WO2023125980A1 - 血液细胞分析仪、方法以及感染标志参数的用途 - Google Patents

血液细胞分析仪、方法以及感染标志参数的用途 Download PDF

Info

Publication number
WO2023125980A1
WO2023125980A1 PCT/CN2022/144177 CN2022144177W WO2023125980A1 WO 2023125980 A1 WO2023125980 A1 WO 2023125980A1 CN 2022144177 W CN2022144177 W CN 2022144177W WO 2023125980 A1 WO2023125980 A1 WO 2023125980A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
infection
blood cell
wbc
neu
Prior art date
Application number
PCT/CN2022/144177
Other languages
English (en)
French (fr)
Inventor
祁欢
张晓梅
潘世耀
李进
吴传健
叶燚
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Publication of WO2023125980A1 publication Critical patent/WO2023125980A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/153Devices specially adapted for taking samples of venous or arterial blood, e.g. with syringes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor

Definitions

  • the present application relates to the field of in vitro diagnosis, in particular to a blood cell analyzer, a method for assessing the infection status of a subject, and the use of infection marker parameters in assessing the infection status of a subject.
  • Sepsis sepsis
  • the incidence of sepsis is high.
  • the fatality rate of sepsis has surpassed that of myocardial infarction, and it has become the main cause of death of non-cardiac patients in the intensive care unit.
  • the mortality rate of sepsis is still as high as 30% to 70%.
  • the cost of sepsis treatment is high, and the consumption of medical resources is large, which seriously affects the quality of life of human beings and poses a huge threat to human health.
  • Microbial culture is considered the most reliable gold standard, which can directly culture and detect bacteria in clinical specimens such as body fluids or blood, thereby interpreting the type and drug resistance of bacteria, which can directly guide clinical medication.
  • the microbial culture method has a long reporting period, the samples are easily contaminated, and the false negative rate is high, which cannot well meet the requirements of rapid and accurate clinical results.
  • CRP C-reactive protein
  • PCT procalcitonin
  • SAA serum amyloid A
  • Serum antigen and antibody detection can confirm specific virus types, but it has limited effect on the situation where the type of pathogen is not clear, and the detection cost is high. Additional inspection fees need to be charged, which increases the financial burden of patients.
  • Routine blood test can prompt the occurrence of infection and identify the type of infection to a certain extent.
  • the blood routine WBC ⁇ Neu% currently used in clinical practice is affected by many aspects, such as being easily affected by other non-infectious inflammatory reactions and normal physiological fluctuations of the body, and cannot accurately and timely reflect the patient's condition. bad.
  • the task of the present application is to provide a blood cell analyzer, a method for evaluating the infection status of a subject, and the use of infection marker parameters in evaluating the infection status of a subject, which Infection marker parameters with high diagnostic effectiveness can be obtained from the original signals of the blood routine detection process, so that accurate and effective prompt information can be provided to users based on the infection marker parameters to prompt the subject's infection status.
  • the first aspect of the present application provides a blood cell analyzer, which includes:
  • a sample aspirating device used to aspirate the subject's blood sample to be tested
  • a sample preparation device for preparing a first measurement sample containing a part of the blood sample to be tested, a first hemolyzing agent, and a first staining agent for leukocyte classification, and for preparing another sample containing the blood sample to be tested a second assay sample of a portion, a second hemolytic agent, and a second stain for identifying nucleated red blood cells;
  • An optical detection device comprising a flow chamber, a light source and a photodetector
  • the flow chamber is used to allow the first measurement sample and the second measurement sample to pass through respectively
  • the light source is used to irradiate light through the the first measurement sample and the second measurement sample in the flow chamber
  • the photodetector is used to detect the light irradiated by the first measurement sample and the second measurement sample when passing through the flow chamber respectively. the generated first optical information and second optical information
  • Processor configured as:
  • At least one second leukocyte parameter of at least one second target particle cluster in said second assay sample is calculated from said second optical information, wherein at least one of the first leukocyte parameter and the second leukocyte parameter comprises a cell characteristic parameter,
  • an infection marker parameter for assessing the infection status of the subject based on the at least one first leukocyte parameter and the at least one second leukocyte parameter
  • the second aspect of the present application also provides a method for evaluating the infection status of a subject, the method comprising:
  • At least one first leukocyte parameter of at least one first target particle cluster in said first assay sample is calculated from said first optical information and at least one of said second assay sample is calculated from said second optical information.
  • at least one second white blood cell parameter of a second target particle cluster wherein at least one of the first white blood cell parameter and the second white blood cell parameter includes a cell characteristic parameter;
  • the third aspect of the present application also provides the use of infection marker parameters in evaluating the infection status of a subject, wherein the infection marker parameters are obtained by the following method:
  • An infection marker parameter is calculated based on the at least one first leukocyte parameter and the at least one second leukocyte parameter.
  • the first white blood cell parameter obtained from the first detection channel for leukocyte classification and the second white blood cell parameter obtained from the second detection channel for identifying nucleated red blood cells are combined into an infection marker parameter, wherein at least one of the first white blood cell parameter and the second white blood cell parameter includes a cell characteristic parameter. Therefore, it is possible to quickly, accurately and efficiently assist doctors in predicting or diagnosing infectious diseases. In particular, based on the infection flag parameter, prompt information prompting the subject's infection status can be effectively provided.
  • Fig. 1 is a schematic structural diagram of a blood cell analyzer according to some embodiments of the present application.
  • Fig. 2 is a schematic structural diagram of an optical detection device according to some embodiments of the present application.
  • Fig. 3 is a two-dimensional scatter diagram of SS-FL of the first measurement sample according to some embodiments of the present application.
  • Fig. 4 is a two-dimensional scattergram of SS-FS of the first measurement sample according to some embodiments of the present application.
  • Fig. 5 is a three-dimensional scattergram of SS-FS-FL of the first measurement sample according to some embodiments of the present application.
  • Fig. 6 is a two-dimensional scattergram of FL-FS of the second measurement sample according to some embodiments of the present application.
  • Fig. 7 is a two-dimensional scattergram of SS-FS of the second measurement sample according to some embodiments of the present application.
  • Fig. 8 is a three-dimensional scatter diagram of SS-FS-FL of the second measurement sample according to some embodiments of the present application.
  • FIG. 9 shows cell characteristic parameters of neutrophil clusters in a first assay sample according to some embodiments of the present application.
  • FIG. 10 shows cell characteristic parameters of leukocyte clusters in the second measurement sample according to some embodiments of the present application.
  • Fig. 11 is a schematic flow chart of judging the progress of a patient's condition according to some embodiments of the present application.
  • FIG. 12 is a scatter diagram of abnormalities in the measurement samples of the first measurement sample according to some embodiments of the present application.
  • Fig. 13 is a scatter diagram of abnormalities in the second measurement sample according to some embodiments of the present application.
  • Fig. 14 shows scatter plots before and after logarithm processing according to some embodiments of the present application.
  • FIG. 15 is a schematic flowchart of a method for assessing an infection status of a subject according to some embodiments of the present application.
  • Fig. 16 is a ROC curve in the scenario of early prediction of sepsis according to some embodiments of the present application.
  • Fig. 17 is a ROC curve in the severe infection identification scenario according to some embodiments of the present application.
  • FIG. 18 is an ROC curve in a sepsis diagnosis scenario according to some embodiments of the present application.
  • Fig. 19 is a graph showing the numerical changes of infection marker parameters used for monitoring the development of severe infection according to some embodiments of the present application.
  • Fig. 20 is a graph of numerical changes of infection marker parameters used for monitoring the development of sepsis according to some embodiments of the present application.
  • Fig. 21A-Fig. 21D visually show the detection results of the curative effect on sepsis using the combination of the double parameters "N_WBC_FL_W” and "D_Neu_FL_W” as the infection marker parameters.
  • Figure 21A shows the measured values of the dual parameter combination before and after 5 days of antibiotic treatment for each patient in the effective group and the ineffective group.
  • Figure 21B shows the box-and-whisker plots of patients in the responder and responder groups.
  • Figure 21C shows the comparison of the combined mean values of the two parameters in the effective group before antibiotic treatment and after 5 days of treatment, and the comparison of the combined mean values of the two parameters in the ineffective group before antibiotic treatment and after 5 days of treatment.
  • Figure 21D shows the ROC curve for the detection of efficacy on sepsis using this two-parameter combination.
  • FIG. 22A-Fig. 22D visually show the detection results of the curative effect on sepsis using the combination of two parameters "N_WBC_FL_W” and "D_Neu_FL_CV” as infection marker parameters.
  • Figure 22A shows the measured values of the dual parameter combination before and after 5 days of antibiotic treatment for each patient in the effective group and the ineffective group.
  • Figure 22B shows box-and-whisker plots of patients in the responder and responder groups.
  • Figure 22C shows the comparison of the combined mean values of the two parameters in the effective group before antibiotic treatment and after 5 days of treatment, and the comparison of the combined mean values of the two parameters in the ineffective group before antibiotic treatment and after 5 days of treatment.
  • Figure 22D shows the ROC curve for the detection of efficacy on sepsis using this two-parameter combination.
  • Fig. 23 is an algorithm calculation step of the area parameter D_NEU_FLSS_Area of the neutrophil population according to some embodiments of the present application.
  • Fig. 24 is the ROC curve in the sepsis diagnosis scenario according to Embodiment 10 of the present application.
  • Scatter diagram It is a two-dimensional or three-dimensional diagram generated by a blood cell analyzer, on which are distributed two-dimensional or three-dimensional characteristic information of multiple particles, where the X-coordinate axis, Y-coordinate axis and The Z coordinate axis represents a characteristic of each particle.
  • the X coordinate axis represents the forward scattered light intensity
  • the Y coordinate axis represents the fluorescence intensity
  • the Z axis represents the side scattered light intensity.
  • the term "scatter plot" used in the present disclosure not only refers to a distribution graph of at least two groups of data in the form of data points in a Cartesian coordinate system, but also includes data arrays, that is, it is not limited by its graphical presentation form.
  • Particle cluster/cell cluster distributed in a certain area of the scatter diagram, a particle population formed by multiple particles with the same cell characteristics, such as white blood cell (including all types of white blood cell) clusters, and white blood cell subpopulations, such as medium Granulocytes, lymphocytes, monocytes, eosinophils, or basophils.
  • white blood cell including all types of white blood cell
  • white blood cell subpopulations such as medium Granulocytes, lymphocytes, monocytes, eosinophils, or basophils.
  • Blood shadow fragment particles obtained by dissolving red blood cells and platelets in the blood with a hemolytic agent.
  • ROC curve Receiver operating characteristic curve, which is based on a series of different binary classification methods (cut-off threshold), with the true positive rate on the ordinate and the false positive rate on the abscissa, ROC_AUC represents the ROC curve and level The area bounded by the coordinate axes.
  • the principle of making the ROC curve is to set a number of different critical values for continuous variables, and calculate the corresponding sensitivity (sensitivity) and specificity (specificity) at each critical value, and then take the sensitivity as the vertical axis, and use 1- The specificity is plotted as a curve on the abscissa.
  • the ROC curve is composed of multiple cut-off values representing their respective sensitivity and specificity, the best diagnostic cut-off value of a certain diagnostic method can be selected by means of the ROC curve.
  • the point on the ROC curve closest to the upper left corner on the ROC curve has the largest sum of sensitivity and specificity, and the value corresponding to this point or its adjacent points is often used as a diagnostic reference value (also called diagnostic threshold or judgment threshold or preset conditions or preset ranges).
  • blood cell analyzers generally count and classify white blood cells through DIFF channels and/or WNB channels.
  • the blood cell analyzer uses the DIFF channel to classify white blood cells into four types of white blood cells, and classify white blood cells into four types: lymphocytes (Lym), monocytes (Mon), neutrophils (Neu), and eosinophils (Eos). leukocyte.
  • the blood cell analyzer recognizes nucleated red blood cells through the WNB channel, and can simultaneously obtain the number of nucleated red blood cells, white blood cells and basophils.
  • Combining the DIFF channel with the WNB channel can result in five classifications of white blood cells, including lymphocytes (Lym), monocytes (Mon), neutrophils (Neu), eosinophils (Eos), basophils cells (Baso) five types of white blood cells.
  • Lym lymphocytes
  • Mon monocytes
  • Neu neutrophils
  • Eos eosinophils
  • Baso basophils cells
  • the blood cell analyzer used in this application classifies and counts the particles in the blood sample through the flow cytometry technology combining the laser light scattering method and the fluorescent staining method.
  • the principle of the hematology analyzer for detecting blood samples can be, for example, as follows: first draw the blood sample, and treat the blood sample with a hemolytic agent and a fluorescent dye, wherein the red blood cells are destroyed and dissolved by the hemolytic agent, while the white blood cells will not be dissolved, but the fluorescent dye With the help of a hemolytic agent, it can enter the nucleus of the white blood cell and combine with the nucleic acid substances in the nucleus; then the particles in the sample pass through the detection holes irradiated by the laser beam one by one.
  • the characteristics of the particles themselves can block or change the direction of the laser beam, thereby generating scattered light at various angles corresponding to its characteristics, and the scattered light can be obtained after the signal detector receives the particle structure and information about the composition.
  • forward scattered light (Forward scatter, FS) reflects the number and volume of particles
  • side scattered light (Side scatter, SS) reflects the complexity of the internal structure of cells (such as intracellular particles or nuclei)
  • fluorescence (Fluorescence, FL ) reflects the content of nucleic acid substances in cells. Using this light information, the particles in the sample can be classified and counted.
  • Fig. 1 is a schematic structural diagram of a blood cell analyzer according to some embodiments of the present application.
  • the blood cell analyzer 100 includes a sample suction device 110 , a sample preparation device 120 , an optical detection device 130 and a processor 140 .
  • the blood cell analyzer 100 also has a not-shown fluid circuit system, which is used to communicate with the sample suction device 110, the sample preparation device 120 and the optical detection device 130, so as to carry out liquid delivery among these devices.
  • the sample aspirating device 110 is used to aspirate the subject's blood sample to be tested.
  • the sample aspirating device 110 has a sampling needle (not shown) for aspirating a blood sample to be tested.
  • the sample aspirating device 110 may further include a driving device, which is used to drive the sampling needle to quantitatively absorb the blood sample to be tested through the nozzle of the sampling needle.
  • the sample suction device 110 can deliver the sucked blood sample to the sample preparation device 120 .
  • the sample preparation device 120 is used to prepare a first measurement sample containing a part of the blood sample to be tested, a first hemolyzing agent, and a first staining agent for leukocyte classification, and to prepare another part containing the blood sample to be tested, a second A second measurement sample of a hemolyzing agent and a second staining agent for identifying nucleated erythrocytes.
  • the hemolytic agent is used to lyse red blood cells in the blood, break the red blood cells into fragments, but keep the shape of the white blood cells basically unchanged.
  • the hemolytic agent may be any one or a combination of cationic surfactants, nonionic surfactants, anionic surfactants, and amphiphilic surfactants.
  • the hemolytic agent may include at least one of alkyl glycosides, triterpene saponins, and steroidal saponins.
  • the hemolytic agent may be selected from octylquinoline bromide, octylisoquinoline bromide, decylquinoline bromide, decylisoquinoline bromide, dodecylquinoline bromide, dodecylquinoline bromide, Isoquinoline bromide, tetradecyl quinoline bromide, tetradecyl isoquinoline bromide, octyltrimethylammonium chloride, octyltrimethylammonium bromide, decyltrimethylammonium chloride Ammonium, Decyltrimethylammonium Bromide, Dodecyltrimethylammonium Chloride, Dodecyltrimethylammonium Bromide, Tetradecyltrimethylammonium Chloride, Tetradecyltrimethylammonium ammonium bromide; dodecyl alcohol polyoxyethylene (23) ether, cetyl alcohol polyoxyethylene (23)
  • the first hemolytic agent is different from the second hemolytic agent, in particular, the first hemolytic agent lyses red blood cells to a greater extent than the second hemolytic agent lyses red blood cells.
  • the first staining agent is a fluorescent dye used to classify leukocytes, for example, it may be able to classify leukocytes in a blood sample into at least three leukocyte subgroups (monocytes, lymphocytes, and neutrophils). granulocytes) fluorescent dye.
  • the second stain is different from the first stain and is a fluorescent dye that can be used to identify nucleated red blood cells (can be used to distinguish nucleated red blood cells from white blood cells) in the blood sample.
  • the first staining agent may include a membrane-specific dye or a mitochondria-specific dye.
  • a membrane-specific dye or a mitochondria-specific dye.
  • the first dyeing agent may include a cationic cyanine compound.
  • a cationic cyanine compound please refer to the Chinese patent application CN101750274A submitted by the applicant on September 28, 2019, the entire disclosure of which is incorporated herein by reference.
  • the currently commercially available reagents for the four classifications of leukocytes can also be used for the first hemolytic agent and the first staining agent of this application, such as M-60LD and M-6FD; Reagents for erythrocytes can also be used in the second hemolyzing agent and the second staining agent of the present application, such as M-6LN and M-6FN.
  • the sample preparation device 120 may include at least one reaction cell and a reagent supply device (not shown in the figure).
  • the at least one reaction pool is used to receive the blood sample to be tested sucked by the sample suction device 110, and the reagent supply device provides processing reagents (including hemolytic agent, first staining agent, second staining agent, etc.) to the at least one reaction pool.
  • processing reagents including hemolytic agent, first staining agent, second staining agent, etc.
  • the at least one reaction cell may include a first reaction cell and a second reaction cell
  • the reagent supply device may include a first reagent supply part and a second reagent supply part.
  • the sample aspirating device 110 is used for partially distributing the aspirated blood samples to be tested to the first reaction pool and the second reaction pool respectively.
  • the first reagent supply part is used for supplying the first hemolyzing agent and the first dyeing agent to the first reaction pool, so that a part of the blood sample to be tested allocated to the first reaction pool mixes and reacts with the first hemolyzing agent and the first staining agent , prepared as the first measurement sample.
  • the second reagent supply part is used to supply the second hemolyzing agent and the second dyeing agent to the second reaction pool, so that a part of the blood sample to be tested allocated to the second reaction pool mixes with the second hemolyzing agent and the second staining agent and reacts , to prepare the second measurement sample.
  • the optical detection device 130 includes a flow chamber, a light source, and a photodetector, the flow chamber is used to allow the first measurement sample and the second measurement sample to pass through respectively, and the light source is used to irradiate light through the the first measurement sample and the second measurement sample in the flow chamber, and the photodetector is used to detect the light irradiated by the first measurement sample and the second measurement sample when passing through the flow chamber respectively.
  • the generated first optical information and second optical information is used to allow the first measurement sample and the second measurement sample to pass through respectively.
  • the first detection channel also referred to as DIFF channel
  • the second detection channel of red blood cells also referred to as the WNB channel
  • a flow cell refers to a chamber of focused liquid flow suitable for detection of light scattering and fluorescence signals.
  • a particle such as a blood cell
  • Light detectors may be positioned at one or more different angles relative to the incident light beam to detect light scattered by the particle to obtain a light scatter signal. Since different particles have different light scattering properties, the light scattering signal can be used to distinguish different particle populations.
  • light scatter signals detected near the incident light beam are often referred to as forward light scatter signals or small angle light scatter signals. In some embodiments, the forward light scatter signal may be detected from an angle of about 1° to about 10° from the incident beam.
  • the forward light scatter signal may be detected from an angle of about 2° to about 6° from the incident beam.
  • the light scatter signal detected at about 90° to the incident light beam is often referred to as the side light scatter signal.
  • the side light scatter signal may be detected from an angle of about 65° to about 115° from the incident light beam.
  • the fluorescent signal from blood cells stained with a fluorochrome is also typically detected at about 90° to the incident beam.
  • the photodetectors may include a forward scatter light detector for detecting forward scatter light signals, a side scatter light detector for detecting side scatter light signals, and a fluorescent light detector for detecting fluorescence signals. Detector.
  • the first optical information may include forward scattered light signals, side scattered light signals, and fluorescence signals of particles in the first measurement sample
  • the second optical information may include forward scattered light signals and fluorescence signals of particles in the second measurement sample. Scattered light signal, side scattered light signal and fluorescence signal.
  • FIG. 2 shows a specific example of the optical detection device 130 .
  • the optical detection device 130 has a light source 101 , a beam shaping component 102 , a flow chamber 103 and a forward scattered light detector 104 sequentially arranged on a straight line.
  • a dichroic mirror 106 is arranged at an angle of 45° to the straight line.
  • Part of the side light emitted by the particles in the flow chamber 103 passes through the dichroic mirror 106 and is captured by the fluorescence detector 105 arranged at the rear of the dichroic mirror 106 at an angle of 45° with the dichroic mirror 106;
  • the side light is reflected by the dichroic mirror 106 and captured by a side scatter light detector 107 arranged in front of the dichroic mirror 106 at an angle of 45° to the dichroic mirror 106 .
  • the processor 140 is used to process and calculate the data to obtain the required results. For example, a two-dimensional scattergram or a three-dimensional scattergram can be generated according to various optical signals collected, and on the scattergram according to gating ) method for particle analysis.
  • the processor 140 can also perform visualization processing on the intermediate calculation result or the final calculation result, and then display it through the display device 150 .
  • the processor 140 is configured to implement the method steps described in detail below.
  • the processor includes but is not limited to a central processing unit (Central Processing Unit, CPU), a micro control unit (Micro Controller Unit, MCU), a field programmable gate array (Field-Programmable Gate Array, FPGA), a digital A device such as a signal processor (DSP) used to interpret computer instructions and process data in computer software.
  • the processor is used to execute various computer application programs in the computer-readable storage medium, so that the blood cell analyzer 100 executes corresponding detection procedures and analyzes optical information or optical signals detected by the optical detection device 130 in real time.
  • the blood cell analyzer 100 may further include a first housing 160 and a second housing 170 .
  • the display device 150 may be, for example, a user interface.
  • the optical detection device 130 and the processor 140 are disposed inside the second casing 170 .
  • the sample preparation device 120 is, for example, disposed inside the first housing 160
  • the display device 150 is, for example, disposed on the outer surface of the first housing 160 and used to display the detection results of the hematology analyzer.
  • blood routine detection using a blood cell analyzer can prompt the occurrence of infection and identify the type of infection, but the blood routine WBC ⁇ Neu% currently used in clinical practice is affected by many aspects and cannot accurately and timely reflect patient condition. Moreover, the sensitivity and specificity of the existing technology in the diagnosis and treatment of bacterial infection and sepsis are not good.
  • the inventors discovered by accident the white blood cell parameters, especially the cell characteristic parameters, of the DIFF channel and the white blood cell parameters, especially the cell characteristics of the WNB channel
  • the parameter implements an infection marker parameter for efficiently assessing a subject's infection status.
  • the embodiment of the present application proposes a solution for combining the white blood cell parameters of the DIFF channel and the white blood cell parameters of the WNB channel to obtain infection marker parameters for effective infection condition assessment.
  • the inventors have found through in-depth research that both neutrophils and monocytes in patient samples are valuable in reflecting the degree of infection, and combining the characteristics of the two particle clusters may better reflect the degree of infection .
  • the white blood cell classification channel of the DIFF channel has a finer distinction of white blood cells, and is generally considered to be easier to find features, but the reagents used in the WNB channel and the DIFF channel are different, the degree of treatment of cells is different, and the staining preferences of fluorescent dyes for nucleic acids are also different. , the dyes in the DIFF channel are more bound to the nucleus, and the dyes in the WNB channel are more bound to the cytoplasm, which may lead to different cell characteristic signals. The combination of the two channels may have a synergistic effect. Based on such research findings, the inventor proposed a method of combining leukocyte parameters of DIFF channel and WNB channel to obtain infection marker parameters for effective infection symptom assessment through a large number of clinical verifications.
  • processor 140 is configured to:
  • At least one second leukocyte parameter of at least one second target particle cluster in the second assay sample is obtained from the second optical information, wherein at least one of the first leukocyte parameter and the second leukocyte parameter comprises a cell characteristic parameter;
  • an infection marker parameter for assessing an infection status of the subject based on the at least one first leukocyte parameter and the at least one second leukocyte parameter;
  • the first white blood cell parameter and the second white blood cell parameter both include cell characteristic parameters, that is, the first white blood cell parameter includes the cell characteristic parameter of the first target particle cluster and the second white blood cell parameter includes the cells of the second target particle cluster. Characteristic Parameters. In this way, infection marker parameters with further improved diagnostic effectiveness can be provided.
  • cell characteristic parameters of particle clusters or cell clusters do not include cell count or classification parameters of cell clusters, but include cells that reflect the volume, internal granularity, and internal nucleic acid content of cells in the cell cluster.
  • the feature parameter of the feature is not included in the cell characteristic parameters of particle clusters or cell clusters.
  • the first white blood cell parameter includes a cell characteristic parameter of the first target particle cluster
  • the second white blood cell parameter includes a classification parameter or a count parameter of the second target particle cluster
  • the first white blood cell parameter includes a classification parameter or a counting parameter of the first target particle cluster
  • the second white blood cell parameter includes a cell characteristic parameter of the second target particle cluster.
  • the processor 140 may be further configured to combine the at least one first white blood cell parameter and the at least one second white blood cell parameter into an infection flag parameter through a linear function, that is, calculate the infection flag by the following formula parameter:
  • Y represents an infection marker parameter
  • X1 represents a first white blood cell parameter
  • X2 represents a second white blood cell parameter
  • A, B, and C are constants.
  • LDA linear discriminant analysis
  • X1 represents a first white blood cell parameter
  • X2 represents a second white blood cell parameter
  • A, B, and C are constants.
  • the functional relationship between features can be obtained, for example, by linear discriminant analysis (LDA), which is a generalization of Fisher's linear discriminant method, which uses statistics, pattern recognition, and machine learning method, by finding one of the features of two classes of events (e.g., with or without sepsis, bacterial or viral infection, infectious or noninfectious inflammation, response or failure of sepsis treatment)
  • Linear combination one-dimensional data is obtained by linear combination of multi-dimensional data, so that the two types of events can be characterized or distinguished.
  • the coefficients of this linear combination can ensure maximum discrimination between the two types of events.
  • the resulting linear combination can be
  • the at least one first white blood cell parameter and the at least one second white blood cell parameter may also be combined into an infection marker parameter through a nonlinear function, which is not specifically limited in this application.
  • the two white blood cell parameters may not be calculated by a function, but the first white blood cell parameter and the second white blood cell parameter may be used in combination, and compared with their respective thresholds , to obtain the infection flag parameter. For example, set the diagnostic thresholds of two parameters: threshold 1 and threshold 2, and then analyze the diagnostic performance of "parameter 1 ⁇ threshold 1 or parameter 2 ⁇ threshold 2", and analyze the diagnosis of "parameter 1 ⁇ threshold 1 and parameter 2 ⁇ threshold 2" efficacy.
  • the infection marker parameters may be calculated from white blood cell parameters and other blood cell parameters, that is, the infection marker parameters may be calculated from at least one white blood cell parameter and at least one other blood cell parameter.
  • the other blood cell parameters can be the classification or counting parameters of platelets (PLT), nucleated red blood cells (NRBC), or reticulocytes (RET), and can also be the concentration of hemoglobin.
  • the leukocytes in the first measurement sample can be classified into at least monocyte clusters, neutrophil clusters and lymphocyte clusters, and in particular can be classified into monocytes clumps, neutrophil clumps, lymphocyte clumps, and eosinophil clumps.
  • SS and the fluorescence signal (or fluorescence intensity) FL can classify the leukocytes in the first measurement sample into a monocyte cluster Mon, a neutrophil cluster Neu, a lymphocyte cluster Lym, and an eosinophil cluster Eos.
  • Fig. 3 is a two-dimensional scatter diagram generated based on the side scattered light signal SS and the fluorescence signal FL in the first optical information, and Fig.
  • FIG. 4 is based on the forward scattered light signal FS and the side scattered light signal FL in the first optical information
  • the two-dimensional scatter diagram generated by the optical signal SS is a three-dimensional scatter diagram generated based on the forward scattered light signal FS, side scattered light signal SS and fluorescence signal FL in the first optical information.
  • the at least one first target particle cluster may include at least one cell cluster among monocyte cluster Mon, neutrophil cluster Neu and lymphocyte cluster Lym in the first assay sample , that is, the at least one first white blood cell parameter may include one or more parameters of the cell characteristic parameters of the monocyte mass Mon, the neutrophil mass Neu and the lymphocyte mass Lym in the first measurement sample.
  • the at least one first target particle cluster may include at least one cell cluster among the monocyte cluster Mon and the neutrophil cluster Neu in the first measurement sample, that is, the at least one first white blood cell parameter It may include one or more parameters, such as one or two or more parameters, among the cell characteristic parameters of the monocyte mass Mon and the neutrophil mass Neu in the first measurement sample.
  • the at least one first white blood cell parameter may also include classification parameters or counting parameters of monocyte mass Mon, neutrophil mass Neu, and lymphocyte mass Lym in the first measurement sample.
  • the white blood cell mass WBC (including all types of white blood cells) in the second measurement sample can be identified based on the second optical information, and at the same time, the WBC in the second measurement sample can be identified.
  • the neutrophil mass Neu and the lymphocyte mass Lym in leukocytes were recognized, as shown in FIGS. 6 to 8 .
  • Fig. 6 is a two-dimensional scatter diagram generated based on the forward scattered light signal FS and the fluorescence signal FL in the second optical information
  • Fig. 7 is a two-dimensional scatter diagram based on the forward scattered light signal FS and the side scattered light signal FL in the second optical information
  • FIG. 8 is a three-dimensional scatter diagram generated based on the forward scattered light signal FS, side scattered light signal SS and fluorescence signal FL in the second optical information.
  • the at least one second target particle cluster may include at least one cell cluster among the lymphocyte cluster Lym, the neutrophil cluster Neu and the white blood cell cluster Wbc in the first measurement sample, that is , the at least one second white blood cell parameter includes one or more parameters of the cell characteristic parameters of the lymphocyte mass Lym, the neutrophil mass Neu and the white blood cell mass Wbc in the second measurement sample.
  • the at least one second target particle cluster may include at least one of the neutrophil cluster Neu and the white blood cell cluster Wbc in the first measurement sample, that is, the at least one second white blood cell parameter may include One or more parameters of the cell characteristic parameters of neutrophil mass Neu and leukocyte mass Wbc in the second measurement sample.
  • the at least one second white blood cell parameter may also include a classification parameter or a count parameter of the neutrophil mass Neu or a count parameter of the white blood cell mass Wbc in the second measurement sample.
  • the at least one first white blood cell parameter may include one or more parameters of the cell characteristic parameters of the monocyte mass Mon and the neutrophil mass Neu in the first assay sample; and
  • the at least one second white blood cell parameter may include one or more parameters of the cell characteristic parameters of the neutrophil population Neu and the white blood cell population Wbc in the second measurement sample.
  • the at least one first white blood cell parameter may include one or more parameters of the cell characteristic parameters of the mononuclear cell mass Mon in the first assay sample; and the at least one second white blood cell parameter may include One or more parameters of the cell characteristic parameters of the leukocyte mass Wbc in the second measurement sample.
  • the at least one first white blood cell parameter may include one or more of the following parameters: the width of the forward scattered light intensity distribution of the first target particle cluster, the center of gravity of the forward scattered light intensity distribution, the forward Coefficient of variation of intensity distribution of scattered light, width of intensity distribution of side scattered light, center of gravity of intensity distribution of side scattered light, coefficient of variation of intensity distribution of side scattered light, width of distribution of fluorescence intensity, center of gravity of distribution of fluorescence intensity, coefficient of variation of fluorescence intensity distribution and all
  • the at least one first white blood cell parameter may include one or more, such as one or two parameters, of the following parameters: the forward scatter of the mononuclear cell mass in the first measurement sample Light intensity distribution width D_MON_FS_W, forward scattered light intensity distribution center of gravity D_MON_FS_P, forward scattered light intensity distribution coefficient of variation D_MON_FS_CV, side scattered light intensity distribution width D_MON_SS_W, side scattered light intensity distribution center of gravity D_MON_SS_P, side scattered light intensity distribution variation Coefficient D_MON_SS_CV, width of fluorescence intensity distribution D_MON_FL_W, center of gravity of fluorescence intensity distribution D_MON_FL_P, coefficient of variation of fluorescence intensity distribution D_MON_FL_CV, and the two kinds of light intensities of the mononuclear cell cluster in the forward scattered light intensity, side scattered light intensity and fluorescence intensity
  • the area of the distribution area in the generated two-dimensional scatter diagram D_MON_FLFS_Area the area of the distribution area of the monon
  • the at least one first white blood cell parameter may include one or more of the following parameters, such as one or two parameters: the distribution width of the forward scattered light intensity of the mononuclear cell cluster in the first measurement sample D_MON_FS_W, center of gravity of forward scattered light intensity distribution D_MON_FS_P, coefficient of variation of forward scattered light intensity distribution D_MON_FS_CV, width of side scattered light intensity distribution D_MON_SS_W, center of gravity of side scattered light intensity distribution D_MON_SS_P, coefficient of variation of side scattered light intensity distribution D_MON_SS_CV, fluorescence Intensity distribution width D_MON_FL_W, fluorescence intensity distribution center of gravity D_MON_FL_P, fluorescence intensity distribution coefficient of variation D_MON_FL_CV and the two-dimensional light intensity of the mononuclear cell cluster generated by forward scattered light intensity, side scattered light intensity and fluorescence intensity The area D_MON_FLFS_Area, D_MON_FLSS_Area, D_MON_SSFS_Area, D_
  • the at least one first white blood cell parameter may also include the classification parameter Mon% or the counting parameter Mon# of the mononuclear cell mass Mon in the first measurement sample or the classification parameter of the neutrophil mass Neu% or counting parameter Neu# or classification parameter Lym% or counting parameter Mon# of lymphocyte mass Lym.
  • FIG. 9 shows the neutrophil clusters in the first measurement sample according to some embodiments of the present application cell characteristic parameters.
  • D_NEU_FL_W represents the fluorescence intensity distribution width of the neutrophil cluster in the first measurement sample, wherein, D_NEU_FL_W is equal to the upper limit S1 of the fluorescence intensity distribution of the neutrophil cluster and the fluorescence intensity of the neutrophil cluster The difference of the lower limit S2 of the distribution.
  • D_NEU_FL_P represents the center of gravity of the fluorescence intensity distribution of neutrophil clusters in the first measurement sample, that is, the average position of neutrophils in the FL direction, wherein D_NEU_FL_P is calculated by the following formula:
  • FL(i) is the fluorescence intensity of the i-th neutrophil.
  • D_NEU_FL_CV represents the coefficient of variation of the fluorescence intensity distribution of the neutrophil clusters in the first measurement sample, wherein D_NEU_FL_CV is equal to dividing D_NEU_FL_W by D_NEU_FL_P.
  • D_NEU_FLSS_Area represents the area of the distribution area of the neutrophil clusters in the first measurement sample in the scattergram generated from the side scattered light intensity and the fluorescence intensity.
  • C1 represents the contour distribution curve of the neutrophil cluster, for example, the total number of positions within the contour distribution curve C1 can be recorded as the area of the neutrophil cluster.
  • first white blood cell parameters can refer to the embodiment shown in FIG. 9 in a corresponding manner.
  • the at least one second white blood cell parameter may include one or more of the following parameters: the width of the forward scattered light intensity distribution of the second target particle cluster, the forward direction Center of gravity of scattered light intensity distribution, coefficient of variation of forward scattered light intensity distribution, width of side scattered light intensity distribution, center of gravity of side scattered light intensity distribution, coefficient of variation of side scattered light intensity distribution, width of fluorescence intensity distribution, center of gravity of fluorescence intensity, fluorescence Intensity distribution coefficient of variation and the area of the distribution area of the second target particle group in the two-dimensional scatter diagram generated by the two light intensities of forward scattered light intensity, side scattered light intensity and fluorescence intensity and the described The volume of the distribution area of the second target particle group in the three-dimensional scatter diagram generated by the forward scattered light intensity, side scattered light intensity and fluorescence intensity.
  • the at least one second white blood cell parameter may include one or more, such as one or two parameters, of the following parameters: Scattered light intensity distribution width N_NEU_FS_W, forward scattered light intensity distribution center of gravity N_NEU_FS_P, forward scattered light intensity distribution coefficient of variation N_NEU_FS_CV, side scattered light intensity distribution width N_NEU_SS_W, side scattered light intensity distribution center of gravity N_NEU_SS_P, side scattered light intensity distribution Coefficient of variation N_NEU_SS_CV, width of fluorescence intensity distribution N_NEU_FL_W, center of gravity of fluorescence intensity distribution N_NEU_FL_P, coefficient of variation of fluorescence intensity distribution N_NEU_FL_CV, and the two types of neutrophil clusters in forward scattered light intensity, side scattered light intensity and fluorescence intensity
  • the area of the distribution area in the two-dimensional scatter diagram generated by light intensity N_NEU_FLFS_Area the area of the distribution area of the neutrophil cluster in the two-dimensional scatter diagram generated
  • the at least one second white blood cell parameter may also include a count parameter WBC# of white blood cell clusters in the second measurement sample.
  • FIG. 10 shows cell characteristic parameters of leukocyte clusters in the second measurement sample according to some embodiments of the present application.
  • N_WBC_FS_W represents the width of the forward scattered light intensity distribution of the white blood cell mass in the second measurement sample, wherein, N_WBC_FS_W is equal to the upper limit of the forward scattered light intensity distribution of the white blood cell mass and the forward scattered light intensity distribution of the white blood cell mass Lower limit difference.
  • N_WBC_FS_P represents the center of gravity of the forward scattered light intensity distribution of the white blood cell mass in the second measurement sample, that is, the average position of the white blood cell in the FS direction, wherein, N_WBC_FS_P is calculated by the following formula:
  • FS(i) is the forward scattered light intensity of the i-th white blood cell.
  • N_WBC_FS_CV represents the coefficient of variation of the forward scattered light intensity distribution of the white blood cell mass in the second measurement sample, wherein, N_WBC_FS_CV is equal to N_WBC_FS_W divided by
  • N_WBC_FLFS_Area represents the area of the distribution area of the white blood cell clusters in the second measurement sample in the scattergram generated from the forward scattered light intensity and the fluorescence intensity.
  • C2 represents the contour distribution curve of the white blood cell mass, for example, the total number of positions within the contour distribution curve C2 can be recorded as the area of the white blood cell mass.
  • Those skilled in the art can understand that it is easy to obtain the profile distribution curve of the particle community by using a classification algorithm of a common hematology analyzer or an image processing technique.
  • D_NEU_FLSS_Area can also be implemented through the following algorithm steps ( Figure 23):
  • Construct vector V1 (P1-P2) and take P1 as the starting point of the vector, find another particle P3 in the neutrophil (NEU) particle cluster, and construct vector V2 (P1-P3), so that vector V2 (P1- P3) forms the largest angle with the vector V1 (P1-P2);
  • the D_NEU_FLSS_Area is the product of the major axis a and the minor axis b.
  • the volume parameter of the distribution area of the neutrophil population in the three-dimensional scatter diagram generated by the forward scattered light intensity, side scattered light intensity and fluorescence intensity can also be obtained by a corresponding calculation method.
  • the overall distribution characteristics of a certain particle population scatter diagram can be used, such as the width of the forward scattered light intensity distribution of the entire white blood cell cluster, or the characteristics of particle distribution in some areas of a certain particle population, such as The distribution area of the denser part of the neutrophil cluster, or the area that is different from the neutrophil or lymphocyte particle population in the scatter diagram of normal people.
  • the processor 140 may be further configured to: when the value of the infection flag parameter is outside a preset range, output prompt information indicating that the infection flag parameter is abnormal. For example, when the value of the infection flag parameter increases abnormally, an upward-pointing arrow may be output to indicate the abnormal increase.
  • the processor 140 may also be configured to output the preset range.
  • the processor 140 may be further configured to: output prompt information indicating the infection status of the subject based on the infection flag parameter.
  • the processor 140 may be configured to output the prompt information to a display device for display.
  • the display device here may be the display device 150 of the hematology analyzer 100 , or other display devices communicatively connected with the processor 140 .
  • the processor 140 may output the prompt information to the display device on the user (doctor) side through the hospital information management system.
  • the infection marker parameters can be used for early prediction of sepsis, diagnosis of sepsis, identification of common infection and severe infection, monitoring of infection condition, prognosis analysis of sepsis, bacterial Identification of infection and viral infection or non-infectious inflammation and infectious inflammation, evaluation of the efficacy of sepsis.
  • the processor 140 can be further configured to perform early sepsis prediction, sepsis diagnosis, identification of common infection and severe infection, infection condition monitoring, sepsis prognosis analysis, bacterial Identification of infection and viral infection or non-infectious inflammation and infectious inflammation, evaluation of the efficacy of sepsis.
  • Sepsis is a serious infectious disease with a high incidence rate and high mortality rate. For every 1 hour delay in treatment, the patient's mortality rate increases by 7%. Therefore, early warning of sepsis is particularly important. Early identification and early warning of sepsis can increase valuable diagnosis and treatment time for patients and greatly improve survival rate.
  • the processor 140 can be configured to, when the infection marker parameter meets the first preset condition, output an indication indicating that the test subject has a certain period of time after the blood sample to be tested is collected.
  • the prompt information that may progress to sepsis in the paragraph.
  • the certain period of time is not greater than 48 hours, that is, the embodiment of the present application can predict whether the subject may develop sepsis at most two days in advance.
  • the certain period of time is between 24 hours and 48 hours, that is, the embodiment of the present application can predict whether the subject may develop sepsis one to two days in advance.
  • the certain period of time is not greater than 24 hours.
  • the first preset condition may be, for example, that the value of the infection flag parameter is greater than a preset threshold.
  • the preset threshold can be determined according to the specific combination of parameters and the blood cell analyzer.
  • the infection marker parameters can be calculated by combining the parameters listed in Table 1 for early prediction of sepsis.
  • first leukocyte parameter Second white blood cell parameters first leukocyte parameter Second white blood cell parameters first leukocyte parameter Second white blood cell parameters first leukocyte parameter Second white blood cell parameter D_Mon_FS_P N_WBC_FLFS_Area D_Neu_FL_W N_WBC_FS_P Lym# N_WBC_FLFS_Area D_Mon_FS_P N_WBC_FS_W Lym# N_WBC_FLSS_Area D_Mon_FS_P N_WBC_FS_P D_Neu_FL_W N_WBC_FS_P D_Neu_FL_W N_WBC_FS_P D_Neu_FL_W N_WBC_FS_W D_Neu_FL_W N_WBC_FS_W D_Neu_FL_W N_WBC_FL_W Lym# N_WBC_FS_W D_Neu_FL_W N_WBC_FL_W Lym# N_WBC_FS_W D_Neu_FL_W N_WBC_FL_
  • a combination of D_Mon_SS_W and N_WBC_FL_W can be used to calculate the infection marker parameters for early prediction of sepsis.
  • the processor 140 may be configured to output prompt information indicating that the subject suffers from sepsis when the infection flag parameter satisfies the second preset condition.
  • the second preset condition may also be that the value of the infection flag parameter is greater than a preset threshold.
  • the preset threshold can be determined according to the specific combination of parameters and the blood cell analyzer.
  • the infection marker parameters can be calculated by combining the parameters listed in Table 2 for sepsis diagnosis.
  • first leukocyte parameter Second white blood cell parameters first leukocyte parameter Second white blood cell parameters first leukocyte parameter Second white blood cell parameters first leukocyte parameter Second white blood cell parameter D_Lym_FLSS_Area N_WBC_FL_W D_Neu_FL_P N_WBC_FLSS_Area D_Neu_FS_W N_WBC_FS_P D_Lym_FLSS_Area N_WBC_SS_W D_Neu_FL_P N_WBC_FLFS_Area D_Neu_FS_W N_WBC_FS_P D_Lym_FLSS_Area N_WBC_SS_W D_Neu_FL_P N_WBC_FLFS_Area D_Neu_FS_W N_WBC_FLSS_Area D_Lym_FLSS_Area N_WBC_FS_W D_Neu_FL_P N_WBC_SS_P D_Neu_FS_W N_WBC_FS_CV D_Lym_FLSS_A
  • a combination of D_Mon_SS_W and N_WBC_FL_W can be used to calculate infection marker parameters for sepsis diagnosis.
  • Patients with bacterial infection can be divided into common infection and severe infection according to their infection severity and organ function status.
  • the clinical treatment methods and nursing measures for the two infections are different, so the identification of common infection and severe infection can help doctors identify life-threatening Patients can also allocate medical resources more reasonably.
  • the processor 140 may be configured to, when the infection flag parameter satisfies the third preset condition, output prompt information indicating that the subject suffers from severe infection.
  • the third preset condition may also be that the value of the infection flag parameter is greater than a preset threshold.
  • the preset threshold can be determined according to the specific combination of parameters and the blood cell analyzer.
  • the infection marker parameters can be calculated by combining the parameters listed in Table 3, so as to distinguish common infection from severe infection.
  • D_EOS_FS_W is the width of the forward scattered light intensity distribution of the eosinophil cluster in the first measurement sample
  • D_EOS_FS_P is the center of gravity of the forward scattered light intensity distribution
  • D_EOS_SS_W is the side scattered light intensity distribution Width
  • D_EOS_SS_P is the center of gravity of side scattered light intensity distribution
  • D_EOS_FL_W is the width of fluorescence intensity distribution
  • D_EOS_FL_P is the center of gravity of fluorescence intensity distribution.
  • a combination of D_Mon_SS_W and N_WBC_FL_W can be used to calculate the infection marker parameters for distinguishing common infection from severe infection.
  • the subject is an infected patient (ie, a patient with infectious inflammation), especially a patient with severe infection or sepsis, for example, the subject is from intensive care patients with severe infection or sepsis.
  • Sepsis is a serious infectious disease with a high incidence and high fatality rate.
  • the condition of patients with sepsis fluctuates greatly, and daily monitoring is required to prevent the aggravation of the patient's condition but not deal with it in time. Therefore, it is very important to judge the progress and treatment effect of patients with sepsis by combining clinical symptoms with laboratory test results.
  • the processor 140 may be configured to monitor the development of an infection in the subject based on the infection marker parameters.
  • processor 140 may be further configured to monitor the development of an infection in the subject by:
  • the processor 140 may be further configured to: when the values of the infection marker parameters obtained through the multiple detections gradually tend to decrease, output a prompt indicating that the condition of the subject is getting better information; and when the values of the infection marker parameters obtained through the multiple detections gradually increase in a trend, output prompt information indicating that the condition of the subject is aggravated.
  • the multiple detections here may be continuous daily detections, or multiple detections at regular intervals.
  • the processor 140 may be further configured to prompt the subject's disease progression in the following manner:
  • the subject is monitored for disease progression based on a comparison of a previous value of the infection marker parameter to a first threshold and a comparison of the previous value of the infection marker parameter to a current value of the infection marker parameter.
  • the processor 140 may be further configured to: when the previous value of the infection flag parameter is greater than or equal to the first threshold:
  • the output indicates that the affected Prompt information for the exacerbation of the test subject's condition
  • the output indicates that the subject is getting better and the degree of infection is decreasing prompt information
  • the output indicates that the subject is getting better but the infection is still Heavier prompts or no prompts at all;
  • the processor 140 may be configured to: when the previous value of the infection flag parameter is less than the first threshold:
  • the output indicates that the subject is sicker and the infection is severe prompt information
  • the output indicates that the subject's condition is fluctuating or the infection may worsen Prompt message or no prompt message output
  • the first threshold when the infection marker parameters are used to monitor the progress of a patient with a severe infection, the first threshold may be a preset threshold for judging whether the subject has a severe infection. However, when the infection marker parameters are used to monitor the progress of a patient with sepsis, the first threshold may be a preset threshold for judging whether the subject suffers from sepsis.
  • the subjects are sepsis patients who have received treatment.
  • the processor 140 may be further configured to determine whether the prognosis of the subject's sepsis is good or not according to the infection marker parameters. For example, when the value of the infection marker parameter is greater than the preset threshold, it is judged that the prognosis of sepsis of the subject is good.
  • the preset threshold can be determined according to the specific combination of parameters and the blood cell analyzer.
  • Infectious diseases can be divided into different infection types such as bacterial infection, viral infection, and fungal infection, among which bacterial infection and viral infection are the most common. Although the clinical symptoms of the two infections are roughly the same, the treatment methods are completely different, so it is necessary to clarify the type of infection in order to choose the correct treatment method. To this end, the processor 140 may be further configured to determine whether the subject's infection type is a viral infection or a bacterial infection according to the infection flag parameters.
  • the infection marker parameters can be calculated by combining the parameters listed in Table 4 for the identification of bacterial infection and viral infection.
  • first leukocyte parameter Second white blood cell parameters first leukocyte parameter Second white blood cell parameters first leukocyte parameter Second white blood cell parameters first leukocyte parameter Second white blood cell parameters D_Lym_FLFS_Area N_WBC_FLFS_Area D_Mon_FL_W N_WBC_FS_W D_Lym_FS_P N_WBC_FL_W D_Lym_FLFS_Area D_Neu_SS_P N_WBC_FL_W D_Neu_SS_W N_WBC_FLFS_Area D_Neu_FLSS_Area N_WBC_FS_P D_Neu_SS_P N_WBC_FS_W D_Mon_SS_P N_WBC_FS_W D_Neu_FLSS_Area N_WBC_FL_P D_Neu_FLFS_Area N_WBC_FL_P D_Neu_FLFS_Area N_WBC_FL_P D_Neu_FLFS_Area N_WBC_FL_P D_Neu
  • the combination of D_Mon_SS_W and N_WBC_FL_W can be used here to calculate the infection marker parameters for the identification of bacterial infection and viral infection.
  • inflammation is divided into infectious inflammation caused by pathogenic microorganism infection, and non-infectious inflammation caused by physical factors, chemical factors or tissue necrosis.
  • infectious inflammation caused by pathogenic microorganism infection
  • non-infectious inflammation caused by physical factors, chemical factors or tissue necrosis.
  • the clinical symptoms of the two types of inflammation are roughly the same, and symptoms such as redness and fever will appear.
  • the treatment methods of the two types of inflammation are not completely the same. Therefore, it is necessary to clarify what factors cause the patient's inflammatory response in clinical practice before symptomatic treatment can be performed.
  • the processor 140 may be further configured to determine whether the subject suffers from infectious inflammation or non-infectious inflammation according to the infection marker parameter. For example, when the value of the infection marker parameter is greater than a preset threshold, it is determined that the subject suffers from infectious inflammation.
  • the preset threshold can be determined according to the specific combination of parameters and the blood cell analyzer.
  • infection marker parameters can be calculated by combining the parameters listed in Table 5, so as to distinguish infectious inflammation from non-infectious inflammation.
  • a combination of D_Mon_SS_W and N_WBC_FL_W can be used to calculate the infection marker parameters for distinguishing infectious inflammation from non-infectious inflammation.
  • the doctor After the doctor conducts an inquiry and physical examination on the patient, he will generally have one or several preliminary disease diagnoses. Then through laboratory tests, imaging examinations and other means for differential diagnosis or disease diagnosis. Therefore, it can be said that the doctor prescribes the laboratory test list with a purpose. In other words, when the doctor prescribes the order, it is clear which scenario the parameter should be applied to. For example: A patient with fever in an ordinary outpatient clinic has no symptoms of organ damage. The doctor initially judges that it is a common infection, not a severe infection or sepsis. But what kind of medicine to prescribe, it needs to be clear whether it is a viral infection or a bacterial infection, so blood routine is prescribed.
  • the infection marker parameters output in this application are used as a reference for doctors in clinical practice, not for diagnostic purposes.
  • the processor 140 can be further configured to, when the first target particle cluster and /or when the preset characteristic parameter of the second target particle cluster satisfies the fourth preset condition, the value of the infection flag parameter is not output (that is, the value of the infection flag parameter is shielded), or the value of the infection flag parameter is output value and at the same time output a prompt message indicating that the value of the infection flag parameter is unreliable.
  • the processor 140 is further configured to output prompt information indicating the infection status of the subject based on the infection flag parameters, if the preset characteristic parameters of the first target particle cluster and/or the second target particle cluster satisfy the first Four preset conditions, the processor 140 does not output the prompt information indicating the infection status of the subject, or outputs the prompt information indicating the infection status of the subject and outputs additional information that the prompt information is unreliable.
  • the processor 140 may be configured to not output the value of the infection flag parameter, or output The value of the infection flag parameter and at the same time output prompt information indicating that the value of the infection flag parameter is unreliable.
  • the calculation result of the infection flag parameter may be unreliable at this time.
  • the total number of particles of the leukocyte mass in the first measurement sample is too low, which may lead to unreliable infection marker parameters calculated from the first leukocyte parameter of the leukocyte mass.
  • the total number of particles of the leukocyte mass in the second measurement sample is too low, which may lead to unreliable infection marker parameters calculated by the second leukocyte parameter of the leukocyte mass.
  • the preset characteristic parameter of the first target particle cluster is abnormal, for example, whether the total number of particles of the first target particle cluster is lower than a preset threshold.
  • the preset characteristic parameter of the second target particle cluster is abnormal based on the second optical information, for example, whether the total number of particles of the second target particle cluster is lower than a preset threshold.
  • the processor 140 may be configured to not output the value of the infection flag parameter, or output the The value of the above-mentioned infection flag parameter and at the same time output a prompt message indicating that the value of the infection flag parameter is unreliable.
  • the neutrophil cluster in the second measurement sample overlaps with other particles, which may cause the infection marker parameter calculated by the second white blood cell parameter of the neutrophil cluster to be incorrect. reliable.
  • it can be judged by the first optical information whether the first target particle cluster overlaps with other particle clusters.
  • it may be determined whether the second target particle cluster overlaps with other particle clusters based on the second optical information.
  • the processor 140 when the processor 140 is further configured to output prompt information indicating the infection status of the subject based on the infection flag parameter, if the total number of particles of the first target particle cluster and/or the second target particle cluster is less than A preset threshold, and/or if the first target particle cluster and/or the second target particle cluster overlap with other particle clusters, the processor 140 does not output prompt information indicating the infection status of the subject, or outputs Indicating prompt information of the subject's infection status and outputting additional information that the prompt information is unreliable.
  • the disease status of the subject and the abnormal cells in the blood of the subject may also affect the diagnostic or prompt efficacy of the infection marker parameters.
  • the processor 140 can be further configured to: according to whether the subject suffers from a specific disease and/or whether there are preset types of abnormal cells (such as blast cells, abnormal lymphocytes, immature granulocytes, etc.) in the blood sample to be tested ) to determine whether the infection flag parameters are reliable.
  • the processor 140 may be configured to not output the value of the infection marker parameter when the subject suffers from a blood disease or abnormal cells, especially primitive cells, exist in the blood sample to be tested, or Outputting the value of the infection flag parameter and simultaneously outputting prompt information indicating that the value of the infection flag parameter is unreliable. It is understandable that the abnormal blood picture of subjects suffering from blood diseases makes the diagnosis or indication based on the infection marker parameters unreliable.
  • the processor 140 may acquire whether the subject suffers from a blood disease according to the identity information of the subject.
  • the processor 140 may be configured to determine whether there are abnormal cells, especially primitive cells, in the blood sample to be tested according to the first optical information and/or the second optical information.
  • the processor 140 can also be configured to perform data processing on the first white blood cell parameter and the second white blood cell parameter before calculating the infection marker parameter, such as removing noise (impurity particles) interference (as shown in Figure 12(c), 13(c)) or take logarithmic processing (as shown in FIG. 14 ) in order to calculate the infection marker parameters more accurately, such as avoiding signal changes caused by different instruments and different reagents.
  • data processing on the first white blood cell parameter and the second white blood cell parameter before calculating the infection marker parameter, such as removing noise (impurity particles) interference (as shown in Figure 12(c), 13(c)) or take logarithmic processing (as shown in FIG. 14 ) in order to calculate the infection marker parameters more accurately, such as avoiding signal changes caused by different instruments and different reagents.
  • the processor 140 may be further configured to: configure a priority for each infection flag parameter set according to at least one of infection diagnosis efficacy, parameter stability, and parameter limitation.
  • the processor 140 may be further configured to: configure a priority for each infection flag parameter group at least according to the infection diagnosis effectiveness. For example, the processor 140 may configure priority for each infection flag parameter group only according to the effectiveness of infection diagnosis; for another example, the processor 140 may configure priority for each infection flag parameter group according to infection diagnosis effectiveness and parameter stability; another example , the processor 140 may configure a priority for each infection flag parameter group according to infection diagnosis efficacy, parameter stability, and parameter limitation.
  • the infection marker parameter set of the present application can be used for the assessment of various infection states, such as early prediction of sepsis, diagnosis of sepsis, Identification of common infection and severe infection, monitoring of infection condition, prognosis analysis of sepsis, identification of bacterial infection and viral infection, evaluation of curative effect of sepsis or identification of non-infectious inflammation and infectious inflammation.
  • the infection diagnostic efficiency includes the diagnostic efficiency for the identification of common infection and severe infection.
  • the infection flag parameter set of the present application when only set for a certain infection status assessment, such as only for the identification of severe infection, it can be used for each infection according to the diagnostic effectiveness of the infection status assessment, such as the identification of severe infection.
  • Flag parameter group configuration priority when the infection flag parameter set of the present application is only set for a certain infection status assessment, such as only for the identification of severe infection, it can be used for each infection according to the diagnostic effectiveness of the infection status assessment, such as the identification of severe infection. Flag parameter group configuration priority.
  • the processor 140 may be further configured to: configure priority for each infection flag parameter group according to the area ROC_AUC enclosed by the ROC curve and the horizontal coordinate axis of each infection flag parameter group, wherein the greater the ROC_AUC, The corresponding infection flag parameter group has higher priority.
  • the ROC curve is a receiver operating characteristic curve drawn on the ordinate of the true positive rate and the abscissa of the false positive rate
  • the ROC_AUC of each infection marker parameter group can reflect the infection diagnostic efficacy of the infection marker parameter group.
  • the parameter stability includes at least one of numerical repeatability, aging stability, temperature stability, and machine-to-machine consistency.
  • numerical repeatability refers to the consistency of the values of the infection marker parameter groups used when the same instrument is used in the same environment to perform multiple repeated tests on the same blood sample to be tested in a short period of time
  • aging stability is Refers to the stability of the value of the infection marker parameter set used when the same instrument is used to detect the same blood sample at different time points in the same environment
  • temperature stability refers to the use of the same instrument under different temperature environments.
  • the stability of the value of the infection marker parameter group used refers to that when the same blood sample to be tested is tested on different instruments in the same environment, Consistency of values for the infection flags parameter set used.
  • the higher the stability of the value of the infection marker parameter set used that is, the smaller the fluctuation of the value
  • the higher the aging stability the higher the priority of the infection flag parameter group.
  • the higher the stability of the value of the infection marker parameter set used that is, the smaller the fluctuation of the value
  • the parameter limitations refer to the range of subjects to which the infection marker parameters are applicable. In some examples, if the scope of subjects to which the infection flag parameter set is applicable is larger, it means that the parameters of the infection flag parameter set are less limited, and accordingly, the priority of the infection flag parameter set is higher.
  • the priorities of the plurality of infection marker parameter sets acquired by the processor 140 are preset, for example, preset according to at least one of infection diagnosis efficacy, parameter stability, and parameter limitation.
  • the processor 140 may configure a priority for each infection flag parameter group according to the preset.
  • the priorities of the multiple infection flag parameter sets may be pre-stored in a memory, and the processor 140 may recall the priorities of the multiple infection flag parameter sets from the memory.
  • the inventors of the present application have found through research that there may be abnormal classification results and/or abnormal cells in the blood sample of the subject, which makes the infection marker parameter set used unreliable. Therefore, the blood analyzer provided by the present application can calculate the credibility of the obtained multiple infection marker parameter groups, so as to screen out the More robust set of infection flag parameters.
  • the processor 140 may be configured to calculate the credibility of each infection flag parameter set as follows:
  • the reliability of the infection marker parameter set is calculated according to the classification result of at least one target particle cluster used to obtain the infection marker parameter set and/or according to the abnormal cells in the blood sample to be tested.
  • the classification results may include the count value of the target cluster, the percentage of the count value of the target cluster and another cluster, the degree of overlap between the target cluster and its adjacent clusters (also referred to as adhesion). at least one of the degrees).
  • the degree of overlap between a target cluster and its neighbors may be determined by the distance between the center of gravity of the target cluster and the centers of gravity of its neighbors.
  • the infection flag parameter set obtained through the relevant parameters of the target particle cluster Possibly unreliable, so the confidence in this set of infection flags parameters is low.
  • the processor 140 may be configured to calculate the credibility of all the infection flag parameter groups in the plurality of infection flag parameter groups once, and then calculate the The credibility selects at least one infection flag parameter set therefrom and outputs its parameter value.
  • the processor 140 may be configured to perform the following steps to screen the infection flag parameter set and output its parameter value:
  • the processor calculates a plurality of first leukocyte parameters of at least one first target particle cluster in the first assay sample from the first optical information, and calculates the second assay parameters from the second optical information. a plurality of second white blood cell parameters of at least one second target particle cluster in the sample;
  • the processor 140 may be further configured to: when the parameter value of the selected infection flag parameter set is greater than the infection positive threshold, output an alarm prompt.
  • normalization processing may be performed on each infection flag parameter group to ensure that the infection positive thresholds of each infection flag parameter are consistent.
  • the processor 140 may also be configured to: calculate the credibility of each infection marker parameter set among the plurality of infection marker parameter sets, and determine the credibility of each infection marker parameter set Whether the corresponding confidence threshold is reached;
  • the processor may be further configured to: the processor calculates from the first optical information a plurality of first leukocytes of at least one first target particle cluster in the first assay sample parameters, calculating a plurality of second leukocyte parameters of at least one second target particle cluster in said second assay sample from said second optical information,
  • the processor may be further configured to:
  • For each infection marker parameter set calculate the reliability of the infection marker parameter set according to the classification result of at least one target particle cluster used to obtain the infection marker parameter set and/or according to the abnormal cells in the blood sample to be tested .
  • the classification result may include, for example, at least one of the count value of the target cluster, the count value percentage of the target cluster and another cluster, and the degree of overlap between the target cluster and its adjacent clusters.
  • processor is further configured to:
  • the processor 140 may also be configured to: the processor determines whether there is an abnormality affecting the evaluation of the infection state in the blood sample to be tested according to the first optical information and the second optical information;
  • At least one first white blood cell parameter of at least one first target particle cluster matching the abnormality is obtained from the first optical information, and from the second optical information acquisition of at least one second leukocyte parameter of at least one second target particle cluster matching said anomaly,
  • the infection marker parameter is obtained based on the at least one first white blood cell parameter and the at least one second white blood cell parameter.
  • the optical information can be acquired to exclude Multiple parameters of cell masses other than monocyte mass and neutrophil mass (e.g., lymphocyte mass) and deriving infection markers for assessing infection status of a subject from multiple parameters of other cell mass parameter.
  • a plurality of cell clusters other than cell clusters affected by the blast cells can be obtained from the optical information. parameters, and obtain the infection marker parameters for evaluating the infection status of the subject from the multiple parameters of other cell clusters.
  • the processor may be further configured to calculate at least one first leukocyte parameter of at least one first target particle cluster in the first assay sample from the first optical information, and Obtaining the The white blood cell counts of the first measurement sample and the second measurement sample, and when the white blood cell count is less than a preset threshold, output a retest instruction for re-measurement of the subject's blood sample, wherein, based on the a sample measurement volume of the assay of said retest order is greater than the sample assay volume of the assay used to obtain said optical information; and
  • the processor is further configured to calculate, from the first optical information measured based on the retest instruction, at least another first white blood cell count of at least another first target particle cluster in the first assay sample. parameters, and at least another second leukocyte parameter of at least another second target particle cluster in the second assay sample is calculated from the second optical information, and based on the at least another first leukocyte parameter and the The at least one other second white blood cell parameter obtains an infection marker parameter for assessing the infection status of the subject.
  • the present application also provides another blood analyzer, including a sample suction device, a sample preparation device, an optical detection device and a processor:
  • a sample aspirating device used to aspirate the subject's blood sample to be tested
  • a sample preparation device for preparing a first measurement sample containing a part of the blood sample to be tested, a first hemolyzing agent, and a first staining agent for leukocyte classification, and for preparing another sample containing the blood sample to be tested a second assay sample of a portion, a second hemolytic agent, and a second stain for identifying nucleated red blood cells;
  • An optical detection device comprising a flow chamber, a light source and a photodetector
  • the flow chamber is used to allow the first measurement sample and the second measurement sample to pass through respectively
  • the light source is used to irradiate light through the the first measurement sample and the second measurement sample in the flow chamber
  • the photodetector is used to detect the light irradiated by the first measurement sample and the second measurement sample when passing through the flow chamber respectively. the generated first optical information and second optical information
  • Processor configured as:
  • the measuring device is controlled to perform optical measurement on the first measurement sample and the second measurement sample of the first measurement volume, so as to obtain the first measurement sample respectively the first optical information of the second measurement sample and the second optical information of the second measurement sample, and acquire and output blood routine parameters based on the first optical information and the second optical information,
  • the measuring device is controlled to perform optical measurement on the first measurement sample and the second measurement sample of the second measurement amount greater than the first measurement amount, so as to respectively obtain The first optical information of the first measurement sample and the second optical information of the second measurement sample, at least one first target particle cluster in the first measurement sample is calculated from the first optical information at least one first leukocyte parameter of the at least one second leukocyte parameter of the at least one second target particle cluster in the second measurement sample is calculated from the second optical information, based on the at least one first leukocyte parameter and The at least one second white blood cell parameter obtains an infection marker parameter for assessing the infection status of the subject, and outputs the infection marker parameter.
  • the embodiment of the present application also proposes a method for evaluating the infection status of a subject. As shown in Figure 15, the method 200 includes the following steps:
  • the method 200 proposed in the embodiment of the present application is especially implemented by the above-mentioned blood cell analyzer 100 proposed in the embodiment of the present application.
  • the at least one first white blood cell parameter may include one or more of the cell characteristic parameters of monocyte clusters, neutrophil clusters and lymphocyte clusters in the first assay sample; and/or
  • the at least one second white blood cell parameter may include one or more of cell characteristic parameters of monocytes, neutrophils and white blood cells in the second measurement sample.
  • the at least one first white blood cell parameter may include one or more of the cell characteristic parameters of monocytes and neutrophils in the first measurement sample
  • the at least one second The white blood cell parameters include one or more of the cell characteristic parameters of monocyte clusters, neutrophil clusters and white blood cell clusters in the second measurement sample.
  • the at least one first white blood cell parameter may include one or more of the following parameters: the width of the forward scattered light intensity distribution of the first target particle cluster, the center of gravity of the forward scattered light intensity distribution, the forward Coefficient of variation of intensity distribution of scattered light, width of intensity distribution of side scattered light, center of gravity of intensity distribution of side scattered light, coefficient of variation of intensity distribution of side scattered light, width of distribution of fluorescence intensity, center of gravity of distribution of fluorescence intensity, coefficient of variation of fluorescence intensity distribution and all The area of the distribution area of the first target particle group in the two-dimensional scatter diagram generated by two light intensities of forward scattered light intensity, side scattered light intensity and fluorescence intensity and the distribution area of the first target particle group in the volume of the distribution area in a three-dimensional scatter plot generated from forward scattered light intensity, side scattered light intensity and fluorescence intensity; and/or
  • the at least one second white blood cell parameter may include one or more of the following parameters: the width of the forward scattered light intensity distribution of the second target particle cluster, the center of gravity of the forward scattered light intensity distribution, and the variation of the forward scattered light intensity distribution coefficient, width of side scattered light intensity distribution, center of gravity of side scattered light intensity distribution, coefficient of variation of side scattered light intensity distribution, width of fluorescence intensity distribution, center of gravity of fluorescence intensity, coefficient of variation of fluorescence intensity distribution, and the second target particle group in The area of the distribution area in the two-dimensional scatter diagram generated by two kinds of light intensities in the forward scattered light intensity, the side scattered light intensity and the fluorescence intensity and the area of the second target particle cluster in the forward scattered light intensity, The volume of the distribution area in a 3D scatterplot generated from side-scattered light intensity and fluorescence intensity.
  • the method may further include: performing early prediction of sepsis, diagnosis of sepsis, identification of common infection and severe infection, monitoring of infection condition, and sepsis based on the infection marker parameters. Toxicology prognostic analysis, identification of bacterial infection and viral infection or identification of non-infectious inflammation and infectious inflammation.
  • the method may further include: outputting prompt information indicating the infection status of the subject.
  • step S270 may include: when the infection marker parameter satisfies the first preset condition, outputting an indication that the subject may develop infection within a certain period of time after the blood sample to be tested is collected. Sepsis reminder information; preferably, the certain period of time is not more than 48 hours, especially not more than 24 hours.
  • step S270 may include: outputting prompt information indicating that the subject suffers from sepsis when the infection marker parameter satisfies a second preset condition.
  • step S270 may include: when the infection flag parameter satisfies a third preset condition, outputting prompt information indicating that the subject suffers from severe infection.
  • step S270 may include: monitoring the development of the subject's infection condition according to the infection marker parameters.
  • monitoring the development of the subject's infection condition according to the infection marker parameters includes:
  • the condition of the subject is getting better, preferably when the infection marker parameters obtained through the multiple detections are When the value gradually tends to decrease, a prompt message indicating that the condition of the subject is getting better is output.
  • monitoring the development of the subject's infection condition according to the infection marker parameters includes:
  • the subject is monitored for progression based on a comparison of a previous value of the infection marker parameter to a first threshold and a comparison of the previous value of the infection marker parameter to a current value of the infection marker parameter.
  • step S270 may include: judging whether the sepsis prognosis of the subject is good according to the infection marker parameters.
  • step S270 may include: judging whether the subject's infection type is a viral infection or a bacterial infection according to the infection marker parameters.
  • step S270 may include: judging whether the subject suffers from infectious inflammation or non-infectious inflammation according to the infection marker parameters.
  • the method may further include: when the preset characteristic parameters of the first target particle cluster and/or the second target particle cluster meet a fourth preset condition, for example, when the first target particle cluster When the total number of particles of the target particle cluster and/or the second target particle cluster is less than a preset threshold, and/or when the first target particle cluster and/or the second target particle cluster overlap with other particle clusters When , do not output the value of the infection flag parameter, or output the value of the infection flag parameter and at the same time output prompt information indicating that the value of the infection flag parameter is unreliable.
  • a fourth preset condition for example, when the first target particle cluster When the total number of particles of the target particle cluster and/or the second target particle cluster is less than a preset threshold, and/or when the first target particle cluster and/or the second target particle cluster overlap with other particle clusters
  • the method may further include: when the subject suffers from a blood disease or there are abnormal cells, especially primitive cells, in the blood sample to be tested, for example, according to the first
  • the optical information and/or the second optical information determine that there are abnormal cells, especially primitive cells, in the blood sample to be tested, the value of the infection marker parameter is not output, or the value of the infection marker parameter is output and at the same time Output a message indicating that the value of the taint flag parameter is unreliable.
  • the embodiment of the present application also proposes the use of infection marker parameters in evaluating the infection status of a subject, wherein the infection marker parameters are obtained by the following method:
  • An infection marker parameter is calculated based on the at least one first leukocyte parameter and the at least one second leukocyte parameter.
  • true positive rate %, false positive rate %, true negative rate % and false negative rate % of the embodiment of the present application are calculated by the following formula:
  • TP is the number of true positive individuals
  • FP is the number of false positive individuals
  • TN is the number of true negative individuals
  • FN is the number of false negative individuals.
  • Inclusion criteria for these 152 cases adult ICU patients with existing or suspected acute infection. Exclusion criteria: pregnant women, myelosuppressed patients undergoing chemotherapy, patients treated with immunosuppressants, and patients with hematological diseases.
  • the donors of the sepsis samples have suspicious or definite infection sites, positive laboratory culture results, and organ failure; suspected or confirmed acute infections, and SOFA ⁇ 2 points, and suspected infections are those with the following 1 ⁇ 3 Any item and 4 have no definite results; or have any of the following 1 ⁇ 3 and 5.
  • Table 6 shows the infection marker parameters used and their corresponding diagnostic powers
  • FIG. 16 shows the ROC curves corresponding to the infection marker parameters in Table 6.
  • Combination parameter 1 0.028849*D_Mon_SS_W+0.002448*N_WBC_SS_W-5.72185;
  • Combination parameter 2 0.02523*D_Mon_SS_W+0.002796*N_WBC_FL_W-7.43236.
  • D_Neu_SS_W refers to the distribution width of the side scattered light intensity of the neutrophil cluster in the DIFF channel scatter diagram
  • D_Neu_FL_W refers to the distribution width of the fluorescence intensity of the neutrophil cluster in the DIFF channel scatter diagram
  • D_Neu_FS_W refers to the distribution width of the forward scattered light intensity of the neutrophil cluster in the DIFF channel scattergram.
  • Inclusion criteria of 1548 donors in this example adult ICU patients with existing or suspected acute infection. Exclusion criteria: pregnant women, myelosuppressed patients undergoing chemotherapy, patients treated with immunosuppressants, and patients with hematological diseases.
  • the others are non-severely infected samples.
  • Table 8 shows the infection marker parameters used and their corresponding diagnostic efficacy
  • FIG. 17 shows the ROC curve corresponding to the infection marker parameters in Table 8.
  • Combination parameter 1 0.006064*N_WBC_FL_W+0.054716*D_Mon_SS_W-16.1568;
  • Combination parameter 2 0.006662*N_WBC_FL_W+0.000248*D_Mon_FS_W-14.6388;
  • Combination parameter 3 0.006651*N_NEU_FL_W+0.014098*D_NEU_FL_P-15.8676.
  • True positive means that the prompt result learned in this embodiment matches the clinical condition of the patient and they are all patients with severe infection; false positive means that the prompt result learned in this embodiment is severe infection, but the actual condition of the patient is common infection;
  • the prompt results obtained in the embodiment are consistent with the clinical conditions of the patients, and they are all patients with common infections; false negatives mean that the prompt results obtained in the examples are common infections, but the actual condition of the patients is severe infection.
  • Tables 9-1 to 9-4 show the effectiveness of using other infection marker parameters in the diagnosis of severe infection in this embodiment, wherein, based on the first white blood cell parameter and the second white blood cell parameter in Tables 9-1 to 9-4
  • the prior art has been reported (Crouser E, Parrillo J, Seymour C et al. Improved Early Detection of Sepsis in the ED With a Novel Monocyte Distribution Width Biomarker. CHEST.2017; 152(3):518-526), in BCI
  • the blood routine scattergram of the DIFF channel of the blood analyzer uses the distribution width of neutrophils to distinguish between common infection and severe infection.
  • the ROC_AUC is 0.79, the judgment threshold is >20.5, the false positive rate is 27%, and the true positive rate is 77.0%. , the true negative rate was 73%, and the false negative rate was 23%. From the reported data, it is similar to Mindray's DIFF channel for distinguishing common infection from severe infection.
  • Embodiment 3 sepsis diagnosis
  • Table 10 shows the infection marker parameters used and their corresponding diagnostic powers, and FIG. 18 shows the ROC curves corresponding to the infection marker parameters in Table 10.
  • Table 10 shows the infection marker parameters used and their corresponding diagnostic powers, and FIG. 18 shows the ROC curves corresponding to the infection marker parameters in Table 10.
  • Combination parameter 1 0.006048*N_WBC_FL_W+0.068161*D_Mon_SS_W-18.54084598;
  • Combination parameter 2 0.006514*N_WBC_FL_W+0.00675*D_NEU_SS_P-15.78556712.
  • FIG. 19 shows the dynamic trend change graph of monitoring using the linear combination parameters of D_Mon_SS_W and N_WBC_FL_W, where the horizontal axis is the number of days after the diagnosis of severe infection, and the average value of the infection marker parameter values of the two groups of patients is the vertical axis.
  • Embodiment 5 sepsis condition monitoring
  • the infection flag parameter in this embodiment is calculated by D_Mon_SS_W and N_WBC_FL_W through linear combination.
  • Inclusion criteria for these cases adult ICU patients with existing or suspected acute infection. Exclusion criteria: pregnant women, myelosuppressed patients undergoing chemotherapy, patients treated with immunosuppressants, and patients with hematological diseases.
  • the bacterial infection sample there is a suspicious or definite infection site, and the bacterial culture result in the laboratory is positive, that is, satisfying 1-3 at the same time
  • the virus-infected sample there is a suspicious or definite infection site, and the virus antigen or antibody test is positive.
  • the virus antigen or antibody test is positive.
  • Example 1 of this application blood routine testing was performed on 515 blood samples, and infectious inflammation was identified based on the aforementioned method based on the scatter plot . Among them, 399 were infectious inflammation samples, that is, positive samples, and 116 were non-infectious inflammation samples, that is, negative samples.
  • Inclusion criteria for these cases adult ICU patients with present or suspected acute inflammation.
  • Exclusion criteria pregnant women, myelosuppressed patients undergoing chemotherapy, patients treated with immunosuppressants, and patients with hematological diseases.
  • infectious inflammation sample there is evidence of bacterial and/or viral infection; and there is inflammation (any one of the following can be met)
  • Tissue damage damage caused by physical or chemical factors such as high temperature, low temperature, radioactive substances and ultraviolet rays, etc.
  • Tissue necrosis tissue necrosis damage caused by ischemia or hypoxia
  • the non-infectious inflammatory sample inflammatory response caused by physical, chemical and other factors, satisfying both 1 and 2:
  • Tissue damage damage caused by physical or chemical factors such as high temperature, low temperature, radioactive substances and ultraviolet rays, etc.
  • Tissue necrosis tissue necrosis damage caused by ischemia or hypoxia
  • Table 15 shows that in this embodiment, the combination of DIFF+WNB dual-channel parameters "N_WBC_FL_W” and “D_Neu_FL_W” is used as the infection marker parameter to judge the curative effect on sepsis.
  • the physical meaning of the combination of the two parameters is to combine the distribution width of the nucleic acid content inside the WBC particles in the first detection channel and the distribution width of the nucleic acid content inside the neutrophils in the second detection channel.
  • the two-argument combination passes through the function
  • Y 0.00623272 ⁇ N_WBC_FL_W+0.01806527 ⁇ D_Neu_FL_W ⁇ 16.84312131 to obtain the infection flag parameter, where Y represents the infection flag parameter.
  • Fig. 21A-Fig. 21D visually show the detection results of the curative effect on sepsis using the combination of the double parameters "N_WBC_FL_W” and “D_Neu_FL_W” as the infection marker parameters.
  • Table 16 shows that in this embodiment, the combination of DIFF+WNB dual-channel parameters "N_WBC_FL_W” and “D_Neu_FL_CV” is used as the infection marker parameter to judge the curative effect on sepsis.
  • the physical meaning of the combination of the two parameters is to combine the distribution width of the nucleic acid content inside the WBC particles in the first detection channel and the dispersion degree of the nucleic acid content inside the neutrophils in the second detection channel.
  • the two-argument combination passes through the function
  • Y 0.00688519 ⁇ N_WBC_FL_W+11.27099282 ⁇ D_Neu_FL_CV-19.2998686 to obtain the infection flag parameter, where Y represents the infection flag parameter.
  • Fig. 22A-Fig. 22D visually show the detection results of the curative effect on sepsis using the combination of the two parameters "N_WBC_FL_W” and “D_Neu_FL_CV" as the infection marker parameters.
  • Table 17 shows the infection marker parameters used and their corresponding diagnostic powers
  • FIG. 24 shows the ROC curves corresponding to the infection marker parameters in Table 17.
  • Table 17 shows the infection marker parameters used and their corresponding diagnostic powers
  • FIG. 24 shows the ROC curves corresponding to the infection marker parameters in Table 17.
  • Combination parameter 1 -0.61535116*Mon#+0.00766353*N_WBC_FL_W-15.04738706;
  • Combination parameter 2 -0.03077968*HGB+0.08933918*N_WBC_FL_W-5.72270269;
  • Combination parameter 3 -0.00395999*PLT+0.00606333*N_WBC_FL_W-11.55000862.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

实施例涉及血液细胞分析仪、方法以及感染标志参数的用途。血液细胞分析仪包括用于吸取受试者待测血液样本的吸样装置、用于制备测定试样的样本制备装置、用于检测测定试样以获得光学信息的光学检测装置和处理器。处理器被配置为:从第一测定试样的第一光学信息获得第一测定试样中的第一目标粒子团的第一白细胞参数;从第二测定试样的第二光学信息获得第二测定试样中的第二目标粒子团的第二白细胞参数,第一和/或第二白细胞参数包括细胞特征参数;基于第一白细胞参数和第二白细胞参数获得用于评估受试者的感染状态的感染标志参数,并且输出感染标志参数。由此能够快速地为用户提供准确有效的感染标志参数,以有效地辅助用户评估受试者的感染状态。

Description

血液细胞分析仪、方法以及感染标志参数的用途 技术领域
本申请涉及体外诊断领域,尤其是涉及血液细胞分析仪、用于评估受试者的感染状态的方法以及感染标志参数在评估受试者的感染状态中的用途。
背景技术
感染性疾病是临床上常见的疾病,其中,脓毒症(Sepsis)属于严重的感染性疾病。脓毒症发生率高,全球每年有超过1800万严重脓毒症病例,并且脓毒症的病情凶险,病死率高,全球每天约14,000人死于其并发症。据国外流行病学调查显示,脓毒症的病死率已经超过心肌梗死,成为重症监护病房内非心脏病人死亡的主要原因。近年来,尽管抗感染治疗和器官功能支持技术取得了进步,但脓毒症的病死率仍高达30%~70%。脓毒症治疗花费高,医疗资源消耗大,严重影响人类的生活质量,已经对人类健康造成巨大威胁。
为此,临床医生需要及时诊断患者是否发生感染,并查找病原体,才能制定有效治疗方案。因此,如何快速早期筛查和诊断感染性疾病成为了临床实验室迫切需要解决的问题。
针对感染性疾病的快速鉴别诊断,业界现有解决方案及其缺点如下:
1、微生物培养:微生物培养被认为是最可靠的金标准,其能直接培养检测出体液或血液等临床标本中的细菌,从而判读细菌的类型和耐药性,由此可直接指导临床用药。但该微生物培养方法报告周期长、标本易受污染且假阴性率高,不能很好的满足临床快速准确出结果的要求。
2、C反应蛋白(c-reactive protein,CRP)CRP、降钙素原(procalcitonin,PCT)PCT和血清淀粉样蛋白(serum amyloid A,SAA)等炎症标志物检测:由于炎症因子如CRP、PCT和SAA等有较好的灵敏度,其被广泛应用于感染性疾病的辅助诊断。但这些炎症标志物检测特异性较弱,而且需要收取额外的检查费用,增加病人经济负担。此外,CRP和PCT受特定疾病所干扰,不能正确反映病人感染状态。例如,CRP生成于肝脏,肝损伤患者的感染患者CRP水平正常,会导致出现假阴性现象。
3、血清抗原抗体检测:血清抗原抗体检测能确认特定病毒类型,但对病原体种类不明确的情境下,作用有限,且检测费用高,需要收取额外的检查费用,增加病人经济负担。
4、血常规检测:血常规检测能够在一定程度上提示感染发生和感染类型鉴别。但临床当前应用的血常规WBC\Neu%等受多方面影响,如容易受其他非感染性炎症反应、机体正常生理波动等影响,不能准确及时地反映患者病情,在感染性疾病中的诊疗价值不佳。
发明内容
为了至少部分地解决上述技术问题,本申请的任务在于提供一种血液细胞分析仪、用于评估受试者的感染状态的方法以及感染标志参数在评估受试者的感染状态中的用途,其能够从血常规检测过程的原始信号中获取诊断效力较高的感染标志参数,从而能够基于感染标志参数为用户提供准确有效的提示信息,以提示受试者感染状态。
为了实现本申请的上述任务,本申请第一方面提供一种血液细胞分析仪,该血液细胞分析仪包括:
吸样装置,用于吸取受试者的待测血液样本;
样本制备装置,用于制备含有所述待测血液样本的一部分、第一溶血剂和用于白细胞分类的第一染色剂的第一测定试样以及用于制备含有所述待测血液样本的另一部分、第二溶血剂和用于识别有核红细胞的第二染色剂的第二测定试样;
光学检测装置,包括流动室、光源和光检测器,所述流动室用于供所述第一测定试样和所述第二测定试样分别通过,所述光源用于用光照射分别通过所述流动室的第一测定试样和第二测定试样,所述光检测器用于检测所述第一测定试样和所述第二测定试样在分别通过所述流动室时被光照射后所产生的第一光学信息和第二光学信息;以及
处理器,被配置为:
从所述第一光学信息计算所述第一测定试样中的至少一个第一目标粒子团的至少一个第一白细胞参数,
从所述第二光学信息计算所述第二测定试样中的至少一个第二目标粒子团的至少一个第二白细胞参数,其中,第一白细胞参数和第二白细胞参数中的至少一个包括细胞特征参数,
基于所述至少一个第一白细胞参数和所述至少一个第二白细胞参数计算用于评估所述受试者的感染状态的感染标志参数,并且
输出所述感染标志参数。
为了实现本申请的上述任务,本申请第二方面还提供一种用于评估受试者的感染状态的方法,该方法包括:
采集所述受试者的待测血液样本;
制备含有所述待测血液样本的一部分、第一溶血剂和用于白细胞分类的第一染色剂的第一测定试样以及制备含有所述待测血液样本的另一部分、第二溶血剂和用于识别有核红细胞的第二染色剂的第二测定试样;
使所述第一测定试样中的粒子逐个通过被光照射的流动室的光学检测区,以获得所述第一测定试样中的粒子在被光照射后所产生第一光学信息;
使所述第二测定试样中的粒子逐个通过被光照射的所述光学检测区,以获得所述第二测定试样中的粒子在被光照射后所产生第二光学信息;
从所述第一光学信息计算所述第一测定试样中的至少一个第一目标粒子团的至少一个第一白细胞参数并且从所述第二光学信息计算所述第二测定试样中的至少一个第二目标粒子团的至少一个第二白细胞参数,其中,第一白细胞参数和第二白细胞参数中的至少一个包括细胞特征参数;
基于所述至少一个第一白细胞参数和所述至少一个第二白细胞参数计算感染标志参数;并且
输出所述感染标志参数。
为了实现本申请的上述任务,本申请第三方面还提供感染标志参数在评估受试者的感染状态中的用途,其中,通过如下方法获得所述感染标志参数:
计算通过流式细胞术对含有来自受试者的待测血液样本的一部分、第一溶血剂和用于白细胞分类的第一染色剂的第一测定试样检测得到的至少一个第一目标粒子团的至少一个第一白细胞参数;
计算通过流式细胞术对含有所述待测血液样本的另一部分、第二溶血剂和用于识别有核红细胞的第二染色剂的第二测定试样检测得到的至少一个第二目标粒子团的至少一个 第二白细胞参数,其中,第一白细胞参数和第二白细胞参数中的至少一个包括细胞特征参数;并且
基于所述至少一个第一白细胞参数和所述至少一个第二白细胞参数计算感染标志参数。
在本申请各方面提供的技术方案中,将从用于白细胞分类的第一检测通道中获得的第一白细胞参数和从用于识别有核红细胞的第二检测通道中获得的第二白细胞参数组合成一个感染标志参数,其中,第一白细胞参数和第二白细胞参数中的至少一个包括细胞特征参数。由此能够实现快速、准确且高效地辅助医生进行感染性疾病的预测或诊断。尤其是,基于该感染标志参数能够有效地提供提示受试者感染状态的提示信息。
附图说明
图1为根据本申请一些实施例的血液细胞分析仪的结构示意图。
图2为根据本申请一些实施例的光学检测装置的结构示意图。
图3为根据本申请一些实施例的第一测定试样的SS-FL二维散点图。
图4为根据本申请一些实施例的第一测定试样的SS-FS二维散点图。
图5为根据本申请一些实施例的第一测定试样的SS-FS-FL三维散点图。
图6为根据本申请一些实施例的第二测定试样的FL-FS二维散点图。
图7为根据本申请一些实施例的第二测定试样的SS-FS二维散点图。
图8为根据本申请一些实施例的第二测定试样的SS-FS-FL三维散点图。
图9示出根据本申请一些实施例的第一测定试样中的中性粒细胞团的细胞特征参数。
图10示出根据本申请一些实施例的第二测定试样中的白细胞团的细胞特征参数。
图11为根据本申请一些实施例判断患者病情发展的示意性流程图。
图12为根据本申请一些实施例的第一测定试样的测定试样的存在异常情况的散点图。
图13为根据本申请一些实施例的第二测定试样的存在异常情况的散点图。
图14示出根据本申请一些实施例的取对数处理前后的散点图。
图15为根据本申请一些实施例的用于评估受试者的感染状态的方法的示意性流程图。
图16为根据本申请一些实施例的在脓毒症早期预测场景下的ROC曲线。
图17为根据本申请一些实施例的在重症感染鉴别场景下的ROC曲线。
图18为根据本申请一些实施例的在脓毒症诊断场景下的ROC曲线。
图19为根据本申请一些实施例的用于监控重症感染病情发展的感染标志参数的数值变化曲线图。
图20为根据本申请一些实施例的用于监控脓毒症病情发展的感染标志参数的数值变化曲线图。
图21A-图21D直观地显示了使用双参数“N_WBC_FL_W”和“D_Neu_FL_W”组合作为感染标志参数对脓毒症疗效的检测结果。图21A显示了有效组和无效组中每个患者使用抗生素治疗前和治疗5天后的该双参数组合测定值。图21B显示了有效组和无效组中患者的盒须图。图21C显示了有效组在抗生素治疗前和治疗5天后的该双参数组合均值的比较,以及无效组在抗生素治疗前和治疗5天后的该双参数组合均值的比较。图21D显示了使用该双参数组合对脓毒症疗效的检测的ROC曲线。
图22A-图22D直观地显示了使用双参数“N_WBC_FL_W”和“D_Neu_FL_CV”组合作为 感染标志参数对脓毒症疗效的检测结果。图22A显示了有效组和无效组中每个患者使用抗生素治疗前和治疗5天后的该双参数组合测定值。图22B显示了有效组和无效组中患者的盒须图。图22C显示了有效组在抗生素治疗前和治疗5天后的该双参数组合均值的比较,以及无效组在抗生素治疗前和治疗5天后的该双参数组合均值的比较。图22D显示了使用该双参数组合对脓毒症疗效的检测的ROC曲线。
图23为根据本申请一些实施例的中性粒细胞群的面积参数D_NEU_FLSS_Area的一种算法计算步骤。
图24为根据本申请实施例10在脓毒症诊断场景下的ROC曲线。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了方便后续说明,在此首先对下文中所涉及的一些术语进行简要说明如下。
1)散点图:是由血液细胞分析仪生成的一种二维或三维图,其上分布有多个粒子的二维或三维特征信息,其中散点图的X坐标轴、Y坐标轴和Z坐标轴均表征每个粒子的一种特性,例如在一个散点图中,X坐标轴表征前向散射光强度,Y坐标轴表征荧光强度,Z轴坐标轴表征侧向散射光强度。本公开中使用的术语“散点图”不仅指至少两组数据以数据点的形式在直角坐标系中的分布图,也包括数据阵列,即不受其图形呈现形式的局限。
2)粒子团/细胞团:分布在散点图的某一区域,由具有相同细胞特征的多个粒子形成的粒子群体,例如白细胞(包括所有类型的白细胞)团,以及白细胞亚群、例如中性粒细胞团、淋巴细胞团、单核细胞团、嗜酸性粒细胞团或嗜碱性粒细胞团等。
3)血影:是由溶血剂溶解血液中的红细胞和血小板得到的碎片粒子。
4)ROC曲线:受试者工作特征曲线,是根据一系列不同的二分类方式(分界阈值),以真阳性率为纵坐标,假阳性率为横坐标绘制的曲线,ROC_AUC代表ROC曲线与水平坐标轴围成的面积。ROC曲线的制作原理是将连续变量设定出多个不同的临界值,在每个临界值处计算出相应的灵敏度(sensitivity)和特异度(specificity),再以灵敏度为纵坐标,以1-特异度为横坐标绘制成曲线。由于ROC曲线是由多个代表各自灵敏度和特异度的临界值构成的,可以借助ROC曲线选择出某一诊断方法最佳的诊断界限值。ROC曲线越是靠近左上角,试验灵敏度越高,误判率越低,则诊断方法的性能越好。可知ROC曲线上最靠近左上角的ROC曲线上的点,其灵敏度和特异度之和最大,这个点或是其邻近点对应的值常被用作诊断参考值(也称为诊断阈值或判断阈值或预设条件或预设范围)。
目前,血液细胞分析仪一般通过DIFF通道和/或WNB通道对白细胞进行计数和分类。其中,血液细胞分析仪通过DIFF通道对白细胞进行白细胞四分类,将白细胞分类为淋巴细胞(Lym)、单核细胞(Mon)、中性粒细胞(Neu)、嗜酸性粒细胞(Eos)四类白细胞。血液细胞分析仪通过WNB通道对有核红细胞进行识别,能够同时得到有核红细胞计数、白细胞计数值和嗜碱性粒细胞计数。将DIFF通道与WNB通道结合可以得出白细胞的五分类结果,包括淋巴细胞(Lym)、单核细胞(Mon)、中性粒细胞(Neu)、嗜酸性粒细胞(Eos)、嗜碱性粒细胞(Baso)五类白细胞。
本申请所使用的血液细胞分析仪通过结合激光散射法和荧光染色法的流式细胞技术对血液样本中的粒子进行分类和计数。在此,血液细胞分析仪检测血液样本的原理例如可以为:首先吸取血液样本,用溶血剂和荧光染料处理血液样本,其中,红细胞被溶血剂破坏溶解,而白细胞不会被溶解,但荧光染料可在溶血剂的帮助下进入白细胞的细胞核并与细胞核中的核酸物质结合;接着样本中的粒子逐个通过被激光束照射的检测孔,当激光束照射粒子时,粒子本身的特性(如体积、染色程度、细胞内容物大小及含量、细胞核密度等)可阻挡或改变激光束的方向,从而产生与其特征相应的各种角度的散射光,这些散射光经信号检测器接收后可以获得粒子结构和组成的相关信息。其中,前向散射光(Forward scatter,FS)反应粒子的数量和体积,侧向散射光(Side scatter,SS)反应细胞内部结构(如细胞内颗粒或细胞核)的复杂程度,荧光(Fluorescence,FL)反应细胞中核酸物质的含量。利用这些光信息可以对样本中的粒子进行分类和计数。
图1为本申请一些实施例的血液细胞分析仪的结构示意图。该血液细胞分析仪100包括吸样装置110、样本制备装置120、光学检测装置130和处理器140。血液细胞分析仪100还具有未示出的液路系统,用于连通吸样装置110、样本制备装置120及光学检测装置130,以便在这些装置之间进行液体输送。
吸样装置110用于吸取受试者的待测血液样本。
在一些实施例中,吸样装置110具有用于吸取待测血液样本的采样针(未示出)。此外,吸样装置110例如还可以包括驱动装置,该驱动装置用于驱动采样针通过采样针的针嘴定量吸取待测血液样本。吸样装置110可将吸取的血液样本输送至样本制备装置120。
样本制备装置120用于制备含有待测血液样本的一部分、第一溶血剂和用于白细胞分类的第一染色剂的第一测定试样以及用于制备含有待测血液样本的另一部分、第二溶血剂和用于识别有核红细胞的第二染色剂的第二测定试样。
在本申请实施例中,溶血剂用于溶解血液中的红细胞,将红细胞裂解为碎片,但能够保持白细胞的形态基本不变。
在一些实施例中,溶血剂可以是阳离子表面活性剂、非离子表面活性剂、阴离子表面活性剂、两亲性表面活性剂中的任意一种或几种的组合。在另一些实施例中,溶血剂可以包括烷基糖苷、三萜皂苷、甾族皂苷中的至少一种。例如,溶血剂可以选自辛基溴化喹啉、辛基溴化异喹啉、癸基溴化喹啉、癸基溴化异喹啉、十二烷基溴化喹啉、十二烷基溴化异喹啉、十四烷基溴化喹啉、十四烷基溴化异喹啉、辛基三甲基氯化铵、辛基三甲基溴化铵、癸基三甲基氯化铵、癸基三甲基溴化铵、十二烷基三甲基氯化铵、十二烷基三甲基溴化铵、十四烷基三甲基氯化铵、十四烷基三甲基溴化铵;十二烷基醇聚氧乙烯(23)醚、十六烷基醇聚氧乙烯(25)醚、十六烷基醇聚氧乙烯(30)醚等。
在一些实施例中,第一溶血剂与第二溶血剂不同,尤其是第一溶血剂对红细胞的裂解程度大于第二溶血剂对红细胞的裂解程度。
在本申请实施例中,第一染色剂为用于实现白细胞分类的荧光染料,例如可以为能够实现将血液样本中的白细胞分类为至少三个白细胞亚群(单核细胞、淋巴细胞和中性粒细胞)的荧光染料。第二染色剂不同于第一染色剂并且第二染色剂为能够用于识别血液样本中的有核红细胞(能够用于区分有核红细胞与白细胞)的荧光染料。
在一些实施例中,第一染色剂可以包括膜特异性染料或线粒体特异性染料,其更多细节可参考申请人于2019年4月26日提交的PCT专利申请WO2019/206300A1,其全部公开 内容通过引用合并于此。
在另一些实施例中,第一染色剂可以包括阳离子花菁化合物,其更多细节可参考申请人于2019年9月28日提交的中国专利申请CN101750274A,其全部公开内容通过引用合并于此。
目前商品化市售的用于白细胞四分类的试剂,也可以用于本申请的第一溶血剂和第一染色剂,例如M-60LD和M-6FD;商品化市售的用于识别有核红细胞的试剂,也可以用于本申请的第二溶血剂和第二染色剂,例如M-6LN和M-6FN。
在一些实施例中,样本制备装置120可以包括至少一个反应池和试剂供应装置(图中未示出)。所述至少一个反应池用于接收由吸样装置110吸取的待测血液样本,所述试剂供应装置将处理试剂(包括溶血剂、第一染色剂、第二染色剂等)提供给所述至少一个反应池,从而由吸样装置110所吸取的待测血液样本与由所述试剂供应装置提供的处理试剂在所述反应池中混合,以制备成测定试样(包括第一测定试样和第二测定试样)。
例如,所述至少一个反应池可以包括第一反应池和第二反应池,所述试剂供应装置可以包括第一试剂供给部和第二试剂供给部。吸样装置110用于将所吸取的待测血液样本分别部分地分配至第一反应池和第二反应池。第一试剂供给部用于将第一溶血剂和第一染色剂提供给第一反应池,从而分配给第一反应池的部分待测血液样本与第一溶血剂和第一染色剂混合并反应,制备成第一测定试样。第二试剂供给部用于将第二溶血剂和第二染色剂提供给第二反应池,从而分配给第二反应池的部分待测血液样本与第二溶血剂和第二染色剂混合并反应,制备成第二测定试样。
光学检测装置130包括流动室、光源和光检测器,所述流动室用于供所述第一测定试样和所述第二测定试样分别通过,所述光源用于用光照射分别通过所述流动室的第一测定试样和第二测定试样,所述光检测器用于检测所述第一测定试样和所述第二测定试样在分别通过所述流动室时被光照射后所产生的第一光学信息和第二光学信息。
在此可以理解的,用于白细胞分类的第一检测通道(也称为DIFF通道)是指光学检测装置130对由样本制备装置120制备的第一测定试样的检测,而用于识别有核红细胞的第二检测通道(也称为WNB通道)是指光学检测装置130对由样本制备装置120制备的第二测定试样的检测。
在本文中,流动室指适于检测光散射信号和荧光信号的聚焦液流的腔室。当一粒子、如一血细胞通过流动室的检测孔时,该粒子将来自光源的被导向该检测孔的入射光束向各方向散射。可以在相对于该入射光束的一个或多个不同角度设置光检测器,以检测被该粒子散射的光,从而得到光散射信号。由于不同的粒子具有不同的光散射特性,因此光散射信号可以用于区分不同的粒子群体。具体地,在入射光束附近所检测的光散射信号通常被称为前向光散射信号或小角度光散射信号。在一些实施例中,该前向光散射信号可以从与入射光束约1°至约10°的角度上进行检测。在其他一些实施例中,该前向光散射信号可以从与入射光束约2°至约6°的角度上进行检测。在与入射光束呈约90°的方向所检测的光散射信号通常被称为侧向光散射信号。在一些实施例中,该侧向光散射信号可以是从与入射光束呈约65°至约115°的角度上进行检测。通常地,来自被荧光染料染色的血细胞所发出的荧光信号一般也在与入射光束呈约90°的方向上进行检测。
在一些实施例中,光检测器可以包括用于检测前向散射光信号的前向散射光检测器、用于检测侧向散射光信号的侧向散射光检测器和用于检测荧光信号的荧光检测器。相应地, 第一光学信息可以包括第一测定试样中的粒子的前向散射光信号、侧向散射光信号和荧光信号,第二光学信息可以包括第二测定试样中的粒子的前向散射光信号、侧向散射光信号和荧光信号。
图2示出光学检测装置130的一个具体示例。该光学检测装置130具有依次布置在一条直线上的光源101、光束整形组件102、流动室103和前向散射光检测器104。在流动室103的一侧,与所述直线成45°角布置有二向色镜106。通过流动室103中的粒子发出的侧向光,一部分透过二向色镜106,被与二向色镜106成45°角布置在二向色镜106后面的荧光检测器105捕获;另一部分侧向光被二向色镜106反射,被与二向色镜106成45°角布置在二向色镜106前面的侧向散射光检测器107捕获。
处理器140用于对数据进行处理和运算,得到所要求的结果,例如可以根据收集的各种光信号生成二维散点图或三维散点图,并在散点图上根据设门(gating)的方法进行粒子分析。处理器140还可以对中间运算结果或最终运算结果进行可视化处理,然后通过显示装置150显示出来。在本申请实施例中,处理器140被配置用于实施以下还要详细描述的方法步骤。
在申请实施例中,处理器包括但不限于中央处理器(Central Processing Unit,CPU)、微控制单元(Micro Controller Unit,MCU)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、数字信号处理器(DSP)等用于解释计算机指令以及处理计算机软件中的数据的装置。例如,处理器用于执行计算机可读存储介质中的各计算机应用程序,从而使血液细胞分析仪100执行相应的检测流程并实时地分析光学检测装置130所检测到的光学信息或者说光学信号。
此外,血液细胞分析仪100还可以包括第一机壳160和第二机壳170。显示装置150例如可以为用户界面。光学检测装置130及处理器140设置在第二机壳170的内部。样本制备装置120例如设置在第一机壳160的内部,显示装置150例如设置在第一机壳160的外表面并且用于显示血液细胞分析仪的检测结果。
如背景技术中所提到的,利用血液细胞分析仪实现的血常规检测能够提示感染发生和感染类型鉴别,但临床当前应用的血常规WBC\Neu%等受多方面影响,不能准确及时地反映患者病情。而且现有技术在进行细菌感染和脓毒症诊疗方面的灵敏度和特异性均不佳。
基于此背景,发明人通过深入研究大量感染患者血液样本的血常规检测的原始信号特征,意外发现了能够结合DIFF通道的白细胞参数、尤其是细胞特征参数与WNB通道的白细胞参数、尤其是细胞特征参数实现用于高效力地评估受试者感染状态的感染标志参数。在此,本申请实施例提出了一种结合DIFF通道的白细胞参数与WNB通道的白细胞参数来获得感染标志参数以进行有效的感染状评估的解决方案。虽然不希望受理论约束,发明人通过深入研究发现,病人样本中的中性粒细胞和单核细胞,在反映感染程度上都有价值,联合两种粒子团的特征,可能更好体现感染程度。其次,DIFF通道的白细胞分类通道,对白细胞的区分更加精细,通常认为更容易找到特征,但WNB通道和DIFF通道使用的试剂不同,对细胞的处理程度不同,荧光染料对核酸的染色偏好也不同,DIFF通道中染料更多于细胞核结合,WNB通道中的染料更多于细胞质结合,这可能导致产生的细胞特性信号也不一样,两个通道联用,可能有协同效果。基于这样的研究发现,发明人通过大量的临床验证,提出了一种结合DIFF通道的白细胞参数与WNB通道的白细胞参数来获得感染标志参数以进行有效的感染状评估的方法。
因此,处理器140被配置为:
从所述第一光学信息获得所述第一测定试样中的至少一个第一目标粒子团的至少一个第一白细胞参数;
从所述第二光学信息获得所述第二测定试样中的至少一个第二目标粒子团的至少一个第二白细胞参数,其中,第一白细胞参数和第二白细胞参数中的至少一个包括细胞特征参数;
基于所述至少一个第一白细胞参数和所述至少一个第二白细胞参数计算用于评估所述受试者的感染状态的感染标志参数;并且
输出所述感染标志参数。
在此优选的是,第一白细胞参数和第二白细胞参数均包括细胞特征参数,即,第一白细胞参数包括第一目标粒子团的细胞特征参数并且第二白细胞参数包括第二目标粒子团的细胞特征参数。由此能够提供诊断效力进一步提高的感染标志参数。
在此应理解的是,粒子团或者说细胞团的细胞特征参数不包括细胞团的细胞计数或分类参数,而是包括反映该细胞团中的细胞的体积、内部颗粒度、内部核酸含量等细胞特征的特征参数。
当然,在其他实施例中,也可能的是,第一白细胞参数包括第一目标粒子团的细胞特征参数,而第二白细胞参数包括第二目标粒子团的分类参数或计数参数。或者,第一白细胞参数包括第一目标粒子团的分类参数或计数参数,而第二白细胞参数包括第二目标粒子团的细胞特征参数。
在此优选的是,处理器140可以被进一步配置为,通过线性函数将所述至少一个第一白细胞参数和所述至少一个第二白细胞参数组合成感染标志参数,即,通过如下公式计算感染标志参数:
Y=A*X1+B*X2+C
其中,Y表示感染标志参数,X1表示第一白细胞参数,X2表示第二白细胞参数,A、B、C为常数。特征之间的函数关系可以通过例如线性判别分析(linear discriminant analysis,LDA)获得,所述线性判别分析是对费舍尔的线性鉴别方法的归纳,这种方法使用统计学、模式识别和机器学习方法,通过找到两类事件(例如,患有脓毒症或者不患有脓毒症、细菌感染或病毒感染、感染性炎症或非感染性炎症、脓毒症治疗有效或无效)的特征的一个线性组合,将一个多维数据通过线性组合得到一维数据,从而能够特征化或区分所述两类事件。通过该线性组合的系数可以确保所述两类事件的区分度最大。所得的线性组合可以用来进行后续事件的分类。
当然,在其他实施例中,也可以通过非线性函数将所述至少一个第一白细胞参数和所述至少一个第二白细胞参数组合成感染标志参数,本申请对此不做具体限定。
本领域技术人员能够理解,在其他实施例中,也可以不将这两个白细胞参数通过函数计算,而是联合使用所述第一白细胞参数和所述第二白细胞参数,分别与各自的阈值比较,获得感染标志参数。例如分别设定两个参数的诊断阈值:阈值1和阈值2,然后分析“参数1≥阈值1or参数2≥阈值2”的诊断效能,分析“参数1≥阈值1and参数2≥阈值2”的诊断效能。
在另一些实施例中,所述感染标志参数可以由白细胞参数与其他血细胞参数计算而成,即,感染标志参数可以是至少一个白细胞参数与至少一个其他血细胞参数计算而成。所述 其他血细胞参数可以为血小板(PLT)、有核红细胞(NRBC)、或网织红细胞(RET)的分类或计数参数,也可以是血红蛋白的浓度。
进一步地,在一些实施例中,基于第一光学信息可以将第一测定试样中的白细胞至少分类为单核细胞团、中性粒细胞团和淋巴细胞团,尤其是可以分类为单核细胞团、中性粒细胞团、淋巴细胞团和嗜酸性粒细胞团。
在一个具体的示例中,如图3至5所示,基于第一光学信息中的前向散射光信号(或者前向散射光强度)FS、侧向散射光信号(或者侧向散射光强度)SS和荧光信号(或者荧光强度)FL可以将第一测定试样中的白细胞分类为单核细胞团Mon、中性粒细胞团Neu、淋巴细胞团Lym和嗜酸性粒细胞团Eos。其中,图3为基于第一光学信息中的侧向散射光信号SS和荧光信号FL生成的二维散点图,图4为基于第一光学信息中的前向散射光信号FS和侧向散射光信号SS生成的二维散点图,图5为基于第一光学信息中的前向散射光信号FS、侧向散射光信号SS和荧光信号FL生成的三维散点图。
相应地,在一些实施例中,所述至少一个第一目标粒子团可以包括第一测定试样中的单核细胞团Mon、中性粒细胞团Neu和淋巴细胞团Lym中的至少一个细胞团,即所述至少一个第一白细胞参数可以包括第一测定试样中的单核细胞团Mon、中性粒细胞团Neu和淋巴细胞团Lym的细胞特征参数中的一个或多个参数。优选的是,所述至少一个第一目标粒子团可以包括第一测定试样中的单核细胞团Mon和中性粒细胞团Neu中的至少一个细胞团,即所述至少一个第一白细胞参数可以包括第一测定试样中的单核细胞团Mon和中性粒细胞团Neu的细胞特征参数中的一个或多个参数、例如一个或两个或二个以上参数。
在另一些实施例中,所述至少一个第一白细胞参数也可以包括第一测定试样中的单核细胞团Mon、中性粒细胞团Neu和淋巴细胞团Lym的分类参数或计数参数。
备选地或附加地,在一些实施例中,基于第二光学信息可以将第二测定试样中的白细胞团WBC(包括所有类型的白细胞)识别出来,同时能够将第二测定试样中的白细胞中的中性粒细胞团Neu和淋巴细胞团Lym识别出来,如图6至8所示。其中,图6为基于第二光学信息中的前向散射光信号FS和荧光信号FL生成的二维散点图,图7为基于第二光学信息中的前向散射光信号FS和侧向散射光信号SS生成的二维散点图,图8为基于第二光学信息中的前向散射光信号FS、侧向散射光信号SS和荧光信号FL生成的三维散点图。
相应地,在一些实施例中,所述至少一个第二目标粒子团可以包括第一测定试样中的淋巴细胞团Lym、中性粒细胞团Neu和白细胞团Wbc中的至少一个细胞团,即,所述至少一个第二白细胞参数包括第二测定试样中的淋巴细胞团Lym、中性粒细胞团Neu和白细胞团Wbc的细胞特征参数中的一个或多个参数。优选地,所述至少一个第二目标粒子团可以包括第一测定试样中的中性粒细胞团Neu和白细胞团Wbc中的至少一个细胞团,即,所述至少一个第二白细胞参数可以包括第二测定试样中的中性粒细胞团Neu和白细胞团Wbc的细胞特征参数中的一个或多个参数。
在另一些实施例中,所述至少一个第二白细胞参数也可以包括第二测定试样中的中性粒细胞团Neu的分类参数或计数参数或者白细胞团Wbc的计数参数。
在一些优选的实施例中,所述至少一个第一白细胞参数可以包括第一测定试样中的单核细胞团Mon和中性粒细胞团Neu的细胞特征参数中的一个或多个参数;并且所述至少一个第二白细胞参数可以包括第二测定试样中的中性粒细胞团Neu和白细胞团Wbc的细胞特征参数中的一个或多个参数。发明人在研究大量受试者样本的血常规检测过程的原始信号 中发现,将DIFF通道的单核细胞团Mon和/或中性粒细胞团Neu的细胞特征参数与WNB通道的中性粒细胞团Neu和/或白细胞团Wbc的细胞特征参数组合能够给出更有诊断效力的感染标志参数。
进一步优选的是,所述至少一个第一白细胞参数可以包括第一测定试样中的单核细胞团Mon的细胞特征参数中的一个或多个参数;并且所述至少一个第二白细胞参数可以包括第二测定试样中的白细胞团Wbc的细胞特征参数中的一个或多个参数。
在一些实施例中,所述至少一个第一白细胞参数可以包括如下参数中的一个或多个:所述第一目标粒子团的前向散射光强度分布宽度、前向散射光强度分布重心、前向散射光强度分布变异系数、侧向散射光强度分布宽度、侧向散射光强度分布重心、侧向散射光强度分布变异系数、荧光强度分布宽度、荧光强度分布重心、荧光强度分布变异系数以及所述第一目标粒子团在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积和所述第一目标粒子团在由前向散射光强度、侧向散射光强度和荧光强度生成的三维散点图中的分布区域的体积,例如图8白细胞团所占据的空间的体积。
在一些具体的示例中,所述至少一个第一白细胞参数可以包括下列参数中的一个或多个、例如一个或两个参数:所述第一测定试样中的单核细胞团的前向散射光强度分布宽度D_MON_FS_W、前向散射光强度分布重心D_MON_FS_P、前向散射光强度分布变异系数D_MON_FS_CV、侧向散射光强度分布宽度D_MON_SS_W、侧向散射光强度分布重心D_MON_SS_P、侧向散射光强度分布变异系数D_MON_SS_CV、荧光强度分布宽度D_MON_FL_W、荧光强度分布重心D_MON_FL_P、荧光强度分布变异系数D_MON_FL_CV以及所述单核细胞团在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积D_MON_FLFS_Area(单核细胞团在由前向散射光强度和荧光强度生成的二维散点图中的分布区域的面积)、D_MON_FLSS_Area(单核细胞团在由侧向散射光强度和荧光强度生成的二维散点图中的分布区域的面积)、D_MON_SSFS_Area(单核细胞团在由前向散射光强度和侧向散射强度生成的二维散点图中的分布区域的面积)和单核细胞团在由前向散射光强度、侧向散射强度和荧光强度生成的三维散点图中的分布区域的体积;所述第一测定试样中的中性粒细胞团的前向散射光强度分布宽度D_NEU_FS_W、前向散射光强度分布重心D_NEU_FS_P、前向散射光强度分布变异系数D_NEU_FS_CV、侧向散射光强度分布宽度D_NEU_SS_W、侧向散射光强度分布重心D_NEU_SS_P、侧向散射光强度分布变异系数D_NEU_SS_CV、荧光强度分布宽度D_NEU_FL_W、荧光强度分布重心D_NEU_FL_P、荧光强度分布变异系数D_NEU_FL_CV以及所述中性粒细胞团在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积D_NEU_FLFS_Area(中性粒细胞团在由前向散射光强度和荧光强度生成的二维散点图中的分布区域的面积)、D_NEU_FLSS_Area(中性粒细胞团在由侧向散射光强度和荧光强度生成的二维散点图中的分布区域的面积)、D_NEU_SSFS_Area(中性粒细胞团在由前向散射光强度和侧向散射强度生成的二维散点图中的分布区域的面积)和中性粒细胞团在由前向散射光强度、侧向散射强度和荧光强度生成的三维散点图中的分布区域的体积;以及,所述第一测定试样中的淋巴细胞团的前向散射光强度分布宽度D_LYM_FS_W、前向散射光强度分布重心D_LYM_FS_P、前向散射光强度分布变异系数D_LYM_FS_CV、侧向散射光强度分布宽度D_LYM_SS_W、侧向散射光强度分布重心D_LYM_SS_P、侧向散射光强度分布变异系数D_LYM_SS_CV、荧光强度 分布宽度D_LYM_FL_W、荧光强度分布重心D_LYM_FL_P、荧光强度分布变异系数D_LYM_FL_CV以及所述淋巴细胞团在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积D_LYM_FLFS_Area(淋巴细胞团在由前向散射光强度和荧光强度生成的二维散点图中的分布区域的面积)、D_LYM_FLSS_Area(淋巴细胞团在由侧向散射光强度和荧光强度生成的二维散点图中的分布区域的面积)、D_LYM_SSFS_Area(淋巴细胞团在由前向散射光强度和侧向散射强度生成的二维散点图中的分布区域的面积)和淋巴细胞团在由前向散射光强度、侧向散射强度和荧光强度生成的三维散点图中的分布区域的体积。
优选地,所述至少一个第一白细胞参数可以包括下列参数中的一个或多个、例如一个或两个参数:所述第一测定试样中的单核细胞团的前向散射光强度分布宽度D_MON_FS_W、前向散射光强度分布重心D_MON_FS_P、前向散射光强度分布变异系数D_MON_FS_CV、侧向散射光强度分布宽度D_MON_SS_W、侧向散射光强度分布重心D_MON_SS_P、侧向散射光强度分布变异系数D_MON_SS_CV、荧光强度分布宽度D_MON_FL_W、荧光强度分布重心D_MON_FL_P、荧光强度分布变异系数D_MON_FL_CV以及所述单核细胞团在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积D_MON_FLFS_Area、D_MON_FLSS_Area、D_MON_SSFS_Area和单核细胞团在由前向散射光强度、侧向散射强度和荧光强度生成的三维散点图中的分布区域的体积;以及所述第一测定试样中的中性粒细胞团的前向散射光强度分布宽度D_NEU_FS_W、前向散射光强度分布重心D_NEU_FS_P、前向散射光强度分布变异系数D_NEU_FS_CV、侧向散射光强度分布宽度D_NEU_SS_W、侧向散射光强度分布重心D_NEU_SS_P、侧向散射光强度分布变异系数D_NEU_SS_CV、荧光强度分布宽度D_NEU_FL_W、荧光强度分布重心D_NEU_FL_P、荧光强度分布变异系数D_NEU_FL_CV以及所述中性粒细胞团在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积D_NEU_FLFS_Area、D_NEU_FLSS_Area、D_NEU_SSFS_Area和中性粒细胞团在由前向散射光强度、侧向散射强度和荧光强度生成的三维散点图中的分布区域的体积。
在另一些实施例中,所述至少一个第一白细胞参数也可以包括第一测定试样中的单核细胞团Mon的分类参数Mon%或计数参数Mon#或者中性粒细胞团Neu的分类参数Neu%或计数参数Neu#或者淋巴细胞团Lym的分类参数Lym%或计数参数Mon#。
在此,借助图9说明分布宽度、分布重心、变异系数以及分布区域的面积或体积的含义,其中,图9示出根据本申请一些实施例的第一测定试样中的中性粒细胞团的细胞特征参数。
如图9所示,D_NEU_FL_W代表第一测定试样中的中性粒细胞团的荧光强度分布宽度,其中,D_NEU_FL_W等于中性粒细胞团的荧光强度分布上限S1与中性粒细胞团的荧光强度分布下限S2的差值。D_NEU_FL_P代表第一测定试样中的中性粒细胞团的荧光强度分布重心、即中性粒细胞在FL方向的平均位置,其中,D_NEU_FL_P通过如下公式计算:
Figure PCTCN2022144177-appb-000001
其中,FL(i)为第i个中性粒细胞的荧光强度。D_NEU_FL_CV代表第一测定试样中的中性粒细胞团的荧光强度分布变异系数,其中,D_NEU_FL_CV等于D_NEU_FL_W除以D_NEU_FL_P。
此外,D_NEU_FLSS_Area代表第一测定试样中的中性粒细胞团在由侧向散射光强度和 荧光强度生成的散点图中的分布区域的面积。如图9所示,C1表示中性粒细胞团的轮廓分布曲线,例如可以将位于轮廓分布曲线C1内的位置总数记为该中性粒细胞团的面积。本领域技术人员能够理解,利用通常的血液分析仪的分类算法,或者图像处理技术,容易得到粒子群落的轮廓分布曲线。
在此可以理解的,其他第一白细胞参数的定义可以以相应的方式参考图9所示的实施例。
备选地或附加地,在一些实施例中,所述至少一个第二白细胞参数可以包括如下参数中的一个或多个:所述第二目标粒子团的前向散射光强度分布宽度、前向散射光强度分布重心、前向散射光强度分布变异系数、侧向散射光强度分布宽度、侧向散射光强度分布重心、侧向散射光强度分布变异系数、荧光强度分布宽度、荧光强度重心、荧光强度分布变异系数以及所述第二目标粒子团在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积和所述第二目标粒子团在由前向散射光强度、侧向散射光强度和荧光强度生成的三维散点图中的分布区域的体积。
在一些具体的示例中,所述至少一个第二白细胞参数可以包括下列参数中的一个或多个、例如一个或两个参数:所述第二测定试样中的中性粒细胞团的前向散射光强度分布宽度N_NEU_FS_W、前向散射光强度分布重心N_NEU_FS_P、前向散射光强度分布变异系数N_NEU_FS_CV、侧向散射光强度分布宽度N_NEU_SS_W、侧向散射光强度分布重心N_NEU_SS_P、侧向散射光强度分布变异系数N_NEU_SS_CV、荧光强度分布宽度N_NEU_FL_W、荧光强度分布重心N_NEU_FL_P、荧光强度分布变异系数N_NEU_FL_CV以及所述中性粒细胞团在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积N_NEU_FLFS_Area(中性粒细胞团在由前向散射光强度和荧光强度生成的二维散点图中的分布区域的面积)、N_NEU_FLSS_Area(中性粒细胞团在由侧向散射光强度和荧光强度生成的二维散点图中的分布区域的面积)、N_NEU_SSFS_Area(中性粒细胞团在由前向散射光强度和侧向散射强度生成的二维散点图中的分布区域的面积)和中性粒细胞团在由前向散射光强度、侧向散射强度和荧光强度生成的三维散点图中的分布区域的体积;以及,所述第二测定试样中的白细胞团的前向散射光强度分布宽度N_WBC_FS_W、前向散射光强度分布重心N_WBC_FS_P、前向散射光强度分布变异系数N_WBC_FS_CV、侧向散射光强度分布宽度N_WBC_SS_W、侧向散射光强度分布重心N_WBC_SS_P、侧向散射光强度分布变异系数N_WBC_SS_CV、荧光强度分布宽度N_WBC_FL_W、荧光强度分布重心N_WBC_FL_P、荧光强度分布变异系数N_WBC_FL_CV以及所述白细胞团在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积N_WBC_FLFS_Area(白细胞团在由前向散射光强度和荧光强度生成的二维散点图中的分布区域的面积)、N_WBC_FLSS_Area(白细胞团在由侧向散射光强度和荧光强度生成的二维散点图中的分布区域的面积)、N_WBC_SSFS_Area(白细胞团在由前向散射光强度和侧向散射强度生成的二维散点图中的分布区域的面积)和白细胞团在由前向散射光强度、侧向散射强度和荧光强度生成的三维散点图中的分布区域的体积。
在另一些实施例中,所述至少一个第二白细胞参数也可以包括第二测定试样中的白细胞团的计数参数WBC#。
与图9类似地,图10示出根据本申请一些实施例的第二测定试样中的白细胞团的细胞特征参数。
如图10所示,N_WBC_FS_W代表第二测定试样中的白细胞团的前向散射光强度分布宽度,其中,N_WBC_FS_W等于白细胞团的前向散射光强度分布上限与白细胞团的前向散射光强度分布下限的差值。N_WBC_FS_P代表第二测定试样中的白细胞团的前向散射光强度分布重心、即白细胞在FS方向的平均位置,其中,N_WBC_FS_P通过如下公式计算:
Figure PCTCN2022144177-appb-000002
其中,FS(i)为第i个白细胞的前向散射光强度。N_WBC_FS_CV代表第二测定试样中的白细胞团的前向散射光强度分布变异系数,其中,N_WBC_FS_CV等于N_WBC_FS_W除以
N_WBC_FS_P。
此外,N_WBC_FLFS_Area代表第二测定试样中的白细胞团在由前向散射光强度和荧光强度生成的散点图中的分布区域的面积。
在一些实施例中,如图10所示,C2表示白细胞团的轮廓分布曲线,例如可以将位于轮廓分布曲线C2内的位置总数记为该白细胞团的面积。本领域技术人员能够理解,利用通常的血液分析仪的分类算法,或者图像处理技术,容易得到粒子群落的轮廓分布曲线。
在另一些实施例中,D_NEU_FLSS_Area还可以通过如下算法步骤实现(图23):
从中性粒细胞(NEU)粒子团中随机选取一个粒子P1,并找出与P1距离最远的一个粒子P2;
构建向量V1(P1-P2),并以P1为向量起点,在中性粒细胞(NEU)粒子团中再找出一个粒子P3,并构建向量V2(P1-P3),使得向量V2(P1-P3)与向量V1(P1-P2)成最大夹角;
再以P1为向量起点,在中性粒细胞(NEU)粒子团中再找出一个粒子P4,并构建向量V3(P1-P4),使得向量V3(P1-P4)与向量V1(P1-P2)成最大夹角;
以此类推,分别得到中性粒细胞(NEU)粒子团最外侧的一组粒子P1,P2,P3,P4,…Pn;
使用椭圆拟合粒子点P1,P2,P3,P4,…Pn,并获得该椭圆的长轴a、短轴b;
所述D_NEU_FLSS_Area为所述长轴a和所述短轴b的乘积。
类似的,所述中性粒细胞群在由前向散射光强度、侧向散射光强度和荧光强度生成的三维散点图中的分布区域的体积参数也可以由相应的计算方式得到。
在此可以理解的,其他第二白细胞参数的定义可以以相应的方式参考图10和图23所示的实施例。
本领域技术人员能够理解,可以利用某个粒子群落散点图整体的分布特征,例如整个白细胞团的前向散射光强度分布宽度,也可以是某个粒子群落中部分区域粒子分布的特征,例如中性粒细胞团中间密度较高的部分的分布面积,或者与正常人散点图中性粒细胞或淋巴细胞粒子群有差异的区域。
在一些实施例中,处理器140可以被进一步配置为:当所述感染标志参数的值处于预设范围之外时,输出指示所述感染标志参数异常的提示信息。例如,当所述感染标志参数的值异常升高时,可以输出向上指向的箭头指示异常升高。
可选地,处理器140还可以被配置为输出所述预设范围。
在一些实施例中,处理器140可以被进一步配置为:基于所述感染标志参数输出指示所述受试者的感染状态的提示信息。例如,处理器140可以被配置为将提示信息输出给显 示装置进行显示。这里的显示装置可以是血液细胞分析仪100的显示装置150,也可以是与处理器140通信连接的其他显示装置。例如处理器140可以通过医院信息管理系统将提示信息输出至用户(医生)侧的显示装置。
接下来描述本申请提出的感染标志参数的一些应用场景,但本申请不限于此。
在一些实施例中,所述感染标志参数可以用于对对受试者进行脓毒症早期预测、脓毒症诊断、普通感染与重症感染的鉴别、感染病情监控、脓毒症预后分析、细菌感染和病毒感染的鉴别或者非感染性炎症和感染性炎症的鉴别、脓毒症的疗效评估。例如,处理器140可以被进一步配置用于基于感染标志参数对受试者进行脓毒症早期预测、脓毒症诊断、普通感染与重症感染的鉴别、感染病情监控、脓毒症预后分析、细菌感染和病毒感染的鉴别或者非感染性炎症和感染性炎症的鉴别、脓毒症的疗效评估。
脓毒症属于严重的感染性疾病,其发生率高,病死率高,每延缓1小时治疗,患者的死亡率上升7%。因此,脓毒症的早期预警显得尤为重要,脓毒症的早期识别和预警,能为患者增加宝贵的诊疗时间,大大提高生存率。
为此,在脓毒症早期预测的应用场景中,处理器140可以被配置为,当感染标志参数满足第一预设条件时,输出指示受试者在被采集待测血液样本之后的一定时间段内可能进展为脓毒症的提示信息。
在一些实施例中,所述一定时间段不大于48小时,即,本申请实施例能够最多提前两天预测受试者是否可能进展为脓毒症。例如,所述一定时间段处于24小时-48小时之间,即,本申请实施例能够提前一天至两天预测受试者是否可能进展为脓毒症。优选的是,所述一定时间段不大于24小时。
在此,所述第一预设条件例如可以为感染标志参数的值大于预设阈值。该预设阈值可以根据具体的参数组合和血液细胞分析仪来确定。
在此,可以通过在表1中列出的各参数组合计算感染标志参数,以用于脓毒症早期预测。
表1用于脓毒症早期预测的参数组合
第一白细胞参数 第二白细胞参数 第一白细胞参数 第二白细胞参数 第一白细胞参数 第二白细胞参数
D_Mon_FS_P N_WBC_FLFS_Area D_Neu_FL_W N_WBC_FS_P Lym# N_WBC_FLFS_Area
D_Mon_FS_P N_WBC_FLSS_Area D_Neu_FL_W N_WBC_FS_W Lym# N_WBC_FLSS_Area
D_Mon_FS_P N_WBC_FS_P D_Neu_FL_W N_WBC_FL_P Lym# N_WBC_FS_P
D_Mon_FS_P N_WBC_FS_W D_Neu_FL_W N_WBC_FL_W Lym# N_WBC_FS_W
D_Mon_FS_P N_WBC_FL_P D_Neu_FL_W N_WBC_SS_P Lym# N_WBC_FL_P
D_Mon_FS_P N_WBC_FL_W D_Neu_FL_W N_WBC_SS_W Lym# N_WBC_FL_W
D_Mon_FS_P N_WBC_SS_P D_Neu_FL_W N_WBC_SSFS_Area Lym# N_WBC_SS_P
D_Mon_FS_P N_WBC_SS_W D_Neu_SS_P N_WBC_FLFS_Area Lym# N_WBC_SS_W
D_Mon_FS_P N_WBC_SSFS_Area D_Neu_SS_P N_WBC_FLSS_Area Lym# N_WBC_SSFS_Area
D_Mon_FS_P WBC# D_Neu_SS_P N_WBC_FS_P Lym% N_WBC_FLFS_Area
D_Mon_FS_W N_WBC_FLFS_Area D_Neu_SS_P N_WBC_FS_W Lym% N_WBC_FLSS_Area
D_Mon_FS_W N_WBC_FLSS_Area D_Neu_SS_P N_WBC_FL_P Lym% N_WBC_FS_P
D_Mon_FS_W N_WBC_FS_P D_Neu_SS_P N_WBC_FL_W Lym% N_WBC_FS_W
D_Mon_FS_W N_WBC_FS_W D_Neu_SS_P N_WBC_SS_P Lym% N_WBC_FL_P
D_Mon_FS_W N_WBC_FL_P D_Neu_SS_P N_WBC_SS_W Lym% N_WBC_FL_W
D_Mon_FS_W N_WBC_FL_W D_Neu_SS_P N_WBC_SSFS_Area Lym% N_WBC_SS_P
D_Mon_FS_W N_WBC_SS_P D_Neu_SS_P WBC# Lym% N_WBC_SS_W
D_Mon_FS_W N_WBC_SS_W D_Neu_SS_W N_WBC_FLFS_Area Lym% N_WBC_SSFS_Area
D_Mon_FS_W N_WBC_SSFS_Area D_Neu_SS_W N_WBC_FLSS_Area Mon# N_WBC_FLFS_Area
D_Mon_FS_W WBC# D_Neu_SS_W N_WBC_FS_P Mon# N_WBC_FLSS_Area
D_Mon_FL_P N_WBC_FLFS_Area D_Neu_SS_W N_WBC_FS_W Mon# N_WBC_FS_P
D_Mon_FL_P N_WBC_FLSS_Area D_Neu_SS_W N_WBC_FL_P Mon# N_WBC_FS_W
D_Mon_FL_P N_WBC_FS_P D_Neu_SS_W N_WBC_FL_W Mon# N_WBC_FL_P
D_Mon_FL_P N_WBC_FS_W D_Neu_SS_W N_WBC_SS_P Mon# N_WBC_FL_W
D_Mon_FL_P N_WBC_FL_P D_Neu_SS_W N_WBC_SS_W Mon# N_WBC_SS_P
D_Mon_FL_P N_WBC_FL_W D_Neu_SS_W N_WBC_SSFS_Area Mon# N_WBC_SS_W
D_Mon_FL_P N_WBC_SS_P D_Neu_FLSS_Area N_WBC_FLFS_Area Mon# N_WBC_SSFS_Area
D_Mon_FL_P N_WBC_SS_W D_Neu_FLSS_Area N_WBC_FLSS_Area Mon% N_WBC_FLFS_Area
D_Mon_FL_P N_WBC_SSFS_Area D_Neu_FLSS_Area N_WBC_FS_P Mon% N_WBC_FLSS_Area
D_Mon_FL_P WBC# D_Neu_FLSS_Area N_WBC_FS_W Mon% N_WBC_FS_P
D_Mon_FL_W N_WBC_FLFS_Area D_Neu_FLSS_Area N_WBC_FL_P Mon% N_WBC_FS_W
D_Mon_FL_W N_WBC_FLSS_Area D_Neu_FLSS_Area N_WBC_FL_W Mon% N_WBC_FL_P
D_Mon_FL_W N_WBC_FS_P D_Neu_FLSS_Area N_WBC_SS_P Mon% N_WBC_FL_W
D_Mon_FL_W N_WBC_FS_W D_Neu_FLSS_Area N_WBC_SS_W Mon% N_WBC_SS_P
D_Mon_FL_W N_WBC_FL_P D_Neu_FLSS_Area N_WBC_SSFS_Area Mon% N_WBC_SS_W
D_Mon_FL_W N_WBC_FL_W D_Neu_FS_P N_WBC_FL_W Mon% N_WBC_SSFS_Area
D_Mon_FL_W N_WBC_SS_P D_Neu_FS_P N_WBC_SS_P Neu# N_WBC_FLFS_Area
D_Mon_FL_W N_WBC_SS_W D_Neu_FS_P N_WBC_SS_W Neu# N_WBC_FLSS_Area
D_Mon_FL_W N_WBC_SSFS_Area D_Neu_FS_P N_WBC_SSFS_Area Neu# N_WBC_FS_P
D_Mon_FL_W WBC# D_Neu_FS_P WBC# Neu# N_WBC_FS_W
D_Mon_SS_P N_WBC_FLFS_Area D_Neu_FS_W N_WBC_FLFS_Area Neu# N_WBC_FL_P
D_Mon_SS_P N_WBC_FLSS_Area D_Neu_FS_W N_WBC_FLSS_Area Neu# N_WBC_FL_W
D_Mon_SS_P N_WBC_FS_P D_Neu_FS_W N_WBC_FS_P Neu# N_WBC_SS_P
D_Mon_SS_P N_WBC_FS_W D_Neu_FS_W N_WBC_FS_W Neu# N_WBC_SS_W
D_Mon_SS_P N_WBC_FL_P D_Neu_FS_W N_WBC_FL_P Neu# N_WBC_SSFS_Area
D_Mon_SS_P N_WBC_FL_W D_Neu_FS_W N_WBC_FL_W Neu% N_WBC_FLFS_Area
D_Mon_SS_P N_WBC_SS_P D_Neu_FS_W N_WBC_SS_P Neu% N_WBC_FLSS_Area
D_Mon_SS_P N_WBC_SS_W D_Neu_FS_W N_WBC_SS_W Neu% N_WBC_FS_P
D_Mon_SS_P N_WBC_SSFS_Area D_Neu_FS_W N_WBC_SSFS_Area Neu% N_WBC_FS_W
D_Mon_SS_P WBC# D_Neu_FS_W WBC# Neu% N_WBC_FL_P
D_Mon_SS_W N_WBC_FLFS_Area D_Neu_FL_P N_WBC_FLFS_Area Neu% N_WBC_FL_W
D_Mon_SS_W N_WBC_FLSS_Area D_Neu_FL_P N_WBC_FLSS_Area Neu% N_WBC_SS_P
D_Mon_SS_W N_WBC_FS_P D_Neu_FL_P N_WBC_FS_P Neu% N_WBC_SS_W
D_Mon_SS_W N_WBC_FS_W D_Neu_FL_P N_WBC_FS_W Neu% N_WBC_SSFS_Area
D_Mon_SS_W N_WBC_FL_P D_Neu_FL_P N_WBC_FL_P D_Mon_FL_W N_NEU_FS_W
D_Mon_SS_W N_WBC_FL_W D_Neu_FL_P N_WBC_FL_W D_Neu_FL_W N_NEU_SS_CV
D_Mon_SS_W N_WBC_SS_P D_Neu_FL_P N_WBC_SS_P D_Neu_FL_W N_NEU_FS_W
D_Mon_SS_W N_WBC_SS_W D_Neu_FL_P N_WBC_SS_W D_Mon_FL_W N_NEU_FS_CV
D_Mon_SS_W N_WBC_SSFS_Area D_Neu_FL_P N_WBC_SSFS_Area D_Mon_FL_W N_NEU_SS_W
D_Neu_FS_P N_WBC_FLFS_Area D_Neu_FL_P WBC# D_Neu_FL_P N_NEU_SS_W
D_Neu_FS_P N_WBC_FLSS_Area D_Neu_FL_W N_WBC_FLFS_Area D_Neu_FL_W N_NEU_FLSS_Area
D_Neu_FS_P N_WBC_FS_P D_Neu_FL_W N_WBC_FLSS_Area D_Mon_SS_P N_NEU_SS_W
D_Neu_FS_P N_WBC_FS_W D_Mon_SS_W N_NEU_SS_CV D_Mon_FL_P N_NEU_SS_W
D_Neu_FS_P N_WBC_FL_P D_Mon_SS_W N_NEU_SS_W D_Neu_FL_W N_NEU_FLFS_Area
D_Neu_FL_W N_NEU_SS_W D_Mon_SS_W N_NEU_FS_W D_Neu_FL_W N_NEU_FL_W
D_Mon_SS_W N_NEU_FL_P D_Mon_SS_W N_NEU_FS_CV D_Mon_SS_W N_NEU_FL_W
在此优选可以采用D_Mon_SS_W与N_WBC_FL_W的组合来计算用于脓毒症早期预测的感染标志参数。
脓毒症前期的临床症状与普通/重症感染性疾病相似,脓毒症患者易被误诊为普通/重症感染性疾病,延误治疗时机。因此,脓毒症的鉴别诊断显得尤为重要。
为此,在脓毒症诊断的应用场景中,处理器140可以被配置为,当感染标志参数满足第二预设条件时,输出指示受试者患有脓毒症的提示信息。在此,第二预设条件同样可以为感染标志参数的值大于预设阈值。该预设阈值可以根据具体的参数组合和血液细胞分析仪来确定。
在此,可以通过在表2中列出的各参数组合计算感染标志参数,以用于脓毒症诊断。
表2用于脓毒症诊断的参数组合
第一白细胞参数 第二白细胞参数 第一白细胞参数 第二白细胞参数 第一白细胞参数 第二白细胞参数
D_Lym_FLSS_Area N_WBC_FL_W D_Neu_FL_P N_WBC_SS_CV D_Neu_FS_W N_WBC_FS_W
D_Lym_FLSS_Area N_WBC_SS_P D_Neu_FL_P N_WBC_FLSS_Area D_Neu_FS_W N_WBC_FS_P
D_Lym_FLSS_Area N_WBC_SS_W D_Neu_FL_P N_WBC_FLFS_Area D_Neu_FS_W N_WBC_FLSS_Area
D_Lym_FLSS_Area N_WBC_FS_W D_Neu_FL_P N_WBC_SS_P D_Neu_FS_W N_WBC_FS_CV
D_Lym_FLSS_Area N_WBC_FL_P D_Neu_FL_P N_WBC_SSFS_Area D_Neu_FS_W N_WBC_FLFS_Area
D_Lym_FLSS_Area N_WBC_FS_CV D_Neu_FL_P N_WBC_FL_P D_Neu_FS_W N_WBC_SS_CV
D_Lym_FLSS_Area N_WBC_FLSS_Area D_Neu_FL_P N_WBC_FS_P D_Neu_FS_W N_WBC_SSFS_Area
D_Lym_FLSS_Area N_WBC_FLFS_Area D_Neu_FL_P N_WBC_FL_CV D_Neu_FS_W N_WBC_FL_CV
D_Lym_FLSS_Area N_WBC_SS_CV D_Neu_FL_W N_WBC_FL_W D_Neu_FLFS_Area N_WBC_FL_P
D_Lym_FLSS_Area N_WBC_FS_P D_Neu_FL_W N_WBC_FL_P D_Neu_FLFS_Area N_WBC_FL_W
D_Lym_FLSS_Area N_WBC_SSFS_Area D_Neu_FL_W N_WBC_FS_W D_Neu_FLFS_Area N_WBC_SS_P
D_Lym_FLSS_Area N_WBC_FL_CV D_Neu_FL_W N_WBC_FS_CV D_Neu_FLFS_Area N_WBC_SS_W
D_Lym_FLFS_Area N_WBC_FL_W D_Neu_FL_W N_WBC_FLSS_Area D_Neu_FLFS_Area N_WBC_FS_W
D_Lym_FLFS_Area N_WBC_SS_W D_Neu_FL_W N_WBC_FLFS_Area D_Neu_FLFS_Area N_WBC_FS_P
D_Lym_FLFS_Area N_WBC_FS_CV D_Neu_FL_W N_WBC_SS_W D_Neu_FLFS_Area N_WBC_FL_CV
D_Lym_FLFS_Area N_WBC_SS_P D_Neu_FL_W N_WBC_SS_CV D_Neu_FLFS_Area N_WBC_SSFS_Area
D_Lym_FLFS_Area N_WBC_FS_W D_Neu_FL_W N_WBC_SSFS_Area D_Neu_FLFS_Area N_WBC_FLFS_Area
D_Lym_FLFS_Area N_WBC_FL_P D_Neu_FL_W N_WBC_SS_P D_Neu_FLFS_Area N_WBC_FLSS_Area
D_Lym_FLFS_Area N_WBC_FLSS_Area D_Neu_FL_W N_WBC_FS_P D_Neu_FLFS_Area N_WBC_SS_CV
D_Lym_FLFS_Area N_WBC_FLFS_Area D_Neu_FL_W N_WBC_FL_CV D_Neu_FLFS_Area N_WBC_FS_CV
D_Lym_FLFS_Area N_WBC_SS_CV D_Neu_FLSS_Area N_WBC_FL_P D_Neu_SS_CV N_WBC_FL_W
D_Lym_FLFS_Area N_WBC_SSFS_Area D_Neu_FLSS_Area N_WBC_FL_W D_Neu_SS_CV N_WBC_SS_P
D_Lym_FLFS_Area N_WBC_FS_P D_Neu_FLSS_Area N_WBC_SS_P D_Neu_SS_CV N_WBC_FL_P
D_Lym_FLFS_Area N_WBC_FL_CV D_Neu_FLSS_Area N_WBC_SS_W D_Neu_SS_CV N_WBC_SS_W
D_Mon_FL_P N_WBC_FS_W D_Neu_FLSS_Area N_WBC_FS_P D_Neu_SS_CV N_WBC_FS_W
D_Mon_FL_P N_WBC_FL_W D_Neu_FLSS_Area N_WBC_FS_W D_Neu_SS_CV N_WBC_FS_P
D_Mon_FL_P N_WBC_FS_CV D_Neu_FLSS_Area N_WBC_FL_CV D_Neu_SS_CV N_WBC_FS_CV
D_Mon_FL_P N_WBC_SS_W D_Neu_FLSS_Area N_WBC_FS_CV D_Neu_SS_CV N_WBC_FLSS_Area
D_Mon_FL_P N_WBC_SS_P D_Neu_FLSS_Area N_WBC_SS_CV D_Neu_SS_CV N_WBC_FLFS_Area
D_Mon_FL_P N_WBC_FL_P D_Neu_FLSS_Area N_WBC_SSFS_Area D_Neu_SS_CV N_WBC_SS_CV
D_Mon_FL_P N_WBC_FLSS_Area D_Neu_FLSS_Area N_WBC_FLFS_Area D_Neu_SS_CV N_WBC_SSFS_Area
D_Mon_FL_P N_WBC_FLFS_Area D_Neu_FLSS_Area N_WBC_FLSS_Area D_Neu_SS_CV N_WBC_FL_CV
D_Mon_FL_P N_WBC_FS_P D_Neu_FS_CV N_WBC_FL_W D_Neu_SS_P N_WBC_FL_W
D_Mon_FL_P N_WBC_SS_CV D_Neu_FS_CV N_WBC_SS_P D_Neu_SS_P N_WBC_FL_P
D_Mon_FL_P N_WBC_SSFS_Area D_Neu_FS_CV N_WBC_FL_P D_Neu_SS_P N_WBC_SS_P
D_Mon_FL_P N_WBC_FL_CV D_Neu_FS_CV N_WBC_SS_W D_Neu_SS_P N_WBC_FS_W
D_Mon_FL_W N_WBC_FL_W D_Neu_FS_CV N_WBC_FS_W D_Neu_SS_P N_WBC_SS_W
D_Mon_FL_W N_WBC_SS_P D_Neu_FS_CV N_WBC_FS_P D_Neu_SS_P N_WBC_FS_CV
D_Mon_FL_W N_WBC_FL_P D_Neu_FS_CV N_WBC_FLSS_Area D_Neu_SS_P N_WBC_FLSS_Area
D_Mon_FL_W N_WBC_FS_W D_Neu_FS_CV N_WBC_FS_CV D_Neu_SS_P N_WBC_FS_P
D_Mon_FL_W N_WBC_SS_W D_Neu_FS_CV N_WBC_FLFS_Area D_Neu_SS_P N_WBC_SS_CV
D_Mon_FL_W N_WBC_FS_CV D_Neu_FS_CV N_WBC_SS_CV D_Neu_SS_P N_WBC_FLFS_Area
D_Mon_FL_W N_WBC_FS_P D_Neu_FS_P N_WBC_FL_W D_Neu_SS_P N_WBC_SSFS_Area
D_Mon_FL_W N_WBC_FLSS_Area D_Neu_FS_P N_WBC_SS_P D_Neu_SS_P N_WBC_FL_CV
D_Mon_FL_W N_WBC_SS_CV D_Neu_FS_P N_WBC_SS_W D_Neu_SS_W N_WBC_FL_W
D_Mon_FL_W N_WBC_FLFS_Area D_Neu_FS_P N_WBC_FL_P D_Neu_SS_W N_WBC_FL_P
D_Mon_FL_W N_WBC_FL_CV D_Neu_FS_P N_WBC_FS_W D_Neu_SS_W N_WBC_SS_P
D_Mon_FL_W N_WBC_SSFS_Area D_Neu_FS_P N_WBC_FS_P D_Neu_SS_W N_WBC_FS_W
D_Mon_FS_P N_WBC_FL_W D_Neu_FS_P N_WBC_FS_CV D_Neu_SS_W N_WBC_SS_W
D_Mon_FS_P N_WBC_SS_P D_Neu_FS_P N_WBC_FLSS_Area D_Neu_SS_W N_WBC_FS_CV
D_Mon_FS_P N_WBC_FL_P D_Neu_FS_P N_WBC_SS_CV D_Neu_SS_W N_WBC_FLSS_Area
D_Mon_FS_P N_WBC_SS_W D_Neu_FS_P N_WBC_FLFS_Area D_Neu_SS_W N_WBC_FS_P
D_Mon_FS_P N_WBC_FS_W D_Neu_FS_W N_WBC_FL_W D_Neu_SS_W N_WBC_FLFS_Area
D_Mon_FS_P N_WBC_FS_CV D_Neu_FS_W N_WBC_SS_P D_Neu_SS_W N_WBC_SS_CV
D_Mon_FS_P N_WBC_FS_P D_Neu_FS_W N_WBC_FL_P D_Neu_SS_W N_WBC_SSFS_Area
D_Mon_FS_P N_WBC_FLSS_Area D_Neu_FS_W N_WBC_SS_W D_Neu_SS_W N_WBC_FL_CV
D_Mon_FS_P N_WBC_SS_CV D_Mon_SS_W N_NEU_FLFS_Area D_Mon_SS_P N_NEU_FS_CV
D_Mon_FS_P N_WBC_FLFS_Area D_Mon_SS_W N_NEU_FLSS_Area D_Mon_SS_P N_NEU_SS_W
D_Mon_FS_P N_WBC_SSFS_Area D_Mon_SS_W N_NEU_FS_CV D_Neu_SS_CV N_NEU_FL_W
D_Mon_FS_P N_WBC_FL_CV D_Mon_SS_W N_NEU_FS_W D_Neu_FL_W N_NEU_SS_P
D_Mon_FS_W N_WBC_FL_W D_Neu_FLSS_Area N_NEU_FL_P D_Mon_FL_W N_NEU_SS_W
D_Mon_FS_W N_WBC_FL_P D_Mon_SS_W N_NEU_SS_W D_Mon_FL_P N_NEU_FLFS_Area
D_Mon_FS_W N_WBC_SS_P D_Neu_FL_W N_NEU_FL_W D_Mon_FS_P N_NEU_FL_W
D_Mon_FS_W N_WBC_SS_W D_Mon_SS_W N_NEU_SS_CV D_Neu_FL_W N_NEU_FS_P
D_Mon_FS_W N_WBC_FS_W D_Neu_FL_W N_NEU_FL_P D_Neu_FLSS_Area N_NEU_SS_P
D_Mon_FS_W N_WBC_FS_CV D_Neu_FL_P N_NEU_FL_W D_Mon_FL_P N_NEU_FS_W
D_Mon_FS_W N_WBC_FLSS_Area D_Neu_FL_W N_NEU_FLFS_Area D_Mon_FL_W N_NEU_SS_P
D_Mon_FS_W N_WBC_FS_P D_Neu_FL_CV N_NEU_FL_P D_Neu_FS_W N_NEU_FL_W
D_Mon_FS_W N_WBC_FLFS_Area D_Mon_SS_W N_NEU_SSFS_Area D_Neu_FS_P N_NEU_FL_W
D_Mon_FS_W N_WBC_SS_CV D_Neu_FLFS_Area N_NEU_FL_P D_Neu_FL_CV N_NEU_FLFS_Area
D_Mon_FS_W N_WBC_FL_CV D_Neu_FL_P N_NEU_FLFS_Area D_Neu_FS_CV N_NEU_FL_W
D_Mon_FS_W N_WBC_SSFS_Area D_Neu_FL_P N_NEU_FS_CV D_Neu_FLSS_Area N_NEU_SS_W
D_Mon_SS_P N_WBC_FL_W D_Neu_FL_W N_NEU_FS_W D_Mon_FL_W N_NEU_SSFS_Area
D_Mon_SS_P N_WBC_FS_W D_Neu_FL_W N_NEU_FS_CV D_Neu_FLFS_Area N_NEU_FL_W
D_Mon_SS_P N_WBC_SS_W D_Neu_FL_W N_NEU_FLSS_Area D_Mon_SS_P N_NEU_SS_CV
D_Mon_SS_P N_WBC_FL_P D_Mon_SS_W N_NEU_SS_P D_Neu_SS_W N_NEU_FLFS_Area
D_Mon_SS_P N_WBC_SS_P D_Neu_FL_P N_NEU_FS_W D_Neu_FLSS_Area N_NEU_FS_W
D_Mon_SS_P N_WBC_FS_CV D_Neu_FL_W N_NEU_SS_W D_Neu_FLSS_Area N_NEU_FLFS_Area
D_Mon_SS_P N_WBC_FLSS_Area D_Mon_SS_W N_NEU_FL_CV D_Mon_FL_P N_NEU_FLSS_Area
D_Mon_SS_P N_WBC_SS_CV D_Neu_FL_P N_NEU_SS_CV D_Neu_FLSS_Area N_NEU_FS_CV
D_Mon_SS_P N_WBC_FLFS_Area D_Neu_FL_P N_NEU_FLSS_Area D_Mon_FS_W N_NEU_FLSS_Area
D_Mon_SS_P N_WBC_FS_P D_Mon_FL_W N_NEU_FL_P D_Neu_FL_CV N_NEU_FS_W
D_Mon_SS_P N_WBC_SSFS_Area D_Mon_FS_W N_NEU_FL_P D_Neu_FL_CV N_NEU_FLSS_Area
D_Mon_SS_P N_WBC_FL_CV D_Neu_FL_W N_NEU_SS_CV D_Mon_FL_P N_NEU_FS_CV
D_Mon_SS_W N_WBC_FL_W D_Mon_SS_W N_NEU_FS_P D_Neu_SS_W N_NEU_FLSS_Area
D_Mon_SS_W N_WBC_FS_W D_Mon_SS_P N_NEU_FL_P D_Neu_FLFS_Area N_NEU_FL_CV
D_Mon_SS_W N_WBC_FS_CV D_Mon_SS_P N_NEU_FL_W D_Mon_FS_W N_NEU_FLFS_Area
D_Mon_SS_W N_WBC_FL_P D_Neu_FL_P N_NEU_SS_W D_Neu_FLSS_Area N_NEU_FLSS_Area
D_Mon_SS_W N_WBC_FLSS_Area D_Neu_FL_P N_NEU_FL_P D_Neu_SS_W N_NEU_FS_W
D_Mon_SS_W N_WBC_SS_W D_Neu_FL_W N_NEU_SSFS_Area D_Neu_SS_P N_NEU_FLFS_Area
D_Mon_SS_W N_WBC_SS_CV D_Neu_SS_CV N_NEU_FL_P D_Neu_FLSS_Area N_NEU_FS_P
D_Mon_SS_W N_WBC_FLFS_Area D_Mon_FL_W N_NEU_FL_W D_Neu_FL_P N_NEU_SS_P
D_Mon_SS_W N_WBC_SSFS_Area D_Neu_SS_W N_NEU_FL_P D_Neu_FLSS_Area N_NEU_SS_CV
D_Mon_SS_W N_WBC_SS_P D_Neu_FS_CV N_NEU_FL_P D_Mon_FS_P N_NEU_FLFS_Area
D_Mon_SS_W N_WBC_FL_CV D_Neu_SS_P N_NEU_FL_P D_Neu_FL_W N_NEU_FL_CV
D_Mon_SS_W N_WBC_FS_P D_Neu_FS_W N_NEU_FL_P D_Neu_SS_CV N_NEU_FLFS_Area
D_Neu_FL_CV N_WBC_FL_W D_Mon_FL_W N_NEU_FLFS_Area D_Neu_SS_P N_NEU_FS_W
D_Neu_FL_CV N_WBC_FL_P D_Neu_FLSS_Area N_NEU_FL_CV D_Neu_SS_P N_NEU_FLSS_Area
D_Neu_FL_CV N_WBC_SS_P D_Neu_FL_P N_NEU_SSFS_Area D_Neu_FLSS_Area N_NEU_SSFS_Area
D_Neu_FL_CV N_WBC_FS_W D_Mon_FS_P N_NEU_FL_P D_Neu_FLFS_Area N_NEU_SS_P
D_Neu_FL_CV N_WBC_SS_W D_Mon_FL_W N_NEU_FS_W D_Neu_FL_CV N_NEU_SS_W
D_Neu_FL_CV N_WBC_FS_CV D_Neu_FL_CV N_NEU_FL_W D_Mon_FL_W N_NEU_SS_CV
D_Neu_FL_CV N_WBC_FLSS_Area D_Neu_SS_W N_NEU_FL_W D_Neu_SS_W N_NEU_SS_W
D_Neu_FL_CV N_WBC_FS_P D_Mon_FS_W N_NEU_FL_W D_Neu_SS_W N_NEU_FS_CV
D_Neu_FL_CV N_WBC_FLFS_Area D_Mon_FL_P N_NEU_FL_P D_Mon_FS_P N_NEU_FS_W
D_Neu_FL_CV N_WBC_SS_CV D_Neu_SS_P N_NEU_FL_W D_Neu_SS_CV N_NEU_FS_W
D_Neu_FL_CV N_WBC_SSFS_Area D_Mon_SS_P N_NEU_FLFS_Area D_Mon_SS_P N_NEU_SSFS_Area
D_Neu_FL_CV N_WBC_FL_CV D_Neu_FS_P N_NEU_FL_P D_Mon_FS_P N_NEU_FLSS_Area
D_Neu_FL_P N_WBC_FL_W D_Mon_FL_W N_NEU_FLSS_Area D_Neu_SS_CV N_NEU_FLSS_Area
D_Neu_FL_P N_WBC_FS_CV D_Mon_FL_P N_NEU_FL_W D_Mon_FS_W N_NEU_SS_W
D_Neu_FL_P N_WBC_FS_W D_Mon_SS_P N_NEU_FLSS_Area D_Neu_SS_P N_NEU_FS_CV
D_Neu_FL_P N_WBC_SS_W D_Mon_SS_P N_NEU_FS_W D_Neu_FL_CV N_NEU_SS_P
D_Mon_SS_W N_NEU_FL_P D_Mon_FL_W N_NEU_FS_CV D_Mon_FL_W N_NEU_FS_P
D_Mon_SS_W N_NEU_FL_W D_Neu_FLSS_Area N_NEU_FL_W    
在此优选可以采用D_Mon_SS_W与N_WBC_FL_W的组合来计算用于脓毒症诊断的感染标志参数。
细菌感染患者根据其感染严重度和器官功能状态,可分为普通感染和重症感染,两种感染的临床治疗手段和护理措施不一样,所以普通感染与重症感染的鉴别能协助医生识别有生命危险的患者,也能更合理的分配医疗资源。
为此,在普通感染与重症感染的鉴别的应用场景中,处理器140可以被配置为,当感染标志参数满足第三预设条件时,输出指示受试者患有重症感染的提示信息。在此,第三预设条件同样可以为感染标志参数的值大于预设阈值。该预设阈值可以根据具体的参数组合和血液细胞分析仪来确定。
在此,可以通过在表3中列出的各参数组合计算感染标志参数,以用于普通感染与重症感染的鉴别。在表3中,D_EOS_FS_W为所述第一测定试样中的嗜酸性粒细胞团的前向散射光强度分布宽度,D_EOS_FS_P为其前向散射光强度分布重心,D_EOS_SS_W为其侧向散射光强度分布宽度,D_EOS_SS_P为其侧向散射光强度分布重心,D_EOS_FL_W为其荧光强度分布宽度,D_EOS_FL_P为其荧光强度分布重心。
表3用于普通感染与重症感染的鉴别的参数组合
第一白细胞参数 第二白细胞参数 第一白细胞参数 第二白细胞参数 第一白细胞参数 第二白细胞参数
D_Mon_SS_W N_WBC_FL_W D_Lym_FLFS_Area N_WBC_SS_W D_Mon_FS_P N_WBC_SS_P
D_Neu_FL_W N_WBC_FL_W D_Neu_FLFS_Area N_WBC_FS_W D_Neu_FL_CV N_WBC_SS_P
D_Neu_FLSS_Area N_WBC_FL_W D_Mon_FL_P N_WBC_FS_CV D_Mon_FL_P N_WBC_SS_CV
D_Neu_FL_CV N_WBC_FL_W D_Eos_FL_W N_WBC_FLFS_Area D_Neu_FL_P N_WBC_FS_P
D_Mon_FL_W N_WBC_FL_W D_Neu_FL_P N_WBC_SSFS_Area D_Neu_SS_P N_WBC_SS_CV
D_Neu_FLFS_Area N_WBC_FL_W D_Mon_FS_P N_WBC_FS_W D_Neu_FL_CV N_WBC_FS_CV
D_Eos_SS_P N_WBC_FL_W D_Mon_FL_W N_WBC_SSFS_Area D_Neu_SS_W N_WBC_SS_P
D_Eos_FL_P N_WBC_FL_W D_Neu_FLSS_Area N_WBC_FS_CV D_Mon_FS_W N_WBC_FS_CV
D_Neu_FL_P N_WBC_FL_W D_Mon_FL_P N_WBC_SS_W D_Lym_FLSS_Area N_WBC_SS_P
D_Eos_SS_W N_WBC_FL_W D_Neu_FL_P N_WBC_SS_P D_Eos_FL_P N_WBC_SS_P
D_Neu_SS_P N_WBC_FL_W D_Neu_FL_CV N_WBC_FS_W D_Neu_FL_W N_WBC_FL_CV
D_Mon_FS_P N_WBC_FL_W D_Neu_SS_P N_WBC_FS_W D_Mon_FL_P N_WBC_SSFS_Area
D_Eos_FS_W N_WBC_FL_W D_Neu_FLFS_Area N_WBC_FL_CV D_Lym_FLSS_Area N_WBC_FS_CV
D_Mon_FS_W N_WBC_FL_W D_Neu_FLFS_Area N_WBC_FS_CV D_Mon_FS_W N_WBC_SS_P
D_Eos_FS_P N_WBC_FL_W D_Lym_FLFS_Area N_WBC_SSFS_Area D_Neu_FS_P N_WBC_SS_P
D_Neu_FLSS_Area N_WBC_FL_P D_Eos_FS_P N_WBC_FS_W D_Neu_SS_CV N_WBC_SS_P
D_Eos_FL_W N_WBC_FL_W D_Neu_SS_W N_WBC_FS_W D_Neu_FS_W N_WBC_SS_P
D_Neu_FLFS_Area N_WBC_FL_P D_Neu_FLSS_Area N_WBC_FL_CV D_Neu_FS_CV N_WBC_SS_P
D_Neu_SS_W N_WBC_FL_W D_Neu_FLSS_Area N_WBC_SS_CV D_Eos_FL_W N_WBC_SS_P
D_Lym_FLFS_Area N_WBC_FL_W D_Eos_FL_P N_WBC_FS_W D_Lym_FLFS_Area N_WBC_SS_CV
D_Mon_FL_P N_WBC_FL_W D_Neu_FLFS_Area N_WBC_SS_CV D_Neu_FS_P N_WBC_FS_CV
D_Neu_FS_W N_WBC_FL_W D_Lym_FLSS_Area N_WBC_SS_W D_Eos_FS_P N_WBC_FS_CV
D_Lym_FLSS_Area N_WBC_FL_W D_Eos_SS_W N_WBC_FS_W D_Eos_SS_P N_WBC_SS_P
D_Neu_FS_P N_WBC_FL_W D_Mon_FS_W N_WBC_FS_W D_Eos_SS_W N_WBC_SS_P
D_Mon_SS_W N_WBC_FL_P D_Neu_SS_CV N_WBC_FS_W D_Eos_FS_W N_WBC_FS_CV
D_Neu_FS_CV N_WBC_FL_W D_Neu_SS_P N_WBC_SS_W D_Neu_SS_CV N_WBC_FS_CV
D_Neu_SS_CV N_WBC_FL_W D_Neu_FS_CV N_WBC_FS_W D_Neu_FS_W N_WBC_FS_CV
D_Mon_SS_W N_WBC_FLSS_Area D_Mon_FL_W N_WBC_SS_CV D_Eos_SS_W N_WBC_FS_CV
D_Lym_FLFS_Area N_WBC_FLSS_Area D_Mon_FL_W N_WBC_FS_P D_Mon_FL_P N_WBC_FS_P
D_Mon_SS_W N_WBC_FLFS_Area D_Neu_FS_W N_WBC_FS_W D_Neu_FS_CV N_WBC_FS_CV
D_Neu_FL_W N_WBC_FLSS_Area D_Eos_FL_W N_WBC_FS_W D_Neu_SS_P N_WBC_SSFS_Area
D_Neu_FL_W N_WBC_FLFS_Area D_Neu_FS_P N_WBC_FS_W D_Mon_FL_W N_WBC_FL_CV
D_Neu_FL_W N_WBC_FL_P D_Eos_SS_P N_WBC_FS_W D_Neu_SS_W N_WBC_SS_CV
D_Mon_FL_W N_WBC_FLSS_Area D_Neu_FL_W N_WBC_FS_P D_Eos_FL_W N_WBC_FS_CV
D_Neu_FL_P N_WBC_FLSS_Area D_Neu_FLSS_Area N_WBC_SSFS_Area D_Eos_FL_P N_WBC_FS_CV
D_Lym_FLFS_Area N_WBC_FLFS_Area D_Neu_FLSS_Area N_WBC_FS_P D_Mon_FS_P N_WBC_SS_CV
D_Mon_SS_W N_WBC_FS_CV D_Neu_FLFS_Area N_WBC_FS_P D_Eos_SS_P N_WBC_FS_CV
D_Mon_SS_W N_WBC_FS_W D_Eos_FS_W N_WBC_FS_W D_Neu_FL_P N_WBC_FL_CV
D_Neu_FL_P N_WBC_FLFS_Area D_Mon_FS_P N_WBC_SS_W D_Neu_SS_W N_WBC_SSFS_Area
D_Mon_FL_W N_WBC_FLFS_Area D_Neu_FS_CV N_WBC_SS_W D_Mon_FS_W N_WBC_SS_CV
D_Mon_FL_W N_WBC_FL_P D_Mon_FS_P N_WBC_FS_CV D_Mon_FS_P N_WBC_SSFS_Area
D_Eos_FS_W N_WBC_FL_P D_Lym_FLSS_Area N_WBC_FS_W D_Eos_FS_P N_WBC_FS_P
D_Eos_SS_W N_WBC_FL_P D_Neu_SS_W N_WBC_SS_W D_Neu_FS_P N_WBC_SS_CV
D_Eos_SS_P N_WBC_FL_P D_Neu_SS_CV N_WBC_SS_W D_Neu_SS_P N_WBC_FS_P
D_Lym_FLSS_Area N_WBC_FLSS_Area D_Neu_FL_CV N_WBC_SS_W D_Eos_FS_W N_WBC_FS_P
D_Neu_FL_CV N_WBC_FL_P D_Eos_FS_P N_WBC_SS_W D_Eos_SS_W N_WBC_FS_P
D_Eos_FL_P N_WBC_FL_P D_Neu_FS_W N_WBC_SS_W D_Lym_FLSS_Area N_WBC_SSFS_Area
D_Mon_FL_P N_WBC_FLSS_Area D_Lym_FLFS_Area N_WBC_SS_P D_Neu_FL_CV N_WBC_SSFS_Area
D_Eos_FS_P N_WBC_FL_P D_Eos_FL_P N_WBC_SS_W D_Eos_FL_P N_WBC_FS_P
D_Mon_SS_W N_WBC_SS_W D_Neu_FLFS_Area N_WBC_SSFS_Area D_Mon_FS_P N_WBC_FS_P
D_Mon_FL_P N_WBC_FLFS_Area D_Neu_SS_P N_WBC_FS_CV D_Neu_FL_CV N_WBC_SS_CV
D_Eos_FL_W N_WBC_FL_P D_Mon_FS_W N_WBC_SS_W D_Eos_FL_W N_WBC_FS_P
D_Neu_SS_P N_WBC_FL_P D_Neu_FS_P N_WBC_SS_W D_Lym_FLSS_Area N_WBC_SS_CV
D_Mon_FS_W N_WBC_FL_P D_Eos_SS_P N_WBC_SS_W D_Eos_SS_P N_WBC_FS_P
D_Mon_SS_W N_WBC_SS_CV D_Mon_FL_P N_WBC_SS_P D_Neu_SS_CV N_WBC_SS_CV
D_Neu_FLSS_Area N_WBC_FLSS_Area D_Eos_FS_P N_WBC_SS_P D_Neu_SS_W N_WBC_FS_P
D_Neu_FL_W N_WBC_FS_W D_Eos_FS_W N_WBC_SS_P D_Neu_FS_CV N_WBC_SS_CV
D_Neu_FLFS_Area N_WBC_FLSS_Area D_Eos_FL_W N_WBC_SS_W D_Mon_FS_W N_WBC_SSFS_Area
D_Mon_FS_P N_WBC_FLSS_Area D_Neu_SS_P N_WBC_SS_P D_Neu_FS_W N_WBC_SS_CV
D_Mon_FS_P N_WBC_FL_P D_Neu_SS_W N_WBC_FS_CV D_Neu_FL_CV N_WBC_FS_P
D_Mon_FL_W N_WBC_FS_W D_Eos_SS_W N_WBC_SS_W D_Eos_FS_P N_WBC_SSFS_Area
D_Neu_SS_P N_WBC_FLSS_Area D_Eos_FS_W N_WBC_SS_W D_Lym_FLSS_Area N_WBC_FS_P
D_Neu_FL_P N_WBC_FL_P D_Neu_FL_W N_WBC_SS_P D_Eos_FS_P N_WBC_SS_CV
D_Neu_FL_W N_WBC_FS_CV D_Mon_SS_P N_WBC_FL_W D_Neu_FS_P N_NEU_FL_W
D_Mon_SS_W N_WBC_SSFS_Area D_Mon_SS_W N_NEU_FL_W D_Mon_SS_P N_NEU_FS_CV
D_Mon_SS_W N_WBC_SS_P D_Mon_SS_W N_NEU_FL_P D_Neu_FS_W N_NEU_FL_W
D_Neu_SS_W N_WBC_FL_P D_Mon_SS_W N_NEU_FLFS_Area D_Neu_FLFS_Area N_NEU_FL_W
D_Neu_FL_P N_WBC_FS_W D_Mon_SS_W N_NEU_FLSS_Area D_Neu_SS_CV N_NEU_FL_P
D_Lym_FLSS_Area N_WBC_FLFS_Area D_Neu_FLSS_Area N_NEU_FL_P D_Mon_SS_P N_WBC_FS_W
D_Neu_FL_CV N_WBC_FLSS_Area D_Neu_FL_W N_NEU_FL_W D_Neu_FL_P N_NEU_SSFS_Area
D_Neu_FLSS_Area N_WBC_FLFS_Area D_Mon_SS_W N_NEU_FS_W D_Mon_SS_P N_NEU_SS_W
D_Neu_FS_W N_WBC_FL_P D_Neu_FL_P N_NEU_FL_W D_Mon_FS_P N_NEU_FL_P
D_Mon_FS_W N_WBC_FLSS_Area D_Neu_FLFS_Area N_NEU_FL_P D_Mon_SS_P N_WBC_FLFS_Area
D_Neu_FS_CV N_WBC_FL_P D_Mon_SS_W N_NEU_FS_CV D_Neu_FLSS_Area N_NEU_FL_CV
D_Mon_FL_P N_WBC_FL_P D_Mon_SS_W N_NEU_SS_W D_Neu_FS_W N_NEU_FL_P
D_Neu_SS_W N_WBC_FLSS_Area D_Mon_SS_W N_NEU_SS_CV D_Mon_FL_P N_NEU_FL_P
D_Neu_FL_P N_WBC_SS_W D_Neu_FL_W N_NEU_FLFS_Area D_Mon_SS_P N_WBC_SS_CV
D_Neu_FS_P N_WBC_FLSS_Area D_Neu_FL_P N_NEU_FLFS_Area D_Mon_FL_W N_NEU_SSFS_Area
D_Mon_FL_P N_WBC_FS_W D_Neu_FL_W N_NEU_FL_P D_Neu_FS_P N_NEU_FL_P
D_Neu_FL_W N_WBC_SS_W D_Mon_SS_P N_NEU_FL_W D_Neu_FL_CV N_NEU_FLFS_Area
D_Mon_FS_P N_WBC_FLFS_Area D_Mon_SS_W N_NEU_SSFS_Area D_Mon_FL_W N_NEU_SS_P
D_Neu_FLFS_Area N_WBC_FLFS_Area D_Neu_FL_CV N_NEU_FL_P D_Mon_FS_W N_NEU_FLSS_Area
D_Eos_SS_W N_WBC_FLSS_Area D_Mon_FL_W N_NEU_FL_W D_Mon_FS_W N_NEU_FLFS_Area
D_Mon_FL_W N_WBC_FS_CV D_Mon_FL_W N_NEU_FL_P D_Neu_SS_W N_NEU_FLFS_Area
D_Neu_FL_P N_WBC_FS_CV D_Mon_SS_P N_WBC_FL_P D_Mon_FL_P N_NEU_FS_W
D_Eos_FL_P N_WBC_FLSS_Area D_Mon_FL_W N_NEU_FLFS_Area D_Neu_SS_P N_NEU_FLFS_Area
D_Neu_SS_P N_WBC_FLFS_Area D_Neu_FL_P N_NEU_FS_W D_Neu_FLFS_Area N_NEU_FL_CV
D_Neu_FS_CV N_WBC_FLSS_Area D_Neu_FL_P N_NEU_FS_CV D_Mon_FS_P N_NEU_FLFS_Area
D_Eos_FS_W N_WBC_FLSS_Area D_Neu_FL_W N_NEU_FLSS_Area D_Mon_FL_P N_NEU_FLSS_Area
D_Neu_FS_W N_WBC_FLSS_Area D_Neu_FL_P N_NEU_FLSS_Area D_Neu_FLSS_Area N_NEU_FLFS_Area
D_Mon_SS_W N_WBC_FL_CV D_Mon_SS_W N_NEU_SS_P D_Mon_SS_P N_NEU_SS_CV
D_Neu_SS_CV N_WBC_FLSS_Area D_Neu_FL_W N_NEU_FS_W D_Neu_FLSS_Area N_NEU_SS_P
D_Mon_SS_W N_WBC_FS_P D_Mon_SS_P N_NEU_FL_P D_Mon_SS_P N_WBC_FS_CV
D_Eos_FS_P N_WBC_FLSS_Area D_Mon_FS_W N_NEU_FL_W D_Neu_FLSS_Area N_NEU_SS_W
D_Lym_FLFS_Area N_WBC_FL_P D_Mon_SS_W N_NEU_FL_CV D_Neu_SS_W N_NEU_FLSS_Area
D_Neu_FL_CV N_WBC_FLFS_Area D_Mon_FS_W N_NEU_FL_P D_Neu_SS_CV N_NEU_FLFS_Area
D_Neu_SS_W N_WBC_FLFS_Area D_Neu_FL_W N_NEU_SS_W D_Neu_FL_CV N_NEU_FLSS_Area
D_Neu_FL_P N_WBC_SS_CV D_Mon_FL_W N_NEU_FS_W D_Neu_SS_P N_NEU_FLSS_Area
D_Eos_SS_P N_WBC_FLSS_Area D_Neu_FL_W N_NEU_FS_CV D_Neu_FLSS_Area N_NEU_FS_W
D_Lym_FLSS_Area N_WBC_FL_P D_Mon_SS_P N_NEU_FLFS_Area D_Neu_FLFS_Area N_NEU_FLFS_Area
D_Neu_FS_P N_WBC_FL_P D_Mon_FL_W N_NEU_FLSS_Area D_Neu_FLSS_Area N_NEU_FLSS_Area
D_Neu_SS_CV N_WBC_FL_P D_Neu_SS_P N_NEU_FL_W D_Neu_FLFS_Area N_NEU_SS_P
D_Mon_FS_W N_WBC_FLFS_Area D_Neu_SS_W N_NEU_FL_W D_Neu_FL_W N_NEU_SS_P
D_Neu_FLFS_Area N_WBC_SS_W D_Neu_FL_P N_NEU_SS_W D_Mon_FS_P N_NEU_FLSS_Area
D_Neu_FS_CV N_WBC_FLFS_Area D_Neu_FL_CV N_NEU_FL_W D_Neu_FS_P N_NEU_FLFS_Area
D_Mon_FL_W N_WBC_SS_P D_Mon_SS_W N_NEU_FS_P D_Neu_SS_W N_NEU_FS_W
D_Eos_SS_W N_WBC_FLFS_Area D_Mon_SS_P N_NEU_FLSS_Area D_Mon_FL_W N_NEU_SS_CV
D_Eos_FL_W N_WBC_FLSS_Area D_Neu_FL_P N_NEU_SS_CV D_Neu_SS_P N_NEU_FS_W
D_Neu_FS_P N_WBC_FLFS_Area D_Mon_FL_P N_NEU_FL_W D_Neu_FL_CV N_NEU_FS_W
D_Neu_FLFS_Area N_WBC_SS_P D_Mon_FL_W N_NEU_FS_CV D_Neu_FS_CV N_NEU_FLFS_Area
D_Eos_FS_W N_WBC_FLFS_Area D_Neu_FLSS_Area N_NEU_FL_W D_Neu_FS_W N_NEU_FLFS_Area
D_Eos_FL_P N_WBC_FLFS_Area D_Mon_SS_P N_WBC_FLSS_Area D_Neu_FLSS_Area N_NEU_FS_CV
D_Mon_FL_W N_WBC_SS_W D_Mon_FS_P N_NEU_FL_W D_Neu_FL_W N_NEU_FS_P
D_Neu_FL_W N_WBC_SSFS_Area D_Neu_FL_W N_NEU_SS_CV D_Neu_FLFS_Area N_NEU_SS_W
D_Lym_FLFS_Area N_WBC_FS_W D_Neu_SS_W N_NEU_FL_P D_Mon_FL_W N_NEU_FS_P
D_Neu_FS_W N_WBC_FLFS_Area D_Neu_FL_P N_NEU_FL_P D_Mon_FL_P N_NEU_FS_CV
D_Lym_FLFS_Area N_WBC_FS_CV D_Mon_SS_P N_WBC_SS_W D_Mon_FS_W N_NEU_FS_W
D_Neu_FLSS_Area N_WBC_SS_W D_Mon_SS_P N_NEU_FS_W D_Mon_FS_P N_NEU_FS_W
D_Neu_FLSS_Area N_WBC_SS_P D_Neu_SS_CV N_NEU_FL_W D_Mon_FS_W N_NEU_SS_W
D_Neu_SS_CV N_WBC_FLFS_Area D_Neu_SS_P N_NEU_FL_P D_Mon_SS_P N_NEU_SSFS_Area
D_Neu_FL_W N_WBC_SS_CV D_Mon_FL_P N_NEU_FLFS_Area D_Neu_SS_CV N_NEU_FLSS_Area
D_Neu_FLSS_Area N_WBC_FS_W D_Neu_FS_CV N_NEU_FL_P D_Neu_FLFS_Area N_NEU_FLSS_Area
D_Eos_FS_P N_WBC_FLFS_Area D_Mon_FL_W N_NEU_SS_W D_Neu_FLSS_Area N_NEU_FS_P
D_Eos_SS_P N_WBC_FLFS_Area D_Neu_FL_W N_NEU_SSFS_Area D_Neu_FS_CV N_NEU_FL_W
在此优选可以采用D_Mon_SS_W与N_WBC_FL_W的组合来计算用于普通感染与重症感染的鉴别的感染标志参数。
在感染病情监控的应用场景中,受试者为感染患者(即,患有感染性炎症的患者)、尤其是患有重症感染或患有脓毒症的患者,例如,受试者来自重症监护室的重症感染或患有脓毒症的患者。脓毒症属于严重的感染性疾病,其发生率高,病死率高。脓毒症患者病情波动较大,需要日常监护,防止患者病情加重但又没有及时处理。因此,临床症状结合实验室检查结果判断脓毒症患者病情进展情况和治疗效果十分重要。
为此,处理器140可以被配置为根据感染标志参数监控受试者的感染病情发展。
在一些实施例中,处理器140可以被进一步配置为通过如下方式监控受试者的感染病情发展,即:
获取通过多次检测、尤其是至少三次检测在不同时间点来自受试者的血液样本而获得的所述感染标志参数的值;并且
根据通过所述多次的检测而获得的所述感染标志参数的值的变化趋势来判断所述受试者病情是否好转。
在具体的示例中,处理器140可以被进一步配置为:当通过所述多次的检测而获得的所述感染标志参数的值逐渐趋势性减低时,输出指示所述受试者病情好转的提示信息;而当通过所述多次的检测而获得的所述感染标志参数的值逐渐趋势性增加时,输出指示所述受试者病情加重的提示信息。这里的多次的检测,可以连续每天检测,也可以是有规律地间隔多次的检测。
例如,获取患者在确诊脓毒症之后连续多日、例如7日的感染标志参数值,当这些感染标志参数值呈现降低趋势时,认为患者病情好转,因此给出病情好转的提示。
在另一些实施例中,处理器140还可以被进一步配置为通过如下方式提示受试者的病情发展:
获取通过对来自受试者的当前血液样本的当前检测而获得的所述感染标志参数的当前值并且获取通过对来自受试者的前一次血液样本的前一次检测而获得的所述感染标志参数的在先值,例如前一天的血常规检测中获得的先值;并且
根据所述感染标志参数的在先值与第一阈值的比较以及所述感染标志参数的在先值与所述感染标志参数的当前值的比较来监控受试者的病情发展。
在一个具体的示例中,如图11所示,处理器140可以被进一步配置为当感染标志参数的在先值大于等于第一阈值时:
如果感染标志参数的当前值(即图11中的本次结果)大于感染标志参数的在先值(即图11中的前一次结果)且两者的差值大于第二阈值,则输出指示受试者病情加重的提示信息;
如果感染标志参数的当前值小于感染标志参数的在先值且两者的差值大于第二阈值,并且感染标志参数的当前值小于第一阈值,则输出指示受试者病情好转并且感染程度下降的提示信息;
如果感染标志参数的当前值小于感染标志参数的在先值且两者的差值大于第二阈值,但感染标志参数的当前值大于等于第一阈值,则输出指示受试者病情好转但感染仍然较重的提示信息或者不输出任何提示信息;以及
如果感染标志参数的当前值与感染标志参数的在先值的差值不大于第二阈值,则输出指示受试者病情无明显好转且感染仍然较重的提示信息或者不输出任何提示信息。
进一步地,如图11所示,处理器140可以被配置为:当感染标志参数的在先值小于第一阈值时:
如果感染标志参数的当前值小于感染标志参数的在先值且两者的差值大于第二阈值,则输出指示受试者病情好转并且感染程度下降的提示信息;
如果感染标志参数的当前值大于感染标志参数的在先值且两者的差值大于第二阈值,并且感染标志参数的当前值大于第一阈值,则输出指示受试者病情加重并且感染较重的提示信息;
如果感染标志参数的当前值大于感染标志参数的在先值且两者的差值大于第二阈值,但感染标志参数的当前值小于第一阈值,则输出指示受试者病情波动或感染可能加重的提示信息或者不输出提示信息;以及
如果感染标志参数的当前值与感染标志参数的在先值的差值不大于第二阈值,则输出指示受试者感染未加重的提示信息或者不输出提示信息。
在图11所示的实施例中,当感染标志参数用于监控重症感染患者的病情发展时,第一阈值可以是用于判断受试者是否患重症感染的预设阈值。而当感染标志参数用于监控脓毒症患者的病情发展时,第一阈值可以是用于判断受试者是否患脓毒症的预设阈值。
在此,例如优选采用D_Mon_SS_W与N_WBC_FL_W的组合计算感染标志参数,以用于感染病情监控。
在脓毒症预后分析的应用场景中,受试者为接受了治疗的脓毒症患者。对此,处理器140可以被进一步配置为,根据感染标志参数判断受试者的脓毒症预后是否良好。例如,当感染标志参数的值大于预设阈值时,判断受试者的脓毒症预后良好。该预设阈值可以根据具体的参数组合和血液细胞分析仪来确定。
在此,例如优选采用D_Mon_SS_W与N_WBC_FL_W的组合计算用于判断受试者的脓毒症预后是否良好的感染标志参数。
感染性疾病可分为细菌感染、病毒感染、真菌感染等不同感染类型,其中细菌感染和病毒感染最为常见。虽然两种感染的临床症状大致相同,但治疗方法完全不一样,所以需要明确感染的类型才能选择正确的治疗方法。为此,处理器140可以被进一步配置为,根据所述感染标志参数判断所述受试者的感染类型是病毒感染还是细菌感染。
在此,例如可以通过在表4中列出的各参数组合计算感染标志参数,以用于细菌感染和病毒感染的鉴别。
表4用于细菌感染和病毒感染的鉴别的参数组合
第一白细胞参数 第二白细胞参数 第一白细胞参数 第二白细胞参数 第一白细胞参数 第二白细胞参数
D_Lym_FLFS_Area N_WBC_FLFS_Area D_Mon_FL_W N_WBC_FS_W D_Lym_FS_P N_WBC_FL_W
D_Lym_FLFS_Area N_WBC_FLSS_Area D_Neu_SS_P N_WBC_FL_W D_Neu_SS_W N_WBC_FLFS_Area
D_Neu_FLSS_Area N_WBC_FS_P D_Neu_SS_P N_WBC_FS_W D_Mon_SS_P N_WBC_FS_W
D_Neu_FLSS_Area N_WBC_FL_P D_Neu_FLFS_Area N_WBC_FLFS_Area D_Mon_FL_P N_WBC_FL_W
D_Neu_FLSS_Area N_WBC_FS_W D_Mon_FL_P N_WBC_FL_P D_Lym_FL_CV N_WBC_FL_W
D_Lym_FLFS_Area N_WBC_FS_W D_Neu_FL_P N_WBC_FL_P D_Neu_FS_CV N_WBC_FS_W
D_Neu_FLFS_Area N_WBC_FL_P D_Mon_SS_W N_WBC_FL_W D_Neu_FL_CV N_WBC_FLFS_Area
D_Neu_FLSS_Area N_WBC_FL_W D_Neu_FL_P N_WBC_FS_W D_Lym_SS_CV N_WBC_FS_W
D_Neu_FLSS_Area N_WBC_FS_CV D_Neu_FS_CV N_WBC_FL_P D_Lym_FS_P N_WBC_FS_W
D_Lym_FLFS_Area N_WBC_SSFS_Area D_Lym_FS_CV N_WBC_FL_P D_Lym_SS_W N_WBC_FS_W
D_Neu_FLSS_Area N_WBC_SS_W D_Neu_FS_P N_WBC_FL_P D_Mon_FS_P N_WBC_FS_W
D_Neu_FLSS_Area N_WBC_SS_P D_Neu_FL_W N_WBC_FL_W D_Lym_FL_W N_WBC_FS_W
D_Neu_FLFS_Area N_WBC_FS_P D_Neu_SS_W N_WBC_FL_W D_Neu_FL_P N_WBC_FLFS_Area
D_Neu_FLSS_Area N_WBC_FLSS_Area D_Neu_FS_W N_WBC_FL_P D_Lym_FL_P N_WBC_FS_W
D_Neu_FLSS_Area N_WBC_SS_CV D_Lym_SS_CV N_WBC_FL_P D_Neu_FS_P N_WBC_FS_W
D_Neu_FLSS_Area N_WBC_FLFS_Area D_Neu_FL_CV N_WBC_FL_W D_Neu_SS_P N_WBC_FLSS_Area
D_Neu_FLSS_Area N_WBC_SSFS_Area D_Lym_SS_W N_WBC_FL_P D_Neu_FS_W N_WBC_FS_W
D_Neu_FL_CV N_WBC_FS_P D_Neu_SS_CV N_WBC_FL_P D_Lym_FS_CV N_WBC_FS_W
D_Neu_FLSS_Area N_WBC_FL_CV D_Mon_FS_CV N_WBC_FL_P D_Lym_SS_P N_WBC_FS_W
D_Lym_FLFS_Area N_WBC_FL_W D_Lym_FS_W N_WBC_FL_P D_Mon_FS_W N_WBC_FS_W
D_Lym_FLFS_Area N_WBC_FS_CV D_Lym_FL_W N_WBC_FL_P D_Mon_SS_CV N_WBC_SS_P
D_Neu_FLFS_Area N_WBC_FL_W D_Mon_FS_W N_WBC_FL_P D_Lym_FS_CV N_WBC_FL_W
D_Mon_SS_CV N_WBC_FS_P D_Neu_SS_CV N_WBC_FS_W D_Mon_FS_CV N_WBC_FL_W
D_Lym_FS_P N_WBC_FS_P D_Mon_FS_P N_WBC_FL_P D_Mon_FS_W N_WBC_FL_W
D_Neu_FL_W N_WBC_FS_P D_Mon_SS_P N_WBC_FL_P D_Lym_FS_W N_WBC_FS_W
D_Mon_SS_W N_WBC_FS_P D_Lym_FLFS_Area N_WBC_SS_CV D_Neu_FS_CV N_WBC_FL_W
D_Lym_FLSS_Area N_WBC_FLFS_Area D_Mon_SS_W N_WBC_SSFS_Area D_Mon_FS_CV N_WBC_FS_W
D_Neu_FLFS_Area N_WBC_FS_W D_Neu_FL_W N_WBC_SS_W D_Mon_FL_P N_WBC_FS_W
D_Mon_SS_W N_WBC_FLFS_Area D_Mon_FL_W N_WBC_FL_W D_Neu_FL_P N_WBC_FLSS_Area
D_Lym_FL_P N_WBC_FL_P D_Neu_SS_W N_WBC_FLSS_Area D_Neu_SS_P N_WBC_FLFS_Area
D_Mon_FL_CV N_WBC_FS_P D_Lym_FL_CV N_WBC_FS_W D_Mon_SS_W N_WBC_SS_P
D_Lym_FLSS_Area N_WBC_FLSS_Area D_Neu_FLFS_Area N_WBC_SS_W D_Neu_SS_CV N_WBC_FL_W
D_Mon_SS_CV N_WBC_FL_P D_Mon_FL_W N_WBC_FLFS_Area D_Neu_FL_P N_WBC_FL_W
D_Mon_SS_CV N_WBC_FLFS_Area D_Neu_SS_P N_WBC_FL_P D_Mon_FL_CV N_WBC_SS_P
D_Lym_FLSS_Area N_WBC_FS_P D_Lym_FLFS_Area N_WBC_SS_P D_Lym_FS_W N_WBC_FL_W
D_Neu_FS_P N_WBC_FS_P D_Mon_SS_CV N_WBC_FS_W D_Neu_FS_P N_WBC_FL_W
D_Lym_FLFS_Area N_WBC_FL_P D_Mon_SS_W N_WBC_FL_P D_Neu_FL_W N_WBC_SS_P
D_Neu_FL_W N_WBC_FS_W D_Neu_FLFS_Area N_WBC_FL_CV D_Neu_FL_CV N_WBC_FLSS_Area
D_Lym_FL_P N_WBC_FS_P D_Lym_FS_W N_WBC_FS_P D_Mon_SS_P N_WBC_FL_W
D_Lym_FLFS_Area N_WBC_FS_P D_Mon_FL_CV N_WBC_FLFS_Area D_Neu_FS_W N_WBC_FL_W
D_Lym_FS_P N_WBC_FL_P D_Neu_SS_W N_WBC_FS_P D_Lym_SS_P N_WBC_FL_W
D_Mon_FL_CV N_WBC_FL_P D_Lym_SS_CV N_WBC_FS_P D_Mon_FS_P N_WBC_FL_W
D_Mon_FL_W N_WBC_FS_P D_Lym_FS_CV N_WBC_FS_P D_Mon_SS_W N_WBC_SS_W
D_Neu_FS_CV N_WBC_FS_P D_Lym_FL_W N_WBC_FS_P D_Lym_FL_W N_WBC_FL_W
D_Mon_SS_W N_WBC_FLSS_Area D_Neu_FL_P N_WBC_FS_P D_Lym_SS_CV N_WBC_FL_W
D_Mon_SS_CV N_WBC_FL_W D_Mon_SS_P N_WBC_FS_P D_Neu_SS_CV N_WBC_FLFS_Area
D_Lym_SS_P N_WBC_FS_P D_Mon_FL_P N_WBC_FS_P D_Neu_FL_W N_WBC_SS_CV
D_Lym_FLSS_Area N_WBC_FS_W D_Neu_FL_CV N_WBC_FS_W D_Neu_SS_CV N_WBC_FLSS_Area
D_Neu_FL_W N_WBC_FLFS_Area D_Neu_SS_CV N_WBC_FS_P D_Neu_FL_W N_WBC_SSFS_Area
D_Neu_FLFS_Area N_WBC_SS_P D_Mon_FS_P N_WBC_FS_P D_Lym_FLSS_Area N_WBC_SS_W
D_Lym_FLSS_Area N_WBC_FL_P D_Mon_FS_CV N_WBC_FS_P D_Lym_FS_CV N_WBC_FLFS_Area
D_Lym_FLSS_Area N_WBC_FL_W D_Mon_FS_W N_WBC_FS_P D_Mon_FS_W N_WBC_FLFS_Area
D_Mon_SS_W N_WBC_FS_W D_Neu_FS_W N_WBC_FS_P D_Lym_SS_W N_WBC_FL_W
D_Mon_FL_CV N_WBC_FL_W D_Lym_SS_P N_WBC_FL_P D_Mon_SS_W N_WBC_FS_CV
D_Neu_FL_W N_WBC_FLSS_Area D_Neu_FLFS_Area N_WBC_SS_CV D_Lym_FS_W N_WBC_FLFS_Area
D_Lym_FL_CV N_WBC_FS_P D_Neu_SS_W N_WBC_FL_P D_Mon_FS_CV N_WBC_FLFS_Area
D_Lym_FLFS_Area N_WBC_SS_W D_Mon_FL_CV N_WBC_FS_W D_Mon_SS_W N_WBC_FL_CV
D_Neu_SS_P N_WBC_FS_P D_Neu_FLFS_Area N_WBC_FS_CV D_Lym_FLSS_Area N_WBC_SSFS_Area
D_Lym_SS_W N_WBC_FS_P D_Lym_FLSS_Area N_WBC_SS_P D_Lym_FL_P N_WBC_FL_W
D_Neu_FLFS_Area N_WBC_SSFS_Area D_Mon_FL_W N_WBC_FLSS_Area D_Lym_FL_CV N_WBC_FL_P
D_Neu_FL_W N_WBC_FL_P D_Mon_FL_W N_WBC_FL_P D_Neu_SS_W N_WBC_FS_W
D_Mon_SS_CV N_WBC_FLSS_Area D_Neu_FLFS_Area N_WBC_FLSS_Area D_Mon_FL_CV N_WBC_FLSS_Area
D_Neu_FL_CV N_WBC_FL_P        
在此优选可以采用D_Mon_SS_W与N_WBC_FL_W的组合来计算用于细菌感染和病毒感染的鉴别的感染标志参数。
此外,炎症分为由病原微生物感染所致的感染性炎症,和由物理因素、化学因素或组织坏死所致的非感染性炎症。两种炎症所表现的临床症状大致相同,都会出现发红和发热等症状,但两种炎症的治疗方式不完全一样,所以临床需要明确患者的炎症反应是由何种因素引起,才能对症治疗。
为此,处理器140可以被进一步配置为,根据感染标志参数判断受试者是患有患感染性炎症还是非感染性炎症。例如,当感染标志参数的值大于预设阈值时,判断受试者患有患感染性炎症。该预设阈值可以根据具体的参数组合和血液细胞分析仪来确定。
在此,例如可以通过在表5中列出的各参数组合计算感染标志参数,以用于感染性炎症和非感染性炎症的鉴别。
表5用于感染性炎症和非感染性炎症的鉴别的参数组合
第一白细胞参数 第二白细胞参数 第一白细胞参数 第二白细胞参数 第一白细胞参数 第二白细胞参数
D_Mon_SS_W N_WBC_FL_W D_Mon_SS_P N_WBC_FL_W D_Mon_FS_P N_WBC_FL_W
D_Neu_FL_W N_WBC_FL_W D_Mon_SS_W N_WBC_SS_CV D_Neu_FLFS_Area N_WBC_FL_W
D_Mon_SS_W N_WBC_SS_W D_Lym_FLSS_Area N_WBC_FL_W D_Mon_FL_P N_WBC_FL_W
D_Mon_FS_W N_WBC_FL_W D_Neu_SS_P N_WBC_FL_W D_Mon_SS_W N_WBC_FL_P
D_Neu_FL_CV N_WBC_FL_W D_Neu_SS_CV N_WBC_FL_W D_Lym_FLFS_Area N_WBC_FL_W
D_Neu_FLSS_Area N_WBC_FL_W D_Mon_SS_W N_WBC_FS_W D_Neu_FS_CV N_WBC_FL_W
D_Neu_SS_W N_WBC_FL_W D_Neu_FL_P N_WBC_FL_W D_Neu_FS_W N_WBC_FL_W
D_Mon_FL_W N_WBC_FL_W D_Mon_SS_W N_WBC_FS_CV D_Neu_FS_P N_WBC_FL_W
在此优选可以采用D_Mon_SS_W与N_WBC_FL_W的组合来计算用于感染性炎症和非感染性炎症的鉴别的感染标志参数。
医生在对患者进行问诊和查体后,一般会有一个或者几个初步的疾病诊断。然后通过实验室检测,影像学检查等手段进行鉴别诊断或者疾病确诊。因此,可以说医生是带着目的去开化验检查单。换句话说,医生开单的时候就已经明确了参数应该应用在哪个场景。举个例子:一个普通门诊发热患者就诊,无器官损伤症状,医生初步判断是普通感染,而不是重症感染或者脓毒症。但具体开什么药物,需要明确是病毒感染还是细菌感染,所以开了血常规。结果出来,会关注参数是否大于“细菌感染VS病毒感染”的阈值,而不是 “脓毒症诊断”的阈值。所以,本申请中的输出的感染标志参数,在临床上作为医生的参考,并非诊断目的。
接下来描述一些用于进一步确保基于感染标志参数的诊断或提示可靠的实施例,但应理解,本申请实施例不限于此。
为了避免用于计算感染标志参数的第一白细胞参数和第二白细胞参数本身对诊断或提示可靠性造成干扰,在一些实施例中,处理器140可以被进一步配置为,当第一目标粒子团和/或第二目标粒子团的预设特征参数满足第四预设条件时,不输出所述感染标志参数的值(即,屏蔽所述感染标志参数的值),或者输出所述感染标志参数的值并且同时输出指示该感染标志参数的值不可靠的提示信息。
当处理器140被进一步配置为基于所述感染标志参数输出指示所述受试者的感染状态的提示信息时,如果第一目标粒子团和/或第二目标粒子团的预设特征参数满足第四预设条件,则处理器140不输出指示所述受试者的感染状态的提示信息,或者输出指示受试者的感染状态的提示信息并且输出该提示信息不可靠的附加信息。
在一些具体的示例中,处理器140可以被配置为,当第一目标粒子团和/或第二目标粒子团的粒子总数小于预设阈值时,不输出所述感染标志参数的值,或者输出所述感染标志参数的值并且同时输出指示该感染标志参数的值不可靠的提示信息。
也就是说,当目标粒子团的粒子总数小于预设阈值时,即目标粒子团的粒子较少,粒子表征的信息量有限,此时感染标志参数的计算结果可能不可靠。例如,如图12(a)所示,第一测定试样中的白细胞团的粒子总数太低,可能导致通过该白细胞团的第一白细胞参数计算的感染标志参数不可靠。再例如,如图13(a)所示,第二测定试样中的白细胞团的粒子总数太低,可能导致通过该白细胞团的第二白细胞参数计算的感染标志参数不可靠。
在此,例如可以通过第一光学信息判断第一目标粒子团的预设特征参数是否异常,例如第一目标粒子团的粒子总数是否低于预设阈值。同理,例如可以通过第二光学信息判断第二目标粒子团的预设特征参数是否异常,例如第二目标粒子团的粒子总数是否低于预设阈值。
在另一些示例中,处理器140可以被配置为,当第一目标粒子团和/或第二目标粒子团与其他粒子团存在交叠时,不输出所述感染标志参数的值,或者输出所述感染标志参数的值并且同时输出指示该感染标志参数的值不可靠的提示信息。
例如,如图12(b)所示,第一测定试样中的单核细胞团与淋巴细胞团存在交叠,可能导致通过单核细胞团或淋巴细胞团的第一白细胞参数计算感染标志参数不可靠。再例如,如图13(b)所示,第二测定试样中的中性粒细胞团与其他粒子交叠,可能导致通过该中性粒细胞团的第二白细胞参数计算的感染标志参数不可靠。在此,例如可以通过第一光学信息判断第一目标粒子团与其他粒子团是否存在交叠。同理,例如可以通过第二光学信息判断第二目标粒子团与其他粒子团是否存在交叠。
类似地,当处理器140被进一步配置为基于所述感染标志参数输出指示所述受试者的感染状态的提示信息时,如果第一目标粒子团和/或第二目标粒子团的粒子总数小于预设阈值,和/或如果第一目标粒子团和/或第二目标粒子团与其他粒子团存在交叠,则处理器140不输出指示所述受试者的感染状态的提示信息,或者输出指示受试者的感染状态的提示信息并且输出该提示信息不可靠的附加信息。
此外,受试者的疾病状况以及受试者血液中的异常细胞也可能影响感染标志参数的诊断或提示效力。为此,处理器140可以被进一步配置为:根据受试者是否患有特定疾病和/或根据待测血液样本是否存在预设类型的异常细胞(例如原始细胞、异常淋巴细胞、幼稚粒细胞等)来确定所述感染标志参数是否可靠。
在一些具体的示例中,处理器140可以被配置为:当受试者患有血液疾病或者待测血液样本中存在异常细胞、尤其是原始细胞时,不输出所述感染标志参数的值,或者输出所述感染标志参数的值并且同时输出指示该感染标志参数的值不可靠的提示信息。可以理解地,患有血液疾病的受试者的血象异常,导致基于该感染标志参数的诊断或提示不可靠。
处理器140例如可以根据受试者的身份信息来获取该受试者是否患有血液疾病。
例如,处理器140可以被配置为根据第一光学信息和/或第二光学信息判断待测血液样本中是否存在异常细胞、尤其是原始细胞。
在一些实施例中,处理器140还可以被配置为在计算感染标志参数之前对第一白细胞参数和第二白细胞参数进行数据处理、例如去噪声(杂质粒子)干扰(如图12(c)、13(c)所示)或取对数处理(如图14所示),以便更准确地计算的感染标志参数,例如避免不同仪器、不同试剂所引起的信号变化。
下面结合如下一些实施例对处理器140为每个感染标志参数组配置优先级的方式进行说明。
在一些实施例中,处理器140可以被进一步配置为:根据感染诊断效力、参数稳定性和参数局限性中的至少一种为每个感染标志参数组配置优先级。
在此优选地,处理器140可以被进一步配置为:至少根据所述感染诊断效力为每个感染标志参数组配置优先级。例如,处理器140可以仅根据感染诊断效力为每个感染标志参数组配置优先级;又例如,处理器140可以根据感染诊断效力和参数稳定性为每个感染标志参数组配置优先级;再例如,处理器140可以根据感染诊断效力、参数稳定性以及参数局限性为每个感染标志参数组配置优先级。
在一些实施例中,本申请的感染标志参数组可以用于多种感染状态的评估,例如基于所述感染标志参数对所述受试者进行脓毒症的早期预测、脓毒症的诊断、普通感染与重症感染的鉴别、感染病情监控、脓毒症的预后分析、细菌感染和病毒感染的鉴别、脓毒症的疗效评估或非感染性炎症和感染性炎症的鉴别。相应地,以普通感染与重症感染的鉴别场景为例,所述感染诊断效力包括针对普通感染与重症感染鉴别的诊断效力。例如,当本申请的感染标志参数组仅设置用于某一种感染状态评估、例如仅用于重症感染鉴别时,可以根据针对该感染状态评估、例如重症感染的鉴别的诊断效力为每个感染标志参数组配置优先级。
作为一些实现方式,处理器140可以被进一步配置为:按照每个感染标志参数组的ROC曲线与水平坐标轴围成的面积ROC_AUC为每个感染标志参数组配置优先级,其中,ROC_AUC越大,相应的感染标志参数组的优先级越高。其中,ROC曲线是以真阳性率为纵坐标、假阳性率为横坐标绘制的受试者工作特征曲线,每个感染标志参数组的ROC_AUC可以反映该感染标志参数组的感染诊断效力。
在一些实施例中,所述参数稳定性包括数值重复性、老化稳定性、温度稳定性和机间一致性中的至少一个。其中,数值重复性是指,在同一环境下使用同一仪器在短时间内对同一待测血液样本进行多次的重复检测时,所使用的感染标志参数组的数值的一致性;老 化稳定性是指,在同一环境下使用同一仪器在不同时间点对同一待测血液样本进行检测时,所使用的感染标志参数组的数值的稳定性;温度稳定性是指,在不同的温度环境下使用同一仪器对同一待测血液样本进行检测时,所使用的感染标志参数组的数值的稳定性;机间一致性是指,在同一环境下使用不同的仪器上对同一待测血液样本进行检测时,所使用的感染标志参数组的数值的一致性。
在一些示例中,若在同一环境下使用同一仪器在短时间内对同一待测血液样本进行多次的重复检测时,所使用的感染标志参数组的数值的一致性越高,即数值重复性越高,则该感染标志参数组的优先级越高。
备选或附加地,若在同一环境下使用同一仪器在不同时间点对同一待测血液样本进行检测时,所使用的感染标志参数组的数值的稳定性越高(即数值的波动程度越小),即老化稳定性越高,则该感染标志参数组的优先级越高。
备选或附加地,若在不同的温度环境下使用同一仪器对同一待测血液样本进行检测时,所使用的感染标志参数组的数值的稳定性越高(即数值的波动程度越小),即温度稳定性越高,则该感染标志参数组的优先级越高。
备选或附加地,在同一环境下使用不同的仪器上对同一待测血液样本进行检测时,所使用的感染标志参数组的数值的一致性越高,即机间一致性越高,则该感染标志参数组的优先级越高。
在一些实施例中,所述参数局限性是指感染标志参数所适用的受试者范围。在一些示例中,若感染标志参数组所适用的受试者范围越大,则说明该感染标志参数组的参数局限性越小,相应地,该感染标志参数组的优先级越高。
在一些实施例中,处理器140所获取的所述多个感染标志参数组的优先级是预先设置的,例如根据感染诊断效力、参数稳定性和参数局限性中的至少一个预先设置的。在此,处理器140可以根据该预先设置为每个感染标志参数组配置优先级。例如,可以将所述多个感染标志参数组的优先级预先存储在存储器中,处理器140可以从存储器调用所述多个感染标志参数组的优先级。
接着,结合如下一些实施例对处理器140计算感染标志参数组的可信度的方式进行进一步说明。
本申请的发明人经研究发现,受试者的血液样本中可能存在分类结果异常和/或异常细胞,从而导致所使用的感染标志参数组不可靠。因此,本申请提供的血液分析仪可以为获取的多个感染标志参数组计算其可信度,以便根据每个感染标志参数组的优先级和可信度从多个感染标志参数组中筛选出更可靠的感染标志参数组。
在一些实施例中,处理器140可以被配置为按照如下方式计算每个感染标志参数组的可信度:
根据用于获取感染标志参数组的至少一个目标粒子团的分类结果和/或根据待测血液样本中的异常细胞计算该感染标志参数组的可信度。
在一些实施例中,所述分类结果可以包括目标粒子团的计数值、目标粒子团与另一粒子团的计数值百分比、目标粒子团与其相邻粒子团的交叠程度(也可称为粘连程度)中的至少一个。例如,目标粒子团与其相邻粒子团的交叠程度可以由目标粒子团的重心与其相邻粒子团的重心之间的距离确定。例如,如果目标粒子团的粒子总数、即计数值小于预设阈值,即目标粒子团的粒子较少,粒子表征的信息量有限,此时通过该目标粒子团的相关 参数获得的感染标志参数组可能不可靠,因此该感染标志参数组的可信度较低。
接着,结合一些实施例对处理器140筛选感染标志参数组的方式进行进一步说明。
在本申请实施例中,处理器140可以被配置为,一次计算出所述多个感染标志参数组中的所有感染标志参数组的可信度,然后再根据所有感染标志参数组的优先级和可信度从其中选择至少一个感染标志参数组并输出其参数值。
在另一些实施例中,处理器140可以被配置为执行如下步骤以筛选感染标志参数组并输出其参数值:
所述处理器从所述第一光学信息计算所述第一测定试样中的至少一个第一目标粒子团的多个第一白细胞参数,从所述第二光学信息计算所述第二测定试样中的至少一个第二目标粒子团的多个第二白细胞参数;
基于所述多个第一白细胞参数和所述多个第二白细胞参数获取用于评估所述受试者的感染状态的多个感染标志参数组;
为所述多个感染标志参数组中的每个感染标志参数组配置优先级;
计算所述多个感染标志参数组中的每个感染标志参数组的可信度,根据所述多个感染标志参数组的优先级和可信度从所述多个感染标志参数组中选择至少一个感染标志参数组,用于获取所述感染标志参数;或者按照所述多个感染标志参数组的优先级,依次计算所述多个感染标志参数组的可信度并判断该可信度是否达到相应的可信度阈值,当当前感染标志参数组的可信度达到相应的可信度阈值时,基于该感染标志参数组获取所述感染标志参数并且停止计算和判断。
在一些实施例中,处理器140可以被进一步配置为:当所选择的感染标志参数组的参数值大于感染阳性阈值时,输出报警提示。
在此,例如也可以对各个感染标志参数组做归一化处理,确保各个感染标志参数的感染阳性阈值一致。
在另一些实施例中,处理器140还可以被配置为:计算所述多个感染标志参数组中的每个感染标志参数组的可信度,并且判断每个感染标志参数组的可信度是否达到相应的可信度阈值;
将所述多个感染标志参数组中可信度达到相应的可信度阈值的感染标志参数组作为候选感染标志参数组;
根据所述候选感染标志参数组的优先级从所述候选感染标志参数组中选择至少一个候选感染标志参数组、优选选择优先级最高的感染标志参数组,用于获取所述感染标志参数。
在一些实施例中,所述处理器可以被进一步配置为:所述处理器从所述第一光学信息计算所述第一测定试样中的至少一个第一目标粒子团的多个第一白细胞参数,从所述第二光学信息计算所述第二测定试样中的至少一个第二目标粒子团的多个第二白细胞参数,
基于所述多个第一白细胞参数和所述多个第二白细胞参数获取用于评估所述受试者的感染状态的多个感染标志参数组,
计算所述多个感染标志参数组中的每个感染标志参数组的可信度,根据所述多个感染标志参数组的可信度从所述多个感染标志参数组中选择至少一个感染标志参数组,用于获取所述感染标志参数。
在一些实施例中,所述处理器可以被进一步配置为:
对于每个感染标志参数组,根据用于获取该感染标志参数组的至少一个目标粒子团的分类结果和/或根据所述待测血液样本中的异常细胞计算该感染标志参数组的可信度。
所述分类结果例如可以包括目标粒子团的计数值、目标粒子团与另一粒子团的计数值百分比、目标粒子团与其相邻粒子团的交叠程度中的至少一个。
进一步地,所述处理器被进一步配置为:
当所选择的感染标志参数组的参数值大于感染阳性阈值时,输出报警提示。
在另一些实施例中,处理器140还可以被配置为:所述处理器根据所述第一光学信息和所述第二光学信息判断所述待测血液样本是否存在影响感染状态评估的异常;
当判断所述待测血液样本存在影响感染状态评估的异常时,分别从所述第一光学信息获取与所述异常匹配的至少一个第一目标粒子团的至少一个第一白细胞参数,从所述第二光学信息获取与所述异常匹配的至少一个第二目标粒子团的至少一个第二白细胞参数,
基于所述至少一个第一白细胞参数和所述至少一个第二白细胞参数获得所述感染标志参数。
在一个示例中,若判断待测血液样本中存在影响感染状态评估的分类结果异常、例如待测血液样本中单核细胞团与中性粒细胞团存在交叠时,则可以从光学信息获取除单核细胞团和中性粒细胞团之外的其他细胞团(例如淋巴细胞团)的多个参数,并从其他细胞团的多个参数中获取用于评估受试者的感染状态的感染标志参数。
在另一个示例中,若判断待测血液样本中存在影响感染状态评估的异常细胞、例如原始细胞时,则可以从光学信息获取除了受原始细胞影响的细胞团之外的其他细胞团的多个参数,并从其他细胞团的多个参数中获取用于评估受试者的感染状态的感染标志参数。
接着,结合一些实施例对处理器140控制重测的方式进行进一步说明。
在一些实施例中,所述处理器可以被进一步配置为,在从所述第一光学信息计算所述第一测定试样中的至少一个第一目标粒子团的至少一个第一白细胞参数,和从所述第二光学信息计算所述第二测定试样中的至少一个第二目标粒子团的至少一个第二白细胞参数之前,基于所述第一光学信息和所述第二光学信息获得所述第一测定试样和所述第二测定试样的白细胞计数,并且当所述白细胞计数小于预设阈值时输出对所述受试者的血液样本进行重新测定的重测指令,其中,基于所述重测指令的测定的样本测定量大于用于获取所述光学信息的测定的样本测定量;以及
所述处理器被进一步配置为,从基于所述重测指令测得的所述第一光学信息计算所述第一测定试样中的至少另一个第一目标粒子团的至少另一个第一白细胞参数,和从所述第二光学信息计算所述第二测定试样中的至少另一个第二目标粒子团的至少另一个第二白细胞参数,并且基于所述至少另一个第一白细胞参数和所述至少另一个第二白细胞参数获得用于评估所述受试者的感染状态的感染标志参数。
本申请还提供了再另一种血液分析仪,包括吸样装置、样本制备装置、光学检测装置和处理器:
吸样装置,用于吸取受试者的待测血液样本;
样本制备装置,用于制备含有所述待测血液样本的一部分、第一溶血剂和用于白细胞分类的第一染色剂的第一测定试样以及用于制备含有所述待测血液样本的另一部分、第二溶血剂和用于识别有核红细胞的第二染色剂的第二测定试样;
光学检测装置,包括流动室、光源和光检测器,所述流动室用于供所述第一测定试样 和所述第二测定试样分别通过,所述光源用于用光照射分别通过所述流动室的第一测定试样和第二测定试样,所述光检测器用于检测所述第一测定试样和所述第二测定试样在分别通过所述流动室时被光照射后所产生的第一光学信息和第二光学信息;以及
处理器,被配置为:
接收模式设定指令,
当模式设定指令表明选择了血常规检测模式时,控制所述测定装置对第一测定量的第一测定试样和第二测定试样进行光学测定,以分别获取所述第一测定试样的第一光学信息和所述第二测定试样的第二光学信息,以及基于该第一光学信息和第二光学信息获取并输出血常规参数,
当模式设定指令表明选择了脓毒症检测模式时,控制所述测定装置对大于第一测定量的第二测定量的第一测定试样和第二测定试样进行光学测定,以分别获取所述第一测定试样的第一光学信息和所述第二测定试样的第二光学信息,从所述第一光学信息计算所述第一测定试样中的至少一个第一目标粒子团的至少一个第一白细胞参数,从所述第二光学信息计算所述第二测定试样中的至少一个第二目标粒子团的至少一个第二白细胞参数,基于所述至少一个第一白细胞参数和所述至少一个第二白细胞参数获得用于评估所述受试者的感染状态的感染标志参数,以及输出所述感染标志参数。
本申请实施例还提出一种用于评估受试者的感染状态的方法。如图15所示,所述方法200包括下列步骤:
S210,采集所述受试者的待测血液样本;
S220,制备含有所述待测血液样本的一部分、第一溶血剂和用于白细胞分类的第一染色剂的第一测定试样以及制备含有所述待测血液样本的另一部分、第二溶血剂和用于识别有核红细胞的第二染色剂的第二测定试样;
S230,使所述第一测定试样中的粒子逐个通过被光照射的光学检测区,以获得所述第一测定试样中的粒子在被光照射后所产生第一光学信息;
S240,使所述第二测定试样中的粒子逐个通过被光照射的所述光学检测区,以获得所述第二测定试样中的粒子在被光照射后所产生第二光学信息;
S250,从所述第一光学信息获得所述第一测定试样中的至少一个第一目标粒子团的至少一个第一白细胞参数并且从所述第二光学信息获得所述第二测定试样中的至少一个第二目标粒子团的至少一个第二白细胞参数,其中,第一白细胞参数和第二白细胞参数中的至少一个包括细胞特征参数;
S260,基于所述至少一个第一白细胞参数和所述至少一个第二白细胞参数计算感染标志参数;并且
S270,根据所述感染标志参数评估所述受试者的感染状态。
本申请实施例提出的方法200尤其是由本申请实施例提出的上述血液细胞分析仪100来实施。
进一步地,所述至少一个第一白细胞参数可以包括所述第一测定试样中的单核细胞团、中性粒细胞团和淋巴细胞团的细胞特征参数中的一个或多个;和/或所述至少一个第二白细胞参数可以包括所述第二测定试样中的单核细胞团、中性粒细胞团和白细胞团的细胞特征参数中的一个或多个。
优选的,所述至少一个第一白细胞参数可以包括所述第一测定试样中的单核细胞团和中性粒细胞团的细胞特征参数中的一个或多个,并且所述至少一个第二白细胞参数包括所述第二测定试样中的单核细胞团、中性粒细胞团和白细胞团的细胞特征参数中的一个或多个。
在一些实施例中,所述至少一个第一白细胞参数可以包括如下参数中的一个或多个:所述第一目标粒子团的前向散射光强度分布宽度、前向散射光强度分布重心、前向散射光强度分布变异系数、侧向散射光强度分布宽度、侧向散射光强度分布重心、侧向散射光强度分布变异系数、荧光强度分布宽度、荧光强度分布重心、荧光强度分布变异系数以及所述第一目标粒子团在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积和所述第一目标粒子团在由前向散射光强度、侧向散射光强度和荧光强度生成的三维散点图中的分布区域的体积;和/或
所述至少一个第二白细胞参数可以包括如下参数中的一个或多个:所述第二目标粒子团的前向散射光强度分布宽度、前向散射光强度分布重心、前向散射光强度分布变异系数、侧向散射光强度分布宽度、侧向散射光强度分布重心、侧向散射光强度分布变异系数、荧光强度分布宽度、荧光强度重心、荧光强度分布变异系数以及所述第二目标粒子团在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积和所述第二目标粒子团在由前向散射光强度、侧向散射光强度和荧光强度生成的三维散点图中的分布区域的体积。
在一些实施例中,所述方法还可以包括:基于所述感染标志参数对所述受试者进行脓毒症早期预测、脓毒症诊断、普通感染与重症感染的鉴别、感染病情监控、脓毒症预后分析、细菌感染和病毒感染的鉴别或者非感染性炎症和感染性炎症的鉴别。
在一些实施例中,所述方法还可以包括:输出指示所述受试者的感染状态的提示信息。
在一些实施例中,步骤S270可以包括:当所述感染标志参数满足第一预设条件时,输出指示所述受试者在被采集所述待测血液样本之后的一定时间段内可能进展为脓毒症的提示信息;优选的,所述一定时间段不大于48小时、尤其是不大于24小时。
在一些实施例中,步骤S270可以包括:当所述感染标志参数满足第二预设条件时,输出指示所述受试者患有脓毒症的提示信息。
在一些实施例中,步骤S270可以包括:当所述感染标志参数满足第三预设条件时,输出指示所述受试者患有重症感染的提示信息。
在一些实施例中,所述受试者为感染患者、尤其是患有重症感染或患有脓毒症的患者。相应地,步骤S270可以包括:根据所述感染标志参数监控所述受试者的感染病情发展。
在一些具体的示例中,根据所述感染标志参数监控所述受试者的感染病情发展包括:
获取通过多次检测、尤其是至少三次检测在不同时间点来自受试者的血液样本而获得的所述感染标志参数的值;
根据通过所述多次的检测而获得的所述感染标志参数的值的变化趋势来判断所述受试者病情是否好转,优选当通过所述多次的检测而获得的所述感染标志参数的值逐渐趋势性减低时,输出指示所述受试者病情好转的提示信息。
在另一些的示例中,根据所述感染标志参数监控所述受试者的感染病情发展包括:
获取通过对来自受试者的当前血液样本的当前检测而获得的所述感染标志参数的当前值并且获取通过对来自受试者的前一次血液样本的前一次检测而获得的所述感染标志 参数的在先值;并且
根据所述感染标志参数的在先值与第一阈值的比较以及所述感染标志参数的在先值与所述感染标志参数的当前值的比较来监控所述受试者的病情发展。
此外,所述受试者可以为接受了治疗的脓毒症患者。相应地,步骤S270可以包括:根据所述感染标志参数判断所述受试者的脓毒症预后是否良好。
在一些实施例中,步骤S270可以包括:根据所述感染标志参数判断所述受试者的感染类型是病毒感染还是细菌感染。
在一些实施例中,步骤S270可以包括:根据所述感染标志参数判断所述受试者是患感染性炎症还是非感染性炎症。
在一些实施例中,所述方法还可以包括:当所述第一目标粒子团和/或所述第二目标粒子团的预设特征参数满足第四预设条件时,例如当所述第一目标粒子团和/或所述第二目标粒子团的粒子总数小于预设阈值时,和/或当所述第一目标粒子团和/或所述第二目标粒子团与其他粒子团存在交叠时,不输出所述感染标志参数的值,或者输出所述感染标志参数的值并且同时输出指示该感染标志参数的值不可靠的提示信息。
备选地或附加地,所述方法还可以包括:当所述受试者患有血液疾病或者在所述待测血液样本中存在异常细胞、尤其是原始细胞时,例如当根据所述第一光学信息和/或所述第二光学信息判断所述待测血液样本中存在异常细胞、尤其是原始细胞时,不输出所述感染标志参数的值,或者输出所述感染标志参数的值并且同时输出指示该感染标志参数的值不可靠的提示信息。
本申请实施例提出的方法200的更多实施例和优点可参考上述对本申请实施例提出的血液细胞分析仪100的描述、尤其是对处理器140所实施的方法步骤的描述,在此不再赘述。
本申请实施例还提出感染标志参数在评估受试者的感染状态中的用途,其中,通过如下方法获得所述感染标志参数:
计算通过流式细胞术对含有来自受试者的待测血液样本的一部分、第一溶血剂和用于白细胞分类的第一染色剂的第一测定试样检测得到的至少一个第一目标粒子团的至少一个第一白细胞参数;
计算通过流式细胞术对含有所述待测血液样本的另一部分、第二溶血剂和用于识别有核红细胞的第二染色剂的第二测定试样检测得到的至少一个第二目标粒子团的至少一个第二白细胞参数,其中,第一白细胞参数和第二白细胞参数中的至少一个包括细胞特征参数;并且
基于所述至少一个第一白细胞参数和所述至少一个第二白细胞参数计算感染标志参数。
本申请实施例提出的感染标志参数在评估受试者的感染状态中的用途的更多实施例和优点可参考上述对本申请实施例提出的血液细胞分析仪100的描述、尤其是对处理器140所实施的方法步骤的描述,在此不再赘述。
接下来通过一些具体的实施例来进一步说明本申请及其优点。
本申请实施例的真阳率%、假阳率%、真阴率%以及假阴率%通过如下公式计算:
真阳率%=TP/(TP+FN)×100%;
真阴率%=TN/(FP+TN)×100%;
假阳率%=1-真阴率%;
假阴率%=1-真阳率%;
其中,TP为真阳性个体数,FP为假阳性个体数,TN为真阴性个体数,FN为假阴性个体数。
实施例1脓毒症早期预测
使用深圳迈瑞生物医疗电子股份有限公司生产的BC-6800Plus血液细胞分析仪使用迈瑞公司的配套的溶血剂M-60LD、M-6LN和染色剂M-6FD、M-6FN,对152例血液样本进行血常规检测,得到WNB通道和DIFF通道的散点图,按照本申请实施例提出的方法进行脓毒症早期预测。第二天,这些样本中,87例血液样本被临床诊断为脓毒症的阳性样本,65例血液样本为阴性样本(不发展为脓毒症)。
这152个病例的纳入标准:存在或疑似急性感染的成年ICU患者。排除标准:妊娠人群、化疗骨髓抑制者、免疫抑制剂治疗者、血液系统疾病患者。
所述脓毒症样本的供者:有可疑或有明确感染部位,实验室培养结果阳性,存在器官功能衰竭;疑似或确定急性感染,并且SOFA≥2分,其中疑似感染为具有以下①~③中任一项和④无确定性结果;或具有以下①~③中任一项和⑤。
①有急性(72h之内)发热或低体温;
②白细胞总数增高或降低;
③CRP、IL-6升高
④PCT、SAA及HBP升高;
⑤有可疑的感染部位。
SOFA评分标准如下表A所示:
表A SOFA评分计算方法
Figure PCTCN2022144177-appb-000003
注:1mmHg=0.133kPa。
表6示出所使用的感染标志参数及其相应的诊断效力,图16示出对应表6中的感染标志参数的ROC曲线。在表6中:
组合参数1=0.028849*D_Mon_SS_W+0.002448*N_WBC_SS_W-5.72185;
组合参数2=0.02523*D_Mon_SS_W+0.002796*N_WBC_FL_W-7.43236。
表6不同感染标志参数用于早期预测脓毒症风险的效力
Figure PCTCN2022144177-appb-000004
此外,表7-1示出了本实施例中采用其他感染标志参数早期预测脓毒症风险的效力,其中,基于表7-1中的第一白细胞参数和第二白细胞参数通过函数Y=A*X1+B*X2+C计算感染标志参数,其中,Y表示感染标志参数,X1表示第一白细胞参数,X2表示第二白细胞参数,A、B、C为常数。
表7-1其他感染标志参数用于早期预测脓毒症风险的效力
Figure PCTCN2022144177-appb-000005
表7-2,使用现有技术的PCT(降钙素原),以及单DIFF通道的参数用于早期预测脓毒症风险的效力
感染标志参数 ROC_AUC 判断阈值 假阳率 真阳率 真阴率 假阴率
PCT(降钙素原) 0.634 >2 14.0% 39.7% 86.0% 60.3%
D_Neu_SS_W 0.613 >253 47.7% 67.8% 52.3% 32.2%
D_Neu_FL_W 0.633 >205 47.7% 72.4% 52.3% 27.6%
D_Neu_FS_W 0.543 >559 32.3% 48.3% 67.7% 51.7%
由表7-2与表6、7-1比较可知,WNB通道参数组合DIFF通道参数,比PCT或单独DIFF通道,在脓毒症预测上有更优的诊断性能。表中D_Neu_SS_W是指,DIFF通道散点图中中性粒细胞团的侧向散射光强度的分布宽度;D_Neu_FL_W是指,DIFF通道散点图中中性粒细胞团的荧光强度的分布宽度;D_Neu_FS_W是指,DIFF通道散点图中中性粒细胞团的前向散射光强度的分布宽度。
表7-3,以2个参数为例说明本实施例使用的统计方法和检验方法
Figure PCTCN2022144177-appb-000006
由表7-3可知,该参数通过Welch检验分析,两组间存在显著统计学差异(p<0.0001.)
由表6和表7-1、7-2、7-3可知,本申请提出的感染标志参数能够用于较有效地提前一天预测脓毒症风险。
实施例2普通感染与重症感染鉴别
使用深圳迈瑞生物医疗电子股份有限公司生产的BC-6800Plus血液细胞分析仪按照本申请实施例1类似的步骤,对1528例血液样本进行血常规检测,基于散点图采用前述的方法进行重症感染鉴别。其中,重症感染样本、即阳性样本756例,非重症感染样本、即阴性样本792例。
本实施例中1548例供者的纳入标准:存在或疑似急性感染的成年ICU患者。排除标准:妊娠人群、化疗骨髓抑制者、免疫抑制剂治疗者、血液系统疾病患者。
其中所述重症感染样本的供者:有可疑或有明确感染部位,实验室培养结果阳性,存在器官功能损伤,其符合以下任意一项或多项:
①存在全身性、广泛性、体腔播散性感染证据
②存在危及生命的特殊部位感染
③感染引起至少一项感染引起的器官功能指标异常
其他为非重症感染样本。
表8示出所使用的感染标志参数及其相应的诊断效力,图17示出对应表8中的感染标志参数的ROC曲线。在表8中:
组合参数1=0.006064*N_WBC_FL_W+0.054716*D_Mon_SS_W-16.1568;
组合参数2=0.006662*N_WBC_FL_W+0.000248*D_Mon_FS_W-14.6388;
组合参数3=0.006651*N_NEU_FL_W+0.014098*D_NEU_FL_P-15.8676。
表8不同感染标志参数用于诊断重症感染的效力
感染标志参数 ROC_AUC 判断阈值 假阳率 真阳率 真阴率 假阴率
组合参数1 0.9023 >-0.3964 17.8% 83.2% 82.2% 16.8%
组合参数2 0.8784 >-0.3668 20.1% 80.8% 79.9% 19.2%
组合参数3 0.8575 >-0.1588 19.2% 74.5% 80.8 25.5%
真阳是指该实施例获知的提示结果与病人临床情况吻合均为重症感染患者;假阳是指该实施例获知的提示结果为重症感染,但病人实际情况是普通感染;真阴是指该实施例获得的提示结果与病人临床情况吻合均为普通感染患者;假阴是指该实施例获知的提示结果为普通感染,但病人实际情况是重症感染。
此外,表9-1至9-4示出了本实施例中采用其他感染标志参数诊断重症感染的效力,其中,基于表9-1至9-4中的第一白细胞参数和第二白细胞参数通过函数Y=A*X1+B*X2+C计算感染标志参数,其中,Y表示感染标志参数,X1表示第一白细胞参数,X2表示第二白细胞参数,A、B、C为常数。
表9-1,含N_WBC_FL_W的组合参数用于诊断重症感染的效力
Figure PCTCN2022144177-appb-000007
表9-2,含D_Mon_SS_W的组合参数用于诊断重症感染的效力
Figure PCTCN2022144177-appb-000008
Figure PCTCN2022144177-appb-000009
表9-3,含N_WBC_FL_P的组合参数用于诊断重症感染的效力
Figure PCTCN2022144177-appb-000010
表9-4,其他组合参数用于诊断重症感染的效力
Figure PCTCN2022144177-appb-000011
Figure PCTCN2022144177-appb-000012
Figure PCTCN2022144177-appb-000013
Figure PCTCN2022144177-appb-000014
表9-5,使用现有技术的PCT(降钙素原),以及单DIFF通道的参数用于鉴别普通感染与重症感染的效力
感染标志参数 ROC_AUC 判断阈值 假阳率 真阳率 真阴率 假阴率
PCT 0.806 >0.46 31.8% 80.5% 68.2% 19.5%
D_Neu_SSC_W 0.664 >259.324 39.3% 633.3% 60.7% 36.7%
D_Neu_SFL_W 0.758 >220.767 13.6% 54.3% 86.4% 45.7%
D_Neu_FSC_W 0.542 >572.274 34.3% 41.9% 65.7% 58.1%
现有技术有报道(Crouser E,Parrillo J,Seymour C et al.Improved Early Detection of Sepsis in the ED With a Novel Monocyte Distribution Width Biomarker.CHEST.2017;152(3):518-526),在BCI的血液分析仪DIFF通道血常规散点图,利用中性粒细胞的分布宽度鉴别普通感染与重症感染,其ROC_AUC为0.79,判断阈值为>20.5,假阳率为27%,真阳率为77.0%,真阴率为73%,假阴率为23%。从报道的数据看,与迈瑞的DIFF通道用于鉴别普通感染与重症感染的效力类似。
由表9-5与表8、9-1、9-2、9-3、9-4比较可知,WNB通道参数组合DIFF通道参数,在脓毒症预测上,有和PCT类似的,甚至更优的诊断性能,可能替代PCT标志物,实现利用血常规的检测数据,无成本地给出鉴别普通感染与重症感染的提示;另外,较DIFF通道参数也有更优的诊断性能。
表9-6,以3个参数为例说明本实施例使用的统计方法和检验方法
Figure PCTCN2022144177-appb-000015
由表9-6可知,该参数通过Welch检验分析,两组间存在显著统计学差异(p<0.0001.)
由表8和表9-1至9-6可知,本申请提出的感染标志参数能够用于较有效地判断受试者是否患有重症感染。
实施例3脓毒症诊断
使用深圳迈瑞生物医疗电子股份有限公司生产的BC-6800Plus血液细胞分析仪按照本申请实施例1类似的步骤,对1748例血液样本进行血常规检测,基于散点图采用前述的方法进行脓毒症诊断。其中,脓毒症样本、即阳性样本506例,非脓毒症样本、即阴性样本1242例。
这1748例的纳入标准:存在或疑似急性感染的成年ICU患者。排除标准:妊娠人群、化疗骨髓抑制者、免疫抑制剂治疗者、血液系统疾病患者。
表10示出所使用的感染标志参数及其相应的诊断效力,图18示出对应表10中的感染标志参数的ROC曲线。在表10中:
组合参数1=0.006048*N_WBC_FL_W+0.068161*D_Mon_SS_W-18.54084598;
组合参数2=0.006514*N_WBC_FL_W+0.00675*D_NEU_SS_P-15.78556712。
表10不同感染标志参数用于诊断脓毒症的效力
感染标志参数 ROC_AUC 判断阈值 假阳率 真阳率 真阴率 假阴率
组合参数1 0.91 >17.7079 13.1% 82.6% 86.9% 17.4%
组合参数2 0.8804 >14.7255 20.3% 82.3% 79.7% 17.7%
此外,表11-1示出了本实施例中采用其他感染标志参数诊断脓毒症的效力,其中,基于表11-1中的第一白细胞参数和第二白细胞参数通过函数Y=A*X1+B*X2+C计算感染标志参数,其中,Y表示感染标志参数,X1表示第一白细胞参数,X2表示第二白细胞参数,A、B、C为常数。
表11-1其他感染标志参数用于诊断脓毒症的效力
Figure PCTCN2022144177-appb-000016
Figure PCTCN2022144177-appb-000017
Figure PCTCN2022144177-appb-000018
Figure PCTCN2022144177-appb-000019
Figure PCTCN2022144177-appb-000020
Figure PCTCN2022144177-appb-000021
Figure PCTCN2022144177-appb-000022
表11-2,使用现有技术的PCT(降钙素原),以及单DIFF通道的参数用于诊断脓毒症的效力
感染标志参数 ROC_AUC 判断阈值 假阳率 真阳率 真阴率 假阴率
PCT 0.787 0.64 37.3% 81.0% 62.7% 19.0%
D_Neu_SS_W 0.687 252.764 45.4% 74.1% 54.6% 25.9%
D_Neu_FL_W 0.791 213.465 22.8% 68.0% 77.2% 32.0%
D_Neu_FS_W 0.545 586.385 22.6% 32.2% 77.4% 67.8%
由表11-2与表10、11-1比较可知,WNB通道参数组合DIFF通道参数,在诊断脓毒症上,和PCT有类似的甚至更优的诊断性能,可能替代PCT标志物,实现利用血常规的检测数据,无成本地给出脓毒症的提示;另外,双通道组合的诊断效力也优于单DIFF通道的参数。
表11-3,以三个参数为例说明本实施例使用的统计方法和检验方法
Figure PCTCN2022144177-appb-000023
由11-3表?可知,该参数通过Welch检验分析,两组间存在显著统计学差异(p<0.0001)
由表10和表11-1、11-2、11-3可知,本申请提出的感染标志参数能够用于较有效地判断受试者是否患有脓毒症。
实施例4重症感染病情监控
使用深圳迈瑞生物医疗电子股份有限公司生产的BC-6800Plus血液细胞分析仪按照 本申请实施例1的步骤,对50例重症感染患者的血液样本进行连续血常规检测,基于散点图采用前述的方法监控重症感染病情发展。根据患者重症感染诊断后第7天病情状况对50例重症感染患者进行分组。若诊断后第7天患者感染程度好转且病情稳定纳入好转组(阳性样本N=26)。若感染程度无明显好转,患者仍处于重症感染阶段或患者死亡则纳入加重组(阴性样本N=24)。图19示出采用D_Mon_SS_W和N_WBC_FL_W的线性组合参数进行监控的动态趋势变化图,其中,以重症感染诊断后天数为横轴,两组患者的感染标志参数值的平均值为纵轴。
由图19可知,本申请提出的感染标志参数能够用于较有效地监控受试者的重症感染发展状况。
实施例5脓毒症病情监控
使用深圳迈瑞生物医疗电子股份有限公司生产的BC-6800Plus血液细胞分析仪按照本申请实施例1的步骤,对76例脓毒症患者的血液样本进行连续血常规检测,基于散点图采用前述的方法进行监控脓毒症病情发展。根据患者脓毒症诊断后第7天病情状况对76例脓毒症患者进行分组。若诊断后第7天患者感染程度好转且病情稳定纳入好转组(阳性样本N=55)。若感染程度无明显好转,患者仍处于重症感染阶段或患者死亡则纳入加重组(阴性样本N=21)。以脓毒症诊断后天数为横轴,两组患者的感染标志参数值的中位数为纵轴,建立动态趋势变化图,如图20所示。其中,本实施例中感染标志参数由D_Mon_SS_W和N_WBC_FL_W通过线性组合方式计算得到。
由图20可知,本申请提出的感染标志参数能够用于较有效地监控受试者的脓毒症发展状况。
实施例6脓毒症预后分析
使用深圳迈瑞生物医疗电子股份有限公司生产的BC-6800Plus血液细胞分析仪按照本申请实施例1的步骤,对270例血液样本进行血常规检测,基于散点图采用前述的方法进行脓毒症预后分析。其中,28天死亡的阳性样本68例,28天存活的阴性样本202例。表12示出所使用的感染标志参数及其相应的诊断效力,其中,基于表12中的第一白细胞参数和第二白细胞参数通过函数Y=A*X1+B*X2+C计算感染标志参数,其中,Y表示感染标志参数,X1表示第一白细胞参数,X2表示第二白细胞参数,A、B、C为常数。
表12不同感染标志参数诊断脓毒症预后是否良好的效力
Figure PCTCN2022144177-appb-000024
Figure PCTCN2022144177-appb-000025
Figure PCTCN2022144177-appb-000026
由表12可知,本申请提出的感染标志参数能够用于较有效地判断患者脓毒症预后是否良好。
实施例7感染类型判断
使用深圳迈瑞生物医疗电子股份有限公司生产的BC-6800Plus血液细胞分析仪按照本申请实施例1的步骤,对491例血液样本进行血常规检测,基于散点图采用前述的方法进行感染类型判断。其中,细菌感染样本237例,病毒感染样本254例。
这些病例的纳入标准:存在或疑似急性感染的成年ICU患者。排除标准:妊娠人群、化疗骨髓抑制者、免疫抑制剂治疗者、血液系统疾病患者。
所述细菌感染样本:有可疑或明确感染部位,实验室细菌培养结果阳性,即,同时满足①-③
①细菌感染证据:(符合以下1-4中任一项即可)
1.有明确的感染部位
2.炎症指标(WBC、CRP和PCT等)升高
3.微生物培养阳性
4.影像学结果提示感染
②SOFA评分较基线变化<2分
③临床公认的器官衰竭指标评分变化<2分
所述病毒感染样本:有可疑或明确感染部位,病毒抗原或抗体检测阳性。例如,符合以下任一项即可:
①甲型流感病毒或乙型流感病毒抗体检测阳性
②EB病毒抗体检测阳性
③巨细胞病毒抗体检测阳性。
表13-1示出所使用的感染标志参数及其相应的诊断效力,其中,基于表13-1中的第一白细胞参数和第二白细胞参数通过函数Y=A*X1+B*X2+C计算感染标志参数,其中,Y表示感染标志参数,X1表示第一白细胞参数,X2表示第二白细胞参数,A、B、C为常数。
表13-1不同感染标志参数用于判断感染类型的效力
Figure PCTCN2022144177-appb-000027
Figure PCTCN2022144177-appb-000028
Figure PCTCN2022144177-appb-000029
Figure PCTCN2022144177-appb-000030
Figure PCTCN2022144177-appb-000031
表13-2,使用现有技术的PCT(降钙素原),以及单DIFF通道的参数用于鉴别细菌感染和病毒感染的效力
感染标志参数 ROC_AUC 判断阈值 假阳率 真阳率 真阴率 假阴率
PCT 0.851 0.554 7.9% 67.3% 92.1% 32.7%
D_Neu_SS_W 0.733 259.275 24.4% 60.2% 75.6% 39.8%
D_Neu_FL_W 0.836 206.183 20.1% 75.0% 79.9% 25.0%
D_Neu_FS_W 0.601 611.240 34.6% 56.4% 65.4% 43.6%
由表13-2与表13-1比较可知,WNB通道参数组合DIFF通道参数,在鉴别细菌感染和病毒感染上,具有与PCT相当,甚至有更好的诊断效力;比单独的DIFF通道参数的效果好。本申请提出的感染标志参数能够用于较有效地判断受试者的感染类型。
实施例8感染性炎症与非感染性炎症的鉴别
使用深圳迈瑞生物医疗电子股份有限公司生产的BC-6800Plus血液细胞分析仪按照本申请实施例1的步骤,对515例血液样本进行血常规检测,基于散点图采用前述的方法进行感染性炎症鉴别。其中,感染性炎症样本、即阳性样本399例,非感染性炎症样本、即阴性样本116例。
这些病例的纳入标准:存在或疑似急性炎症的成年ICU患者。排除标准:妊娠人群、化疗骨髓抑制者、免疫抑制剂治疗者、血液系统疾病患者。
所述感染性炎症样本:有细菌和/或病毒感染证据;且存在炎症(符合以下任一项即可)
1.局部炎症表现或全身炎症反应表现
2.组织损伤:由物理或化学因素导致的损伤如高温、低温、放射性物质及紫外线等
3.机械损伤:化学物质如强酸、强碱等损伤
4.组织坏死:缺血或缺氧等原因引起组织坏死损伤
5.变态反应:机体免疫反应状态异常如自身免疫性疾病
所述非感染性炎症样本:由物理、化学等因素引起的炎症反应,同时满足①和②:
①无细菌感染证据
②存在炎症(符合以下任一项即可)
1.局部炎症表现或全身炎症反应表现
2.组织损伤:由物理或化学因素导致的损伤如高温、低温、放射性物质及紫外线等
3.机械损伤:化学物质如强酸、强碱等损伤
4.组织坏死:缺血或缺氧等原因引起组织坏死损伤
5.变态反应:机体免疫反应状态异常如自身免疫性疾病
表14-1示出所使用的感染标志参数及其相应的诊断效力,其中,基于表14-1中的第一白细胞参数和第二白细胞参数通过函数Y=A*X1+B*X2+C计算感染标志参数,其中,Y表示感染标志参数,X1表示第一白细胞参数,X2表示第二白细胞参数,A、B、C为常数。
表14-1不同感染标志参数诊断感染性炎症的效力
Figure PCTCN2022144177-appb-000032
Figure PCTCN2022144177-appb-000033
表14-2,使用现有技术的PCT(降钙素原),以及单DIFF通道的参数用于鉴别感染性炎症和非感染性炎症的效力
感染标志参数 ROC_AUC 判断阈值 假阳率 真阳率 真阴率 假阴率
PCT 0.855 0.44 32.1% 89.6% 67.9% 10.4%
D_Neu_SSC_W 0.744 290.101 7.8% 45.7% 92.2% 54.3%
D_Neu_SFL_W 0.836 220.534 14.7% 67.3% 85.3% 32.7%
D_Neu_FSC_W 0.557 563.910 37.9% 51.3% 62.1% 48.7%
由表14-2与表14-1比较可知,WNB通道参数组合DIFF通道参数,在鉴别细菌感染和病毒感染上,比PCT或者单独的DIFF通道参数具有更好的诊断效力。本申请提出的感染标志参数能够用于较有效地判断感染性炎症。
实施例9脓毒症疗效的评估
使用深圳迈瑞生物医疗电子股份有限公司生产的BC-6800Plus血液细胞分析仪,按实施例1的步骤,对接受脓毒症治疗的28例患者的血液样本进行血常规检测,基于散点图采用前述的方法进行脓毒症疗效的评估。具体地,对诊断为脓毒症的28例患者使用抗生素治疗,5天后对患者血液样本进行血常规检测,按前述的方法获得的WNB通道和DIFF通道的组合参数,根据5天治疗效果分为有效组和无效组,临床上症状明显改善为有效组,否则为无效组。其中,11例患者属于无效组,17例患者属于有效组。
表15示出了本实施例中采用DIFF+WNB双通道参数“N_WBC_FL_W”和“D_Neu_FL_W”组合作为感染标志参数用于判断对脓毒症的疗效。该双参数组合的物理意义是将第一检测通道WBC粒子内部核酸含量的分布宽度和第二检测通道中性粒细胞内部核酸含量的分布宽度进行组合。
该双参数组合通过函数
Y=0.00623272×N_WBC_FL_W+0.01806527×D_Neu_FL_W-16.84312131获得感染标志参数,其中,Y表示感染标志参数。
表15
Figure PCTCN2022144177-appb-000034
Figure PCTCN2022144177-appb-000035
图21A-图21D直观地显示了使用双参数“N_WBC_FL_W”和“D_Neu_FL_W”组合作为感染标志参数对脓毒症疗效的检测结果。
表16示出了本实施例中采用DIFF+WNB双通道参数“N_WBC_FL_W”和“D_Neu_FL_CV”组合作为感染标志参数用于判断对脓毒症的疗效。该双参数组合的物理意义是将第一检测通道WBC粒子内部核酸含量的分布宽度和第二检测通道中性粒细胞内部核酸含量的离散程度进行组合。
该双参数组合通过函数
Y=0.00688519×N_WBC_FL_W+11.27099282×D_Neu_FL_CV-19.2998686获得感染标志参数,其中,Y表示感染标志参数。
表16
Figure PCTCN2022144177-appb-000036
图22A-图22D直观地显示了使用双参数“N_WBC_FL_W”和“D_Neu_FL_CV”组合作为感染标志参数对脓毒症疗效的检测结果。
实施例10计数值结合参数用于脓毒症诊断
使用深圳迈瑞生物医疗电子股份有限公司生产的BC-6800Plus血液细胞分析仪按照本申请实施例3类似的步骤,对1748例血液样本进行血常规检测,基于散点图采用前述的方法进行脓毒症诊断。其中,脓毒症样本、即阳性样本506例,非脓毒症样本、即阴性样本1242例。
这1748例的纳入标准:存在或疑似急性感染的成年ICU患者。排除标准:妊娠人群、化疗骨髓抑制者、免疫抑制剂治疗者、血液系统疾病患者。
表17示出所使用的感染标志参数及其相应的诊断效力,图24示出对应表17中的感染标志参数的ROC曲线。在表17中:
组合参数1=-0.61535116*Mon#+0.00766353*N_WBC_FL_W-15.04738706;
组合参数2=-0.03077968*HGB+0.08933918*N_WBC_FL_W-5.72270269;
组合参数3=-0.00395999*PLT+0.00606333*N_WBC_FL_W-11.55000862。
表17不同感染标志参数用于诊断脓毒症的效力
感染标志参数 ROC_AUC 判断阈值 假阳率 真阳率 真阴率 假阴率
组合参数1 0.8826 >-0.9689 18.7% 80.2% 81.3% 19.8%
组合参数2 0.8808 >-0.8956 17.7% 77.8% 82.3% 22.2%
组合参数3 0.8801 >-0.9222 17.1% 79.6% 82.9% 20.4%
由表11-2与表17相比,血常规的单核细胞计数值,或血红蛋白值,或血小板计数值,结合WNB通道的参数的组合参数,比PCT或单独DIFF通道,在脓毒症诊断上有更优的诊断性能。说明,血常规的白细胞系和血小板的计数值,以及红细胞的血红蛋白浓度,可以 作为第一白细胞参数,与第二白细胞参数组合计算感染特征参数,用于脓毒症诊断。
表18,以三个参数为例说明本实施例使用的统计方法和检验方法
Figure PCTCN2022144177-appb-000037
由表18可知,该参数通过Welch检验分析,两组间存在显著统计学差异(p<0.0001)
以上在说明书、附图以及权利要求书中提及的特征或者特征组合,只要在本申请的范围内是有意义的并且不会相互矛盾,均可以任意相互组合使用或者单独使用。参考本申请实施例提供的血液细胞分析仪所说明的优点和特征以相应的方式适用于本申请实施例提供的血细胞分析方法和感染标志参数的用途,反之亦然。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效变换方案,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (58)

  1. 一种血液细胞分析仪,包括:
    吸样装置,用于吸取受试者的待测血液样本;
    样本制备装置,用于制备含有所述待测血液样本的一部分、第一溶血剂和用于白细胞分类的第一染色剂的第一测定试样以及用于制备含有所述待测血液样本的另一部分、第二溶血剂和用于识别有核红细胞的第二染色剂的第二测定试样;
    光学检测装置,包括流动室、光源和光检测器,所述流动室用于供所述第一测定试样和所述第二测定试样分别通过,所述光源用于用光照射分别通过所述流动室的第一测定试样和第二测定试样,所述光检测器用于检测所述第一测定试样和所述第二测定试样在分别通过所述流动室时被光照射后所产生的第一光学信息和第二光学信息;以及
    处理器,被配置为:
    从所述第一光学信息计算所述第一测定试样中的至少一个第一目标粒子团的至少一个第一白细胞参数,
    从所述第二光学信息计算所述第二测定试样中的至少一个第二目标粒子团的至少一个第二白细胞参数,其中,第一白细胞参数和第二白细胞参数中的至少一个包括细胞特征参数,
    基于所述至少一个第一白细胞参数和所述至少一个第二白细胞参数计算用于评估所述受试者的感染状态的感染标志参数,并且
    输出所述感染标志参数。
  2. 根据权利要求1所述的血液细胞分析仪,其特征在于,所述至少一个第一白细胞参数包括所述第一测定试样中的单核细胞团、中性粒细胞团和淋巴细胞团的细胞特征参数中的一个或多个;和/或
    所述至少一个第二白细胞参数包括所述第二测定试样中的淋巴细胞团、中性粒细胞团和白细胞团的细胞特征参数中的一个或多个;
    优选的,所述至少一个第一白细胞参数包括所述第一测定试样中的单核细胞团和中性粒细胞团的细胞特征参数中的一个或多个,并且所述至少一个第二白细胞参数包括所述第二测定试样中的中性粒细胞团和白细胞团的细胞特征参数中的一个或多个。
  3. 根据权利要求1或2所述的血液细胞分析仪,其特征在于,所述至少一个第一白细胞参数包括如下参数中的一个或多个:所述第一目标粒子团的前向散射光强度分布宽度、前向散射光强度分布重心、前向散射光强度分布变异系数、侧向散射光强度分布宽度、侧向散射光强度分布重心、侧向散射光强度分布变异系数、荧光强度分布宽度、荧光强度分布重心、荧光强度分布变异系数以及所述第一目标粒子团在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积和所述第一目标粒子团在由前向散射光强度、侧向散射光强度和荧光强度生成的三维散点图中的分布区域的体积;和/或
    所述至少一个第二白细胞参数包括如下参数中的一个或多个:所述第二目标粒子团的前向散射光强度分布宽度、前向散射光强度分布重心、前向散射光强度分布变异系数、侧 向散射光强度分布宽度、侧向散射光强度分布重心、侧向散射光强度分布变异系数、荧光强度分布宽度、荧光强度重心、荧光强度分布变异系数以及所述第二目标粒子团在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积和所述第二目标粒子团在由前向散射光强度、侧向散射光强度和荧光强度生成的三维散点图中的分布区域的体积。
  4. 根据权利要求3所述的血液细胞分析仪,其特征在于,所述至少一个第一白细胞参数选自如下参数中的一个或多个:所述第一测定试样中的单核细胞团的前向散射光强度分布宽度、前向散射光强度分布重心、前向散射光强度分布变异系数、侧向散射光强度分布宽度、侧向散射光强度分布重心、侧向散射光强度分布变异系数、荧光强度分布宽度、荧光强度分布重心、荧光强度分布变异系数以及所述第一测定试样中的单核细胞团在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积和所述第一测定试样中的单核细胞团在由前向散射光强度、侧向散射光强度和荧光强度生成的三维散点图中的分布区域的体积;和/或
    所述至少一个第二白细胞参数选自如下参数中的一个或多个:所述第二测定试样中的白细胞团的前向散射光强度分布宽度、前向散射光强度分布重心、前向散射光强度分布变异系数、侧向散射光强度分布宽度、侧向散射光强度分布重心、侧向散射光强度分布变异系数、荧光强度分布宽度、荧光强度重心、荧光强度分布变异系数以及所述第二测定试样中的白细胞团在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积和所述第二测定试样中的白细胞团在由前向散射光强度、侧向散射光强度和荧光强度生成的三维散点图中的分布区域的体积。
  5. 根据权利要求4所述的血液细胞分析仪,其特征在于,所述至少一个第一白细胞参数选自所述第一测定试样中的单核细胞团的侧向散射光强度分布宽度,所述至少一个第二白细胞参数选自所述第二测定试样中的白细胞团的荧光强度分布宽度;
    所述基于所述至少一个第一白细胞参数和所述至少一个第二白细胞参数计算用于评估所述受试者的感染状态的感染标志参数,包括:
    基于所述第一测定试样中的单核细胞团的侧向散射光强度分布宽度和所述第二测定试样中的白细胞团的荧光强度分布宽度计算得到所述用于评估所述受试者的感染状态的感染标志参数。
  6. 根据权利要求1至5中任一项所述的血液细胞分析仪,其特征在于,所述处理器被进一步配置为:
    当所述感染标志参数的值处于预设范围之外时,输出指示所述感染标志参数异常的提示信息。
  7. 根据权利要求1至6中任一项所述的血液细胞分析仪,其特征在于,所述处理器被进一步配置为,基于所述感染标志参数输出指示所述受试者的感染状态的提示信息。
  8. 根据权利要求1至7任一项所述的血液细胞分析仪,其特征在于,所述感染标志 参数用于对所述受试者进行脓毒症的早期预测。
  9. 根据权利要求8所述的血液细胞分析仪,其特征在于,所述处理器被进一步配置为,当所述感染标志参数满足第一预设条件时,输出指示所述受试者在被采集所述待测血液样本之后的一定时间段内可能进展为脓毒症的提示信息。
  10. 根据权利要求9所述的血液细胞分析仪,其特征在于,所述一定时间段不大于48小时、优选不大于24小时。
  11. 根据权利要求8至10任一项所述的血液细胞分析仪,其特征在于,所述至少一个第一白细胞参数选自所述第一测定试样中的单核细胞团的侧向散射光强度分布宽度,所述至少一个第二白细胞参数选自所述第二测定试样中的白细胞团的荧光强度分布宽度或侧向散射光强度分布宽度;
    所述基于所述至少一个第一白细胞参数和所述至少一个第二白细胞参数计算用于评估所述受试者的感染状态的感染标志参数,包括:
    基于所述第一测定试样中的单核细胞团的侧向散射光强度分布宽度和所述第二测定试样中的白细胞团的荧光强度分布宽度计算得到所述用于评估所述受试者的感染状态的感染标志参数,或
    基于所述第一测定试样中的单核细胞团的侧向散射光强度分布宽度和所述第二测定试样中的白细胞团的侧向散射光强度分布宽度计算得到所述用于评估所述受试者的感染状态的感染标志参数。
  12. 根据权利要求1至7任一项所述的血液细胞分析仪,其特征在于,所述感染标志参数用于对所述受试者进行脓毒症的诊断。
  13. 根据权利要求12所述的血液细胞分析仪,其特征在于,所述处理器被进一步配置为,当所述感染标志参数满足第二预设条件时,输出指示所述受试者患有脓毒症的提示信息。
  14. 根据权利要求12或13任一项所述的血液细胞分析仪,其特征在于,所述至少一个第一白细胞参数选自所述第一测定试样中的单核细胞团的侧向散射光强度分布宽度或所述第一测定试样中的中性粒细胞团的侧向散射光强度分布重心,所述至少一个第二白细胞参数选自所述第二测定试样中的白细胞团的荧光强度分布宽度;
    所述基于所述至少一个第一白细胞参数和所述至少一个第二白细胞参数计算用于评估所述受试者的感染状态的感染标志参数,包括:
    基于所述第一测定试样中的单核细胞团的侧向散射光强度分布宽度和所述第二测定试样中的白细胞团的荧光强度分布宽度计算得到所述用于评估所述受试者的感染状态的感染标志参数,或
    基于所述第一测定试样中的中性粒细胞团的侧向散射光强度分布重心和所述第二测定试样中的白细胞团的荧光强度分布宽度计算得到所述用于评估所述受试者的感染状态 的感染标志参数。
  15. 根据权利要求1至7任一项所述的血液细胞分析仪,其特征在于,所述感染标志参数用于对所述受试者进行普通感染与重症感染的鉴别。
  16. 根据权利要求15所述的血液细胞分析仪,其特征在于,所述处理器被进一步配置为,当所述感染标志参数满足第三预设条件时,输出指示所述受试者患有重症感染的提示信息。
  17. 根据权利要求15或16任一项所述的血液细胞分析仪,其特征在于,所述至少一个第一白细胞参数选自所述第一测定试样中的单核细胞团的侧向散射光强度分布宽度或前向散射光强度分布宽度,所述至少一个第二白细胞参数选自所述第二测定试样中的白细胞团的荧光强度分布宽度;
    所述基于所述至少一个第一白细胞参数和所述至少一个第二白细胞参数计算用于评估所述受试者的感染状态的感染标志参数,包括:
    基于所述第一测定试样中的单核细胞团的侧向散射光强度分布宽度和所述第二测定试样中的白细胞团的荧光强度分布宽度计算得到所述用于评估所述受试者的感染状态的感染标志参数,或
    基于所述第一测定试样中的单核细胞团的前向散射光强度分布宽度和所述第二测定试样中的白细胞团的荧光强度分布宽度计算得到所述用于评估所述受试者的感染状态的感染标志参数。
  18. 根据权利要求1至7任一项所述的血液细胞分析仪,其中,所述受试者为感染患者、尤其是患有重症感染或患有脓毒症的患者,并且所述感染标志参数用于对所述受试者进行感染病情监控。
  19. 根据权利要求18所述的血液细胞分析仪,其特征在于,所述处理器被进一步配置为根据所述感染标志参数监控所述受试者的感染病情发展。
  20. 根据权利要求19所述的血液细胞分析仪,其特征在于,所述处理器被进一步配置为:
    获取通过多次检测、尤其是至少三次检测在不同时间点来自受试者的血液样本而获得的所述感染标志参数的值;并且
    根据通过所述多次的检测而获得的所述感染标志参数的值的变化趋势来判断所述受试者病情是否好转,优选当通过所述多次的检测而获得的所述感染标志参数的值逐渐趋势性减低时,输出指示所述受试者病情好转的提示信息。
  21. 根据权利要求18至20任一项所述的血液细胞分析仪,其特征在于,所述至少一个第一白细胞参数选自所述第一测定试样中的单核细胞团的侧向散射光强度分布宽度,所述至少一个第二白细胞参数选自所述第二测定试样中的白细胞团的荧光强度分布宽度;
    所述基于所述至少一个第一白细胞参数和所述至少一个第二白细胞参数计算用于评估所述受试者的感染状态的感染标志参数,包括:
    基于所述第一测定试样中的单核细胞团的侧向散射光强度分布宽度和所述第二测定试样中的白细胞团的荧光强度分布宽度计算得到所述用于评估所述受试者的感染状态的感染标志参数。
  22. 根据权利要求1至7任一项所述的血液细胞分析仪,其特征在于,所述受试者为接受了治疗的脓毒症患者,所述感染标志参数对所述受试者进行脓毒症预后分析;
    优选地,所述处理器被进一步配置为,根据所述感染标志参数判断所述受试者的脓毒症预后是否良好。
  23. 根据权利要求1至7任一项所述的血液细胞分析仪,其特征在于,所述感染标志参数对所述受试者进行细菌感染和病毒感染的鉴别,
    优选地,所述处理器被进一步配置为,根据所述感染标志参数判断所述受试者的感染类型是病毒感染还是细菌感染。
  24. 根据权利要求1至7任一项所述的血液细胞分析仪,其特征在于,所述感染标志参数对所述受试者进行感染性炎症和非感染性炎症的鉴别,
    优选地,所述处理器被进一步配置为,根据所述感染标志参数判断所述受试者是患感染性炎症还是非感染性炎症。
  25. 根据权利要求1至7任一项所述的血液细胞分析仪,其特征在于,所述受试者为正在接受用药治疗的脓毒症患者,所述感染标志参数用于对所述受试者进行脓毒症的疗效评估。
  26. 根据权利要求1至25中任一项所述的血液细胞分析仪,其特征在于,所述处理器被进一步配置为,在从所述第一光学信息计算所述第一测定试样中的至少一个第一目标粒子团的至少一个第一白细胞参数,和从所述第二光学信息计算所述第二测定试样中的至少一个第二目标粒子团的至少一个第二白细胞参数之前,基于所述第一光学信息和所述第二光学信息获得所述第一测定试样和所述第二测定试样的白细胞计数,并且当所述白细胞计数小于预设阈值时输出对所述受试者的血液样本进行重新测定的重测指令,其中,基于所述重测指令的测定的样本测定量大于用于获取所述光学信息的测定的样本测定量;以及
    所述处理器被进一步配置为,从基于所述重测指令测得的所述第一光学信息计算所述第一测定试样中的至少另一个第一目标粒子团的至少另一个第一白细胞参数,和从所述第二光学信息计算所述第二测定试样中的至少另一个第二目标粒子团的至少另一个第二白细胞参数,并且基于所述至少另一个第一白细胞参数和所述至少另一个第二白细胞参数获得用于评估所述受试者的感染状态的感染标志参数。
  27. 根据权利要求1至25中任一项所述的血液细胞分析仪,其特征在于,所述处理器被进一步配置为:
    当所述第一目标粒子团和/或所述第二目标粒子团的预设特征参数满足第四预设条件时,不输出所述感染标志参数的值,或者输出所述感染标志参数的值并且同时输出指示该感染标志参数的值不可靠的提示信息。
  28. 根据权利要求27所述的血液细胞分析仪,其特征在于,所述处理器被进一步配置为:
    当所述第一目标粒子团和/或所述第二目标粒子团的粒子总数小于预设阈值时,和/或当所述第一目标粒子团和/或所述第二目标粒子团与其他粒子团存在交叠时,不输出所述感染标志参数的值,或者输出所述感染标志参数的值并且同时输出指示该感染标志参数的值不可靠的提示信息。
  29. 根据权利要求1至25中任一项所述的血液细胞分析仪,其特征在于,所述处理器被进一步配置为:
    当所述受试者患有血液疾病或者所述待测血液样本中存在异常细胞、尤其是原始细胞时,例如当根据所述第一光学信息和/或所述第二光学信息判断所述待测血液样本中存在异常细胞、尤其是原始细胞时,不输出所述感染标志参数的值,或者输出所述感染标志参数的值并且同时输出指示该感染标志参数的值不可靠的提示信息。
  30. 根据权利要求1至25中任一项所述的血液细胞分析仪,其中,所述处理器从所述第一光学信息计算所述第一测定试样中的至少一个第一目标粒子团的至少一个第一白细胞参数,从所述第二光学信息计算所述第二测定试样中的至少一个第二目标粒子团的至少一个第二白细胞参数,其中,第一白细胞参数和第二白细胞参数中的至少一个包括细胞特征参数,基于所述至少一个第一白细胞参数和所述至少一个第二白细胞参数计算用于评估所述受试者的感染状态的感染标志参数,包括:所述处理器
    从所述第一光学信息计算所述第一测定试样中的至少一个第一目标粒子团的多个第一白细胞参数,从所述第二光学信息计算所述第二测定试样中的至少一个第二目标粒子团的多个第二白细胞参数;
    基于所述多个第一白细胞参数和所述多个第二白细胞参数获取用于评估所述受试者的感染状态的多个感染标志参数组;
    为所述多个感染标志参数组中的每个感染标志参数组配置优先级;
    计算所述多个感染标志参数组中的每个感染标志参数组的可信度,根据所述多个感染标志参数组的优先级和可信度从所述多个感染标志参数组中选择至少一个感染标志参数组,用于获取所述感染标志参数;或者按照所述多个感染标志参数组的优先级,依次计算所述多个感染标志参数组的可信度并判断该可信度是否达到相应的可信度阈值,当当前感染标志参数组的可信度达到相应的可信度阈值时,基于该感染标志参数组获取所述感染标志参数并且停止计算和判断。
  31. 根据权利要求30所述的血液细胞分析仪,其特征在于,所述处理器被进一步配置为:
    计算所述多个感染标志参数组中的每个感染标志参数组的可信度,并且判断每个感染 标志参数组的可信度是否达到相应的可信度阈值;
    将所述多个感染标志参数组中可信度达到相应的可信度阈值的感染标志参数组作为候选感染标志参数组;
    根据所述候选感染标志参数组的优先级从所述候选感染标志参数组中选择至少一个候选感染标志参数组、优选选择优先级最高的感染标志参数组,用于获取所述感染标志参数。
  32. 根据权利要求1至25中任一项所述的血液细胞分析仪,其中,所述处理器从所述第一光学信息计算所述第一测定试样中的至少一个第一目标粒子团的至少一个第一白细胞参数,从所述第二光学信息计算所述第二测定试样中的至少一个第二目标粒子团的至少一个第二白细胞参数,其中,第一白细胞参数和第二白细胞参数中的至少一个包括细胞特征参数,基于所述至少一个第一白细胞参数和所述至少一个第二白细胞参数计算用于评估所述受试者的感染状态的感染标志参数,包括:所述处理器
    从所述第一光学信息计算所述第一测定试样中的至少一个第一目标粒子团的多个第一白细胞参数,从所述第二光学信息计算所述第二测定试样中的至少一个第二目标粒子团的多个第二白细胞参数,
    基于所述多个第一白细胞参数和所述多个第二白细胞参数获取用于评估所述受试者的感染状态的多个感染标志参数组,
    计算所述多个感染标志参数组中的每个感染标志参数组的可信度,根据所述多个感染标志参数组的可信度从所述多个感染标志参数组中选择至少一个感染标志参数组,用于获取所述感染标志参数。
  33. 根据权利要求1至25中任一项所述的血液细胞分析仪,其中,所述处理器从所述第一光学信息计算所述第一测定试样中的至少一个第一目标粒子团的至少一个第一白细胞参数,从所述第二光学信息计算所述第二测定试样中的至少一个第二目标粒子团的至少一个第二白细胞参数,其中,第一白细胞参数和第二白细胞参数中的至少一个包括细胞特征参数,基于所述至少一个第一白细胞参数和所述至少一个第二白细胞参数计算用于评估所述受试者的感染状态的感染标志参数,包括:所述处理器
    根据所述第一光学信息和所述第二光学信息判断所述待测血液样本是否存在影响感染状态评估的异常;
    当判断所述待测血液样本存在影响感染状态评估的异常时,分别从所述第一光学信息获取与所述异常匹配的至少一个第一目标粒子团的至少一个第一白细胞参数,从所述第二光学信息获取与所述异常匹配的至少一个第二目标粒子团的至少一个第二白细胞参数,基于所述至少一个第一白细胞参数和所述至少一个第二白细胞参数获得所述感染标志参数。
  34. 根据权利要求1至33中任一项所述的血液细胞分析仪,其特征在于,所述处理器被进一步配置为,通过线性函数将所述至少一个第一白细胞参数和所述至少一个第二白细胞参数组合成所述感染标志参数。
  35. 根据权利要求1至34中任一项所述的血液细胞分析仪,其特征在于,所述处理 器被进一步配置为,选择所述至少一个第一白细胞参数和所述至少一个第二白细胞参数并据此获得所述感染标志参数,使得所述感染标志参数的诊断效力大于0.5,优选大于0.6,特别优选大于0.8。
  36. 一种血液细胞分析仪,包括:
    吸样装置,用于吸取受试者的待测血液样本;
    样本制备装置,用于制备含有所述待测血液样本的一部分、第一溶血剂和用于白细胞分类的第一染色剂的第一测定试样以及用于制备含有所述待测血液样本的另一部分、第二溶血剂和用于识别有核红细胞的第二染色剂的第二测定试样;
    光学检测装置,包括流动室、光源和光检测器,所述流动室用于供所述第一测定试样和所述第二测定试样分别通过,所述光源用于用光照射分别通过所述流动室的第一测定试样和第二测定试样,所述光检测器用于检测所述第一测定试样和所述第二测定试样在分别通过所述流动室时被光照射后所产生的第一光学信息和第二光学信息;以及
    处理器,被配置为:
    接收模式设定指令,
    当模式设定指令表明选择了血常规检测模式时,控制所述测定装置对第一测定量的第一测定试样和第二测定试样进行光学测定,以分别获取所述第一测定试样的第一光学信息和所述第二测定试样的第二光学信息,以及基于该第一光学信息和第二光学信息获取并输出血常规参数,
    当模式设定指令表明选择了脓毒症检测模式时,控制所述测定装置对大于第一测定量的第二测定量的第一测定试样和第二测定试样进行光学测定,以分别获取所述第一测定试样的第一光学信息和所述第二测定试样的第二光学信息,从所述第一光学信息计算所述第一测定试样中的至少一个第一目标粒子团的至少一个第一白细胞参数,从所述第二光学信息计算所述第二测定试样中的至少一个第二目标粒子团的至少一个第二白细胞参数,基于所述至少一个第一白细胞参数和所述至少一个第二白细胞参数获得用于评估所述受试者的感染状态的感染标志参数,以及输出所述感染标志参数。
  37. 一种用于评估受试者的感染状态的方法,包括:
    采集所述受试者的待测血液样本;
    制备含有所述待测血液样本的一部分、第一溶血剂和用于白细胞分类的第一染色剂的第一测定试样以及制备含有所述待测血液样本的另一部分、第二溶血剂和用于识别有核红细胞的第二染色剂的第二测定试样;
    使所述第一测定试样中的粒子逐个通过被光照射的光学检测区,以获得所述第一测定试样中的粒子在被光照射后所产生第一光学信息;
    使所述第二测定试样中的粒子逐个通过被光照射的所述光学检测区,以获得所述第二测定试样中的粒子在被光照射后所产生第二光学信息;
    从所述第一光学信息计算所述第一测定试样中的至少一个第一目标粒子团的至少一个第一白细胞参数并且从所述第二光学信息计算所述第二测定试样中的至少一个第二目标粒子团的至少一个第二白细胞参数,其中,第一白细胞参数和第二白细胞参数中的至少一个包括细胞特征参数;
    基于所述至少一个第一白细胞参数和所述至少一个第二白细胞参数计算感染标志参数;并且
    根据所述感染标志参数评估所述受试者的感染状态。
  38. 根据权利要求37所述的方法,其特征在于,所述至少一个第一白细胞参数包括所述第一测定试样中的单核细胞团、中性粒细胞团和淋巴细胞团的细胞特征参数中的一个或多个;和/或
    所述至少一个第二白细胞参数包括所述第二测定试样中的单核细胞团、中性粒细胞团和白细胞团的细胞特征参数中的一个或多个;
    优选的,所述至少一个第一白细胞参数包括所述第一测定试样中的单核细胞团和中性粒细胞团的细胞特征参数中的一个或多个,并且所述至少一个第二白细胞参数包括所述第二测定试样中的中性粒细胞团和白细胞团的细胞特征参数中的一个或多个。
  39. 根据权利要求37或38所述的方法,其特征在于,所述至少一个第一白细胞参数包括如下参数中的一个或多个:所述第一目标粒子团的前向散射光强度分布宽度、前向散射光强度分布重心、前向散射光强度分布变异系数、侧向散射光强度分布宽度、侧向散射光强度分布重心、侧向散射光强度分布变异系数、荧光强度分布宽度、荧光强度分布重心、荧光强度分布变异系数以及所述第一目标粒子团在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积和所述第一目标粒子团在由前向散射光强度、侧向散射光强度和荧光强度生成的三维散点图中的分布区域的体积;和/或
    所述至少一个第二白细胞参数包括如下参数中的一个或多个:所述第二目标粒子团的前向散射光强度分布宽度、前向散射光强度分布重心、前向散射光强度分布变异系数、侧向散射光强度分布宽度、侧向散射光强度分布重心、侧向散射光强度分布变异系数、荧光强度分布宽度、荧光强度重心、荧光强度分布变异系数以及所述第二目标粒子团在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积和所述第二目标粒子团在由前向散射光强度、侧向散射光强度和荧光强度生成的三维散点图中的分布区域的体积。
  40. 根据权利要求39所述的方法,其特征在于,所述至少一个第一白细胞参数选自如下参数中的一个或多个:所述第一测定试样中的单核细胞团的前向散射光强度分布宽度、前向散射光强度分布重心、前向散射光强度分布变异系数、侧向散射光强度分布宽度、侧向散射光强度分布重心、侧向散射光强度分布变异系数、荧光强度分布宽度、荧光强度分布重心、荧光强度分布变异系数以及所述第一测定试样中的单核细胞团在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积和所述第一测定试样中的单核细胞团在由前向散射光强度、侧向散射光强度和荧光强度生成的三维散点图中的分布区域的体积;和/或
    所述至少一个第二白细胞参数选自如下参数中的一个或多个:所述第二测定试样中的白细胞团的前向散射光强度分布宽度、前向散射光强度分布重心、前向散射光强度分布变异系数、侧向散射光强度分布宽度、侧向散射光强度分布重心、侧向散射光强度分布变异 系数、荧光强度分布宽度、荧光强度重心、荧光强度分布变异系数以及所述第二测定试样中的白细胞团在由前向散射光强度、侧向散射光强度和荧光强度中的两种光强度生成的二维散点图中的分布区域的面积和所述第二测定试样中的白细胞团在由前向散射光强度、侧向散射光强度和荧光强度生成的三维散点图中的分布区域的体积。
  41. 根据权利要求40所述的方法,其特征在于,所述所述至少一个第一白细胞参数选自所述第一测定试样中的单核细胞团的侧向散射光强度分布宽度,所述至少一个第二白细胞参数选自所述第二测定试样中的白细胞团的荧光强度分布宽度;
    所述基于所述至少一个第一白细胞参数和所述至少一个第二白细胞参数计算用于评估所述受试者的感染状态的感染标志参数,包括:
    基于所述第一测定试样中的单核细胞团的侧向散射光强度分布宽度和所述第二测定试样中的白细胞团的荧光强度分布宽度计算得到所述用于评估所述受试者的感染状态的感染标志参数。
  42. 根据权利要求37至41中任一项所述的血液细胞分析仪,其特征在于,所述方法还包括:
    基于所述感染标志参数对所述受试者进行脓毒症早期预测、脓毒症诊断、普通感染与重症感染的鉴别、感染病情监控、脓毒症预后分析、脓毒症的疗效评估、细菌感染和病毒感染的鉴别或者非感染性炎症和感染性炎症的鉴别。
  43. 根据权利要求42所述的方法,其特征在于,根据所述感染标志参数评估所述受试者的感染状态包括:
    当所述感染标志参数满足第一预设条件时,输出指示所述受试者在被采集所述待测血液样本之后的一定时间段内可能进展为脓毒症的提示信息;优选的,所述一定时间段不大于48小时、尤其是不大于24小时。
  44. 根据权利要求43所述的方法,其特征在于,所述至少一个第一白细胞参数选自所述第一测定试样中的单核细胞团的侧向散射光强度分布宽度,所述至少一个第二白细胞参数选自所述第二测定试样中的白细胞团的荧光强度分布宽度或侧向散射光强度分布宽度;
    所述基于所述至少一个第一白细胞参数和所述至少一个第二白细胞参数计算用于评估所述受试者的感染状态的感染标志参数,包括:
    基于所述第一测定试样中的单核细胞团的侧向散射光强度分布宽度和所述第二测定试样中的白细胞团的荧光强度分布宽度计算得到所述用于评估所述受试者的感染状态的感染标志参数,或
    基于所述第一测定试样中的单核细胞团的侧向散射光强度分布宽度和所述第二测定试样中的白细胞团的侧向散射光强度分布宽度计算得到所述用于评估所述受试者的感染状态的感染标志参数。
  45. 根据权利要求42所述的方法,其特征在于,根据所述感染标志参数评估所述受 试者的感染状态包括:
    当所述感染标志参数满足第二预设条件时,输出指示所述受试者患有脓毒症的提示信息。
  46. 根据权利要求45所述的方法,其特征在于,所述至少一个第一白细胞参数选自所述第一测定试样中的单核细胞团的侧向散射光强度分布宽度或所述第一测定试样中的中性粒细胞团的侧向散射光强度分布重心,所述至少一个第二白细胞参数选自所述第二测定试样中的白细胞团的荧光强度分布宽度;
    所述基于所述至少一个第一白细胞参数和所述至少一个第二白细胞参数计算用于评估所述受试者的感染状态的感染标志参数,包括:
    基于所述第一测定试样中的单核细胞团的侧向散射光强度分布宽度和所述第二测定试样中的白细胞团的荧光强度分布宽度计算得到所述用于评估所述受试者的感染状态的感染标志参数,或
    基于所述第一测定试样中的中性粒细胞团的侧向散射光强度分布重心和所述第二测定试样中的白细胞团的荧光强度分布宽度计算得到所述用于评估所述受试者的感染状态的感染标志参数。
  47. 根据权利要42所述的方法,其特征在于,根据所述感染标志参数评估所述受试者的感染状态包括:
    当所述感染标志参数满足第三预设条件时,输出指示所述受试者患有重症感染的提示信息。
  48. 根据权利要求47所述的方法,其特征在于,所述至少一个第一白细胞参数选自所述第一测定试样中的单核细胞团的侧向散射光强度分布宽度或前向散射光强度分布宽度,所述至少一个第二白细胞参数选自所述第二测定试样中的白细胞团的荧光强度分布宽度;
    所述基于所述至少一个第一白细胞参数和所述至少一个第二白细胞参数计算用于评估所述受试者的感染状态的感染标志参数,包括:
    基于所述第一测定试样中的单核细胞团的侧向散射光强度分布宽度和所述第二测定试样中的白细胞团的荧光强度分布宽度计算得到所述用于评估所述受试者的感染状态的感染标志参数,或
    基于所述第一测定试样中的单核细胞团的前向散射光强度分布宽度和所述第二测定试样中的白细胞团的荧光强度分布宽度计算得到所述用于评估所述受试者的感染状态的感染标志参数。
  49. 根据权利要求42所述的方法,其特征在于,所述受试者为感染患者、尤其是患有重症感染或患有脓毒症的患者;并且
    根据所述感染标志参数评估所述受试者的感染状态包括:根据所述感染标志参数监控所述受试者的感染病情发展。
  50. 根据权利要求49所述的方法,其特征在于,根据所述感染标志参数监控所述受试者的感染病情发展包括:
    获取通过多次检测、尤其是至少三次检测在不同时间点来自受试者的血液样本而获得的所述感染标志参数的值;
    根据通过所述多次的检测而获得的所述感染标志参数的值的变化趋势来判断所述受试者病情是否好转,优选当通过所述多次的检测而获得的所述感染标志参数的值逐渐趋势性减低时,输出指示所述受试者病情好转的提示信息。
  51. 根据权利要求49或50任一项所述的方法,其特征在于,所述至少一个第一白细胞参数选自所述第一测定试样中的单核细胞团的侧向散射光强度分布宽度,所述至少一个第二白细胞参数选自所述第二测定试样中的白细胞团的荧光强度分布宽度;
    所述基于所述至少一个第一白细胞参数和所述至少一个第二白细胞参数计算用于评估所述受试者的感染状态的感染标志参数,包括:
    基于所述第一测定试样中的单核细胞团的侧向散射光强度分布宽度和所述第二测定试样中的白细胞团的荧光强度分布宽度计算得到所述用于评估所述受试者的感染状态的感染标志参数。
  52. 根据权利要求42所述的方法,其特征在于,所述受试者为接受了治疗的脓毒症患者;并且
    根据所述感染标志参数评估所述受试者的感染状态包括:根据所述感染标志参数判断所述受试者的脓毒症预后是否良好。
  53. 根据权利要求42所述的方法,其特征在于,根据所述感染标志参数评估所述受试者的感染状态包括:
    根据所述感染标志参数判断所述受试者的感染类型是病毒感染还是细菌感染;或者
    根据所述感染标志参数判断所述受试者是患感染性炎症还是非感染性炎症。
  54. 根据权利要求42所述的方法,其特征在于,所述受试者为正在接受用药治疗的脓毒症患者,并且
    根据所述感染标志参数评估所述受试者的感染状态包括:根据所述感染标志参数对所述受试者进行脓毒症的疗效评估。
  55. 根据权利要求37至54中任一项所述的方法,其特征在于,所述方法还包括:
    当所述第一目标粒子团和/或所述第二目标粒子团的预设特征参数满足第四预设条件时,不输出所述感染标志参数的值,或者输出所述感染标志参数的值并且同时输出指示该感染标志参数的值不可靠的提示信息。
  56. 根据权利要求55所述的方法,其特征在于,所述方法还包括:
    当所述第一目标粒子团和/或所述第二目标粒子团的粒子总数小于预设阈值时,和/或当所述第一目标粒子团和/或所述第二目标粒子团与其他粒子团存在交叠时,不输出所述 感染标志参数的值,或者输出所述感染标志参数的值并且同时输出指示该感染标志参数的值不可靠的提示信息。
  57. 根据权利要求37至56中任一项所述的方法,其特征在于,所述方法还包括:
    当所述受试者患有血液疾病或者在所述待测血液样本中存在异常细胞、尤其是原始细胞时,例如当根据所述第一光学信息和/或所述第二光学信息判断所述待测血液样本中存在异常细胞、尤其是原始细胞时,不输出所述感染标志参数的值,或者输出所述感染标志参数的值并且同时输出指示该感染标志参数的值不可靠的提示信息。
  58. 感染标志参数在评估受试者的感染状态中的用途,其中,通过如下方法获得所述感染标志参数:
    计算通过流式细胞术对含有来自受试者的待测血液样本的一部分、第一溶血剂和用于白细胞分类的第一染色剂的第一测定试样检测得到的至少一个第一目标粒子团的至少一个第一白细胞参数;
    计算通过流式细胞术对含有所述待测血液样本的另一部分、第二溶血剂和用于识别有核红细胞的第二染色剂的第二测定试样检测得到的至少一个第二目标粒子团的至少一个第二白细胞参数,其中,第一白细胞参数和第二白细胞参数中的至少一个包括细胞特征参数;并且
    基于所述至少一个第一白细胞参数和所述至少一个第二白细胞参数计算感染标志参数。
PCT/CN2022/144177 2021-12-31 2022-12-30 血液细胞分析仪、方法以及感染标志参数的用途 WO2023125980A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2021/143911 2021-12-31
CN2021143911 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023125980A1 true WO2023125980A1 (zh) 2023-07-06

Family

ID=86998202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/144177 WO2023125980A1 (zh) 2021-12-31 2022-12-30 血液细胞分析仪、方法以及感染标志参数的用途

Country Status (1)

Country Link
WO (1) WO2023125980A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5559037A (en) * 1994-12-15 1996-09-24 Abbott Laboratories Method for rapid and simultaneous analysis of nucleated red blood cells
WO2011140042A1 (en) * 2010-05-05 2011-11-10 Abbott Laboratories Method for hematology analysis
CN113125392A (zh) * 2019-12-31 2021-07-16 深圳迈瑞生物医疗电子股份有限公司 检测隐球菌的样本分析仪、方法以及计算机可读存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5559037A (en) * 1994-12-15 1996-09-24 Abbott Laboratories Method for rapid and simultaneous analysis of nucleated red blood cells
WO2011140042A1 (en) * 2010-05-05 2011-11-10 Abbott Laboratories Method for hematology analysis
CN113125392A (zh) * 2019-12-31 2021-07-16 深圳迈瑞生物医疗电子股份有限公司 检测隐球菌的样本分析仪、方法以及计算机可读存储介质

Similar Documents

Publication Publication Date Title
US20210366615A1 (en) Infection detection and differentiation systems and methods
JP6321637B2 (ja) 白血球数の測定方法及び測定装置
US11796447B2 (en) Systems and methods for using cell granularitry in evaluating immune response to infection
US11994514B2 (en) Method of determining sepsis in the presence of blast flagging
WO2016106688A1 (zh) 一种有核红细胞报警方法、装置及流式细胞分析仪
US20140172321A1 (en) Leukemia classification using cpd data
US20140160464A1 (en) Tuberculosis screening using cpd data
WO2023125980A1 (zh) 血液细胞分析仪、方法以及感染标志参数的用途
WO2023125939A1 (zh) 血液细胞分析仪、提示感染状态的方法以及感染标志参数的用途
WO2023125955A1 (zh) 血液细胞分析仪、方法以及感染标志参数的用途
WO2023125942A1 (zh) 血液细胞分析仪、方法以及感染标志参数的用途
WO2023125940A1 (zh) 血液细胞分析仪、方法以及感染标志参数的用途
WO2023125988A1 (zh) 血液细胞分析仪、方法以及感染标志参数的用途
CN117871371A (zh) 血液分析仪、血液分析方法和计算机可读存储介质
WO2022061674A1 (zh) 样本分析仪、样本分析方法以及计算机可读存储介质
CN117871370A (zh) 血液分析仪、血液分析方法和计算机可读存储介质
CN117825243A (zh) 血细胞分析仪、血液分析方法以及感染标志参数的用途
CN114222907A (zh) 检测和报道中性粒细胞亚群
EP2926113A1 (en) Tuberculosis screening using cpd data
EP2883036A2 (en) Leukemia classification using cpd data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915227

Country of ref document: EP

Kind code of ref document: A1