强度分布宽度、荧光强度分布重心、荧光强度分布变异系数以及所述白细胞粒子团在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积和所述白细胞粒子团在由前向散射光强度、侧向散射光强度和荧光强度生成的三维散点图中的分布区域的体积;
    优选所述至少一个白细胞参数包括下列参数中的一个或多个:所述测定试样中的单核细胞群的前向散射光强度分布宽度、前向散射光强度分布重心、前向散射光强度分布变异系数、侧向散射光强度分布宽度、侧向散射光强度分布重心、侧向散射光强度分布变异系数、荧光强度分布宽度、荧光强度分布重心、荧光强度分布变异系数以及所述单核细胞群在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积和所述单核细胞群在由前向散射光强度、侧向散射光强度和荧光强度生成的三维散点图中的分布区域的体积;以及所述测定试样中的中性粒细胞群的前向散射光强度分布宽度、前向散射光强度分布重心、前向散射光强度分布变异系数、侧向散射光强度分布宽度、侧向散射光强度分布重心、侧向散射光强度分布变异系数、荧光强度分布宽度、荧光强度分布重心、荧光强度分布变异系数以及所述中性粒细胞群在由前向散射光强度、 侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积和所述中性粒细胞群在由前向散射光强度、侧向散射光强度和荧光强度生成的三维散点图中的分布区域的体积。
  4. 根据权利要求1至3中任一项所述的血液细胞分析仪,其特征在于,所述处理器被进一步配置为:
    从所述光学信息计算所述测定试样中的第一白细胞粒子团的至少一个白细胞参数和所述测定试样中的第二白细胞粒子团的至少一个第二白细胞参数,优选所述第一白细胞粒子团为单核细胞群并且所述第二白细胞粒子团为中性粒细胞群;
    基于所述至少一个白细胞参数和所述至少一个第二白细胞参数计算、尤其是通过线性函数计算所述感染标志参数。
  5. 根据权利要求1至3中任一项所述的血液细胞分析仪,其特征在于,所述处理器被进一步配置为:
    从所述光学信息计算所述测定试样中的一个白细胞粒子团的至少两个白细胞参数;
    基于所述至少两个白细胞参数计算、尤其是通过线性函数计算所述感染标志参数。
  6. 根据权利要求1至5中任一项所述的血液细胞分析仪,其特征在于,所述处理器被进一步配置为:
    当所述感染标志参数的值处于预设范围之外时,输出指示所述感染标志参数异常的提示信息。
  7. 根据权利要求1至6中任一项所述的血液细胞分析仪,其特征在于,所述处理器被进一步配置为:根据所述感染标志参数监控所述感染患者的感染病情发展并输出与所述感染患者的感染病情发展相应的提示信息。
  8. 根据权利要求7所述的血液细胞分析仪,其特征在于,所述处理器被进一步配置为:
    获取通过至少三次检测在不同时间点来自感染患者的血液样本而获得的所述感染标志参数的值;并且
    根据通过所述至少三次检测而获得的所述感染标志参数的值的变化趋势来判断所述感染患者病情是否好转,优选当通过所述至少三次检测而获得的所述感染标志参数的值逐渐趋势性减低时,输出指示所述感染患者病情好转的提示信息。
  9. 根据权利要求1至8中任一项所述的血液细胞分析仪,其特征在于,所述血液细胞分析仪包括专家系统或者与专家系统通信连接;
    所述处理器被进一步配置为:将所述感染标志参数的所述多个值与所述感染患者的身份信息相关联地发送至所述专家系统;以及
    所述专家系统被配置为与所述感染患者的身份信息相关联地接收并存储所述感染标志参数的所述多个值。
  10. 根据权利要求9所述的血液细胞分析仪,其特征在于,所述专家系统被进一步配置为:
    接收用户的查看指令;以及
    响应于所述查看指令,将所述感染标志参数的所述多个值以其随时间变化的曲线的形式显示在显示装置上。
  11. 根据权利要求1至10中任一项所述的血液细胞分析仪,其特征在于,所述感染标志参数的诊断效力大于0.5,优选大于0.6,特别优选大于0.8。
  12. 根据权利要求1至11中任一项所述的血液细胞分析仪,其特征在于,所述处理器被进一步配置为:
    当所述至少一个白细胞粒子团的预设特征参数满足预设条件时,不输出所述感染标志参数的值,或者输出所述感染标志参数的值并且同时输出指示该感染标志参数的值不可靠的提示信息。
  13. 根据权利要求12所述的血液细胞分析仪,其特征在于,所述处理器被进一步配置为:
    当所述至少一个白细胞粒子团的粒子总数小于第三阈值和/或所述至少一个白细胞粒子团与其他粒子团交叠时,不输出所述感染标志参数的值,或者输出所述感染标志参数的值并且同时输出指示该感染标志参数的值不可靠的提示信息。
  14. 根据权利要求1至13中任一项所述的血液细胞分析仪,其特征在于,所述处理器被进一步配置为:
    当所述感染患者患有血液疾病或者所述待测血液样本中存在异常细胞、尤其是原始细胞时,例如当根据所述光学信息判断所述待测血液样本中存在异常细胞、尤其是原始细胞时,不输出所述感染标志参数的值,或者输出所述感染标志参数的值并且同时输出指示该感染标志参数的值不可靠的提示信息。
  15. 根据权利要求1至14中任一项所述的血液细胞分析仪,其特征在于,所述感染患者为重症感染患者或脓毒症患者。
  16. 根据权利要求1至11中任一项所述的血液细胞分析仪,其特征在于,所述处理器被进一步配置为,在从所述光学信息计算所述测定试样中的至少一个白细胞粒子团的至少一个白细胞参数之前,获取所述感染患者的白细胞计数,并且当所述白细胞计数小于预设阈值时输出对所述感染患者的血液样本进行重新测定的重测指令,其中,基于所述重测指令的测定的样本测定量大于用于获取所述光学信息的测定的样本测定量;以及
    所述处理器被进一步配置为,从基于所述重测指令测得的光学信息计算至少另一个白细胞粒子团的至少另一个白细胞参数,并且基于所述至少另一个白细胞参数获得用于监控所述感染患者的感染病情发展的感染标志参数。
  17. 根据权利要求1至11中任一项所述的血液细胞分析仪,其中,所述处理器从所述光学信息计算所述测定试样中的至少一个白细胞粒子团的至少一个白细胞参数,并基于所述至少一个白细胞参数获得感染标志参数,包括:所述处理器
    从所述光学信息计算所述测定试样中的至少一个白细胞粒子团的多个参数;
    从所述多个参数中获取用于监控所述感染患者的感染病情发展的多个感染标志参数组;
    为所述多个感染标志参数组中的每个感染标志参数组配置优先级;
    计算所述多个感染标志参数组中的每个感染标志参数组的可信度,根据所述多个感染标志参数组的优先级和可信度从所述多个感染标志参数组中选择至少一个感染标志参数组,用于获取所述感染标志参数;或者按照所述多个感染标志参数组的优先级,依次计算所述多个感染标志参数组的可信度并判断该可信度是否达到相应的可信度阈值,当当前感染标志参数组的可信度达到相应的可信度阈值时,基于该感染标志参数组获取所述感染标志参数并且停止计算和判断。
  18. 根据权利要求17所述的血液细胞分析仪,其特征在于,所述处理器被进一步配置为:
    计算所述多个感染标志参数组中的每个感染标志参数组的可信度,并且判断每个感染标志参数组的可信度是否达到相应的可信度阈值;
    将所述多个感染标志参数组中可信度达到相应的可信度阈值的感染标志参数组作为候选感染标志参数组;
    根据所述候选感染标志参数组的优先级从所述候选感染标志参数组中选择至少一个候选感染标志参数组、优选选择优先级最高的感染标志参数组,用于获取所述感染标志参数。
  19. 根据权利要求1至11中任一项所述的血液细胞分析仪,其中,所述处理器从所述光学信息计算所述测定试样中的至少一个白细胞粒子团的至少一个白细胞参数,并基于所述至少一个白细胞参数获得感染标志参数,包括:所述处理器
    从所述光学信息计算所述测定试样中的至少一个白细胞粒子团的多个参数,
    从所述多个参数中获取用于监控所述感染患者的感染病情发展的多个感染标志参数组,
    计算所述多个感染标志参数组中的每个感染标志参数组的可信度,根据所述多个感染标志参数组的可信度从所述多个感染标志参数组中选择至少一个感染标志参数组,用于获取所述感染标志参数。
  20. 根据权利要求1至11中任一项所述的血液细胞分析仪,其中,所述处理器从所述光学信息计算所述测定试样中的至少一个白细胞粒子团的至少一个白细胞参数,并基于所述至少一个白细胞参数获得感染标志参数,包括:所述处理器
    根据所述光学信息判断所述待测血液样本是否存在影响感染病情发展监控的异常;
    当判断所述待测血液样本存在影响感染病情发展监控的异常时,从所述光学信息获取 与所述异常匹配的至少一个白细胞粒子团的至少一个白细胞参数,用于获得所述感染标志参数。
  21. 一种血液细胞分析仪,包括:
    测定装置,用于将感染患者的待测血液样本、溶血剂和染色剂混合以制备测定试样并且对该测定试样进行光学测定,以获取所述测定试样的光学信息;以及
    控制器,被配置为:
    接收模式设定指令,
    当模式设定指令表明选择了血常规检测模式时,控制所述测定装置对第一测定量的测定试样进行光学测定,以获取所述测定试样的光学信息,以及基于该光学信息获取并输出所述测定试样的血常规参数,
    当模式设定指令表明选择了脓毒症检测模式时,控制所述测定装置对大于第一测定量的第二测定量的测定试样进行光学测定,以获取所述测定试样的光学信息,从所述光学信息计算所述测定试样中的至少一个白细胞粒子团的至少一个白细胞参数,基于所述至少一个白细胞参数获得用于监控所述感染患者的感染病情发展的感染标志参数,以及输出所述感染标志参数,其中,获取通过多次检测在不同时间点来自所述感染患者的血液样本而获得的所述感染标志参数的多个值并将其输出。
  22. 一种用于监控感染患者、尤其是重症感染患者或脓毒症患者的感染病情发展的方法,包括:
    获取所述感染患者的待测血液样本;
    制备含有所述待测血液样本的一部分、溶血剂和用于白细胞分类的染色剂的测定试样;
    使所述测定试样中的粒子逐个通过被光照射的光学检测区,以获得所述测定试样中的粒子在被光照射后所产生光学信息;
    从所述光学信息计算所述测定试样中的至少一个白细胞粒子团的至少一个白细胞参数;
    基于所述至少一个白细胞参数获得感染标志参数;并且
    根据所述感染标志参数监控所述感染患者的感染病情发展,其中,获取通过多次检测在不同时间点来自所述感染患者的血液样本而获得的所述感染标志参数的多个值,并根据所述感染标志参数的所述多个值判断所述感染患者的感染病情发展。
  23. 根据权利要求22所述的方法,其特征在于,所述根据所述感染标志参数的所述多个值判断所述感染患者的感染病情发展,包括:
    根据所述感染标志参数的所述多个值之间的变化趋势与阈值比对,尤其是根据所述感染标志参数的所述多个值之间的增大或减小的值与阈值比对,判断所述感染患者的感染病情发展。
  24. 感染标志参数在监控感染患者、尤其是重症感染患者或脓毒症患者的感染病情发展中的用途,其中,通过如下方法获得所述感染标志参数:
    获取通过流式细胞术对含有来自所述感染患者的待测血液样本、溶血剂和用于白细胞 分类的染色剂的测定试样检测得到的至少一个白细胞粒子团的至少一个白细胞参数;以及
    基于所述至少一个白细胞参数获得感染标志参数。
PCT/CN2022/144232 2021-12-31 2022-12-30 血液细胞分析仪、方法以及感染标志参数的用途 WO2023125988A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111678256 2021-12-31
CN202111678256.4 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023125988A1 true WO2023125988A1 (zh) 2023-07-06

Family

ID=86998231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/144232 WO2023125988A1 (zh) 2021-12-31 2022-12-30 血液细胞分析仪、方法以及感染标志参数的用途

Country Status (1)

Country Link
WO (1) WO2023125988A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015014532A (ja) * 2013-07-05 2015-01-22 国立大学法人信州大学 白血球数及び左方移動を指標とした細菌感染症の検出
CN106018771A (zh) * 2015-03-27 2016-10-12 希森美康株式会社 血液分析装置及血液分析方法
CN108604466A (zh) * 2016-01-28 2018-09-28 贝克曼考尔特公司 感染检测和区分系统及方法
CN109030432A (zh) * 2017-06-09 2018-12-18 希森美康株式会社 用于识别感染症的粒子分析方法、装置及计算机程序
US20190324036A1 (en) * 2018-04-20 2019-10-24 Beckman Coulter, Inc. Panels for testing for sepsis
CN111542744A (zh) * 2020-03-10 2020-08-14 深圳迈瑞生物医疗电子股份有限公司 血液分析仪、血液分析方法和计算机可读存储介质
CN112673088A (zh) * 2018-12-06 2021-04-16 深圳迈瑞生物医疗电子股份有限公司 一种检测白细胞的方法、血液细胞分析仪及存储介质
CN113567327A (zh) * 2020-04-28 2021-10-29 希森美康株式会社 用于检验血液的方法、设备和系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015014532A (ja) * 2013-07-05 2015-01-22 国立大学法人信州大学 白血球数及び左方移動を指標とした細菌感染症の検出
CN106018771A (zh) * 2015-03-27 2016-10-12 希森美康株式会社 血液分析装置及血液分析方法
CN108604466A (zh) * 2016-01-28 2018-09-28 贝克曼考尔特公司 感染检测和区分系统及方法
CN109030432A (zh) * 2017-06-09 2018-12-18 希森美康株式会社 用于识别感染症的粒子分析方法、装置及计算机程序
US20190324036A1 (en) * 2018-04-20 2019-10-24 Beckman Coulter, Inc. Panels for testing for sepsis
CN112673088A (zh) * 2018-12-06 2021-04-16 深圳迈瑞生物医疗电子股份有限公司 一种检测白细胞的方法、血液细胞分析仪及存储介质
CN111542744A (zh) * 2020-03-10 2020-08-14 深圳迈瑞生物医疗电子股份有限公司 血液分析仪、血液分析方法和计算机可读存储介质
CN113567327A (zh) * 2020-04-28 2021-10-29 希森美康株式会社 用于检验血液的方法、设备和系统

Similar Documents

Publication Publication Date Title
JP7404438B2 (ja) 感染検出及び識別システム並びに方法
US9588102B2 (en) Method and apparatus for determining white blood cell counts
JP5950423B2 (ja) 幼若顆粒球(earlygranulatedcell)(EGC)の同定および計数
US11994514B2 (en) Method of determining sepsis in the presence of blast flagging
JP2015524571A (ja) Cpdデータを使用した白血病分類
EP2939001B1 (en) Systems and methods for platelet count with clump adjustment
WO2023125988A1 (zh) 血液细胞分析仪、方法以及感染标志参数的用途
WO2023125940A1 (zh) 血液细胞分析仪、方法以及感染标志参数的用途
WO2023125942A1 (zh) 血液细胞分析仪、方法以及感染标志参数的用途
WO2023125955A1 (zh) 血液细胞分析仪、方法以及感染标志参数的用途
WO2023125939A1 (zh) 血液细胞分析仪、提示感染状态的方法以及感染标志参数的用途
WO2023125980A1 (zh) 血液细胞分析仪、方法以及感染标志参数的用途
CN117825243A (zh) 血细胞分析仪、血液分析方法以及感染标志参数的用途
CN117871371A (zh) 血液分析仪、血液分析方法和计算机可读存储介质
CN117871370A (zh) 血液分析仪、血液分析方法和计算机可读存储介质
WO2023115389A1 (zh) 一种样本分析装置和样本分析方法
EP2883036A2 (en) Leukemia classification using cpd data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915235

Country of ref document: EP

Kind code of ref document: A1