WO2022061674A1 - 样本分析仪、样本分析方法以及计算机可读存储介质 - Google Patents

样本分析仪、样本分析方法以及计算机可读存储介质 Download PDF

Info

Publication number
WO2022061674A1
WO2022061674A1 PCT/CN2020/117542 CN2020117542W WO2022061674A1 WO 2022061674 A1 WO2022061674 A1 WO 2022061674A1 CN 2020117542 W CN2020117542 W CN 2020117542W WO 2022061674 A1 WO2022061674 A1 WO 2022061674A1
Authority
WO
WIPO (PCT)
Prior art keywords
leukocyte
body fluid
sample
area
scattered light
Prior art date
Application number
PCT/CN2020/117542
Other languages
English (en)
French (fr)
Inventor
李进
苟理尧
祁欢
黄炳御
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to CN202080102525.XA priority Critical patent/CN115885166A/zh
Priority to PCT/CN2020/117542 priority patent/WO2022061674A1/zh
Publication of WO2022061674A1 publication Critical patent/WO2022061674A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/12Coulter-counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/51Scattering, i.e. diffuse reflection within a body or fluid inside a container, e.g. in an ampoule
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers

Definitions

  • the present invention relates to the field of body fluid detection, in particular to a sample analyzer, a sample analysis method and a computer-readable storage medium.
  • Body fluid detection is of great significance in the screening, diagnosis, treatment, and recurrence monitoring of cancer patients.
  • body fluid detection methods in clinical use mainly include routine body fluid detection, body fluid biochemical detection, body fluid tumor marker detection, and body fluid exfoliation cytology detection.
  • Routine testing of body fluids usually includes physical, chemical, and microscopic examinations of body fluid samples. Although routine detection of body fluids is a mandatory detection item for body fluids, this method utilizes indirect changes in the body caused by tumors, so the sensitivity and specificity of using this method to detect tumors are very low.
  • Body fluid biochemical detection refers to the detection of proteins, glucose, lipids, enzymes, etc. in body fluid samples. For example, if the total amount of protein is less than 25g/L, it indicates that the tested body fluids are mostly benign body fluids, while the total amount of protein greater than 25g/L indicates that the detected body fluids are mostly malignant body fluids or infectious body fluids. Similar to the routine detection of body fluids, the sensitivity and specificity of the biochemical detection of body fluids are low.
  • Body fluid tumor marker detection refers to the use of immunological methods to detect proteins specific for tumor diagnosis in body fluids.
  • the normal range is 0-5 ⁇ g/L.
  • the tested body fluid may be malignant effusion.
  • the sensitivity of the method is very high.
  • this method can only be performed under the advice of a clinician, which is very dependent on the experience of the clinician, and the detection project is expensive, which is not conducive to tumor screening.
  • Body fluid exfoliation cytology refers to the staining of cells in body fluid samples by histochemical or immunohistochemical methods, and the use of morphological methods to detect cells under a microscope. Exfoliated cytology tests can identify white blood cells, mesothelial cells, tumor cells, and other abnormal cells in body fluid samples, and can also determine the type of tumor cells, such as adenocarcinoma, squamous cell carcinoma, or leukemia cells. As the gold standard for humoral tumor cell detection, humoral exfoliation cytology has nearly 100% specificity. However, the sensitivity of this method is low, and it has been reported in the literature that the sensitivity of body fluid exfoliation cytology to detect tumor cells is only 30%. In addition, as a manual microscopic examination method, this method is very dependent on the experience of the inspectors, and requires high professional competence of the operators. The body fluid exfoliation cytology test cannot meet the needs of medical institutions at all levels for tumor screening.
  • the blood cell analyzer is often used for routine detection of body fluids.
  • the blood cell analyzer can detect tumor cells in body fluids by taking advantage of the fact that the nucleic acid content of tumor cells is higher than that of normal cells.
  • the fluorescence signal of tumor cells is higher than that of normal cells. Due to the convenience, speed and low cost, the blood cell analyzer is very suitable for the screening of tumor cells.
  • tumor cells in body fluids are susceptible to interference from other cellular components, that is, cells with high fluorescence signals include not only tumor cells, but also normal cells such as mesothelial cells and macrophages, especially mesothelial cells to tumor cells. Detection has the greatest impact.
  • Mesothelial cells are the cells that constitute the serosal membrane of the human body cavity. There are a small amount of mesothelial cells in the serosal cavity of normal people. Mesothelial cells are larger than leukocytes, about 15-30 ⁇ m in diameter, round, oval or irregular, with nuclei located in the center of the cell or offset, mostly 1 nucleus, 2 or more nuclei can also be seen, nucleic acid substances. The content of mesothelial cells is also high, so on the scattergram of the blood cell analyzer, the mesothelial cells are also divided into high fluorescent cells. The interference of mesothelial cells makes blood cell analyzers less specific for detecting humoral tumor cells.
  • the task of the present invention is to provide a detection solution capable of detecting tumor cells and/or mesothelial cells in body fluids with high specificity.
  • a blood analyzer can accurately detect tumor cells in body fluids. It can be distinguished from high fluorescent cells, especially tumor cells and mesothelial cells in high fluorescent cells can be accurately distinguished, and the influence of mesothelial cells on tumor cell detection can be reduced.
  • a sample analyzer which includes:
  • a sampling device having a pipette with a pipette nozzle and a driving device for driving the pipette to quantitatively suck a body fluid sample through the pipette nozzle;
  • a sample preparation device having at least one reaction cell and a reagent supply part, wherein the at least one reaction cell is used for receiving the body fluid sample drawn by the sampling device, and the reagent supply part provides the hemolytic reagent and the fluorescent reagent to the at least one a reaction pool, whereby the body fluid sample drawn by the sampling device is mixed with the hemolytic reagent and the fluorescent reagent provided by the reagent supply part in the reaction pool to prepare a body fluid sample to be measured;
  • An optical detection device comprising a light source, a flow chamber, a scattered light detector and a fluorescence detector
  • the light source is used for emitting a light beam to illuminate the flow chamber
  • the flow chamber communicates with the reaction cell and the body fluid sample to be measured
  • the particles in the flow chamber can pass through the flow chamber one by one
  • the scattered light detector is used to detect the scattered light signal generated by the particles passing through the flow chamber after being irradiated with light
  • the fluorescence detector is used to detect the light passing through the flow chamber.
  • the processor is configured to perform the following steps: acquiring the scattered light signal and the fluorescence signal of the body fluid sample to be tested from the optical detection device, and generating a signal of the body fluid sample to be tested according to the scattered light signal and the fluorescence signal a scatter diagram, wherein the first non-leukocyte area and the second non-leukocyte area are identified in the scatter diagram according to the scattered light signal and the fluorescence signal, and the scatter characteristics of the first non-leukocyte area and the The scatter feature of the second non-leukocyte region obtains tumor cell information and/or mesothelial cell information of the body fluid to be tested.
  • a second aspect of the present invention provides another sample analyzer, the sample analyzer comprising:
  • a sampling device having a pipette with a pipette nozzle and a driving device for driving the pipette to quantitatively suck a body fluid sample through the pipette nozzle;
  • a sample preparation device having at least one reaction cell and a reagent supply part, wherein the at least one reaction cell is used for receiving the body fluid sample drawn by the sampling device, and the reagent supply part provides the hemolytic reagent and the fluorescent reagent to the at least one a reaction pool, whereby the body fluid sample drawn by the sampling device is mixed with the hemolytic reagent and the fluorescent reagent provided by the reagent supply part in the reaction pool to prepare a body fluid sample to be measured;
  • An optical detection device comprising a light source, a flow chamber, a scattered light detector and a fluorescence detector
  • the light source is used for emitting a light beam to illuminate the flow chamber
  • the flow chamber communicates with the reaction cell and the body fluid sample to be measured
  • the particles in the flow chamber can pass through the flow chamber one by one
  • the scattered light detector is used to detect the scattered light signal generated by the particles passing through the flow chamber after being irradiated with light
  • the fluorescence detector is used to detect the light passing through the flow chamber.
  • the processor is configured to perform the following steps: acquiring the scattered light signal and the fluorescence signal of the body fluid sample to be tested from the optical detection device, and generating a signal of the body fluid sample to be tested according to the scattered light signal and the fluorescence signal
  • a scatter diagram in which a preset non-leukocyte area is identified in the scatter diagram according to the scattered light signal and the fluorescent signal, and the position characteristics and distribution morphological characteristics of the scatter groups in the preset non-leukocyte area are identified in the scatter diagram.
  • a third aspect of the present invention provides a sample analysis method for acquiring tumor cell information and/or mesothelial cell information of a body fluid sample to be tested, the sample analysis method comprising:
  • the tumor cell information and/or mesothelial cell information of the body fluid to be tested is obtained according to the scatter features of the first non-leukocyte region and the scatter features of the second non-leukocyte region.
  • a fourth aspect of the present invention provides another sample analysis method for acquiring tumor cell information and/or mesothelial cell information in a body fluid sample to be tested, the sample analysis method comprising:
  • the tumor cell information and/or the mesothelial cell information of the body fluid to be measured is obtained according to the location characteristics and distribution morphological characteristics of the scattered point groups in the preset non-leukocyte area. .
  • a fifth aspect of the present invention provides a computer-readable storage medium having stored thereon executable instructions that, when executed by a computer, cause the computer to implement sample analysis according to the third or fourth aspect of the present invention method.
  • a blood cell analyzer is used to perform hemolysis and staining on the body fluid to be measured, and then the scattered light signal and the fluorescent signal are detected, and the tumor is detected on the scattergram composed of the scattered light signal and the fluorescent signal.
  • FIG. 1 is a schematic diagram of an embodiment of a sample analyzer according to the present invention.
  • FIG. 2 is a schematic diagram of an embodiment of an optical detection device of a sample analyzer according to the present invention
  • 3A is a forward scattered light-fluorescence scatter plot for distinguishing tumor cells and mesothelial cells according to the present invention
  • 3B is a side scatter light-fluorescence scattergram for distinguishing tumor cells and mesothelial cells according to the present invention
  • 4A is a side scattered light-fluorescence scatter diagram of a body fluid sample to be tested with mesothelial cells according to the present invention
  • 4B is a side scattered light-fluorescence scattergram of a body fluid sample to be tested with tumor cells according to the present invention
  • FIG. 5 is a schematic flow chart of the sample analysis method according to the first embodiment of the present invention.
  • FIG. 6 is another schematic flow chart of the sample analysis method according to the first embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a sample analysis method according to a second embodiment of the present invention.
  • FIG. 8 is a schematic flow chart of a sample analysis method according to a third embodiment of the present invention.
  • FIG. 9 is another schematic flow chart of the sample analysis method according to the third embodiment of the present invention.
  • connection and “connection” mentioned in this application, unless otherwise specified, include both direct and indirect connections (connections).
  • the hyperfluorescent cells mentioned herein refer to cells with stronger fluorescence than leukocytes.
  • the high fluorescence area refers to the area in the scatter diagram in which the fluorescence center of gravity (average value of fluorescence signal intensity) of the scatter group is higher than the fluorescence center of the scatter group in the white blood cell area.
  • the high fluorescence region can be obtained by those skilled in the art through experience or experiments.
  • Body fluid can be divided into cerebrospinal fluid, serous cavity fluid, and synovial fluid according to different parts.
  • a small amount of the above-mentioned body fluids are present in normal human body.
  • the effusion in the serous cavity includes pleural effusion (pleural effusion), ascites (ascites) and pericardial effusion (pericardial effusion), and the effusion in the joint cavity is synovial fluid (joint effusion).
  • Malignant tumors are immaturely differentiated, grow rapidly, infiltrate and destroy the structure and function of organs, and develop distant metastasis, mainly through the inflammatory response, immune activation, and destruction of the physiological structure of organs caused by infiltration and metastasis.
  • Tumor cells homologous to the primary tumor often appear in body fluids.
  • the increased body fluids caused by malignant tumors are called malignant body fluids.
  • the blood cell analyzer used in the present invention sorts and counts the particles in the sample through flow cytometry combined with laser light scattering method and fluorescent staining.
  • the detection principle of the blood cell analyzer is as follows: firstly draw a body fluid sample or blood sample, and treat the sample with a hemolytic agent and a fluorescent dye. Among them, the red blood cells are destroyed and dissolved by the hemolytic agent, and the white blood cells will not be dissolved, but the fluorescent dye can be used with the help of the hemolytic agent. Then, the particles in the sample pass through the detection holes irradiated by the laser beam one by one.
  • the characteristics of the particles themselves can block or change the direction of the laser beam, thereby generating scattered light at various angles corresponding to its characteristics, which can be received by the signal detector to obtain relevant information on particle structure and composition.
  • forward scatter (FS) reflects the number and volume of particles
  • side scatter (SS) reflects the complexity of the internal structure of cells (such as intracellular particles or nuclei)
  • fluorescence (Fluorescence, FL) ) reflects the content of nucleic acid substances in cells. Using this light information, the particles in the sample can be classified and counted.
  • FIG. 1 is a schematic diagram of an embodiment of a blood cell analyzer used in the present invention.
  • the blood cell analyzer 100 includes a sampling device 110 , a sample preparation device 120 , an optical detection device 130 and a processor 140 .
  • the blood cell analyzer 100 has a fluid circuit system (not shown) for communicating the sampling device 110, the sample preparation device 120, and the optical detection device 130 for liquid transfer between these devices.
  • the sampling device 110 has a pipette with a pipette nozzle and a drive device for driving the pipette to quantitatively aspirate a sample to be tested, such as a body fluid sample or a blood sample, through the pipette nozzle.
  • the sampling device may deliver the collected sample to the sample preparation device 120 .
  • the sample preparation device 120 has at least one reaction cell and a reagent supply part, wherein the at least one reaction cell is used to receive the sample to be tested drawn by the sampling device 110, and the reagent supply part provides the dissolution reagent to the at least one reaction cell
  • the sample to be tested sucked by the sampling device and the dissolving reagent provided by the reagent supply part are mixed in the reaction pool to prepare a sample to be tested, such as a sample of body fluid to be tested.
  • the lysis reagents include hemolysis reagents and fluorescent reagents.
  • the hemolytic agent can be any existing hemolytic agent used for leukocyte classification in an automated blood analyzer, and it can be one of cationic surfactants, nonionic surfactants, anionic surfactants, and amphiphilic surfactants. any one or a combination of several.
  • the fluorescent dye is used to stain cells.
  • the solubilizing reagent may employ the solubilizing reagent formulation disclosed in US Pat. No. 8,367,358, the entire disclosure of which is incorporated herein by reference.
  • U.S. Patent No. 8,367,358 discloses a solubilizing agent comprising a cationic cyanine compound (a fluorescent dye), a cationic surfactant, a nonionic surfactant, and an anionic compound.
  • the fluorescent dyes described in US Pat. No. 8,273,329 the entire disclosure of which is incorporated herein by reference, can also be used.
  • the optical detection device 130 includes a light source, a flow chamber, a scattered light detector and a fluorescence detector, the light source is used for emitting a light beam to illuminate the flow chamber, the flow chamber communicates with the reaction cell and the body fluid sample to be measured
  • the particles in the flow chamber can pass through the flow chamber one by one
  • the scattered light detector is used to detect the scattered light signal generated by the particles passing through the flow chamber after being irradiated with light
  • the fluorescence detector is used to detect the light passing through the flow chamber.
  • the scattered light detector is a forward scattered light detector for detecting forward scattered light or a side scattered light detector for detecting side scattered light.
  • Optical detection device 130 preferably includes a forward scatter light detector and a side scatter light detector.
  • a flow chamber refers to a chamber of a focused fluid flow suitable for detecting light scattering and fluorescent signals.
  • a particle such as a blood cell
  • the particle scatters the incident light beam from the light source directed to the detection aperture in all directions.
  • Light scattered by the particles can be detected by providing light detectors at one or more different angles relative to the incident beam to obtain a light scattering signal. Since different particles have different light scattering properties, the light scattering signal can be used to distinguish different particle populations.
  • the light scatter signal detected in the vicinity of the incident beam is often referred to as a forward light scatter signal or a small angle light scatter signal.
  • the forward light scattering signal can be detected from an angle of about 1° to about 10° from the incident beam. In other embodiments, the forward light scattering signal may be detected from an angle of about 2° to about 6° from the incident beam.
  • the light scatter signal detected at about 90° to the incident beam is commonly referred to as the side light scatter signal.
  • the lateral light scatter signal may be detected from an angle of about 65° to about 115° from the incident beam.
  • fluorescent signals from blood cells stained with fluorescent dyes are also typically detected in a direction approximately 90° from the incident beam.
  • FIG. 2 shows a specific example of the optical detection device 130 .
  • the optical detection device 130 has a light source 101, a beam shaping component 102, a flow chamber 103, and a forward scattered light detector 104, which are sequentially arranged on a straight line.
  • a dichroic mirror 106 is arranged at an angle of 45° to the line.
  • the processor 140 is used to perform operations on the data to obtain the required results. For example, a two-dimensional scattergram or a three-dimensional scattergram can be generated according to various collected optical signals, and particles can be performed on the scattergram according to the method of setting gates. analyze.
  • the processor 140 may also perform visual processing on the intermediate operation result or the final operation result, and then display it through the display device 150 .
  • the processor 140 is configured to implement the method described in detail below.
  • the processor 140 includes but is not limited to a central processing unit (Central Processing Unit, CPU), a microcontroller unit (Micro Controller Unit, MCU), a Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), a digital signal processor ( DSP) and other devices used to interpret computer instructions and process data in computer software.
  • the processor 140 is configured to execute various computer application programs in the computer-readable storage medium, so that the blood cell analyzer 100 executes the corresponding detection process and analyzes and processes the optical signal detected by the optical detection device 130 in real time.
  • the blood cell analyzer 100 further includes a first casing 160 and a second casing 170 .
  • the display device 150 may be, for example, a user interface.
  • the optical detection device 130 and the processor 140 are disposed inside the second casing 170 .
  • the sample preparation device 120 is, for example, disposed inside the first casing 160
  • the display device 150 is disposed, for example, on the outer surface of the first casing 160 and used to display the detection result of the blood cell analyzer.
  • the hematology analyzer may output parameters of the highly fluorescent cells, such as a high fluorescent cell count or a high fluorescent cell ratio.
  • parameters of the highly fluorescent cells such as a high fluorescent cell count or a high fluorescent cell ratio.
  • current blood cell analyzers cannot accurately distinguish tumor cells or mesothelial cells from the detected hyperfluorescent cells. Accurately identifying tumor cells from highly fluorescent cells is of great significance for rapid and low-cost screening of tumors.
  • the cell body of mesothelial cells is round or oval, with abundant cytoplasm, regular centered nuclei, and fine and uniform chromatin.
  • tumor cells are larger in size, with irregular cell bodies, abundant cytoplasm, irregular karyotype, and rough chromatin.
  • the inventors unexpectedly noticed that the volume of tumor cells and mesothelial cells is larger than that of normal leukocytes.
  • tumor cells are heteromorphic, the shape and size of their cells and nuclei can have different changes, but compared with mesothelial cells. , the nucleocytoplasmic ratio of tumor cells is almost always increased, the nucleic acid content in the nucleus will increase, and the nuclear chromatin will be rougher.
  • tumor cells and mesothelial cells can be distinguished according to the scatter position on the scatter diagram of the blood cell analyzer.
  • the inventors obtained through a lot of research and experiments that in the scattergram composed of the fluorescence signal and scattered light signal of the body fluid, a suitable gate is set in the high fluorescence area by setting a gate method.
  • the non-leukocyte area T or tumor cell area T so that the scattered dots in the non-leukocyte area T represent tumor cells, and the fluorescence signal/fluorescence intensity of the particles in the non-leukocyte area T is greater than or substantially greater than that in the hyperfluorescence area. Fluorescence signal/fluorescence intensity of other particles.
  • another suitable non-leukocyte area M or mesothelial cell area M is set in the high fluorescence area by the gating method, so that the scattered points in the non-leukocyte area M represent mesothelial cells, and the non-leukocyte area M in the
  • the fluorescence signal/fluorescence intensity of the particles is smaller or substantially smaller than the fluorescence signal/fluorescence intensity of the non-leukocyte area T, that is, the fluorescence center of gravity of the particle population represented by the scatter in the non-leukocyte area M is smaller than that in the non-leukocyte area T. Fluorescence centroids of the indicated particle populations.
  • tumor cells and mesothelial cells can be more accurately identified.
  • mesothelial cells can undergo Epithelial-mesenchymal transformation (EMT), and cells are transformed from epithelioid to fibroblasts. Like cells, manifested as increased cell pseudopods, enlarged nuclei, and increased invasiveness. Such transformed cells are also referred to as nuclear heterogeneous cells, atypical cells, anaplastic cells, atypical cells, and the like. Such mesothelial cells show increased fluorescence signal and side scattered light on the scattergram, making it difficult to distinguish them from tumor cells.
  • EMT Epithelial-mesenchymal transformation
  • the inventors realized that since epithelial-mesenchymal transition is a continuous process, newly exfoliated mesothelial cells in the serosal cavity coexist with mesothelial cells in the process of transition, and therefore characterize the scatter of such mesothelial cells to separate the mesothelial cells from the mesothelial cells.
  • the continuous form of the dermal cell area M to the tumor cell area T exists, showing a continuous extension trend, which is a specific manifestation of mesothelial cells, as shown in Figure 4A.
  • tumor cells are of monoclonal origin, and newly generated tumor cells will not undergo a continuous process of change.
  • the high fluorescence region H includes the tumor cell region T and the mesothelial cell region M.
  • the various methods proposed in the embodiments of the present invention are especially applied to the above-mentioned blood cell analyzer 100 , and are especially implemented by the processor 140 of the above-mentioned blood cell analyzer 100 .
  • the first embodiment of the present invention provides a sample analysis method 200 for acquiring tumor cell information of a body fluid sample to be tested.
  • the sample analysis method includes the following steps.
  • Step S201 acquiring scattered light signals and fluorescent signals generated by the particles in the hemolyzed and fluorescently dyed body fluid sample to be tested passing through the optical detection device.
  • the body fluid sample to be measured is first provided, and the body fluid sample to be measured is sucked by the sampling device 110 through a pipette and sent to the sample preparation device 120 .
  • the body fluid sample to be tested is mixed with the hemolytic agent and the fluorescent reagent in the reaction tank of the sample preparation device 120 and incubated for a period of time, thereby forming the sample liquid to be tested.
  • the sample liquid to be tested is transported to the flow chamber of the optical detection device 130 through the liquid circuit system, and each particle in the sample liquid to be tested passes through the detection holes of the flow chamber one by one, and the scattered light detector and the fluorescence detector respectively detect and pass through the flow chamber The scattered light signal and fluorescent signal generated by the particle after being irradiated by light.
  • Step S202 generating a scattergram of the body fluid sample to be measured according to the scattered light signal and the fluorescence signal.
  • the scattergram can be a two-dimensional scattergram with the forward scattered light signal as the abscissa and the fluorescence signal as the ordinate (as shown in FIG. 3A ), or it can be the side scattered light signal as the abscissa and the fluorescence signal as the ordinate
  • the signal is a two-dimensional scattergram of the ordinate (as shown in Figure 3B), or it can be a three-dimensional scattergram composed of forward scattered light signal, side scattered light signal and fluorescence signal.
  • the scattergram includes at least side scattered light signals.
  • the scatter diagram in this paper is not limited by the graphic form, and can also be in the form of data, such as a table or list with the same or similar resolution as the scatter diagram. other suitable means known.
  • Step S203 identifying the first non-leukocyte area and the second non-leukocyte area in the scattergram according to the scattered light signal and the fluorescence signal.
  • the first non-leukocyte area may be the tumor cell area T, and the second non-leukocyte area may be the high fluorescence area H; or conversely, the first non-leukocyte area may be the high fluorescence area H, and the second non-leukocyte area may be the tumor cell area T.
  • the tumor cell region T is a part of the high fluorescence region H.
  • the second non-leukocyte area H includes the first non-leukocyte area T.
  • Step S204 obtaining tumor cell information of the body fluid to be measured according to the scatter feature of the first non-leukocyte area and the scatter feature of the second non-leukocyte area.
  • step S204 whether there are tumor cells in the body fluid sample to be tested can be determined according to the scatter features of the first non-leukocyte area to obtain a first judgment result; according to the scatter features of the second non-leukocyte area Determine whether there are tumor cells in the body fluid sample to be tested to obtain a second judgment result; and then obtain tumor cell information of the body fluid to be tested according to the first judgment result and the second judgment result.
  • the specificity and sensitivity of identifying body fluid tumor cells using a hematology analyzer can be greatly improved, so that a reliable and reliable blood cell analyzer can be realized at low cost. Cancer screening.
  • the method provided by the embodiment of the present invention is used to detect 220 cases of thoracic and ascites effusion, and all body fluid samples are subjected to cell morphology detection after staining , to compare the test performance of traditional high fluorescence cell parameters and the improved algorithm for humoral tumor cell parameters.
  • the test results are shown in Table 1. Among them, among the 220 body fluid samples, 61 samples were pathologically confirmed positive for tumor cells, and 159 samples were negative for tumor cells.
  • Table 1 The detection results of traditional high fluorescence cell parameters and the detection results of tumor cell parameters of the present invention
  • the new tumor cell parameters obtained after using the improved algorithm exclude the interference of mesothelial cells and monocytes/macrophages.
  • the sensitivity and specificity of the traditional high-fluorescence cell parameter detection are 0.836 and 0.535, respectively, while the sensitivity and specificity of using the method of the present invention to detect tumor cells are 0.869 and 0.792, respectively, which indicates that the improved algorithm
  • the new tumor cell parameter detection has much higher specificity than the traditional high fluorescence cell parameter detection. That is to say, the new tumor cell parameter has better diagnostic performance, which enables the blood cell analyzer to be better used for screening and alarming of humoral tumor cells in clinical laboratories.
  • the tumor cell information may include tumor cell counts. For example, when it is judged that there are tumor cells in the body fluid to be tested according to the first judgment result or the second judgment result, the scattered points in the first non-leukocyte area or the second non-leukocyte area are counted to obtain the tumor cell count.
  • the tumor cell information may also include a tumor cell ratio, where the tumor cell ratio is a ratio of tumor cell count to nucleated cell count or high fluorescent cells.
  • the sample analysis method 200 further includes obtaining a nucleated cell count or a high fluorescent cell count of the body fluid sample to be tested according to the scattered light signal and the fluorescence signal, and then according to the tumor cell count and the nucleated cell count or high fluorescence cell count Fluorescent cell counts were used to obtain the proportion of tumor cells.
  • the tumor cell information may include tumor alarm information to prompt the user that the body fluid sample to be tested may be a tumor sample.
  • the tumor cell information may include tumor alarm information to prompt the user that the body fluid sample to be tested may be a tumor sample.
  • the tumor cell information may include tumor alarm information to prompt the user that the body fluid sample to be tested may be a tumor sample.
  • the tumor alarm information may prompt the user that the body fluid sample to be tested may be a tumor sample.
  • the sample analysis method 200 includes:
  • Step S201 acquiring scattered light signals and fluorescent signals generated by the particles in the hemolyzed and fluorescently dyed body fluid sample to be tested passing through an optical detection device;
  • Step S202 generating a scattergram of the body fluid sample to be measured according to the scattered light signal and the fluorescence signal;
  • Step S214 when the scatter feature in the first non-leukocyte area satisfies the first preset condition, obtain the body fluid sample to be measured according to the scattered light signal and the fluorescence signal of the scatter in the first non-leukocyte area tumor cell information;
  • Step S215 when the scatter feature in the first non-leukocyte region does not meet the first preset condition, identify the second scatter in the scatter diagram according to the scattered light signal and the fluorescence signal. non-leukocyte areas;
  • Step S216 when the scatter characteristics of the second non-leukocyte area satisfy the second preset condition, obtain the body fluid sample to be measured according to the scattered light signal and the fluorescence signal of the scatter in the second non-leukocyte area. tumor cell information.
  • the first non-white blood cell area is the tumor cell area T
  • first determine whether there are scattered clusters in the tumor cell area T and then implement the method described in conjunction with FIG. 4 .
  • the second non-white blood cell region is the high fluorescence region H
  • the method described in conjunction with FIG. 4 may also be implemented first (the first non-leukocyte region is the high fluorescence region H), and then the method described in conjunction with FIG. 3 (the second non-leukocyte region is tumor cells) may be implemented. area T).
  • the first preset condition is scatter aggregation in the first non-leukocyte area Clustering, that is, the first preset condition is that there are scattered clusters (particle clusters) in the first non-leukocyte region.
  • Clustering that is, the first preset condition is that there are scattered clusters (particle clusters) in the first non-leukocyte region.
  • the second preset condition is that the distribution shape of the scattered points in the second non-leukocyte region satisfies the preset distribution shape, that is, when the scattered points in the tumor cell region T do not aggregate into clusters, but have high fluorescence.
  • the distribution shape of the scattered points in the area H satisfies the distribution of tumor cells, that is, when the scattered points in the high fluorescence area H are in a scattered state rather than an extended state, it indicates that there are tumor cells in the body fluid sample to be tested.
  • the sample analysis method 200 further includes the following steps:
  • Step S207 identifying a third non-leukocyte region, that is, the mesothelial cell region M, in the scattergram according to the scattered light signal and the fluorescence signal;
  • Step S208 when the scatter characteristics of the third non-leukocyte area meet the third preset condition, obtain the body fluid sample to be measured according to the scattered light signal and the fluorescence signal of the scatter in the third non-leukocyte area.
  • Mesothelial cell information is, for example, that the scattered points in the third non-leukocyte area gather into a cluster, that is, when the number of scattered points in the mesothelial cell area M reaches a predetermined number and the degree of aggregation reaches a preset degree, the scattered points in the mesothelial cell area M When the dots are clustered together, it indicates the presence of mesothelial cells in the body fluid sample to be tested.
  • the sample analysis method 200 further includes step S217 : when the scatter feature of the second non-white blood cell area does not meet the second preset condition and meets the fourth preset condition, for example, the second non-white blood cell area
  • the scatter feature of the second non-white blood cell area does not meet the second preset condition and meets the fourth preset condition, for example, the second non-white blood cell area
  • the scattered points in the leukocyte area are aggregated into a cluster and show a continuous extending shape
  • the mesothelial cell information of the body fluid sample to be tested is obtained according to the scattered light signal and the fluorescence signal of the scattered points in the second non-leukocyte area.
  • the mesothelial cells in the body fluid sample to be tested can be further identified.
  • the mesothelial cell information may include a mesothelial cell count and/or a mesothelial cell ratio.
  • the scatter feature of the third non-leukocyte area satisfies a third preset condition
  • the scatter in the third non-leukocyte area is counted to obtain a mesothelial cell count. Similar to the tumor cell ratio, this mesothelial cell ratio is the ratio of the mesothelial cell count to the nucleated cell count or hyperfluorescent cells.
  • sample analysis method 200 other particles, such as white blood cells, can also be identified at the same time.
  • the sample analysis method 200 may be implemented in a white blood cell detection channel of a hematology analyzer.
  • the sample analysis method 200 includes the following steps:
  • the leukocyte information of the body fluid sample to be tested is obtained according to the leukocyte area, and the leukocyte information includes leukocyte classification information and/or leukocyte count information.
  • the step of obtaining the leukocyte information of the body fluid sample to be tested according to the leukocyte region includes:
  • the leukocytes in the body fluid sample to be tested are classified into lymphocytes, neutrophils, monocytes/macrophages and eosinophils according to scattered light signals and fluorescence signals of scattered spots in the leukocyte area .
  • the sample analysis method provided by the embodiment of the present invention can be implemented in the existing leukocyte detection channel (leukocyte classification channel or leukocyte counting channel), such as the DIFF channel of Mindray's blood analyzer, without setting up a separate channel.
  • the existing leukocyte detection channel leukocyte classification channel or leukocyte counting channel
  • white blood cell information, tumor cell information and mesothelial cell information can be obtained in one test.
  • a mononuclear cell particle population and/or a plurality of nuclear cell particle populations can also be distinguished according to the scattered light signal and the fluorescent signal. Still further, the mononuclear cell particle population and/or the multinuclear cell particle population can also be counted to obtain a mononuclear cell number count and a mononuclear cell ratio or a multinuclear cell count and a multinuclear cell ratio.
  • the fluorescent dye used in the embodiment of the present invention is an asymmetric cyanine dye.
  • Asymmetric cyanine dyes have the characteristics of good cell membrane permeability and strong nucleic acid binding specificity, so they can better distinguish leukocytes, mesothelial cells and tumor cells in the dimension of fluorescent signal.
  • embodiments of the present invention are particularly suitable for detecting tumor cells and/or mesothelial cells in cerebrospinal fluid, pleural effusion, and ascites.
  • a second embodiment of the present invention provides a sample analysis method 300 for acquiring mesothelial cell information of a body fluid sample to be tested, the sample analysis method 300 includes:
  • the scattered light signals include side scattered light signals.
  • steps S301 and S302 reference may be made to the above-mentioned steps S201 and S202.
  • the first non-leukocyte region may be the mesothelial cell region M, and the second non-leukocyte region may be the high fluorescence region H; or conversely, the first non-leukocyte region may be the high fluorescence region H, and the second non-leukocyte region may be the mesothelial region Cell area M.
  • the mesothelial cell area M is a part of the high fluorescence area H.
  • S304 Obtain the mesothelial cell information of the body fluid to be measured according to the scatter feature of the first non-leukocyte area and the scatter feature of the second non-leukocyte area.
  • step S304 whether there are mesothelial cells in the body fluid sample to be tested can be determined according to the scatter characteristics of the first non-leukocyte area to obtain a first judgment result; according to the scatter characteristics of the second non-leukocyte area
  • the feature judges whether there are mesothelial cells in the body fluid sample to be tested to obtain a second judgment result; and then obtains mesothelial cell information of the body fluid to be tested according to the first judgment result and the second judgment result.
  • the third embodiment of the present invention further provides a sample analysis method 400 for acquiring tumor cell information and/or mesothelial cell information of a body fluid sample to be tested.
  • the sample analysis method 400 includes:
  • S404 Obtain tumor cell information and/or mesothelial cell information of the body fluid to be measured according to the location features and distribution morphological features of the scattered point groups in the preset non-white blood cell region.
  • steps S401 and S402 may refer to the above-mentioned steps S201 and S202.
  • the scattered light signal includes a side scattered light signal.
  • the preset non-leukocyte region is a high fluorescence region H.
  • Tumor cells and/or mesothelial cells can be more accurately identified by analyzing the location and distribution of the scattered groups in the high fluorescence region H.
  • step S404 includes:
  • the first preset center of gravity range is set according to the tumor cell area T.
  • the preset non-white blood cell area such as the high fluorescence area H
  • the scatter point group appears in the high fluorescence area H.
  • the scattered group is the tumor cell group.
  • step S404 also includes:
  • the scattered point groups in the preset non-leukocyte area are not aggregated into clusters and the distribution shape of the scattered point group conforms to the first predetermined distribution shape, according to the scattered light of the scatter points in the preset non-leukocyte area
  • the signal and the fluorescent signal obtain the tumor cell information of the body fluid sample to be tested.
  • the tumor cell information is especially tumor alarm information, that is, information indicating the existence of tumor cells in the body fluid sample to be tested.
  • the scatter group in the preset non-leukocyte area when the scatter group in the preset non-leukocyte area is not aggregated into a cluster, but the scatter group is in a scattered state or the preset non-leukocyte area appears as a scattered area, the scatter group contains tumor cells.
  • step S404 also includes:
  • the scattered point groups in the preset non-leukocyte area are aggregated into a cluster and the fluorescence center of gravity of the scattered point group is within the second preset center of gravity range, according to the scattered light signals of the scattered points in the preset non-leukocyte area and the fluorescence signal to obtain the mesothelial cell information of the body fluid sample to be tested.
  • the second preset center of gravity range is set according to the mesothelial cell area M.
  • the mesothelial cell area M For example, when there is a clustered scatter point group in the preset non-white blood cell area, such as the high fluorescence area H, if the fluorescence center of gravity of the scatter point group is low, it indicates that the scatter point group appears in the high fluorescence area H
  • the scattered group is the mesothelial cell group.
  • step S404 also includes:
  • the scattered point groups in the preset non-leukocyte area are aggregated into a cluster and the distribution shape of the scattered point group conforms to the second predetermined distribution shape, according to the scattered light signal and fluorescence of the scattered points in the preset non-leukocyte area
  • the signal obtains the mesothelial cell information of the body fluid sample to be tested.
  • the scattered point group in the preset non-leukocyte area are aggregated into a group, and the scattered point group presents a continuous extension trend
  • the scattered point group is a mesothelial cell group.
  • the location is to determine whether the scatter group exists in the tumor cell area T or the mesothelial cell area M; if the scatter group exists in the tumor cell area T, the scatter group is a tumor cell group, and if the scatter group exists in the tumor cell area T If the scattered point group exists in the mesothelial cell area M, the scattered point group is a mesothelial cell group; if there is no clustered scattered point group in the preset non-leukocyte area, but the scattered point group is in a scattered state , indicating the presence of tumor cells.
  • the scatter point group is the mesothelial cell group.
  • sample analysis method 400 further includes:
  • the leukocyte information of the body fluid sample to be tested is obtained according to the leukocyte area, and the leukocyte information includes leukocyte classification information and/or leukocyte count information.
  • Another aspect of the present invention also provides a computer-readable storage medium having executable instructions stored thereon, the executable instructions, when executed by a computer, cause the computer to implement one of the above-described sample analysis methods.
  • the above-mentioned computer-readable storage medium may be volatile memory or non-volatile memory, and may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory, magnetic random access memory, flash memory, magnetic surface memory, optical disk, or CD-ROM; magnetic surface storage can be magnetic disk storage or tape storage.
  • Volatile memory may be random access memory, which acts as an external cache.
  • RAM random access memory
  • static random access memory synchronous static random access memory
  • dynamic random access memory synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory fetch memory enhanced synchronous dynamic random access memory
  • synchronous connection dynamic random access memory direct memory bus random access memory.
  • the memory described in the embodiments of the present invention is intended to include these and any other suitable types of memory.

Abstract

一种样本分析仪、样本分析方法以及计算机可读存储介质。样本分析方法包括:首先获取经溶血和荧光染色的待测体液样本中的粒子经过光学检测装置所产生的散射光信号和荧光信号;然后根据散射光信号和荧光信号生成待测体液样本的散点图;接着,根据散射光信号和荧光信号在散点图中识别第一非白细胞区域和第二非白细胞区域;最后,通过这两个非白细胞区域的散点特征判断待测体液样本中是否存在肿瘤细胞和/或间皮细胞,以获得待测体液的肿瘤细胞信息和/或间皮细胞信息。通过该样本分析方法能够较准确地识别出待测体液中的肿瘤细胞和/或间皮细胞。

Description

样本分析仪、样本分析方法以及计算机可读存储介质 技术领域
本发明涉及体液检测领域,尤其是涉及样本分析仪、样本分析方法以及计算机可读存储介质。
背景技术
体液检测在肿瘤患者的筛查、诊断、治疗、复发监控中有重要的意义。目前,临床使用的体液检测方法主要包括体液常规检测、体液生化检测、体液肿瘤标志物检测和体液脱落细胞学检测。
体液常规检测通常包括对体液样本的理学检查、化学检查和显微镜检查。虽然体液常规检测是体液的强制性检测项目,但该方法利用的是肿瘤所导致的机体的间接变化,因此利用这种方法检测肿瘤的灵敏度和特异度都很低。
体液生化检测是指对体液样本中的蛋白质、葡萄糖、脂类、酶类等进行检测。例如,蛋白质总量小于25g/L表明受检测体液多为良性体液,而蛋白质总量大于25g/L则表明受检测体液多为恶性体液或感染性体液。与体液常规检测类似,该体液生化检测的灵敏度和特异度都较低。
体液肿瘤标志物检测是指利用免疫学的方法对体液中有肿瘤诊断特异性的蛋白质进行检测。以CEA为例,正常范围为0~5μg/L,当CEA>20μg/L时,受检测体液可能为恶性积液。该方法的灵敏度很高,当机体有恶性肿瘤发生,即使体液中没有肿瘤细胞的脱落,肿瘤标志物检测也有较好的敏感性。然而,该方法必须在临床医生的医嘱下才可进行,非常依赖临床医生的经验,而且该检测项目成本昂贵,不利于肿瘤的筛查。
体液脱落细胞学检测是指通过组织化学或免疫组织化学手段对体液样本中的细胞进行染色,并在镜下使用形态学的方法对细胞进行检测。脱落细胞学检测可以识别体液样本中的白细胞、间皮细胞、肿瘤细胞和其他异常细胞,还可以判断肿瘤细胞的类型,如腺癌、鳞癌或白血病细胞等。作为体液肿瘤细胞检测的金标准,体液脱落细胞学检测具有接近100%的特异度。但该方法的灵敏度较低,有文献报道,体液脱落细胞学检测肿瘤细胞的灵敏度仅30%。另外,作为一种人工镜检的方法,该方法非常依赖检测人员的经验,对操作人员的专业能力要求较高,体液脱落细胞学检测难以满 足各级医疗机构对肿瘤筛查的需求。
血液细胞分析仪常用于体液常规检测,血液细胞分析仪可利用肿瘤细胞核酸物质含量高于正常细胞这一特点,对体液中的肿瘤细胞进行检测。在血液细胞分析仪中,肿瘤细胞的荧光信号高于正常细胞的荧光信号。由于方便、快捷、低成本的特点,血液细胞分析仪非常适用于肿瘤细胞的筛查。然而,体液中的肿瘤细胞容易受到其他细胞成分的干扰,即,具有高荧光信号的细胞不仅包括肿瘤细胞,还包括间皮细胞和巨噬细胞等正常细胞,特别是间皮细胞对肿瘤细胞的检测影响最大。间皮细胞是构成人体体腔浆膜的细胞,正常人浆膜腔中存在少量间皮细胞,在受炎症或肿瘤环境等的刺激后会大量脱落到浆膜腔中。间皮细胞体积较白细胞大,直径约15-30μm,呈圆形、椭圆形或不规则形,核在细胞中心或偏位,多为1个核,也可见2个或多个核,核酸物质的含量也较多,因此在血液细胞分析仪的散点图上,间皮细胞也被划分成高荧光细胞。间皮细胞的干扰使得血液细胞分析仪检测体液肿瘤细胞的特异性较低。
发明内容
因此,本发明的任务在于提供一种能够高特异性地检测体液中的肿瘤细胞和/或间皮细胞检测方案,在该检测方案中,利用血液分析仪能够实现准确地将体液中的肿瘤细胞从高荧光细胞中区分出来,特别是能够准确地区分高荧光细胞中的肿瘤细胞和间皮细胞,降低间皮细胞对肿瘤细胞检测的影响。
为了实现本发明的任务,本发明第一方面提供一种样本分析仪,该样本分析仪包括:
采样装置,具有带吸移管嘴的吸移管并且具有驱动装置,该驱动装置用于驱动所述吸移管通过所述吸移管嘴定量吸取体液样本;
样本制备装置,具有至少一个反应池和试剂供应部,其中,所述至少一个反应池用于接收采样装置所吸取的体液样本,所述试剂供应部将溶血试剂和荧光试剂提供给所述至少一个反应池,从而由所述采样装置所吸取的体液样本与由所述试剂供应部提供的溶血试剂和荧光试剂在所述反应池中混合,以制备成待测体液样本;
光学检测装置,包括光源、流动室、散射光检测器和荧光检测器,所述光源用于发射光束以照射所述流动室,所述流动室与所述反应池连通并且所述待测体液样本中的粒子可逐个通过所述流动室,所述散射光检测器用于检测通过所述流动室的粒子在被光照射后产生的散射光信号,所述荧光检测器用于检测通过所述流动室的粒子在被 光照射后产生的荧光信号;以及
处理器,配置用于执行下列步骤:从所述光学检测装置获取所述待测体液样本的散射光信号和荧光信号,根据所述散射光信号和所述荧光信号生成所述待测体液样本的散点图,根据所述散射光信号和所述荧光信号在所述散点图中识别第一非白细胞区域和第二非白细胞区域,根据所述第一非白细胞区域的散点特征和所述第二非白细胞区域的散点特征获得所述待测体液的肿瘤细胞信息和/或间皮细胞信息。
本发明第二方面提供另一种样本分析仪,该样本分析仪包括:
采样装置,具有带吸移管嘴的吸移管并且具有驱动装置,该驱动装置用于驱动所述吸移管通过所述吸移管嘴定量吸取体液样本;
样本制备装置,具有至少一个反应池和试剂供应部,其中,所述至少一个反应池用于接收采样装置所吸取的体液样本,所述试剂供应部将溶血试剂和荧光试剂提供给所述至少一个反应池,从而由所述采样装置所吸取的体液样本与由所述试剂供应部提供的溶血试剂和荧光试剂在所述反应池中混合,以制备成待测体液样本;
光学检测装置,包括光源、流动室、散射光检测器和荧光检测器,所述光源用于发射光束以照射所述流动室,所述流动室与所述反应池连通并且所述待测体液样本中的粒子可逐个通过所述流动室,所述散射光检测器用于检测通过所述流动室的粒子在被光照射后产生的散射光信号,所述荧光检测器用于检测通过所述流动室的粒子在被光照射后产生的荧光信号;以及
处理器,配置用于执行下列步骤:从所述光学检测装置获取所述待测体液样本的散射光信号和荧光信号,根据所述散射光信号和所述荧光信号生成所述待测体液样本的散点图,根据所述散射光信号和所述荧光信号在所述散点图中识别一预设非白细胞区域,根据所述预设非白细胞区域中的散点群的位置特征和分布形态特征获得所述待测体液的肿瘤细胞信息和/或间皮细胞信息。
本发明第三方面提供一种样本分析方法,用于获取待测体液样本的肿瘤细胞信息和/或间皮细胞信息,该样本分析方法包括:
获取经溶血和荧光染色的待测体液样本中的粒子经过光学检测装置所产生的散射光信号和荧光信号;
根据所述散射光信号和所述荧光信号生成所述待测体液样本的散点图;
根据所述散射光信号和所述荧光信号在所述散点图中识别第一非白细胞区域和第二非白细胞区域;
根据所述第一非白细胞区域的散点特征和所述第二非白细胞区域的散点特征获得所述待测体液的肿瘤细胞信息和/或间皮细胞信息。
本发明第四方面提供另一种样本分析方法,用于获取待测体液样本中的肿瘤细胞信息和/或间皮细胞信息,该样本分析方法包括:
获取经溶血和荧光染色的待测体液样本中的粒子经过光学检测装置所产生的散射光信号和荧光信号;
根据所述散射光信号和所述荧光信号生成所述待测体液样本的散点图;
根据所述散射光信号和所述荧光信号在所述散点图中识别一预设非白细胞区域;
根据所述预设非白细胞区域中的散点群的位置特征和分布形态特征获得所述待测体液的肿瘤细胞信息和/或间皮细胞信息。。
本发明第五方面提供一种计算机可读存储介质,其上存储有可执行指令,所述可执行指令在被计算机执行时引起所述计算机实现根据本发明第三方面或第四方面的样本分析方法。
在本发明各方面提供的技术方案中,使用血液细胞分析仪对待测体液进行溶血和染色处理,然后检测散射光信号和荧光信号,在由散射光信号和荧光信号组成的散点图上对肿瘤细胞和间皮细胞进行准确的区分,同时还能够进行白细胞的分类和计数,从而能够实现快速且低成本的肿瘤筛查。
附图说明
图1为按照本发明的样本分析仪的一种实施例的示意图;
图2为按照本发明的样本分析仪的光学检测装置的一种实施例的示意图;
图3A为按照本发明的用于区分肿瘤细胞和间皮细胞的前向散射光-荧光散点图;
图3B为按照本发明的用于区分肿瘤细胞和间皮细胞的侧向散射光-荧光散点图;
图4A为按照本发明的具有间皮细胞的待测体液样本的侧向散射光-荧光散点图;
图4B为按照本发明的具有肿瘤细胞的待测体液样本的侧向散射光-荧光散点图;
图5为按照本发明第一实施方式的样本分析方法的示意流程图;
图6为按照本发明第一实施方式的样本分析方法的另一示意流程图;
图7为按照本发明第二实施方式的样本分析方法的示意流程图;
图8为按照本发明第三实施方式的样本分析方法的示意流程图;
图9为按照本发明第三实施方式的样本分析方法的另一示意流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
本领域技术人员可以理解的,本文所说的高荧光细胞是指具有比白细胞更强的荧光的细胞。高荧光区域是指散点图中的如下区域,在该区域中的散点群的荧光重心(荧光信号强度平均值)高于白细胞区域中的散点群的荧光重心。高荧光区域可以由本领域技术人员通过经验或实验得出。
体液(body fluid)根据部位的不同可分为脑脊液(cerebrospinal fluid)、浆膜腔液(serous cavity fluid)、关节滑膜液(synovial fluid)等。正常人体上述体液均有少量存在。浆膜腔中积液包括胸腔积液(pleural effusion)、腹腔积液(ascites)和心包积液(pericardial effusion),关节腔中的积液为滑膜液(joint effusion)。
恶性肿瘤分化不成熟,生长迅速,浸润并破坏器官的结构和功能,并出现远处转移,主要通过浸润和转移导致的炎症反应、免疫激活和器官生理结构破坏导致体液增多,恶性肿瘤患者增多的体液中常出现与原发肿瘤同源的肿瘤细胞。因恶性肿瘤导致的增多的体液被称为恶性体液,恶性体液中不一定有肿瘤细胞,但有肿瘤细胞的体液一定是恶性体液。因此,利用血液细胞分析仪进行体液检测对于肿瘤患者的筛查具有重要的意义。
本发明所使用的血液细胞分析仪通过结合激光散射法和荧光染色的流式细胞技术对样本中的粒子进行分类和计数。血液细胞分析仪的检测原理为:首先吸取体液样本或血液样本,用溶血剂和荧光染料处理样本,其中,红细胞被溶血剂破坏溶解,白细胞不会被溶解,但荧光染料可在溶血剂的帮助下进入白细胞的细胞核并与细胞核中的核酸物质结合;接着样本中的粒子逐个通过被激光束照射的检测孔,当激光束照射粒子时,粒子本身的特性(如体积、染色程度、细胞内容物大小及含量、细胞核密度等)可阻挡或改变激光束的方向,从而产生与其特征相应的各种角度的散射光,这些 散射光经信号检测器接收后可以获得粒子结构和组成的相关信息。其中,前向散射光(Forward scatter,FS)反应粒子的数量和体积,侧向散射光(Side scatter,SS)反应细胞内部结构(如细胞内颗粒或细胞核)的复杂程度,荧光(Fluorescence,FL)反应细胞中核酸物质的含量。利用这些光信息可以对样本中的粒子进行分类和计数。
图1为本发明所使用的血液细胞分析仪的一种实施例的示意图。该血液细胞分析仪100包括采样装置110、样本制备装置120、光学检测装置130和处理器140。血液细胞分析仪100具有液路系统(未示出),用于连通采样装置110、样本制备装置120及光学检测装置130,以便在这些装置之间进行液体传输。
采样装置110具有带吸移管嘴的吸移管并且具有驱动装置,该驱动装置用于驱动所述吸移管通过所述吸移管嘴定量吸取待测样本、例如体液样本或血液样本。采样装置可将采集的样本输送至样本制备装置120。
样本制备装置120具有至少一个反应池和试剂供应部,其中,所述至少一个反应池用于接收采样装置110所吸取的待测样本,所述试剂供应部将溶解试剂提供给所述至少一个反应池,从而由所述采样装置所吸取的待测样本与由所述试剂供应部提供的溶解试剂在所述反应池中混合,以制备成待测试样、例如待测体液样本。所述溶解试剂包括溶血试剂和荧光试剂。所述溶血剂可以是任意一种现有的用于自动化血液分析仪白细胞分类的溶血试剂,其可以是阳离子表面活性剂、非离子表面活性剂、阴离子表面活性剂、两亲性表面活性剂中的任意一种或几种的组合。所述荧光染料用于对细胞进行染色。所述溶解试剂可以采用美国专利U.S.8,367,358所公开的溶解试剂配方,其全部公开内容通过引证结合于此。美国专利U.S.8,367,358所披露的溶解试剂包括一种阳离子花菁化合物(一种荧光染料)、一种阳离子表面活性剂、一种非离子表面活性剂和一种阴离子化合物。此外也可以使用美国专利U.S.8,273,329中所描述的荧光染料,其全部公开内容通过引证结合于此。
光学检测装置130包括光源、流动室、散射光检测器和荧光检测器,所述光源用于发射光束以照射所述流动室,所述流动室与所述反应池连通并且所述待测体液样本中的粒子可逐个通过所述流动室,所述散射光检测器用于检测通过所述流动室的粒子在被光照射后产生的散射光信号,所述荧光检测器用于检测通过所述流动室的粒子在被光照射后产生的荧光信号。
在一些实施例中,所述散射光检测器为用于检测前向散射光的前向散射光检测器或者用于检测侧向散射光的侧向散射光检测器。光学检测装置130优选包括前向散射 光检测器和侧向散射光检测器。
在本文中,流动室指适于检测光散射信号和荧光信号的聚焦液流的腔室。当一粒子、如一血细胞通过流动室的检测孔时,该粒子将来自光源的被导向该检测孔的入射光束向各方向散射。在相对于该入射光束的一个或多个不同角度设置光检测器可以检测被该粒子散射的光得到光散射信号。由于不同的粒子具有不同的光散射特性,因此光散射信号可以用于区分不同的粒子群体。具体地,在入射光束附近所检测的光散射信号通常被称为前向光散射信号或小角度光散射信号。在一些实施例中,该前向光散射信号可以从与入射光束约1°至约10°的角度上进行检测。在其他一些实施例中,该前向光散射信号可以从与入射光束约2°至约6°的角度上进行检测。在与入射光束呈约90°的方向所检测的光散射信号通常被称为侧向光散射信号。在一些实施例中,该侧向光散射信号可以是从与入射光束呈约65°至约115°的角度上进行检测。通常地,来自被荧光染料染色的血细胞所发出的荧光信号一般也在与入射光束呈约90°的方向上进行检测。
图2示出光学检测装置130的一个具体示例。该光学检测装置130具有依次布置在一条直线上的光源101、光束整形组件102、流动室103和前向散射光检测器104。在流动室103的一侧,与所述直线成45°角布置有二向色镜106。通过流动室103中的粒子发出的侧向光,一部分透过二向色镜106,被与二向色镜106成45°角布置在二向色镜106后面的荧光检测器105捕获;另一部分侧向光被二向色镜106反射,被与二向色镜106成45°角布置在二向色镜106前面的侧向散射光检测器107捕获。
处理器140用于对数据进行运算,得到所要求的结果,例如可以根据收集的各种光信号生成二维散点图或三维散点图,并在散点图上根据设门的方法进行粒子分析。处理器140还可以对中间运算结果或最终运算结果进行可视化处理,然后通过显示装置150显示出来。在本发明实施例中,处理器140配置用于实施以下还要详细描述的方法。该处理器140包括但不限于中央处理器(Central Processing Unit,CPU)、微控制单元(Micro Controller Unit,MCU)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、数字信号处理器(DSP)等用于解释计算机指令以及处理计算机软件中的数据的装置。例如,处理器140用于执行计算机可读存储介质中的各计算机应用程序,从而使血液细胞分析仪100执行相应的检测流程并实时地分析处理光学检测装置130所检测的光学信号。
此外,血液细胞分析仪100还包括第一机壳160和第二机壳170。显示装置150 例如可以为用户界面。光学检测装置130及处理器140设置在第二机壳170的内部。样本制备装置120例如设置在第一机壳160的内部,显示装置150例如设置在第一机壳160的外表面并且用于显示血液细胞分析仪的检测结果。
目前,在利用流式血液细胞分析仪检测体液时,如果检测到了高荧光细胞,血液细胞分析仪可能输出高荧光细胞的参数,例如高荧光细胞计数或高荧光细胞比例。但是,目前的血液细胞分析仪无法从检测到的高荧光细胞中准确地将肿瘤细胞或间皮细胞区分出来。从高荧光细胞中准确地识别出肿瘤细胞,对肿瘤的快速、低成本的筛查而言具有重大的意义。
间皮细胞的胞体呈圆形或卵圆形,胞浆丰富,胞核规则居中,染色质细腻均匀。而肿瘤细胞体积较大,胞体不规则,胞浆丰富,核型不规则,染色质粗糙,根据肿瘤细胞类型的不同可形成不同的特异性结构,如腺腔样结构、癌巢结构等。发明人意外注意到,肿瘤细胞和间皮细胞的体积比正常白细胞的体积大,虽然肿瘤细胞具有异形性,其细胞和胞核的形态大小均可有不同的变化,但与间皮细胞相比,肿瘤细胞的核浆比几乎都是增大的,核内核酸物质都会增加,核染色质更粗糙,这些特点在血液细胞分析仪上表现为更强的荧光信号或荧光强度和侧向散射光信号或强度。根据以上表现,可以在血液细胞分析仪的散点图上,依据散点位置对肿瘤细胞和间皮细胞进行区分。
基于上述认识,如图3所示,发明人通过大量的研究和实验得出,在由体液的荧光信号和散射光信号组成的散点图中,通过设门方法在高荧光区域设定一合适的非白细胞区域T或者说肿瘤细胞区域T,使得该非白细胞区域T中的散点表示肿瘤细胞,该非白细胞区域T中的粒子的荧光信号/荧光强度大于或基本上大于高荧光区域中的其他粒子的荧光信号/荧光强度。同样地,通过设门方法在高荧光区域设定另一合适的非白细胞区域M或者说间皮细胞区域M,使得该非白细胞区域M中的散点表示间皮细胞,该非白细胞区域M中的粒子的荧光信号/荧光强度小于或基本上小于非白细胞区域T的荧光信号/荧光强度,即非白细胞区域M中的散点所表示的粒子群的荧光重心小于非白细胞区域T中的散点所表示的粒子群的荧光重心。由此能够较为准确地识别出肿瘤细胞和间皮细胞。
此外,当人体浆膜腔长期处于刺激因子如炎症或腹膜透析等的刺激下时,间皮细胞可以发生上皮间质转化(Epithelial-mesenchymal transformation,EMT),细胞由上皮样形态转化为成纤维细胞样细胞,表现为细胞假足突增加,胞核增大,侵袭性增 加等。这种转化后的细胞也被成为核异质细胞、不典型细胞、间变细胞、异型细胞等。这样的间皮细胞在散点图上表现为荧光信号和侧向散射光的增大,难以与肿瘤细胞区分。发明人意识到,由于上皮间质转化是一个连续的过程,浆膜腔中新脱落的间皮细胞和处于转化过程的间皮细胞同时存在,因此表征这类间皮细胞的散点以从间皮细胞区域M到肿瘤细胞区域T的连续形式存在,表现出一种连续的延伸趋势,这种延伸趋势是间皮细胞的特异表现形式,如图4A所示。而肿瘤细胞是单克隆来源的,新生成的肿瘤细胞不会经过连续的变化过程,因此如果存在肿瘤细胞则表现为在肿瘤细胞区域T中单独存在散点团、如图3所示,或高荧光区域H呈现为散在区域、如图4B所示。基于该认识,也可以通过高荧光区域H中的散点分布形态对肿瘤细胞进行报警和对间皮细胞进行识别。在此,高荧光区域H包括肿瘤细胞区域T和间皮细胞区域M。
接着对本发明提出的肿瘤细胞和/或间皮细胞检测方法进行详细描述。本发明实施例提出的各个方法尤其是应用于上述血液细胞分析仪100,特别是由上述血液细胞分析仪100的处理器140来实施。
如图5所示,本发明的第一实施方式提供一种用于获取待测体液样本的肿瘤细胞信息的样本分析方法200。该样本分析方法包括下列步骤。
步骤S201,获取经溶血和荧光染色的待测体液样本中的粒子经过光学检测装置所产生的散射光信号和荧光信号。
具体地,首先提供待测体液样本,由采样装置110通过吸移管吸取待测体液样本并将其输送至样本制备装置120。待测体液样本与溶血剂和荧光试剂在样本制备装置120的反应池中混合并孵育一段时间,从而形成待测样本液。通过液路系统将待测样本液输送至光学检测装置130的流动室,并使得待测样本液中的各个粒子逐一通过流动室的检测孔,散射光检测器和荧光检测器分别检测通过流动室的粒子在被光照射后产生的散射光信号和荧光信号。
步骤S202,根据所述散射光信号和所述荧光信号生成所述待测体液样本的散点图。
该散点图可以是以前向散射光信号为横坐标并且以荧光信号为纵坐标的二维散点图(如图3A所示),也可以是以侧向散射光信号为横坐标并且以荧光信号为纵坐标的二维散点图(如图3B所示),或者可以是由前向散射光信号、侧向散射光信号和荧光信号组成的三维散点图。特别优选的是,所述散点图至少包括侧向散射光信号。应说明的是,本文中的散点图不受图形形式的限制,也可以是数据形式,比如与散点图具有等同或相近分辨率的表格或列表的数字形式呈现,或者采用任何本领域已知的其 他适合的方式呈现。
步骤S203,根据所述散射光信号和所述荧光信号在所述散点图中识别第一非白细胞区域和第二非白细胞区域。
第一非白细胞区域可以为肿瘤细胞区域T,第二非白细胞区域可以为高荧光区域H;或者反过来,第一非白细胞区域可以为高荧光区域H,第二非白细胞区域可以为肿瘤细胞区域T。肿瘤细胞区域T为高荧光区域H的一部分。例如,当第一非白细胞区域为肿瘤细胞区域T且第二非白细胞区域为高荧光区域H时,第二非白细胞区域H包括第一非白细胞区域T。
步骤S204,根据所述第一非白细胞区域的散点特征和所述第二非白细胞区域的散点特征获得所述待测体液的肿瘤细胞信息。
在步骤S204中,可以根据所述第一非白细胞区域的散点特征判断所述待测体液样本中是否存在肿瘤细胞,以获得第一判断结果;根据所述第二非白细胞区域的散点特征判断所述待测体液样本中是否存在肿瘤细胞,以获得第二判断结果;然后根据所述第一判断结果和所述第二判断结果获得所述待测体液的肿瘤细胞信息。当然,也可以根据所述第一非白细胞区域的散点特征和所述第二非白细胞区域的散点特征综合判断所述待测体液样本中是否存在肿瘤细胞,获得肿瘤细胞信息。
通过组合结合图3和图4所描述的两种肿瘤细胞识别方法,能够极大改善利用血液细胞分析仪识别体液肿瘤细胞的特异性和灵敏度,从而能够利用血液细胞分析仪低成本地实现可靠的肿瘤筛查。
例如,使用Mindray BC-6800Plus全自动血液分析仪的体液模式,利用本发明实施例提供的方法对220例胸、腹腔积液进行检测,并对所有体液样本进行制片染色后的细胞形态学检测,比较传统高荧光细胞参数和改进算法后体液肿瘤细胞参数的检验效能,检测结果如表1。其中,在220例体液样本中,经病理确认为肿瘤细胞阳性的样本61例,肿瘤细胞阴性样本159例。
表1传统高荧光细胞参数检测结果和本发明的肿瘤细胞参数检测结果
Figure PCTCN2020117542-appb-000001
使用改进算法后得到的新的肿瘤细胞参数,排除了间皮细胞和单核/巨噬细胞的干扰。通过对上述结果进行分析可知,传统的高荧光细胞参数检测的灵敏度和特异度分别为0.836和0.535,而使用本发明的方法检测肿瘤细胞的灵敏度和特异度分别为0.869和0.792,这表明改进算法后的新肿瘤细胞参数检测比传统的高荧光细胞参数检测具有高得多的特异度。也就是说,该新肿瘤细胞参数具有更好的诊断效能,这使得血液细胞分析仪能够更好地用于临床实验室对体液肿瘤细胞的筛查和报警。
在此,肿瘤细胞信息可以包括肿瘤细胞计数。例如,在根据第一判断结果或第二判断结果判断所述待测体液中存在肿瘤细胞时,对第一非白细胞区域或第二非白细胞区域中的散点进行计数,以获得肿瘤细胞计数。
进一步地,肿瘤细胞信息还可以包括肿瘤细胞比例,该肿瘤细胞比例为肿瘤细胞计数与有核细胞计数或高荧光细胞的比值。在此,样本分析方法200还包括根据所述散射光信号和所述荧光信号得到所述待测体液样本的有核细胞计数或高荧光细胞计数,进而根据肿瘤细胞计数和有核细胞计数或高荧光细胞计数得到肿瘤细胞比例。
备选地或附加地,肿瘤细胞信息可以包括肿瘤报警信息,以提示用户待测体液样本可能为肿瘤样本。例如根据第一非白细胞区域或第二非白细胞区域中散点的数量、位置和聚集程度等特征,输出肿瘤细胞存在可能性的值,该值越高表示肿瘤细胞存在的可能性越大。
在一个具体的实施例中,如图6所示,样本分析方法200包括:
步骤S201,获取经溶血和荧光染色的待测体液样本中的粒子经过光学检测装置所产生的散射光信号和荧光信号;
步骤S202,根据所述散射光信号和所述荧光信号生成所述待测体液样本的散点图;
步骤S213,根据所述散射光信号和所述荧光信号在所述散点图中识别第一非白细胞区域;
步骤S214,当所述第一非白细胞区域中的散点特征满足第一预设条件时,根据所述第一非白细胞区域中的散点的散射光信号和荧光信号获得所述待测体液样本的肿瘤细胞信息;
步骤S215,当所述第一非白细胞区域中的散点特征不满足所述第一预设条件时,根据所述散射光信号和所述荧光信号在所述散点图中识别所述第二非白细胞区域;
步骤S216,当所述第二非白细胞区域的散点特征满足第二预设条件时,根据所述 第二非白细胞区域中的散点的散射光信号和荧光信号获得所述待测体液样本的肿瘤细胞信息。
在该实施例中,优选先实施结合图3所描述的方法(第一非白细胞区域为肿瘤细胞区域T)、例如先判断肿瘤细胞区域T中是否存在散点团,再实施结合图4所描述的方法(第二非白细胞区域为高荧光区域H)、例如判断高荧光区域H中是否存在散点团以及分析散点的分布形态。当然,在其他实施例中,也可以先实施结合图4所描述的方法(第一非白细胞区域为高荧光区域H),再实施结合图3所描述的方法(第二非白细胞区域为肿瘤细胞区域T)。
在一些实施例中,当第一非白细胞区域为肿瘤细胞区域T,第二非白细胞区域为高荧光区域H时,所述第一预设条件为所述第一非白细胞区域中的散点聚集成团,即所述第一预设条件为所述第一非白细胞区域中存在散点团(粒子团)。本领域技术人员可以理解,本文所说的“聚集成团”是指某一区域中的散点的数量大于预设数量并且散点的聚集程度大于预设程度。也就是说,当肿瘤细胞区域T中的散点的数量到达预定数量且聚集程度达到预设程度,散点聚集成团时,表明待测体液样本中存在肿瘤细胞。所述第二预设条件为所述第二非白细胞区域中的散点的分布形态满足预设分布形态,也就是说,当在肿瘤细胞区域T中的散点未聚集成团,但是高荧光区域H中的散点分布形态满足肿瘤细胞的分布、即高荧光区域H中的散点呈散在状态而非延伸状态时,表明待测体液样本中存在肿瘤细胞。
进一步地,如图6所示,样本分析方法200还包括下列步骤:
步骤S207,根据所述散射光信号和所述荧光信号在所述散点图中识别第三非白细胞区域、即间皮细胞区域M;
步骤S208,当所述第三非白细胞区域的散点特征满足第三预设条件时,根据所述第三非白细胞区域中的散点的散射光信号和荧光信号获得所述待测体液样本的间皮细胞信息。其中,第三预设条件例如为所述第三非白细胞区域中的散点聚集成团,即,当间皮细胞区域M中的散点的数量到达预定数量且聚集程度达到预设程度,散点聚集成团时,表明待测体液样本中存在间皮细胞。
进一步地,如图6所示,样本分析方法200还包括步骤S217:当所述第二非白细胞区域的散点特征不满足第二预设条件且满足第四预设条件时,例如第二非白细胞区域的散点聚集成团且呈现连续延伸的形态时,根据所述第二非白细胞区域中的散点的散射光信号和荧光信号获得所述待测体液样本的间皮细胞信息。
由此能够进一步识别出待测体液样本中的间皮细胞。
在此,间皮细胞信息可以包括间皮细胞计数和/或间皮细胞比例。当所述第三非白细胞区域的散点特征满足第三预设条件时,对所述第三非白细胞区域中的散点进行计数,从而获得间皮细胞计数。与肿瘤细胞比例类似,该间皮细胞比例为间皮细胞计数与有核细胞计数或高荧光细胞的比值。
进一步地,在样本分析方法200中还可以同时识别其他粒子、例如白细胞。样本分析方法200可以在血液分析仪的白细胞检测通道中实施。例如,样本分析方法200包括下列步骤:
根据所述散射光信号和所述荧光信号在所述散点图中识别白细胞区域;
根据所述白细胞区域获得所述待测体液样本的白细胞信息,所述白细胞信息包括白细胞分类信息和/或白细胞计数信息。
在一些具体的实施例中,如图3和4所示,根据所述白细胞区域获得所述待测体液样本的白细胞信息的步骤包括:
根据所述白细胞区域中的散点的散射光信号和荧光信号将所述待测体液样本中的白细胞分类为淋巴细胞群、中性粒细胞群、单核/巨噬细胞群;或者
根据所述白细胞区域中的散点的散射光信号和荧光信号将所述待测体液样本中的白细胞分类为淋巴细胞群、中性粒细胞群、单核/巨噬细胞群和嗜酸性细胞群。
由此能够在现有的白细胞检测通道(白细胞分类通道或白细胞计数通道)、例如迈瑞公司的血液分析仪的DIFF通道中实现本发明实施例所提供的样本分析方法,无需另外设置单独的通道,在一次检测中即可获得白细胞信息、肿瘤细胞信息和间皮细胞信息。
进一步地,还可以根据所述散射光信号和所述荧光信号区分出单个核细胞粒子群和/或多个核细胞粒子群。更进一步地,还可对单个核细胞粒子群和/或多个核细胞粒子群进行计数,以获得单个核细胞数计数和单个核细胞比例或多个核细胞计数和多个核细胞比例。
特别优选的是,本发明实施例所使用的荧光染料为不对称花菁素类染料。不对称花菁素类染料具有细胞膜通透性好、核酸结合特异性强的特点,因此能够在荧光信号的维度上更好地区分白细胞、间皮细胞和肿瘤细胞。
此外,本发明实施例特别适合用于检测脑脊液、胸腔积液、腹腔积液中的肿瘤细胞和/或间皮细胞。
另外,如图7所示,本发明的第二实施方式提供一种用于获取待测体液样本的间皮细胞信息的样本分析方法300,该样本分析方法300包括:
S301,获取经溶血和荧光染色的待测体液样本中的粒子经过光学检测装置所产生的散射光信号和荧光信号。优选地,所述散射光信号包括侧向散射光信号。
S302,根据所述散射光信号和所述荧光信号生成所述待测体液样本的散点图。
步骤S301和步骤S302可参考上述步骤S201和步骤S202。
S303,根据所述散射光信号和所述荧光信号在所述散点图中识别第一非白细胞区域M和第二非白细胞区域H。
第一非白细胞区域可以为间皮细胞区域M,第二非白细胞区域可以为高荧光区域H;或者反过来,第一非白细胞区域可以为高荧光区域H,第二非白细胞区域可以为间皮细胞区域M。间皮细胞区域M为高荧光区域H的一部分。
S304,根据所述第一非白细胞区域的散点特征和所述第二非白细胞区域的散点特征获得所述待测体液的间皮细胞信息。
在步骤S304中,可以根据所述第一非白细胞区域的散点特征判断所述待测体液样本中是否存在间皮细胞,以获得第一判断结果;根据所述第二非白细胞区域的散点特征判断所述待测体液样本中是否存在间皮细胞,以获得第二判断结果;然后根据所述第一判断结果和所述第二判断结果获得所述待测体液的间皮细胞信息。当然,也可以根据所述第一非白细胞区域的散点特征和所述第二非白细胞区域的散点特征综合判断所述待测体液样本中是否存在间皮细胞,获得间皮细胞信息。
本发明的第二实施方式所提供的样本分析方法300的其他实施例、特征和优点可参考对本发明的第一实施方式的样本分析方法200的描述,在此不再赘述。
如图8所示,本发明的第三实施方式还提供一种用于获取待测体液样本的肿瘤细胞信息和/或间皮细胞信息的样本分析方法400,该样本分析方法400包括:
S401,获取经溶血和荧光染色的待测体液样本中的粒子经过光学检测装置所产生的散射光信号和荧光信号;
S402,根据所述散射光信号和所述荧光信号生成所述待测体液样本的散点图;
S403,根据所述散射光信号和所述荧光信号在所述散点图中识别一预设非白细胞区域;
S404,根据所述预设非白细胞区域中的散点群的位置特征和分布形态特征获得所述待测体液的肿瘤细胞信息和/或间皮细胞信息。
在此同样地,步骤S401和步骤S402可参考上述步骤S201和步骤S202。优选所述散射光信号包括侧向散射光信号。
优选地,所述预设非白细胞区域为高荧光区域H。通过分析高荧光区域H中出现的散点群的位置和分布形态能够较为准确地识别出肿瘤细胞和/或间皮细胞。
进一步地,如图9所示,步骤S404包括:
S404a,当所述预设非白细胞区域中的散点群聚集成团且该散点群的荧光重心处于第一预设重心范围内时,根据所述预设非白细胞区域中的散点的散射光信号和荧光信号获得所述待测体液样本的肿瘤细胞信息。
第一预设重心范围根据肿瘤细胞区域T来设定。例如,当所述预设非白细胞区域、例如高荧光区域H中存在聚集成团的散点群时,如果该散点群的荧光重心较高,表明该散点群出现在高荧光区域H的肿瘤细胞区域T时,该散点群即为肿瘤细胞群。
进一步地,步骤S404还包括:
S404b,当所述预设非白细胞区域中的散点群未聚集成团且该散点群的分布形态符合第一预定分布形态时,根据所述预设非白细胞区域中的散点的散射光信号和荧光信号获得所述待测体液样本的肿瘤细胞信息。此时,该肿瘤细胞信息尤其是为肿瘤报警信息,即提示所述待测体液样本中存在肿瘤细胞的信息。
例如,当所述预设非白细胞区域中的散点群未聚集成团,但是该散点群呈现散在状态或该预设非白细胞区域呈现为散在区域,则该散点群包含肿瘤细胞。
进一步地,步骤S404还包括:
当所述预设非白细胞区域中的散点群聚集成团且该散点群的荧光重心处于第二预设重心范围内时,根据所述预设非白细胞区域中的散点的散射光信号和荧光信号获得所述待测体液样本的间皮细胞信息。
第二预设重心范围根据间皮细胞区域M来设定。例如,当所述预设非白细胞区域、例如高荧光区域H中存在聚集成团的散点群时,如果该散点群的荧光重心较低,表明该散点群出现在高荧光区域H的间皮细胞区域M时,该散点群即为间皮细胞群。
进一步地,步骤S404还包括:
当所述预设非白细胞区域中的散点群聚集成团且该散点群的分布形态符合第二预定分布形态时,根据所述预设非白细胞区域中的散点的散射光信号和荧光信号获得所述待测体液样本的间皮细胞信息。
例如,当所述预设非白细胞区域中的散点群聚集成团,且该散点群呈现连续的延 伸趋势,则该散点群为间皮细胞群。
在一个具体的实例中,首先判断在所述预设非白细胞区域中是否存在聚集成团的散点群;如果存在,则判断该聚集成团的散点群在所述预设非白细胞区域中所处的位置,即判断该散点群是否存在于肿瘤细胞区域T还是间皮细胞区域M中;如果该散点群存在于肿瘤细胞区域T,则该散点群为肿瘤细胞群,如果该散点群存在于间皮细胞区域M,则该散点群为间皮细胞群;如果在所述预设非白细胞区域中不存在聚集成团的散点群,但是该散点群呈现散在状态,则提示存在肿瘤细胞。另外,如果在所述预设非白细胞区域中存在聚集成团的散点群,且该散点群横跨肿瘤细胞区域T和间皮细胞区域M,且该散点群呈现连续的延伸趋势,则该散点群为间皮细胞群。
进一步地,所述样本分析方法400还包括:
根据所述散射光信号和所述荧光信号在所述散点图中识别白细胞区域;
根据所述白细胞区域获得所述待测体液样本的白细胞信息,所述白细胞信息包括白细胞分类信息和/或白细胞计数信息。
本发明的第三实施方式所提供的样本分析方法400的其他实施例、特征和优点可参考对本发明的第一实施方式的样本分析方法200的描述,在此不再赘述。
本发明另一方面还提供一种计算机可读存储介质,其上存储有可执行指令,所述可执行指令在被计算机执行时引起所述计算机实现上述样本分析方法之一。
上述计算机可读存储介质可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、磁性随机存取存储器、快闪存储器、磁表面存储器、光盘、或只读光盘;磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器,其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器、同步静态随机存取存储器、动态随机存取存储器、同步动态随机存取存储器、双倍数据速率同步动态随机存取存储器、增强型同步动态随机存取存储器、同步连接动态随机存取存储器、直接内存总线随机存取存储器。本发明实施方式描述的存储器旨在包括这些和任意其它适合类型的存储器。
以上在说明书、附图以及权利要求书中提及的特征或者特征组合,只要在本发明的范围内是有意义的并且不会相互矛盾,均可以任意相互组合使用或者单独使用。参考本发明各个实施例提供的样本分析方法所说明的优点和特征以相应的方式适用于 本发明各个实施例提供样本分析仪的和计算机可读存储介质,反之亦然。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (41)

  1. 一种样本分析仪,其特征在于,所述样本分析仪包括:
    采样装置,具有带吸移管嘴的吸移管并且具有驱动装置,该驱动装置用于驱动所述吸移管通过所述吸移管嘴定量吸取体液样本;
    样本制备装置,具有至少一个反应池和试剂供应部,其中,所述至少一个反应池用于接收采样装置所吸取的体液样本,所述试剂供应部将溶血试剂和荧光试剂提供给所述至少一个反应池,从而由所述采样装置所吸取的体液样本与由所述试剂供应部提供的溶血试剂和荧光试剂在所述反应池中混合,以制备成待测体液样本;
    光学检测装置,包括光源、流动室、散射光检测器和荧光检测器,所述光源用于发射光束以照射所述流动室,所述流动室与所述反应池连通并且所述待测体液样本中的粒子可逐个通过所述流动室,所述散射光检测器用于检测通过所述流动室的粒子在被光照射后产生的散射光信号,所述荧光检测器用于检测通过所述流动室的粒子在被光照射后产生的荧光信号;以及
    处理器,配置用于执行下列步骤:
    从所述光学检测装置获取所述待测体液样本的散射光信号和荧光信号,
    根据所述散射光信号和所述荧光信号生成所述待测体液样本的散点图,
    根据所述散射光信号和所述荧光信号在所述散点图中识别第一非白细胞区域和第二非白细胞区域,
    根据所述第一非白细胞区域的散点特征和所述第二非白细胞区域的散点特征获得所述待测体液的肿瘤细胞信息。
  2. 根据权利要求1所述的样本分析仪,其特征在于,所述散射光检测器包括侧向散射光检测器。
  3. 根据权利要求1或2所述的样本分析仪,其特征在于,所述处理器配置用于在根据所述第一非白细胞区域的散点特征和所述第二非白细胞区域的散点特征获得所述待测体液的肿瘤细胞信息时执行下列步骤:
    当所述第一非白细胞区域中的散点特征满足第一预设条件时,根据所述第一非白细胞区域中的散点的散射光信号和荧光信号获得所述待测体液样本的肿瘤细胞信息;
    当所述第一非白细胞区域中的散点特征不满足所述第一预设条件时,根据所述散射光信号和所述荧光信号在所述散点图中识别所述第二非白细胞区域;
    当所述第二非白细胞区域的散点特征满足第二预设条件时,根据所述第二非白细胞区域中的散点的散射光信号和荧光信号获得所述待测体液样本的肿瘤细胞信息。
  4. 根据权利要求3所述的样本分析仪,其特征在于,所述第一预设条件为所述第一非白细胞区域中的散点聚集成团;
    所述第二预设条件为所述第二非白细胞区域中的散点的分布形态满足预设分布形态。
  5. 根据权利要求4所述的样本分析仪,其特征在于,所述处理器还配置用于执行下列步骤:
    根据所述散射光信号和所述荧光信号在所述散点图中识别第三非白细胞区域;
    当所述第三非白细胞区域的散点特征满足第三预设条件时,根据所述第三非白细胞区域中的散点的散射光信号和荧光信号获得所述待测体液样本的间皮细胞信息。
  6. 根据权利要求4或5所述的样本分析仪,其特征在于,所述处理器还配置用于:
    当所述第二非白细胞区域的散点特征不满足第二预设条件且满足第四预设条件时,根据所述第二非白细胞区域中的散点的散射光信号和荧光信号获得所述待测体液样本的间皮细胞信息。
  7. 根据权利要求4至6中任一项所述的样本分析仪,其特征在于,所述第二非白细胞区域包括或基本上包括所述第一非白细胞区域。
  8. 根据权利要求1至7中任一项所述的样本分析仪,其特征在于,所述处理器还配置用于执行下列步骤:
    根据所述散射光信号和所述荧光信号在所述散点图中识别白细胞区域;
    根据所述白细胞区域获得所述待测体液样本的白细胞信息,所述白细胞信息包括白细胞分类信息和/或白细胞计数信息。
  9. 根据权利要求8所述的样本分析仪,其特征在于,所述处理器配置用于在根据所述白细胞区域获得所述待测体液样本的白细胞信息时:
    根据所述白细胞区域中的散点的散射光信号和荧光信号将所述待测体液样本中的白细胞分类为淋巴细胞群、中性粒细胞群、单核/巨噬细胞群;或者
    根据所述白细胞区域中的散点的散射光信号和荧光信号将所述待测体液样本中的白细胞分类为淋巴细胞群、中性粒细胞群、单核/巨噬细胞群和嗜酸性细胞群。
  10. 根据权利要求1至9中任一项所述的样本分析仪,其特征在于,所述肿瘤细胞信息包括肿瘤细胞计数、肿瘤细胞比例、肿瘤细胞报警信息中的至少一种。
  11. 根据权利要求1至10中任一项所述的样本分析仪,其特征在于,所述体液样本为脑脊液或胸腔积液或腹腔积液。
  12. 根据权利要求1至11中任一项所述的样本分析仪,其特征在于,所述荧光试剂为不对称花菁素类染料。
  13. 一种样本分析仪,其特征在于,所述样本分析仪包括:
    采样装置,具有带吸移管嘴的吸移管并且具有驱动装置,该驱动装置用于驱动所述吸移管通过所述吸移管嘴定量吸取体液样本;
    样本制备装置,具有至少一个反应池和试剂供应部,其中,所述至少一个反应池用于接收采样装置所吸取的体液样本,所述试剂供应部将溶血试剂和荧光试剂提供给所述至少一个反应池,从而由所述采样装置所吸取的体液样本与由所述试剂供应部提供的溶血试剂和荧光试剂在所述反应池中混合,以制备成待测体液样本;
    光学检测装置,包括光源、流动室、散射光检测器和荧光检测器,所述光源用于发射光束以照射所述流动室,所述流动室与所述反应池连通并且所述待测体液样本中的粒子可逐个通过所述流动室,所述散射光检测器用于检测通过所述流动室的粒子在被光照射后产生的散射光信号,所述荧光检测器用于检测通过所述流动室的粒子在被光照射后产生的荧光信号;以及
    处理器,配置用于执行下列步骤:
    从所述光学检测装置获取所述待测体液样本的散射光信号和荧光信号,
    根据所述散射光信号和所述荧光信号生成所述待测体液样本的散点图,
    根据所述散射光信号和所述荧光信号在所述散点图中识别第一非白细胞区域和第二非白细胞区域,
    根据所述第一非白细胞区域的散点特征和所述第二非白细胞区域的散点特征获得所述待测体液的间皮细胞信息。
  14. 根据权利要求13所述的样本分析仪,其特征在于,所述处理器还配置用于执行下列步骤:
    根据所述散射光信号和所述荧光信号在所述散点图中识别白细胞区域;
    根据所述白细胞区域获得所述待测体液样本的白细胞信息,所述白细胞信息包括白细胞分类信息和/或白细胞计数信息。
  15. 根据权利要求13或14所述的样本分析仪,其特征在于,所述间皮细胞信息 包括间皮细胞计数和间皮细胞比例中的至少一种。
  16. 一种样本分析仪,其特征在于,所述样本分析仪包括:
    采样装置,具有带吸移管嘴的吸移管并且具有驱动装置,该驱动装置用于驱动所述吸移管通过所述吸移管嘴定量吸取体液样本;
    样本制备装置,具有至少一个反应池和试剂供应部,其中,所述至少一个反应池用于接收采样装置所吸取的体液样本,所述试剂供应部将溶血试剂和荧光试剂提供给所述至少一个反应池,从而由所述采样装置所吸取的体液样本与由所述试剂供应部提供的溶血试剂和荧光试剂在所述反应池中混合,以制备成待测体液样本;
    光学检测装置,包括光源、流动室、散射光检测器和荧光检测器,所述光源用于发射光束以照射所述流动室,所述流动室与所述反应池连通并且所述待测体液样本中的粒子可逐个通过所述流动室,所述散射光检测器用于检测通过所述流动室的粒子在被光照射后产生的散射光信号,所述荧光检测器用于检测通过所述流动室的粒子在被光照射后产生的荧光信号;以及
    处理器,配置用于执行下列步骤:
    从所述光学检测装置获取所述待测体液样本的散射光信号和荧光信号,
    根据所述散射光信号和所述荧光信号生成所述待测体液样本的散点图,
    根据所述散射光信号和所述荧光信号在所述散点图中识别一预设非白细胞区域,
    根据所述预设非白细胞区域中的散点群的位置特征和分布形态特征获得所述待测体液的肿瘤细胞信息和/或间皮细胞信息。
  17. 根据权利要求16所述的样本分析仪,其特征在于,所述处理器还配置用于在根据所述预设非白细胞区域中的散点群的位置特征和分布形态特征获得所述待测体液的肿瘤细胞信息和/或间皮细胞信息时执行下列步骤:
    当所述预设非白细胞区域中的散点群聚集成团且该散点群的荧光重心处于第一预设重心范围内时,根据所述预设非白细胞区域中的散点的散射光信号和荧光信号获得所述待测体液样本的肿瘤细胞信息。
  18. 根据权利要求17所述的样本分析仪,其特征在于,所述处理器还配置用于执行下列步骤:
    当所述预设非白细胞区域中的散点群未聚集成团且该散点群的分布形态符合第一预定分布形态时,根据所述预设非白细胞区域中的散点的散射光信号和荧光信号获得所述待测体液样本的肿瘤细胞信息。
  19. 根据权利要求17或18所述的样本分析仪,其特征在于,所述处理器还配置用于执行下列步骤:
    当所述预设非白细胞区域中的散点群聚集成团且该散点群的荧光重心处于第二预设重心范围内时,根据所述预设非白细胞区域中的散点的散射光信号和荧光信号获得所述待测体液样本的间皮细胞信息。
  20. 根据权利要求17至19中任一项所述的样本分析仪,其特征在于,所述处理器还配置用于执行下列步骤:
    当所述预设非白细胞区域中的散点群聚集成团且该散点群的分布形态符合第二预定分布形态时,根据所述预设非白细胞区域中的散点的散射光信号和荧光信号获得所述待测体液样本的间皮细胞信息。
  21. 根据权利要求16至20中任一项所述的样本分析仪,其特征在于,所述处理器还配置用于执行下列步骤:
    根据所述散射光信号和所述荧光信号在所述散点图中识别白细胞区域;
    根据所述白细胞区域获得所述待测体液样本的白细胞信息,所述白细胞信息包括白细胞分类信息和/或白细胞计数信息。
  22. 一种样本分析方法,用于获取待测体液样本的肿瘤细胞信息,其特征在于,所述样本分析方法包括:
    获取经溶血和荧光染色的待测体液样本中的粒子经过光学检测装置所产生的散射光信号和荧光信号;
    根据所述散射光信号和所述荧光信号生成所述待测体液样本的散点图;
    根据所述散射光信号和所述荧光信号在所述散点图中识别第一非白细胞区域和第二非白细胞区域;
    根据所述第一非白细胞区域的散点特征和所述第二非白细胞区域的散点特征获得所述待测体液的肿瘤细胞信息。
  23. 根据权利要求22所述的样本分析方法,其特征在于,所述散射光信号包括侧向散射光信号。
  24. 根据权利要求22或23所述的样本分析方法,其特征在于,根据所述第一非白细胞区域的散点特征和所述第二非白细胞区域的散点特征获得所述待测体液的肿瘤细胞信息包括:
    当所述第一非白细胞区域中的散点特征满足第一预设条件时,根据所述第一非白 细胞区域中的散点的散射光信号和荧光信号获得所述待测体液样本的肿瘤细胞信息;
    当所述第一非白细胞区域中的散点特征不满足所述第一预设条件时,根据所述散射光信号和所述荧光信号在所述散点图中识别所述第二非白细胞区域;
    当所述第二非白细胞区域的散点特征满足第二预设条件时,根据所述第二非白细胞区域中的散点的散射光信号和荧光信号获得所述待测体液样本的肿瘤细胞信息。
  25. 根据权利要求24所述的样本分析方法,其特征在于,所述第一预设条件为所述第一非白细胞区域中的散点聚集成团;
    所述第二预设条件为所述第二非白细胞区域中的散点的分布形态满足预设分布形态。
  26. 根据权利要求25所述的样本分析方法,其特征在于,所述样本分析方法还包括:
    根据所述散射光信号和所述荧光信号在所述散点图中识别第三非白细胞区域;
    当所述第三非白细胞区域的散点特征满足第三预设条件时,根据所述第三非白细胞区域中的散点的散射光信号和荧光信号获得所述待测体液样本的间皮细胞信息。
  27. 根据权利要求25或26所述的样本分析方法,特征在于,所述样本分析方法还包括:
    当所述第二非白细胞区域的散点特征不满足第二预设条件且满足第四预设条件时,根据所述第二非白细胞区域中的散点的散射光信号和荧光信号获得所述待测体液样本的间皮细胞信息。
  28. 根据权利要求25至27中任一项所述的样本分析仪,其特征在于,所述第二非白细胞区域包括或基本上包括所述第一非白细胞区域。
  29. 根据权利要求22至28中任一项所述的样本分析方法,其特征在于,所述样本分析方法还包括:
    根据所述散射光信号和所述荧光信号在所述散点图中识别白细胞区域;
    根据所述白细胞区域获得所述待测体液样本的白细胞信息,所述白细胞信息包括白细胞分类信息和/或白细胞计数信息。
  30. 根据权利要求22至29中任一项所述的样本分析方法,其特征在于,所述肿瘤细胞信息包括肿瘤细胞计数、肿瘤细胞比例、肿瘤细胞报警信息中的至少一种。
  31. 根据权利要求22至30中任一项所述的样本分析仪,其特征在于,所述荧光染色利用不对称花菁素类染料实现。
  32. 一种样本分析方法,用于获取待测体液样本的间皮细胞信息,其特征在于,所述样本分析方法包括:
    获取经溶血和荧光染色的待测体液样本中的粒子经过光学检测装置所产生的散射光信号和荧光信号;
    根据所述散射光信号和所述荧光信号生成所述待测体液样本的散点图;
    根据所述散射光信号和所述荧光信号在所述散点图中识别第一非白细胞区域和第二非白细胞区域;
    根据所述第一非白细胞区域的散点特征和所述第二非白细胞区域的散点特征获得所述待测体液的间皮细胞信息。
  33. 根据权利要求32所述的样本分析方法,其特征在于,所述样本分析方法还包括:
    根据所述散射光信号和所述荧光信号在所述散点图中识别白细胞区域;
    根据所述白细胞区域获得所述待测体液样本的白细胞信息,所述白细胞信息包括白细胞分类信息和/或白细胞计数信息。
  34. 根据权利要求32或33所述的样本分析方法,其特征在于,所述间皮细胞信息包括间皮细胞计数和间皮细胞比例中的至少一种。
  35. 一种样本分析方法,用于获取待测体液样本的肿瘤细胞信息和/或间皮细胞信息,其特征在于,所述样本分析方法包括:
    获取经溶血和荧光染色的待测体液样本中的粒子经过光学检测装置所产生的散射光信号和荧光信号;
    根据所述散射光信号和所述荧光信号生成所述待测体液样本的散点图;
    根据所述散射光信号和所述荧光信号在所述散点图中识别一预设非白细胞区域;
    根据所述预设非白细胞区域中的散点群的位置特征和分布形态特征获得所述待测体液的肿瘤细胞信息和/或间皮细胞信息。
  36. 根据权利要求35所述的样本分析方法,其特征在于,根据所述预设非白细胞区域中的散点群的位置特征和分布形态特征获得所述待测体液的肿瘤细胞信息和/或间皮细胞信息包括:
    当所述预设非白细胞区域中的散点群聚集成团且该散点群的荧光重心处于第一预设重心范围内时,根据所述预设非白细胞区域中的散点的散射光信号和荧光信号获得所述待测体液样本的肿瘤细胞信息。
  37. 根据权利要求36所述的样本分析方法,其特征在于,根据所述预设非白细胞区域中的散点群的位置特征和分布形态特征获得所述待测体液的肿瘤细胞信息和/或间皮细胞信息还包括:
    当所述预设非白细胞区域中的散点群未聚集成团且该散点群的分布形态符合第一预定分布形态时,根据所述预设非白细胞区域中的散点的散射光信号和荧光信号获得所述待测体液样本的肿瘤细胞信息。
  38. 根据权利要求36或37所述的样本分析方法,其特征在于,根据所述预设非白细胞区域中的散点群的位置特征和分布形态特征获得所述待测体液的肿瘤细胞信息和/或间皮细胞信息还包括:
    当所述预设非白细胞区域中的散点群聚集成团且该散点群的荧光重心处于第二预设重心范围内时,根据所述预设非白细胞区域中的散点的散射光信号和荧光信号获得所述待测体液样本的间皮细胞信息。
  39. 根据权利要求36至38中任一项所述的样本分析方法,其特征在于,根据所述预设非白细胞区域中的散点群的位置特征和分布形态特征获得所述待测体液的肿瘤细胞信息和/或间皮细胞信息还包括:
    当所述预设非白细胞区域中的散点群聚集成团且该散点群的分布形态符合第二预定分布形态时,根据所述预设非白细胞区域中的散点的散射光信号和荧光信号获得所述待测体液样本的间皮细胞信息。
  40. 根据权利要求35至39中任一项所述的样本分析方法,其特征在于,所述样本分析方法还包括:
    根据所述散射光信号和所述荧光信号在所述散点图中识别白细胞区域;
    根据所述白细胞区域获得所述待测体液样本的白细胞信息,所述白细胞信息包括白细胞分类信息和/或白细胞计数信息。
  41. 一种计算机可读存储介质,其上存储有可执行指令,所述可执行指令在被计算机执行时引起所述计算机实现根据权利要求22至40中任一项所述的样本分析方法。
PCT/CN2020/117542 2020-09-24 2020-09-24 样本分析仪、样本分析方法以及计算机可读存储介质 WO2022061674A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080102525.XA CN115885166A (zh) 2020-09-24 2020-09-24 样本分析仪、样本分析方法以及计算机可读存储介质
PCT/CN2020/117542 WO2022061674A1 (zh) 2020-09-24 2020-09-24 样本分析仪、样本分析方法以及计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/117542 WO2022061674A1 (zh) 2020-09-24 2020-09-24 样本分析仪、样本分析方法以及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2022061674A1 true WO2022061674A1 (zh) 2022-03-31

Family

ID=80846044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117542 WO2022061674A1 (zh) 2020-09-24 2020-09-24 样本分析仪、样本分析方法以及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN115885166A (zh)
WO (1) WO2022061674A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004001408A1 (ja) * 2002-06-24 2003-12-31 Sysmex Corporation 白血球の分類計数方法
CN101236195A (zh) * 2007-02-01 2008-08-06 希森美康株式会社 血细胞分析仪、体液分析方法及其控制系统
CN103837502A (zh) * 2012-11-26 2014-06-04 希森美康株式会社 血细胞分析方法及血细胞分析装置
CN106525697A (zh) * 2015-09-11 2017-03-22 希森美康株式会社 细胞分析装置及细胞分析方法
CN109963936A (zh) * 2016-09-08 2019-07-02 雅培实验室 自动体液分析

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004001408A1 (ja) * 2002-06-24 2003-12-31 Sysmex Corporation 白血球の分類計数方法
CN101236195A (zh) * 2007-02-01 2008-08-06 希森美康株式会社 血细胞分析仪、体液分析方法及其控制系统
CN103837502A (zh) * 2012-11-26 2014-06-04 希森美康株式会社 血细胞分析方法及血细胞分析装置
CN106525697A (zh) * 2015-09-11 2017-03-22 希森美康株式会社 细胞分析装置及细胞分析方法
CN109963936A (zh) * 2016-09-08 2019-07-02 雅培实验室 自动体液分析

Also Published As

Publication number Publication date
CN115885166A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
WO2016106688A1 (zh) 一种有核红细胞报警方法、装置及流式细胞分析仪
US7008792B2 (en) Method of measurement of nucleated red blood cells
US10309877B2 (en) Method for analyzing atypical cells in urine, urine analyzer, and method for analyzing atypical cells in body fluid
CN111656161B (zh) 样本分析仪异常的报警方法、系统及存储介质
US8877460B2 (en) Method and system for analyzing a blood sample
JP3867880B2 (ja) 尿中赤血球の鑑別装置および方法
US11874212B2 (en) Blood analysis method, blood analysis system and storage medium
US20210041344A1 (en) Blood analysis system, blood analyzer, blood analysis method and storage medium
CN110383037A (zh) 一种血小板聚集识别的方法、装置和细胞分析仪
US20230296591A1 (en) Sample analysis method, sample analyzer, and computer-readable storage medium
CN110226083B (zh) 红细胞碎片识别方法和装置、血液细胞分析仪及分析方法
WO2022061674A1 (zh) 样本分析仪、样本分析方法以及计算机可读存储介质
EP3136080B1 (en) Urine sample analyzer and urine sample analyzing method
JP4417936B2 (ja) 尿中赤血球の鑑別装置および方法
WO2023125940A1 (zh) 血液细胞分析仪、方法以及感染标志参数的用途
WO2023125942A1 (zh) 血液细胞分析仪、方法以及感染标志参数的用途
WO2023125988A1 (zh) 血液细胞分析仪、方法以及感染标志参数的用途
WO2023125980A1 (zh) 血液细胞分析仪、方法以及感染标志参数的用途
WO2023125955A1 (zh) 血液细胞分析仪、方法以及感染标志参数的用途
CN117825243A (zh) 血细胞分析仪、血液分析方法以及感染标志参数的用途
CN114324123A (zh) 流式细胞仪在细胞计数中的用途和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954526

Country of ref document: EP

Kind code of ref document: A1