WO2023115389A1 - 一种样本分析装置和样本分析方法 - Google Patents

一种样本分析装置和样本分析方法 Download PDF

Info

Publication number
WO2023115389A1
WO2023115389A1 PCT/CN2021/140470 CN2021140470W WO2023115389A1 WO 2023115389 A1 WO2023115389 A1 WO 2023115389A1 CN 2021140470 W CN2021140470 W CN 2021140470W WO 2023115389 A1 WO2023115389 A1 WO 2023115389A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
result
lymphocyte
scattered light
sample
Prior art date
Application number
PCT/CN2021/140470
Other languages
English (en)
French (fr)
Inventor
孔繁钢
史涛
杨翥翔
张新军
王胜昔
Original Assignee
深圳迈瑞动物医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞动物医疗科技股份有限公司 filed Critical 深圳迈瑞动物医疗科技股份有限公司
Priority to PCT/CN2021/140470 priority Critical patent/WO2023115389A1/zh
Priority to CN202180099207.7A priority patent/CN117501127A/zh
Priority to US18/091,237 priority patent/US20230194411A1/en
Publication of WO2023115389A1 publication Critical patent/WO2023115389A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5094Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for blood cell populations
    • G01N2015/012
    • G01N2015/016
    • G01N2015/1024
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0118Apparatus with remote processing
    • G01N2021/0143Apparatus with remote processing with internal and external computer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence

Definitions

  • the invention relates to a sample analysis device and a sample analysis method.
  • Routine blood examination is one of the most basic laboratory tests in clinical practice. By observing the changes in the number and morphology of blood cells, it can be used to judge the condition of blood and diseases.
  • routine blood test items may include red blood cells, white blood cells, hemoglobin, and platelets.
  • white blood cells When germs invade a living body such as a human or an animal, white blood cells can gather at the site where the germs invade and surround and phagocytize the germs. If the white blood cells in the blood exceed normal values, it is possible that the organism suffers from inflammation. Mature normal white blood cells can be divided into five classes: neutrophils (Neu), eosinophils (Eos), basophils (Baso), lymphocytes (Lym) and monocytes (Mon). The content of different cells in the blood has different clinical significance. Therefore, accurate classification of white blood cells is particularly important clinically.
  • the present invention mainly provides a sample analysis device and a sample analysis method, which will be described in detail below.
  • a sample analysis device comprising:
  • a blood sample supply unit used for supplying blood samples
  • a reagent supply part for supplying the first channel reagent and the second channel reagent
  • the first channel is used to receive the blood sample provided by the blood sample supply part and the first channel reagent provided by the reagent supply part to prepare the first sample, and obtain the first sample produced by light irradiation light signal;
  • the second channel is used to receive the blood sample provided by the blood sample supply part and the second channel reagent provided by the reagent supply part to prepare a second sample, and obtain the second sample produced by light irradiation light signal;
  • a processor can perform four classifications of white blood cells according to the optical signal of the first channel, and the four classifications of white blood cells include neutrophil results, eosinophil results, lymphocyte results and monocyte results;
  • the processor is capable of obtaining at least a nucleated red blood cell result based on the light signal of the second channel;
  • the processor can also obtain the lymphocyte result according to the light signal of the second channel, so as to correct the lymphocyte result of the first channel.
  • the processor judges the lymphocytes of the first channel according to the deviation between the lymphocyte result of the first sample and the lymphocyte result of the second sample, or the optical signal of the first channel. Whether the result is accurate; if the judgment is inaccurate, the processor corrects the lymphocyte result of the first channel through the lymphocyte result of the second channel.
  • the processor uses the lymphocyte result of the second channel to correct the lymphocyte result of the first channel, including:
  • the processor uses the lymphocyte result of the second channel as the lymphocyte result output by the sample analysis device.
  • the processor uses the lymphocyte result of the second channel to correct the lymphocyte result of the first channel, including:
  • the processor performs a weighted summation of the lymphocyte result of the first channel and the lymphocyte result of the second channel as the lymphocyte result output by the sample analysis device.
  • the processor judges whether the lymphocyte result of the first channel is accurate according to the optical signal of the first channel, including:
  • the optical signal of the first channel includes at least side scattered light and fluorescence
  • the processor generates a first scattergram according to the side scattered light and fluorescence of the first channel
  • the processor judges whether the boundary between the lymphocyte group and the neutrophil group is clear according to the first scatter diagram, and if not, it judges that the lymphocyte result of the first channel is inaccurate.
  • the processor can also obtain lymphocyte results according to the optical signal of the second channel, including:
  • the optical signal of the second channel includes at least forward scattered light and side scattered light
  • the processor generates a second scattergram according to the forward scattered light and side scattered light of the second channel
  • the processor calculates the lymphocyte result of the second channel according to the second scatter diagram.
  • the processor can also obtain lymphocyte results according to the optical signal of the second channel, including:
  • the optical signal of the second channel includes at least side scattered light and fluorescence
  • the processor calculates the lymphocyte result of the second channel according to the third scattergram.
  • the processor can also obtain lymphocyte results according to the optical signal of the second channel, including:
  • the optical signal of the second channel includes at least forward scattered light and fluorescence
  • the processor generates a fourth scattergram based on the forward scattered light and fluorescence of the second channel
  • the processor calculates the lymphocyte result of the second channel according to the fourth scattergram.
  • the processor can also obtain lymphocyte results according to the optical signal of the second channel, including:
  • the optical signal of the second channel includes forward scattered light, side scattered light and fluorescence
  • the processor generates a second scatter diagram according to the forward scattered light and side scattered light of the second channel; the processor calculates the first lymphocyte result of the second channel according to the second scatter diagram ;
  • the processor generates a third scatter diagram according to the side scattered light and fluorescence of the second channel; the processor calculates the second lymphocyte result of the second channel according to the third scatter diagram;
  • the processor calculates a lymphocyte result for a second channel based on the first lymphocyte result and the second lymphocyte result for the second channel.
  • the processor can also obtain lymphocyte results according to the optical signal of the second channel, including:
  • the optical signal of the second channel includes forward scattered light, side scattered light and fluorescence
  • the processor generates a second scatter diagram according to the forward scattered light and side scattered light of the second channel; the processor calculates the first lymphocyte result of the second channel according to the second scatter diagram ;
  • the processor generates a fourth scatter diagram according to the forward scattered light and fluorescence of the second channel; the processor calculates the third lymphocyte result of the second channel according to the fourth scatter diagram;
  • the processor calculates a lymphocyte result for the second channel based on the first lymphocyte result and the third lymphocyte result for the second channel.
  • the processor can also obtain lymphocyte results according to the optical signal of the second channel, including:
  • the optical signal of the second channel includes forward scattered light, side scattered light and fluorescence
  • the processor generates a third scatter diagram according to the side scattered light and fluorescence of the second channel; the processor calculates the second lymphocyte result of the second channel according to the third scatter diagram;
  • the processor generates a fourth scatter diagram according to the forward scattered light and fluorescence of the second channel; the processor calculates the third lymphocyte result of the second channel according to the fourth scatter diagram;
  • the processor calculates a lymphocyte result for the second channel based on the second lymphocyte result and the third lymphocyte result for the second channel.
  • the processor can also obtain the white blood cell count result and/or the basophil count result according to the light signal of the second channel.
  • the result of basophils includes the percentage of basophils among white blood cells.
  • the processor can also according to the eosinophil result and monocyte result of the first channel, the basophil result of the second channel, and the corrected lymphocyte result,
  • the neutrophil result is calculated as the neutrophil result output by the sample analysis device.
  • the result of neutrophils includes the percentage of neutrophils among white blood cells
  • the result of eosinophils includes the percentage of eosinophils among white blood cells
  • the result of lymphocytes includes the percentage of lymphocytes among white blood cells.
  • the percentage of monocytes results includes the percentage of monocytes among the white blood cells.
  • the first channel is a DIFF channel; the second channel is a WNB channel.
  • the optical signal of the first channel includes forward scattered light, side scattered light and fluorescence; the optical signal of the second channel includes forward scattered light, side scattered light and fluorescence.
  • an embodiment provides a sample analysis method, comprising:
  • Carrying out four classifications of white blood cells according to the optical signal of the first sample the four classifications of white blood cells include results of neutrophils, eosinophils, lymphocytes and monocytes;
  • the lymphocyte result of the first sample is corrected by the lymphocyte result of the second sample; wherein the second sample is prepared from the blood sample and the second channel reagent , the light signal generated by the second sample after being irradiated with light can be used to calculate the result of nucleated red blood cells and the result of lymphocytes.
  • the lymphocyte result of the first sample is corrected by the lymphocyte result of the second sample, including any of the following:
  • the weighted summation of the lymphocyte result of the first channel and the lymphocyte result of the second channel is used as the output lymphocyte result.
  • the lymphocyte result is calculated by the light signal generated after the second sample is irradiated with light, including:
  • the optical signal of the second channel includes at least forward scattered light and side scattered light
  • the lymphocyte result of the second channel is calculated.
  • the lymphocyte result is calculated by the light signal generated after the second sample is irradiated with light, including:
  • the optical signal of the second channel includes at least side scattered light and fluorescence
  • the lymphocyte result of the second channel is calculated.
  • the lymphocyte result is calculated by the light signal generated after the second sample is irradiated with light, including:
  • the optical signal of the second channel includes at least forward scattered light and fluorescence
  • the lymphocyte result of the second channel is calculated.
  • the lymphocyte result is calculated by the light signal generated after the second sample is irradiated with light, including:
  • the optical signal of the second channel includes forward scattered light, side scattered light and fluorescence
  • the processor calculates the second lymphocyte result of the second channel according to the third scattergram
  • a lymphocyte result of the second channel is calculated based on the first lymphocyte result and the second lymphocyte result of the second channel.
  • the lymphocyte result is calculated by the light signal generated after the second sample is irradiated with light, including:
  • the optical signal of the second channel includes forward scattered light, side scattered light and fluorescence
  • the processor calculates the third lymphocyte result of the second channel according to the fourth scattergram
  • a lymphocyte result of the second channel is calculated based on the first lymphocyte result and the third lymphocyte result of the second channel.
  • the lymphocyte result is calculated by the light signal generated after the second sample is irradiated with light, including:
  • the optical signal of the second channel includes forward scattered light, side scattered light and fluorescence
  • the processor calculates the third lymphocyte result of the second channel according to the fourth scattergram
  • a lymphocyte result of the second channel is calculated based on the second lymphocyte result and the third lymphocyte result of the second channel.
  • the light signal generated after the second sample is irradiated with light can also be used to obtain the result of counting white blood cells and/or the result of basophils.
  • the result of basophils includes the percentage of basophils among white blood cells.
  • the sample analysis method further includes: according to the eosinophil result and monocyte result of the first channel, the basophil result of the second channel, and the corrected lymphocyte result, calculates the neutrophil result, as the output neutrophil result.
  • the first channel is a DIFF channel; the second channel is a WNB channel.
  • the optical signal of the first channel includes forward scattered light, side scattered light and fluorescence; the optical signal of the second channel includes forward scattered light, side scattered light and fluorescence.
  • the lymphocyte result of the first sample can be corrected by the lymphocyte result of the second sample, thereby effectively improving the accuracy of the white blood cell classification result.
  • Fig. 1 is a scatter schematic diagram of the leukocyte classification results of the DIFF channel detected by a cat blood sample in an embodiment on a blood analysis device;
  • Fig. 2 is a scatter schematic diagram of the WNB channel leukocyte classification result detected on the blood analysis equipment of the cat blood sample of an embodiment
  • FIG. 3 is a schematic diagram of blood samples in a DIFF channel according to an embodiment
  • Fig. 4 is a schematic scatter diagram of a blood sample in a WNB channel according to an embodiment
  • Fig. 5 is a schematic structural diagram of a sample analysis device of an embodiment
  • Fig. 6 is a schematic structural diagram of an optical detection part of an embodiment
  • Fig. 7 is a schematic structural diagram of an optical detection part of an embodiment
  • Fig. 8 is a schematic structural diagram of an optical detection part of an embodiment
  • FIG. 9 is an example of a complete classification result of a second channel displayed by a sample analysis device, for example, on a display, in some embodiments;
  • Fig. 10 is a flowchart of a sample analysis method of an embodiment
  • Fig. 11 is a flow chart of calculating lymphocyte results by light signals generated by the second sample after being irradiated with light in an embodiment
  • Fig. 12 is a flow chart of calculating lymphocyte results through the light signal generated after the second sample is irradiated with light according to an embodiment
  • Fig. 13 is a flow chart of calculating the result of lymphocytes through the light signal generated after the second sample is irradiated with light according to an embodiment
  • Figure 14 is a schematic diagram of the correlation between cat blood sample Lym%_D and manual microscopic examination results
  • Figure 15 is a schematic diagram of the correlation between cat blood sample Lym% and manual microscopic examination results
  • Figure 16 is a schematic diagram of the correlation between cat blood sample Neu%_D and manual microscopic examination results
  • Figure 17 is a schematic diagram of the correlation between Neu% of cat blood samples and manual microscopic examination results.
  • connection and “connection” mentioned in this application include direct and indirect connection (connection) unless otherwise specified.
  • white blood cell counting and classification detection methods such as laser scattering combined with fluorescent staining, chemical staining, laser scattering combined with impedance method, etc.
  • four types of white blood cells neutrophils, eosinophils, lymphocytes
  • monocytes monocytes
  • basophils are classified into two independent channels, based on the comprehensive information of the two channels, the results of five classifications of white blood cells are obtained.
  • Figure 1 shows the leukocyte classification result of DIFF channel detected by a cat blood sample on the blood analysis equipment, in which the Lym classification of lymphocytes is high, and the percentage count result is 68.2%, while the actual manual microscopic examination results in the percentage of lymphocytes is 10.1%; while in the WNB channel, Lym clusters and Neu clusters can be clearly classified, as shown in Figure 2.
  • the inventor proposed a method for classifying lymphocytes and neutrophils by combining two measurement channels, in order to improve the accuracy of white blood cell classification results.
  • the WNB channel in this paper refers to a channel capable of counting white blood cells, counting nucleated red blood cells and classifying eosinophils.
  • the two measurement channels used in the present invention can be DIFF channel and WNB channel, and both channels can use flow cytometry to obtain three detection signals: forward scattered light intensity FS, used to detect cell The volume; the side scattered light intensity SS, can be used to detect the complexity inside the cell; the fluorescence intensity FL, can detect the nucleic acid content of the cell; these are further mentioned below.
  • Figure 3 and Figure 4 respectively show the distribution positions of various cell particles in the DIFF channel and WNB passage through scatter diagrams.
  • lymphocyte Lym lymphocytes
  • Neu neutral cells
  • Figure 1 mentioned above is an example, which will lead to wrong parameter results and affect clinical diagnosis conclusions.
  • Figure 2 mentioned above is an example. Therefore, the inventor considers classifying Lym particles from the WNB channel to avoid Lym classification errors in the DIFF channel and obtain accurate white blood cell parameter calculation results.
  • the scheme can be designed through the following steps:
  • the cell particles are grouped to obtain the results of four classifications of white blood cells.
  • the percentage of lymphocytes is recorded as Lym%_D;
  • Neu% 1 - Lym% - Mon% - Eos% - Baso%; Among them, Neu%, Lym%, Mon%, Eos%, and Baso% respectively refer to the results of the percentage of neutrophils, the percentage of lymphocytes, the percentage of monocytes, the percentage of eosinophils, and the percentage of basophils Cell percentage results.
  • the sample analysis device in some embodiments includes a blood sample supply part 10 , a reagent supply part 20 , a first channel 31 , a second channel 33 and a processor 40 .
  • the blood sample supply part 10 is used to supply blood samples; the reagent supply part 20 is used to supply reagents, such as the first channel reagent and the second channel reagent, etc.; the first channel 31 is used to receive the blood sample supply part 10 The provided blood sample and the first channel reagent provided by the reagent supply part 20 are used to prepare the first sample and obtain the optical signal generated after the first sample is irradiated with light; the second channel 33 is used to receive the The blood sample and the second channel reagent provided by the reagent supply part 20 are used to prepare the second sample, and obtain the optical signal generated by the second sample after being irradiated with light; the processor 40 is used to calculate the detection result according to the above optical signal , the processor 40 in some embodiments of the present invention includes but is not limited to a central processing unit (Central Processing Unit, CPU), a micro control unit (Micro Controller Unit, MCU), a field programmable gate array (Field-Programmable Gate Array, FPGA )
  • CPU Central Processing
  • the blood sample supply part 10 may include a sample needle, and the sample needle can move two-dimensionally or three-dimensionally in space through a two-dimensional or three-dimensional driving mechanism, so that the sample needle can move to absorb a container carrying a sample (such as a sample tube), and then move to a place for providing a reaction for the tested sample and reagents, such as the first channel 31 or the second channel 33, to add blood samples therein.
  • a sample such as a sample tube
  • reagents such as the first channel 31 or the second channel 33
  • the reagent supply part 20 may include a region for carrying the reagent container and a reagent liquid path connecting the reagent container with the above-mentioned first channel 31 and the second channel 33, and the reagent is added from the reagent container to the first channel through the reagent liquid path. channel 31 and the second channel 33.
  • the reagent supply part 20 may also include a reagent needle, and the reagent needle moves in space in two or three dimensions through a two-dimensional or three-dimensional driving mechanism, so that the reagent needle can move to absorb the reagent in the reagent container, Then move to a place for providing reaction for the tested sample and the reagent, such as the first channel 31 and the second channel 33, so as to add the reagent therein.
  • the reagent supply part 20 may supply the first channel reagent and the second channel reagent.
  • the first channel reagents include hemolytic reagents, fluorescent reagents and the like.
  • the second channel reagents include hemolytic reagents, fluorescent reagents and the like.
  • the first channel reagent comprises a different fluorescent reagent than the second channel reagent comprises a fluorescent reagent.
  • the first channel 31 and the second channel 33 can prepare a sample through blood samples and reagents, and obtain optical signals generated by the sample after being irradiated with light.
  • the first channel 31 may include two structures of a reaction pool and a measurement unit, and the reaction pool may provide a reaction site for samples and reagents; in some embodiments, the second channel 33 may include both a reaction pool and a measurement unit. In this structure, the reaction pool can provide a reaction place for samples and reagents.
  • the first channel 31 and the second channel 33 may have their own reaction pools, or may share the same reaction pool.
  • the first channel 31 and the second channel 33 may have their own measuring parts, or may share a measuring part.
  • the measuring unit includes an optical detection unit, which will be described in detail below.
  • the measurement part includes an optical detection part, and the optical detection part can measure the sample through the principle of laser light scattering. Fluorescence, to classify and count cells, etc. - Of course, in some embodiments, if the cells are not treated with fluorescent reagents, then naturally no fluorescence can be collected. Next, the optical detection unit will be described.
  • the optical detection part can measure the sample by the principle of laser light scattering.
  • the principle is: irradiate the laser light on the cells, and collect the light signals generated by the cells after being irradiated, such as scattered light and/or fluorescence, to detect the Sorting and counting, etc. -
  • the optical detection unit will be described.
  • the optical detection part may include a light source 61 , a flow chamber 62 and an optical detector 69 .
  • the flow chamber 62 communicates with the reaction cell, and is used for the cells of the sample to be tested, such as the first sample or the second sample, to pass one by one; the light source 61 is used to illuminate the cells passing through the flow chamber 62, and the optical detector 69 is used to obtain the cells Optical signal through flow cell 62 .
  • the optical detector 69 may include a lens group 63 for collecting forward scattered light, a photodetector for converting the collected forward scattered light from an optical signal into an electrical signal 64, a lens group 65 for collecting side scattered light and side fluorescence, a dichroic mirror 66, a photodetector 67 for converting the collected side scattered light from an optical signal to an electrical signal, and The collected side fluorescence is converted from an optical signal to a photodetector 68 of an electrical signal; the dichroic mirror 66 is used for light splitting, and the mixed side scattered light and side fluorescence are divided into two paths, one path is side Scattered light, all the way for side fluorescence.
  • the optical signal herein may refer to an optical signal, or may refer to an electrical signal converted from an optical signal, and they are substantially consistent in characterizing the information contained in the cell detection result.
  • the flow chamber 62 is used for passing the cells of the sample to be tested one by one.
  • the red blood cells in the sample are dissolved by some reagents such as hemolytic agents, or are further dyed by fluorescent agents, and then the sheath flow technology is used to make the cells in the prepared test samples flow from the flow chamber 62 one by one. Queue through one after the other.
  • the direction of the Y-axis in the figure is the direction of cell movement in the sample to be tested. It should be noted that the direction of the Y-axis in the figure is the direction perpendicular to the paper.
  • a light source 61 is used to illuminate cells passing through the flow chamber 62 .
  • the light source 61 is a laser, such as a He-Ne laser or a semiconductor laser.
  • a laser such as a He-Ne laser or a semiconductor laser.
  • the light emitted by the light source 61 irradiates the cells passing through the flow chamber 62, and the light irradiated on the cells will generate Scattering, through the lens group 63 to collect forward scattered light—for example, the direction of the Z axis in the figure, so that it reaches the photodetector 64, so that the information processing unit 70 can obtain the forward scattered light information of the cells from the photodetector 64 ;
  • the side light is collected by lens group 65 -- for example, the direction of the X axis in the figure, and the collected side light is reflected and refracted by the dichroic mirror 66, wherein the side light The side scattered light in the side light is reflected when passing through the dichroic mirror 66, and then reaches the corresponding photodetector
  • FIG. 8 is another example of the optical detection unit 60 .
  • a collimating lens 61a can be introduced between the light source 61 and the flow chamber 62, and the light emitted by the light source 61 is collimated by the collimating lens 61a and then passes through the flow chamber 62 cells irradiated.
  • a filter 66a in order to make the collected fluorescence noise less (that is, there is no interference from other light), a filter 66a can be set in front of the photodetector 68, and the side fluorescence after being split by the dichroic mirror 66 Then it reaches the photodetector 68 after passing through the optical filter 66a.
  • a diaphragm 63a is introduced to limit the angle of the forward scattered light that finally reaches the photodetector 64, for example, the forward scattered light is limited to a low angle (or small angles) forward scattered light.
  • the leukocytes can be classified and counted by the laser light scattering method, and the above-mentioned optical detection unit 60 is an example.
  • the scattered light produced by the cells irradiated by the laser beam is related to the cell size, the refractive index of the cell membrane and the internal structure of the cell. According to the scattered light signal, the distribution map of the size of blood cells and the internal information of the cells can be obtained, which is called a scatter diagram.
  • the processor 40 can perform four classifications of white blood cells according to the optical signal of the first channel 31 , and the four classifications of white blood cells include results of neutrophils, eosinophils, lymphocytes and monocytes.
  • the processor 40 can at least obtain the result of nucleated red blood cells according to the light signal of the second channel 33 . In some embodiments, the processor 40 can also obtain the white blood cell count result and/or the basophil count result according to the light signal of the second channel 33 .
  • the basophil result comprises a percentage of basophils among white blood cells.
  • the neutrophil result includes a percentage of neutrophils among white blood cells
  • the eosinophil result includes a percentage of eosinophils among white blood cells
  • the lymphocyte result includes a percentage of lymphocytes among white blood cells
  • the monocyte result includes the percentage of monocytes among white blood cells.
  • the light signal of the first channel 31 includes forward scattered light (FSC), side scattered light (SSC) and fluorescence such as side fluorescent light (SFL).
  • the light signal of the second channel 33 includes forward scattered light (FSC), side scattered light (SSC) and fluorescence such as side fluorescent light (SFL).
  • the first channel 31 is a DIFF channel.
  • the second channel 33 is a WNB channel.
  • lymphocyte result obtained by the processor 40 according to the optical signal of the second channel is an explanation of the lymphocyte result obtained by the processor 40 according to the optical signal of the second channel.
  • the optical signal of the second channel 33 includes at least forward scattered light and side scattered light; the processor 40 generates a second scatter diagram according to the forward scattered light and side scattered light of the second channel 33; processing The device 40 calculates the lymphocyte result of the second channel 33 according to the second scatter diagram, completes the classification of Lym particles under this view (that is, under the scatter diagram), and further calculates the classification and counting results, that is, dividing the number of Lym particles Percentage obtained from the total particle count of white blood cells (WBC).
  • WBC white blood cells
  • FIG. 9 is an example of the complete classification result of the second channel 33 displayed by the sample analysis device, for example through a display.
  • the light signal of the second channel 33 includes at least side scattered light and fluorescence; the processor 40 generates a third scattergram according to the side scattered light and fluorescence of the second channel 33; the processor 40 generates a third scattergram according to the third scatter Dot plot, calculation of lymphocyte results for the second channel 33.
  • the light signal of the second channel 33 includes at least forward scattered light and fluorescence; the processor 40 generates a fourth scattergram according to the forward scattered light and fluorescence of the second channel 33; the processor 40 generates a fourth scattergram according to the fourth scatter Dot plot, calculation of lymphocyte results for the second channel 33.
  • the light signal of the second channel 33 includes forward scattered light, side scattered light and fluorescence.
  • the processor 40 generates a second scatter diagram according to the forward scattered light and the side scattered light of the second channel 33; the processor 40 calculates the first lymphocyte result of the second channel 33 according to the second scatter diagram; the processor 40 Generate a third scattergram according to the side scattered light and fluorescence of the second channel 33, and calculate the second lymphocyte result of the second channel 33 according to the third scattergram; the processor 40 calculates the second lymphocyte result of the second channel 33 according to the first
  • the lymphocyte result and the second lymphocyte result are, for example, weighted and summed to calculate the lymphocyte result of the second channel 33 . For example:
  • the lymphocyte result of the second channel the first lymphocyte result * a + the second lymphocyte result * (1-a);
  • a is a number greater than 0 and less than 1.
  • the light signal of the second channel 33 includes forward scattered light, side scattered light and fluorescence.
  • the processor 40 generates a second scatter diagram according to the forward scattered light and the side scattered light of the second channel 33; the processor 40 calculates the first lymphocyte result of the second channel 33 according to the second scatter diagram; the processor 40 Generate a fourth scattergram according to the forward scattered light and fluorescence of the second channel 33, and calculate the third lymphocyte result of the second channel 33 according to the fourth scattergram; the processor 40 calculates the third lymphocyte result of the second channel 33 according to the first
  • the lymphocyte result and the third lymphocyte result are, for example, weighted and summed to calculate the lymphocyte result of the second channel 33 . For example:
  • the lymphocyte result of the second channel the first lymphocyte result*b+the third lymphocyte result*(1-b);
  • b is a number greater than 0 and less than 1.
  • the light signal of the second channel 33 includes forward scattered light, side scattered light and fluorescence.
  • the processor 40 generates a third scatter diagram according to the side scattered light and fluorescence of the second channel 33; the processor 40 calculates the second lymphocyte result of the second channel 33 according to the third scatter diagram; the processor 40 calculates the second lymphocyte result of the second channel 33 according to the second
  • the forward scattered light and fluorescence of the channel 33 generate a fourth scattergram, and calculate the third lymphocyte result of the second channel 33 according to the fourth scattergram; the processor 40 calculates the second lymphocyte result of the second channel 33 and the third lymphocyte result, for example, carry out weighted summation to calculate the lymphocyte result of the second channel 33 .
  • the processor 40 calculates the second lymphocyte result of the second channel 33 and the third lymphocyte result, for example, carry out weighted summation to calculate the lymphocyte result of the second channel 33 .
  • the lymphocyte result of the second channel the second lymphocyte result*c+the third lymphocyte result*(1-c);
  • c is a number greater than 0 and less than 1.
  • the processor 40 can obtain the lymphocyte result according to the optical signal of the second channel 33, so as to correct the lymphocyte result of the first channel 31.
  • the lymphocyte result obtained from the optical signal is corrected for the lymphocyte result of the first channel 31
  • the first sample and the second sample of the two channels are prepared from the same blood sample.
  • the processor 40 judges whether the lymphocyte result of the first channel 31 is accurate according to the deviation between the lymphocyte result of the first channel 31 and the lymphocyte result of the second channel 33, or the optical signal of the first channel 31; When it is judged to be inaccurate (that is, the lymphocyte result of the first channel 31 is inaccurate), the processor 40 uses the lymphocyte result of the second channel 33 to correct the lymphocyte result of the first channel 31, for example, the processor 40 will The lymphocyte result of the second channel 33 is used as the lymphocyte result output by the sample analysis device; for another example, the processor 40 performs weighted summation of the lymphocyte result of the first channel 31 and the lymphocyte result of the second channel 33 as a sample analysis device Output lymphocyte results. For example:
  • d is greater than 0 and less than 1.
  • the lymphocyte result of the second channel 33 is used as the lymphocyte result output by the sample analysis device at this time; if d is 1, then the lymphocyte result of the first channel 31 is used as the sample at this time. Analyze the lymphocyte results output by the device.
  • the processor 40 can judge whether the lymphocyte result of the first channel 31 is accurate according to the light signal of the first channel 31 in this way:
  • the processor 40 generates the first scattered light according to the side scattered light and fluorescence of the first channel 31.
  • Dot diagram The processor 40 judges whether the boundary between the lymphocyte group and the neutrophil group is clear according to the first scatter diagram, and if it is not clear, it judges that the lymphocyte result of the first channel 31 is inaccurate.
  • the processor 40 can also judge whether the lymphocyte result of the first channel 31 is accurate according to the deviation between the lymphocyte result of the first channel 31 and the lymphocyte result of the second channel 33. Specifically, a range can be set, when When the deviation between the lymphocyte result of the first channel 31 and the lymphocyte result of the second channel 33 (such as the difference between the two) is within this range, the lymphocyte result of the first channel 31 is considered to be accurate; otherwise, then The lymphocyte result of the first channel 31 is considered to be inaccurate.
  • the processor 40 can also calculate the neutral cell according to the eosinophil result and monocyte result of the first channel 31, the basophil result of the second channel 33, and the corrected lymphocyte result. Granulocyte result, as the neutrophil result output by the sample analyzer.
  • Some embodiments of the present invention also provide a sample analysis method, which will be described in detail below.
  • the sample analysis method of some embodiments includes the following steps:
  • Step 110 Prepare a first sample by using the blood sample and the first channel reagent
  • Step 120 Acquiring the optical signal generated by the above-mentioned first sample after being irradiated with light
  • Step 130 Carry out four classifications of white blood cells according to the optical signal of the first sample, and the four classifications of white blood cells include results of neutrophils, eosinophils, lymphocytes and monocytes;
  • Step 140 judging whether the lymphocyte result of the above-mentioned first sample is accurate
  • Step 150 When the judgment is inaccurate, correct the lymphocyte result of the first sample according to the lymphocyte result of the second sample; wherein the second sample is prepared from the blood sample and the second channel reagent , that is, the first sample and the second sample are prepared from the same blood sample; the light signal generated by the second sample after being irradiated with light can be used to calculate the result of nucleated red blood cells and the result of lymphocytes. In some embodiments, the light signal generated by the light irradiation of the second sample can also be used to obtain the white blood cell count result and/or the basophil count result.
  • step 150 corrects the lymphocyte result of the first sample through the lymphocyte result of the second sample, which may be the lymphocyte result of the second channel as the output lymphocyte result, or may be The above-mentioned lymphocyte result of the first channel and the lymphocyte result of the second channel are weighted and summed to be the output lymphocyte result.
  • the sample analysis method may further include a step: according to the eosinophil result and monocyte result of the first channel, the basophil result of the second channel, and the corrected lymphocyte result , calculates the neutrophil result, as the output neutrophil result.
  • a key point in the above steps is how to calculate the lymphocyte result through the light signal generated by the second sample irradiated with light, which will be described in detail below.
  • the lymphocyte result is calculated by the light signal generated after the second sample is irradiated with light, including the following steps:
  • Step 200 Generate a second scatter diagram according to the forward scattered light and side scattered light of the second channel; wherein the optical signal of the second channel includes at least forward scattered light and side scattered light;
  • Step 202 Calculate the first lymphocyte result of the second channel according to the above-mentioned second scatter diagram, and the first lymphocyte result of the second channel may be used as the lymphocyte result of the second channel.
  • the lymphocyte result is calculated by the light signal generated after the second sample is irradiated with light, including the following steps:
  • Step 210 Generate a third scattergram according to the side scattered light and fluorescence of the second channel; wherein the optical signal of the second channel includes at least side scattered light and fluorescence;
  • Step 212 Calculate the second lymphocyte result of the second channel according to the above-mentioned third scatter diagram, and use the second lymphocyte result of the second channel as the lymphocyte result of the second channel.
  • the calculation of the lymphocyte result by the light signal generated after the second sample is irradiated with light includes the following steps:
  • Step 220 Generate a fourth scattergram according to the forward scattered light and fluorescence of the second channel; wherein the optical signal of the second channel includes at least forward scattered light and fluorescence;
  • Step 222 Calculate the third lymphocyte result of the second channel according to the above-mentioned fourth scatter diagram, and use the third lymphocyte result of the second channel as the lymphocyte result of the second channel.
  • the lymphocyte result of the second channel can also be calculated according to the first lymphocyte result and the second lymphocyte result of the second channel, for example, the two are weighted and summed to calculate the lymphocyte result of the second channel cell results.
  • the lymphocyte result of the second channel can also be calculated according to the first lymphocyte result and the third lymphocyte result of the second channel, for example, the two are weighted and summed to calculate the lymphocyte result of the second channel cell results.
  • the lymphocyte result of the second channel can also be calculated according to the second lymphocyte result and the third lymphocyte result of the second channel, for example, the two are weighted and summed to calculate the lymphocyte result of the second channel cell results.
  • the first channel is a DIFF channel. In some embodiments, the second channel is a WNB channel.
  • the light signal of the first channel 31 includes forward scattered light (FSC), side scattered light (SSC) and fluorescence such as side fluorescent light (SFL).
  • the light signal of the second channel 33 includes forward scattered light (FSC), side scattered light (SSC) and fluorescence such as side fluorescent light (SFL).
  • the equipment used in an example is the high-end veterinary blood cell instrument BC-75R Vet produced by Shenzhen Mindray Animal Medical Technology Co., Ltd. (sample analysis device after applying the scheme of the present invention), randomly select more than 50 cat blood samples, each case Two samples were prepared, and the following tests were carried out respectively:
  • a sample is tested on the high-end veterinary hematology instrument BC-75R Vet, and the measurement results of Lym% of lymphocyte content and Neu% of neutrophil content of each sample are obtained, as well as the results calculated only by DIFF channel. Lymphocyte content Lym%_D measurement results, neutrophil content Neu%_D measurement results.
  • the lymphocyte content calculated by the method in this paper (Lym% obtained from BC-75R Vet, the ordinate in the figure) has a good correlation with the lymphocyte content obtained by manual microscopic examination (Lym% obtained from the microscopic examination, the abscissa in the figure)
  • the correlation coefficient R reached 0.961, that is, the method in this paper can be used to accurately obtain the lymphocyte content Lym%.
  • the content of neutrophils calculated by the method in this paper (Neu% obtained in BC-75R Vet, the ordinate in the figure) is comparable to the content of neutrophils obtained by manual microscopic examination (Neu% obtained in the microscopic examination, the abscissa in the figure).
  • sample analysis device and sample analysis method in some embodiments herein can effectively improve the accuracy of the results of the five classifications of white blood cells.
  • any tangible, non-transitory computer-readable storage medium may be used, including magnetic storage devices (hard disks, floppy disks, etc.), optical storage devices (CD-ROM, DVD, Blu Ray discs, etc.), flash memory and/or the like .
  • These computer program instructions can be loaded into a general purpose computer, special purpose computer or other programmable data processing apparatus to form a machine, so that these instructions executed on the computer or other programmable data processing apparatus can generate an apparatus for realizing specified functions.
  • These computer program instructions may also be stored in a computer-readable memory which can instruct a computer or other programmable data processing device to operate in a particular manner such that the instructions stored in the computer-readable memory form a Manufactures, including implementing devices for implementing specified functions.
  • Computer program instructions can also be loaded on a computer or other programmable data processing device, thereby performing a series of operational steps on the computer or other programmable device to produce a computer-implemented process, so that the computer or other programmable device Instructions may provide steps for performing specified functions.
  • the term “comprises” and any other variants thereof are non-exclusive, such that a process, method, article, or apparatus that includes a list of elements includes not only those elements, but also elements not expressly listed or not part of the process. , method, system, article or other element of a device.
  • the term “coupled” and any other variations thereof, as used herein refers to a physical connection, an electrical connection, a magnetic connection, an optical connection, a communicative connection, a functional connection, and/or any other connection.

Abstract

一种样本分析装置和样本分析方法,通过血液样本和第一通道试剂制备第一试样;获取所述第一试样经光照射后产生的光信号;根据所述第一试样的光信号进行白细胞四分类,所述白细胞四分类包括嗜中性粒细胞结果、嗜酸性粒细胞结果、淋巴细胞结果和单核细胞结果;通过血液样本和第二通道试剂制备第二试样;获取所述第二试样经光照射后产生的光信号;根据所述第二试样的光信号至少进行有核红细胞计数、淋巴细胞计数;判断所述第一试样的淋巴细胞结果是否准确;当判断不准确时,则通过第二试样的淋巴细胞结果对所述第一试样的淋巴细胞结果进行修正,从而有效提升白细胞分类结果的准确性。

Description

一种样本分析装置和样本分析方法 技术领域
本发明涉及一种样本分析装置和样本分析方法。
背景技术
血常规检查是临床上最基础的化验检查项目之一,通过观察血液细胞的数量变化以及形态分布,来判断血液的状况以及疾病。一些例子中,血常规检查项目可以包括红细胞、白细胞、血红蛋白和血小板等。
当病菌入侵到生物体内例如人或动物体内时,白细胞能够集中到病菌入侵的部位,将病菌包围吞噬。如果血液中的白细胞超出正常值,可能生物体患有炎症。成熟正常的白细胞可以分为五类:嗜中性粒细胞(Neu)、嗜酸性粒细胞(Eos)、嗜碱性粒细胞(Baso)、淋巴细胞(Lym)和单核细胞(Mon)。不同细胞在血液中的含量具有不同的临床意义。因此,准确对白细胞进行分类在临床上显得尤为重要。
技术问题
针对白细胞分类问题,本发明主要提供一种样本分析装置和样本分析方法,下面具体说明。
技术解决方案
根据第一方面,一种实施例中提供一种样本分析装置,包括:
血样供给部,用于供给血液样本;
试剂供给部,用于供给第一通道试剂和第二通道试剂;
第一通道,用于接收所述血样供给部提供的所述血液样本和所述试剂供给部提供的第一通道试剂以制备第一试样,并获取所述第一试样经光照射后产生的光信号;
第二通道,用于接收所述血样供给部提供的所述血液样本和所述试剂供给部提供的第二通道试剂以制备第二试样,并获取所述第二试样经光照射后产生的光信号;
处理器,所述处理器能够根据所述第一通道的光信号进行白细胞四分类,所述白细胞四分类包括嗜中性粒细胞结果、嗜酸性粒细胞结果、淋巴细胞结果和单核细胞结果;所述处理器能够根据所述第二通道的光信号至少得到有核红细胞结果;
其中:
所述处理器还能够根据所述第二通道的光信号得到淋巴细胞结果,以用于对所述第一通道的淋巴细胞结果进行修正。
一实施例中,所述处理器根据所述第一试样的淋巴细胞结果和所述第二试样的淋巴细胞结果的偏差,或者所述第一通道的光信号判断第一通道的淋巴细胞结果是否准确;当判断不准确时,则所述处理器通过所述第二通道的淋巴细胞结果对所述第一通道的淋巴细胞结果进行修正。
一实施例中,所述处理器通过所述第二通道的淋巴细胞结果对所述第一通道的淋巴细胞结果进行修正,包括:
所述处理器将所述第二通道的淋巴细胞结果作为样本分析装置输出的淋巴细胞结果。
一实施例中,所述处理器通过所述第二通道的淋巴细胞结果对所述第一通道的淋巴细胞结果进行修正,包括:
所述处理器将所述第一通道的淋巴细胞结果和第二通道的淋巴细胞结果进行加权求和,以作为样本分析装置输出的淋巴细胞结果。
一实施例中,所述处理器根据所述第一通道的光信号判断第一通道的淋巴细胞结果是否准确,包括:
所述第一通道的光信号至少包括侧向散射光和荧光;
所述处理器根据所述第一通道的侧向散射光和荧光生成第一散点图;
所述处理器根据所述第一散点图判断淋巴细胞群和中性粒细胞群的边界是否清楚,若不清楚,则判断第一通道的淋巴细胞结果不准确。
一实施例中,所述处理器还能够根据所述第二通道的光信号得到淋巴细胞结果,包括:
所述第二通道的光信号至少包括前向散射光和侧向散射光;
所述处理器根据所述第二通道的前向散射光和侧向散射光生成第二散点图;
所述处理器根据所述第二散点图,计算第二通道的淋巴细胞结果。
一实施例中,所述处理器还能够根据所述第二通道的光信号得到淋巴细胞结果,包括:
所述第二通道的光信号至少包括侧向散射光和荧光;
所述处理器根据所述第二通道的侧向散射光和荧光生成第三散点图;
所述处理器根据所述第三散点图,计算第二通道的淋巴细胞结果。
一实施例中,所述处理器还能够根据所述第二通道的光信号得到淋巴细胞结果,包括:
所述第二通道的光信号至少包括前向散射光和荧光;
所述处理器根据所述第二通道的前向散射光和荧光生成第四散点图;
所述处理器根据所述第四散点图,计算第二通道的淋巴细胞结果。
一实施例中,所述处理器还能够根据所述第二通道的光信号得到淋巴细胞结果,包括:
所述第二通道的光信号包括前向散射光、侧向散射光和荧光;
所述处理器根据所述第二通道的前向散射光和侧向散射光生成第二散点图;所述处理器根据所述第二散点图,计算第二通道的第一淋巴细胞结果;
所述处理器根据所述第二通道的侧向散射光和荧光生成第三散点图;所述处理器根据所述第三散点图,计算第二通道的第二淋巴细胞结果;
所述处理器根据所述第二通道的第一淋巴细胞结果和第二淋巴细胞结果,计算第二通道的淋巴细胞结果。
一实施例中,所述处理器还能够根据所述第二通道的光信号得到淋巴细胞结果,包括:
所述第二通道的光信号包括前向散射光、侧向散射光和荧光;
所述处理器根据所述第二通道的前向散射光和侧向散射光生成第二散点图;所述处理器根据所述第二散点图,计算第二通道的第一淋巴细胞结果;
所述处理器根据所述第二通道的前向散射光和荧光生成第四散点图;所述处理器根据所述第四散点图,计算第二通道的第三淋巴细胞结果;
所述处理器根据所述第二通道的第一淋巴细胞结果和第三淋巴细胞结果,计算第二通道的淋巴细胞结果。
一实施例中,所述处理器还能够根据所述第二通道的光信号得到淋巴细胞结果,包括:
所述第二通道的光信号包括前向散射光、侧向散射光和荧光;
所述处理器根据所述第二通道的侧向散射光和荧光生成第三散点图;所述处理器根据所述第三散点图,计算第二通道的第二淋巴细胞结果;
所述处理器根据所述第二通道的前向散射光和荧光生成第四散点图;所述处理器根据所述第四散点图,计算第二通道的第三淋巴细胞结果;
所述处理器根据所述第二通道的第二淋巴细胞结果和第三淋巴细胞结果,计算第二通道的淋巴细胞结果。
一实施例中,所述处理器还能够根据所述第二通道的光信号得到白细胞计数结果和/或嗜碱性粒细胞结果。
一实施例中,所述嗜碱性粒细胞结果包括嗜碱性粒细胞在白细胞中的百分比。
一实施例中,所述处理器还能够根据所述第一通道的嗜酸性粒细胞结果和单核细胞结果,所述第二通道的嗜碱性粒细胞结果,以及修正后的淋巴细胞结果,计算中性粒细胞结果,作为样本分析装置输出的中性粒细胞结果。
一实施例中,所述嗜中性粒细胞结果包括嗜中性粒细胞在白细胞中的百分比,嗜酸性粒细胞结果包括嗜酸性粒细胞在白细胞中的百分比,淋巴细胞结果包括淋巴细胞在白细胞中的百分比,单核细胞结果包括单核细胞在白细胞中的百分比。
一实施例中,所述第一通道为DIFF通道;所述第二通道为WNB通道。
一实施例中,所述第一通道的光信号包括前向散射光、侧向散射光和荧光;所述第二通道的光信号包括前向散射光、侧向散射光和荧光。
根据第二方面,一种实施例提供一种样本分析方法,包括:
通过血液样本和第一通道试剂制备第一试样;
获取所述第一试样经光照射后产生的光信号;
根据所述第一试样的光信号进行白细胞四分类,所述白细胞四分类包括嗜中性粒细胞结果、嗜酸性粒细胞结果、淋巴细胞结果和单核细胞结果;
判断所述第一试样的淋巴细胞结果是否准确;
当判断不准确时,则通过第二试样的淋巴细胞结果对所述第一试样的淋巴细胞结果进行修正;其中所述第二试样由所述血液样本和第二通道试剂制备而成,所述第二试样经光照射后产生的光信号能够用于计算有核红细胞结果和淋巴细胞结果。
一实施例中,所述通过第二试样的淋巴细胞结果对所述第一试样的淋巴细胞结果进行修正,包括以下任意一种:
将所述第二通道的淋巴细胞结果作为输出的淋巴细胞结果;
将所述第一通道的淋巴细胞结果和第二通道的淋巴细胞结果进行加权求和,以作为输出的淋巴细胞结果。
一实施例中,通过第二试样经光照射后产生的光信号计算淋巴细胞结果,包括:
所述第二通道的光信号至少包括前向散射光和侧向散射光;
根据所述第二通道的前向散射光和侧向散射光生成第二散点图;
根据所述第二散点图,计算第二通道的淋巴细胞结果。
一实施例中,通过第二试样经光照射后产生的光信号计算淋巴细胞结果,包括:
所述第二通道的光信号至少包括侧向散射光和荧光;
根据所述第二通道的侧向散射光和荧光生成第三散点图;
根据所述第三散点图,计算第二通道的淋巴细胞结果。
一实施例中,通过第二试样经光照射后产生的光信号计算淋巴细胞结果,包括:
所述第二通道的光信号至少包括前向散射光和荧光;
根据所述第二通道的前向散射光和荧光生成第四散点图;
根据所述第四散点图,计算第二通道的淋巴细胞结果。
一实施例中,通过第二试样经光照射后产生的光信号计算淋巴细胞结果,包括:
所述第二通道的光信号包括前向散射光、侧向散射光和荧光;
根据所述第二通道的前向散射光和侧向散射光生成第二散点图;根据所述第二散点图,计算第二通道的第一淋巴细胞结果;
根据所述第二通道的侧向散射光和荧光生成第三散点图;所述处理器根据所述第三散点图,计算第二通道的第二淋巴细胞结果;
根据所述第二通道的第一淋巴细胞结果和第二淋巴细胞结果,计算第二通道的淋巴细胞结果。
一实施例中,通过第二试样经光照射后产生的光信号计算淋巴细胞结果,包括:
所述第二通道的光信号包括前向散射光、侧向散射光和荧光;
根据所述第二通道的前向散射光和侧向散射光生成第二散点图;根据所述第二散点图,计算第二通道的第一淋巴细胞结果;
根据所述第二通道的前向散射光和荧光生成第四散点图;所述处理器根据所述第四散点图,计算第二通道的第三淋巴细胞结果;
根据所述第二通道的第一淋巴细胞结果和第三淋巴细胞结果,计算第二通道的淋巴细胞结果。
一实施例中,通过第二试样经光照射后产生的光信号计算淋巴细胞结果,包括:
所述第二通道的光信号包括前向散射光、侧向散射光和荧光;
根据所述第二通道的侧向散射光和荧光生成第三散点图;根据所述第三散点图,计算第二通道的第二淋巴细胞结果;
根据所述第二通道的前向散射光和荧光生成第四散点图;所述处理器根据所述第四散点图,计算第二通道的第三淋巴细胞结果;
根据所述第二通道的第二淋巴细胞结果和第三淋巴细胞结果,计算第二通道的淋巴细胞结果。
一实施例中,所述第二试样经光照射后产生的光信号还能够用于得到白细胞计数结果和/或嗜碱性粒细胞结果。
一实施例中,所述嗜碱性粒细胞结果包括嗜碱性粒细胞在白细胞中的百分比。
一实施例中,所述样本分析方法还包括:根据所述第一通道的嗜酸性粒细胞结果和单核细胞结果,所述第二通道的嗜碱性粒细胞结果,以及修正后的淋巴细胞结果,计算中性粒细胞结果,作为输出的中性粒细胞结果。
一实施例中,所述第一通道为DIFF通道;所述第二通道为WNB通道。
一实施例中,所述第一通道的光信号包括前向散射光、侧向散射光和荧光;所述第二通道的光信号包括前向散射光、侧向散射光和荧光。
有益效果
依据上述实施例的样本分析装置和样本分析方法,可以通过第二试样的淋巴细胞结果对所述第一试样的淋巴细胞结果进行修正,从而有效提升白细胞分类结果的准确性。
附图说明
图1为一种实施例的猫血样本在血液分析设备上检测的DIFF通道白细胞分类结果的散点示意图;
图2为一种实施例的猫血样本在血液分析设备上检测的WNB通道白细胞分类结果的散点示意图;
图3为一种实施例的血液样本在DIFF通道中的散点示意图;
图4为一种实施例的血液样本在WNB通道中的散点示意图;
图5为一种实施例的样本分析装置的结构示意图;
图6为一种实施例的光学检测部的结构示意图;
图7为一种实施例的光学检测部的结构示意图;
图8为一种实施例的光学检测部的结构示意图;
图9为一些实施例中样本分析装置通过例如显示器显示的第二通道的完整分类结果的一个例子;
图10为一种实施例的样本分析方法的流程图;
图11为一种实施例的通过第二试样经光照射后产生的光信号计算淋巴细胞结果的流程图;
图12为一种实施例的通过第二试样经光照射后产生的光信号计算淋巴细胞结果的流程图;
图13为一种实施例的通过第二试样经光照射后产生的光信号计算淋巴细胞结果的流程图;
图14为猫血样本Lym%_D与人工镜检结果的相关性示意图;
图15为猫血样本Lym%与人工镜检结果的相关性示意图;
图16为猫血样本Neu%_D与人工镜检结果的相关性示意图;
图17为猫血样本Neu%与人工镜检结果的相关性示意图。
本发明的实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
现有的白细胞计数和分类检测方法有很多,例如有激光散射结合荧光染色法,化学染色激光散射结合阻抗法等,其中通常对白细胞四分类(嗜中性粒细胞、嗜酸性粒细胞、淋巴细胞和单核细胞)和嗜碱性粒细胞分类为独立的两个通道,基于两个通道的综合信息得到白细胞五分类的结果。
发明人研究发现,在荧光染色法下仅基于DIFF通道得到白细胞四分类结果存在缺陷,往往对淋巴细胞和中性粒细胞边界不清的情况分类错误,进而导致淋巴细胞和中性粒细胞检测结果不准确,最终引发临床诊断事故。例如图1所示为一例猫血样本在血液分析设备上检测的DIFF通道白细胞分类结果,其中淋巴细胞Lym分类偏高,其百分比计数结果为68.2%,而实际人工镜检统计的淋巴细胞百分比结果为10.1%;而在WNB通道中,Lym粒子团与Neu粒子团可以清楚地分类开,如图2所示。根据这个发现,发明人提出一种结合两个测量通道来完成分类淋巴细胞和中性粒细胞的方法,以期提升白细胞分类结果准确性。
需要说有的是,本文中的WNB通道是指能够对白细胞进行计数,对有核红细胞进行计数和对嗜酸性粒细胞分类的通道。
一些例子中,本发明使用到的两个测量通道可以为DIFF通道和WNB通道,两个通道均可以采用流式细胞技术,可以获得三种检测信号:前向散射光强度FS,用于检测细胞体积;侧向散射光强度SS,可以用于检测细胞内部复杂程度;荧光强度FL,可以检测细胞核酸含量;这些在下文还在进一步提及。图3和图4通过散点图分别展示了DIFF通道和WNB通过中各种细胞粒子的分布位置,在图示的例子中,淋巴细胞Lym的分布位置清晰可见;不过,在实际测试过程中,对于某些血液样本,往往表现为DIFF通道中Lym(淋巴细胞)和Neu(中性粒细胞)细胞边界不清或者黏连的情况,导致在DIFF通道中Lym粒子和Neu粒子分类错误的情况,例如上文提及的图1就是一个例子,这会进而导致错误的参数结果,以及影响临床诊断结论。而WNB通道中由于通道特性的差异,Lym和以Neu为主的其他细胞粒子团可以清晰分类,上文提及的图2就是一个例子。因此,发明人考虑从WNB通道中分类Lym粒子,来避免DIFF通道中Lym分类错误的情况,得到准确的白细胞参数计算结果。
例如一些例子中,可以通过以下步骤来设计方案:
(1)在DIFF通道中,对细胞粒子进行分群,得到白细胞四分类的结果,其中淋巴细胞的百分比结果,记为Lym%_D;一些例子中,Lym%_D是在去除血影后,将淋巴细胞除以四分类的总数得到的百分比;
(2)在WNB通道中,同样对细胞粒子进行分群,得到一个淋巴细胞百分比结果,记为Lym%_N;
(3)设计切换规则,来决定选择Lym%_D还是Lym%_N来作为最终的Lym%参数结果,或者通过这两者共同来计算得到最终的Lym%参数结果;
(4)再计算最终的Neu%参数结果,例如Neu% = 1 - Lym% - Mon% - Eos% - Baso%;其中Neu%,Lym%,Mon%,Eos%,Baso%分别指嗜中性粒细胞百分比结果,淋巴细胞百分比结果,单核细胞百分比结果,嗜酸性粒细胞百分比结果,嗜碱性粒细胞百分比结果。
可以理解地,上述步骤(1)和(2)是针对同一血液样本来进行测量的。
下面对本申请进行一个更为详细的说明。
本申请一些实施例中公开了一种样本分析装置。请参照图5,一些实施例的样本分析装置包括血样供给部10、试剂供给部20、第一通道31、第二通道33和处理器40。一些具体实施例中,血样供给部10用于供给血液样本;试剂供给部20则用于供给试剂,例如供给第一通道试剂和第二通道试剂等;第一通道31用于接收血样供给部10提供的血液样本和试剂供给部20提供的第一通道试剂以制备第一试样,并获取第一试样经光照射后产生的光信号;第二通道33用于接收血样供给部10提供的血液样本和试剂供给部20提供的第二通道试剂以制备第二试样,并获取第二试样经光照射后产生的光信号;处理器40则用于根据上述的光信号来计算检测结果,本发明一些实施例中的处理器40包括但不限于中央处理器(Central Processing Unit,CPU)、微控制单元(Micro Controller Unit,MCU)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)和数字信号处理(DSP)等用于解释计算机指令以及处理计算机软件中的数据的装置。一些实施例中,处理器40用于执行该非暂时性计算机可读存储介质中的各计算机应用程序,从而使样本分析装置执行相应的检测流程。
下面对各部件进行更进一步的说明。
一些实施例中,血样供给部10可以包括样本针,样本针通过二维或三维的驱动机构来在空间上进行二维或三维的运动,从而样本针可以移动去吸取承载样本的容器(例如样本管)中的样本,然后移动到用于为被测样本和试剂提供反应场所例如第一通道31或第二通道33,以向其中加入血液样本。
一些实施例中,试剂供给部20可以包括承载试剂容器的区域和将试剂容器与上述第一通道31、第二通道33连通的试剂液路,通过试剂液路将试剂从试剂容器加入到第一通道31和第二通道33中。一些实施例中,试剂供给部20也可以包括试剂针,试剂针通过二维或三维的驱动机构来在空间上进行二维或三维的运动,从而试剂针可以移动去吸取试剂容器中的试剂,然后移动到用于为被测样本和试剂提供反应场所例如第一通道31、第二通道33,以向其中加入试剂。
试剂供给部20可以提供第一通道试剂和第二通道试剂。一些实施例中,第一通道试剂包括溶血剂和荧光试剂等。一些实施例中,第二通道试剂包括溶血剂和荧光试剂等。一些实施例中,第一通道试剂所包括的荧光试剂与第二通道试剂所包括的荧光试剂不同。
第一通道31和第二通道33能够通过血液样本和试剂来制备试样,并获取试样经光照射后产生的光信号。一些实施例中,第一通道31可以包括反应池和测定部这两种结构,反应池可以为样本和试剂提供反应场所;一些实施例中,第二通道33可以包括反应池和测定部这两种结构,反应池可以为样本和试剂提供反应场所。一些实施例中,第一通道31和第二通道33可以具有各自的反应池,也可以共用同一个反应池。一些实施例中,第一通道31和第二通道33可以具有各自的测定部,也可以共用测定部。
一些实施例中,测定部包括光学检测部,下面具体说明。
一些实施例中,测定部包括光学检测部,光学检测部能够通过激光散射原理对样本进行测定,原理为:将激光照射在细胞上,通过收集细胞被照射后产生的光信号,例如散射光和荧光,来对细胞进行分类和计数等——当然在一些实施例中,如果细胞没有使用荧光试剂来处理,那么自然收集不到荧光。下面对光学检测部进行说明。
一些实施例中,光学检测部能够通过激光散射原理对样本进行测定,原理为:将激光照射在细胞上,通过收集细胞被照射后产生的光信号,例如散射光和/或荧光,来对细胞进行分类和计数等——当然在一些实施例中,如果细胞没有使用荧光试剂来处理,那么自然收集不到荧光。下面对光学检测部进行说明。
请参照图6,光学检测部可以包括光源61、流动室62和光学检测器69。流动室62与反应池连通,用于供待测试样例如第一试样或第二试样的细胞逐个通过;光源61用于照射通过流动室62的细胞,光学检测器69用于获取细胞通过流动室62的光信号。图7为光学检测部的一个具体例子,光学检测器69可以包括用于收集前向散射光的透镜组63,用于将收集到的前向散射光由光学信号转换为电信号的光电探测器64,用于收集侧向散射光和侧向荧光的透镜组65,二向色镜66,用于将收集到的侧向散射光由光学信号转换为电信号的光电探测器67,用于将收集到的侧向荧光由光学信号转换为电信号的光电探测器68;其中二向色镜66用于分光,将混合在一起的侧向散射光和侧向荧光分为两路,一路为侧向散射光,一路为侧向荧光。需要说明的是,本文中光信号可以是指光学信号,也可以是指由光学信号转成的电信号,他们在表征细胞检测结果所含有的信息实质上是一致的。
不妨以图7所示的光学检测部的结构为例,说明光学检测部是如何具体来获取待测试样的光信号。
流动室62用于供待测试样的细胞逐个通过。例如在反应池中将样本中的红细胞通过一些试剂例如溶血剂溶解,或者再进一步通过荧光剂染色后,采用鞘流技术,使得所制备的待测试样中的细胞从流动室62中依次一个接一个地排队通过。图中Y轴方向为待测试样中细胞运动的方向,需要说明的是,图中Y轴方向为垂直于纸面的方向。光源61用于照射通过流动室62的细胞。一些实施例中,光源61为激光器,例如氦氖激光器或半导体激光器等。当光源61发出的光照射到流动室62中的细胞时会向周围产生散射。因此,当制备好的待测试样中的细胞在鞘流的作用下逐个通过流动室62时,光源61发出的光向通过流动室62的细胞照射,照射到细胞上的光会向四周产生散射,通过透镜组63来收集前向散射光——例如图中Z轴的方向,使之到达光电探测器64,从而信息处理部70可以从光电探测器64获取到细胞的前向散射光信息;同时,在与照射到细胞的光线垂直的方向通过透镜组65收集侧向光——例如图中X轴的方向,收集的侧向光再通过二向色镜66发生反射和折射,其中侧向光中的侧向散射光在经过二向色镜66时发生反射,然后到达相应的光电探测器67,侧向光中的侧向荧光则经过折射或者说透射后也到达相应的光电探测器68,从而处理器40可以从光电探测器67获取到细胞的侧向散射光信息,从光电探测器68获取到细胞的侧向荧光信息。请参照图8,为光学检测部60另一个例子。为了使得光源61照射到流动室62的光性能更好,可以在光源61和流动室62之间引入准直透镜61a,光源61发出的光被准直透镜61a准直后再向通过流动室62的细胞照射。一些例子中,为了使得收集到的荧光噪声更少(即没有其他光的干扰),可以在光电探测器68的前面再设置一滤光片66a,经二向色镜66分光后的侧向荧光再经过滤光片66a后才到达光电探测器68。一些实施例子,在透镜组63收集前向散射光后,再引入一个光阑63a来限定最终到达光电探测器64的前向散射光的角度,例如将前向散射光限定为低角度(或者说小角度)的前向散射光。
通过激光散射法可以对白细胞进行分类和计数,上述的光学检测部60就是一个例子。细胞受到激光束的照射产生的散射光与细胞大小、细胞膜和细胞内部结构的折射率相关。根据散射光信号可以得到血细胞大小及细胞内部信息的分布图,称为散点图。
以上是样本分析装置的一些说明。
一些实施例中,处理器40能够根据第一通道31的光信号进行白细胞四分类,白细胞四分类包括嗜中性粒细胞结果、嗜酸性粒细胞结果、淋巴细胞结果和单核细胞结果。
一些实施例中,处理器40能够根据第二通道33的光信号至少得到有核红细胞结果。一些实施例中,处理器40还能够根据第二通道33的光信号得到白细胞计数结果和/或嗜碱性粒细胞结果。
一些实施例中,嗜碱性粒细胞结果包括嗜碱性粒细胞在白细胞中的百分比。
一些实施例中,嗜中性粒细胞结果包括嗜中性粒细胞在白细胞中的百分比,嗜酸性粒细胞结果包括嗜酸性粒细胞在白细胞中的百分比,淋巴细胞结果包括淋巴细胞在白细胞中的百分比,单核细胞结果包括单核细胞在白细胞中的百分比。
上述涉及到第一通道31和第二通道33的光信号。一些实施例中,第一通道31的光信号包括前向散射光(FSC)、侧向散射光(SSC)和荧光例如侧向荧光(SFL)。一些实施例中,第二通道33的光信号包括前向散射光(FSC)、侧向散射光(SSC)和荧光例如侧向荧光(SFL)。
一些实施例中,第一通道31为DIFF通道。
一些实施例中,第二通道33为WNB通道。
以上是关于第一通道31和第二通道33的一些说明。
下面对处理器40根据第二通道的光信号得到淋巴细胞结果进行一个说明。
一些实施例中,第二通道33的光信号至少包括前向散射光和侧向散射光;处理器40根据第二通道33的前向散射光和侧向散射光生成第二散点图;处理器40根据第二散点图,计算第二通道33的淋巴细胞结果,完成该视角下(即该散点图下)对Lym粒子的分类,并进一步计算出分类计数结果,即将Lym粒子数除以白细胞(WBC)总粒子数得到的百分比。
图9为样本分析装置通过例如显示器显示的第二通道33的完整分类结果的一个例子。
一些实施例中,第二通道33的光信号至少包括侧向散射光和荧光;处理器40根据第二通道33的侧向散射光和荧光生成第三散点图;处理器40根据第三散点图,计算第二通道33的淋巴细胞结果。
一些实施例中,第二通道33的光信号至少包括前向散射光和荧光;处理器40根据第二通道33的前向散射光和荧光生成第四散点图;处理器40根据第四散点图,计算第二通道33的淋巴细胞结果。
一些实施例中,第二通道33的光信号包括前向散射光、侧向散射光和荧光。处理器40根据第二通道33的前向散射光和侧向散射光生成第二散点图;处理器40根据第二散点图,计算第二通道33的第一淋巴细胞结果;处理器40根据第二通道33的侧向散射光和荧光生成第三散点图,并根据第三散点图,计算第二通道33的第二淋巴细胞结果;处理器40根据第二通道33的第一淋巴细胞结果和第二淋巴细胞结果例如将两者进行加权求和,以计算第二通道33的淋巴细胞结果。例如:
第二通道的淋巴细胞结果=第一淋巴细胞结果*a+第二淋巴细胞结果*(1-a);
其中a为大于0且小于1的数。
一些实施例中,第二通道33的光信号包括前向散射光、侧向散射光和荧光。处理器40根据第二通道33的前向散射光和侧向散射光生成第二散点图;处理器40根据第二散点图,计算第二通道33的第一淋巴细胞结果;处理器40根据第二通道33的前向散射光和荧光生成第四散点图,并根据第四散点图,计算第二通道33的第三淋巴细胞结果;处理器40根据第二通道33的第一淋巴细胞结果和第三淋巴细胞结果例如将两者进行加权求和,以计算第二通道33的淋巴细胞结果。例如:
第二通道的淋巴细胞结果=第一淋巴细胞结果*b+第三淋巴细胞结果*(1-b);
其中b为大于0且小于1的数。
一些实施例中,第二通道33的光信号包括前向散射光、侧向散射光和荧光。处理器40根据第二通道33的侧向散射光和荧光生成第三散点图;处理器40根据第三散点图,计算第二通道33的第二淋巴细胞结果;处理器40根据第二通道33的前向散射光和荧光生成第四散点图,并根据第四散点图,计算第二通道33的第三淋巴细胞结果;处理器40根据第二通道33的第二淋巴细胞结果和第三淋巴细胞结果例如将两者进行加权求和,以计算第二通道33的淋巴细胞结果。例如:
第二通道的淋巴细胞结果=第二淋巴细胞结果*c+第三淋巴细胞结果*(1-c);
其中c为大于0且小于1的数。
一些实施例中,处理器40能够根据第二通道33的光信号得到淋巴细胞结果,以用于对第一通道31的淋巴细胞结果进行修正,可以理解地,在处理器40根据第二通道33的光信号得到淋巴细胞结果对第一通道31的淋巴细胞结果进行修正时,这两个通道的第一试样和第二试样是经同一血液样本制备而成。
一些实施例中,处理器40根据第一通道31的淋巴细胞结果与第二通道33的淋巴细胞结果的偏差,或者第一通道31的光信号判断第一通道31的淋巴细胞结果是否准确;当判断为不准确时(即第一通道31的淋巴细胞结果不准确),则处理器40通过第二通道33的淋巴细胞结果对第一通道31的淋巴细胞结果进行修正,例如处理器40将第二通道33的淋巴细胞结果作为样本分析装置输出的淋巴细胞结果;再例如处理器40将第一通道31的淋巴细胞结果和第二通道33的淋巴细胞结果进行加权求和,以作为样本分析装置输出的淋巴细胞结果。例如:
样本分析装置输出的淋巴细胞结果=
第一通道的淋巴细胞结果*d+第二通道33的淋巴细胞结果*(1-d);
其中d大于0且小于1的数。另外,若d取0,则此时是将第二通道33的淋巴细胞结果作为样本分析装置输出的淋巴细胞结果,若d取1,则此时是将第一通道31的淋巴细胞结果作为样本分析装置输出的淋巴细胞结果。
在上述过程中,处理器40可以这样来根据第一通道31的光信号判断第一通道31的淋巴细胞结果是否准确:处理器40根据第一通道31的侧向散射光和荧光生成第一散点图;处理器40根据第一散点图判断淋巴细胞群和中性粒细胞群的边界是否清楚,若不清楚,则判断第一通道31的淋巴细胞结果不准确。
在上述过程中,处理器40还可以根据第一通道31的淋巴细胞结果与第二通道33的淋巴细胞结果的偏差来判断第一通道31的淋巴细胞结果是否准确,具体可以设置一个范围,当第一通道31的淋巴细胞结果与第二通道33的淋巴细胞结果的偏差(例如两者的差值)处于该范围内时,则认为第一通道31的淋巴细胞结果是准确的,反之,则认为第一通道31的淋巴细胞结果是不准确的。
一些实施例中,处理器40还能够根据第一通道31的嗜酸性粒细胞结果和单核细胞结果,第二通道33的嗜碱性粒细胞结果,以及修正后的淋巴细胞结果,计算中性粒细胞结果,作为样本分析装置输出的中性粒细胞结果。
本发明一些实施例还提供一种样本分析方法,下面具体说明。
请参照图10,一些实施例的样本分析方法包括以下步骤:
步骤110:通过血液样本和第一通道试剂制备第一试样;
步骤120:获取上述第一试样经光照射后产生的光信号;
步骤130:根据上述第一试样的光信号进行白细胞四分类,上述白细胞四分类包括嗜中性粒细胞结果、嗜酸性粒细胞结果、淋巴细胞结果和单核细胞结果;
步骤140:判断上述第一试样的淋巴细胞结果是否准确;
步骤150:当判断不准确时,则通过第二试样的淋巴细胞结果对上述第一试样的淋巴细胞结果进行修正;其中上述第二试样由上述血液样本和第二通道试剂制备而成,也即第一试样和第二试样是由同一血液样本制备而成;上述第二试样经光照射后产生的光信号能够用于计算有核红细胞结果和淋巴细胞结果。一些实施例中,第二试样经光照射后产生的光信号还能够用于得到白细胞计数结果和/或嗜碱性粒细胞结果。
一些实施例中,步骤150过第二试样的淋巴细胞结果对上述第一试样的淋巴细胞结果进行修正,可以是将上述第二通道的淋巴细胞结果作为输出的淋巴细胞结果,也可以是将上述第一通道的淋巴细胞结果和第二通道的淋巴细胞结果进行加权求和,以作为输出的淋巴细胞结果。
一些实施例中,样本分析方法还可以包括一步骤:根据上述第一通道的嗜酸性粒细胞结果和单核细胞结果,上述第二通道的嗜碱性粒细胞结果,以及修正后的淋巴细胞结果,计算中性粒细胞结果,作为输出的中性粒细胞结果。
上面步骤中的一个关键点在于如何通过第二试样经光照射后产生的光信号来计算淋巴细胞结果,下面对这一点进行详细的说明。
请参照图11,一些实施例中,通过第二试样经光照射后产生的光信号计算淋巴细胞结果,包括以下步骤:
步骤200:根据上述第二通道的前向散射光和侧向散射光生成第二散点图;其中上述第二通道的光信号至少包括前向散射光和侧向散射光;
步骤202:根据上述第二散点图,计算第二通道的第一淋巴细胞结果,可以将该第二通道的第一淋巴细胞结果作为第二通道的淋巴细胞结果。
请参照图12,一些实施例中,通过第二试样经光照射后产生的光信号计算淋巴细胞结果,包括以下步骤:
步骤210:根据上述第二通道的侧向散射光和荧光生成第三散点图;其中上述第二通道的光信号至少包括侧向散射光和荧光;
步骤212:根据上述第三散点图,计算第二通道的第二淋巴细胞结果,可以将该第二通道的第二淋巴细胞结果作为第二通道的淋巴细胞结果。
请参照图13,一些实施例中,通过第二试样经光照射后产生的光信号计算淋巴细胞结果,包括以下步骤:
步骤220:根据上述第二通道的前向散射光和荧光生成第四散点图;其中上述第二通道的光信号至少包括前向散射光和荧光;
步骤222:根据上述第四散点图,计算第二通道的第三淋巴细胞结果,可以将该第二通道的第三淋巴细胞结果作为第二通道的淋巴细胞结果。
另一些实施例中,也可根据第二通道的第一淋巴细胞结果和第二淋巴细胞结果,计算第二通道的淋巴细胞结果,例如将两者进行加权求和,以计算第二通道的淋巴细胞结果。
另一些实施例中,也可根据第二通道的第一淋巴细胞结果和第三淋巴细胞结果,计算第二通道的淋巴细胞结果,例如将两者进行加权求和,以计算第二通道的淋巴细胞结果。
另一些实施例中,也可根据第二通道的第二淋巴细胞结果和第三淋巴细胞结果,计算第二通道的淋巴细胞结果,例如将两者进行加权求和,以计算第二通道的淋巴细胞结果。
一些实施例中,第一通道为DIFF通道。一些实施例中,第二通道为WNB通道。
上述涉及到第一通道31和第二通道33的光信号。一些实施例中,第一通道31的光信号包括前向散射光(FSC)、侧向散射光(SSC)和荧光例如侧向荧光(SFL)。一些实施例中,第二通道33的光信号包括前向散射光(FSC)、侧向散射光(SSC)和荧光例如侧向荧光(SFL)。
在一个实例中使用的设备为深圳迈瑞动物医疗科技有限公司生产的高端兽用血球仪BC-75R Vet(应用本发明的方案后的样本分析装置),随机选取大于50例猫血液样本,每例样本制备2份,分别进行以下测试:
(1)一份样本在高端兽用血球仪BC-75R Vet上进行测试,获取每例样本的淋巴细胞含量Lym%测量结果、中性粒细胞含量Neu%测量结果,以及仅依靠DIFF通道计算的淋巴细胞含量Lym%_D测量结果、中性粒细胞含量Neu%_D测量结果。
(2)一份样本由专业医生来人工镜检,由此计算每例样本的淋巴细胞含量Lym%测量结果、中性粒细胞含量Neu%测量结果。
将样本在血球仪下测试的两个淋巴细胞含量测量结果与人工镜检结果相比较,结果如图14和图15所示。由以上图形可知:
本文方法计算的淋巴细胞含量(在BC-75R Vet得到的Lym%,图中纵坐标)与人工镜检所得的淋巴细胞含量(镜检得到的Lym%,图中横坐标)具有较好的相关性,相关系数R达到0.961,即本文方法可用于准确得到淋巴细胞含量Lym%。
将样本在血球仪下测试的两个中性粒细胞含量测量结果与人工镜检结果相比较,结果如图16和图17所示。由以上图形可知:
本文方法计算的中性粒细胞含量(在BC-75R Vet得到的Neu%,图纵坐标)与人工镜检所得的中性粒细胞含量(镜检得到的Neu%,图中横坐标)具有较好的相关性,相关系数R达到0.955,即本文方法可用于准确得到中性粒细胞含量Neu%。
可以看到,本文一些实施例的样本分析装置和样本分析方法可以有效提升白细胞五分类结果的准确性。
本文参照了各种示范实施例进行说明。然而,本领域的技术人员将认识到,在不脱离本文范围的情况下,可以对示范性实施例做出改变和修正。例如,各种操作步骤以及用于执行操作步骤的组件,可以根据特定的应用或考虑与系统的操作相关联的任何数量的成本函数以不同的方式实现(例如一个或多个步骤可以被删除、修改或结合到其他步骤中)。
另外,如本领域技术人员所理解的,本文的原理可以反映在计算机可读存储介质上的计算机程序产品中,该可读存储介质预装有计算机可读程序代码。任何有形的、非暂时性的计算机可读存储介质皆可被使用,包括磁存储设备(硬盘、软盘等)、光学存储设备(CD-ROM、DVD、Blu Ray盘等)、闪存和/或诸如此类。这些计算机程序指令可被加载到通用计算机、专用计算机或其他可编程数据处理设备上以形成机器,使得这些在计算机上或其他可编程数据处理装置上执行的指令可以生成实现指定的功能的装置。这些计算机程序指令也可以存储在计算机可读存储器中,该计算机可读存储器可以指示计算机或其他可编程数据处理设备以特定的方式运行,这样存储在计算机可读存储器中的指令就可以形成一件制造品,包括实现指定功能的实现装置。计算机程序指令也可以加载到计算机或其他可编程数据处理设备上,从而在计算机或其他可编程设备上执行一系列操作步骤以产生一个计算机实现的进程,使得在计算机或其他可编程设备上执行的指令可以提供用于实现指定功能的步骤。
虽然在各种实施例中已经示出了本文的原理,但是许多特别适用于特定环境和操作要求的结构、布置、比例、元件、材料和部件的修改可以在不脱离本披露的原则和范围内使用。以上修改和其他改变或修正将被包含在本文的范围之内。
前述具体说明已参照各种实施例进行了描述。然而,本领域技术人员将认识到,可以在不脱离本披露的范围的情况下进行各种修正和改变。因此,对于本披露的考虑将是说明性的而非限制性的意义上的,并且所有这些修改都将被包含在其范围内。同样,有关于各种实施例的优点、其他优点和问题的解决方案已如上所述。然而,益处、优点、问题的解决方案以及任何能产生这些的要素,或使其变得更明确的解决方案都不应被解释为关键的、必需的或必要的。本文中所用的术语“包括”和其任何其他变体,皆属于非排他性包含,这样包括要素列表的过程、方法、文章或设备不仅包括这些要素,还包括未明确列出的或不属于该过程、方法、系统、文章或设备的其他要素。此外,本文中所使用的术语“耦合”和其任何其他变体都是指物理连接、电连接、磁连接、光连接、通信连接、功能连接和/或任何其他连接。
具有本领域技术的人将认识到,在不脱离本发明的基本原理的情况下,可以对上述实施例的细节进行许多改变。因此,本发明的范围应根据以下权利要求确定。

Claims (30)

  1. 一种样本分析装置,其特征在于,包括:
    血样供给部,用于供给血液样本;
    试剂供给部,用于供给第一通道试剂和第二通道试剂;
    第一通道,用于接收所述血样供给部提供的血液样本和所述试剂供给部提供的第一通道试剂以制备第一试样,并获取所述第一试样经光照射后产生的光信号;
    第二通道,用于接收所述血样供给部提供的所述血液样本和所述试剂供给部提供的第二通道试剂以制备第二试样,并获取所述第二试样经光照射后产生的光信号;
    处理器,所述处理器能够根据所述第一通道的光信号进行白细胞四分类,所述白细胞四分类包括嗜中性粒细胞结果、嗜酸性粒细胞结果、淋巴细胞结果和单核细胞结果;所述处理器能够根据所述第二通道的光信号至少得到有核红细胞结果;
    其中:
    所述处理器还能够根据所述第二通道的光信号得到淋巴细胞结果,以用于对所述第一通道的淋巴细胞结果进行修正。
  2. 如权利要求1所述的样本分析装置,其特征在于,所述处理器根据所述第一试样的淋巴细胞结果和所述第二试样的淋巴细胞结果的偏差,或者所述第一通道的光信号,判断第一通道的淋巴细胞结果是否准确;当判断不准确时,则所述处理器通过所述第二通道的淋巴细胞结果对所述第一通道的淋巴细胞结果进行修正。
  3. 如权利要求2所述的样本分析装置,其特征在于,所述处理器通过所述第二通道的淋巴细胞结果对所述第一通道的淋巴细胞结果进行修正,包括:
    所述处理器将所述第二通道的淋巴细胞结果作为样本分析装置输出的淋巴细胞结果。
  4. 如权利要求2所述的样本分析装置,其特征在于,所述处理器通过所述第二通道的淋巴细胞结果对所述第一通道的淋巴细胞结果进行修正,包括:
    所述处理器将所述第一通道的淋巴细胞结果和第二通道的淋巴细胞结果进行加权求和,以作为样本分析装置输出的淋巴细胞结果。
  5. 如权利要求2所述的样本分析装置,其特征在于,所述处理器根据所述第一通道的光信号判断第一通道的淋巴细胞结果是否准确,包括:
    所述第一通道的光信号至少包括侧向散射光和荧光;
    所述处理器根据所述第一通道的侧向散射光和荧光生成第一散点图;
    所述处理器根据所述第一散点图判断淋巴细胞群和中性粒细胞群的边界是否清楚,若不清楚,则判断第一通道的淋巴细胞结果不准确。
  6. 如权利要求1所述的样本分析装置,其特征在于,所述处理器还能够根据所述第二通道的光信号得到淋巴细胞结果,包括:
    所述第二通道的光信号至少包括前向散射光和侧向散射光;
    所述处理器根据所述第二通道的前向散射光和侧向散射光生成第二散点图;
    所述处理器根据所述第二散点图,计算第二通道的淋巴细胞结果。
  7. 如权利要求1所述的样本分析装置,其特征在于,所述处理器还能够根据所述第二通道的光信号得到淋巴细胞结果,包括:
    所述第二通道的光信号至少包括侧向散射光和荧光;
    所述处理器根据所述第二通道的侧向散射光和荧光生成第三散点图;
    所述处理器根据所述第三散点图,计算第二通道的淋巴细胞结果。
  8. 如权利要求1所述的样本分析装置,其特征在于,所述处理器还能够根据所述第二通道的光信号得到淋巴细胞结果,包括:
    所述第二通道的光信号至少包括前向散射光和荧光;
    所述处理器根据所述第二通道的前向散射光和荧光生成第四散点图;
    所述处理器根据所述第四散点图,计算第二通道的淋巴细胞结果。
  9. 如权利要求1所述的样本分析装置,其特征在于,所述处理器还能够根据所述第二通道的光信号得到淋巴细胞结果,包括:
    所述第二通道的光信号包括前向散射光、侧向散射光和荧光;
    所述处理器根据所述第二通道的前向散射光和侧向散射光生成第二散点图;所述处理器根据所述第二散点图,计算第二通道的第一淋巴细胞结果;
    所述处理器根据所述第二通道的侧向散射光和荧光生成第三散点图;所述处理器根据所述第三散点图,计算第二通道的第二淋巴细胞结果;
    所述处理器根据所述第二通道的第一淋巴细胞结果和第二淋巴细胞结果,计算第二通道的淋巴细胞结果。
  10. 如权利要求1所述的样本分析装置,其特征在于,所述处理器还能够根据所述第二通道的光信号得到淋巴细胞结果,包括:
    所述第二通道的光信号包括前向散射光、侧向散射光和荧光;
    所述处理器根据所述第二通道的前向散射光和侧向散射光生成第二散点图;所述处理器根据所述第二散点图,计算第二通道的第一淋巴细胞结果;
    所述处理器根据所述第二通道的前向散射光和荧光生成第四散点图;所述处理器根据所述第四散点图,计算第二通道的第三淋巴细胞结果;
    所述处理器根据所述第二通道的第一淋巴细胞结果和第三淋巴细胞结果,计算第二通道的淋巴细胞结果。
  11. 如权利要求1所述的样本分析装置,其特征在于,所述处理器还能够根据所述第二通道的光信号得到淋巴细胞结果,包括:
    所述第二通道的光信号包括前向散射光、侧向散射光和荧光;
    所述处理器根据所述第二通道的侧向散射光和荧光生成第三散点图;所述处理器根据所述第三散点图,计算第二通道的第二淋巴细胞结果;
    所述处理器根据所述第二通道的前向散射光和荧光生成第四散点图;所述处理器根据所述第四散点图,计算第二通道的第三淋巴细胞结果;
    所述处理器根据所述第二通道的第二淋巴细胞结果和第三淋巴细胞结果,计算第二通道的淋巴细胞结果。
  12. 如权利要求1所述的样本分析装置,其特征在于,所述处理器还能够根据所述第二通道的光信号得到白细胞计数结果和/或嗜碱性粒细胞结果。
  13. 如权利要求12所述的样本分析装置,其特征在于,所述嗜碱性粒细胞结果包括嗜碱性粒细胞在白细胞中的百分比。
  14. 如权利要求12所述的样本分析装置,其特征在于,所述处理器还能够根据所述第一通道的嗜酸性粒细胞结果和单核细胞结果,所述第二通道的嗜碱性粒细胞结果,以及修正后的淋巴细胞结果,计算中性粒细胞结果,作为样本分析装置输出的中性粒细胞结果。
  15. 如权利要求1所述的样本分析装置,其特征在于,所述嗜中性粒细胞结果包括嗜中性粒细胞在白细胞中的百分比,嗜酸性粒细胞结果包括嗜酸性粒细胞在白细胞中的百分比,淋巴细胞结果包括淋巴细胞在白细胞中的百分比,单核细胞结果包括单核细胞在白细胞中的百分比。
  16. 如权利要求1所述的样本分析装置,其特征在于,所述第一通道为DIFF通道;所述第二通道为WNB通道。
  17. 如权利要求1所述的样本分析装置,其特征在于,所述第一通道的光信号包括前向散射光、侧向散射光和荧光;所述第二通道的光信号包括前向散射光、侧向散射光和荧光。
  18. 一种样本分析方法,其特征在于,包括:
    通过血液样本和第一通道试剂制备第一试样;
    获取所述第一试样经光照射后产生的光信号;
    根据所述第一试样的光信号进行白细胞四分类,所述白细胞四分类包括嗜中性粒细胞结果、嗜酸性粒细胞结果、淋巴细胞结果和单核细胞结果;
    判断所述第一试样的淋巴细胞结果是否准确;
    当判断不准确时,则通过第二试样的淋巴细胞结果对所述第一试样的淋巴细胞结果进行修正;其中所述第二试样由所述血液样本和第二通道试剂制备而成,所述第二试样经光照射后产生的光信号能够用于计算有核红细胞结果和淋巴细胞结果。
  19. 如权利要求18所述的样本分析方法,其特征在于,所述通过第二试样的淋巴细胞结果对所述第一试样的淋巴细胞结果进行修正,包括以下任意一种:
    将所述第二通道的淋巴细胞结果作为输出的淋巴细胞结果;
    将所述第一通道的淋巴细胞结果和第二通道的淋巴细胞结果进行加权求和,以作为输出的淋巴细胞结果。
  20. 如权利要求18所述的样本分析方法,其特征在于,通过第二试样经光照射后产生的光信号计算淋巴细胞结果,包括:
    所述第二通道的光信号至少包括前向散射光和侧向散射光;
    根据所述第二通道的前向散射光和侧向散射光生成第二散点图;
    根据所述第二散点图,计算第二通道的淋巴细胞结果。
  21. 如权利要求18所述的样本分析方法,其特征在于,通过第二试样经光照射后产生的光信号计算淋巴细胞结果,包括:
    所述第二通道的光信号至少包括侧向散射光和荧光;
    根据所述第二通道的侧向散射光和荧光生成第三散点图;
    根据所述第三散点图,计算第二通道的淋巴细胞结果。
  22. 如权利要求18所述的样本分析方法,其特征在于,通过第二试样经光照射后产生的光信号计算淋巴细胞结果,包括:
    所述第二通道的光信号至少包括前向散射光和荧光;
    根据所述第二通道的前向散射光和荧光生成第四散点图;
    根据所述第四散点图,计算第二通道的淋巴细胞结果。
  23. 如权利要求18所述的样本分析方法,其特征在于,通过第二试样经光照射后产生的光信号计算淋巴细胞结果,包括:
    所述第二通道的光信号包括前向散射光、侧向散射光和荧光;
    根据所述第二通道的前向散射光和侧向散射光生成第二散点图;根据所述第二散点图,计算第二通道的第一淋巴细胞结果;
    根据所述第二通道的侧向散射光和荧光生成第三散点图;所述处理器根据所述第三散点图,计算第二通道的第二淋巴细胞结果;
    根据所述第二通道的第一淋巴细胞结果和第二淋巴细胞结果,计算第二通道的淋巴细胞结果。
  24. 如权利要求18所述的样本分析方法,其特征在于,通过第二试样经光照射后产生的光信号计算淋巴细胞结果,包括:
    所述第二通道的光信号包括前向散射光、侧向散射光和荧光;
    根据所述第二通道的前向散射光和侧向散射光生成第二散点图;根据所述第二散点图,计算第二通道的第一淋巴细胞结果;
    根据所述第二通道的前向散射光和荧光生成第四散点图;所述处理器根据所述第四散点图,计算第二通道的第三淋巴细胞结果;
    根据所述第二通道的第一淋巴细胞结果和第三淋巴细胞结果,计算第二通道的淋巴细胞结果。
  25. 如权利要求18所述的样本分析方法,其特征在于,通过第二试样经光照射后产生的光信号计算淋巴细胞结果,包括:
    所述第二通道的光信号包括前向散射光、侧向散射光和荧光;
    根据所述第二通道的侧向散射光和荧光生成第三散点图;根据所述第三散点图,计算第二通道的第二淋巴细胞结果;
    根据所述第二通道的前向散射光和荧光生成第四散点图;所述处理器根据所述第四散点图,计算第二通道的第三淋巴细胞结果;
    根据所述第二通道的第二淋巴细胞结果和第三淋巴细胞结果,计算第二通道的淋巴细胞结果。
  26. 如权利要求18所述的样本分析方法,其特征在于,所述第二试样经光照射后产生的光信号还能够用于得到白细胞计数结果和/或嗜碱性粒细胞结果。
  27. 如权利要求26所述的样本分析方法,其特征在于,所述嗜碱性粒细胞结果包括嗜碱性粒细胞在白细胞中的百分比。
  28. 如权利要求26所述的样本分析方法,其特征在于,还包括:根据所述第一通道的嗜酸性粒细胞结果和单核细胞结果,所述第二通道的嗜碱性粒细胞结果,以及修正后的淋巴细胞结果,计算中性粒细胞结果,作为输出的中性粒细胞结果。
  29. 如权利要求18所述的样本分析方法,其特征在于,所述第一通道为DIFF通道;所述第二通道为WNB通道。
  30. 如权利要求18所述的样本分析方法,其特征在于,所述第一通道的光信号包括前向散射光、侧向散射光和荧光;所述第二通道的光信号包括前向散射光、侧向散射光和荧光。
PCT/CN2021/140470 2021-12-22 2021-12-22 一种样本分析装置和样本分析方法 WO2023115389A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/140470 WO2023115389A1 (zh) 2021-12-22 2021-12-22 一种样本分析装置和样本分析方法
CN202180099207.7A CN117501127A (zh) 2021-12-22 2021-12-22 一种样本分析装置和样本分析方法
US18/091,237 US20230194411A1 (en) 2021-12-22 2022-12-29 Sample analysis apparatus and sample analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/140470 WO2023115389A1 (zh) 2021-12-22 2021-12-22 一种样本分析装置和样本分析方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/091,237 Continuation US20230194411A1 (en) 2021-12-22 2022-12-29 Sample analysis apparatus and sample analysis method

Publications (1)

Publication Number Publication Date
WO2023115389A1 true WO2023115389A1 (zh) 2023-06-29

Family

ID=86767757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140470 WO2023115389A1 (zh) 2021-12-22 2021-12-22 一种样本分析装置和样本分析方法

Country Status (3)

Country Link
US (1) US20230194411A1 (zh)
CN (1) CN117501127A (zh)
WO (1) WO2023115389A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101097180A (zh) * 2006-06-29 2008-01-02 希森美康株式会社 分析仪及分析方法
CN104805004A (zh) * 2014-01-29 2015-07-29 希森美康株式会社 血细胞分析装置
CN105986003A (zh) * 2015-02-12 2016-10-05 深圳迈瑞生物医疗电子股份有限公司 一种白细胞计数方法、装置及细胞分析仪
CN109580550A (zh) * 2018-12-03 2019-04-05 迪瑞医疗科技股份有限公司 一种白细胞的分类处理方法及其装置
CN112789503A (zh) * 2018-12-28 2021-05-11 深圳迈瑞生物医疗电子股份有限公司 分析有核红细胞的方法、血液细胞分析仪和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101097180A (zh) * 2006-06-29 2008-01-02 希森美康株式会社 分析仪及分析方法
CN104805004A (zh) * 2014-01-29 2015-07-29 希森美康株式会社 血细胞分析装置
CN105986003A (zh) * 2015-02-12 2016-10-05 深圳迈瑞生物医疗电子股份有限公司 一种白细胞计数方法、装置及细胞分析仪
CN109580550A (zh) * 2018-12-03 2019-04-05 迪瑞医疗科技股份有限公司 一种白细胞的分类处理方法及其装置
CN112789503A (zh) * 2018-12-28 2021-05-11 深圳迈瑞生物医疗电子股份有限公司 分析有核红细胞的方法、血液细胞分析仪和存储介质

Also Published As

Publication number Publication date
CN117501127A (zh) 2024-02-02
US20230194411A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
US9588102B2 (en) Method and apparatus for determining white blood cell counts
CN111542744B (zh) 血液分析仪、血液分析方法和计算机可读存储介质
US20180196070A1 (en) Immature platelet enumeration systems and methods
JP5950423B2 (ja) 幼若顆粒球(earlygranulatedcell)(EGC)の同定および計数
EP2939001B1 (en) Systems and methods for platelet count with clump adjustment
EP2869062A1 (en) Urine sample analyzer and urine sample analyzing method
CN104749108A (zh) 血中丝虫幼虫的检测方法、血液分析装置和信息处理系统
WO2023115389A1 (zh) 一种样本分析装置和样本分析方法
WO2023056712A1 (zh) 一种动物用血液分析装置和血液分析方法
WO2023123463A1 (zh) 一种样本分析装置和样本分析方法
US20220334099A1 (en) Blood analysis apparatus, blood analysis method, and storage medium
WO2023123466A1 (zh) 一种样本分析装置和样本分析方法
WO2023125988A1 (zh) 血液细胞分析仪、方法以及感染标志参数的用途
WO2023125940A1 (zh) 血液细胞分析仪、方法以及感染标志参数的用途
WO2023125942A1 (zh) 血液细胞分析仪、方法以及感染标志参数的用途
US20230143409A1 (en) Sample analysis apparatus and sample analysis method
CN115839912B (zh) 一种动物用血液分析装置及方法
EP4187228A1 (en) System, apparatus, and method for measuring erythrocyte sedimentation rate
WO2023010447A1 (zh) 一种样本分析装置、动物用分析装置和样本分析方法
CN115931684A (zh) 血液分析仪和用于嗜碱性粒细胞的计数方法
CN115219402A (zh) 一种血液样本的检测装置和方法
CN117907197A (zh) 血液细胞分析仪和血液细胞分析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968538

Country of ref document: EP

Kind code of ref document: A1