WO2023010447A1 - 一种样本分析装置、动物用分析装置和样本分析方法 - Google Patents

一种样本分析装置、动物用分析装置和样本分析方法 Download PDF

Info

Publication number
WO2023010447A1
WO2023010447A1 PCT/CN2021/111001 CN2021111001W WO2023010447A1 WO 2023010447 A1 WO2023010447 A1 WO 2023010447A1 CN 2021111001 W CN2021111001 W CN 2021111001W WO 2023010447 A1 WO2023010447 A1 WO 2023010447A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
value
detection data
processor
volume
Prior art date
Application number
PCT/CN2021/111001
Other languages
English (en)
French (fr)
Inventor
王官振
孔繁钢
Original Assignee
深圳迈瑞动物医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞动物医疗科技股份有限公司 filed Critical 深圳迈瑞动物医疗科技股份有限公司
Priority to PCT/CN2021/111001 priority Critical patent/WO2023010447A1/zh
Priority to CN202180006324.4A priority patent/CN114729871A/zh
Publication of WO2023010447A1 publication Critical patent/WO2023010447A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects thereof, e.g. conductivity or capacity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • G01N15/01
    • G01N2015/018
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1486Counting the particles

Definitions

  • the invention relates to the field of in vitro diagnosis, in particular to a sample analysis device, an animal analysis device and a sample analysis method.
  • Sample analysis devices such as those for body fluids or blood They detect cell particles in blood and body fluids, such as white blood cells (WBC), red blood cells (RBC), platelets (PLT), nucleated red blood cells (NRBC) and reticulum Cell particles such as erythrocytes (Ret) are counted and classified.
  • WBC white blood cells
  • RBC red blood cells
  • PHT platelets
  • NRBC nucleated red blood cells
  • Ret reticulum Cell particles
  • Ret erythrocytes
  • the measurement of blood cells adopts the principle of microporous impedance, which is basically based on Coulter's principle.
  • the so-called Coulter principle refers to the measurement of particles in the fluid based on the different electrical impedances of particles of different volumes passing through a micropore in the fluid.
  • blood cells in blood are relatively poor conductors. When they are suspended in electrolyte, the original constant resistance inside and outside the micropore will be changed, and the sensor in the micropore will generate an electric pulse through the processing circuit. The volume of the cell can be judged according to the size of the pulse, and the number of pulses can be judged. number of cells.
  • the above-mentioned electrical pulse signals can be drawn into intuitive distribution charts through corresponding processing circuits.
  • the sample analysis device measures various data of red blood cells, white blood cells and platelets, they can measure their volume (horizontal axis), relative frequency of occurrence ( The vertical axis) is expressed in a coordinate graph to form a histogram of blood cell volume distribution.
  • Platelets (PLT) and red blood cells (RBC) can be measured by the above-mentioned impedance method, and both are measured simultaneously. Let’s take a blood sample as an example. Add an isotonic electrolyte solution to the blood sample to dilute it to prepare a cell suspension, and then perform impedance counting.
  • Figure 1(a) is a histogram of the particle volume distribution. The abscissa represents the volume, and the unit is, for example, It can be fly-up (FL), and the ordinate is the frequency of occurrence or the count value. It can be seen that due to the obvious difference in the volume of PLT and RBC, two peaks and an obvious dividing line are formed in the figure. The dividing line The one on the left is PLT and the one on the right is RBC. This measurement method is simple and convenient, and the cost is relatively low, which can be found in both low-end and high-end hematology products.
  • the PLT histogram and RBC histogram will overlap, as shown in Figure 1(b).
  • the demarcation line of RBC, PLT and RBC cannot be accurately classified and counted.
  • PLT can be counted accurately by fluorescence method, for example, in the BC-6000 hematology analyzer produced by Shenzhen Mindray Biomedical Co., Ltd., PLT is counted through the RET channel.
  • the principle is that after the blood cells are treated with reagents, especially with the addition of fluorescent reagents, the cells are distinguished by the three-way optical signals of forward scattered light, side scattered light and fluorescent light.
  • the forward scattered light reflects the volume of the cell
  • the side scattered light reflects the complexity of the cell
  • the fluorescence reflects the DNA and RNA content in the cell.
  • PLT can be significantly distinguished from RBC cells, thereby better realizing the counting of PLT. Although this method is accurate, its cost is relatively high.
  • the present invention mainly provides a sample analysis device, an animal analysis device and a sample analysis method, which will be described in detail below.
  • an embodiment provides a sample analysis device, characterized in that it includes:
  • the sample supply unit is used to supply samples; for example, blood samples or body fluid samples; the body fluid samples can be, for example, cerebrospinal fluid, pleural effusion, ascites, pericardial fluid, joint fluid, dialysate of peritoneal dialysis or intraperitoneal cleaning fluid, etc.;
  • a reagent supply part used for supplying reagents
  • reaction part is used to receive the sample provided by the sample supply part and the reagent provided by the reagent supply part to prepare the sample;
  • a measuring unit configured to detect the sample to obtain detection data
  • a processor calculating a detection result according to the detection data; wherein:
  • the processor controls the sample supply part and the reagent supply part to respectively provide samples and reagents to the reaction part to prepare a first sample for detecting cell particles;
  • the cell particles include platelets and/or red blood cells;
  • the processor controls the measuring unit to detect the first sample to obtain first detection data related to the volume of the cell particles
  • the processor controls the sample supply part and the reagent supply part to respectively provide the sample and the reagent to the reaction part, the reagent includes a first reagent used to increase the volume of red blood cells in the sample, so as to prepare for detecting the a second sample of cell particles; wherein the sample used to prepare said first sample and the sample used to prepare said second sample are from the same subject;
  • the processor controls the measuring unit to detect the second sample to obtain second detection data related to the volume of the cell particles
  • the processor calculates the detection result of the cell particle according to the first detection data and the second detection data.
  • the processor calculates the detection result of the cell particles according to the first detection data and the second detection data, including:
  • the processor acquires detection data whose volume is smaller than or equal to a first value in the first detection data
  • the processor acquires detection data whose volume is larger than the first value and smaller than the second value in the second detection data;
  • the processor calculates the platelet volume according to the detection data of the first detection data whose volume is less than or equal to the first value, and the detection data of the second detection data whose volume is greater than the first value and smaller than the second value. quantity.
  • the processor determines the first value and/or the second value according to the second detection data.
  • the first value is the volume value with the largest number of platelets in the volume distribution of platelets.
  • the second value is a critical volume of platelets and red blood cells.
  • the processor calculates the detection result of the cell particles according to the first detection data and the second detection data, including:
  • the processor generates a first histogram of cell particles according to the first detection data
  • the processor generates a second histogram of cell particles according to the second detection data
  • the processor calculates the detection result of the cell particles according to the first histogram and the second histogram.
  • the processor calculates the detection result of the cell particles according to the first histogram and the second histogram, including:
  • the processor obtains the histogram information whose volume in the first histogram is less than or equal to the first value
  • the processor obtains histogram information whose volume in the second histogram is larger than the first value and smaller than the second value;
  • the processor according to the histogram information whose volume in the first histogram is smaller than or equal to the first value, and the histogram information whose volume in the second histogram is larger than the first value and smaller than the second value, Count the number of platelets.
  • the processor calculates the detection result of the cell particles according to the first histogram and the second histogram, including:
  • the processor obtains the histogram information whose volume in the first histogram is less than or equal to the first value
  • the processor obtains histogram information whose volume in the second histogram is larger than the first value and smaller than the second value;
  • the processor performs data fitting according to the histogram information whose volume in the second histogram is greater than the first value and less than the second value, so as to obtain the histogram information whose platelet volume is greater than or equal to the second value ;
  • the processor is based on the histogram information with a volume smaller than or equal to a first value in the first histogram, the histogram information with a volume larger than the first value and smaller than a second value in the second histogram, and The histogram information of the platelet volume greater than or equal to the second value is used to calculate the number of platelets.
  • the processor determines the first value and/or the second value according to the second histogram.
  • the processor determines the first value and/or the second value according to the second histogram, including:
  • the processor removes the histogram information whose volume in the second histogram is smaller than the third value, so as to eliminate the influence of red blood cell debris;
  • the processor determines the first value and/or the second value based on a second histogram that removes histogram information whose volume is smaller than a third value.
  • said first reagent comprises a hypotonic diluent.
  • the measuring component includes an impedance counting component.
  • the assay component includes an optical detection unit; the optical detection unit includes a flow chamber, a light source and an optical detector; the flow chamber communicates with the reaction unit and is used for the cells of the sample to be tested one by one
  • the light source is used to irradiate cells passing through the flow chamber
  • the optical detector is used to acquire light signals of cells passing through the flow chamber, and the light signals at least include forward scattered light signals.
  • an embodiment provides a sample analysis device comprising:
  • the sample supply unit is used to supply samples; for example, blood samples or body fluid samples; the body fluid samples can be, for example, cerebrospinal fluid, pleural effusion, ascites, pericardial fluid, joint fluid, dialysate of peritoneal dialysis or intraperitoneal cleaning fluid, etc.;
  • a reagent supply part used for supplying reagents
  • reaction part is used to receive the sample provided by the sample supply part and the reagent provided by the reagent supply part to prepare the sample;
  • a measuring unit configured to detect the sample to obtain detection data
  • a processor calculating a detection result according to the detection data; wherein:
  • the analysis device has a normal processing mode and an abnormal processing mode of cell particles, the cell particles including platelets and/or red blood cells;
  • the processor controls the sample supply part and the reagent supply part to respectively provide samples and reagents to the reaction part to prepare a first sample for detecting cell particles;
  • the cell particles include platelets and/or red blood cells;
  • the processor controls the measuring unit to detect the first sample to obtain first detection data related to the volume of the cell particles, and the first detection data is used to calculate the detection result of the cell particles ;
  • the processor controls the sample supply part and the reagent supply part to respectively provide the sample and the reagent to the reaction part, the reagent includes a first reagent used to increase the volume of red blood cells in the sample, so as to prepare for detecting the a second sample of cell particles;
  • the processor controls the measuring unit to detect the second sample to obtain second detection data related to the volume of the cell particles
  • the processor calculates the detection result of the cell particle at least according to the second detection data.
  • the processor calculates the detection result of the cell particles at least according to the second detection data, including:
  • the processor calculates the detection result of the cell particles according to the first detection data and the second detection data, wherein the sample used to prepare the first sample and the sample used to prepare the second sample from the same object.
  • the processor calculates the detection result of the cell particles according to the first detection data and the second detection data, including:
  • the processor acquires the detection data whose volume is less than or equal to the first value (in the first detection data;
  • the processor acquires detection data whose volume is larger than the first value (and smaller than the second value) in the second detection data;
  • the processor calculates the platelet volume according to the detection data of the first detection data whose volume is less than or equal to the first value, and the detection data of the second detection data whose volume is greater than the first value and smaller than the second value. quantity.
  • the processor determines the first value and/or the second value according to the second detection data.
  • the first value is the volume value with the largest number in the volume distribution of platelets; the second value is the critical volume value of platelets and red blood cells.
  • said first reagent comprises a hypotonic diluent.
  • the processor also judges whether the cell particles are abnormal according to the first detection data
  • the processor When an abnormality is judged, the processor generates a prompt message, and/or, the processor switches to an abnormal processing mode of the cell particle to retest the sample.
  • an embodiment provides a sample analysis device, comprising:
  • the sample supply unit is used to supply samples; for example, blood samples or body fluid samples; the body fluid samples can be, for example, cerebrospinal fluid, pleural effusion, ascites, pericardial fluid, joint fluid, dialysate of peritoneal dialysis or intraperitoneal cleaning fluid, etc.;
  • a reagent supply part used for supplying reagents
  • reaction part is used to receive the sample provided by the sample supply part and the reagent provided by the reagent supply part to prepare the sample;
  • a measuring unit configured to detect the sample to obtain detection data
  • a processor calculating a detection result according to the detection data; wherein:
  • the analysis device has a special processing mode of cell particles, the cell particles include platelets and/or red blood cells; in the special processing mode of the cell particles:
  • the processor controls the sample supply part and the reagent supply part to respectively provide the sample and the reagent to the reaction part, the reagent includes a first reagent used to increase the volume of red blood cells in the sample, so as to prepare for detecting the a second sample of cell particles;
  • the processor controls the measuring unit to detect the second sample to obtain second detection data related to the volume of the cell particles
  • the processor calculates the detection result of the cell particle at least according to the second detection data.
  • the processor controls the sample supply part and the reagent supply part to respectively provide samples and reagents to the reaction part to prepare a first sample for detecting cell particles;
  • the cell particles include platelets and/or red blood cells;
  • the processor controls the measuring unit to detect the first sample, so as to obtain the first detection data related to the volume of the cell particles; wherein, the sample used to prepare the first sample and the sample used to prepare the The sample of the second sample is from the same subject;
  • the processor calculating the detection result of the cell particle according to at least the second detection data includes: the processor calculating the detection result of the cell particle according to the first detection data and the second detection data.
  • the processor calculates the detection result of the cell particles according to the first detection data and the second detection data, including:
  • the processor acquires the detection data whose volume is less than or equal to the first value (in the first detection data;
  • the processor acquires detection data whose volume is larger than the first value and smaller than the second value in the second detection data;
  • the processor calculates the platelet volume according to the detection data of the first detection data whose volume is less than or equal to the first value, and the detection data of the second detection data whose volume is greater than the first value and smaller than the second value. quantity.
  • the processor determines the first value and/or the second value according to the second detection data.
  • the first value is the volume value with the largest number in the volume distribution of platelets; the second value is the critical volume value of platelets and red blood cells.
  • said first reagent comprises a hypotonic diluent.
  • an analysis device for animals comprising:
  • the sample supply unit is used to supply samples; for example, blood samples or body fluid samples; the body fluid samples can be, for example, cerebrospinal fluid, pleural effusion, ascites, pericardial fluid, joint fluid, dialysate of peritoneal dialysis or intraperitoneal cleaning fluid, etc.;
  • a reagent supply part used for supplying reagents
  • reaction part is used to receive the sample provided by the sample supply part and the reagent provided by the reagent supply part to prepare the sample;
  • a measuring unit configured to detect the sample to obtain detection data
  • a processor calculating a detection result according to the detection data; wherein:
  • the analysis device for animals includes at least a first type of animal-specific mode, and in the first type of animal-specific mode:
  • the processor controls the sample supply part and the reagent supply part to respectively provide the sample and the reagent to the reaction part, the reagent includes a first reagent used to increase the volume of red blood cells in the sample, so as to prepare for detecting the a second sample of cell particles;
  • the processor controls the measuring unit to detect the second sample to obtain second detection data related to the volume of the cell particles
  • the processor calculates the detection result of the cell particle at least according to the second detection data.
  • the processor controls the sample supply part and the reagent supply part to respectively provide samples and reagents to the reaction part to prepare a first sample for detecting cell particles;
  • the cell particles include platelets and/or red blood cells;
  • the processor controls the measuring unit to detect the first sample, so as to obtain the first detection data related to the volume of the cell particles; wherein, the sample used to prepare the first sample and the sample used to prepare the The sample of the second sample is from the same subject;
  • the processor calculating the detection result of the cell particle according to at least the second detection data includes: the processor calculating the detection result of the cell particle according to the first detection data and the second detection data.
  • the processor calculates the detection result of the cell particles according to the first detection data and the second detection data, including:
  • the processor acquires detection data whose volume is smaller than or equal to a first value in the first detection data
  • the processor acquires detection data whose volume is larger than the first value and smaller than the second value in the second detection data;
  • the processor calculates the platelet volume according to the detection data of the first detection data whose volume is less than or equal to the first value, and the detection data of the second detection data whose volume is greater than the first value and smaller than the second value. quantity.
  • the processor determines the first value and/or the second value according to the second detection data.
  • the first value is the volume value with the largest number in the volume distribution of platelets; the second value is the critical volume value of platelets and red blood cells.
  • said first reagent comprises a hypotonic diluent.
  • the first type of animals includes at least cats.
  • an embodiment provides a sample analysis method, comprising:
  • the sample is processed by a reagent, which includes a first reagent for increasing the volume of red blood cells in the sample, so as to prepare a second sample for detecting cell particles;
  • the cell particles include platelets and/or red blood cells;
  • the sample can be It is a blood sample or a body fluid sample;
  • the body fluid sample can be, for example, cerebrospinal fluid, pleural fluid, ascites fluid, pericardial fluid, joint fluid, dialysate of peritoneal dialysis or intraperitoneal washing fluid, etc.;
  • the samples of the test specimen are from the same subject;
  • the detection result of the cell particle is calculated.
  • the calculation of the detection result of the cell particles according to the first detection data and the second detection data includes:
  • the analysis method further includes: determining the first value and/or the second value according to the second detection data; the first value is the volume value with the largest number in the volume distribution of platelets, so The second value is a volume threshold for platelets and red blood cells.
  • said first reagent comprises a hypotonic diluent.
  • an embodiment provides a computer-readable storage medium, where a program is stored in the computer-readable storage medium, and the program can be executed by a processor to implement the method described in any embodiment herein.
  • Figure 1(a) and Figure 1(b) are two examples of particle volume distribution histograms
  • Fig. 2 is a schematic structural diagram of a sample analysis device of an embodiment
  • Fig. 3 is a schematic structural diagram of a sample analysis device in another embodiment
  • Fig. 4 is a schematic structural diagram of an optical detection part of an embodiment
  • Fig. 5 is a schematic structural diagram of an optical detection part of an embodiment
  • Fig. 6 is a schematic structural diagram of an optical detection part of an embodiment
  • Fig. 7 is a schematic structural view of an embodiment of an impedance method counting component
  • Figure 8 is an example of a volume distribution histogram of particles of an embodiment
  • Figure 9(a) is an example of a histogram of a large PLT sample
  • Figure 9(b) is an example of a histogram formed after the processing of the present invention
  • Figure 10 is a schematic diagram showing the process of fusing the histograms of Figure 9(a) and Figure 9(b);
  • Figure 11 is an example of the corrected PLT histogram
  • Figure 12(a) is a schematic diagram of the PLT correlation effect obtained by counting in the prior art
  • Figure 12(b) is a schematic diagram of the PLT correlation effect obtained by applying the counting of the present invention
  • Fig. 13 is a flowchart of a sample analysis method of an embodiment.
  • connection and “connection” mentioned in this application include direct and indirect connection (connection) unless otherwise specified.
  • PLT and RBC can be distinguished, and corresponding classification and counting can be performed. Then, in some large PLT samples, a part of the PLT is superimposed on the volume of the RBC, resulting in the inability to use the volume information to accurately classify and count the PLT and RBC.
  • RBC is one of the most important blood cells. It is responsible for exchanging and transporting oxygen, carbon dioxide, metabolites and other substances. It is generally cake-shaped in shape, with a depression in the middle and protrusions around it. Taking the human body as an example, the number of red blood cells in the human body is 3.5 ⁇ 5.5 ⁇ 1012/L, and the cell size is 7.5 ⁇ 8.5 ⁇ m.
  • the RBC is a biconcave disc rather than a sphere, there is a possibility of volume expansion. After absorbing water and swelling, the volume of RBC will increase, while PLT is a solid solid cell particle, and its volume will basically not change. In this case, the volume information of RBC and PLT will be more easily distinguished, such as histogram classification and counting. , when the RBC is inflated, the histogram of the RBC will shift to the right, so that the distance between the PLT and the RBC can be enlarged on the histogram, thereby increasing the separation between the RBC and the PLT.
  • the present invention proposes a solution for accurate counting of PLT and/or RBC by RBC expansion method.
  • a description of the sample analysis device will be given below.
  • a sample analysis device in some embodiments includes a sample supply part 10 , a reagent supply part 20 , a reaction part 30 , a measurement part 40 and a processor 50 .
  • the sample supply unit 10 is used to supply samples; samples can be blood samples or body fluid samples; body fluid samples can be, for example, cerebrospinal fluid, pleural effusion, ascites, pericardial fluid, joint fluid, dialysate of peritoneal dialysis or intraperitoneal cleaning fluid, etc.
  • the reagent supply part 20 is used to supply reagents; the reaction part 30 is used to receive the sample provided by the sample supply part 10 and the reagent provided by the reagent supply part 20 to prepare the sample to be tested; The sample is detected, or the sample is detected to obtain detection data; the processor 50 is used to calculate the detection result according to the detection data.
  • Each component is further described below.
  • the sample supply part 10 can include a sample needle, and the sample needle can move two-dimensionally or three-dimensionally in space through a two-dimensional or three-dimensional driving mechanism, so that the sample needle can move to absorb a container carrying a sample (such as a sample The sample in the tube) is then moved to a reaction site such as the reaction part 30 for providing the test sample and the reagent, and the sample is added to the reaction part 30.
  • the reagent supply part 20 may include a region for carrying the reagent container and a reagent liquid path connecting the reagent container with the reaction part 30 , and the reagent is added from the reagent container into the reaction part 30 through the reagent liquid path.
  • the reagent supply part 20 may also include a reagent needle, and the reagent needle moves in space in two or three dimensions through a two-dimensional or three-dimensional driving mechanism, so that the reagent needle can move to absorb the reagent in the reagent container, Then move to the reaction place for providing the test sample and the reagent, such as the reaction part 30, and add the reagent to the reaction part 30.
  • the reaction section 30 may include one or more reaction cells.
  • the reaction part 30 is used to provide a processing place or a reaction place for samples and reagents. Different detection items can share the same reaction pool; different detection items can also use different reaction pools.
  • the reagent includes one or more of a hemolytic agent, a fluorescent agent, and a diluent.
  • a hemolytic agent is a reagent capable of lysing red blood cells in blood samples and body fluid samples, specifically, it can be any one of cationic surfactants, nonionic surfactants, anionic surfactants, and amphiphilic surfactants one or a combination of several.
  • the fluorescent agent is used to stain blood cells, and the specific type is selected according to the detection item. Isotonic electrolyte diluent can be used to maintain the shape of cell particles to prepare samples for impedance method counting, etc.
  • the measuring unit 40 includes an optical detection unit 60 and/or an impedance method counting unit 80 , which will be described in detail below.
  • the measurement unit 40 may include an optical detection unit 60.
  • the optical detection unit 60 can measure the sample through the principle of laser scattering. For example, scattered light and fluorescence, to classify and count cells, etc.-of course, in some embodiments, if the cells are not treated with fluorescent reagents, then naturally no fluorescence can be collected. Next, the optical detection unit 60 in the measurement unit 40 will be described.
  • the optical detection unit 60 can measure the sample by the principle of laser light scattering. The principle is: irradiate the laser light on the cells, and collect the light signals generated after the cells are irradiated, such as scattered light and/or fluorescence. Cells are sorted and counted etc - of course in some embodiments if the cells are not treated with a fluorescent reagent then naturally no fluorescence is collected. Next, the optical detection unit 60 in the measurement unit 40 will be described.
  • the optical detection unit 60 may include a light source 61 , a flow chamber 62 and an optical detector 69 .
  • the flow chamber 62 communicates with the reaction part 30 and is used for the cells of the sample to be tested to pass one by one; the light source 61 is used to irradiate the cells passing through the flow chamber 62 , and the optical detector 69 is used to obtain the light signal of the cells passing through the flow chamber 62 .
  • the optical detector 69 may include a lens group 63 for collecting forward scattered light, and is used for photoelectric detection of converting the collected forward scattered light from an optical signal into an electrical signal Device 64, a lens group 65 for collecting side scattered light and side fluorescence, a dichroic mirror 66, a photodetector 67 for converting the collected side scattered light from an optical signal to an electrical signal, for A photodetector 68 that converts the collected side fluorescence from an optical signal to an electrical signal; wherein the dichroic mirror 66 is used for light splitting, and divides the mixed side scattered light and side fluorescence into two paths, one path is Side scattered light, all the way for side fluorescence.
  • the optical signal herein may refer to an optical signal, or may refer to an electrical signal converted from an optical signal, and they are substantially consistent in characterizing the information contained in the cell detection result.
  • the flow chamber 62 is used for passing the cells of the sample to be tested one by one.
  • the red blood cells in the sample are dissolved by some reagents such as hemolytic agents, or are further dyed by a fluorescent agent, and the sheath flow technology is used to make the prepared cells in the sample to be tested sequentially from the flow chamber 62 Queue through one by one.
  • the direction of the Y-axis in the figure is the direction of cell movement in the sample to be tested. It should be noted that the direction of the Y-axis in the figure is the direction perpendicular to the paper.
  • a light source 61 is used to illuminate cells passing through the flow chamber 62 .
  • the light source 61 is a laser, such as a He-Ne laser or a semiconductor laser.
  • a laser such as a He-Ne laser or a semiconductor laser.
  • the light emitted by the light source 61 irradiates the cells passing through the flow chamber 62, and the light irradiated on the cells will generate Scattering, through the lens group 63 to collect forward scattered light—for example, the direction of the Z axis in the figure, so that it reaches the photodetector 64, so that the information processing unit 70 can obtain the forward scattered light information of the cells from the photodetector 64 ;
  • the side light is collected by lens group 65 -- for example, the direction of the X axis in the figure, and the collected side light is reflected and refracted by the dichroic mirror 66, wherein the side light The side scattered light in the side light is reflected when passing through the dichroic mirror 66, and then reaches the corresponding photodetector
  • FIG. 6 is another example of the optical detection unit 60 .
  • a collimating lens 61a can be introduced between the light source 61 and the flow chamber 62, and the light emitted by the light source 61 is collimated by the collimating lens 61a and then passes through the flow chamber 62 cells irradiated.
  • a filter 66a in order to make the collected fluorescence noise less (that is, there is no interference from other light), a filter 66a can be set in front of the photodetector 68, and the side fluorescence after being split by the dichroic mirror 66 Then it reaches the photodetector 68 after passing through the optical filter 66a.
  • a diaphragm 63a is introduced to limit the angle of the forward scattered light that finally reaches the photodetector 64, for example, the forward scattered light is limited to a low angle (or small angles) forward scattered light.
  • the detection data of cell granule-related information can be obtained.
  • the impedance counting unit 80 includes a counting cell 81 , a pressure source 83 , a constant current power supply 85 and a voltage pulse detection unit 87 .
  • the counting cell 81 includes a micropore 81 a, and the counting cell 81 is used for the reaction part 30 to receive the sample.
  • the pressure source 83 is used to provide pressure to make the cells contained in the sample in the counting cell 81 pass through the micropore 81a.
  • the two ends of the constant current power supply 85 are respectively electrically connected to the two ends of the microhole 81a.
  • the voltage pulse detection component 87 is electrically connected to the constant current power supply 85 and is used to detect the voltage pulse generated when the cells pass through the micropore 81a.
  • the detection data of cell granule-related information can also be obtained by the impedance method counting component 80 .
  • the processor 50 in some embodiments of the present invention includes, but is not limited to, a central processing unit (Central Processing Unit, CPU), a micro control unit (Micro Controller Unit, MCU), Field Programmable Gate Array (Field-Programmable Devices such as Gate Array, FPGA) and digital signal processing (DSP) are used to interpret computer instructions and process data in computer software.
  • the processor 50 is configured to execute various computer application programs in the non-transitory computer-readable storage medium, so that the sample analysis device executes corresponding detection procedures.
  • the processor 50 controls the sample supply part 10 and the reagent supply part 20 to respectively provide the sample and the reagent to the reaction part 30, and the reagent includes the first reagent used to increase the volume of red blood cells in the sample, so as to prepare for Detecting the second sample of the cell particle; in some embodiments, the first reagent includes a hypotonic diluent; the processor 50 controls the assay unit 40 to detect the second sample to obtain the volume of the cell particle The second detection data of related information; the processor 50 calculates the detection result of the cell particles at least according to the second detection data, such as PLT count and/or RBC count, etc.
  • the second detection data such as PLT count and/or RBC count, etc.
  • the low-end signal of the unprocessed PLT histogram and the large signal of PLT after the RBC expansion method can be used to collect the fusion of the two, and a more accurate PLT can be obtained count, as described below.
  • the processor 50 controls the sample supply part 10 and the reagent supply part 20 to respectively provide the sample and the reagent to the reaction part 30 to prepare the first sample for detecting cell particles;
  • the cell particles include platelets and /or red blood cells;
  • the processor 50 controls the measurement unit 40 to detect the first sample to obtain the first detection data related to the volume of the cell particles;
  • the processor 50 controls the sample supply unit 10 and the reagent supply unit 20 to provide
  • the reaction part 30 provides samples and reagents, the reagents include a first reagent used to increase the volume of red blood cells in the sample, so as to prepare a second sample for detecting the cell particles;
  • the sample of the sample and the sample used to prepare the second sample come from the same object;
  • the processor 50 controls the measuring unit 40 to detect the second sample, so as to obtain the second detection data related to the volume of the cell particles ;
  • the processor 50 calculates the detection result of the cell particle according to the first detection data and the second detection data.
  • the first reagent comprises
  • the processor 50 calculates the detection result of the cell particle according to the first detection data and the second detection data, including: the processor 50 acquires detection results whose volume is less than or equal to the first value in the first detection data data; the processor 50 acquires the detection data whose volume is larger than the first value and smaller than the second value in the second detection data; the processor 50 obtains the detection data whose volume is smaller than or equal to the first value in the first detection data, and For the detection data whose volume is larger than the first value and smaller than the second value in the second detection data, the number of platelets is calculated. In some embodiments, the processor 50 determines the first value and/or the second value according to the second detection data. In some embodiments, the first value is the volume value with the largest number of platelets in the volume distribution of platelets. In some embodiments, the second value is a critical volume of platelets and red blood cells.
  • the processor 50 calculates the detection result of the cell particle according to the first detection data and the second detection data, including: the processor 50 generates a first straight line of the cell particle according to the first detection data Histogram; the processor 50 generates a second histogram of cell particles according to the second detection data; the processor 50 calculates the detection result of the cell particles according to the first histogram and the second histogram.
  • the processor 50 acquires the histogram information whose volume in the first histogram is smaller than or equal to the first value; the processor 50 acquires the histogram information whose volume in the second histogram is greater than the first value and smaller than the second value information; processor 50 according to the histogram information whose volume in the first histogram is smaller than or equal to the first value, and the histogram information whose volume in the second histogram is larger than the first value and smaller than the second value , to count the number of platelets.
  • the processor 50 obtains the histogram information whose volume in the first histogram is smaller than or equal to the first value; the processor 50 obtains the histogram information whose volume in the second histogram is larger than the first value and smaller than the second value Graph information; the processor 50 performs data fitting according to the histogram information whose volume in the second histogram is larger than the first value and smaller than the second value, so as to obtain a histogram whose volume of platelets is larger than or equal to the second value Graph information; processor 50 according to the histogram information whose volume in the first histogram is smaller than or equal to the first value, and the histogram information whose volume in the second histogram is larger than the first value and smaller than the second value , and the histogram information that the platelet volume is greater than or equal to the second value, calculate the number of platelets.
  • the processor 50 determines the first value and/or the second value according to the second histogram; The information is removed to eliminate the influence of red blood cell fragments; the processor 50 determines the first value and/or the second value according to the second histogram of the histogram information whose volume is removed smaller than the third value.
  • the first value is the volume value with the largest number in the volume distribution of platelets, for example, the value of the abscissa corresponding to the peak of the PLT in the histogram.
  • the second value is the critical volume of platelets and red blood cells, for example, the value of the abscissa corresponding to the dividing line between PLT and RBC.
  • the impedance method is to count the PLT and RBC at the same time, so the dividing line between PLT and RBC needs to be determined first when performing PLT counting.
  • this kind of hypotonic diluent can ensure that RBC cells absorb water and swell, but also ensure that most RBCs will not swell to break; after RBC expands, its volume will become larger, and PLT is a solid entity
  • the volume of the cells basically does not change; the response on the histogram is that the position of PLT basically remains unchanged, while the peak of RBC shifts to the right, as shown in Figure 9(b).
  • Figure 9(b) shows that after the treatment of the hypotonic diluent, the RBCs generally shifted to the right, and some RBC fragments were generated at the low end of the signal, which affected the PLT histogram at the low end.
  • the counts of PLT can be calculated jointly according to the histograms of Figure 9(a) and Figure 9(b), and Figure 10 shows the process of fusing the histograms of Figure 9(a) and Figure 9(b):
  • the sample analysis device has a normal processing mode and an abnormal processing mode of cell particles.
  • the cell particles include platelets PLT and/or red blood cells RBC. The two working modes are described below.
  • the processor 50 controls the sample supply part 10 and the reagent supply part 20 to respectively provide samples and reagents (such as isotonic diluents) to the reaction part 30 to prepare cells for detection
  • samples and reagents such as isotonic diluents
  • a first sample of particles cell particles include platelets and/or red blood cells
  • the processor 50 controls the measurement unit 40 to detect the first sample to obtain first detection data related to the volume of the cell particles, and the first detection The data is used to calculate the detection result of the cell particle; for example, the processor 50 calculates the detection result of the cell particle according to the first detection data, including PLT count and/or RBC count and the like.
  • the processor 50 in the normal processing mode of cell particles: the processor 50 also judges whether the cell particles are abnormal according to the first detection data; when it is judged to be abnormal, the processor 50 generates prompt information, and/or, The processor 50 switches to the exception handling mode of the cell particle to retest the sample.
  • the processor 50 controls the sample supply part 10 and the reagent supply part 20 to respectively provide the sample and the reagent to the reaction part 30, the reagent includes a first reagent to prepare a second sample for detecting the cell particles; in some embodiments, the first reagent includes a hypotonic diluent; the processor 50 controls the assay unit 40 to detect the second sample , to obtain the second detection data related to the volume of the cell particles; the processor 50 calculates the detection results of the cell particles at least according to the second detection data, such as PLT count and/or RBC count, etc.
  • the second detection data such as PLT count and/or RBC count, etc.
  • the low-end signal of the unprocessed PLT histogram and the large signal of PLT after the RBC expansion method can be used to collect the fusion of the two, and a more accurate PLT can be obtained count, as described below.
  • the processor 50 calculates the detection result of the cell particles at least according to the second detection data, including: the processor 50 calculates according to the first detection data and the second detection data The detection result of the cell particles, wherein the sample used to prepare the first sample and the sample used to prepare the second sample are from the same subject.
  • the processor 50 calculates the detection result of the cell particle according to the first detection data and the second detection data, including: the processor 50 acquires detection results whose volume is less than or equal to the first value in the first detection data data; the processor 50 acquires the detection data whose volume is larger than the first value and smaller than the second value in the second detection data; the processor 50 obtains the detection data whose volume is smaller than or equal to the first value in the first detection data, and For the detection data whose volume is larger than the first value and smaller than the second value in the second detection data, the number of platelets is calculated. In some embodiments, the processor 50 determines the first value and/or the second value according to the second detection data. In some embodiments, the first value is the volume value with the largest number of platelets in the volume distribution of platelets. In some embodiments, the second value is a critical volume of platelets and red blood cells.
  • the processor 50 calculates the detection result of the cell particle according to the first detection data and the second detection data, including: the processor 50 generates a first straight line of the cell particle according to the first detection data Histogram; the processor 50 generates a second histogram of cell particles according to the second detection data; the processor 50 calculates the detection result of the cell particles according to the first histogram and the second histogram.
  • the processor 50 acquires the histogram information whose volume in the first histogram is smaller than or equal to the first value; the processor 50 acquires the histogram information whose volume in the second histogram is greater than the first value and smaller than the second value information; processor 50 according to the histogram information whose volume in the first histogram is smaller than or equal to the first value, and the histogram information whose volume in the second histogram is larger than the first value and smaller than the second value , to count the number of platelets.
  • the processor 50 obtains the histogram information whose volume in the first histogram is smaller than or equal to the first value; the processor 50 obtains the histogram information whose volume in the second histogram is larger than the first value and smaller than the second value Graph information; the processor 50 performs data fitting according to the histogram information whose volume in the second histogram is larger than the first value and smaller than the second value, so as to obtain a histogram whose volume of platelets is larger than or equal to the second value Graph information; processor 50 according to the histogram information whose volume in the first histogram is smaller than or equal to the first value, and the histogram information whose volume in the second histogram is larger than the first value and smaller than the second value , and the histogram information that the platelet volume is greater than or equal to the second value, calculate the number of platelets.
  • the processor 50 determines the first value and/or the second value according to the second histogram; The information is removed to eliminate the influence of red blood cell fragments; the processor 50 determines the first value and/or the second value according to the second histogram of the histogram information whose volume is removed smaller than the third value.
  • the first value is the volume value with the largest number in the volume distribution of platelets, for example, the value of the abscissa corresponding to the peak of the PLT in the histogram.
  • the second value is the critical volume of platelets and red blood cells, for example, the value of the abscissa corresponding to the dividing line between PLT and RBC.
  • the sample analysis device has a special processing mode for cell particles.
  • the cell particles include platelets PLT and/or red blood cells RBC. This special processing mode is described below.
  • the processor 50 controls the sample supply part 10 and the reagent supply part 20 to respectively provide the sample and the reagent to the reaction part 30, the reagent includes a first reagent to prepare a second sample for detecting the cell particles; in some embodiments, the first reagent includes a hypotonic diluent; the processor 50 controls the assay unit 40 to detect the second sample , to obtain second detection data related to the volume of the cell particle; the processor 50 calculates the detection result of the cell particle at least according to the second detection data.
  • the processor 50 in the special processing mode of cell particles: the processor 50 also controls the sample supply part 10 and the reagent supply part 20 to respectively provide samples and reagents to the reaction part 30, so as to prepare the first sample for detecting cell particles
  • the cell particles include platelets and/or red blood cells
  • the processor 50 controls the measurement unit 40 to detect the first sample to obtain the first detection data related to the volume of the cell particles;
  • the sample of the sample and the sample used to prepare the second sample come from the same object;
  • the processor 50 calculates the detection result of the cell particles according to the first detection data and the second detection data.
  • the processor 50 calculates the detection result of the cell particle according to the first detection data and the second detection data, including: the processor 50 acquires detection results whose volume is less than or equal to the first value in the first detection data data; the processor 50 acquires the detection data whose volume is larger than the first value and smaller than the second value in the second detection data; the processor 50 obtains the detection data whose volume is smaller than or equal to the first value in the first detection data, and For the detection data whose volume is larger than the first value and smaller than the second value in the second detection data, the number of platelets is calculated. In some embodiments, the processor 50 determines the first value and/or the second value according to the second detection data. In some embodiments, the first value is the volume value with the largest number of platelets in the volume distribution of platelets. In some embodiments, the second value is a critical volume of platelets and red blood cells.
  • the processor 50 calculates the detection result of the cell particle according to the first detection data and the second detection data, including: the processor 50 generates a first straight line of the cell particle according to the first detection data Histogram; the processor 50 generates a second histogram of cell particles according to the second detection data; the processor 50 calculates the detection result of the cell particles according to the first histogram and the second histogram.
  • the processor 50 acquires the histogram information whose volume in the first histogram is smaller than or equal to the first value; the processor 50 acquires the histogram information whose volume in the second histogram is greater than the first value and smaller than the second value information; processor 50 according to the histogram information whose volume in the first histogram is smaller than or equal to the first value, and the histogram information whose volume in the second histogram is larger than the first value and smaller than the second value , to count the number of platelets.
  • the processor 50 obtains the histogram information whose volume in the first histogram is smaller than or equal to the first value; the processor 50 obtains the histogram information whose volume in the second histogram is larger than the first value and smaller than the second value Graph information; the processor 50 performs data fitting according to the histogram information whose volume in the second histogram is larger than the first value and smaller than the second value, so as to obtain a histogram whose volume of platelets is larger than or equal to the second value Graph information; processor 50 according to the histogram information whose volume in the first histogram is smaller than or equal to the first value, and the histogram information whose volume in the second histogram is larger than the first value and smaller than the second value , and the histogram information that the platelet volume is greater than or equal to the second value, calculate the number of platelets.
  • the processor 50 determines the first value and/or the second value according to the second histogram; The information is removed to eliminate the influence of red blood cell fragments; the processor 50 determines the first value and/or the second value according to the second histogram of the histogram information whose volume is removed smaller than the third value.
  • the first value is the volume value with the largest number in the volume distribution of platelets, for example, the value of the abscissa corresponding to the peak of the PLT in the histogram.
  • the second value is the critical volume of platelets and red blood cells, for example, the value of the abscissa corresponding to the dividing line between PLT and RBC.
  • the sample analysis device may be an analysis device for animals, and the analysis device for animals includes at least a first type of animal-specific mode, and in some embodiments, the first type of animals includes at least cats.
  • the processor 50 controls the sample supply part 10 and the reagent supply part 20 to supply the sample and the reagent to the reaction part 30 respectively, and the reagent includes a reagent used to increase the volume of red blood cells in the sample a first reagent to prepare a second sample for detecting the cell particles; in some embodiments, the first reagent includes a hypotonic diluent; the processor 50 controls the assay unit 40 to detect the second sample , to obtain second detection data related to the volume of the cell particle; the processor 50 calculates the detection result of the cell particle at least according to the second detection data.
  • the processor 50 in the first animal-specific mode: the processor 50 also controls the sample supply part 10 and the reagent supply part 20 to provide samples and reagents to the reaction part 30 respectively, so as to prepare the first sample for detecting cell particles
  • the cell particles include platelets and/or red blood cells
  • the processor 50 controls the measurement unit 40 to detect the first sample to obtain the first detection data related to the volume of the cell particles;
  • the sample of the sample and the sample used to prepare the second sample come from the same object;
  • the processor 50 calculates the detection result of the cell particles according to the first detection data and the second detection data.
  • the processor 50 calculates the detection result of the cell particle according to the first detection data and the second detection data, including: the processor 50 acquires detection results whose volume is less than or equal to the first value in the first detection data data; the processor 50 acquires the detection data whose volume is larger than the first value and smaller than the second value in the second detection data; the processor 50 obtains the detection data whose volume is smaller than or equal to the first value in the first detection data, and For the detection data whose volume is larger than the first value and smaller than the second value in the second detection data, the number of platelets is calculated. In some embodiments, the processor 50 determines the first value and/or the second value according to the second detection data. In some embodiments, the first value is the volume value with the largest number of platelets in the volume distribution of platelets. In some embodiments, the second value is a critical volume of platelets and red blood cells.
  • the processor 50 calculates the detection result of the cell particle according to the first detection data and the second detection data, including: the processor 50 generates a first straight line of the cell particle according to the first detection data Histogram; the processor 50 generates a second histogram of cell particles according to the second detection data; the processor 50 calculates the detection result of the cell particles according to the first histogram and the second histogram.
  • the processor 50 acquires the histogram information whose volume in the first histogram is smaller than or equal to the first value; the processor 50 acquires the histogram information whose volume in the second histogram is greater than the first value and smaller than the second value information; processor 50 according to the histogram information whose volume in the first histogram is smaller than or equal to the first value, and the histogram information whose volume in the second histogram is larger than the first value and smaller than the second value , to count the number of platelets.
  • the processor 50 obtains the histogram information whose volume in the first histogram is smaller than or equal to the first value; the processor 50 obtains the histogram information whose volume in the second histogram is larger than the first value and smaller than the second value Graph information; the processor 50 performs data fitting according to the histogram information whose volume in the second histogram is larger than the first value and smaller than the second value, so as to obtain a histogram whose volume of platelets is larger than or equal to the second value Graph information; processor 50 according to the histogram information whose volume in the first histogram is smaller than or equal to the first value, and the histogram information whose volume in the second histogram is larger than the first value and smaller than the second value , and the histogram information that the platelet volume is greater than or equal to the second value, calculate the number of platelets.
  • the processor 50 determines the first value and/or the second value according to the second histogram; The information is removed to eliminate the influence of red blood cell fragments; the processor 50 determines the first value and/or the second value according to the second histogram of the histogram information whose volume is removed smaller than the third value.
  • the first value is the volume value with the largest number in the volume distribution of platelets, for example, the value of the abscissa corresponding to the peak of the PLT in the histogram.
  • the second value is the critical volume of platelets and red blood cells, for example, the value of the abscissa corresponding to the dividing line between PLT and RBC.
  • sample analysis method in some embodiments includes the following steps:
  • Step 100 Treating the sample with a reagent including a first reagent for increasing the volume of red blood cells in the sample to prepare a second sample for detecting cell particles; the cell particles include platelets and/or red blood cells.
  • the first reagent includes a hypotonic diluent, and the sample is treated with the hypotonic diluent to prepare the second sample.
  • Step 110 Treat the sample with a reagent that does not include the first reagent to prepare a first sample for detecting cell particles; wherein, the sample used to prepare the first sample and the sample used to prepare the The samples for the second sample were from the same subject.
  • the first sample is prepared, for example, by treating the sample with an isotonic dilution.
  • Step 120 Detect the first sample and the second sample to obtain first detection data and second detection data respectively.
  • Step 130 Calculate the detection result of the cell particle according to the first detection data and the second detection data.
  • step 130 calculates the detection result of the cell particles according to the first detection data and the second detection data, including: step 130 acquiring detection data whose volume is less than or equal to the first value in the first detection data; Step 130 acquires the detection data whose volume is larger than the first value and smaller than the second value in the second detection data; step 130 obtains the detection data whose volume is smaller than or equal to the first value in the first detection data, and the second In the detection data whose volume is greater than the first value and smaller than the second value, the number of platelets is calculated. In some embodiments, step 130 determines the first value and/or the second value according to the second detection data. In some embodiments, the first value is the volume value with the largest number of platelets in the volume distribution of platelets. In some embodiments, the second value is a critical volume of platelets and red blood cells.
  • step 130 calculates the detection result of the cell particles according to the first detection data and the second detection data, including: Step 130 generates a first histogram of cell particles according to the first detection data ; Step 130 generates a second histogram of cell particles according to the second detection data; Step 130 calculates the detection result of the cell particles according to the first histogram and the second histogram.
  • step 130 obtains the histogram information whose volume in the first histogram is smaller than or equal to the first value; step 130 obtains the histogram information whose volume in the second histogram is larger than the first value and smaller than the second value; Step 130 Calculate the platelet count according to the histogram information whose volume in the first histogram is less than or equal to the first value, and the histogram information whose volume in the second histogram is greater than the first value and smaller than the second value quantity.
  • step 130 acquires the histogram information whose volume in the first histogram is smaller than or equal to the first value; step 130 acquires the histogram information whose volume in the second histogram is greater than the first value and smaller than the second value ; Step 130 performs data fitting according to the histogram information whose volume in the second histogram is greater than the first value and less than the second value, so as to obtain the histogram information whose platelet volume is greater than or equal to the second value; Step 130: According to the histogram information in the first histogram whose volume is smaller than or equal to the first value, the histogram information in the second histogram whose volume is larger than the first value and smaller than the second value, and the Calculate the number of platelets according to the histogram information that the platelet volume is greater than or equal to the second value.
  • step 130 determines the first value and/or second value according to the second histogram; specifically, step 130 removes the histogram information whose volume in the second histogram is smaller than the third value , to eliminate the influence of red blood cell fragments; Step 130 determines the first value and/or the second value according to the second histogram with the histogram information whose volume is smaller than the third value removed.
  • the first value is the volume value with the largest number in the volume distribution of platelets, for example, the value of the abscissa corresponding to the peak of the PLT in the histogram.
  • the second value is the critical volume of platelets and red blood cells, for example, the value of the abscissa corresponding to the dividing line between PLT and RBC.
  • the present invention can be applied to the occasions of large PLT samples, or the occasions of samples with no significant size difference between PLT and RBC. In these occasions, the present invention can also realize accurate counting of PLT.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • the principles herein may be embodied in a computer program product on a computer-readable storage medium having computer-readable program code preloaded thereon, as understood by those skilled in the art.
  • Any tangible, non-transitory computer-readable storage medium may be used, including magnetic storage devices (hard disks, floppy disks, etc.), optical storage devices (CD-to-ROM, DVD, Blu Ray discs, etc.), flash memory and/or the like .
  • These computer program instructions can be loaded into a general purpose computer, special purpose computer or other programmable data processing apparatus to form a machine, so that these instructions executed on the computer or other programmable data processing apparatus can generate an apparatus for realizing specified functions.
  • These computer program instructions may also be stored in a computer-readable memory which can instruct a computer or other programmable data processing device to operate in a particular manner such that the instructions stored in the computer-readable memory form a Manufactures, including implementing devices for implementing specified functions.
  • Computer program instructions can also be loaded on a computer or other programmable data processing device, thereby performing a series of operational steps on the computer or other programmable device to produce a computer-implemented process, so that the computer or other programmable device Instructions may provide steps for performing specified functions.
  • the term “comprises” and any other variants thereof are non-exclusive, such that a process, method, article, or apparatus that includes a list of elements includes not only those elements, but also elements not expressly listed or not part of the process. , method, system, article or other element of a device.
  • the term “coupled” and any other variations thereof, as used herein refers to a physical connection, an electrical connection, a magnetic connection, an optical connection, a communicative connection, a functional connection, and/or any other connection.

Abstract

一种样本分析装置、动物用分析装置和样本分析方法,分析装置中处理器(50)控制样本供给部(10)和试剂供给部(20)分别向反应部(30)提供样本和试剂,该试剂中包括用于使得样本中红细胞体积变大的第一试剂,以制备用于检测细胞粒子的第二试样;处理器(50)控制测定部(40)检测第二试样,以得到有关细胞粒子体积相关信息的第二检测数据;处理器(50)至少根据第二检测数据,计算细胞粒子的检测结果。该样本分析装置、动物用分析装置和样本分析方法能够应用于大血小板(PLT)样本的场合,或者说血小板(PLT)与红细胞(RBC)大小差异没有十分显著的样本的场合,在这些场合中能够实现血小板(PLT)的精确计数。

Description

一种样本分析装置、动物用分析装置和样本分析方法 技术领域
本发明涉及体外诊断领域,具体涉及一种样本分析装置、动物用分析装置和样本分析方法。
背景技术
样本分析装置,例如用于体液或血液的样本分析装置它们可检测血液和体液中细胞粒子,例如可以对白细胞(WBC)、红细胞(RBC)、血小板(PLT)、有核红细胞(NRBC)和网织红细胞(Ret)等细胞粒子进行计数及分类。
目前,对血细胞的测量采用微孔阻抗原理的占多数,其基本依据是库尔特原理。所谓Coulter原理(库尔特原理)是指根据流体中通过一微孔的不同体积颗粒的电阻抗不同而进行对流体中颗粒的测量,例如血液中的血细胞是相对不良导体,当其悬浮于电解质溶液中通过检测微孔时,会改变微孔内外原来的恒定电阻,由微孔内的传感器感应并经过处理电路产生电脉冲,根据脉冲的大小就可以判断细胞的体积,根据脉冲的数量可以判断细胞的数量。上述电脉冲信号经过对应的处理电路可以绘制成直观的分布图表,如样本分析装置在测定红细胞、白细胞和血小板的多种数据的同时,把它们体积的大小(横轴)、出现的相对频率(纵轴)以坐标曲线图表示出来,形成血细胞体积分布直方图。
血小板(PLT)和红细胞(RBC)能够通过上述的阻抗法进行测量,而且是两者同时进行测量。不妨以血液样本为例,在血液样本中加入等渗电解质溶液稀释以制备成细胞悬浮液,然后进行阻抗法计数,图1(a)为粒子的体积分布直方图,横坐标表示体积,单位例如可以为飞升(FL),纵坐标为出现的频率或者说计数值,可以看到,由于PLT和RBC的体积大小存在明显差异,因此在图中形成了两个波峰和明显的分界线,分界线左边的为PLT,右边的为RBC。这种测量方法简单方便,成本较为低廉,在低端和高端的血球仪产品中都可见到。
对于异常样本,如大PLT样本会造成PLT直方图和RBC直方图存在重叠的现象,如图1(b)为一个例子,在这种情况下,PLT和RBC存在部分叠加,无法准确确定PLT和RBC的分界线,无法准确对PLT和RBC进行分类和计数。
一种解决方案是采用荧光试剂的方法。在高端血球仪产品中,通过荧光法可以对PLT进行准确计数,如深圳迈瑞生物医疗股份有限公司生产的BC-6000血球仪中通过RET通道进行PLT的计数。其原理是血细胞经过试剂处理后,特别是加入了荧光试剂,通过前向散射光、侧向散射光、荧光三路光学信号区分细胞。其中前向散射光反应细胞的体积大小,侧向散射光反应细胞内的复杂度,荧光反应细胞内的DNA和RNA含量。通过三路光学信号,可以显著的将PLT与RBC细胞区分开,从而较好的实现了PLT的计数。此种方法虽然准确,但是其成本却较高。
技术问题
本发明主要提供一种样本分析装置、动物用分析装置和样本分析方法,下面具体说明。
技术解决方案
根据第一方面,一种实施例提供样本分析装置,其特征在于,包括:
样本供给部,用于供给样本;例如血液样本或体液样本;体液样本例如可以是脑脊液、胸水、腹水、心囊液、关节液、腹膜透析的透析液或腹腔内清洗液等;
试剂供给部,用于供给试剂;
反应部,所述反应部用于接收所述样本供给部提供的样本和所述试剂供给部提供的试剂,以制备试样;
测定部,用于检测所述试样以得到检测数据;
处理器,根据所述检测数据计算检测结果;其中:
所述处理器控制所述样本供给部和试剂供给部分别向所述反应部提供样本和试剂,以制备用于检测细胞粒子的第一试样;所述细胞粒子包括血小板和/或红细胞;
所述处理器控制所述测定部检测所述第一试样,以得到有关所述细胞粒子体积相关信息的第一检测数据;
所述处理器控制所述样本供给部和试剂供给部分别向所述反应部提供样本和试剂,该试剂中包括用于使得样本中红细胞体积变大的第一试剂,以制备用于检测所述细胞粒子的第二试样;其中,用于制备所述第一试样的样本和用于制备所述第二试样的样本来自同一对象;
所述处理器控制所述测定部检测所述第二试样,以得到有关所述细胞粒子体积相关信息的第二检测数据;
所述处理器根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果。
一实施例中,所述处理器根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果,包括:
所述处理器获取所述第一检测数据中体积小于或等于第一值的检测数据;
所述处理器获取所述第二检测数据中体积大于所述第一值且小于第二值的检测数据;
所述处理器根据所述第一检测数据中体积小于或等于第一值的检测数据,和所述第二检测数据中体积大于所述第一值且小于第二值的检测数据,计算血小板的数量。
一实施例中,所述处理器根据所述第二检测数据确定所述第一值和/或第二值。
一实施例中,所述第一值为血小板的体积分布中数量最多的体积值。
一实施例中,所述第二值为血小板和红细胞的体积临界值。
一实施例中,所述处理器根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果,包括:
所述处理器根据所述第一检测数据生成细胞粒子的第一直方图;
所述处理器根据所述第二检测数据生成细胞粒子的第二直方图;
所述处理器根据所述第一直方图和所述第二直方图,计算所述细胞粒子的检测结果。
一实施例中,所述处理器根据所述第一直方图和所述第二直方图,计算所述细胞粒子的检测结果,包括:
所述处理器获取第一直方图中体积小于或等于第一值的直方图信息;
所述处理器获取所述第二直方图中体积大于所述第一值且小于第二值的直方图信息;
所述处理器根据所述第一直方图中体积小于或等于第一值的直方图信息,和所述第二直方图中体积大于所述第一值且小于第二值的直方图信息,计算血小板的数量。
一实施例中,所述处理器根据所述第一直方图和所述第二直方图,计算所述细胞粒子的检测结果,包括:
所述处理器获取第一直方图中体积小于或等于第一值的直方图信息;
所述处理器获取所述第二直方图中体积大于所述第一值且小于第二值的直方图信息;
所述处理器根据所述第二直方图中体积大于所述第一值且小于第二值的直方图信息,进行数据拟合,以获取血小板体积大于或等于所述第二值的直方图信息;
所述处理器根据所述第一直方图中体积小于或等于第一值的直方图信息,所述第二直方图中体积大于所述第一值且小于第二值的直方图信息,和所述血小板体积大于或等于所述第二值的直方图信息,计算血小板的数量。
一实施例中,所述处理器根据所述第二直方图确定所述第一值和/或第二值。
一实施例中,所述处理器根据所述第二直方图确定所述第一值和/或第二值,包括:
所述处理器将所述第二直方图中体积小于第三值的直方图信息去掉,以消除红细胞碎片的影响;
所述处理器根据去掉体积小于第三值的直方图信息的第二直方图,确定所述第一值和/或第二值。
一实施例中,所述第一试剂包括低渗稀释液。
一实施例中,所述测定部件包括阻抗法计数部件。
一实施例中,所述测定部件包括光学检测部;所述光学检测部包括流动室、光源和光学检测器;所述流动室与所述反应部连通,用于供待测试样的细胞逐个通过,所述光源用于照射通过所述流动室的细胞,所述光学检测器用于获取细胞通过所述流动室的光信号,所述光信号至少包括前向散射光信号。
根据第二方面,一种实施例提供样本分析装置,包括:
样本供给部,用于供给样本;例如血液样本或体液样本;体液样本例如可以是脑脊液、胸水、腹水、心囊液、关节液、腹膜透析的透析液或腹腔内清洗液等;
试剂供给部,用于供给试剂;
反应部,所述反应部用于接收所述样本供给部提供的样本和所述试剂供给部提供的试剂,以制备试样;
测定部,用于检测所述试样以得到检测数据;
处理器,根据所述检测数据计算检测结果;其中:
所述分析装置具有细胞粒子的正常处理模式和异常处理模式,所述细胞粒子包括血小板和/或红细胞;
在所述细胞粒子的正常处理模式下:
所述处理器控制所述样本供给部和试剂供给部分别向所述反应部提供样本和试剂,以制备用于检测细胞粒子的第一试样;所述细胞粒子包括血小板和/或红细胞;
所述处理器控制所述测定部检测所述第一试样,以得到有关所述细胞粒子体积相关信息的第一检测数据,所述第一检测数据被用于计算所述细胞粒子的检测结果;
在所述细胞粒子的异常处理模式下:
所述处理器控制所述样本供给部和试剂供给部分别向所述反应部提供样本和试剂,该试剂中包括用于使得样本中红细胞体积变大的第一试剂,以制备用于检测所述细胞粒子的第二试样;
所述处理器控制所述测定部检测所述第二试样,以得到有关所述细胞粒子体积相关信息的第二检测数据;
所述处理器至少根据所述第二检测数据,计算所述细胞粒子的检测结果。
一实施例中,所述处理器至少根据所述第二检测数据,计算所述细胞粒子的检测结果,包括:
所述处理器根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果,其中用于制备所述第一试样的样本和用于制备所述第二试样的样本来自同一对象。
一实施例中,所述处理器根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果,包括:
所述处理器获取所述第一检测数据中体积小于或等于第一值(的检测数据;
所述处理器获取所述第二检测数据中体积大于所述第一值(且小于第二值的检测数据;
所述处理器根据所述第一检测数据中体积小于或等于第一值的检测数据,和所述第二检测数据中体积大于所述第一值且小于第二值的检测数据,计算血小板的数量。
一实施例中,所述处理器根据所述第二检测数据确定所述第一值和/或第二值。
一实施例中,所述第一值为血小板的体积分布中数量最多的体积值;所述第二值为血小板和红细胞的体积临界值。
一实施例中,所述第一试剂包括低渗稀释液。
一实施例中,其特征在于,在所述细胞粒子的正常处理模式下:
所述处理器还根据所述第一检测数据判断所述细胞粒子是否异常;
当判断异常时,则所述处理器生成提示信息,和/或,所述处理器切换成所述细胞粒子的异常处理模式以对所述样本进行重测。
根据第三方面,一种实施例提供一种样本分析装置,包括:
样本供给部,用于供给样本;例如血液样本或体液样本;体液样本例如可以是脑脊液、胸水、腹水、心囊液、关节液、腹膜透析的透析液或腹腔内清洗液等;
试剂供给部,用于供给试剂;
反应部,所述反应部用于接收所述样本供给部提供的样本和所述试剂供给部提供的试剂,以制备试样;
测定部,用于检测所述试样以得到检测数据;
处理器,根据所述检测数据计算检测结果;其中:
所述分析装置具有细胞粒子的特殊处理模式,所述细胞粒子包括血小板和/或红细胞;在所述细胞粒子的特殊处理模式下:
所述处理器控制所述样本供给部和试剂供给部分别向所述反应部提供样本和试剂,该试剂中包括用于使得样本中红细胞体积变大的第一试剂,以制备用于检测所述细胞粒子的第二试样;
所述处理器控制所述测定部检测所述第二试样,以得到有关所述细胞粒子体积相关信息的第二检测数据;
所述处理器至少根据所述第二检测数据,计算所述细胞粒子的检测结果。
一实施例中,在所述细胞粒子的特殊处理模式下:
所述处理器控制所述样本供给部和试剂供给部分别向所述反应部提供样本和试剂,以制备用于检测细胞粒子的第一试样;所述细胞粒子包括血小板和/或红细胞;所述处理器控制所述测定部检测所述第一试样,以得到有关所述细胞粒子体积相关信息的第一检测数据;其中,用于制备所述第一试样的样本和用于制备所述第二试样的样本来自同一对象;
所述处理器至少根据所述第二检测数据,计算所述细胞粒子的检测结果,包括:所述处理器根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果。
一实施例中,所述处理器根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果,包括:
所述处理器获取所述第一检测数据中体积小于或等于第一值(的检测数据;
所述处理器获取所述第二检测数据中体积大于所述第一值且小于第二值的检测数据;
所述处理器根据所述第一检测数据中体积小于或等于第一值的检测数据,和所述第二检测数据中体积大于所述第一值且小于第二值的检测数据,计算血小板的数量。
一实施例中,所述处理器根据所述第二检测数据确定所述第一值和/或第二值。
一实施例中,所述第一值为血小板的体积分布中数量最多的体积值;所述第二值为血小板和红细胞的体积临界值。
一实施例中,所述第一试剂包括低渗稀释液。
根据第四方面,一种实施例提供一种动物用分析装置,包括:
样本供给部,用于供给样本;例如血液样本或体液样本;体液样本例如可以是脑脊液、胸水、腹水、心囊液、关节液、腹膜透析的透析液或腹腔内清洗液等;
试剂供给部,用于供给试剂;
反应部,所述反应部用于接收所述样本供给部提供的样本和所述试剂供给部提供的试剂,以制备试样;
测定部,用于检测所述试样以得到检测数据;
处理器,根据所述检测数据计算检测结果;其中:
所述动物用分析装置至少包括第一类动物专用模式,在所述第一类动物专用模式下:
所述处理器控制所述样本供给部和试剂供给部分别向所述反应部提供样本和试剂,该试剂中包括用于使得样本中红细胞体积变大的第一试剂,以制备用于检测所述细胞粒子的第二试样;
所述处理器控制所述测定部检测所述第二试样,以得到有关所述细胞粒子体积相关信息的第二检测数据;
所述处理器至少根据所述第二检测数据,计算所述细胞粒子的检测结果。
一实施例中,在所述第一类动物专用模式下:
所述处理器控制所述样本供给部和试剂供给部分别向所述反应部提供样本和试剂,以制备用于检测细胞粒子的第一试样;所述细胞粒子包括血小板和/或红细胞;所述处理器控制所述测定部检测所述第一试样,以得到有关所述细胞粒子体积相关信息的第一检测数据;其中,用于制备所述第一试样的样本和用于制备所述第二试样的样本来自同一对象;
所述处理器至少根据所述第二检测数据,计算所述细胞粒子的检测结果,包括:所述处理器根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果。
一实施例中,所述处理器根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果,包括:
所述处理器获取所述第一检测数据中体积小于或等于第一值的检测数据;
所述处理器获取所述第二检测数据中体积大于所述第一值且小于第二值的检测数据;
所述处理器根据所述第一检测数据中体积小于或等于第一值的检测数据,和所述第二检测数据中体积大于所述第一值且小于第二值的检测数据,计算血小板的数量。
一实施例中,所述处理器根据所述第二检测数据确定所述第一值和/或第二值。
一实施例中,所述第一值为血小板的体积分布中数量最多的体积值;所述第二值为血小板和红细胞的体积临界值。
一实施例中,所述第一试剂包括低渗稀释液。
一实施例中,所述第一类动物至少包括猫。
根据第五方面,一种实施例提供一种样本分析方法,包括:
通过试剂处理样本,该试剂中包括用于使得样本中红细胞体积变大的第一试剂,以制备用于检测细胞粒子的第二试样;所述细胞粒子包括血小板和/或红细胞;其中样本可以为血液样本或体液样本;体液样本例如可以是脑脊液、胸水、腹水、心囊液、关节液、腹膜透析的透析液或腹腔内清洗液等;
通过试剂处理样本,该试剂中不包括所述第一试剂,以制备用于检测细胞粒子的第一试样;其中,用于制备所述第一试样的样本和用于制备所述第二试样的样本来自同一对象;
检测所述第一试样和第二试样,以分别获取第一检测数据和第二检测数据;
根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果。
一实施例中,所述根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果,包括:
获取所述第一检测数据中体积小于或等于第一值的检测数据;
获取所述第二检测数据中体积大于所述第一值且小于第二值的检测数据;
根据所述第一检测数据中体积小于或等于第一值的检测数据,和所述第二检测数据中体积大于所述第一值且小于第二值的检测数据,计算血小板的数量。
一实施例中,所述分析方法还包括:根据所述第二检测数据确定所述第一值和/或第二值;所述第一值为血小板的体积分布中数量最多的体积值,所述第二值为血小板和红细胞的体积临界值。
一实施例中,所述第一试剂包括低渗稀释液。
根据第六方面,一种实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序能够被处理器执行以实现本文任一实施例所述的方法。
有益效果
依据上述实施例的样本分析装置、动物用分析装置、样本分析方法和计算机可读存储介质,通过将 RBC 膨胀,使得 PLT RBC 在体积信息上更容易被区分,从而可以准确地对 PLT / RBC 进行计数
附图说明
图1(a)和图1(b)为粒子的体积分布直方图的两个例子;
图2为一种实施例的样本分析装置的结构示意图;
图3为另一种实施例的样本分析装置的结构示意图;
图4为一种实施例的光学检测部的结构示意图;
图5为一种实施例的光学检测部的结构示意图;
图6为一种实施例的光学检测部的结构示意图;
图7为一种实施例的阻抗法计数部件的结构示意图;
图8为一种实施例的粒子的体积分布直方图的一个例子;
图9(a)为一个大PLT样本的直方图的例子;从图9(b)为经过本发明的处理后形成的直方图的例子;
图10为显示融合图9(a)和图9(b)的直方图的过程的示意图;
图11为修正后的PLT直方图的一个例子;
图12(a)为现有技术计数得到的PLT相关性效果示意图;图12(b)为应用本发明计数得到的PLT相关性效果示意图;
图13为一种实施例的样本分析方法的流程图。
本发明的实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
通过PLT和RBC的体积信息可以区分PLT和RBC,进行相应的分类和计数。然后,在在一些大PLT的样本中,一部分的PLT在体积上和RBC叠加,导致无法利用体积信息对PLT和RBC进行一个准确的分类和计数。
RBC是最为重要的血液细胞之一,担负着交换和运输氧气、二氧化碳、代谢产物等物质的作用,形态上一般呈现饼状,中间凹陷,周围突起。以人体为例,红细胞在人体内的数目为3.5~5.5×1012/L,细胞大小为7.5~8.5μm。
由于RBC为双凹圆盘状,并不是一个球体,所以存在体积膨胀的可能性。吸水膨胀后RBC的体积会变大,而PLT是实心的实体细胞粒子,其体积基本不会变化,这样的话,RBC和PLT的体积信息就更容易被区别,例如以直方图分类和计数为例,当RBC鼓胀后,那么RBC的直方图则会向右平移,从而在直方图上可以拉大PLT和RBC之间的间距,从而加大RBC和PLT的分离度。
具体地,本发明提出通过RBC膨胀法来进行PLT和/或RBC准确计数的一种方案。下面先对样本分析装置进行一个说明。
一些实施例中公开了一种样本分析装置。请参照图2,一些实施例的样本分析装置包括样本供给部10、试剂供给部20、反应部30、测定部40和处理器50。具体地,样本供给部10用于供给样本;样本可以为血液样本或体液样本;体液样本例如可以是脑脊液、胸水、腹水、心囊液、关节液、腹膜透析的透析液或腹腔内清洗液等;试剂供给部20则用于供给试剂;反应部30则用于接收样本供给部10提供的样本和试剂供给部20提供的试剂以制备待测的试样;测定部40则用于对所制备的试样进行检测,或者说检测所述试样以得到检测数据;处理器50则用于根据检测数据计算检测结果。下面对各部件进行更进一步的说明。
一些实施例中,样本供给部10可以包括样本针,样本针通过二维或三维的驱动机构来在空间上进行二维或三维的运动,从而样本针可以移动去吸取承载样本的容器(例如样本管)中的样本,然后移动到用于为被测样本和试剂提供反应场所例如反应部30,向反应部30加入样本。
一些实施例中,试剂供给部20可以包括承载试剂容器的区域和将试剂容器与反应部30连通的试剂液路,通过试剂液路将试剂从试剂容器加入到反应部30中。一些实施例中,试剂供给部20也可以包括试剂针,试剂针通过二维或三维的驱动机构来在空间上进行二维或三维的运动,从而试剂针可以移动去吸取试剂容器中的试剂,然后移动到用于为被测样本和试剂提供反应场所例如反应部30,向反应部30加入试剂。
反应部30可以包括一个或多个反应池。反应部30用于提供样本和试剂的处理场所或者说反应场所。不同的检测项目可以共用同一个反应池;不同的检测项目也可以使用不同的反应池。
通过使用试剂来处理样本,可以得到待测试样。一些实施例中,试剂包括溶血剂、荧光剂和稀释液中的一种或多种。溶血剂是一种能够将血液样本和体液样本中红细胞溶解的试剂,具体地,其可以是阳离子表面活性剂、非离子表面活性剂、阴离子表面活性剂、两亲性表面活性剂中的任意一种或几种的组合。荧光剂用于对血细胞进行染色,具体种类根据检测项目进行选择。等渗电解质稀释液可以用于保持细胞粒子的形态,以制备用于阻抗法计数的试样等。
一些实施例中,请参照图3,测定部40包括光学检测部60和/或阻抗法计数部件80,下面具体说明。
一些实施例中,测定部40可以包括光学检测部60,光学检测部60能够通过激光散射原理对样本进行测定,原理为:将激光照射在细胞上,通过收集细胞被照射后产生的光信号,例如散射光和荧光,来对细胞进行分类和计数等——当然在一些实施例中,如果细胞没有使用荧光试剂来处理,那么自然收集不到荧光。下面对测定部40中的光学检测部60进行说明。
一些实施例中,光学检测部60能够通过激光散射原理对样本进行测定,原理为:将激光照射在细胞上,通过收集细胞被照射后产生的光信号,例如散射光和/或荧光,来对细胞进行分类和计数等——当然在一些实施例中,如果细胞没有使用荧光试剂来处理,那么自然收集不到荧光。下面对测定部40中的光学检测部60进行说明。
请参照图4,光学检测部60可以包括光源61、流动室62和光学检测器69。流动室62与反应部30连通,用于供待测试样的细胞逐个通过;光源61用于照射通过流动室62的细胞,光学检测器69用于获取细胞通过流动室62的光信号。图5为光学检测部60的一个具体例子,光学检测器69可以包括用于收集前向散射光的透镜组63,用于将收集到的前向散射光由光学信号转换为电信号的光电探测器64,用于收集侧向散射光和侧向荧光的透镜组65,二向色镜66,用于将收集到的侧向散射光由光学信号转换为电信号的光电探测器67,用于将收集到的侧向荧光由光学信号转换为电信号的光电探测器68;其中二向色镜66用于分光,将混合在一起的侧向散射光和侧向荧光分为两路,一路为侧向散射光,一路为侧向荧光。需要说明的是,本文中光信号可以是指光学信号,也可以是指由光学信号转成的电信号,他们在表征细胞检测结果所含有的信息实质上是一致的。
不妨以图5所示的光学检测部60的结构为例,说明光学检测部60是如何具体来获取待测试样的光信号。
流动室62用于供待测试样的细胞逐个通过。例如在反应部30中将样本中的红细胞通过一些试剂例如溶血剂溶解,或者再进一步通过荧光剂染色后,采用鞘流技术,使得所制备的待测试样中的细胞从流动室62中依次一个接一个地排队通过。图中Y轴方向为待测试样中细胞运动的方向,需要说明的是,图中Y轴方向为垂直于纸面的方向。光源61用于照射通过流动室62的细胞。一些实施例中,光源61为激光器,例如氦氖激光器或半导体激光器等。当光源61发出的光照射到流动室62中的细胞时会向周围产生散射。因此,当制备好的待测试样中的细胞在鞘流的作用下逐个通过流动室62时,光源61发出的光向通过流动室62的细胞照射,照射到细胞上的光会向四周产生散射,通过透镜组63来收集前向散射光——例如图中Z轴的方向,使之到达光电探测器64,从而信息处理部70可以从光电探测器64获取到细胞的前向散射光信息;同时,在与照射到细胞的光线垂直的方向通过透镜组65收集侧向光——例如图中X轴的方向,收集的侧向光再通过二向色镜66发生反射和折射,其中侧向光中的侧向散射光在经过二向色镜66时发生反射,然后到达相应的光电探测器67,侧向光中的侧向荧光则经过折射或者说透射后也到达相应的光电探测器68,从而处理器50可以从光电探测器67获取到细胞的侧向散射光信息,从光电探测器68获取到细胞的侧向荧光信息。请参照图6,为光学检测部60另一个例子。为了使得光源61照射到流动室62的光性能更好,可以在光源61和流动室62之间引入准直透镜61a,光源61发出的光被准直透镜61a准直后再向通过流动室62的细胞照射。一些例子中,为了使得收集到的荧光噪声更少(即没有其他光的干扰),可以在光电探测器68的前面再设置一滤光片66a,经二向色镜66分光后的侧向荧光再经过滤光片66a后才到达光电探测器68。一些实施例子,在透镜组63收集前向散射光后,再引入一个光阑63a来限定最终到达光电探测器64的前向散射光的角度,例如将前向散射光限定为低角度(或者说小角度)的前向散射光。
可以看到,通过光学检测部60来收集前向散射光,可以获取细胞粒相关信息的检测数据。
一些实施例中,请参照图7,阻抗法计数部件80包括计数池81、压力源83、恒流电源85和电压脉冲检测部件87。计数池81包括一微孔81a,计数池81用于反应部30接收试样。压力源83用于提供压力以使得计数池81中的试样所包含的细胞通过微孔81a。恒流电源85的两端分别与微孔81a的两端电连接。电压脉冲检测部件87与恒流电源85电连接,用于检测细胞通过微孔81a时产生的电压脉冲。
可以看到,通过阻抗法计数部件80也可以可以获取细胞粒相关信息的检测数据。
本发明一些实施例中的处理器50包括但不限于中央处理器(Central Processing Unit,CPU)、微控制单元(Micro Controller Unit,MCU)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)和数字信号处理(DSP)等用于解释计算机指令以及处理计算机软件中的数据的装置。一些实施例中,处理器50用于执行该非暂时性计算机可读存储介质中的各计算机应用程序,从而使样本分析装置执行相应的检测流程。
一些实施例中,处理器50控制样本供给部10和试剂供给部20分别向反应部30提供样本和试剂,该试剂中包括用于使得样本中红细胞体积变大的第一试剂,以制备用于检测所述细胞粒子的第二试样;一些实施例中,所述第一试剂包括低渗稀释液;处理器50控制测定部40检测所述第二试样,以得到有关所述细胞粒子体积相关信息的第二检测数据;处理器50至少根据所述第二检测数据,计算所述细胞粒子的检测结果,例如PLT计数和/或RBC计数等。
在利用第一试剂处理样本使得其中的RBC体积变大即膨胀时,需要控制低渗稀释液的浓度和用量,以使得RBC既能吸水膨胀,又保证全部或大部分RBC不会因膨胀过度而导致细胞裂解产生RBC碎片,这是因为PLT是实心的实体细胞有,因此即使是在低渗稀释液中其体积也基本不会变化,而RBC碎片会干扰到PLT的计数,如图8就是一个例子,RBC碎片会干扰了PLT的低端信号,因此为了更准确地进行PLT的计数,需要考虑去除RBC碎片的影响。一些实施例中,在PLT计数时,可以采用未经处理的PLT的直方图的低端信号,以及采用RBC膨胀法之后的PLT的大信号,采集两者融合的方式,可以得到较为准确的PLT计数,下面具体说明。
因此,一些实施例中,处理器50控制样本供给部10和试剂供给部20分别向反应部30提供样本和试剂,以制备用于检测细胞粒子的第一试样;所述细胞粒子包括血小板和/或红细胞;处理器50控制测定部40检测所述第一试样,以得到有关所述细胞粒子体积相关信息的第一检测数据;处理器50控制样本供给部10和试剂供给部20分别向反应部30提供样本和试剂,该试剂中包括用于使得样本中红细胞体积变大的第一试剂,以制备用于检测所述细胞粒子的第二试样;其中,用于制备所述第一试样的样本和用于制备所述第二试样的样本来自同一对象;处理器50控制测定部40检测所述第二试样,以得到有关所述细胞粒子体积相关信息的第二检测数据;处理器50根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果。一些实施例中,所述第一试剂包括低渗稀释液。
一些实施例中,处理器50根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果,包括:处理器50获取第一检测数据中体积小于或等于第一值的检测数据;处理器50获取第二检测数据中体积大于所述第一值且小于第二值的检测数据;处理器50根据所述第一检测数据中体积小于或等于第一值的检测数据,和所述第二检测数据中体积大于所述第一值且小于第二值的检测数据,计算血小板的数量。一些实施例中,处理器50根据所述第二检测数据确定所述第一值和/或第二值。一些实施例中,所述第一值为血小板的体积分布中数量最多的体积值。一些实施例中,所述第二值为血小板和红细胞的体积临界值。
一些具体实施例中,处理器50根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果,包括:处理器50根据所述第一检测数据生成细胞粒子的第一直方图;处理器50根据所述第二检测数据生成细胞粒子的第二直方图;处理器50根据所述第一直方图和所述第二直方图,计算所述细胞粒子的检测结果。例如,处理器50获取第一直方图中体积小于或等于第一值的直方图信息;处理器50获取所述第二直方图中体积大于所述第一值且小于第二值的直方图信息;处理器50根据所述第一直方图中体积小于或等于第一值的直方图信息,和所述第二直方图中体积大于所述第一值且小于第二值的直方图信息,计算血小板的数量。再例如,处理器50获取第一直方图中体积小于或等于第一值的直方图信息;处理器50获取所述第二直方图中体积大于所述第一值且小于第二值的直方图信息;处理器50根据所述第二直方图中体积大于所述第一值且小于第二值的直方图信息,进行数据拟合,以获取血小板体积大于或等于所述第二值的直方图信息;处理器50根据所述第一直方图中体积小于或等于第一值的直方图信息,所述第二直方图中体积大于所述第一值且小于第二值的直方图信息,和所述血小板体积大于或等于所述第二值的直方图信息,计算血小板的数量。一些实施例中,处理器50根据所述第二直方图确定所述第一值和/或第二值;具体地,处理器50将所述第二直方图中体积小于第三值的直方图信息去掉,以消除红细胞碎片的影响;处理器50根据去掉体积小于第三值的直方图信息的第二直方图,确定所述第一值和/或第二值。一些实施例中,所述第一值为血小板的体积分布中数量最多的体积值,例如PLT在直方图中的波峰所对应的横坐标的值。一些实施例中,所述第二值为血小板和红细胞的体积临界值,例如PLT和RBC的分界线所对应的横坐标的值。
下面举一个例子进行说明。
不妨以阻抗法为例进行说明。进行血细胞计数时会给出细胞的计数值,同时会给出细胞的体积分布直方图。直方图以细胞体积为横坐标,细胞的数量为纵坐标,表示某一种细胞数量的分布情况。一般的阻抗计数法是将PLT与RBC同时进行计数,则进行PLT计数时需要首先确定PLT与RBC的分界线。对于人血样本,PLT与RBC的大小差异较大,如图1(a)所示,从而PLT的直方图和RBC的直方图中间有显著的谷,分界线的确定较为容易。但是对于人血异常样本,如大PLT样本,或者其他一些大PLT样本,例如猫血样本,PLT的大小和RBC的大小差异没有那么显著时,PLT和RBC的分界线的确定就是一件非常困难的事情,也便给PLT的计数带来了困难。图9(a)为一个大PLT样本的例子。从图9(a)的直方图可以看出PLT与RBC的分界线处交叠较为严重,分界困难;划界偏左会导致PLT计数偏少,RBC计数偏多;划界偏右会导致PLT计数偏多,RBC计数偏少。经过低渗的稀释液处理后,此种低渗稀释液能够保证RBC细胞吸水膨胀,但是又保证大部分RBC不会膨胀到破碎;RBC膨胀后其体积会变大,而PLT由于是实心的实体细胞,其体积基本上不变化;反应在直方图上就是PLT的位置基本不变,而RBC的峰向右平移,如图9(b)所示。从图9(b)可以看到,经过低渗稀释液的处理后,RBC总体向右平移,在信号的低端产生了部分RBC碎片,对低端的PLT直方图产生影响。可以根据图9(a)和图9(b)的直方图来共同计算PLT的计数,图10显示了融合图9(a)和图9(b)的直方图的过程:
(1)在图9(b)的直方图中,排除掉左侧的RBC碎片区域,例如可以是x<10fL以下的直方图去掉;
(2)计算图9(b)中PLT直方图的峰值位置,记为X1;计算图9(b)中RBC和PLT的分界线位置,记为X2;
(3)小于X1的区域取图9(a)中的PLT直方图,X1至X2之间的区域取图9(b)中的PLT直方图;而大于X2的位置,可以用诸如LogNormal拟合的方式给出剩余部分,最终得到图11,即修正后的PLT直方图。
以流式阻抗法进行PLT的计数,对N=49例的大PLT样本例如猫样本进行统计。现有技术计数得到的PLT相关性效果如图12(a)所示,相关性系数R=0.9274。本发明的方案计数得到的PLT相关性效果如图12(b)所示,相关性系数R=0.9892。可以看到,经过本发明的方案来对PLT进行计数,其准确性得到了显著提升。
一些实施例中样本分析装置具有细胞粒子的正常处理模式和异常处理模式。一些实施例中,细胞粒子包括血小板PLT和/或红细胞RBC。下面对这两种工作模式进行说明。
一些实施例中,在细胞粒子的正常处理模式下:处理器50控制样本供给部10和试剂供给部20分别向反应部30提供样本和试剂(例如等渗稀释液),以制备用于检测细胞粒子的第一试样;细胞粒子包括血小板和/或红细胞;处理器50控制测定部40检测第一试样,以得到有关所述细胞粒子体积相关信息的第一检测数据,所述第一检测数据被用于计算所述细胞粒子的检测结果;例如处理器50根据所述第一检测数据计算所述细胞粒子的检测结果,包括PLT计数和/或RBC计数等。
一些实施例中,在细胞粒子的正常处理模式下:处理器50还根据所述第一检测数据判断所述细胞粒子是否异常;当判断异常时,则处理器50生成提示信息,和/或,处理器50切换成所述细胞粒子的异常处理模式以对所述样本进行重测。
一些实施例中,在细胞粒子的异常处理模式下:处理器50控制样本供给部10和试剂供给部20分别向反应部30提供样本和试剂,该试剂中包括用于使得样本中红细胞体积变大的第一试剂,以制备用于检测所述细胞粒子的第二试样;一些实施例中,所述第一试剂包括低渗稀释液;处理器50控制测定部40检测所述第二试样,以得到有关所述细胞粒子体积相关信息的第二检测数据;处理器50至少根据所述第二检测数据,计算所述细胞粒子的检测结果,例如PLT计数和/或RBC计数等。
在利用第一试剂处理样本使得其中的RBC体积变大即膨胀时,需要控制低渗稀释液的浓度和用量,以使得RBC既能吸水膨胀,又保证全部或大部分RBC不会因膨胀过度而导致细胞裂解产生RBC碎片,这是因为PLT是实心的实体细胞有,因此即使是在低渗稀释液中其体积也基本不会变化,而RBC碎片会干扰到PLT的计数,RBC碎片会干扰了PLT的低端信号,因此为了更准确地进行PLT的计数,需要考虑去除RBC碎片的影响。一些实施例中,在PLT计数时,可以采用未经处理的PLT的直方图的低端信号,以及采用RBC膨胀法之后的PLT的大信号,采集两者融合的方式,可以得到较为准确的PLT计数,下面具体说明。
一些实施例中,在细胞粒子的异常处理模式下,处理器50至少根据第二检测数据,计算所述细胞粒子的检测结果,包括:处理器50根据第一检测数据和第二检测数据,计算所述细胞粒子的检测结果,其中用于制备所述第一试样的样本和用于制备所述第二试样的样本来自同一对象。
一些实施例中,处理器50根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果,包括:处理器50获取第一检测数据中体积小于或等于第一值的检测数据;处理器50获取第二检测数据中体积大于所述第一值且小于第二值的检测数据;处理器50根据所述第一检测数据中体积小于或等于第一值的检测数据,和所述第二检测数据中体积大于所述第一值且小于第二值的检测数据,计算血小板的数量。一些实施例中,处理器50根据所述第二检测数据确定所述第一值和/或第二值。一些实施例中,所述第一值为血小板的体积分布中数量最多的体积值。一些实施例中,所述第二值为血小板和红细胞的体积临界值。
一些具体实施例中,处理器50根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果,包括:处理器50根据所述第一检测数据生成细胞粒子的第一直方图;处理器50根据所述第二检测数据生成细胞粒子的第二直方图;处理器50根据所述第一直方图和所述第二直方图,计算所述细胞粒子的检测结果。例如,处理器50获取第一直方图中体积小于或等于第一值的直方图信息;处理器50获取所述第二直方图中体积大于所述第一值且小于第二值的直方图信息;处理器50根据所述第一直方图中体积小于或等于第一值的直方图信息,和所述第二直方图中体积大于所述第一值且小于第二值的直方图信息,计算血小板的数量。再例如,处理器50获取第一直方图中体积小于或等于第一值的直方图信息;处理器50获取所述第二直方图中体积大于所述第一值且小于第二值的直方图信息;处理器50根据所述第二直方图中体积大于所述第一值且小于第二值的直方图信息,进行数据拟合,以获取血小板体积大于或等于所述第二值的直方图信息;处理器50根据所述第一直方图中体积小于或等于第一值的直方图信息,所述第二直方图中体积大于所述第一值且小于第二值的直方图信息,和所述血小板体积大于或等于所述第二值的直方图信息,计算血小板的数量。一些实施例中,处理器50根据所述第二直方图确定所述第一值和/或第二值;具体地,处理器50将所述第二直方图中体积小于第三值的直方图信息去掉,以消除红细胞碎片的影响;处理器50根据去掉体积小于第三值的直方图信息的第二直方图,确定所述第一值和/或第二值。一些实施例中,所述第一值为血小板的体积分布中数量最多的体积值,例如PLT在直方图中的波峰所对应的横坐标的值。一些实施例中,所述第二值为血小板和红细胞的体积临界值,例如PLT和RBC的分界线所对应的横坐标的值。
一些实施例中样本分析装置具有细胞粒子的特殊处理模式。一些实施例中,细胞粒子包括血小板PLT和/或红细胞RBC。下面对这种特殊处理模式进行说明。
一些实施例中,在细胞粒子的特殊处理模式下:处理器50控制样本供给部10和试剂供给部20分别向反应部30提供样本和试剂,该试剂中包括用于使得样本中红细胞体积变大的第一试剂,以制备用于检测所述细胞粒子的第二试样;一些实施例中,所述第一试剂包括低渗稀释液;处理器50控制测定部40检测所述第二试样,以得到有关所述细胞粒子体积相关信息的第二检测数据;处理器50至少根据所述第二检测数据,计算所述细胞粒子的检测结果。
一些实施例中,在细胞粒子的特殊处理模式下:处理器50还控制样本供给部10和试剂供给部20分别向反应部30提供样本和试剂,以制备用于检测细胞粒子的第一试样;细胞粒子包括血小板和/或红细胞;处理器50控制测定部40检测所述第一试样,以得到有关所述细胞粒子体积相关信息的第一检测数据;其中,用于制备所述第一试样的样本和用于制备所述第二试样的样本来自同一对象;处理器50根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果。
一些实施例中,处理器50根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果,包括:处理器50获取第一检测数据中体积小于或等于第一值的检测数据;处理器50获取第二检测数据中体积大于所述第一值且小于第二值的检测数据;处理器50根据所述第一检测数据中体积小于或等于第一值的检测数据,和所述第二检测数据中体积大于所述第一值且小于第二值的检测数据,计算血小板的数量。一些实施例中,处理器50根据所述第二检测数据确定所述第一值和/或第二值。一些实施例中,所述第一值为血小板的体积分布中数量最多的体积值。一些实施例中,所述第二值为血小板和红细胞的体积临界值。
一些具体实施例中,处理器50根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果,包括:处理器50根据所述第一检测数据生成细胞粒子的第一直方图;处理器50根据所述第二检测数据生成细胞粒子的第二直方图;处理器50根据所述第一直方图和所述第二直方图,计算所述细胞粒子的检测结果。例如,处理器50获取第一直方图中体积小于或等于第一值的直方图信息;处理器50获取所述第二直方图中体积大于所述第一值且小于第二值的直方图信息;处理器50根据所述第一直方图中体积小于或等于第一值的直方图信息,和所述第二直方图中体积大于所述第一值且小于第二值的直方图信息,计算血小板的数量。再例如,处理器50获取第一直方图中体积小于或等于第一值的直方图信息;处理器50获取所述第二直方图中体积大于所述第一值且小于第二值的直方图信息;处理器50根据所述第二直方图中体积大于所述第一值且小于第二值的直方图信息,进行数据拟合,以获取血小板体积大于或等于所述第二值的直方图信息;处理器50根据所述第一直方图中体积小于或等于第一值的直方图信息,所述第二直方图中体积大于所述第一值且小于第二值的直方图信息,和所述血小板体积大于或等于所述第二值的直方图信息,计算血小板的数量。一些实施例中,处理器50根据所述第二直方图确定所述第一值和/或第二值;具体地,处理器50将所述第二直方图中体积小于第三值的直方图信息去掉,以消除红细胞碎片的影响;处理器50根据去掉体积小于第三值的直方图信息的第二直方图,确定所述第一值和/或第二值。一些实施例中,所述第一值为血小板的体积分布中数量最多的体积值,例如PLT在直方图中的波峰所对应的横坐标的值。一些实施例中,所述第二值为血小板和红细胞的体积临界值,例如PLT和RBC的分界线所对应的横坐标的值。
一些实施例中样本分析装置可以为动物用分析装置,所述动物用分析装置至少包括第一类动物专用模式,一些实施例中,所述第一类动物至少包括猫。
一些实施例中,在第一类动物专用模式下:处理器50控制样本供给部10和试剂供给部20分别向反应部30提供样本和试剂,该试剂中包括用于使得样本中红细胞体积变大的第一试剂,以制备用于检测所述细胞粒子的第二试样;一些实施例中,所述第一试剂包括低渗稀释液;处理器50控制测定部40检测所述第二试样,以得到有关所述细胞粒子体积相关信息的第二检测数据;处理器50至少根据所述第二检测数据,计算所述细胞粒子的检测结果。
一些实施例中,在第一类动物专用模式下:处理器50还控制样本供给部10和试剂供给部20分别向反应部30提供样本和试剂,以制备用于检测细胞粒子的第一试样;细胞粒子包括血小板和/或红细胞;处理器50控制测定部40检测所述第一试样,以得到有关所述细胞粒子体积相关信息的第一检测数据;其中,用于制备所述第一试样的样本和用于制备所述第二试样的样本来自同一对象;处理器50根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果。
一些实施例中,处理器50根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果,包括:处理器50获取第一检测数据中体积小于或等于第一值的检测数据;处理器50获取第二检测数据中体积大于所述第一值且小于第二值的检测数据;处理器50根据所述第一检测数据中体积小于或等于第一值的检测数据,和所述第二检测数据中体积大于所述第一值且小于第二值的检测数据,计算血小板的数量。一些实施例中,处理器50根据所述第二检测数据确定所述第一值和/或第二值。一些实施例中,所述第一值为血小板的体积分布中数量最多的体积值。一些实施例中,所述第二值为血小板和红细胞的体积临界值。
一些具体实施例中,处理器50根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果,包括:处理器50根据所述第一检测数据生成细胞粒子的第一直方图;处理器50根据所述第二检测数据生成细胞粒子的第二直方图;处理器50根据所述第一直方图和所述第二直方图,计算所述细胞粒子的检测结果。例如,处理器50获取第一直方图中体积小于或等于第一值的直方图信息;处理器50获取所述第二直方图中体积大于所述第一值且小于第二值的直方图信息;处理器50根据所述第一直方图中体积小于或等于第一值的直方图信息,和所述第二直方图中体积大于所述第一值且小于第二值的直方图信息,计算血小板的数量。再例如,处理器50获取第一直方图中体积小于或等于第一值的直方图信息;处理器50获取所述第二直方图中体积大于所述第一值且小于第二值的直方图信息;处理器50根据所述第二直方图中体积大于所述第一值且小于第二值的直方图信息,进行数据拟合,以获取血小板体积大于或等于所述第二值的直方图信息;处理器50根据所述第一直方图中体积小于或等于第一值的直方图信息,所述第二直方图中体积大于所述第一值且小于第二值的直方图信息,和所述血小板体积大于或等于所述第二值的直方图信息,计算血小板的数量。一些实施例中,处理器50根据所述第二直方图确定所述第一值和/或第二值;具体地,处理器50将所述第二直方图中体积小于第三值的直方图信息去掉,以消除红细胞碎片的影响;处理器50根据去掉体积小于第三值的直方图信息的第二直方图,确定所述第一值和/或第二值。一些实施例中,所述第一值为血小板的体积分布中数量最多的体积值,例如PLT在直方图中的波峰所对应的横坐标的值。一些实施例中,所述第二值为血小板和红细胞的体积临界值,例如PLT和RBC的分界线所对应的横坐标的值。
本发明一些实施例中还公开一种样本分析方法。请参照图13,一些实施例中样本分析方法包括以下步骤:
步骤100:通过试剂处理样本,该试剂中包括用于使得样本中红细胞体积变大的第一试剂,以制备用于检测细胞粒子的第二试样;所述细胞粒子包括血小板和/或红细胞。例如所述第一试剂包括低渗稀释液,通过低渗稀释液处理样本,以制备所述第二试样。
步骤110:通过试剂处理样本,该试剂中不包括所述第一试剂,以制备用于检测细胞粒子的第一试样;其中,用于制备所述第一试样的样本和用于制备所述第二试样的样本来自同一对象。例如通过等渗稀释液处理样本,以制备所述第一试样。
步骤120:检测所述第一试样和第二试样,以分别获取第一检测数据和第二检测数据。
步骤130:根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果。
一些实施例中,步骤130根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果,包括:步骤130获取第一检测数据中体积小于或等于第一值的检测数据;步骤130获取第二检测数据中体积大于所述第一值且小于第二值的检测数据;步骤130根据所述第一检测数据中体积小于或等于第一值的检测数据,和所述第二检测数据中体积大于所述第一值且小于第二值的检测数据,计算血小板的数量。一些实施例中,步骤130根据所述第二检测数据确定所述第一值和/或第二值。一些实施例中,所述第一值为血小板的体积分布中数量最多的体积值。一些实施例中,所述第二值为血小板和红细胞的体积临界值。
一些具体实施例中,步骤130根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果,包括:步骤130根据所述第一检测数据生成细胞粒子的第一直方图;步骤130根据所述第二检测数据生成细胞粒子的第二直方图;步骤130根据所述第一直方图和所述第二直方图,计算所述细胞粒子的检测结果。例如,步骤130获取第一直方图中体积小于或等于第一值的直方图信息;步骤130获取所述第二直方图中体积大于所述第一值且小于第二值的直方图信息;步骤130根据所述第一直方图中体积小于或等于第一值的直方图信息,和所述第二直方图中体积大于所述第一值且小于第二值的直方图信息,计算血小板的数量。再例如,步骤130获取第一直方图中体积小于或等于第一值的直方图信息;步骤130获取所述第二直方图中体积大于所述第一值且小于第二值的直方图信息;步骤130根据所述第二直方图中体积大于所述第一值且小于第二值的直方图信息,进行数据拟合,以获取血小板体积大于或等于所述第二值的直方图信息;步骤130根据所述第一直方图中体积小于或等于第一值的直方图信息,所述第二直方图中体积大于所述第一值且小于第二值的直方图信息,和所述血小板体积大于或等于所述第二值的直方图信息,计算血小板的数量。一些实施例中,步骤130根据所述第二直方图确定所述第一值和/或第二值;具体地,步骤130将所述第二直方图中体积小于第三值的直方图信息去掉,以消除红细胞碎片的影响;步骤130根据去掉体积小于第三值的直方图信息的第二直方图,确定所述第一值和/或第二值。一些实施例中,所述第一值为血小板的体积分布中数量最多的体积值,例如PLT在直方图中的波峰所对应的横坐标的值。一些实施例中,所述第二值为血小板和红细胞的体积临界值,例如PLT和RBC的分界线所对应的横坐标的值。
本发明能够应用于大PLT样本的场合,或者说PLT与RBC大小差异没有十分显著的样本的场合,在这些场合中本发明也能够实现PLT的精确计数。
本文参照了各种示范实施例进行说明。然而,本领域的技术人员将认识到,在不脱离本文范围的情况下,可以对示范性实施例做出改变和修正。例如,各种操作步骤以及用于执行操作步骤的组件,可以根据特定的应用或考虑与系统的操作相关联的任何数量的成本函数以不同的方式实现(例如一个或多个步骤可以被删除、修改或结合到其他步骤中)。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。另外,如本领域技术人员所理解的,本文的原理可以反映在计算机可读存储介质上的计算机程序产品中,该可读存储介质预装有计算机可读程序代码。任何有形的、非暂时性的计算机可读存储介质皆可被使用,包括磁存储设备(硬盘、软盘等)、光学存储设备(CD至ROM、DVD、Blu Ray盘等)、闪存和/或诸如此类。这些计算机程序指令可被加载到通用计算机、专用计算机或其他可编程数据处理设备上以形成机器,使得这些在计算机上或其他可编程数据处理装置上执行的指令可以生成实现指定的功能的装置。这些计算机程序指令也可以存储在计算机可读存储器中,该计算机可读存储器可以指示计算机或其他可编程数据处理设备以特定的方式运行,这样存储在计算机可读存储器中的指令就可以形成一件制造品,包括实现指定功能的实现装置。计算机程序指令也可以加载到计算机或其他可编程数据处理设备上,从而在计算机或其他可编程设备上执行一系列操作步骤以产生一个计算机实现的进程,使得在计算机或其他可编程设备上执行的指令可以提供用于实现指定功能的步骤。
虽然在各种实施例中已经示出了本文的原理,但是许多特别适用于特定环境和操作要求的结构、布置、比例、元件、材料和部件的修改可以在不脱离本披露的原则和范围内使用。以上修改和其他改变或修正将被包含在本文的范围之内。
前述具体说明已参照各种实施例进行了描述。然而,本领域技术人员将认识到,可以在不脱离本披露的范围的情况下进行各种修正和改变。因此,对于本披露的考虑将是说明性的而非限制性的意义上的,并且所有这些修改都将被包含在其范围内。同样,有关于各种实施例的优点、其他优点和问题的解决方案已如上所述。然而,益处、优点、问题的解决方案以及任何能产生这些的要素,或使其变得更明确的解决方案都不应被解释为关键的、必需的或必要的。本文中所用的术语“包括”和其任何其他变体,皆属于非排他性包含,这样包括要素列表的过程、方法、文章或设备不仅包括这些要素,还包括未明确列出的或不属于该过程、方法、系统、文章或设备的其他要素。此外,本文中所使用的术语“耦合”和其任何其他变体都是指物理连接、电连接、磁连接、光连接、通信连接、功能连接和/或任何其他连接。
具有本领域技术的人将认识到,在不脱离本发明的基本原理的情况下,可以对上述实施例的细节进行许多改变。因此,本发明的范围应仅由权利要求确定。

Claims (38)

  1. 一种样本分析装置,其特征在于,其特征在于,包括:
    样本供给部,用于供给样本;
    试剂供给部,用于供给试剂;
    反应部,所述反应部用于接收所述样本供给部提供的样本和所述试剂供给部提供的试剂,以制备试样;
    测定部,用于检测所述试样以得到检测数据;
    处理器,根据所述检测数据计算检测结果;其中:
    所述处理器控制所述样本供给部和试剂供给部分别向所述反应部提供样本和试剂,以制备用于检测细胞粒子的第一试样;所述细胞粒子包括血小板和/或红细胞;
    所述处理器控制所述测定部检测所述第一试样,以得到有关所述细胞粒子体积相关信息的第一检测数据;
    所述处理器控制所述样本供给部和试剂供给部分别向所述反应部提供样本和试剂,该试剂中包括用于使得样本中红细胞体积变大的第一试剂,以制备用于检测所述细胞粒子的第二试样;其中,用于制备所述第一试样的样本和用于制备所述第二试样的样本来自同一对象;
    所述处理器控制所述测定部检测所述第二试样,以得到有关所述细胞粒子体积相关信息的第二检测数据;
    所述处理器根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果。
  2. 如权利要求1所述的样本分析装置,其特征在于,所述处理器根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果,包括:
    所述处理器获取所述第一检测数据中体积小于或等于第一值的检测数据;
    所述处理器获取所述第二检测数据中体积大于所述第一值且小于第二值的检测数据;
    所述处理器根据所述第一检测数据中体积小于或等于第一值的检测数据,和所述第二检测数据中体积大于所述第一值且小于第二值的检测数据,计算血小板的数量。
  3. 如权利要求2所述的样本分析装置,其特征在于,所述处理器根据所述第二检测数据确定所述第一值和/或第二值。
  4. 如权利要求2或3所述的样本分析装置,其特征在于,所述第一值为血小板的体积分布中数量最多的体积值。
  5. 如权利要求2或3所述的样本分析装置,其特征在于,所述第二值为血小板和红细胞的体积临界值。
  6. 如权利要求1所述的样本分析装置,其特征在于,所述处理器根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果,包括:
    所述处理器根据所述第一检测数据生成细胞粒子的第一直方图;
    所述处理器根据所述第二检测数据生成细胞粒子的第二直方图;
    所述处理器根据所述第一直方图和所述第二直方图,计算所述细胞粒子的检测结果。
  7. 如权利要求6所述的样本分析装置,其特征在于,所述处理器根据所述第一直方图和所述第二直方图,计算所述细胞粒子的检测结果,包括:
    所述处理器获取第一直方图中体积小于或等于第一值的直方图信息;
    所述处理器获取所述第二直方图中体积大于所述第一值且小于第二值的直方图信息;
    所述处理器根据所述第一直方图中体积小于或等于第一值的直方图信息,和所述第二直方图中体积大于所述第一值且小于第二值的直方图信息,计算血小板的数量。
  8. 如权利要求6所述的样本分析装置,其特征在于,所述处理器根据所述第一直方图和所述第二直方图,计算所述细胞粒子的检测结果,包括:
    所述处理器获取第一直方图中体积小于或等于第一值的直方图信息;
    所述处理器获取所述第二直方图中体积大于所述第一值且小于第二值的直方图信息;
    所述处理器根据所述第二直方图中体积大于所述第一值且小于第二值的直方图信息,进行数据拟合,以获取血小板体积大于或等于所述第二值的直方图信息;
    所述处理器根据所述第一直方图中体积小于或等于第一值的直方图信息,所述第二直方图中体积大于所述第一值且小于第二值的直方图信息,和所述血小板体积大于或等于所述第二值的直方图信息,计算血小板的数量。
  9. 如权利要求7或8所述的样本分析装置,其特征在于,所述处理器根据所述第二直方图确定所述第一值和/或第二值。
  10. 如权利要求9所述的样本分析装置,其特征在于,所述处理器根据所述第二直方图确定所述第一值和/或第二值,包括:
    所述处理器将所述第二直方图中体积小于第三值的直方图信息去掉,以消除红细胞碎片的影响;
    所述处理器根据去掉体积小于第三值的直方图信息的第二直方图,确定所述第一值和/或第二值。
  11. 如权利要求1所述的样本分析装置,其特征在于,所述第一试剂包括低渗稀释液。
  12. 如权利要求1至11中任一项所述的样本分析装置,其特征在于,所述测定部件包括阻抗法计数部件。
  13. 如权利要求1至11中任一项所述的样本分析装置,其特征在于,所述测定部件包括光学检测部;所述光学检测部包括流动室、光源和光学检测器;所述流动室与所述反应部连通,用于供待测试样的细胞逐个通过,所述光源用于照射通过所述流动室的细胞,所述光学检测器用于获取细胞通过所述流动室的光信号,所述光信号至少包括前向散射光信号。
  14. 一种样本分析装置,其特征在于,包括:
    样本供给部,用于供给样本;
    试剂供给部,用于供给试剂;
    反应部,所述反应部用于接收所述样本供给部提供的样本和所述试剂供给部提供的试剂,以制备试样;
    测定部,用于检测所述试样以得到检测数据;
    处理器,根据所述检测数据计算检测结果;其中:
    所述分析装置具有细胞粒子的正常处理模式和异常处理模式,所述细胞粒子包括血小板和/或红细胞;
    在所述细胞粒子的正常处理模式下:
    所述处理器控制所述样本供给部和试剂供给部分别向所述反应部提供样本和试剂,以制备用于检测细胞粒子的第一试样;所述细胞粒子包括血小板和/或红细胞;
    所述处理器控制所述测定部检测所述第一试样,以得到有关所述细胞粒子体积相关信息的第一检测数据,所述第一检测数据被用于计算所述细胞粒子的检测结果;
    在所述细胞粒子的异常处理模式下:
    所述处理器控制所述样本供给部和试剂供给部分别向所述反应部提供样本和试剂,该试剂中包括用于使得样本中红细胞体积变大的第一试剂,以制备用于检测所述细胞粒子的第二试样;
    所述处理器控制所述测定部检测所述第二试样,以得到有关所述细胞粒子体积相关信息的第二检测数据;
    所述处理器至少根据所述第二检测数据,计算所述细胞粒子的检测结果。
  15. 如权利要求14所述的样本分析装置,其特征在于,所述处理器至少根据所述第二检测数据,计算所述细胞粒子的检测结果,包括:
    所述处理器根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果,其中用于制备所述第一试样的样本和用于制备所述第二试样的样本来自同一对象。
  16. 如权利要求15所述的样本分析装置,其特征在于,所述处理器根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果,包括:
    所述处理器获取所述第一检测数据中体积小于或等于第一值的检测数据;
    所述处理器获取所述第二检测数据中体积大于所述第一值且小于第二值的检测数据;
    所述处理器根据所述第一检测数据中体积小于或等于第一值的检测数据,和所述第二检测数据中体积大于所述第一值且小于第二值的检测数据,计算血小板的数量。
  17. 如权利要求16所述的样本分析装置,其特征在于,所述处理器根据所述第二检测数据确定所述第一值和/或第二值。
  18. 如权利要求16或17所述的样本分析装置,其特征在于,所述第一值为血小板的体积分布中数量最多的体积值;所述第二值为血小板和红细胞的体积临界值。
  19. 如权利要求14所述的样本分析装置,其特征在于,所述第一试剂包括低渗稀释液。
  20. 如权利要求14至19中任一项所述的样本分析装置,其特征在于,在所述细胞粒子的正常处理模式下:
    所述处理器还根据所述第一检测数据判断所述细胞粒子是否异常;
    当判断异常时,则所述处理器生成提示信息,和/或,所述处理器切换成所述细胞粒子的异常处理模式以对所述样本进行重测。
  21. 一种样本分析装置,其特征在于,包括:
    样本供给部,用于供给样本;
    试剂供给部,用于供给试剂;
    反应部,所述反应部用于接收所述样本供给部提供的样本和所述试剂供给部提供的试剂,以制备试样;
    测定部,用于检测所述试样以得到检测数据;
    处理器,根据所述检测数据计算检测结果;其中:
    所述分析装置具有细胞粒子的特殊处理模式,所述细胞粒子包括血小板和/或红细胞;在所述细胞粒子的特殊处理模式下:
    所述处理器控制所述样本供给部和试剂供给部分别向所述反应部提供样本和试剂,该试剂中包括用于使得样本中红细胞体积变大的第一试剂,以制备用于检测所述细胞粒子的第二试样;
    所述处理器控制所述测定部检测所述第二试样,以得到有关所述细胞粒子体积相关信息的第二检测数据;
    所述处理器至少根据所述第二检测数据,计算所述细胞粒子的检测结果。
  22. 如权利要求21所述的样本分析装置,其特征在于,在所述细胞粒子的特殊处理模式下:
    所述处理器控制所述样本供给部和试剂供给部分别向所述反应部提供样本和试剂,以制备用于检测细胞粒子的第一试样;所述细胞粒子包括血小板和/或红细胞;所述处理器控制所述测定部检测所述第一试样,以得到有关所述细胞粒子体积相关信息的第一检测数据;其中,用于制备所述第一试样的样本和用于制备所述第二试样的样本来自同一对象;
    所述处理器至少根据所述第二检测数据,计算所述细胞粒子的检测结果,包括:所述处理器根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果。
  23. 如权利要求22所述的样本分析装置,其特征在于,所述处理器根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果,包括:
    所述处理器获取所述第一检测数据中体积小于或等于第一值的检测数据;
    所述处理器获取所述第二检测数据中体积大于所述第一值且小于第二值的检测数据;
    所述处理器根据所述第一检测数据中体积小于或等于第一值的检测数据,和所述第二检测数据中体积大于所述第一值且小于第二值的检测数据,计算血小板的数量。
  24. 如权利要求23所述的样本分析装置,其特征在于,所述处理器根据所述第二检测数据确定所述第一值和/或第二值。
  25. 如权利要求23或24所述的样本分析装置,其特征在于,所述第一值为血小板的体积分布中数量最多的体积值;所述第二值为血小板和红细胞的体积临界值。
  26. 如权利要求21所述的样本分析装置,其特征在于,所述第一试剂包括低渗稀释液。
  27. 一种动物用分析装置,其特征在于,包括:
    样本供给部,用于供给样本;
    试剂供给部,用于供给试剂;
    反应部,所述反应部用于接收所述样本供给部提供的样本和所述试剂供给部提供的试剂,以制备试样;
    测定部,用于检测所述试样以得到检测数据;
    处理器,根据所述检测数据计算检测结果;其中:
    所述动物用分析装置至少包括第一类动物专用模式,在所述第一类动物专用模式下:
    所述处理器控制所述样本供给部和试剂供给部分别向所述反应部提供样本和试剂,该试剂中包括用于使得样本中红细胞体积变大的第一试剂,以制备用于检测所述细胞粒子的第二试样;
    所述处理器控制所述测定部检测所述第二试样,以得到有关所述细胞粒子体积相关信息的第二检测数据;
    所述处理器至少根据所述第二检测数据,计算所述细胞粒子的检测结果。
  28. 如权利要求27所述的动物用分析装置,其特征在于,在所述第一类动物专用模式下:
    所述处理器控制所述样本供给部和试剂供给部分别向所述反应部提供样本和试剂,以制备用于检测细胞粒子的第一试样;所述细胞粒子包括血小板和/或红细胞;所述处理器控制所述测定部检测所述第一试样,以得到有关所述细胞粒子体积相关信息的第一检测数据;其中,用于制备所述第一试样的样本和用于制备所述第二试样的样本来自同一对象;
    所述处理器至少根据所述第二检测数据,计算所述细胞粒子的检测结果,包括:所述处理器根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果。
  29. 如权利要求28所述的动物用分析装置,其特征在于,所述处理器根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果,包括:
    所述处理器获取所述第一检测数据中体积小于或等于第一值的检测数据;
    所述处理器获取所述第二检测数据中体积大于所述第一值且小于第二值的检测数据;
    所述处理器根据所述第一检测数据中体积小于或等于第一值的检测数据,和所述第二检测数据中体积大于所述第一值且小于第二值的检测数据,计算血小板的数量。
  30. 如权利要求29所述的动物用分析装置,其特征在于,所述处理器根据所述第二检测数据确定所述第一值和/或第二值。
  31. 如权利要求29或30所述的分析装置,其特征在于,所述第一值为血小板的体积分布中数量最多的体积值;所述第二值为血小板和红细胞的体积临界值。
  32. 如权利要求27所述的动物用分析装置,其特征在于,所述第一试剂包括低渗稀释液。
  33. 如权利要求27至32中任一项所述的动物用分析装置,其特征在于,所述第一类动物至少包括猫。
  34. 一种样本分析方法,其特征在于,包括:
    通过试剂处理样本,该试剂中包括用于使得样本中红细胞体积变大的第一试剂,以制备用于检测细胞粒子的第二试样;所述细胞粒子包括血小板和/或红细胞;
    通过试剂处理样本,该试剂中不包括所述第一试剂,以制备用于检测细胞粒子的第一试样;其中,用于制备所述第一试样的样本和用于制备所述第二试样的样本来自同一对象;
    检测所述第一试样和第二试样,以分别获取第一检测数据和第二检测数据;
    根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果。
  35. 如权利要求34所述的样本分析方法,其特征在于,所述根据所述第一检测数据和第二检测数据,计算所述细胞粒子的检测结果,包括:
    获取所述第一检测数据中体积小于或等于第一值的检测数据;
    获取所述第二检测数据中体积大于所述第一值且小于第二值的检测数据;
    根据所述第一检测数据中体积小于或等于第一值的检测数据,和所述第二检测数据中体积大于所述第一值且小于第二值的检测数据,计算血小板的数量。
  36. 如权利要求35所述的样本分析方法,其特征在于,还包括:根据所述第二检测数据确定所述第一值和/或第二值;所述第一值为血小板的体积分布中数量最多的体积值,所述第二值为血小板和红细胞的体积临界值。
  37. 如权利要求34所述的样本分析方法,其特征在于,所述第一试剂包括低渗稀释液。
  38. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有程序,所述程序能够被处理器执行以实现如权利要求34至37中任一项所述的方法。
PCT/CN2021/111001 2021-08-05 2021-08-05 一种样本分析装置、动物用分析装置和样本分析方法 WO2023010447A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/111001 WO2023010447A1 (zh) 2021-08-05 2021-08-05 一种样本分析装置、动物用分析装置和样本分析方法
CN202180006324.4A CN114729871A (zh) 2021-08-05 2021-08-05 一种样本分析装置、动物用分析装置和样本分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/111001 WO2023010447A1 (zh) 2021-08-05 2021-08-05 一种样本分析装置、动物用分析装置和样本分析方法

Publications (1)

Publication Number Publication Date
WO2023010447A1 true WO2023010447A1 (zh) 2023-02-09

Family

ID=82236581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111001 WO2023010447A1 (zh) 2021-08-05 2021-08-05 一种样本分析装置、动物用分析装置和样本分析方法

Country Status (2)

Country Link
CN (1) CN114729871A (zh)
WO (1) WO2023010447A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1182457A1 (en) * 2000-08-17 2002-02-27 Mallinckrodt Baker B.V. Method and reagent for the analysis of blood samples, in particular for veterinary applications
CN101470109A (zh) * 2007-12-25 2009-07-01 深圳迈瑞生物医疗电子股份有限公司 一种提高血液样本白细胞分类结果准确性的方法
CN103472216A (zh) * 2013-08-23 2013-12-25 深圳中科强华科技有限公司 一种血细胞分析芯片、分析仪及分析方法
WO2019206313A1 (zh) * 2018-04-28 2019-10-31 深圳迈瑞生物医疗电子股份有限公司 测定血小板浓度的方法及系统
CN111912978A (zh) * 2019-05-09 2020-11-10 深圳迈瑞生物医疗电子股份有限公司 白细胞分类计数的方法、装置和血液分析仪
CN112557281A (zh) * 2020-11-23 2021-03-26 深圳市科曼医疗设备有限公司 血液细胞分析仪的plt粒子检测方法和装置
CN113008653A (zh) * 2019-12-20 2021-06-22 深圳市帝迈生物技术有限公司 稀释液、血细胞分析仪、血细胞分析仪用试剂以及试剂盒

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1182457A1 (en) * 2000-08-17 2002-02-27 Mallinckrodt Baker B.V. Method and reagent for the analysis of blood samples, in particular for veterinary applications
CN101470109A (zh) * 2007-12-25 2009-07-01 深圳迈瑞生物医疗电子股份有限公司 一种提高血液样本白细胞分类结果准确性的方法
CN103472216A (zh) * 2013-08-23 2013-12-25 深圳中科强华科技有限公司 一种血细胞分析芯片、分析仪及分析方法
WO2019206313A1 (zh) * 2018-04-28 2019-10-31 深圳迈瑞生物医疗电子股份有限公司 测定血小板浓度的方法及系统
CN111912978A (zh) * 2019-05-09 2020-11-10 深圳迈瑞生物医疗电子股份有限公司 白细胞分类计数的方法、装置和血液分析仪
CN113008653A (zh) * 2019-12-20 2021-06-22 深圳市帝迈生物技术有限公司 稀释液、血细胞分析仪、血细胞分析仪用试剂以及试剂盒
CN112557281A (zh) * 2020-11-23 2021-03-26 深圳市科曼医疗设备有限公司 血液细胞分析仪的plt粒子检测方法和装置

Also Published As

Publication number Publication date
CN114729871A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
US9588102B2 (en) Method and apparatus for determining white blood cell counts
JP3707620B2 (ja) 光散乱技術を使用した網赤血球分析方法と装置
JP5950423B2 (ja) 幼若顆粒球(earlygranulatedcell)(EGC)の同定および計数
JP2017058158A (ja) 血液分析装置、血液分析方法及びコンピュータプログラム
EP2265946A1 (en) Method and apparatus for determining the hematocrit of a blood sample utilizing the intrinsic pigmentation of hemoglobin contained within the red blood cells
EP2784479B1 (en) Blood cell analyzer and blood cell analyzing method
CN104422646B (zh) 样本分析方法及样本分析装置
EP2939001B1 (en) Systems and methods for platelet count with clump adjustment
JP2008190878A (ja) 粒子分析装置、粒子分析方法およびコンピュータプログラム
CN104422645A (zh) 样本分析方法及样本分析装置
WO2023056712A1 (zh) 一种动物用血液分析装置和血液分析方法
WO2023010447A1 (zh) 一种样本分析装置、动物用分析装置和样本分析方法
US20100075369A1 (en) Analyzing Reticulocytes
JP4417936B2 (ja) 尿中赤血球の鑑別装置および方法
WO2023123463A1 (zh) 一种样本分析装置和样本分析方法
WO2023028835A1 (zh) 一种样本分析装置和样本分析方法
US20220334099A1 (en) Blood analysis apparatus, blood analysis method, and storage medium
EP4187228A1 (en) System, apparatus, and method for measuring erythrocyte sedimentation rate
WO2023123466A1 (zh) 一种样本分析装置和样本分析方法
WO2023115389A1 (zh) 一种样本分析装置和样本分析方法
WO2023125988A1 (zh) 血液细胞分析仪、方法以及感染标志参数的用途
WO2023125940A1 (zh) 血液细胞分析仪、方法以及感染标志参数的用途
WO2021207894A1 (zh) 细胞分析方法、细胞分析仪及计算机可读存储介质
CN114222907A (zh) 检测和报道中性粒细胞亚群

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE