WO2023125854A1 - 一种胶囊内窥镜及其控制方法 - Google Patents

一种胶囊内窥镜及其控制方法 Download PDF

Info

Publication number
WO2023125854A1
WO2023125854A1 PCT/CN2022/143591 CN2022143591W WO2023125854A1 WO 2023125854 A1 WO2023125854 A1 WO 2023125854A1 CN 2022143591 W CN2022143591 W CN 2022143591W WO 2023125854 A1 WO2023125854 A1 WO 2023125854A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
capsule endoscope
module
circuit processing
heating module
Prior art date
Application number
PCT/CN2022/143591
Other languages
English (en)
French (fr)
Inventor
段晓东
Original Assignee
上海安翰医疗技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海安翰医疗技术有限公司 filed Critical 上海安翰医疗技术有限公司
Publication of WO2023125854A1 publication Critical patent/WO2023125854A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/12Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements

Definitions

  • the invention relates to a micro medical robot, especially a capsule endoscope and a control method thereof.
  • the capsule endoscope Due to its high reliability and high safety, capsule endoscope has become an effective device for the diagnosis of digestive tract diseases, and has been highly recognized by the international medical device field.
  • the capsule endoscope includes a CMOS image sensor, an optical system, a battery, a transmitting circuit, and an antenna.
  • the image of the human gastrointestinal tract is imaged on the surface of the CMOS image sensor through the optical system.
  • the CMOS image sensor converts the optical signal into an electrical signal, modulates and amplifies it through the transmitting circuit, and transmits it through the antenna.
  • the information is received by an external receiving device and then displayed. on the display device.
  • medical personnel can diagnose gastrointestinal diseases of the subject according to the images displayed on the display device.
  • a capsule endoscope comprising a temperature sensing unit for sensing the temperature of a heating module inside the capsule endoscope, the temperature signal sensed by the temperature sensing unit is transmitted to a circuit processing module, and the circuit processing module controls the temperature according to the sensed temperature signal
  • the heating module of the capsule endoscope is switched between normal working mode and temperature control mode.
  • the temperature sensing unit respectively senses the temperatures of the multiple heating modules in real time.
  • the heating module includes an image acquisition module and/or a circuit processing module.
  • the temperature sensing unit senses the temperatures of the image acquisition module and the circuit processing module in real time.
  • the heating module when the capsule is located in the stomach, when the temperature of the heating module is higher than the first threshold, the heating module enters the first temperature control mode, and when the temperature of the heating module is equal to or lower than the second threshold, the heating module switches for normal working mode.
  • the temperature of the first threshold value is lower than the tolerance limit temperature of the heating module, so as to avoid damage caused by overheating of the heating module during high-frequency shooting, video shooting, high-precision positioning and other operations.
  • the first threshold may be 60-70°C. Further preferably, the first threshold may be 60-65°C.
  • the first temperature control mode is preferably a power consumption reduction mode.
  • the power consumption of the heating module is reduced to 6-50% of the normal working mode.
  • the power consumption of the heating module is reduced to 20-40% of the normal working mode.
  • the method for reducing the power consumption of the image acquisition module can be by reducing the shooting frame rate, switching the video shooting mode to the photo shooting mode, etc.
  • the image acquisition module reduces power consumption by reducing the shooting frame rate.
  • the power consumption of the circuit processing module can be reduced by reducing the position detection accuracy, reducing the transmission power, and not performing calculation processing by the storage unit.
  • the circuit processing module reduces power consumption by increasing the position detection time interval, and the storage unit does not perform calculation processing.
  • the power consumption of the image acquisition module and the circuit processing module can also be reduced by reducing the shooting rate.
  • the temperature of the second threshold is lower than the temperature of the first threshold.
  • the second threshold is 9-15°C lower than the first threshold.
  • the second threshold is 10-12°C lower than the first threshold.
  • the heating module if the temperature of the heating module is still higher than the second threshold after entering the first temperature control mode for the first specific time, the heating module enters the third temperature control mode, and the temperature of the heating module is equal to or lower than When the second threshold is reached, the heating module switches to the normal working mode.
  • the first specific time is 30-60s. Preferably, the first specific time is 60s.
  • the third temperature control mode may be a power reduction mode or an off mode.
  • the third temperature control mode is a reduced power consumption mode, and the power consumption of the heating module is reduced to 1-3% of the normal working mode.
  • the third temperature control mode is an off mode.
  • the capsule endoscope When the third temperature control mode is the off mode, when any heating module enters the off mode, the capsule endoscope enters a dormant state at the same time.
  • the capsule endoscope is cooled in a cooling medium.
  • the capsule endoscope is completely immersed in the cooling medium.
  • the cooling medium may be gastric juice.
  • the capsule endoscope is controlled to be completely immersed in the gastric juice through an external magnetic control device.
  • the heating modules are switched to the normal working mode, and the capsule endoscope enters the normal working state.
  • the capsule endoscope returns to the original working state and continues to work according to the working position and attitude information of the capsule endoscope recorded before entering the dormant state.
  • the capsule endoscope in the dormant state is completely immersed in gastric juice for cooling or controlled by an external magnetic control device to completely immerse the endoscope in gastric juice for cooling.
  • the heating module when the capsule is located in the intestinal tract, when the temperature of the heating module is higher than the first threshold, the heating module enters the second temperature control mode, and when the temperature of the heating module is equal to or lower than the second threshold, the heating module switches for normal working mode.
  • the shooting frame rate and position detection accuracy requirements set in the normal working mode of the capsule are lower than those of the stomach detection.
  • the second temperature control mode is preferably a power consumption reduction mode.
  • the power consumption of the heating module is reduced to 50-80% of the normal working mode.
  • the heating module enters the fourth temperature control mode, and when the temperature of the heating module is equal to or lower than the second threshold, it generates heat The module switches to normal working mode.
  • the second specific time is 1-10 minutes. Preferably, the second specific time is 3-7 minutes.
  • the fourth temperature control mode is preferably a power consumption reduction mode.
  • the power consumption of the heating module is reduced to 3-6% of the normal working mode.
  • the capsule endoscope includes a battery module, an image acquisition module and a circuit processing module, and the battery module is located between the image acquisition module and the circuit processing module.
  • the battery module of the present invention is designed in close contact with the image acquisition module and the circuit processing module.
  • the heat generated by the image acquisition module and the circuit processing module can be transferred to the battery module to increase the working temperature of the battery, thereby improving the performance of the battery.
  • the outer peripheral surface of the battery module of the present invention is wrapped with a coating film.
  • the coating film is wound in multiple layers on the outer peripheral surface of the battery module.
  • the wrapped wrap film needs to reach a certain thickness.
  • the wrapping film after winding is in contact with the inner wall of the capsule shell.
  • the coating film of the present invention can be polyethylene, polyvinyl chloride or polyvinylidene chloride film.
  • the film thickness can be 5-50 ⁇ m.
  • wrapping the coating film on the outer peripheral surface of the battery module can reduce the heat loss of the battery, which is beneficial to retaining the heat of the battery and improving the performance of the battery.
  • the outer peripheral surface of the battery module may be wrapped with an infrared reflective film.
  • polyethylene, polyvinyl chloride or polyvinylidene chloride coating film and infrared reflective film are wrapped around the outer peripheral surface of the battery module.
  • a polyethylene, polyvinyl chloride or polyvinylidene chloride wrap film is positioned between the battery module and the infrared reflective film.
  • the infrared reflective film is in contact with the inner wall of the capsule shell.
  • the infrared reflective film is a polyester film.
  • the winding infrared reflective film of the present invention is beneficial to further reducing the heat loss of the battery.
  • the invention also discloses a control method for the capsule endoscope.
  • the capsule endoscope senses the temperature of the heating module in real time, and controls the heating module to switch between the normal working mode and the temperature control mode according to the sensed temperature signal.
  • control method of the above-mentioned capsule endoscope specifically includes the following steps:
  • the image acquisition module and/or circuit processing module When the temperature of the image acquisition module and/or circuit processing module is higher than the first threshold, the image acquisition module and/or circuit processing module enters the first temperature control mode to reduce power consumption, when the image acquisition module and/or circuit When the temperature of the processing module is equal to or lower than the second threshold, the image acquisition module and/or the circuit processing module switch to the normal working mode; if entering the first temperature control mode for the first specific time, the image acquisition module and/or the circuit processing If the temperature of the module is still higher than the second threshold, the image acquisition module and/or the circuit processing module enters the third temperature control mode to reduce power consumption, and the temperature of the image acquisition module and/or the circuit processing module is equal to or lower than the second threshold , the image acquisition module and/or the circuit processing module switch to the normal working mode;
  • the capsule endoscope When the capsule endoscope enters the intestinal tract, the capsule endoscope is controlled to work in the normal working mode of the intestinal tract, and the circuit processing module senses the temperature of the image acquisition module and the circuit processing module in real time;
  • the image acquisition module and/or circuit processing module When the temperature of the image acquisition module and/or circuit processing module is higher than the first threshold, the image acquisition module and/or circuit processing module enters the second temperature control mode to reduce power consumption, and the image acquisition module and/or circuit processing module When the temperature of the module is equal to or lower than the second threshold, the image acquisition module and/or the circuit processing module switch to the normal working mode; if entering the second temperature control mode for a second specific time, the image acquisition module and/or the circuit processing module The temperature of the image acquisition module and/or the circuit processing module is still higher than the second threshold, then the image acquisition module and/or the circuit processing module enters the fourth temperature control mode to reduce power consumption, when the temperature of the image acquisition module and/or the circuit processing module is equal to or lower than the second threshold , the image acquisition module and/or the circuit processing module switch to a normal working mode.
  • control method of the above-mentioned capsule endoscope may also specifically include the following steps:
  • the image acquisition module and/or circuit processing module When the temperature of the image acquisition module and/or circuit processing module is higher than the first threshold, the image acquisition module and/or circuit processing module enters the first temperature control mode to reduce power consumption, when the image acquisition module and/or circuit When the temperature of the processing module is equal to or lower than the second threshold, the image acquisition module and/or the circuit processing module switch to the normal working mode; if entering the first temperature control mode for the first specific time, the image acquisition module or the circuit processing module If the temperature is still higher than the second threshold, the working position and attitude information of the capsule endoscope is recorded, and then the capsule endoscope enters a dormant state. The dormant capsule endoscope is completely immersed in gastric juice to cool or is cooled by external magnetic control.
  • the equipment controls the capsule endoscope to be completely immersed in the gastric juice for cooling.
  • the capsule endoscope is started, and the image acquisition module and the circuit processing module are switched to normal.
  • Working mode the capsule endoscope enters the normal working state, and returns to the original working state to continue working according to the working position and attitude information of the capsule endoscope recorded before entering the dormant state;
  • the capsule endoscope When the capsule endoscope enters the intestinal tract, the capsule endoscope is controlled to work in the normal working mode of the intestinal tract, and the circuit processing module senses the temperature of the image acquisition module and the circuit processing module in real time;
  • the image acquisition module and/or circuit processing module When the temperature of the image acquisition module and/or circuit processing module is higher than the first threshold, the image acquisition module and/or circuit processing module enters the second temperature control mode to reduce power consumption, and the image acquisition module and/or circuit processing module When the temperature of the module is equal to or lower than the second threshold, the image acquisition module and/or the circuit processing module switch to the normal working mode; if entering the second temperature control mode for a second specific time, the image acquisition module and/or the circuit processing module The temperature of the image acquisition module and/or the circuit processing module is still higher than the second threshold, then the image acquisition module and/or the circuit processing module enters the fourth temperature control mode to reduce power consumption, when the temperature of the image acquisition module and/or the circuit processing module is equal to or lower than the second threshold , the image acquisition module and/or the circuit processing module switch to a normal working mode.
  • the invention adopts an artificial intelligence visual recognition method to judge whether the capsule endoscope enters the intestinal tract.
  • the artificial intelligence visual recognition method uses artificial intelligence and big data technology to train a large number of gastrointestinal images, establish a gastrointestinal image classification model, and use this model to identify whether the capsule endoscope enters the intestinal tract.
  • the capsule endoscope and its control method of the present invention are especially suitable for high power consumption operation, which belongs to the standby control mode during high power consumption operation, and can avoid local overheating of the heating element when the capsule endoscope works under high power consumption state. Damage to the corresponding electronic components can effectively prolong the battery life of the capsule endoscope while improving the inspection effect, and ensure the effective operation of the capsule endoscope. At the same time, the outer peripheral surface of the battery module is wrapped with a coating film to further improve the performance of the battery.
  • Fig. 1 is a schematic diagram of the structure of the capsule endoscope of the present invention.
  • the capsule endoscope includes a housing (1), an image acquisition module (2), a circuit processing module (3), a battery module (4), a permanent magnet (7), and an information sending module (not shown) out) and other components.
  • the housing (1) comprises two ends, a first end (102) and a second end (103).
  • the image acquisition module (2) includes an illumination module, a camera module and a PCB (Printed Circuit Board, printed circuit board).
  • the circuit processing module (3) includes a power IC (Power management IC, PMIC), a processing module, a detection module, a storage module, and the like.
  • the image acquisition module (2) is located at the first end (102) of the casing.
  • One side of the battery module (4) is in close contact with the image acquisition module (2), and the other side is in close contact with the circuit processing module (3).
  • the outer peripheral surface of the battery module (4) is wrapped with a coating film (5), and the coating film is wound in multiple layers to contact the inner wall of the casing (1).
  • the image acquisition module (2) and the circuit processing module (3) are respectively provided with a temperature sensing unit (6), and the temperature sensed by the temperature sensing unit (6) is transmitted to the circuit processing module (3).
  • Gastric examination was performed using a capsule endoscope as shown in Figure 1. Control the capsule endoscope to work in the normal working mode of the stomach.
  • the stomach is inspected at a high frame rate, and the shooting frame rate is 16 frames per second.
  • the circuit processing module senses the temperature of the image acquisition module and the circuit processing module in real time. When the temperature of the image acquisition module and/or the circuit processing module is higher than the first threshold of 60°C, the image acquisition module and/or the circuit processing module enters the first temperature control mode to reduce power consumption.
  • the shooting frame rate is adjusted to 8 frames per second reduces the power consumption of the image acquisition module, the storage unit of the control circuit processing module does not perform calculation processing, and improves the position detection time interval, so that the power consumption is reduced to 50% of the normal working mode.
  • the temperature of the image acquisition module and/or the circuit processing module is equal to or lower than the second threshold of 50°C, the image acquisition module and/or the circuit processing module switches to the normal working mode; if entering the first temperature control mode for the first specific time After 30s, if the temperature of the image acquisition module and/or the circuit processing module is still higher than the second threshold of 50°C, the image acquisition module and/or the circuit processing module will enter the third temperature control mode to reduce power consumption.
  • the shooting The frame rate is adjusted to 0.32 frames per second to reduce the power consumption of the image acquisition module.
  • the circuit processing module further increases the position detection time interval and reduces the position detection accuracy.
  • the storage unit does not perform calculation processing and reduces the transmission power to reduce the power consumption to the normal working mode. 2%.
  • Gastric examination was performed using a capsule endoscope as shown in Figure 1. Control the capsule endoscope to work in the normal working mode of the stomach.
  • the stomach is inspected at a high frame rate, and the shooting frame rate is 25 frames per second.
  • the circuit processing module senses the temperature of the image acquisition module and the circuit processing module in real time. When the temperature of the image acquisition module and/or the circuit processing module is higher than the first threshold of 70°C, the image acquisition module and/or the circuit processing module enters the first temperature control mode to reduce power consumption.
  • the shooting frame rate is adjusted to 10 frames per second reduces the power consumption of the image acquisition module, the storage unit of the control circuit processing module does not perform calculation processing, and increases the position detection time interval, so that the power consumption is reduced to 40% of the normal working mode.
  • the image acquisition module and/or the circuit processing module switches to the normal working mode; if entering the first temperature control mode for the first specific time After 60s, if the temperature of the image acquisition module or the circuit processing module is still higher than the second threshold of 55°C, the working position and attitude information of the capsule endoscope will be recorded through the detection module, and then the capsule endoscope will enter a dormant state, and the external The magnetic control device controls the capsule endoscope to move from the gastric juice to completely immerse in the gastric juice for cooling.
  • the capsule endoscope When the temperature of the image acquisition module and the circuit processing module are equal to or lower than the second threshold of 55°C, the capsule endoscope is started and the image is captured.
  • the acquisition module and the circuit processing module switch to the normal working mode, the capsule endoscope enters the normal working state, and returns to the original working state to continue working according to the working position and attitude information of the capsule endoscope recorded before entering the dormant state.
  • the capsule endoscope When the artificial intelligence visual recognition method is used to judge that the capsule endoscope enters the intestinal tract.
  • the capsule endoscope is controlled to work in the normal intestinal working mode.
  • the intestinal shooting frame rate is 5 frames per second.
  • the circuit processing module perceives the temperature of the image acquisition module and the circuit processing module in real time; when the temperature of the image acquisition module and/or the circuit processing module is higher than the first threshold of 60°C, the image acquisition module and/or the circuit processing module enters the mode of reducing power consumption
  • the second temperature control mode in this mode, the shooting frame rate is adjusted to 4 frames per second to reduce the power consumption of the image acquisition module, increase the position detection time interval and reduce the power consumption of the circuit processing module, so that the power consumption is reduced to 80% of the normal working mode %.
  • the image acquisition module and/or circuit processing module switches to the normal working mode; if entering the second temperature control mode for a second specific time of 10 minutes Afterwards, if the temperature of the image acquisition module and/or the circuit processing module is still higher than the second threshold of 45°C, the image acquisition module and/or the circuit processing module will enter the fourth temperature control mode that reduces power consumption.
  • the rate is adjusted to 0.3 frames per second to reduce the power consumption of the image acquisition module.
  • the circuit processing module further increases the position detection time interval and reduces the position detection accuracy. 6%.
  • the image acquisition module and/or the circuit processing module switches to a normal working mode.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

本发明提供了一种胶囊内窥镜及其控制方法。胶囊内窥镜包括温度感知单元,温度感知单元用于感知胶囊内窥镜内部发热模块的温度,温度感知单元感知的温度信号传输至电路处理模块,电路处理模块根据感知的温度信号控制胶囊内窥镜的发热模块在正常工作模式和控温模式之间切换。本发明的胶囊内窥镜及其控制方法可以有效避免胶囊内窥镜高功耗操作时的局部过热。

Description

一种胶囊内窥镜及其控制方法 技术领域
本发明涉及一种微型医疗机器人,尤其是胶囊内窥镜及其控制方法。
背景技术
胶囊内窥镜由于其高可靠性、高安全性,目前已成为消化道疾病诊断的有效设备,受到了国际医疗器械领域的高度认可。胶囊内窥镜包括CMOS图像传感器、光学系统、电池、发射电路及天线等。人体胃肠道的图像通过光学系统成像于CMOS图像传感器表面,由CMOS图像传感器将光信号转换为电信号,经发射电路调制、放大,通过天线发射出去,这些信息被外部接收装置接收,然后显示在显示设备上。在无痛苦、无创伤的人体胃肠道蠕动状态下,医护人员可根据显示在显示设备上的图像对被检者进行胃肠道疾病的诊断。
在胶囊内窥镜进行检查的过程中,对高频率拍摄、视频拍摄、高精度定位等功能的需求越来越多。然而,高频率拍摄、视频拍摄、高精度定位等功能不仅耗电量大,也会使得相应电子元器件发热量较高,较高的发热量一旦积累将可能导致相应电子元器件性能下降甚至损毁。
因此,需要一种可以避免局部过热的胶囊内窥镜及其控制方法。
发明内容
为了解决现有技术中的相关问题,本发明提供的方案如下:
一种胶囊内窥镜,包括温度感知单元,温度感知单元用于感知胶囊内窥镜内部发热模块的温度,温度感知单元感知的温度信号传输至电路处理模块,电路处理模块根据感知的温度信号控制胶囊内窥镜的发热模块在正常工作模式和控温模式之间切换。
优选地,发热模块包括多个,温度感知单元对多个发热模块的温度均分别进行实时感知。
优选地,发热模块包括图像采集模块和/或电路处理模块。
优选地,温度感知单元对图像采集模块和电路处理模块的温度均进 行实时感知。
根据本发明的技术方案,胶囊位于胃部时,当发热模块的温度高于第一阈值时,发热模块进入第一控温模式,发热模块的温度等于或低于第二阈值时,发热模块切换为正常工作模式。
其中,第一阈值的温度低于发热模块的耐受极限温度,避免在高频率拍摄、视频拍摄、高精度定位等操作时发热模块过热导致损毁。
优选地,第一阈值可以为60-70℃。进一步优选地,第一阈值可以为60-65℃。
其中,第一控温模式优选为降低功耗模式。优选地,第一控温模式下,发热模块的功耗降为正常工作模式的6-50%。进一步优选地,第一控温模式下,发热模块的功耗降为正常工作模式的20-40%。
发热模块为图像采集模块时,图像采集模块降低功耗的方法可以通过降低拍摄帧率、切换视频拍摄模式至照片拍摄模式等方式。优选地,图像采集模块通过降低拍摄帧率降低功耗。
发热模块为电路处理模块时,电路处理模块降低功耗的方法可以通过降低位置检测精度、降低发射功率、存储单元不进行运算处理等方式。优选地,电路处理模块通过提高位置检测时间间隔、存储单元不进行运算处理降低功耗。可选地,也可以通过降低拍摄速率降低图像采集模块和电路处理模块的功耗。
本发明中,第二阈值的温度低于第一阈值的温度。优选地,第二阈值低于第一阈值9-15℃。进一步优选地,第二阈值低于第一阈值10-12℃。第一阈值和第二阈值设置的温度值可以避免局部过热的情形出现,也可以避免工作模式频繁切换,有利于胶囊内窥镜的稳定可靠工作。
根据本发明的技术方案,如果进入第一控温模式持续第一特定时间后,发热模块的温度仍高于第二阈值,则使发热模块进入第三控温模式,发热模块的温度等于或低于第二阈值时,发热模块切换为正常工作模式。
所述第一特定时间为30-60s。优选地,第一特定时间为60s。
本发明中,第三控温模式可以为降低功耗模式或者关闭模式。
可选地,第三控温模式为降低功耗模式,发热模块的功耗降为正常工作模式的1-3%。
可选地,第三控温模式为关闭模式。
第三温控模式为关闭模式时,任一发热模块进入关闭模式的同时均使胶囊内窥镜进入休眠状态。
优选地,进入休眠状态后,胶囊内窥镜位于冷却介质中冷却。胶囊内窥镜完全浸入冷却介质中。
优选地,进入休眠状态之前,记录胶囊内窥镜的工作位置和姿态信息,然后再进入休眠状态。
可选地,冷却介质可以为胃液。可选地,如果胶囊内窥镜未完全浸于胃液中,通过外部磁控设备控制胶囊内窥镜完全浸入胃液。
可选地,进入休眠状态后,当所有发热模块的温度均等于或低于第二阈值时,再将发热模块切换为正常工作模式,胶囊内窥镜进入正常工作状态。
优选地,胶囊内窥镜根据进入休眠状态之前记录的胶囊内窥镜的工作位置和姿态信息返回原工作状态继续工作。
优选地,如果进入第一控温模式持续第一特定时间后,任一发热模块的温度仍高于第二阈值,则记录胶囊内窥镜的工作位置和姿态信息,然后使胶囊内窥镜进入休眠状态,进入休眠状态的胶囊内窥镜完全浸于胃液中冷却或者通过外部磁控设备控制胶囊内窥镜完全浸入胃液中进行冷却。当所有发热模块的温度均等于或低于第二阈值时,启动胶囊内窥镜,将发热模块切换为正常工作模式,胶囊内窥镜进入正常工作状态,并根据进入休眠状态之前记录的胶囊内窥镜的工作位置和姿态信息返回原工作状态继续工作。
根据本发明的技术方案,胶囊位于肠道时,当发热模块的温度高于第一阈值时,发热模块进入第二控温模式,发热模块的温度等于或低于第二阈值时,发热模块切换为正常工作模式。
胶囊位于肠道时,胶囊正常工作模式下设置的拍摄帧率、位置检测精度要求等均低于胃部检测。优选地,胶囊位于肠道时,第二控温模式优选为降低功耗模式。优选地,第二控温模式下,发热模块的功耗降为正常工作模式的50-80%。
如果进入第二控温模式持续第二特定时间后,发热模块的温度仍高 于第二阈值,则使发热模块进入第四控温模式,发热模块的温度等于或低于第二阈值时,发热模块切换为正常工作模式。
所述第二特定时间为1-10min。优选地,第二特定时间为3-7min。
本发明中,第四控温模式优选为降低功耗模式。优选地,第四控温模式下,发热模块的功耗降为正常工作模式的3-6%。
根据本发明的技术方案,胶囊内窥镜包括电池模块、图像采集模块和电路处理模块,电池模块位于图像采集模块和电路处理模块之间。
优选地,本发明的电池模块与图像采集模块和电路处理模块紧贴设计。该设计方式下,图像采集模块和电路处理模块产生的热量可以传递至电池模块,提高电池的工作温度,进而提高电池的性能。
可选地,本发明的电池模块外周面缠绕包覆膜。
优选地,包覆膜在电池模块外周面缠绕多层。
优选地,缠绕的包覆膜需达到一定的厚度。
优选地,缠绕后的包覆膜与胶囊壳体内壁相接触。
本发明的包覆膜可以为聚乙烯、聚氯乙烯或聚偏二氯乙烯薄膜。薄膜厚度可以为5-50μm。
本发明在电池模块外周面缠绕包覆膜可以减少电池热量的散失,有利于保留电池热量,提高电池性能。
可选地,电池模块外周面可以缠绕红外线反射薄膜。
优选地,电池模块外周面缠绕聚乙烯、聚氯乙烯或聚偏二氯乙烯包覆膜和红外线反射薄膜。聚乙烯、聚氯乙烯或聚偏二氯乙烯包覆膜位于电池模块与红外线反射薄膜之间。红外线反射薄膜与胶囊壳体内壁相接触。
优选地,红外线反射薄膜为聚酯薄膜。
本发明缠绕红外线反射薄膜有利于进一步减少电池热量的散失。
本发明还公开了上述胶囊内窥镜的控制方法,胶囊内窥镜对发热模块的温度进行实时感知,并根据感知的温度信号控制发热模块在正常工作模式和控温模式之间切换。
优选地,上述胶囊内窥镜的控制方法,具体包括以下步骤:
(1)控制胶囊内窥镜在胃部正常工作模式下工作,电路处理模块实时感知图像采集模块和电路处理模块的温度;
(2)当图像采集模块和/或电路处理模块的温度高于第一阈值时,图像采集模块和/或电路处理模块进入降低功耗的第一控温模式,当图像采集模块和/或电路处理模块的温度等于或低于第二阈值时,图像采集模块和/或电路处理模块切换为正常工作模式;如果进入第一控温模式持续第一特定时间后,图像采集模块和/或电路处理模块的温度仍高于第二阈值,则使图像采集模块和/或电路处理模块进入降低功耗的第三控温模式,图像采集模块和/或电路处理模块的温度等于或低于第二阈值时,图像采集模块和/或电路处理模块切换为正常工作模式;
(3)当胶囊内窥镜进入肠道后,控制胶囊内窥镜在肠道正常工作模式下工作,电路处理模块实时感知图像采集模块和电路处理模块的温度;
(4)当图像采集模块和/或电路处理模块的温度高于第一阈值时,图像采集模块和/或电路处理模块进入降低功耗的第二控温模式,图像采集模块和/或电路处理模块的温度等于或低于第二阈值时,图像采集模块和/或电路处理模块切换为正常工作模式;如果进入第二控温模式持续第二特定时间后,图像采集模块和/或电路处理模块的温度仍高于第二阈值,则使图像采集模块和/或电路处理模块进入降低功耗的第四控温模式,图像采集模块和/或电路处理模块的温度等于或低于第二阈值时,图像采集模块和/或电路处理模块切换为正常工作模式。
优选地,上述胶囊内窥镜的控制方法,还可以具体包括以下步骤:
(1)控制胶囊内窥镜在胃部正常工作模式下工作,电路处理模块实时感知图像采集模块和电路处理模块的温度;
(2)当图像采集模块和/或电路处理模块的温度高于第一阈值时,图像采集模块和/或电路处理模块进入降低功耗的第一控温模式,当图像采集模块和/或电路处理模块的温度等于或低于第二阈值时,图像采集模块和/或电路处理模块切换为正常工作模式;如果进入第一控温模式持续第一特定时间后,图像采集模块或电路处理模块的温度仍高于第二阈值,则记录胶囊内窥镜的工作位置和姿态信息,然后使胶囊内窥镜进入休眠状态,进入休眠状态的胶囊内窥镜完全浸于胃液中冷却或者通过外部磁控设备控制胶囊内窥镜完全浸入胃液中进行冷却,当图像采集模块和电路处理模块的温度均等于或低于第二阈值时,启动胶囊内窥镜,将图像采集模块 和电路处理模块切换为正常工作模式,胶囊内窥镜进入正常工作状态,并根据进入休眠状态之前记录的胶囊内窥镜的工作位置和姿态信息返回原工作状态继续工作;
(3)当胶囊内窥镜进入肠道后,控制胶囊内窥镜在肠道正常工作模式下工作,电路处理模块实时感知图像采集模块和电路处理模块的温度;
(4)当图像采集模块和/或电路处理模块的温度高于第一阈值时,图像采集模块和/或电路处理模块进入降低功耗的第二控温模式,图像采集模块和/或电路处理模块的温度等于或低于第二阈值时,图像采集模块和/或电路处理模块切换为正常工作模式;如果进入第二控温模式持续第二特定时间后,图像采集模块和/或电路处理模块的温度仍高于第二阈值,则使图像采集模块和/或电路处理模块进入降低功耗的第四控温模式,图像采集模块和/或电路处理模块的温度等于或低于第二阈值时,图像采集模块和/或电路处理模块切换为正常工作模式。
本发明采用人工智能视觉识别方法判断胶囊内窥镜是否进入肠道。人工智能视觉识别方法通过人工智能和大数据技术,对海量的胃肠图像进行训练,建立胃肠图像分类模型,并通过该模型识别胶囊内窥镜是否进入肠道。
本发明的胶囊内窥镜及其控制方法,尤其适用于高功耗操作,属于高功耗操作时的备用控制方式,可以避免胶囊内窥镜高功耗状态下工作时发热元件出现局部过热使得相应电子元器件损毁,能够在提高检查效果的同时有效延长胶囊内窥镜的续航时间,保障胶囊内窥镜有效工作。同时,电池模块外周面缠绕包覆膜进一步提高了电池性能。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是本发明胶囊内窥镜的一种结构示意图。
具体实施方式
为了可以更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
如图1所示,胶囊内窥镜包括壳体(1)、图像采集模块(2)、电路处理模块(3)、电池模块(4)、永磁体(7),以及信息发送模块(未示出)等部件。壳体(1)包括两个端部,第一端部(102)、第二端部(103)。图像采集模块(2)包括照明模块、摄像模块和PCB板(Printed Circuit Board,印制电路板)。电路处理模块(3)包括电源IC(Power management IC,PMIC)、处理模块、检测模块、存储模块等。图像采集模块(2)位于壳体第一端部(102)。电池模块(4)一侧紧贴图像采集模块(2),另一侧紧贴电路处理模块(3)。电池模块(4)外周面缠绕包覆膜(5),包覆膜多层缠绕至接触壳体(1)内壁。图像采集模块(2)和电路处理模块(3)上分别设置温度感知单元(6),温度感知单元(6)感知的温度传输至电路处理模块(3)。
实施例一:
采用如图1的胶囊内窥镜,进行胃部检查。控制胶囊内窥镜在胃部正常工作模式下工作。此实施例中,胃部为高帧率检查,拍摄帧率为16帧/秒。电路处理模块实时感知图像采集模块和电路处理模块的温度。当图像采集模块和/或电路处理模块的温度高于第一阈值60℃时,图像采集模块和/或电路处理模块进入降低功耗的第一控温模式,该模式下,拍摄帧率调整为8帧/秒降低图像采集模块的功耗,控制电路处理模块的存储单元不进行运算处理,提高位置检测时间间隔,使得功耗降至正常工作模式的50%。当图像采集模块和/或电路处理模块的温度等于或低于第二阈值50℃时,图像采集模块和/或电路处理模块切换为正常工作模式;如果进入第一控温模式持续第一特定时间30s后,图像采集模块和/或电路处理模块的温度仍高于第二阈值50℃,则使图像采集模块和/或电路处理模块进入降低功耗的第三控温模式,该模式下,拍摄帧率调整为0.32帧/ 秒降低图像采集模块的功耗,电路处理模块进一步提高位置检测时间间隔,降低位置检测精度,存储单元不进行运算处理,降低发射功率,使得功耗降至正常工作模式的2%。当图像采集模块和/或电路处理模块的温度等于或低于第二阈值50℃时,图像采集模块和/或电路处理模块切换为正常工作模式。
实施例二:
采用如图1的胶囊内窥镜,进行胃部检查。控制胶囊内窥镜在胃部正常工作模式下工作。此实施例中,胃部为高帧率检查,拍摄帧率为25帧/秒。电路处理模块实时感知图像采集模块和电路处理模块的温度。当图像采集模块和/或电路处理模块的温度高于第一阈值70℃时,图像采集模块和/或电路处理模块进入降低功耗的第一控温模式,该模式下,拍摄帧率调整为10帧/秒降低图像采集模块的功耗,控制电路处理模块的存储单元不进行运算处理,提高位置检测时间间隔,使得功耗降至正常工作模式的40%。当图像采集模块和/或电路处理模块的温度等于或低于第二阈值55℃时,图像采集模块和/或电路处理模块切换为正常工作模式;如果进入第一控温模式持续第一特定时间60s后,图像采集模块或电路处理模块的温度仍高于第二阈值55℃,则通过检测模块记录胶囊内窥镜的工作位置和姿态信息,然后使胶囊内窥镜进入休眠状态,并通过外部磁控设备控制胶囊内窥镜由胃液外移动至完全浸入胃液中进行冷却,当图像采集模块和电路处理模块的温度均等于或低于第二阈值55℃时,启动胶囊内窥镜,将图像采集模块和电路处理模块切换为正常工作模式,胶囊内窥镜进入正常工作状态,并根据进入休眠状态之前记录的胶囊内窥镜的工作位置和姿态信息返回原工作状态继续工作。
实施例三:
当通过人工智能视觉识别方法判断胶囊内窥镜进入肠道后。控制胶囊内窥镜在肠道正常工作模式下工作,此实施例中,肠道拍摄帧率为5帧/秒。电路处理模块实时感知图像采集模块和电路处理模块的温度;当图像采集模块和/或电路处理模块的温度高于第一阈值60℃时,图像采集模块和/或电路处理模块进入降低功耗的第二控温模式,该模式下,拍摄帧率调整为4帧/秒降低图像采集模块的功耗,提高位置检测时间间隔降 低电路处理模块的功耗,使得功耗降至正常工作模式的80%。图像采集模块和/或电路处理模块的温度等于或低于第二阈值45℃时,图像采集模块和/或电路处理模块切换为正常工作模式;如果进入第二控温模式持续第二特定时间10min后,图像采集模块和/或电路处理模块的温度仍高于第二阈值45℃,则使图像采集模块和/或电路处理模块进入降低功耗的第四控温模式,该模式下,拍摄帧率调整为0.3帧/秒降低图像采集模块的功耗,电路处理模块进一步提高位置检测时间间隔,降低位置检测精度,存储单元不进行运算处理,降低发射功率,使得功耗降至正常工作模式的6%。图像采集模块和/或电路处理模块的温度等于或低于第二阈值时45℃,图像采集模块和/或电路处理模块切换为正常工作模式。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种胶囊内窥镜,其特征在于:包括温度感知单元,温度感知单元用于感知胶囊内窥镜内部发热模块的温度,温度感知单元感知的温度信号传输至电路处理模块,电路处理模块根据感知的温度信号控制胶囊内窥镜的发热模块在正常工作模式和控温模式之间切换。
  2. 根据权利要求1所述的胶囊内窥镜,其特征在于:发热模块包括图像采集模块和/或电路处理模块。
  3. 根据权利要求1或2所述的胶囊内窥镜,其特征在于:胶囊位于胃部时,当发热模块的温度高于第一阈值时,发热模块进入第一控温模式,发热模块的温度等于或低于第二阈值时,发热模块切换为正常工作模式。
  4. 根据权利要求3所述的胶囊内窥镜,其特征在于:如果进入第一控温模式持续第一特定时间后,发热模块的温度仍高于第二阈值,则使发热模块进入第三控温模式,发热模块的温度等于或低于第二阈值时,发热模块切换为正常工作模式。
  5. 根据权利要求4所述的胶囊内窥镜,其特征在于:所述第一特定时间为30-60s。
  6. 根据权利要求1或2所述的胶囊内窥镜,其特征在于:胶囊位于肠道时,当发热模块的温度高于第一阈值时,发热模块进入第二控温模式,发热模块的温度等于或低于第二阈值时,发热模块切换为正常工作模式。
  7. 根据权利要求6所述的胶囊内窥镜,其特征在于:如果进入第二控温模式持续第二特定时间后,发热模块的温度仍高于第二阈值,则使发热模块进入第四控温模式,发热模块的温度等于或低于第二阈值时,发热模块切换为正常工作模式。
  8. 根据权利要求7所述的胶囊内窥镜,其特征在于:所述第二特定时间为1-10min。
  9. 根据权利要求2所述的胶囊内窥镜,其特征在于:胶囊内窥镜包括电池模块、图像采集模块和电路处理模块,电池模块位于图像采集模 块和电路处理模块之间。
  10. 一种胶囊内窥镜的控制方法,其特征在于:胶囊内窥镜对发热模块的温度进行实时感知,并根据感知的温度信号控制发热模块在正常工作模式和控温模式之间切换。
PCT/CN2022/143591 2021-12-31 2022-12-29 一种胶囊内窥镜及其控制方法 WO2023125854A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111673349.8 2021-12-31
CN202111673349.8A CN114287869A (zh) 2021-12-31 2021-12-31 一种胶囊内窥镜及其控制方法

Publications (1)

Publication Number Publication Date
WO2023125854A1 true WO2023125854A1 (zh) 2023-07-06

Family

ID=80975441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143591 WO2023125854A1 (zh) 2021-12-31 2022-12-29 一种胶囊内窥镜及其控制方法

Country Status (2)

Country Link
CN (1) CN114287869A (zh)
WO (1) WO2023125854A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114287869A (zh) * 2021-12-31 2022-04-08 上海安翰医疗技术有限公司 一种胶囊内窥镜及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040193010A1 (en) * 2003-03-28 2004-09-30 Olympus Corporation Capsule endoscope
JP2005052252A (ja) * 2003-07-31 2005-03-03 Olympus Corp 無線型被検体情報取得システム
CN1709196A (zh) * 2005-02-08 2005-12-21 重庆金山科技(集团)有限公司 双工多通道智能胶囊消化道内窥镜的控制方法
US20080058602A1 (en) * 2006-08-30 2008-03-06 Karl Storz Endovision Endoscopic device with temperature based light source control
JP2013000466A (ja) * 2011-06-20 2013-01-07 Fujifilm Corp 電子内視鏡装置及び内視鏡画像の生成方法、並びに電子内視鏡システム
CN114287869A (zh) * 2021-12-31 2022-04-08 上海安翰医疗技术有限公司 一种胶囊内窥镜及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040193010A1 (en) * 2003-03-28 2004-09-30 Olympus Corporation Capsule endoscope
JP2005052252A (ja) * 2003-07-31 2005-03-03 Olympus Corp 無線型被検体情報取得システム
CN1709196A (zh) * 2005-02-08 2005-12-21 重庆金山科技(集团)有限公司 双工多通道智能胶囊消化道内窥镜的控制方法
US20080058602A1 (en) * 2006-08-30 2008-03-06 Karl Storz Endovision Endoscopic device with temperature based light source control
JP2013000466A (ja) * 2011-06-20 2013-01-07 Fujifilm Corp 電子内視鏡装置及び内視鏡画像の生成方法、並びに電子内視鏡システム
CN114287869A (zh) * 2021-12-31 2022-04-08 上海安翰医疗技术有限公司 一种胶囊内窥镜及其控制方法

Also Published As

Publication number Publication date
CN114287869A (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
WO2023125854A1 (zh) 一种胶囊内窥镜及其控制方法
CN202843608U (zh) 一种胶囊内窥镜无线信号蓝牙转发器系统
WO2020147196A1 (zh) 智能控制胶囊式内窥镜在消化道不同部位工作方法及装置
JP5351356B2 (ja) カプセル型内視鏡の位置検出装置、カプセル型内視鏡システムおよびカプセル型内視鏡の位置決定プログラム
US10206557B2 (en) Power source control for medical capsules
JP2002248095A (ja) X線デジタル撮影装置
CN102100518B (zh) 具有红外线热扫描功能的胶囊小肠镜系统
CN107809626A (zh) 一种智能监控摄像头
US20080108866A1 (en) Control method for capsule endoscope with memory storage device
KR102625668B1 (ko) 캡슐 내시경 장치 및 병변 진단 지원 방법
US7556442B2 (en) Apparatus and method for a smart image-receptor unit
CN205754633U (zh) 嵌入式高清全景视频智能系统
WO2023125830A1 (zh) 一种胶囊内窥镜及调节方法
CN108769546A (zh) 一种补光控制方法、装置和智能摄像头设备
CN203661215U (zh) 数字化作业检查仪
WO2023125868A1 (zh) 一种胶囊内窥镜
CN102100517A (zh) 双向红外线热扫描胶囊小肠镜系统
US8896677B2 (en) Imaging device and transmission/reception system
CN217335718U (zh) 一种可以识别动物的打猎相机
CN102100523B (zh) 带ccd的红外线热扫描胶囊小肠镜系统
JP2006525069A (ja) インビボ装置を含むシステムにおいて使用するための磁気スイッチ、およびそれを使用する方法
JP5137385B2 (ja) カプセル型医療装置
WO2016089413A1 (en) Capsule coating for image capture control
CN201912043U (zh) 带ccd的红外线热扫描胶囊小肠镜系统
JPH09270944A (ja) 電子スチルカメラ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915103

Country of ref document: EP

Kind code of ref document: A1