WO2023125868A1 - 一种胶囊内窥镜 - Google Patents

一种胶囊内窥镜 Download PDF

Info

Publication number
WO2023125868A1
WO2023125868A1 PCT/CN2022/143639 CN2022143639W WO2023125868A1 WO 2023125868 A1 WO2023125868 A1 WO 2023125868A1 CN 2022143639 W CN2022143639 W CN 2022143639W WO 2023125868 A1 WO2023125868 A1 WO 2023125868A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
antenna
capsule endoscope
heat
main body
Prior art date
Application number
PCT/CN2022/143639
Other languages
English (en)
French (fr)
Inventor
段晓东
Original Assignee
上海安翰医疗技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海安翰医疗技术有限公司 filed Critical 上海安翰医疗技术有限公司
Publication of WO2023125868A1 publication Critical patent/WO2023125868A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/12Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements

Definitions

  • the invention relates to a capsule endoscope.
  • the capsule endoscope Due to its high reliability and high safety, capsule endoscope has become an effective device for the diagnosis of digestive tract diseases, and has been highly recognized by the international medical device field.
  • the capsule endoscope includes a CMOS image sensor, an optical system, a battery, a transmitting circuit, and an antenna.
  • the image of the human gastrointestinal tract is imaged on the surface of the CMOS image sensor through the optical system.
  • the CMOS image sensor converts the optical signal into an electrical signal, modulates and amplifies it through the transmitting circuit, and transmits it through the antenna.
  • the information is received by an external receiving device and then displayed. on the display device.
  • medical personnel can diagnose gastrointestinal diseases of the subject according to the images displayed on the display device.
  • the internal thermal management of the capsule endoscope has an important impact on the inspection time, shooting effect, and control accuracy of the capsule endoscope. Limited by the volume of the capsule endoscope, the thermal management method inside the capsule endoscope still needs to be improved.
  • the present invention provides a capsule endoscope.
  • a capsule endoscope comprising:
  • the casing includes a casing main body (101), a casing first end (102), and a casing second end (103);
  • An image acquisition module (2) arranged in the first end portion (102) of the housing;
  • a circuit processing module (3) arranged in the main body part (101) of the housing;
  • An information sending module includes an antenna (401), and the antenna (401) includes an inner wall fixed to the main body part (101) of the housing, or an inner wall of the main body part (101) of the housing and the second end of the housing ( 103) An antenna arm (4011) on the inner wall, where the antenna arm (4011) is connected to the image acquisition module (2) and/or the circuit processing module (3).
  • the antenna arm (4011) is attached to the inner wall surface of the main body part (101) of the housing, or the inner wall surface of the main body part (101) of the housing and the inner wall surface of the second end part (103) of the housing. structure.
  • the surface of the antenna arm (4011) is coated with an insulating and heat-conducting material (5), and/or, the inner wall surface of the housing main body (101) not covered by the antenna arm (4011), or the housing main body (101)
  • the inner wall and part of the inner wall surface of the second end portion of the casing (103) are coated with an insulating and heat-conducting material (5).
  • the surface of the antenna arm (4011) is coated with an insulating and heat-conducting material (5), and the surface of the inner wall of the housing body (101) not covered by the antenna arm (4011) or the inner wall of the housing body (101)
  • the part of the inner wall surface of the second end portion (103) of the housing is coated with an insulating and heat-conducting material (5), and the inner surface of the housing main body (101) after the coating of the insulating and heat-conducting material (5), or the housing main body ( 101) and the inner surface of the second end of the housing (103) are smooth structures with no protrusions and uniform height.
  • the antenna arm (4011) is connected to the image acquisition module (2) and/or the circuit processing module (3) through a heat conducting plate (7).
  • the image acquisition module (2) includes a camera module (201) and a lighting module (202), and the antenna arm (4011) communicates with the camera module (201) and/or the lighting module through a heat conduction plate (7) Modules (202) are connected.
  • the capsule endoscope further includes a battery, and the antenna arm (4011) is connected to the battery through a heat conducting plate (7).
  • the heat conduction plate (7) connected to the antenna arm (4011) is arranged on the surface of the insulating heat conduction material (5).
  • the antenna (401) is shaped by a double-armed helical antenna, a helical antenna, an inverted L antenna, a T-shaped antenna, an umbrella antenna, a cage antenna, a horn antenna, a V-shaped antenna, a rhombus antenna, and a herringbone antenna. , Disc-conical antenna, biconical antenna or a combination of one or more.
  • a wireless charging module is also included, the wireless charging module is arranged in the second end of the housing and is electrically connected to the circuit processing module, and the heat conducting plate is connected to the antenna arm and the wireless charging module.
  • the beneficial effect of the technical solution of the present invention is to provide effective thermal management without increasing the volume of the capsule endoscope, and to increase the battery life of the capsule endoscope.
  • Fig. 1 is a schematic structural view of a capsule endoscope provided by an embodiment of the present invention
  • Fig. 2 is a structural schematic diagram of a capsule endoscope antenna
  • Fig. 3 is a schematic diagram of the arrangement of the antenna arm around the inner wall of the shell of the capsule endoscope in Fig. 2;
  • FIG. 4 is a schematic cross-sectional view of the main body of the capsule endoscope housing
  • Fig. 5 is a schematic cross-sectional view of another capsule endoscope housing body in Fig. 4;
  • FIG. 6 is a schematic cross-sectional view of the interlayer of the main body of the capsule endoscope housing
  • Fig. 7 is a schematic cross-sectional view of the interlayer of the main body of another capsule endoscope housing in Fig. 6;
  • Fig. 8 is a connection structure diagram of the heat conduction plate of the capsule endoscope
  • Fig. 9 is a connection structure diagram of another capsule endoscope heat conduction plate in Fig. 8.
  • Fig. 10 is a schematic diagram of the structural relationship between the capsule endoscope antenna and the heat storage material
  • Fig. 11 is a connection structure diagram of the capsule endoscope housing and the circuit processing module
  • Fig. 12 is a configuration diagram of a capsule endoscope wireless charging module
  • Fig. 13 is a configuration diagram of another capsule endoscope wireless charging module.
  • Insulation and heat conduction material (5) Insulation and heat conduction material (5);
  • a layer of thermal insulation material (1401) is provided.
  • the present invention provides a capsule endoscope, comprising: a housing (1), the housing includes a housing main body (101) and a housing first end (102), the housing The second end (103).
  • the main part (101) of the shell of the capsule endoscope is cylindrical, the first end (102) of the shell is semi-ellipsoidal, and the second end (103) of the shell is semi-ellipsoidal, and the combination of the three forms a capsule-like Shaped endoscope for easy swallowing and inspection.
  • the capsule endoscope also includes: an image acquisition module (2), arranged in the first end portion (102) of the casing; a circuit processing module (3), arranged in the main body portion (101) of the casing;
  • the information sending module includes an antenna (401), and the antenna (401) is fixed on the inner wall of the main body part (101) of the housing, or the inner wall of the main body part (101) of the housing and the inner wall of the second end part (103) of the housing;
  • the antenna (401) is connected with the image acquisition module (2) and/or the circuit processing module (3).
  • the capsule endoscope also includes a battery (6), which supplies power to each unit of the capsule endoscope and is controlled by the power supply IC.
  • the antenna (401) is attached to the inner wall of the shell of the capsule endoscope. Specifically, the antenna (401) can only be fixed on the inner wall of the main body part (101) of the housing; it can also be fixed on the inner wall of the main body part and the inner wall of the second end part (103) of the housing opposite to the image acquisition module (2). , the antenna (401) is a convex structure.
  • the antenna simultaneously fixes the inner wall of the main body part (101) and the inner wall of the second end part (103) of the housing opposite to the image acquisition module (2). The inner wall of the second end portion (103) of the casing is covered more, and the antenna (401) is provided with a larger area, so the heat conduction area is larger and the heat conduction effect is better.
  • Fig. 2 is a schematic diagram of the structure of the capsule endoscope antenna.
  • the antenna includes an antenna arm (4011) fixed on the inner wall of the main body part (101) of the housing, or the inner wall of the main body part (101) of the housing and the inner wall of the second end part (103) of the housing.
  • the main structure of the antenna (401) is an antenna arm (4011), specifically, as shown in Figure 3, the antenna is divided into an antenna arm (4011) and a bottom antenna (4012) as a whole, and the bottom antenna (4012) is placed in the image acquisition module (2) In the opposite housing second end (103), the antenna arm (4011) is connected to the bottom antenna (4012). There is a feeding port (4013) on the bottom antenna (4012) for connecting with the circuit processing module (3).
  • the antenna (401) can be made into a helical shape and installed inside the capsule shell by rotation.
  • the helical antenna has a tendency to expand outwards, and the capsule shell limits its tendency, so that the antenna (401) and the shell form a stable fixed structure.
  • the shape of the antenna arm (4011) can be double-armed helical antenna, helical antenna, inverted L antenna, T-shaped antenna, umbrella antenna, cage antenna, angular antenna, V-shaped antenna, rhombus antenna, herringbone antenna, disc cone Shaped antenna, biconical antenna or a combination of one or more.
  • the antenna arm is a double-arm helical antenna.
  • the arrangement of the spiral of the antenna arm is adapted to the inner wall of the capsule shell, so that it is relatively smooth attached to the inner wall.
  • the antenna arm (4011) is composed of copper foil with a width of 1mm-10mm. Copper has a large thermal conductivity and can quickly conduct heat to the entire antenna arm (4011). The thickness of the antenna arm (4011) is 0.1mm-1mm.
  • Fig. 3 shows the situation that the antenna arm (4011) is arranged around the inner wall of the capsule endoscope shell
  • Fig. 2 shows a side view in which the antenna arm (4011) is regularly spirally arranged around the inner wall of the capsule endoscope shell, and the antenna arm ( 4011) is a continuous structure as a whole, but the present invention is not limited thereto.
  • the antenna arm (4011) when the antenna arm (4011) is regularly arranged around the inner wall of the capsule endoscope housing, it can be seen that the antenna arm (4011) includes a plurality of antenna arm (4011) parts, and the antenna arm (4011) There are spaces between sections.
  • the antenna arm (4011) is connected with the image acquisition module (2) and/or the circuit processing module (3).
  • the antenna arm (4011) is connected to the image acquisition module (2) and/or the circuit processing module (3) through a thermal wire (not shown in the figure).
  • the heat conduction wire can adopt metal wire or the like.
  • the information sending module of the capsule endoscope includes an antenna (401) composed of an antenna arm (4011) and a radio frequency circuit module (not shown in the figure). In the working mode, the image of the digestive tract is collected by the camera module (201) and transmitted to the The circuit processing module, the image data processed by the circuit processing module (3) is finally transmitted to the external image display device via the radio frequency circuit board and the antenna (401) in the information sending module.
  • the antenna arm (4011) is connected to the image acquisition module (2) and/or the circuit processing module (3) through a thermal wire (not shown in the figure), so that the image acquisition module (2) and/or the The heat of the circuit processing module (3) will be quickly conducted to the antenna arm (4011). Since the antenna arm (4011) is formed of a metal material and has good thermal conductivity, it can transfer the heat from the image acquisition module (2) and/or the circuit processing The heat transferred from the module (3) is evenly conducted to the inner wall of the capsule shell. The greater the area coverage of the antenna arm (4011), the better the heat conduction effect and the more uniform the heat transfer. Considering the actual working needs of the capsule endoscope, the area coverage of the antenna arm (4011) can be between 10%- 85%, preferably 20%-45%.
  • the antenna arm (4011) is not covered with the entire inner wall of the capsule shell, the heat can be transferred to the inner wall of the capsule shell where the antenna arm (4011) is arranged. At the gaps between the antenna arms (4011), the heat transferred to the antenna arms (4011) cannot be effectively diffused, which easily causes heat accumulation.
  • the antenna arm (4011) is packaged with an insulating and heat-conducting material, and the surface of the antenna arm (4011) is coated with an insulating and heat-conducting material (5).
  • the inner wall surface of the main body part (101) not covered by the antenna arm (4011), or the inner wall surface of the main body part (101) and the inner wall surface of the second end part (103) of the housing are coated with an insulating heat-conducting material (5).
  • Fig. 2 what is shown in Fig. 2 is the inner wall surface of the housing main part (101) not covered by the antenna arm (4011), or the inner wall of the housing main part (101) and the inner wall of the second end part (103) of the housing Part of the surface is coated with insulating and heat-conducting material (5), in fact, the surface of the antenna arm (4011) is also covered with insulating and heat-conducting material.
  • FIGS. 4 and 5 show schematic cross-sectional views of the main body (101) of the capsule endoscope casing.
  • the surface of the antenna arm (4011) is coated with an insulating and heat-conducting material (5), and the inner wall surface of the housing main body (101) and the second end of the housing (103) are not covered by the antenna arm (4011).
  • Part of the inner wall surface (only the inner wall surface of the main body part 101 is shown in Figure 3) is coated with an insulating and heat-conducting material (5), and the inner surface of the housing main body (101) or the housing after the insulating and heat-conducting material (5) is coated
  • the inner surfaces of the main body part (101) and the second end part (103) of the casing are smooth structures with no protrusions and uniform height.
  • the inner wall surface of the housing main body ( 101 ) may also be an uneven surface, and the present invention is not limited thereto.
  • Fig. 4 and Fig. 5 only take the inner wall of the main body part (101) of the housing as an example for illustration, and the same can be done for the second end part (103) of the housing, which will not be repeated here.
  • the insulating and heat-conducting material (5) is closely attached to the antenna arm (4011), and can quickly transfer the heat received by the antenna arm (4011) with heat dissipation function to the entire capsule shell, including the space between the antenna arm (4011).
  • the thickness of the insulating and heat-conducting material (5) is 0.01-0.1mm.
  • a layer of thermal insulation material 1401 can also be set between the antenna arm (4011) and the capsule shell, and the antenna will receive from the image acquisition module (2) and/or the The heat received by the circuit processing module is quickly transferred to the entire capsule shell to avoid high local heat.
  • the thermal insulation material layer 1401 can keep the heat inside the capsule instead of dissipating it through the shell. The heat gathers inside the capsule to prolong the battery life. time.
  • the thermal insulation material layer 1401 may include insulating materials with poor thermal conductivity, such as nano thermal insulation film, PFT film, polyester film, polyimide film, etc., the present invention is not limited thereto.
  • the reason why the heat generated by the image acquisition module and the circuit processing module can be transferred to the antenna arm (4011) is that the image acquisition module and the circuit processing module are connected to the antenna arm (4011) through a heat conducting wire .
  • a capsule endoscope is provided.
  • a heat conduction plate is arranged between the antenna arm (4011), the image acquisition module (2) and the circuit processing module (3) (7), the antenna arm (4011) is connected to the image acquisition module (2) and the circuit processing module (3) through a heat conduction plate (7), and the heat conduction plate (7) increases heat from the image acquisition module ( 2) and the heat channel that the circuit processing module (3) transfers to the antenna arm (4011), so that heat can be transferred to the antenna arm (4011) more effectively.
  • the image acquisition module (2) includes a camera module (201) and an illumination module (202), as shown in Figure 9, the antenna arm (4011) communicates with the camera module (201) and/or via a heat conducting plate (7) Or the lighting module (202) is connected.
  • the heat accumulated inside the capsule instead of dissipating outside through the shell can extend the battery life.
  • the capsule A heat conduction plate (7) is arranged between the battery (6) and the antenna arm of the endoscope, and the antenna arm (4011) is connected to the battery (6) through the heat conduction plate (7), and the antenna arm (4011) can receive The heat of the heat is directly transferred to the battery (6) for the use of the battery and prolongs the service time of the battery.
  • a heat storage material (9) is arranged around the battery (6), as shown in Figure 10, the heat of the antenna arm (4011) can be introduced into the heat storage material (9) through the heat conduction plate (7) , and stored, and then slowly release heat during the long-term inspection of the capsule endoscope, so as to maintain the battery to operate at an effective working temperature.
  • the heat of the antenna arm (4011) comes from the image acquisition module (2) and the circuit processing module (3), and is transmitted to the antenna arm (4011) through the heat conducting plate (7).
  • the material of the heat conducting plate (7) may include an insulating material with good thermal conductivity.
  • the heat conducting plate (7) may be connected to the insulating and heat conducting material (5) provided on the surface of the antenna arm (4011), through The insulating and heat-conducting material (5) is connected with the antenna arm (4011).
  • the heat-conducting plate (7) can be made of a material with a high thermal conductivity, such as thermally conductive adhesive, thermally conductive insulating sheet, and thermally conductive silica gel.
  • the number of heat conducting plates (7) connected to the battery (6) is two, three, four, or more.
  • multiple heat conducting plates (7) can transmit heat faster, and can quickly transfer the heat received by the antenna arm (4011) directly to the battery (6) for use by the battery, Extend battery life.
  • Capsule endoscopes are small in size but very complex in structure. It is difficult to quickly dissipate the heat generated during work.
  • the heat is conducted to the capsule shell through the antenna, which can enhance heat dissipation and improve thermal management capabilities.
  • the shell material of the capsule can usually be: PC (polycarbonate), PMMA (acrylic), optical polyester resin, etc., these several kinds of materials are all resin, and resin has better plasticity.
  • the antenna arm (4011) can be integrally formed with the housing main body shell (1011) during production, that is, after the antenna arm (4011) is produced, it is injected to form the main body of the capsule endoscope housing .
  • Connectors (4014) are respectively arranged on the inner wall of the capsule endoscope circuit processing module (3) and the corresponding housing body part (1011), as shown in FIG. 11 .
  • the circuit processing module (3) is pushed into the casing so that the two connectors (4014) are connected to realize electrical connection and meet the radio frequency requirements of the capsule endoscope.
  • the connector (4014) is preferably a contact with less difficulty in processing, so as to ensure effective electrical connection.
  • the wireless charging module is set in the capsule endoscope, and the gastrointestinal tract inspection will use the external magnetic control device to cooperate with the capsule endoscope to carry out controlled inspection. It can be charged wirelessly.
  • the capsule endoscope After completing the gastric examination, the capsule endoscope enters the intestinal tract for intestinal examination under the natural peristalsis of the gastrointestinal tract, and finally exits the body.
  • the capsule endoscope spends a long time in intestinal inspection, which is much longer than the time it stays in the stomach.
  • wireless charging can only be performed during gastric inspection, and wireless charging cannot be performed in the intestinal tract. Therefore, capsule endoscopy still exists.
  • the battery of the capsule endoscope has insufficient battery life during intestinal inspection, and the wireless charging module will generate heat when it is working. If this part of the heat is not managed, when the local temperature of the capsule endoscope shell is too high, the heat will accumulate , causing discomfort to the patient.
  • the wireless charging module (10) in another embodiment, as shown in Figure 12, in order to solve the problem of excessive local temperature of the endoscope housing, the wireless charging module (10) is arranged in the second end portion (103) of the housing, and the wireless charging module (10) It is electrically connected with the circuit processing module (3), and the wireless charging module (10) transfers the obtained electric energy into the battery (6) through the circuit processing module (3) for storage.
  • a heat conduction plate (7) is used to connect the antenna arm (4011) and the wireless charging module (10), and the heat generated during the operation of the wireless charging module is quickly transferred to the antenna arm (4011) through the heat conduction plate (7). ), realize heat conduction and avoid heat accumulation.
  • the wireless charging module (10) is arranged in the second end (103) of the casing, and the wireless charging module (10) and the circuit processing module (3) Electrically connected, the wireless charging module (10) transfers the obtained electrical energy into the battery (6) through the circuit processing module (3) for storage.
  • a heat storage material (9) is arranged around the battery (6), and a heat conduction plate (7) is used to connect the wireless charging module (10) and the heat storage material (9).
  • the heat generated when the wireless charging module (10) is in operation enters the heat storage material through the heat conducting plate. After the capsule endoscope enters the intestinal tract, it will take several hours of self-shooting.
  • the heat storage material releases heat slowly, which activates the battery (6), maintains the battery at a relatively high working temperature, and prolongs the life of the battery. Working hours can also avoid the problem of heat accumulation that makes patients feel uncomfortable.
  • the battery (6) is a silver oxide battery, or a silver oxide battery and a secondary battery that can be used for wireless charging.
  • a silver oxide battery and a lithium battery are used, and the lithium battery is powered by the lithium battery during the inspection. At this time, it is usually a stomach inspection. Wireless charging is performed, and the gut check is performed after the lithium battery is fully charged. Compared with using two silver oxide batteries, the wireless charging combination of a silver oxide battery and a lithium battery can provide a longer battery life.
  • the shown capsule endoscope includes a permanent magnet (8), which is connected to the casing.
  • the permanent magnet (8) makes the capsule endoscope magnetic, and can cooperate with the external magnetic control device to adjust its position, attitude and direction.
  • a second permanent magnet (not shown) is arranged in the second end portion (103) of the housing, and the second permanent magnet may be cylindrical, spherical, preferably ellipsoid concentric with the second end portion of the housing , the elliptical permanent magnet can be in close contact with the inner wall of the second end of the casing.
  • the permanent magnet (8) is close to the first end of the housing, and the second permanent magnet is close to the second end of the housing.
  • the two permanent magnets can balance the weight of the capsule endoscope, and can be used in external magnetic control equipment. With the cooperation of two magnetic moments, the position, attitude and direction of the capsule endoscope can be adjusted precisely.
  • the present invention conducts the heat generated by the image acquisition module and/or the circuit processing module to the antenna arm quickly, distributes the heat evenly through the antenna arm, reduces local heat accumulation, or uses heat storage materials to store excess heat Near the battery, release slowly, optimize the discharge capacity of the battery, realize effective thermal management, and avoid discomfort to patients caused by excessive temperature.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

一种胶囊内窥镜,包括:壳体(1),壳体(1)包括壳体主体部(101)和壳体第一端部(102)、壳体第二端部(103);图像采集模块(2),设置于壳体第一端部(102)内; 电路处理模块(3),设置于壳体主体部(101)内;信息发送模块,信息发送模块包括天线(401),天线(401)包括固定于壳体主体部(101)内壁、或壳体主体部(101)内壁和壳体第二端部(103)内壁上的天线臂(4011),天线臂(4011)与图像采集模块(2)和/或电路处理模块(3)连接。这一胶囊内窥镜具有优异的内部热管理效果。

Description

一种胶囊内窥镜 技术领域
本发明涉及一种胶囊内窥镜。
背景技术
胶囊内窥镜由于其高可靠性、高安全性,目前已成为消化道疾病诊断的有效设备,受到了国际医疗器械领域的高度认可。胶囊内窥镜包括CMOS图像传感器、光学系统、电池、发射电路及天线等。人体胃肠道的图像通过光学系统成像于CMOS图像传感器表面,由CMOS图像传感器将光信号转换为电信号,经发射电路调制、放大,通过天线发射出去,这些信息被外部接收装置接收,然后显示在显示设备上。在无痛苦、无创伤的人体胃肠道蠕动状态下,医护人员可根据显示在显示设备上的图像对被检者进行胃肠道疾病的诊断。
现阶段在售产品,如基文的PillCam系列胶囊内窥镜、奥林巴斯的EndoCapsule10系列胶囊内窥镜、IntroMedic的MiroCam系列胶囊内窥镜,因无法受控的在胃部移动,主要应用在不需要受控移动的肠道检查中。而安翰的NaviCam系列胶囊内窥镜可在外磁场的作用下,受控的在胃部进行医学检查。
胶囊内窥镜内部热管理对于胶囊内窥镜的检查时间、拍摄效果、控制精度等具有重要影响。受限于胶囊内窥镜的体积,胶囊内窥镜内部热管理方式仍有待提高。
发明内容
为了解决现有技术中的相关问题,本发明提供了一种胶囊内窥镜。
本发明的技术方案为:
一种胶囊内窥镜,包括:
壳体,壳体包括壳体主体部(101)和壳体第一端部(102)、壳体第二端部(103);
图像采集模块(2),设置于所述壳体第一端部(102)内;
电路处理模块(3),设置于所述壳体主体部(101)内;
信息发送模块,所述信息发送模块包括天线(401),所述天线(401)包括固定于壳体主体部(101)内壁、或壳体主体部(101)内壁和壳体第二端部(103)内壁上的天线臂(4011),所述天线臂(4011)与所述图像采集模块(2)和/或所述电路处理模块(3)连接。
可选的,所述天线臂(4011)贴附于所述壳体主体部(101)内壁表面、或壳体主体部(101)内壁和壳体第二端部(103)内壁表面,为凸起结构。
可选的,所述天线臂(4011)表面涂覆有绝缘导热材料(5),和/或,未被天线臂(4011)覆盖的壳体主体部(101)内壁表面、或壳体主体部(101)内壁和壳体第二端部(103)内壁表面的部分涂敷有绝缘导热材料(5)。
可选的,所述天线臂(4011)表面涂覆有绝缘导热材料(5),未被天线臂(4011)覆盖的壳体主体部(101)内壁表面、或壳体主体部(101)内壁和壳体第二端部(103)内壁表面的部分涂敷有绝缘导热材料(5),涂覆绝缘导热材料(5)后的壳体主体部(101)内表面、或壳体主体部(101)和壳体第二端部(103)内表面为无凸起的高度均一的光滑结构。
可选的,所述天线臂(4011)与所述图像采集模块(2)和/或所述电路处理模块(3)通过导热板(7)连接。
可选的,所述图像采集模块(2)包括摄像模块(201)和照明模块(202),所述天线臂(4011)通过导热板(7)与所述摄像模块(201)和/或照明模块(202)连接。
可选的,所述胶囊内窥镜还包括电池,所述天线臂(4011)与所述电池通过导热板(7)连接。
可选的,与天线臂(4011)连接的导热板(7)设置在绝缘导热材料(5)表面。
可选的,所述天线(401)形状由双臂螺旋天线、螺旋天线、倒L天线、T形天线、伞形天线、笼形天线、角形天线、V形天线、菱形天线、鱼骨形天线、盘锥形天线、双锥形天线的一种或多种组合而成。
可选的,还包括无线充电模块,所述的无线充电模块设置于壳体第 二端部中,与电路处理模块电连接,所述导热板连接天线臂和无线充电模块。
本发明的技术方案的有益效果是在不增加胶囊内窥镜体积的前提下,提供有效的热管理,提升胶囊内窥镜的续航时间。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是本发明的一个实施例提供的胶囊内窥镜的结构示意图;
图2是胶囊内窥镜天线的结构示意图;
图3是图2天线臂环绕胶囊内窥镜外壳内壁设置示意图;
图4是胶囊内窥镜壳体主体部的截面示意图;
图5是图4另一种胶囊内窥镜壳体主体部的截面示意图;
图6是胶囊内窥镜壳体主体部的夹层截面示意图;
图7是图6另一种胶囊内窥镜壳体主体部的夹层截面示意图;
图8是胶囊内窥镜导热板连接结构图;
图9是图8另一种胶囊内窥镜导热板连接结构图;
图10是胶囊内窥镜天线与储热材料结构关系示意图;
图11是胶囊内窥镜壳体与电路处理模块连接结构图;
图12是胶囊内窥镜无线充电模块设置结构图;
图13是另一种胶囊内窥镜无线充电模块设置结构图。
壳体(1);
壳体主体部(101);
壳体主体部外壳(1011)
壳体第一端部(102);
壳体第二端部(103);
图像采集模块(2);
摄像模块(201);
照明模块(202);
电路处理模块(3);
天线(401);
天线臂(4011);
底部天线(4012);
馈电端口(4013);
连接器(4014);
绝缘导热材料(5);
电池(6);
导热板(7);
永磁体(8);
储热材料(9);
无线充电模块(10);
保温材料层(1401)。
具体实施方式
为了可以更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
如图1至图13所示,本发明提供一种胶囊内窥镜,包括:壳体(1),壳体包括壳体主体部(101)和壳体第一端部(102)、壳体第二端部(103)。胶囊内窥镜的壳体主体部(101)为圆柱形,壳体第一端部(102)为半椭球形,壳体第二端部(103)为半椭球形,三者组合成类胶囊状的内窥镜,便于吞咽和检查。该胶囊内窥镜还包括:图像采集模块(2),设置于所述壳体第一端部(102)内;电路处理模块(3),设置于所述壳体主体部(101)内;信息发送模块包括天线(401),所述天线(401)固定于壳体主体部(101)内壁、或壳体主体部(101)内壁和壳体第二端部(103)的内壁;所述天线(401)与所述图像采集模块(2)和/或所 述电路处理模块(3)连接。
电路处理模块(3)由处理器、图像加速器、电源IC(Power management IC,PMIC)、加速度传感器、六轴传感器、光线传感器、红外传感器的一种或多种构成。
胶囊内窥镜中还包括电池(6),对胶囊内窥镜各个单元供电,并受电源IC的控制。天线(401)贴附于胶囊内窥镜壳体内壁。具体而言,天线(401)可仅固定于壳体主体部(101)内壁;也可同时固定于主体部内壁和与图像采集模块(2)相对的壳体第二端部(103)的内壁,天线(401)为凸起结构。
天线(401)具有导热功能,根据热传导的基本公式“Q=K×A×ΔT/ΔL”,热量传递的大小Q同热传导系数K、热传热面积A成正比,同距离ΔL成反比。热传导系数越高、热传递面积越大,传输的距离越短,那么热传导的能量就越高,也就越容易带走热量。天线同时固定主体部(101)内壁和与图像采集模块(2)相对的壳体第二端部(103)的内壁,与仅固定于壳体主体部(101)内壁相比,天线(401)多覆盖了壳体第二端部(103)的内壁,设置的天线(401)面积更大,因此导热的面积更大,导热效果更好。
图2是胶囊内窥镜天线的结构示意图。如图2所示,所述天线包括固定于壳体主体部(101)内壁、或壳体主体部(101)内壁和壳体第二端部(103)内壁上的天线臂(4011)。
天线(401)的主体结构为天线臂(4011),具体地,如图3所示,天线整体分为天线臂(4011)和底部天线(4012),底部天线(4012)置于与图像采集模块(2)相对的壳体第二端部(103)中,天线臂(4011)与底部天线(4012)相连。底部天线(4012)上有馈电端口(4013),用于与电路处理模块(3)相连。
所述的天线(401)可被制作成螺旋状,通过旋转安装入胶囊壳体内部,螺旋天线具有向外膨胀的趋势,胶囊壳体限制了其趋势,使得天线(401)与壳体形成稳定的固定结构。
天线臂(4011)的形状可以为双臂螺旋天线、螺旋天线、倒L天线、T形天线、伞形天线、笼形天线、角形天线、V形天线、菱形天线、鱼骨 形天线、盘锥形天线、双锥形天线的一种或多种组合而成。
优选的方式中,如图3所示,天线臂为双臂螺旋天线。天线臂螺旋的设置与胶囊壳体内壁相适应,使得其较为平整的贴附于内壁。使用铜箔作为天线,即宽面与内壁接触,能够在贴附内壁的同时,增加与内壁的接触面积。
所述天线臂(4011)由宽1mm-10mm的铜箔组成。铜具有较大的导热系数,能够较快的将热量传导至整个天线臂(4011)。所述天线臂(4011)的厚度为0.1mm-1mm。
图3示出了天线臂(4011)环绕胶囊内窥镜外壳内壁设置的情况,图2中示出了天线臂(4011)规则地螺旋环绕胶囊内窥镜外壳内壁设置的侧视图,天线臂(4011)整体为连续结构,但本发明不限于此。从图2可以看出,在天线臂(4011)规则环绕胶囊内窥镜外壳内壁设置的情况下,可以看成天线臂(4011)包括多个天线臂(4011)部分,在天线臂(4011)部分之间有间隔。
所述天线臂(4011)与所述图像采集模块(2)和/或所述电路处理模块(3)连接。所述天线臂(4011)通过导热线(图中未示出)与所述图像采集模块(2)和/或所述电路处理模块(3)连接。导热线可以采用金属导线等。胶囊内窥镜的信息发送模块包括由天线臂(4011)组成的天线(401)以及射频电路模块(图中未示出),工作模式下,由摄像模块(201)采集消化道图像并传输到电路处理模块,经过电路处理模块(3)处理后的图像数据经由信息发送模块中的射频电路板和天线(401)最终传输至体外图像显示设备。
天线臂(4011)通过导热线(图中未示出)与所述图像采集模块(2)和/或所述电路处理模块(3)连接,这样所述图像采集模块(2)和/或所述电路处理模块(3)的热量会迅速传导至天线臂(4011),由于天线臂(4011)由金属材质形成,导热性能好,能够将从图像采集模块(2)和/或所述电路处理模块(3)传递来的热量均匀地传导至胶囊外壳内壁。天线臂(4011)的面积覆盖率越大,导热效果越好,热量传递的越均匀,考虑到胶囊内窥镜实际工作的需要,所述天线臂(4011)的面积覆盖率可在10%-85%,优选为20%-45%。
由于天线臂(4011)并不是布满整个胶囊外壳内壁,热量可以传递到布局有天线臂(4011)的胶囊外壳内壁处,但是由于多个天线臂(4011)部分之间有间隔,在没有设置天线臂(4011)的间隔处,传递到天线臂(4011)的热量不能有效地扩散,容易造成热量聚集。
在本实施例中,采用绝缘导热材料对天线臂(4011)进行封装,在所述天线臂(4011)表面涂覆绝缘导热材料(5)。另外,在未被天线臂(4011)覆盖的壳体主体部(101)内壁表面、或壳体主体部(101)内壁和壳体第二端部(103)内壁表面的部分涂敷有绝缘导热材料(5)。
为清楚起见,图2示出的是在未被天线臂(4011)覆盖的壳体主体部(101)内壁表面、或壳体主体部(101)内壁和壳体第二端部(103)内壁表面的部分涂敷有绝缘导热材料(5),实际上,天线臂(4011)的表面也被绝缘导热材料覆盖。
图4和图5示出了胶囊内窥镜壳体主体部(101)的截面示意图。如图4所示,天线臂(4011)表面涂覆有绝缘导热材料(5),未被天线臂(4011)覆盖的壳体主体部(101)内壁表面和壳体第二端部(103)内壁表面(图3中仅示出主体部101内壁表面)的部分涂敷有绝缘导热材料(5),涂覆绝缘导热材料(5)后的壳体主体部(101)内表面、或壳体主体部(101)和壳体第二端部(103)内表面为无凸起的高度均一的光滑结构。
如图5所示,在涂覆了绝缘导热材料(5)之后,壳体主体部(101)内壁表面也可以为不平滑的表面,本发明不限于此。图4和图5仅以壳体主体部(101)内壁为例说明,壳体第二端部(103)可以同样如此,此处不再赘述。
绝缘导热材料(5)与天线臂(4011)紧密贴附,能够将具有散热功能的天线臂(4011)所接受的热量快速传导至整个胶囊外壳,包括天线臂(4011)的间隔处。绝缘导热材料(5)的厚度为0.01-0.1mm。
在另一实施方式中,如图6和图7所示,还可以在天线臂(4011)与胶囊外壳之间设置保温材料层1401,在天线将从图像采集模块(2)和/或所述电路处理模块接收的热量快速地传导至整个胶囊外壳,避免局部热量较高的同时,保温材料层1401可以将热量保持在胶囊内部而不是通 过外壳向外散发,热量在胶囊内部聚集以延长电池使用时间。保温材料层1401可以包括导热差的绝缘材料,例如纳米隔热膜、PFT薄膜、聚酯薄膜、聚酰亚胺薄膜等,本发明不限于此。
如前所述,图像采集模块和所述电路处理模块所产生的热量之所以能够传递到天线臂(4011),是由于图像采集模块和所述电路处理模块通过导热线与天线臂(4011)连接。
在本发明的一实施方式中,提供一种胶囊内窥镜,如图8所示,在所述天线臂(4011)与图像采集模块(2)和电路处理模块(3)之间设置导热板(7),所述天线臂(4011)通过导热板(7)连接到所述图像采集模块(2)与所述电路处理模块(3),导热板(7)增加了热量从图像采集模块(2)和电路处理模块(3)向天线臂(4011)传递的热通道,使得热量能更有效地向天线臂(4011)传递。
所述图像采集模块(2)包括摄像模块(201)和照明模块(202),如图9所示,所述天线臂(4011)通过导热板(7)与所述摄像模块(201)和/或照明模块(202)连接。
如前所述,热量在胶囊内部聚集而不是通过外壳向外散发可以延长电池使用时间,为了更好地将热量供给电池使用,在本发明的一实施方式中,如图10所示,在胶囊内窥镜的电池(6)与天线臂之间设置有导热板(7),所述天线臂(4011)通过导热板(7)连接到电池(6),能够将天线臂(4011)接收到的热量直接传递到电池(6),以供电池使用,延长电池使用时间。
进一步的,在所述电池(6)周围设置储热材料(9),如图10所示,可将天线臂(4011)的热量通过导热板(7)导入所述储热材料(9)中,并进行存储,进而在胶囊内窥镜长时间检查的过程中缓慢释放热量,维持电池能够在有效的工作温度下运行。所述天线臂(4011)的热量来自于图像采集模块(2)、电路处理模块(3)所产生,通过所述导热板(7)传输至所述的天线臂(4011)。
所述导热板(7)的材料可以包括导热性好的绝缘材料,在一实施方式中,所述导热板(7)可以连接到天线臂(4011)表面设置的绝缘导热材料(5),通过绝缘导热材料(5)与天线臂(4011)连接。
所述导热板(7)可以选取导热系数较高的材质,例如导热粘结胶、导热绝缘片、导热硅胶。
可选的,与电池(6)连接的导热板(7)的数量为二个、三个、四个、或多个。相比于单个导热板(7),多个导热板(7)能够更快的传输热量,可快速的将天线臂(4011)接收到的热量直接传递到电池(6),以供电池使用,延长电池使用时间。
胶囊内窥镜的体积较小,但结构十分复杂,其工作时产生的热量很难快速消散,通过天线将热量传导至胶囊外壳,可以加强散热,提升热管理能力。胶囊的壳体材质通常可以为:PC(聚碳酸酯)、PMMA(亚克力)、光学聚酯树脂等,这几种材料均为树脂类,树脂具有较好可塑性。所述的天线臂(4011)在生产中可与壳体主体部外壳(1011)一体成型,即在完成天线臂(4011)的生产完成后,将其注塑,形成胶囊内窥镜壳体主体部。分别在所述胶囊内窥镜电路处理模块(3)和与之对应的壳体主体部(1011)内壁上分别设置连接器(4014),如图11所示。在生产组装过程中,将电路处理模块(3)推入壳体,使得所述两个连接器(4014)连接,即可实现电连接,满足所述胶囊内窥镜射频要求。所述的连接器(4014)优选加工难度较低的触点,保证有效电连接即可。
为了延长胶囊内窥镜的续航时间,将无线充电模块设置于胶囊内窥镜中,胃肠道检查会使用体外磁控设备与胶囊内窥镜相配合,进行受控的检查,在这一阶段可进行无线充电,完成胃部检查后,胶囊内窥镜在胃肠道自然蠕动下,进入肠道进行肠道检查,最后排出体外。胶囊内窥镜在肠道检查所花时间较长,远大于在胃部停留的时间,但是无线充电仅能在胃部检查时进行,在肠道内无法进行无线充电,因此,仍然存在胶囊内窥镜的电池在肠道检查时续航时间不足的问题,而且无线充电模块在工作时会产生热量,这部分热量如不进行管理,待到胶囊内窥镜外壳局部温度过高时,即热量产生堆积,会使得患者感到不适。
在另一实施方式中,如图12所示,为解决内窥镜外壳局部温度过高问题,无线充电模块(10)设置于壳体第二端部(103)中,无线充电模块(10)与电路处理模块(3)电连接,所述无线充电模块(10)将所获得的电能通过所述的电路处理模块(3)进入电池(6)中储存。采用导 热板(7)连接天线臂(4011)和无线充电模块(10),所述的无线充电模块工作时产生的热量通过所述的导热板(7)将热量快速的传输至天线臂(4011),实现热量传导,避免热量堆积。
另一实施方式中,为解决电池续航时间不足的问题,如图13所示,无线充电模块(10)设置于壳体第二端部(103)中,无线充电模块(10)与电路处理模块(3)电连接,所述无线充电模块(10)将所获得的电能通过所述的电路处理模块(3)进入电池(6)中储存。所述电池(6)周围设置有储热材料(9),采用导热板(7)连接无线充电模块(10)和所述的储热材料(9)。所述无线充电模块(10)工作时产生的热量通过所述的导热板进入所述的储热材料。胶囊内窥镜进入肠道后将进行数小时的自主拍摄,所述储热材料缓慢放热,对所述电池(6)起到活化的作用,维持电池在较高的工作温度,延长电池的工作时间,又可避免热量堆积使得患者感到不适的问题。
所述电池(6)为氧化银电池,或氧化银电池和可用于无线充电的二次电池。优选的,使用一颗氧化银电池和一个锂电池,检查时先由所述锂电池供电,此时通常为胃部检查,体外磁控设备在完成胃部检查后,对所述胶囊内窥镜进行无线充电,待所述锂电池充满后,再进行肠道检查。相比于使用两颗氧化银电池,一颗氧化银电池和一个锂电池的组合的无线充电组合能够提供更长的续航时间。
如图1所示,所示胶囊内窥镜包括永磁体(8),所述永磁体(8)与壳体相连。永磁体(8)使得胶囊内窥镜具备磁性,能够与体外磁控设备相配合,对其的位置、姿态、方向进行调整。可选地,壳体第二端部(103)内设置第二永磁体(未示出),所述第二永磁体可为圆柱形,球形,优选与壳体第二端部同心的椭球形,所述的椭球形永磁体可紧贴所述的壳体第二端部内壁。所述的永磁体(8)靠近壳体第一端部,所述的第二永磁体靠近壳体第二端部,两个永磁体能够平衡胶囊内窥镜的重量,可在体外磁控设备的配合下,产生两个磁力矩,可对胶囊内窥镜的位置、姿态、方向实现精确的调整。
本发明通过将所述图像采集模块和/或所述电路处理模块等产生的热量迅速传导至天线臂,通过天线臂使热量均匀分布,降低局部热量堆积, 或使用储热材料将多余的热量存储于电池附近,缓慢释放,优化电池的放电能力,实现了有效的热管理,避免了温度过高对患者所带来的不适。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种胶囊内窥镜,包括:
    壳体,壳体包括壳体主体部和壳体第一端部、壳体第二端部;
    图像采集模块,设置于所述壳体第一端部内;
    电路处理模块,设置于所述壳体主体部内;
    信息发送模块,所述信息发送模块包括天线,所述天线包括固定于壳体主体部内壁、或壳体主体部内壁和壳体第二端部内壁上的天线臂,所述天线臂与所述图像采集模块和/或所述电路处理模块连接。
  2. 根据权利要求1所述的胶囊内窥镜,其特征在于,所述天线臂贴附于所述壳体主体部内壁表面、或壳体主体部内壁和壳体第二端部内壁表面,为凸起结构。
  3. 根据权利要求2所述的胶囊内窥镜,其特征在于,所述天线臂表面涂覆有绝缘导热材料。
  4. 根据权利要求3所述的胶囊内窥镜,未被天线臂覆盖的壳体主体部内壁表面、或壳体主体部内壁和壳体第二端部内壁表面的部分涂敷有绝缘导热材料。
  5. 根据权利要求4所述的胶囊内窥镜,其特征在于,涂覆绝缘导热材料后的壳体主体部内表面、或壳体主体部和壳体第二端部内表面为无凸起的高度均一的光滑结构。
  6. 根据权利要求3-5任一项所述的胶囊内窥镜,其特征在于,所述天线臂与所述图像采集模块和/或所述电路处理模块通过导热板连接。
  7. 根据权利要求3-5任一项所述的胶囊内窥镜,其特征在于,所述胶囊内窥镜还包括电池,所述天线臂与所述电池通过所述导热板连接。
  8. 根据权利要求1-5中任一项所述的胶囊内窥镜,其特征在于,所述天线臂与所述壳体之间设置有保温材料层。
  9. 根据权利要求5所述的胶囊内窥镜,其特征在于,与天线臂连接的导热板设置在所述绝缘导热材料表面。
  10. 根据权利要求1-5任一项所述的胶囊内窥镜,其特征在于,还包括无线充电模块和电池,所述的无线充电模块设置于壳体第二端部中, 与所述电路处理模块电连接,通过所述电路处理模块为所述电池充电,所述胶囊内窥镜还包括连接天线臂和无线充电模块的导热板。
PCT/CN2022/143639 2021-12-31 2022-12-29 一种胶囊内窥镜 WO2023125868A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111673361.9 2021-12-31
CN202111673361.9A CN114287870A (zh) 2021-12-31 2021-12-31 一种胶囊内窥镜

Publications (1)

Publication Number Publication Date
WO2023125868A1 true WO2023125868A1 (zh) 2023-07-06

Family

ID=80975567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143639 WO2023125868A1 (zh) 2021-12-31 2022-12-29 一种胶囊内窥镜

Country Status (2)

Country Link
CN (1) CN114287870A (zh)
WO (1) WO2023125868A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114287870A (zh) * 2021-12-31 2022-04-08 上海安翰医疗技术有限公司 一种胶囊内窥镜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101683257A (zh) * 2008-09-22 2010-03-31 奥林巴斯医疗株式会社 胶囊型医疗装置及其制造方法
CN104720806A (zh) * 2015-04-13 2015-06-24 刘洲洲 一种无线管道胶囊内窥镜
CN107822584A (zh) * 2017-11-08 2018-03-23 北京中安易胜医疗科技有限公司 胶囊内窥镜
US20210259531A1 (en) * 2018-06-28 2021-08-26 Ankon Technologies Co., Ltd Capsule endoscope
WO2021203687A1 (zh) * 2020-04-09 2021-10-14 深圳市资福医疗技术有限公司 一种双镜头胶囊内窥镜的天线结构
CN114287870A (zh) * 2021-12-31 2022-04-08 上海安翰医疗技术有限公司 一种胶囊内窥镜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101683257A (zh) * 2008-09-22 2010-03-31 奥林巴斯医疗株式会社 胶囊型医疗装置及其制造方法
CN104720806A (zh) * 2015-04-13 2015-06-24 刘洲洲 一种无线管道胶囊内窥镜
CN107822584A (zh) * 2017-11-08 2018-03-23 北京中安易胜医疗科技有限公司 胶囊内窥镜
US20210259531A1 (en) * 2018-06-28 2021-08-26 Ankon Technologies Co., Ltd Capsule endoscope
WO2021203687A1 (zh) * 2020-04-09 2021-10-14 深圳市资福医疗技术有限公司 一种双镜头胶囊内窥镜的天线结构
CN114287870A (zh) * 2021-12-31 2022-04-08 上海安翰医疗技术有限公司 一种胶囊内窥镜

Also Published As

Publication number Publication date
CN114287870A (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
US7647090B1 (en) In-vivo sensing device and method for producing same
WO2023125868A1 (zh) 一种胶囊内窥镜
US9895053B2 (en) Capsule type medical device
JP6280876B2 (ja) 医療用カプセルのための電源装置およびカプセルカメラシステム
JP2009532082A (ja) 生体内検出デバイス、ならびにイメージャとイメージャのプロセッサとの間の通信方法
JP2003210394A (ja) カプセル型医療装置
CN102100518B (zh) 具有红外线热扫描功能的胶囊小肠镜系统
CN109171618A (zh) 一种可释放药物的胶囊式内窥镜
WO2021196771A1 (zh) 一种基于光学超声双模态成像的胶囊内窥镜
WO2023125830A1 (zh) 一种胶囊内窥镜及调节方法
CN105595949A (zh) 消化道检测系统
US20230218281A1 (en) Ingestible device with propulsion and imaging capabilities
CN110269580A (zh) 一种微型无线内窥机器人系统
CN102961112A (zh) 一种胶囊内窥镜
CN103236345B (zh) 具有方向适应性的无线供能接收线圈
WO2012075716A1 (zh) 双向红外线热扫描胶囊小肠镜系统
CN211093936U (zh) 无线电力传输装置
CN102100523B (zh) 带ccd的红外线热扫描胶囊小肠镜系统
CN201929931U (zh) 红外线热扫描胶囊小肠镜系统
KR102432354B1 (ko) 소화기 진단용 유·무선 복합 내시경
CN201912041U (zh) 双向红外线热扫描胶囊小肠镜系统
CN211723078U (zh) 一种胶囊内窥镜
CN201912043U (zh) 带ccd的红外线热扫描胶囊小肠镜系统
CN211723075U (zh) 一种肠胃检查装置
CN102100557A (zh) 红外线热扫描胶囊小肠镜系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915117

Country of ref document: EP

Kind code of ref document: A1