WO2023125572A1 - 一种自适应导引装置以及经导管治疗系统 - Google Patents

一种自适应导引装置以及经导管治疗系统 Download PDF

Info

Publication number
WO2023125572A1
WO2023125572A1 PCT/CN2022/142506 CN2022142506W WO2023125572A1 WO 2023125572 A1 WO2023125572 A1 WO 2023125572A1 CN 2022142506 W CN2022142506 W CN 2022142506W WO 2023125572 A1 WO2023125572 A1 WO 2023125572A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
guiding device
flexible catheter
bending
adaptive
Prior art date
Application number
PCT/CN2022/142506
Other languages
English (en)
French (fr)
Inventor
邵南
李阳
庄镇平
曾建锋
甘义杰
Original Assignee
杭州德柯医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州德柯医疗科技有限公司 filed Critical 杭州德柯医疗科技有限公司
Publication of WO2023125572A1 publication Critical patent/WO2023125572A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1482Probes or electrodes therefor having a long rigid shaft for accessing the inner body transcutaneously in minimal invasive surgery, e.g. laparoscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation

Definitions

  • the present application relates to the technical field of medical devices, in particular to an adaptive guiding device and a transcatheter treatment system.
  • interventional surgery is becoming more and more common, which is characterized by opening a small operating window on the patient's body surface, delivering catheter-like instruments to the treatment area along the vascular channel, establishing an in vitro-in vivo channel, and then This channel is sent into various treatment devices for interventional treatment.
  • the device used to establish a channel from the outside to the body is called a guide device.
  • the guide device For interventional treatment under different paths, the guide device needs to adapt to the shape of different blood vessels, and it is best to have a certain degree of self-adaptability. Under the premise of irreversible tissue damage, it can quickly and accurately reach the lesion area for interventional treatment.
  • the patent application publication number WO2020/068601A1 discloses a guiding device for a catheter-type interventional device, which uses the distal flexible section as a hinge structure, and lateral displacement occurs by applying a certain axial force , to accommodate curved vessel shapes.
  • interventional routes are: puncture through the femoral vein, through the inferior vena cava, right atrium to the right ventricle; or through the inferior vena cava, right atrium, and left atrium to the left ventricle; or through the femoral artery Puncture, through the aortic arch to the left ventricle.
  • the guide device For the interventional path passing through the aortic arch, due to the special arc-shaped three-dimensional shape of the aortic arch, the guide device needs to be adjusted in multiple sections, that is, multiple sections of hinge structures are required to work together, which will increase the complexity of the device structure and reduce the stability; at the same time, the hinge structure When the lateral displacement occurs, a large avoidance space is required, and when the lateral displacement occurs, the avoidance space will be gradually compressed, increasing the difficulty of bending adjustment; and because the vascular tissue itself is a flexible body with strong compliance ability, the tissue may be stuffed Entering this avoidance area will cause irreversible damage to vascular tissue and increase the risk of device use.
  • the present application provides an adaptive guiding device to optimize the defects that the existing guiding device has poor adaptability and is easy to cause damage to the human body.
  • Another object of the present application is to provide a transcatheter treatment system to optimize the disadvantages of poor adaptability and easy damage to the human body of the existing transcatheter treatment system.
  • An adaptive guiding device of the present application comprising: a hollow flexible conduit, which is pre-shaped and has a bend in a natural state;
  • the distal portion of the flexible catheter includes a distal section, the distal section includes a transition section and a straight section, the transition section is configured to be adjustable to change the direction of the straight section, and the point of application of the bend is adjacent to all The junction of the transition section and the straight section.
  • the length of the straight section is l, where 0 ⁇ l ⁇ 80mm.
  • the length of the straight section is 40-80 mm.
  • the transition section is pre-shaped into an arc shape.
  • the central angle corresponding to the transition section is a5, and the arc radius of the transition section is R5, wherein, 15° ⁇ a5 ⁇ 70°, 25mm ⁇ R5 ⁇ 45mm.
  • the flexible catheter includes a main body section, a section passing through the aortic arch, and the distal section, which are sequentially connected and communicated from proximal to far, and the section passing through the aortic arch is a curved structure imitating the shape of the aortic arch; the two sections of the transition section The ends are respectively tangent to the straight segment and the segment passing through the aortic arch.
  • the flexible conduit is bent toward different planes multiple times along its central axis in a natural state.
  • the flexible conduit is bent at least five times.
  • angles between the planes of at least four consecutive bends are less than 90°.
  • the angle between the two planes of the first bend closest to the distal end is larger than 90°.
  • the segment passing through the aortic arch includes sequentially connected and tangent first arc segment, second arc segment, third arc segment and fourth arc segment, the first arc segment, the second arc segment,
  • the third arc segment and the fourth arc segment are distributed on different planes, wherein the first arc segment is connected and communicated with the main body segment, and the fourth arc segment is connected and communicated with the distal end segment connected.
  • the angle of the first arc segment is a1, and the arc bending radius of the first arc segment is R1; the angle of the second arc segment is a2, and the arc bending radius of the second arc segment is The radius is R2; the angle of the third arc segment is a3, and the radius of the arc bending of the third arc segment is R3; the angle of the fourth arc segment is a4, and the arc bending radius of the fourth arc segment is The radius is R4;
  • angles formed by the central axis of the projection of the straight section on the first plane, the second plane, and the third plane and the central axis of the main body section are respectively ⁇ , ⁇ , and ⁇ , wherein the first The plane is a vertical plane, the second plane is a vertical plane perpendicular to the vertical plane, and the third plane is a horizontal plane perpendicular to both the vertical plane and the vertical plane, 35° ⁇ 85°, 25° ⁇ 80° , 20° ⁇ 75°.
  • the angle formed by the central axis of the transition section projected on the first plane and the central axis of the main body section is ⁇ , 0 ⁇ 45°.
  • the self-adaptive guiding device further includes an operating handle connected to the main body section for driving the flexible catheter to perform axial and circumferential movements.
  • the adaptive guiding device further includes a traction assembly, wherein the traction assembly includes a traction wire, a traction channel, and an anchor ring, and the traction channel is provided in the tube wall of the flexible catheter for the The traction wire is penetrated, the anchor ring is fixedly connected to the transition section of the distal end section, and the traction wire is respectively connected to the anchor ring and the operating handle.
  • the traction assembly includes a traction wire, a traction channel, and an anchor ring, and the traction channel is provided in the tube wall of the flexible catheter for the The traction wire is penetrated, the anchor ring is fixedly connected to the transition section of the distal end section, and the traction wire is respectively connected to the anchor ring and the operating handle.
  • the anchoring ring is adjacent to the junction of the transition section and the straight section.
  • the anchor ring also serves as a developing mark.
  • the distal end of the straight section is also provided with a developing mark.
  • the pulling wire is offset around the central axis of the flexible catheter.
  • the pulling wire is rotated by 90° around the central axis of the flexible catheter.
  • the starting point of rotation of the traction channel at the distal end section is A
  • the point after point A rotates 90° around the circumference of the flexible catheter is point B
  • a traction transition section is formed between point A and point B
  • the traction transition section includes a part or all of the section passing through the aortic arch, or includes a part or all of the main body section.
  • the length of the traction transition section is L, where 0mm ⁇ L ⁇ 250mm.
  • the present application provides a transcatheter treatment system, which includes the self-adaptive guiding device described in the present application, and also includes a treatment device that is movably worn in the flexible catheter, and the flexible catheter is used to establish an in vitro-to-in vivo A pathway through which the therapeutic device passes through the aortic arch via the flexible catheter.
  • the treatment device is selected from at least one of a myocardial injection device, a myocardial ablation device, a valve repair device or a valve replacement device.
  • the treatment device includes a bend-adjusting sheath, an inner sheath, and a treatment assembly, wherein the bend-adjusting sheath is movable in the flexible catheter and can be bent in one direction; the inner sheath moves The treatment component is passed through the inner sheath tube.
  • the bending direction of the bending sheath is different from the bending direction of the distal section of the flexible catheter of the adaptive guiding device.
  • the bending direction of the bending-adjusting sheath is substantially perpendicular to the bending direction of the distal section of the flexible catheter of the adaptive guiding device.
  • the distal end of the inner sheath is fixedly connected with a limiting member, and after the inner sheath protrudes from the distal end of the bending-adjusting sheath, the limiting member abuts against the tissue surface.
  • the treatment component is selected from at least one of injection components, ablation components, artificial heart valves, annuloplasty rings, valve clamping devices, sutures, tissue anchors or tissue puncture components.
  • the embodiment of the present application has at least the following advantages and positive effects: by setting the guiding device as a flexible catheter, and performing pre-shaping treatment on the flexible catheter and combining bending adjustment, the adaptability of the guiding device to the shape of the blood vessel can be improved.
  • FIG. 1 is a schematic diagram of the overall structure of an adaptive guidance device in one embodiment of the present application
  • Fig. 2 is a partial schematic diagram of the flexible catheter in one embodiment of the present application.
  • Fig. 3 is a partial schematic diagram of the front view direction of the flexible catheter in one embodiment of the present application.
  • Fig. 4 is a partial schematic diagram of the side view direction of the flexible catheter in one embodiment of the present application.
  • Fig. 5 is a partial schematic view of the flexible catheter in the downward direction in one embodiment of the present application.
  • Fig. 6 is a schematic diagram of the use state of the flexible catheter passing through the aortic arch of the heart in one embodiment of the present application;
  • Fig. 7 is a schematic diagram of the use state of the flexible catheter inside the heart in one embodiment of the present application.
  • Fig. 8 is a schematic diagram of the installation relationship between the flexible conduit and the traction assembly in one embodiment of the present application.
  • Fig. 9 is the sectional view of C-C plane in Fig. 8.
  • Fig. 10 is an enlarged view of part M in Fig. 9;
  • Fig. 11 is the sectional view of D-D plane among Fig. 8;
  • Fig. 12 is a schematic diagram of the bending direction of the flexible catheter in one embodiment of the present application.
  • Fig. 13 is a schematic diagram of the bending state of the flexible catheter in one embodiment of the present application when it is used in the heart;
  • Fig. 14 is a schematic diagram of the overall structure of the transcatheter endocardial injection system in one embodiment of the present application.
  • Fig. 15 is an enlarged view of part N in Fig. 14;
  • Fig. 16 is a schematic exploded view of the transcatheter endocardial injection system in one embodiment of the present application.
  • Fig. 17 is a schematic exploded view of the transcatheter endocardial injection system in another embodiment of the present application.
  • Fig. 18 is a schematic diagram of the state in which the needle of the transcatheter endocardial injection system penetrates into the free wall in one embodiment of the present application;
  • Fig. 19 is a schematic diagram of the direction of bending adjustment of the flexible catheter in the bending adjustment sheath and the adaptive guiding device of the transcatheter endocardial injection system in one embodiment of the present application;
  • FIG. 20 is a first schematic diagram of the application of the transcatheter endocardial injection system in the left atrium of the heart in one embodiment of the present application;
  • Figure 21 is an enlarged view of part O in Figure 19;
  • Fig. 22 is a second schematic diagram of the application of the transcatheter endocardial injection system in the left atrium of the heart in one embodiment of the present application;
  • Fig. 23 is a further exemplary structural schematic diagram of the transcatheter endocardial injection system in one embodiment of the present application.
  • 24 to 28 are schematic diagrams of the use process of the transcatheter therapy system in one embodiment of the present application.
  • Fig. 29 is a schematic diagram of using a myocardial ablation device as a treatment device in a transcatheter treatment system in one embodiment of the present application;
  • FIGS. 30 to 31 are schematic diagrams of a development mark in one embodiment of the present application.
  • Adaptive guiding device 101, flexible catheter; 1011, main body section; 1012, section through aortic arch; 10121, first arc section; 10222, second arc section; 10123, third arc section; 10124, fourth arc section 1013, distal end section; 10131, transition section; 10132, straight section; 102, operating handle; 103, traction assembly; 1031, traction wire; 1032, traction channel; 10321, traction transition section; 1033, anchor ring; 2.
  • Treatment device 201, adjustable sheath; 202, inner sheath; 2021, metal sleeve; 203, treatment assembly; 2031, injection channel; 2032, needle; 204, first adjustment handle; 205, second adjustment handle ;3.
  • Aortic arch 4. Left ventricle; 5. Anterior papillary muscle; 6. Posterior papillary muscle; 7. Target area; 8. Aortic valve; 9. Free wall; 10. First plane; 11. Second plane; 12. The third plane; 13. The ablation needle; 14. The ablation energy generating device; 15. The perfusion device.
  • an adaptive guiding device 1 which includes a certain length of hollow flexible conduit 101.
  • the flexible conduit 101 has been pre-shaped and bent in a natural state.
  • the overall distal part is a distal section 1013, the distal section 1013 at least includes a transition section 10131 and a straight section 10132, and the transition section 10131 is configured in an adjustable bending manner.
  • the bending method for example, it is bent at least five times along its central axis toward different planes, and the angle between the two planes of the first bend closest to the distal end is greater than 90°, and at least four consecutive bends The angle between the planes is less than 90° such that the at least partially flexible catheter adapts to the shape of the aortic arch.
  • the angle between the planes of at least four consecutive bends is less than 90°, which can be understood in conjunction with the following arc segments, such as the first arc segment 10121, the second arc segment 10222, the third arc segment 10123 and the fourth arc segment 10124. Each of them can determine a plane, and the included angle (deflection amplitude) of the planes where adjacent arc segments are located is less than 90°.
  • the plane W1 where the first arc segment 10121 is located the plane W2 where the second arc segment 1022 is located, the plane W1 and the plane W2
  • the included angle is less than 90°, and the other arcs are the same. Since the arc segments are not coplanar, bending toward different planes is realized.
  • the included angle between the two planes of the first bend closest to the distal end is greater than 90°.
  • the distal end of the flexible catheter 101 can adapt to the shape of the human body's aortic arch in a natural state, thereby simplifying the guidance Operation, improve the reliability of the device, reduce the extrusion resistance to human blood vessels, thereby reducing the damage to blood vessels, and improve the safety of device use.
  • the flexible catheter 101 in order to realize that the self-adaptive guiding device 1 has strong adaptability in human blood vessels, and has a certain push performance and twist control performance, the flexible catheter 101 preferably adopts a pre-shaped multi-layer sheath structure,
  • the self-adaptive guiding device 1 is made into an self-adaptive guiding sheath.
  • Pre-shaping treatment refers to the process of placing the flexible catheter in a mold with a specific shape and heating it to a certain temperature to form the flexible catheter into a specific shape.
  • the following steps are specifically included: placing the multi-layer sheath in the mold, and the inner cavity of the mold is adapted to the shape of the aortic arch; heating the placed multi-layer sheath and the mold together, cooling to room temperature, and removing the mold That's it.
  • the temperature and time of heating are selected according to the material and structure of different sheath tubes.
  • the flexible catheter 101 can also be a metal pipe cut tube, a metal wire braided tube or a hose made of other polymer materials. It only needs to use the aforementioned pre-shaping treatment to make the tube body have specific The shape can be adapted to the shape of the aortic arch.
  • the multi-layer sheath structure of the flexible catheter 101 includes at least three layers, including an inner layer (not marked in the figure), an intermediate layer (not marked in the figure) and an outer layer arranged sequentially from the inside to the outside.
  • the inner layer is a polymer inner membrane, which can be made of PTFE (polytetrafluoroethylene)
  • the middle layer is a metal braided mesh, which can be made of stainless steel wire mesh or tungsten wire mesh
  • the outer layer is made of polymer Outer membrane, optional PEBAX (polyether block polyamide) material.
  • the softness and hardness of the adventitia of the tube body at different positions of the multi-layer sheath can be selected and designed to adapt to the bending characteristics of different blood vessels, and can also improve the pushing performance and torque control performance of the sheath .
  • the commonly used hardness specifications of PEBAX are 25D, 35D, 55D, 72D, etc.
  • PEBAX with different hardness can be selected as the outer membrane of the tube to meet the performance requirements of different parts of the tube.
  • the flexible catheter 101 includes a main body section 1011, aortic arch section 1012, and distal section 1013 that are sequentially connected and communicated from near to far.
  • the main body section 1011 serves as the initial part of the overall structure of the flexible catheter 101, providing support for the overall structure
  • the passing aortic arch section 1012 is shaped like the aortic arch 3, and is used to pass through the aortic arch 3 part of the human heart to improve the adaptation to the aortic arch 3 It can reduce the extrusion resistance of the flexible catheter 101 to blood vessels
  • the distal section 1013 serves as the output end of the catheter to provide final guidance for the treatment device worn in the flexible catheter 101 .
  • the side near the main body section 1011 is designated as the proximal end of the flexible catheter 101, and the side near the distal end section 1013 is the distal end of the flexible catheter 101.
  • the proximal end penetrates, and the distal end passes through, that is, the lumen inlet of the flexible catheter 101 is set at the proximal end, while its outlet is located at the distal end.
  • the main body section 1011 is usually a straight section or an approximately straight section, and its main function is to pass through the femoral artery and the descending aorta to reach the starting position of the aortic arch 3, so it is the longest part of the introducer sheath, and its length can be selected from 540mm to 840mm.
  • the main body section 1011 In order to avoid twisting or bending of the flexible catheter 101 in curved blood vessels and increase the twist control performance of the flexible catheter 101, the main body section 1011 usually has a higher hardness. In this embodiment, the main body section 1011 preferably has a hardness of 72D. PEBAX outer membrane.
  • the aortic arch passage segment 1012 is connected with the main body segment 1011 and the distal end segment 1013 for passing through and adapting to the shape of the aortic arch 3 .
  • the aortic arch section 1012 adopts a curved arc section imitating the curvature of the aortic arch 3, and since the aortic arch 3 is a three-dimensional arch, the arch-like arc section The more there are, the higher the degree of coincidence between the guide device and the aortic arch 3 will be, but the processing difficulty will increase correspondingly, and too many arc segments will cause the tube body to become stiffer, lower the passability, and affect the adaptability.
  • the cross-aortic arch section 1012 at least includes sequentially connected and tangent first arc section 10121, second arc section 10222, third arc section 10123 and fourth arc section 10124, the first An arc segment 10121, a second arc segment 10222, a third arc segment 10123 and a fourth arc segment 10124 are distributed on different planes, wherein the first arc segment 10121 is connected and communicated with the main body segment 1011, and the fourth arc segment 10124 is connected with the far The end sections 1013 are connected and communicated.
  • the aortic arch section 1012 of the flexible catheter 101 has a higher degree of fitting or coincidence with the aortic arch 3 , better adaptability and passability, and can reduce the extrusion resistance to blood vessels to reduce blood vessel damage.
  • the angle of the first arc segment 10121 is a1, and the radius of the arc bending of the first arc segment 10121 is R1; the angle of the second arc segment 10222 is a2, and the radius of the arc bending of the second arc segment 10222 is R2;
  • the angle of the third arc segment 10123 is a3, the arc bending radius of the third arc segment 10123 is R3; the angle of the fourth arc segment 10124 is a4, and the arc bending radius of the fourth arc segment 10124 is R4;
  • the above setting results are obtained. According to the above parameter setting, it can better adapt to the shape of the third segment of the aortic arch in most human hearts, and can obviously reduce the Small squeeze resistance to blood vessels to reduce blood vessel damage and improve the safety of device use.
  • the section 1012 through the aortic arch in order to keep the section 1012 through the aortic arch to have a certain hardness after shaping, to avoid the tube body from bending when being squeezed by the blood vessel wall, or to stretch the section 1012 through the aortic arch when delivering the instrument, in this embodiment, the section 1012 through the aortic arch
  • the hardness of the PEBAX outer membrane of section 1012 is preferably 55D.
  • the distal section 1013 at least includes a transition section 10131 and a straight section 10132, wherein the transition section 10131 is arc-shaped, and its two ends are respectively tangent to the straight section 10132 and the aortic arch section 1012.
  • the curvature of the tube body can be avoided from changing too much, and the resistance and difficulty of the instrument passing through the guiding device can be reduced.
  • the at least five bends obtained by the so-called pre-shaping treatment above can be understood as four of which are the first arc segment 10121, the second arc segment 10222, the third arc segment 10123 and the fourth arc segment 10124, and the fifth The second corresponds to the transition section 10131 that is pre-shaped into a circular arc.
  • the angle of the transition section 10131 is a5, and the radius of the arc of the transition section 10131 is R5 (projection on the first plane 10), wherein, 15° ⁇ a5 ⁇ 70°, 25mm ⁇ R5 ⁇ 45mm .
  • the value of the angle a5 of the transition section 10131 and the radius R5 of its circular arc ultimately affect the direction of the straight section 10132, and the bending radius of the transition section 10131 will also affect the magnitude of the bending force, although the greater the bending radius Larger, the smaller the rigidity of the transition section 10131, the smaller the bending adjustment force required during bending adjustment, but it should also be avoided that an excessively large bending radius affects the passability of the pipe body.
  • the distal end section 1013 can point to the middle position of the anterior papillary muscle 5 and the posterior papillary muscle 6 in the initial state, ensuring that the instrument that passes through the flexible catheter 101 and enters the inside of the heart can have Larger operation and adjustment space and a more favorable initial position for adjustment, that is, the delivered device can be operated and covered a wider range, while avoiding affecting the passage and bending force of the tube body.
  • the angles formed by the central axis of the straight section 10132 projected on the first plane 10, the second plane 11, and the third plane 12 and the central axis of the main body section 1011 are respectively ⁇ , ⁇ , ⁇ , the first plane 10 is a vertical plane, the second plane 11 is a vertical plane perpendicular to the vertical plane, and the third plane 12 is a horizontal plane perpendicular to the vertical plane and the vertical plane, wherein, 35° ⁇ 85 °, 25° ⁇ 80°, 20° ⁇ 75°.
  • first plane 10 and the third plane 12 intersect vertically, and for easy understanding, the vertical intersecting position is approximately the central axis of the main body section 1011 .
  • the angles a1 to a4 of the first to fourth arc segments can be understood as the central angles corresponding to each segment after being projected onto the third plane 12 .
  • the angle a1 can be determined according to its radius R1.
  • angles ⁇ , ⁇ , and ⁇ jointly affect the indication direction of the straight section 10132 at the distal end of the flexible catheter 101, and the value of ⁇ determines the relationship between the distal end of the flexible catheter 101 and the anterior papillary muscles 5 and posterior papillary muscles in the inner structure of the heart.
  • ⁇ and ⁇ determine the abutment position of the straight section 10132 of the flexible catheter 101 to the interventricular septum and the free wall 9 in the internal structure of the heart.
  • the length of the straight section 10132 is l, wherein, 0 ⁇ l ⁇ 80mm.
  • the length of the straight section 10132 may preferably be 40 mm.
  • the longer the length of the straight section 10132 the more precise the direction of the instrument passing through the straight section 10132.
  • the above interval is adopted, so that the instrument passing through the straight section 10132 can accurately reach the target area 7.
  • the distal section 1013 The hardness of the PEBAX outer membrane of the middle transition section 10131 and the straight section 10132 is preferably 25D.
  • the angle formed by the central axis of the transition section 10131 projected on the first plane 10 and the central axis of the main body section 1011 is ⁇ , wherein the first plane 10 is a vertical plane, and 0 ⁇ 45°.
  • the size of ⁇ affects the initial position of the transition section 10131 of the distal section 1013. Therefore, through the above settings, it can be ensured that after the shaping is completed, when the adaptive guide device 1 is used to enter the left ventricle 4, the flexible catheter 101 can pass through the aortic arch.
  • the section 1012 will be in the middle of the aortic arch 3, which can reserve enough space for the flexible catheter 101 to be displaced laterally during the adjustment process, and also greatly reduce the extrusion resistance to the blood vessels and the aortic valve 8 of the inner structure of the heart.
  • the adaptive guiding device 1 further includes an operating handle 102 connected to the main body section 1011 for driving the flexible catheter 101 to move axially and circumferentially.
  • the operating handle 102 is convenient for the operator to hold and operate, so that the flexible catheter 101 can move axially and circumferentially, so that the distal end section 1013 of the flexible catheter 101 can be accurately pointed to the target area 7, providing a convenient way for subsequent treatment instruments. Do precise guidance.
  • the operating handle 102 can adopt a common handle.
  • the flexible catheter 101 can be bent to different planes along the central axis at least five times in a natural state, thereby improving the self-adaptation of the guiding device to the shape of the blood vessel It can better adapt to the complex anatomical shape of the human aortic arch 3, thereby simplifying the guiding operation, reducing the extrusion resistance to human blood vessels, and improving the reliability of the device; at the same time, the structure of the guiding device is simplified to improve the safety of using the device It also avoids the need for a large avoidance space when the guide device is in use, ensures that the guide device has a larger operating adjustment space and an initial position that is more conducive to adjustment, and avoids tissue stuffing into the avoidance area, thereby reducing the impact on the patient. Damage caused by blood vessels, so as to improve the safety of device use.
  • the adaptive guiding device 1 further includes a traction assembly 103 for precisely adjusting the lateral displacement of the distal end section 1013 of the flexible catheter 101 to further improve the adaptability to the vessel shape.
  • the traction assembly 103 includes a traction wire 1031, a traction channel 1032 and an anchor ring 1033
  • the traction channel 1032 is set in the tube wall of the flexible catheter 101, that is, the traction channel 1032 is provided on the outer layer of the flexible catheter 101 and the inner layer, specifically between the inner layer and the middle layer, or between the middle layer and the outer layer; the traction channel 1032 is used for the traction wire 1031 to penetrate, and the anchor ring 1033 is fixed to the transition section 10131 of the distal end section 1013
  • the pulling wire 1031 is fixedly connected with the anchor ring 1033 and the operating handle 102 respectively.
  • the traction wire 1031 is a flexible filament with a certain length and toughness, and can be selected from stainless steel braided rope, non-metallic braided rope (such as ordinary suture), steel wire, nickel-titanium wire, etc.
  • stainless steel braided wire is preferred, because It has good toughness, flex resistance and flexibility.
  • the traction channel 1032 is set in the tube wall of the flexible catheter, and is used to penetrate and protect the traction wire 1031.
  • the traction channel 1032 can be a PI (polyimide) tube, a PEEK (polyether ether ketone) tube, a stainless steel cut hose, etc.
  • the traction catheter is preferably a PI tube.
  • the operating handle 102 pulls the anchor ring 1033 by operating the pulling wire 1031 of the pulling assembly 103, thereby pulling the distal end section 1013 of the flexible catheter 101, thereby realizing the control of the movement range and the lateral displacement of the distal end section 1013 of the flexible catheter 101. direction, to ensure that the distal end section 1013 of the flexible catheter 101 is at the outflow tract position of the aortic arch 3, to ensure that it can have a larger space for adjustable bending, and to facilitate further clinical operations.
  • the anchor ring 1033 is fixed on the transition section 10131 of the distal section 1013 .
  • the transition section 10131 is used as the bending part, and the pulling wire 1031 is pulled by the operating handle 102, so that the transition section 10131 can be bent accordingly, and then the straight section 10132 is driven to undergo lateral displacement, thereby realizing the control of the distal section 1013 of the flexible catheter 101.
  • the range and direction of the lateral displacement of the horizontal displacement, and the transition section 10131 is used as the bending section. Since the end is connected with the straight section 10132, when only a small adjustment of the transition section 10131 is required, the end of the straight section 10132 can be generated.
  • the distal end section 1013 of the flexible catheter 101 can produce a larger position change, reducing the activity space required by the flexible catheter 101 itself, and at the same time realizing More precise and reliable adjustment of the output end of the distal section 1013 of the flexible catheter 101.
  • the anchor ring 1033 is fixedly connected to the end of the transition section 10131 close to the straight section 10132 .
  • the traction moment can be maximized, and the traction force required to be provided when the straight section 10132 is adjusted can be reduced.
  • the anchor ring 1033 can be made of stainless steel. When the anchor ring 1033 is made of stainless steel, it can be fixedly connected with the pulling wire 1031 by welding. In some embodiments, a single wire can be set in the pulling channel 1032. Pull the wire 1031, and fix one end to the anchor ring 1033 by welding, and fix the other end to the operating handle 102.
  • the anchor ring 1033 can also be made of other materials.
  • the pulling wire 1031 can be connected to the anchor ring 1033 through a loop.
  • At least two pulling wires 1031 are provided, that is, at least including a first pulling wire and a second pulling wire, one end of the first pulling wire and the second pulling wire form a closed-loop pulling wire group, and the pulling wire One end of the set is connected to the anchor ring 1033 and the other end is connected to the operating handle 102 .
  • the purpose of pulling the distal end section 1013 of the flexible catheter 101 to deviate in different directions can also be achieved by pulling the pulling wire group by operating the handle 102 .
  • a pulling channel 1032 is provided corresponding to each pulling wire 1031 .
  • the drawing wire 1031 and the anchoring ring 1033 are preferably connected by welding, which can reduce the overall outer diameter of the drawing wire 1031 and the anchoring ring 1033, thereby reducing the resistance during lateral bending, and at the same time
  • the outer diameter of the flexible catheter 101 is reduced;
  • the anchor ring 1033 is preferably made of tantalum, which has a better imaging effect under ultrasound than stainless steel.
  • the traction channel 1032 gradually rotates and shifts around the central axis along the projection perpendicular to the central axis of the flexible catheter 101 in the direction from the distal end section 1013 to the main body section 1011 .
  • the traction channel 1032 is set as a straight line parallel to the central axis of the flexible catheter 101.
  • the traction channel 1032 can be shifted around the central axis, and the traction wire 1031 passing through the traction channel 1032 can be offset accordingly.
  • the distal section 1013 is better based on the main body section 1011, which is offset relative to the main body section 1011, reducing the deviation of the main body section 1011 following the same direction when the distal section 1013 is adjusted, and reducing the impact on the blood vessel. Squeeze resistance.
  • the starting point of the rotation of the traction channel 1032 in the distal section 1013 is A
  • the point A after rotating 90° around the circumference of the flexible catheter 101 is B
  • the point A and point B are formed
  • the traction transition section 10321, the traction transition section 10321 includes a part or all of the aortic arch section 1012, or includes a part or all of the main body section 1011.
  • the end point of the deflection of the traction channel 1032 can be set at the section passing through the aortic arch 1012 or the main body section 1011, and the setting can be adjusted according to the actual design and the effect of use.
  • the length L of the traction transition section 10321 affects the size of the torsional offset of the flexible conduit 101 during lateral bending: when the length of the traction transition section 10321 is too short, the required bending adjustment The force is large; when the length L of the traction transition section 10321 is too long, even the entire traction wire 1031 rotates along the position A of the traction wire 1031 and extends to the operating handle 102.
  • the overall flexible catheter 101 deviates toward the position of the pulling wire 1031 , which in turn increases the deflection range of the flexible catheter 101 , increases the extrusion of blood vessels, and easily causes blood vessel damage.
  • the range of the length L of the traction transition section 10321 is: 0mm ⁇ L ⁇ 250mm.
  • the length of the pulling transition section 10321 mainly affects the tension and
  • the length of the traction transition section 10321 is preferably 40mm, and at this time, the bending tension and the deviation range of the aortic arch section 1012 can be kept in an ideal state.
  • the transition section 10131 in the distal section 1013 is set as a bending section for realizing lateral displacement
  • the hardness value of the PEBAX outer membrane is proportional to the bending force value of the pulling wire 1031, and the lower the hardness value of the PEBAX outer membrane, the When the distal end of the flexible catheter is displaced, the bending force of the pulling wire 1031 becomes smaller.
  • the PEBAX adventitia of the transition section 10131 is preferably 25D, which not only ensures that the requirement for a small bending force is met, but also maintains a certain strength, and prevents the tube body from being bent due to the extrusion of the blood vessel wall.
  • the flexible catheter 101 of this embodiment needs to be displaced laterally during use, it is necessary to provide a fulcrum for the flexible catheter 101 at the aortic arch 3, so that the flexible catheter 101 remains still in the front part of the fulcrum, and in the rear part of the fulcrum.
  • the lateral displacement of the distal end section 1013 of the flexible catheter 101 occurs through bending adjustment, so that the displacement in a specified section can occur in a specified direction.
  • the fourth arc segment 10124 in the aortic arch segment 1012 is set as a fulcrum to be attached to the outside of the aortic arch 3, so that when the flexible catheter 101 undergoes lateral displacement, the flexible catheter 101 Appropriate supporting force is provided, and the first arc segment 10121 , the second arc segment 10222 , and the third arc segment 10123 do not abut against the inner side of the aortic arch 3 , thereby reducing the extrusion resistance to blood vessels.
  • a transcatheter treatment system which includes any adaptive guiding device 1 in the above-mentioned embodiments, and also includes a treatment device 2 that is movably worn in a flexible catheter 101 , the adaptive guide device 1 is used to establish an extracorporeal transaortic access to the body, and the treatment device 2 passes through the aortic arch via a flexible catheter 101 .
  • the flexible catheter 101 of the adaptive guiding device 1 is used as the outermost sheath tube (abbreviation: outer sheath tube) of the whole transcatheter treatment system, and usually cooperates with the guide wire to jointly establish a channel from the outside to the inside.
  • the improved self-adaptive guiding device 1 is used in a transcatheter treatment system to improve the guiding efficiency and reduce the safety risk of use.
  • the therapeutic device is at least one selected from myocardial injection device, myocardial ablation device, valve repair device or valve replacement device. That is, the self-adaptive guiding device 1 can be used in a transcatheter endocardial injection system, a transcatheter radiofrequency ablation system or a heart valve repair system, so as to improve guiding efficiency and reduce the safety risk of device use.
  • the treatment device 2 includes a bending adjustment sheath 201 , an inner sheath tube 202 and a treatment assembly.
  • the bending adjustment sheath 201 is movably installed in the flexible catheter 101 and can be unidirectionally adjusted;
  • the treatment component is selected from at least one of an injection component, an ablation component, an artificial heart valve, an annuloplasty ring, a valve clamping device, a suture, a tissue anchor or a tissue puncture component, for example, the injection component 203 is selected.
  • the bending adjustment sheath 201 can be movably worn in the inner cavity of the flexible catheter 101 of the adaptive guiding device 1, and has a one-way bending function, and is used to cooperate with the adaptive guiding device 1 to deliver the treatment components to reach the predetermined treatment site.
  • the inner sheath tube 202 is movably installed in the inner cavity of the bending-adjusting sheath 201, and is used to prevent the treatment component from scratching the inner wall of the bending-adjusting sheath 201, and protect and ensure the movement of the treatment component.
  • the distal end of the inner sheath 202 is fixedly connected with a limiter
  • the limiter can be a metal sleeve 2021
  • the end surface of the metal sleeve 2021 has a certain area to avoid damaging or puncturing the free wall 9 when it abuts against the free wall 9 of the left ventricle 4 .
  • the transcatheter treatment system of the present application will be described below by taking the treatment component as the injection component 203 as an example.
  • the transcatheter endocardial injection system includes an adaptive guide device 1 and a treatment device 2 , wherein the adaptive guide device 1 is used as an outer sheath, and the treatment device 2 is passed through the adaptive guide device 1 .
  • the treatment device 2 includes an injection assembly 203 .
  • the injection assembly 203 includes an injection channel 2031 and a needle 2032 connected and communicated with the distal end of the injection channel 2031.
  • the needle 2032 is used to pierce into the myocardial free wall 9 and inject therapeutic agents such as contrast medium, medicine or hydrogel.
  • therapeutic agents such as contrast medium, medicine or hydrogel.
  • the end plane of the metal sleeve 2021 at the distal end of the injection channel 2031 is provided with a through hole for the needle 2032 to pass through;
  • the injection channel 2031 includes an inner channel for drug injection (not shown in the figure) and an outer channel for contrast agent injection. channel, so that the actual contact between the metal sleeve 2021 and the free wall 9 can be judged through the diffusion of the contrast agent in the free wall 9 .
  • the treatment device 2 includes a bend-adjusting sheath 201 passed through the flexible catheter 101 , an inner sheath 202 passed through the bend-adjusting sheath 201 , and an injection assembly 203 passed through the inner sheath 202 .
  • the bending sheath 201 serves as an intermediate support and auxiliary adjustment basis, and the injection assembly 203 can pass through the inner sheath 202, and then can inject therapeutic drugs or other medicines into the target area 7 (myocardial tissue) .
  • Fig. 23 is a further exemplary structural schematic diagram of the transcatheter endocardial injection system.
  • a first adjustment handle 204 and a second adjustment handle are provided corresponding to the bending adjustment sheath 201 and the inner sheath tube 202 respectively 205. Both the first adjusting handle 204 and the second adjusting handle 205 can adopt conventional handles.
  • the bending direction of the bending adjustment sheath 201 is different from that of the distal end section 1013 of the flexible catheter 101 of the adaptive guiding device 1 .
  • the adjustment range of the direction of the inner sheath tube 202 passing through the bending-adjusting sheath 201 can be improved, that is, the final adjustment range can be adjusted.
  • the direction of the instrument passing through the inner sheath 202 improves the flexibility of the adjustment of the overall output end of the transcatheter treatment system, which is conducive to more accurately guiding the instrument passing through the inner sheath 202 to the target area 7, achieving precise guidance.
  • the bending direction of the bending adjustment sheath 201 is substantially perpendicular to the bending direction of the distal end section 1013 of the flexible catheter 101 of the adaptive guide device 1 .
  • the bending adjustment sheath 201 is arranged along the bending direction perpendicular to the distal end section 1013, so as to improve the flexibility of the overall output end adjustment of the transcatheter treatment system, which is conducive to inserting
  • the instrument in the sheath 202 is more precisely guided to the target area 7, enabling precise guidance.
  • the outer sheath that is, the distal section 1013 of the flexible catheter 101 of the adaptive guide device 1
  • the middle sheath that is worn in the lumen of the outer sheath is adjusted.
  • the bending direction of the curved sheath 201 is the vertical direction perpendicular to the lateral displacement.
  • Step S1 As shown in Figure 20, after femoral artery puncture, the adaptive guiding device 1 cooperates with a conventional guide wire to reach the left ventricle 4 through the femoral artery through the aortic arch 3.
  • the flexible catheter of the adaptive guiding device 1 101 is in the initial state, the distal end of the tube body is centered, and is located at a certain distance below the aortic valve 8; afterward, the treatment device 2 is delivered into the left ventricle 4 along the flexible catheter 101 of the adaptive guide device 1 until the inner sheath The end of the metal sleeve 2021 at the distal end of the tube 202 is exposed;
  • the flexible catheter 101 After the flexible catheter 101 arrives at the predetermined position first, it is then passed through the treatment device 2, which is conducive to taking advantage of the pre-shaping of the flexible catheter 101 and avoiding the impact on the pre-shaping when it is delivered synchronously with the treatment device 2.
  • the distal end of the flexible catheter 101 A non-transvalve approach can also be used, that is, it stays above the aortic valve 8 and does not extend into the left ventricle.
  • Step S2 As shown in Figure 20 and Figure 22, adjust the distal output end of the flexible catheter 101 to point between the anterior and posterior papillary muscles 6, and at this time push the bending adjustment sheath 201 of the treatment device 2 forward so that the distal end of the bending adjustment sheath 201 Keep a certain distance between the end and the output end of the distal end of the flexible catheter 101, and then bend the distal end of the bending-adjusting sheath 201 so that the metal sleeve 2021 at the distal end of the inner sheath 202 faces the target area 7 and is as perpendicular to the target area 7 as possible; then, Further push the inner sheath 202 forward until the metal sleeve 2021 abuts against the free wall 9 of the target area 7;
  • Step S3 As shown in Figure 18, the needle 2032 at the far end of the injection channel 2031 is pierced into the free wall 9, at this time, the contrast agent can be injected into the outer channel of the injection channel 2031 and the diffusion of the contrast agent can be observed, such as contrast agent The drug diffuses out from the through holes distributed in the circumferential direction of the metal sleeve 2021, indicating that the needle 2032 has firmly penetrated into the treatment site at this time.
  • the therapeutic agent such as hydrogel can be injected into the inner channel, so that the drug can be filled in the free wall 9 Inside, realize drug injection;
  • Step S4 If multiple treatment sites need to be injected, the needle 2032 is withdrawn, so that the needle 2032 is retracted into the metal sleeve 2021; end; keep the bending adjustment stroke of the flexible catheter 101 unchanged, rotate the bending adjustment sheath 201, and then repeat steps S1 to S3 to realize hydrogel injection at other sites on the same level; or increase or decrease the flexible catheter 101
  • Step S5 After completing the drug injection at all treatment sites, withdraw the needle 2032, retract the injection channel 2031, release the bending adjustment sheath 201, and release the flexible catheter 101; finally, withdraw the treatment device 2 and the flexible catheter 101.
  • a control method of a transcatheter endocardial injection system includes a flexible catheter 101 that is arranged slidingly from outside to inside, a bend adjustment The sheath 201 and the needle 2032, wherein the proximal end of the flexible catheter 101 is controlled by the operating handle 102, the proximal end of the bending sheath 201 is controlled by the first adjustment handle 204, and the proximal end of the needle 2032 is controlled by the second adjustment handle 205, And the flexible catheter 101 and the bending adjustment sheath 201 can be rotated and adjusted under the drive of the corresponding handle.
  • the second adjustment handle 205 can also be connected with the inner sheath 202 , the inner sheath 202 is located outside the needle 2032 and the distal end of the inner sheath 202 is connected with a metal sleeve 2021 .
  • the transcatheter endocardial injection system of this embodiment can adopt the relevant components of the above embodiments.
  • the flexible catheter 101 can be bent by itself (for example, the flexible catheter 101 can be bent to the flexible catheter 101' in Fig. 25 ), and it can also be driven by the operating handle 102 Rotate around its own longitudinal axis, similarly the bending sheath 201 can adjust its own bending (such as bending the bending sheath 201 to the bending adjustment sheath 201' in Figure 25), and can be driven by the first adjustment handle 204 The vertical axis is rotated.
  • the flexible catheter 101 can no longer change after being adjusted, but only adjust the direction and the far and near position of the bending adjustment sheath 201. Under the specific use conditions of multi-point injection, the injection can be quickly switched The orientation and position of the needle can improve the operation efficiency.
  • the operation method of the transcatheter treatment system that is, the method of adjusting the position of the needle under the condition of continuous injection
  • the injection positions arranged in multiple rows and multiple columns as an example.
  • the arrangement of the injection positions in the figure is only for illustration, and each injection position is the target area 7 , which is located on the wall 206 of the left ventricle. In fact, it can be adjusted according to the size and location of the lesion.
  • control method of the transcatheter endocardial injection system in this embodiment includes:
  • At least one of the following methods is used to adjust the position of the needle until it corresponds to the next injection position for the spatial offset; Bend, move to the distal end or the proximal end as a whole.
  • Various methods can be used in combination, and the adjustment range can be realized according to pre-modeling and real-time imaging equipment. For the change of injection position in different situations, please refer to the following examples, and operate in the same way in other situations.
  • the flexible catheter remains unchanged and the needle 2032 can be transferred from the injection position X1 to the injection position X2 only by adjusting the sheath 201 to rotate around its own longitudinal axis.
  • the flexible catheter 101 remains unchanged, the bending adjustment sheath 201 rotates along its own longitudinal axis, and the needle 2032 is transferred from the injection position B1 to the injection position B2.
  • the bending adjustment sheath 201 is adjusted to make the needle 2032 transfer from the injection position B2 to the injection position B4.
  • the flexible catheter 101 remains unchanged, and the bend-adjusting sheath 201 rotates around its own longitudinal axis to transfer the needle 2032 from the injection position C1 to the injection position C2 and the injection position C3.
  • the bending adjustment sheath 201 maintains the degree of curvature, withdraws along the intervention path, and the needle 2032 is transferred from the injection position C3 to the injection position C4.
  • the bending adjustment sheath 201 rotates around its own longitudinal axis, and the needle 2032 is transferred from the injection position C5 to the injection position C6.
  • the bending adjustment sheath 201 is preferentially used to rotate and adjust the bending, so as to reduce the axial movement along the intervention path, that is, reduce the corresponding potential surgical risks.
  • the adaptive guiding device 1 of the present application can also be applied in different fields such as transcatheter radiofrequency ablation system, heart valve repair system, etc., and an interventional device that establishes an extracorporeal to in vivo channel as required, and the exemplary embodiment is not intended as a reference to this application. Application limitation.
  • an ablation component is used as a treatment component, and the ablation component includes an ablation needle 13, an ablation energy that is connected with the ablation needle 13 and provides ablation energy.
  • the generating device 14 and the perfusion device 15 for providing the electrolyte solution other structures of the transcatheter radiofrequency ablation system can refer to the above implementation situation of using the treatment component and selecting the injection component, that is, the ablation component also includes the bending sheath, the inner sheath tube and the ablation Needle; the ablation component is movable in the self-adaptive guide device 1.
  • the ablation needle After the ablation needle passes through the inner sheath, it enters the myocardium by puncturing the endocardium, and then the energy generating device provides energy for the ablation needle to regulate the Ablation of myocardial tissue is performed to treat hypertrophic cardiomyopathy (HCM) through minimally invasive intervention.
  • HCM hypertrophic cardiomyopathy
  • the adaptive guide device 1 when the adaptive guide device 1 is applied to, for example, a transcatheter valve repair system, when an anchor is used as a treatment component, the anchor can be implanted in the ventricular wall through a catheter, and the anchor It is connected with e-PTFE suture, and then one end of the suture is connected to the valve leaflet, and the suture is used as an artificial chord to realize the repair of the chord of the valve, or multiple anchors connected to each other by suture are sequentially implanted in the On the ventricular wall, retightening to achieve ventricular volume reduction or valvuloplasty to treat valvular regurgitation disease through minimally invasive interventions.
  • the adaptive guiding device 1 provided by the present application and the transcatheter treatment system including the adaptive guiding device 1 can better adapt to the complex anatomical shape of the aortic arch 3 and simplify the structure of the guiding device , Improve the safety of equipment use.
  • the flexible catheter 101 is provided with developing marks F1 and F2, and the developing marks F1 and F2 on the flexible catheter 101 basically correspond to the size of the straight section 10132, for example, the distance is 40-80 mm.
  • the development marks F3 and F4 are set on the bending sheath 201, and the distance between the development marks F3 and F4 on the bending sheath 201 is 40-80 mm.
  • the developing mark in the flexible catheter 101 can know the position of the straight section 10132 and the distal end, and the developing mark of the bending adjustment sheath 201 can know the position of the distal end of itself on the one hand, and can also cooperate with the developing mark at the most distal end of the flexible catheter 101 to know whether it is complete or not.
  • the most distal end of the flexible catheter 101 is extended, and at least most of the area extends out of the flexible catheter 101 to facilitate bending adjustment. Otherwise, it will be interfered by the flexible catheter 101 and affect the bending adjustment effect.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Otolaryngology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Surgical Instruments (AREA)

Abstract

本申请公开了一种自适应导引装置以及经导管治疗系统,所述自适应导引装置包括:中空的柔性导管,所述柔性导管经过预塑形处理,在自然状态下具有弯折;所述柔性导管的远端部位包括远端段,所述远端段包括过渡段以及直段,所述过渡段配置为可调弯以改变所述直段的指向,调弯的施力点邻近所述过渡段与所述直段的衔接部位。本申请所提供的自适应导引装置以及经导管治疗系统,可以提高导引装置对主动脉弓部等复杂解剖形态的血管的自适应性,并且简化了导引装置结构,提高器械使用的安全性,避免导引装置在使用时需要较大避让空间、避免使得组织填塞进入避让区域,确保导引装置拥有更大的操作调节空间和更利于调节的初始位置。

Description

一种自适应导引装置以及经导管治疗系统 技术领域
本申请涉及医疗器械技术领域,尤其涉及一种自适应导引装置以及经导管治疗系统。
背景技术
随着医疗技术的发展,介入式手术日益普遍,其特点是通过在患者体表开设较小的操作窗口,将导管类器械沿着血管通道送达治疗区域,建立体外-体内的通道,再通过该通道送入各种治疗装置,进行介入治疗。其中用于建立体外至体内通道的装置,称为导引装置,针对于不同路径下的介入治疗,导引装置需适应不同血管的形态,最好是能具有一定的自适应性,在避免血管组织发生不可逆损伤的前提下,快速精确地到达病灶区域,进行介入治疗。
例如,现有技术中,公告号为WO2020/068601A1的专利申请公开的一种导管类介入器械的导引装置,使用远端柔性段为铰链结构,通过施加一定的轴向力使其发生横向位移,以适应弯曲的血管形状。
在介入治疗结构性心脏病领域,常用的介入路径有:经股静脉穿刺,通过下腔静脉、右心房到达右心室;或经下腔静脉、右心房、左心房到达左心室;或经股动脉穿刺,通过主动脉弓到达左心室。对于经过主动脉弓的介入路径,由于主动脉弓特殊的弓形立体形态,导引装置需要多段调弯,即需要多段铰链结构拼接共同配合工作,这将导致器械结构的复杂性提高,稳定性降低;同时铰链结构发生横向位移时需要较大避让空间,且当发生横向位移时,该避让空间会逐步被压缩,增加调弯难度;而由于血管组织本身为柔性体,具有较强的顺应能力,组织可能会填塞进入该避让区域,从而导致对血管组织造成不可逆的损伤,增加器械的使用风险。
因此,需要提出一种安全性高的导引装置以及运用方案。
发明内容
为了克服上述现有技术所述的至少一种缺陷,本申请提供一种自适应导引装置,以优化现有的导引装置适应性较差,易对人体造成损伤的缺陷。
本申请的另一目的在于提供一种经导管治疗系统,以优化现有的经导管治疗系统的适应性较差,易对人体造成损伤的缺陷。
本申请一种自适应导引装置,包括:中空的柔性导管,所述柔性导管经过预塑形处理,在自然状态下具有弯折;
所述柔性导管的远端部位包括远端段,所述远端段包括过渡段以及直段,所述过渡段配置为可调弯以改变所述直段的指向,调弯的施力点邻近所述过渡段与所述直段的衔接部位。
可选的,所述直段的长度为l,其中,0<l<80mm。
可选的,所述直段的长度为40~80mm。
可选的,所述过渡段预塑形为圆弧状。
可选的,所述过渡段对应的圆心角为a5,所述过渡段圆弧弯曲的半径为R5,其中,15°≤a5≤70°,25mm≤R5≤45mm。
可选的,所述柔性导管包括由近及远依次连接并连通的主体段、过主动脉弓段以及所述远端段,所述过主动脉弓段为仿主动脉弓形的曲线结构;所述过渡段的两端分别与所述直段、过主动脉弓段相切。
可选的,所述柔性导管在自然状态下其沿自身的中轴线朝不同平面多次弯折。
可选的,所述柔性导管弯折至少五次。
可选的,至少四次连续弯折的平面之间角度小于90°。
可选的,最靠近远端的一次弯折的两平面之间的夹角大于90°。
可选的,所述过主动脉弓段包括依次连接且相切的第一弧段、第二弧段、第三弧段及第四弧段,所述第一弧段、所述第二弧段、所述第三弧段及所述第四弧段分布在不同平面上,其中,所述第一弧段与所述主体段连接并连通,所述第四弧段与所述远端段连接并连通。
可选的,所述第一弧段的角度为a1,所述第一弧段圆弧弯曲的半径为R1;所述第二弧段的角度为a2,所述第二弧段圆弧弯曲的半径为R2;所述第三弧段的角度为a3,所述第三弧段圆弧弯曲的半径为R3;所述第四弧段的角度为a4,所述第四弧段圆弧弯曲的半径为R4;
其中,4.5°≤a1≤30°,90mm≤R1≤450mm;25°≤a2≤80°,10mm≤R2≤60mm;20°≤a3≤70°,25mm≤R3≤50mm;20°≤a4≤110°,20mm≤R4≤50mm。
可选的,所述直段在第一平面、第二平面、第三平面上投影的中心轴线分别与所述主体段中心轴线所成的夹角分别为α、β、γ,其中,第一平面为竖直平面,第二平面为与竖直平面垂直的垂直面,第三平面为与竖直平面、垂直面均垂直的水平面,35°≤α≤85°,25°≤β≤80°,20°≤γ≤75°。
可选的,所述过渡段在第一平面上投影的中心轴线与所述主体段中心轴线所成的夹角为δ,0<δ≤45°。
可选的,所述自适应导引装置还包括操作手柄,所述操作手柄与所述主体段连接,用于驱动所述柔性导管做轴向运动和周向运动。
可选的,所述自适应导引装置还包括牵引组件,其中,所述牵引组件包括牵引丝、牵引通道以及锚定环,所述牵引通道设置于所述柔性导管的管壁中,供所述牵引丝穿入,所述锚定环与所述远端段的过渡段固定连接,所述牵引丝与所述锚定环、所述操作手柄分别连接。
可选的,所述锚定环邻近所述过渡段与所述直段的衔接部位。
可选的,所述锚定环兼做显影标识。
可选的,所述直段的远端还配置有显影标识。
可选的,所述牵引丝绕所述柔性导管的中轴线偏移。
可选的,所述牵引丝绕所述柔性导管的中轴线偏移幅度为旋转90°。
可选的,所述牵引通道在所述远端段的旋转起点为A,点A绕所述柔性导管的周向旋转90°后的点为B,点A和点B之间形成牵引过渡段,所述牵引过渡段包括所述过主动脉弓段的一部分或全部,或者包括所述主体段的一部分或全部。
可选的,所述牵引过渡段的长度为L,其中,0mm<L≤250mm。
本申请提供一种经导管治疗系统,包括本申请中所述的自适应导引装置,还包括活动地穿装于所述柔性导管中的治疗装置,所述柔性导管用于建立体外至体内的通路,所述治疗装置经由所述柔性导管穿过主动脉弓部。
可选的,所述治疗装置选自心肌注射装置、心肌消融装置、瓣膜修复装置或瓣膜置换装置中的至少一种。
可选的,所述治疗装置包括调弯鞘、内鞘管和治疗组件,其中,所述调弯鞘活动穿设于所述柔性导管内,并能够单向调弯;所述内鞘管活动穿设于所述调弯鞘内,所述治疗组件穿设于所述内鞘管中。
可选的,所述调弯鞘调弯的方向与所述自适应导引装置的柔性导管的远端段的调弯方向不同。
可选的,所述调弯鞘调弯的方向与所述自适应导引装置的柔性导管的远端段的调弯方向大致垂直。
可选的,所述内鞘管的远端固定连接有限位件,所述内鞘管自所述调弯鞘远端伸出后,所述限位件贴靠至组织表面。
可选的,所述治疗组件选自注射组件、消融组件、人工心脏瓣膜、瓣膜成形环、瓣膜夹持装置、缝线、组织锚定件或组织穿刺件中的至少一种。本申请实施例至少具有如下优点和积极效果:通过将导引装置设置为柔性导管,且对柔性导管进行预塑形处理并结合调弯,可以提高导引装置对血管形态的自适应性,在自然状态下能更好地适应人体主动脉弓部的复杂解剖形态,由此简化导引操作,降低对人体血管的挤压阻力,提高器械的可靠性;并且简化了导引装置结构,避免导引装置在使用时需要较大避让空间,确保导引装置拥有更大的操作调节空间和更利于调节的初始位置,以及避免组织填塞进入避让区域,进而减小对血管造成的损伤,提高器械使用的安全性。
附图说明
图1为本申请其中一实施例中自适应导引装置的整体结构示意图;
图2为本申请其中一实施例中柔性导管的局部示意图;
图3为本申请其中一实施例中柔性导管的主视方向局部示意图;
图4为本申请其中一实施例中柔性导管的侧视方向局部示意图;
图5为本申请其中一实施例中柔性导管的仰视方向局部示意图;
图6为本申请其中一实施例中柔性导管经过心脏的主动脉弓的使用状态示意图;
图7为本申请其中一实施例中柔性导管在心脏内部的使用状态示意图;
图8为本申请其中一实施例中柔性导管与牵引组件的安装关系示意图;
图9为图8中C-C面的剖视图;
图10为图9中M部的放大图;
图11为图8中D-D面的剖视图;
图12为本申请其中一实施例中柔性导管的调弯方向示意图;
图13为本申请其中一实施例中柔性导管在心脏内使用时的调弯状态示意图;
图14为本申请其中一实施例中经导管心内膜注射系统的整体结构示意图;
图15为图14中N部的放大图;
图16为本申请其中一实施例中经导管心内膜注射系统的结构分解示意图;
图17为本申请其中另一实施例中经导管心内膜注射系统的结构分解示意图;
图18为本申请其中一实施例中经导管心内膜注射系统的针头扎入游离壁的状态示意图;
图19为本申请其中一实施例中经导管心内膜注射系统的调弯鞘和自适应导引装置中的柔性导管调弯方向示意图;
图20为本申请其中一实施例中经导管心内膜注射系统运用在心脏左心房的状态示意图一;
图21为图19中O部的放大图;
图22为本申请其中一实施例中经导管心内膜注射系统运用在心脏左心房的状态示意图二;
图23为本申请其中一实施例中经导管心内膜注射系统进一步示例性的结构示意图;
图24~图28为本申请其中一实施例中经导管治疗系统的使用过程示意图;
图29为本申请其中一实施例中采用心肌消融装置作为治疗装置运用在经导管治疗系统的示意图;
图30~图31为本申请其中一实施例中的显影标识示意图。
其中,附图标记含义如下:
1、自适应导引装置;101、柔性导管;1011、主体段;1012、过主动脉弓段;10121、第一弧段;10222、第二弧段;10123、第三弧段;10124、第四弧段;1013、远端段;10131、过渡段;10132、直段;102、操作手柄;103、牵引组件;1031、牵引丝;1032、牵引通道;10321、牵引过渡段;1033、锚定环;2、治疗装置;201、调弯鞘;202、内鞘管;2021、金属套筒;203、治疗组件;2031、注射通道;2032、针头;204、第一调节手柄;205、第二调节手柄;3、主动脉弓;4、左心室;5、前乳头肌;6、后乳头肌;7、目标区域;8、主动脉瓣;9、游离壁;10、第一平面;11、第二平面;12、第三平面;13、消融针;14、消融能量产生装置;15、灌注装置。
具体实施方式
参阅图1~图7,一些实施例公开了一种自适应导引装置1,包括一定长度的中空的柔性导管101,柔性导管101经过预塑形处理,在自然状态下具有弯折。
在整体的远端部位为远端段1013,该远端段1013至少包括过渡段10131以及直段10132,过渡段10131配置为可调弯方式。
关于弯折方式,例如其沿自身的中轴线朝不同平面弯折至少五次,且其中最靠近远端的一次弯折的两平面之间的夹角大于90°,至少四次连续弯折的平面之间角度小于90°,使得至少部分柔性导管适应于主动脉弓部的形状。
其中,至少四次连续弯折的平面之间角度小于90°,可结合下文各弧段理解,例如第一弧段10121、第二弧段10222、第三弧段10123以及第四弧段10124四者各自可以确定一平面,而相邻弧段所在平面的夹角(偏转幅度)小于90°,图中第一弧段10121所在平面W1,第二弧段1022所在平面W2,平面W1和平面W2的夹角小于90°,其余弧段同理。由于各弧段并不共面,即实现了朝不同平面弯折。
其中最靠近远端的一次弯折的两平面之间的夹角大于90°。
由此,通过将导引装置设置为柔性导管101,且柔性导管101经过预塑形处理具有特定形状,使得柔性导管101的远端自然状态下能够适应人体主动脉弓部的形状,由此简化导引操作,提高器械的可靠性,降低对人体血管的挤压阻力,进而减小对血管造成的损伤,提高器械使用的安全性。
本实施例中,为实现自适应导引装置1在人体血管内有较强的适应性,且具备一定的推送性能以及扭控性能,柔性导管101优选采用预塑形的多层鞘管结构,使得自适应导引装置1为一种自适应的导引鞘。预塑形处理是指,将柔性导管放置于具有特定形状的模具中,加热至一定温度使柔性导管形成特定形状的过程。本实施例中,具体包括以下步骤:将多层鞘管放置在模具内,模具的内腔适应于主动脉弓部的形状;将放置好的多层鞘管和模具共同加热,冷却至室温,拆除模具即可。加热的温度和时间依据不同鞘管的材料和结构选择。
在其他可能的实施方式中,柔性导管101还可以是金属管材切割管、金属丝编织管或者其他高分子材质制成的软管,只需采用前述的预塑形处理,使管体具备特定的形状以适应于主动脉弓部的形状即可。
进一步地,本实施例中,柔性导管101的多层鞘管结构至少包括三层,包括由内至外依次设置的内层(图中未标注)、中间层(图中未标注)以及外层(图中未标注),其中,内层为高分子内膜,可选PTFE(聚四氟乙烯)材质,中间层为金属编织网,可选不锈钢丝网或者钨丝网,外层为高分子外膜,可选PEBAX(聚醚嵌段聚酰胺)材质。可根据血管的曲率情况,对多层鞘管不同位置的管体的外膜的软硬度进行选型设计,以适应不同血管的弯曲特性,同时也可以提高鞘管的推送性能以及扭控性能,例如,PEBAX常用的硬度规格为25D、35D、55D、72D等,可根据实际需求,选择不同硬度的PEBAX作为管体外膜,分别满足管体不同部位的性能需求。
参阅图1~图7,进一步地,柔性导管101包括由近及远依次连接并连通的主体段1011、过主动脉弓段1012以及远端段1013,过主动脉弓段1012为仿主动脉弓3形状的曲线结构。其中,主体段1011作为柔性导管101整体结构的起始部分,为整体结构提供支撑,过主动脉弓段1012为仿主动脉弓3的形状,用于穿过人体心脏的主动脉弓3 部分,提高对主动脉弓3的适应性,降低柔性导管101对血管的挤压阻力,远端段1013作为导管的输出端,为穿装在柔性导管101中的治疗装置提供最终指引。
为进一步便于后续理解及描述的简化,将靠近主体段1011的一侧指定为柔性导管101的近端,而靠近远端段1013的一侧为柔性导管101的远端,器械由柔性导管101的近端穿入,从远端穿出,即柔性导管101的内腔入口设置在近端,而其出口位于其远端。
主体段1011通常为直线段或近似直线段,主要作用是经过股动脉、降主动脉到达主动脉弓3弯曲起始位置,所以是导引鞘最长的部分,长度范围可选为540mm~840mm。
为了避免在弯曲的血管中柔性导管101出现扭曲或者折弯的情况,同时增加柔性导管101的扭控性能,主体段1011通常硬度较高,在本实施例中,主体段1011优选硬度为72D的PEBAX外膜。
过主动脉弓段1012与主体段1011、远端段1013相连,用于通过并适应主动脉弓3的形状。
为了提高对主动脉弓3的顺应性,降低对血管的挤压阻力,过主动脉弓段1012采用模仿主动脉弓3的形状曲率的弯曲圆弧段,且由于主动脉弓3是立体弓形,因此,仿弓形的圆弧段越多,导引装置与主动脉弓3的重合度越高,但是加工难度相应会增加,并且过多的圆弧段会导致管体偏硬,通过性降低,并影响自适应性。
参阅图2,进一步地,在本实施例中,过主动脉弓段1012至少包括依次连接且相切的第一弧段10121、第二弧段10222、第三弧段10123及第四弧段10124,第一弧段10121、第二弧段10222、第三弧段10123以及第四弧段10124分布在不同平面上,其中,第一弧段10121与主体段1011连接并连通,第四弧段10124与远端段1013连接并连通。
由此,使得柔性导管101的过主动脉弓段1012与主动脉弓3的拟合度或者重合度较高,适应性及通过性较好,更能够减小对血管的挤压阻力,以减小血管损伤。
进一步地,第一弧段10121的角度为a1,第一弧段10121圆弧弯曲的半径为R1;第二弧段10222的角度为a2,第二弧段10222圆弧弯曲的半径为R2;第三弧段10123的角度为a3,第三弧段10123圆弧弯曲的半径为R3;第四弧段10124的角度为a4,第四弧段10124圆弧弯曲的半径为R4;
其中,4.5°≤a1≤30°,90mm≤R1≤450mm;25°≤a2≤80°,10mm≤R2≤60mm;20°≤a3≤70°,25mm≤R3≤50mm;20°≤a4≤110°,20mm≤R4≤50mm。
由此,根据常见的主动脉弓3的结构做仿形参数计算,得出以上设置结果,按照以上的参数设置,能够较好地适应绝大多数的人体的心脏中主动脉弓3段的形状,明显能够减小对血管的挤压阻力,以减小血管损伤,提高器械使用的安全性。
另外,为保持过主动脉弓段1012在塑形后有一定的硬度,避免管体在受到血管壁挤压时弯折、或输送器械时将过主动脉弓段1012撑开,在本实施例中,过主动脉弓段1012的PEBAX外膜的硬度优选55D。
参阅图2~5,进一步地,远端段1013至少包括过渡段10131以及直段10132,其中,过渡段10131为圆弧状,其两端分别与直段10132、过主动脉弓段1012相切,由此,可 避免管体的曲率变化过大,减小器械通过导引装置的阻力和困难。
前文中所谓的预塑形处理获得的至少五次弯折,可以理解为其中四次为第一弧段10121、第二弧段10222、第三弧段10123以及第四弧段10124,而第五次则对应被预塑形为圆弧状的过渡段10131。
进一步地,如图3,过渡段10131的角度为a5,过渡段10131圆弧弯曲的半径为R5(在第一平面10的投影),其中,15°≤a5≤70°,25mm≤R5≤45mm。
参考图7,因过渡段10131的角度a5以及其圆弧弯曲的半径R5的取值最终影响直段10132的指向,同时过渡段10131的弯曲半径也会影响调弯力的大小,尽管弯曲半径越大,过渡段10131的刚性越小,调弯时需要的调弯力就越小,但是也应避免过大的弯曲半径影响管体的通过性。由此,本实施例中通过上述的设置,使得远端段1013在初始状态时能指向前乳头肌5、后乳头肌6的中间位置,确保穿过柔性导管101进入心脏内部的器械,能够拥有更大的操作调节空间和更利于调节的初始位置,即使得输送的器械可操作以及覆盖的范围更广,同时避免影响管体的通过性和调弯力。
参阅图3~5,进一步地,直段10132在第一平面10、第二平面11、第三平面12上投影的中心轴线分别与主体段1011中心轴线所成的夹角分别为α、β、γ,第一平面10为竖直平面,第二平面11为与竖直平面垂直的垂直面,第三平面12为与竖直平面、垂直面均垂直的水平面,其中,35°≤α≤85°,25°≤β≤80°,20°≤γ≤75°。
图中可见,第一平面10和第三平面12垂直相交,为了便于理解,垂直相交位置大致为主体段1011中心轴线。第一~第四弧段的角度a1~a4可理解为投影至第三平面12后,各段对应的圆心角。
如图所述,以第一弧段10121的角度为例,其投影至第三平面后,按照其半径R1以及可以确定角度a1。
参考图7,由此,角度α、β、γ共同影响柔性导管101远端的直段10132段的指示方向,α值决定了柔性导管101远端与心脏内部结构中的前乳头肌5、后乳头肌6的贴靠位置,其中,α值越小,柔性导管101的直段10132越贴靠后乳头肌6;α值越大,柔性导管101的直段10132越贴靠前乳头肌5;而β、γ决定了柔性导管101的直段10132与心脏内部结构中的室间隔、游离壁9的贴靠位置,β与γ的值越小,则柔性导管101的直段10132越贴靠游离壁9;β与γ的值越大,柔性导管101的直段10132越贴靠室间隔;本实施例中,采用以上α、β和γ的取值范围设置,将影响柔性导管101的直段10132末端的指向,使其能够准确地指向在乳头肌之前区域的中间位置,避免直段10132末端进入心脏后的初始位置出现在除前乳头肌5和后乳头肌6中间位置的其他区域,使得柔性导管101的直段10132进入心脏内部后的位置适中,从而柔性导管101的直段10132更易于指向目标区域7,进而快捷锁定目标区域7。
参阅图3、图7,进一步地,直段10132的长度为l,其中,0<l<80mm。本实施例中,直段10132的长度可优选40mm。在可选的范围内,直段10132段的长度越长,则通过直段10132段穿出的器械指向越精准,本实施例中采用以上区间,能够使得穿过直段10132的器械精准到达目标区域7。
为保持过主动脉弓段1012在塑形后有一定的硬度,避免管体在受到血管壁挤压时弯折、在输送器械时将过主动脉弓段1012撑开,在本实施例中,远端段1013中过渡段10131和直段10132的PEBAX外膜的硬度优选25D。
进一步地,过渡段10131在第一平面10上投影的中心轴线与主体段1011中心轴线所成的夹角为δ,其中,第一平面10为竖直平面,0<δ≤45°。
δ的大小影响了远端段1013的过渡段10131的初始位置,因此,通过上述设置,可以确保完成塑形后,当使用自适应导引装置1进入左心室4时,柔性导管101的过主动脉弓段1012将会处于主动脉弓3的中间位置,这可以为柔性导管101在调整过程发生横向位移时保留足够空间,同时也大大降低了对心脏内部结构的血管、主动脉瓣8的挤压阻力。
参阅图1,进一步地,自适应导引装置1还包括操作手柄102,操作手柄102与主体段1011连接,用于驱使柔性导管101做轴向运动和周向运动。
具体地,操作手柄102便于操作者握持和操作,使得柔性导管101做轴向运动和周向运动,进而使柔性导管101的远端段1013能够精准地指向目标区域7,为后续的治疗器械做精确导引。操作手柄102可采用常见的手柄。
因此,采用本实施例的方案,通过对柔性导管101进行预塑形处理,使得柔性导管101在自然状态下沿中轴线向不同平面弯曲至少五次,从而提高导引装置对血管形态的自适应性,能更好地适应人体主动脉弓3的复杂解剖形态,由此简化导引操作,降低对人体血管的挤压阻力,提高器械的可靠性;同时简化了导引装置结构,提高器械使用的安全性;还避免导引装置在使用时需要较大避让空间,确保导引装置拥有更大的操作调节空间和更利于调节的初始位置,以及避免组织填塞进入避让区域的情况,,进而减小对血管造成的损伤,从而以提高器械使用的安全性。
参阅图8,在一些实施例中,自适应导引装置1还包括牵引组件103,用于精确调节柔性导管101的远端段1013的横向位移,进一步提高对血管形态的适应性。
参阅图8~11,其中,牵引组件103包括牵引丝1031、牵引通道1032以及锚定环1033,牵引通道1032设置于柔性导管101的管壁中,即牵引通道1032设置在柔性导管101的外层与内层之间,具体地还可以为内层与中层之间,或中层与外层之间;牵引通道1032供牵引丝1031穿入,锚定环1033与远端段1013的过渡段10131固定连接,牵引丝1031与锚定环1033、操作手柄102分别固定连接。
牵引丝1031为具有一定长度、韧性的柔性细丝,可选用不锈钢编织绳、非金属编织绳(如普通缝线)、钢丝、镍钛丝等,在本实施例中,优选不锈钢编织丝,因其具有良好的韧性、抗折性以及柔软性。
牵引通道1032设于柔性导管的管壁中,用于穿设并保护牵引丝1031,牵引通道1032可以是PI(聚酰亚胺)管、PEEK(聚醚醚酮)管、不锈钢切割软管等,但是,若牵引丝1031通道使用的材质硬度过大,则会增加柔性导管101在调弯、做横向位移时的阻力,在本实施例中,牵引导管优选使用PI管。
具体地,操作手柄102通过操作牵引组件103的牵引丝1031拉动锚定环1033,从 而牵拉柔性导管101的远端段1013,进而实现控制柔性导管101的远端段1013横向位移的移动幅度及方向,确保柔性导管101的远端段1013处于主动脉弓3的流出道位置,保证其可以拥有较大的可调弯空间,便于进行进一步的临床操作。
参阅图8,进一步地,锚定环1033固定在远端段1013的过渡段10131。
由此,将过渡段10131作为调弯部分,通过操作手柄102牵拉牵引丝1031,可使得过渡段10131随之弯曲,进而带动直段10132发生横向位移,从而实现控制柔性导管101远端段1013的横向位移的移动幅度以及方向,且将过渡段10131作为调弯段,由于末端与直段10132连接,从而只需对过渡段10131进行微小调弯时,则可使直段10132的端部产生较大的位置变化,也即只需较小的调弯力作用下,柔性导管101的远端段1013即可产生较大的位置变化,减少柔性导管101自身所需的活动空间,同时实现对柔性导管101的远端段1013输出端更精确可靠的调节。
参阅图8,进一步地,锚定环1033固定连接在过渡段10131靠近直段10132的一端。
由此,以主体段1011为转动基础,能够最大限度地增大牵引力矩,减小直段10132调节时所需提供的牵引力。
进一步地,锚定环1033可选不锈钢材质,当锚定环1033选用不锈钢材质时,其与牵引丝1031可通过焊接的方式固定连接,在一些实施例中,可在牵引通道1032中设置单根牵引丝1031,并采用焊接的方式使其一端与锚定环1033固定,另一端与操作手柄102固定。
锚定环1033还可选择其他材质的材料,此时,牵引丝1031可通过回路的方式与锚定环1033连接。
在一些实施例中,牵引丝1031设置至少两根,即至少包括第一牵引丝和第二牵引丝,第一牵引丝的一端、第二牵引丝形成一闭合回路的牵引丝组,且牵引丝组的一端与锚定环1033连接,另一端与操作手柄102连接。
由此,通过操作手柄102牵拉牵引丝组,也能实现牵引柔性导管101的远端段1013朝不同的方向偏移的目的。
进一步地,对应每一牵引丝1031设置一牵引通道1032。由此,能避免将多条牵引丝1031设置在同一牵引通道1032而造成堵塞或彼此干涉的现象,保持调节的可靠性,且还有利于缩小单条牵引通道1032的直径同时减小柔性导管101的整体尺寸。
在本实施例中,牵引丝1031与锚定环1033优先使用焊接的方式相连,这样可降低牵引丝1031与锚定环1033的整体外径尺寸,继而减少横向调弯时的阻力,同时也可以降低柔性导管101的外径尺寸;而锚定环1033的材质优先使用钽,相较于不锈钢,钽在超声下的显影效果更好。
参阅图8,进一步地,在柔性导管101预塑形处理前,由远端段1013向主体段1011的方向,牵引通道1032沿垂直于柔性导管101中轴线的投影绕该中轴线逐步旋转偏移。
由此,相比于柔性导管101预塑形处理前,牵引通道1032设置成一条与柔性导管101中轴线平行设置的直线,本实施例中,在柔性导管101预塑形处理后,在远端段1013向主体段1011部分,牵引通道1032能够发生绕中轴线的偏移,穿设在牵引通道1032 内的牵引丝1031随之发生偏移,由此,在通过操作手柄102拉动牵引丝1031时,远端段1013更好地以主体段1011为偏转基础,相对于主体段1011发生偏移,减小主体段1011在远端段1013调节时发生的跟随同向的偏移,减低对血管的挤压阻力。
参阅图8~图11,进一步地,牵引通道1032在远端段1013的旋转起点为A,点A绕柔性导管101的周向旋转90°后的点为B,点A和点B之间形成牵引过渡段10321,牵引过渡段10321包括过主动脉弓段1012的一部分或全部,或者包括主体段1011的一部分或全部。
由此,可将牵引通道1032偏转的终点设置在过主动脉弓段1012或者主体段1011,根据实际设计和使用的效果进行设定调节。
参阅图8及图12,牵引过渡段10321的长度L影响柔性导管101在横向调弯时扭转偏移的大小:当牵引过渡段10321的长度过短,进行横向调弯时,则需要的调弯力较大;当牵引过渡段10321的长度L过长,甚至整根牵引丝1031沿着牵引丝1031位置A旋转延伸至操作手柄102,在对柔性导管101的远端段1013调节时,容易导致柔性导管101整体往牵引丝1031位置方向偏移,继而增大柔性导管101的偏移幅度,增加对血管的挤压,容易造成血管损伤。本申请中,牵引过渡段10321的长度L的范围为:0mm<L≤250mm。
进一步地,由于主体段1011的PEBAX外膜的硬度较高,牵引丝1031对主体段1011的影响较小,因此,牵引过渡段10321的长度主要影响过主动脉弓段1012在调弯时拉力的大小和偏移幅度,本实施例中,牵引过渡段10321的长度优选为40mm,这时调弯拉力以及过主动脉弓段1012的偏移幅度都能保持在理想状态。
由于将远端段1013中的过渡段10131设置为实现横向位移的调弯段,其PEBAX外膜的硬度值与牵引丝1031的调弯力值成正比,PEBAX外膜的硬度值越低,则柔性导管远端发生位移时,牵引丝1031的调弯力值越小。
因此,将过渡段10131的PEBAX外膜优选为25D,既保证了在满足较小的调弯力要求,同时,也能保持一定的强度,避免管体受到血管壁的挤压而弯折。
此外,由于本实施例的柔性导管101在使用过程中需要发生横向位移,则需要为柔性导管101在主动脉弓3处提供一个支点,使得柔性导管101在支点的前段部分保持不动,在支点后段,通过调弯使柔性导管101远端段1013发生横向位移,从而实现在指定段能往指定方向发生位移。
具体地,如图12、图13所示,设置过主动脉弓段1012中的第四弧段10124作为支点,与主动脉弓3外侧进行贴靠,从而实现在柔性导管101发生横向位移时,给柔性导管101提供合适的支撑力,而第一弧段10121、第二弧段10222、第三弧段10123不与主动脉弓3内侧贴靠,从而降低对血管的挤压阻力。
请参阅图14,在一些实施例中公开了一种经导管治疗系统,其包括上述实施例中任一种自适应导引装置1,还包括活动地穿装于柔性导管101中的治疗装置2,自适应导引装置1用于建立体外经主动脉介入体内的通路,治疗装置2经由柔性导管101穿过主动脉弓。自适应导引装置1的柔性导管101作为整个经导管治疗系统的最外层的鞘管(简 称:外鞘管),通常和导丝相配合,共同建立从体外到体内的通道。
由此,将改进后的上述自适应导引装置1运用在经导管治疗系统中,以提高导引的效率,降低使用的安全风险。
进一步地,治疗装置选自心肌注射装置、心肌消融装置、瓣膜修复装置或瓣膜置换装置中的至少一种。即自适应导引装置1可运用在经导管心内膜注射系统、经导管射频消融系统或者心脏瓣膜修复系统中,以达到提高导引效率,降低器械使用的安全风险的目的。
参阅图14-图16,进一步地,治疗装置2包括调弯鞘201、内鞘管202和治疗组件。其中,调弯鞘201活动穿设于柔性导管101内,并能够单向调弯;内鞘管202活动穿设于调弯鞘201内,治疗组件穿设于内鞘管202中。治疗组件选自注射组件、消融组件、人工心脏瓣膜、瓣膜成形环、瓣膜夹持装置、缝线、组织锚定件或组织穿刺件中的至少一种,例如选择为注射组件203。
调弯鞘201可活动地穿装在自适应导引装置1的柔性导管101的内腔中,并具有单向调弯功能,用于与自适应导引装置1配合输送治疗组件到达预定的治疗位点。内鞘管202可活动地穿装在调弯鞘201内腔中,用于防止治疗组件划破调弯鞘201的内壁,保护和确保治疗组件的运动。
参阅图14、图15、图18、图21,可选地,内鞘管202的远端固定连接有限位件,限位件可为一金属套筒2021,金属套筒2021端面是有一定面积的平面,以避免其与左心室4的游离壁9贴靠时损伤或者扎破游离壁9。
以下以治疗组件为注射组件203为例,对本申请的经导管治疗系统进行说明。
参阅图14、图16~图18,图20~图23,示出了一种经导管心内膜注射系统,用于采用经导管的途径,向病变的缺血性心肌组织注射水凝胶、细胞等治疗剂,以改善心脏功能,可以用于心衰治疗。经导管心内膜注射系统包括自适应导引装置1及治疗装置2,其中,自适应导引装置1作为外鞘管,治疗装置2穿设在自适应导引装置1中。治疗装置2包括注射组件203。注射组件203包括注射通道2031和连接并连通在注射通道2031远端的针头2032,针头2032用于扎进心肌游离壁9、并注射造影剂、药物或水凝胶等治疗剂。其中,注射通道2031远端的金属套筒2021的端部平面上设置有供针头2032穿出的通孔;注射通道2031包括药物注射的内通道(图中未示出)以及造影剂注射的外通道,从而通过造影剂在游离壁9的扩散情况判断金属套筒2021与游离壁9的实际贴靠情况。
具体地,治疗装置2包括穿设在柔性导管101内的调弯鞘201、穿设在调弯鞘201内的内鞘管202,以及穿设在内鞘管202中的注射组件203。通过外鞘管的主要引导,调弯鞘201作为中间支撑以及辅助调节基础,注射组件203能够在从内鞘管202中穿出,进而可向目标区域7(心肌组织)注射治疗药物或其他药剂。
图23为经导管心内膜注射系统进一步示例性的结构示意图。
参阅图14、图16、图20-图23,为便于对调弯鞘201、内鞘管202的调节,分别对应调弯鞘201、内鞘管202设置有第一调节手柄204和第二调节手柄205,第一调节手 柄204、第二调节手柄205均可采用常规的手柄。
参阅图19,进一步地,调弯鞘201调弯的方向与自适应导引装置1的柔性导管101的远端段1013的调弯方向不同。通过将调弯鞘201的调弯方向与对远端段1013调弯的方向设置为不同,从而可以提高从调弯鞘201中穿出的内鞘管202的指向的调节范围,也即调节最终从内鞘管202穿出的器械的指向,使得经导管治疗系统整体输出端调节的灵活性提高,有利于将穿设在内鞘管202中的器械更精确地引导至目标区域7,实现精确指引。
参阅图19,进一步地,调弯鞘201调弯的方向与自适应导引装置1的柔性导管101的远端段1013的调弯方向大致垂直。
由此,作为一种优选的实施方案,将调弯鞘201沿垂直于远端段1013的调弯方向设置,以提高经导管治疗系统整体输出端调节的灵活性,有利于将穿设在内鞘管202中的器械更精确地引导至目标区域7,实现精确指引。
例如,当使用本申请的心内膜注射系统时,外鞘即自适应导引装置1的柔性导管101的远端段1013发生的是横向位移,穿装在外鞘内腔中的中鞘即调弯鞘201的调弯方向为与横向位移垂直的竖直方向,通过两者不同的调弯方向相互配合,进一步确保将注射组件输送到所需的预期位置实现药物注射,以便实现好的治疗效果。
以下以经股动脉-主动脉弓3-左心室4的输送路径为例,说明本实施例的经导管心内膜注射系统的使用过程:
步骤S1:如图20所示,股动脉穿刺后,自适应导引装置1与常规的导丝配合,经股动脉通过主动脉弓3到达左心室4,此时,自适应导引装置1的柔性导管101处于初始状态,其管体的远端居中,处于主动脉瓣8下一定距离的位置;之后将治疗装置2沿着自适应导引装置1的柔性导管101输送进左心室4,直至内鞘管202远端的金属套筒2021的端部露出;
柔性导管101先到达至预定位置后,再穿送治疗装置2,有利于发挥柔性导管101预塑形的优势,避免与治疗装置2同步输送时对预塑形的影响,柔性导管101的远端也可以采用不跨瓣的方式,即停留于主动脉瓣8上方,并不伸入左心室。
步骤S2:如图20、图22所示,调整柔性导管101的远端输出端指向前后乳头肌6之间,此时往前推送治疗装置2的调弯鞘201,使调弯鞘201的远端与柔性导管101远端输出端保持一定距离,然后对调弯鞘201远端进行调弯,使内鞘管202远端的金属套筒2021朝向目标区域7并尽量与目标区域7垂直;然后,进一步向前推送内鞘管202,直至金属套筒2021抵靠在目标区域7的游离壁9上;
步骤S3:如图18所示,使注射通道2031远端的针头2032扎进游离壁9内,此时,可以向注射通道2031的外通道中注入造影剂并观察造影剂的扩散情况,如造影剂从金属套筒2021周向分布的通孔中扩散出来,说明此时针头2032已牢固刺入治疗位点,此时可向内通道注射水凝胶等治疗剂,使药物填充在游离壁9内,实现药物注射;
步骤S4:如需进行多个治疗位点的注射,后撤针头2032,使针头2032收进金属套筒2021;后撤内鞘管202,使金属套筒2021抵靠在调弯鞘201的远端;保持柔性导管 101的调弯行程不变,旋转调弯鞘201,再重复步骤S1~步骤S3,实现对在同一水平上的其他位点进行水凝胶注射;或者增加或降低柔性导管101的行程,配合旋转调弯鞘201,在第一个位点的基础上,实现对乳头肌高位或者低位的位点的选择,再重复步骤S1~步骤S3,实现水凝胶注射;
步骤S5:完成全部治疗位点的药物注射后,后撤针头2032,回撤注射通道2031、释放调弯鞘201、释放柔性导管101;最后再撤出治疗装置2及柔性导管101即可。
针对多点注射的需求,在一实施例中提供了一种经导管心内膜注射系统的控制方法,其中经导管心内膜注射系统包括由外而内依次滑动布置的柔性导管101、调弯鞘201和针头2032,其中柔性导管101的近端受控于操作手柄102,调弯鞘201的近端受控于第一调节手柄204,针头2032的近端受控于第二调节手柄205,且柔性导管101、调弯鞘201可在相应手柄的带动下旋转和调弯。
第二调节手柄205还可以连接内鞘管202,内鞘管202处在针头2032外部且内鞘管202远端连接有金属套筒2021。本实施例经导管心内膜注射系统可采用上文实施例的相关部件。
参阅图24和图25,目标区域7处于左心室LV,柔性导管101既可以自身调弯(如柔性导管101调弯至图25中的柔性导管101’),又可以在操作手柄102的带动下绕自身纵轴旋转,同理调弯鞘201既可以自身调弯(如调弯鞘201调弯至图25中的调弯鞘201’),又可以在第一调节手柄204的带动下绕自身纵轴旋转,当然,为了简化调整逻辑,柔性导管101调整就位后可以不再变化,而仅调整调弯鞘201的指向以及远近位置,在多点注射的特定使用条件下,能快速切换注射针头的朝向和位置,提高手术效率。
参阅附图26~图28,在下文一实施例中以多行多列排布的注射位置为例说明经导管治疗系统的操作方法,即连续注射条件下针头的位置调节方法。图中注射位置的排布仅作为示例性的说明,各个注射位置作为目标区域7,处于左心室壁206。实际上可根据病灶面积和位置相应调整。图26~图29中均省略内鞘管202和金属套筒2021,并省略在不同注射位置转移的过程中,针头2032在注射位置改变前收回的过程、以及针头2032在改变注射位置后伸出的过程。
实施注射时,本实施例经导管心内膜注射系统的控制方法包括:
针对当前注射位置进行注射;
获取下一注射位置与当前注射位置的空间偏移;
针对空间偏移采用以下方式的至少一种调节针头位置直至与下一注射位置对应;
实施注射。
针对空间偏移采用以下方式的至少一种调节针头位置直至与下一注射位置对应;例如调节针头位置的方式选自调节柔性导管10和/或调节调弯鞘201,调节手段选自旋转、调弯、向远端或近端整体运动。各种方式可组合使用,调节幅度可根据预先建模以及配合实时影像设备等方式实现。针对不同情况下注射位置的变换,可参见以下各例,其他情况可同理操作。
参阅图26,柔性导管保持不变仅调弯鞘201绕自身纵轴旋转、即可以使针头2032 从注射位置X1转移至注射位置X2。
参阅图27,柔性导管101保持不变、调弯鞘201沿自身纵轴旋转,针头2032从注射位置B1转移至注射位置B2。调弯鞘201调弯使针头2032从注射位置B2转移至注射位置B4。
参阅图28,柔性导管101保持不变、调弯鞘201绕自身纵轴旋转可使针头2032从注射位置C1转移至注射位置C2、注射位置C3。调弯鞘201保持弯曲程度、沿介入路径回撤,针头2032从注射位置C3转移至注射位置C4。调弯鞘201绕自身纵轴旋转,针头2032从注射位置C5转移至注射位置C6。
在有多个注射位置时,优先利用调弯鞘201旋转和调弯,减少沿介入路径轴向移动,即减少因相应的潜在手术风险。
可以理解的是,本申请的自适应导引装置1还可应用于例如经导管射频消融系统、心脏瓣膜修复系统等不同领域,根据需要建立体外至体内通道的介入器械,示例实施例不作为对本申请的限定。
例如,参考图29,当自适应导引装置1应用于例如经导管射频消融系统中时,采用消融组件作为治疗组件,消融组件包括消融针13、与消融针13连接并提供消融能量的消融能量产生装置14以及用于提供电解质溶液的灌注装置15,经导管射频消融系统的其他结构可参考以上采用治疗组件选用注射组件的实施情形,即,消融组件还包括调弯鞘、内鞘管和消融针;消融组件活动穿设在自适应导引装置1内,消融针自内鞘管穿出后,通过穿刺心内膜进入心肌组织内,然后能量发生装置为消融针提供能量以对室间隔的心肌组织实施消融,从而通过微创介入的方式治疗肥厚型心肌病(HCM)。
还可以理解的是,当自适应导引装置1应用于例如经导管瓣膜修复系统中时,采用锚钉作为治疗组件时,可以将锚钉通过经导管的方式植入在心室壁,且锚钉连接有e-PTFE缝线,然后将缝线的一端连接至瓣叶,以缝线作为人工腱索,实现瓣膜的腱索修复,或者将多个通过缝线彼此相连的锚钉依次植入在心室壁上,再收紧以实现心室减容或瓣膜成型术,从而通过微创介入的方式治疗瓣膜反流疾病。
综上所述,本申请所提供的自适应导引装置1以及包括该自适应导引装置1的经导管治疗系统,能更好地适应主动脉弓3的复杂解剖形态,并且简化了导引装置结构,提高器械使用的安全性。
避免导引装置在使用时需要较大避让空间,确保导引装置拥有更大的操作调节空间和更利于调节的初始位置,以及避免组织填塞进入避让区域,进而减小对血管造成的损伤,提高器械使用的安全性。
结合图30~图31,柔性导管101上设有显影标识F1和F2,柔性导管101上的显影标识F1、F2基本对应直段10132尺寸,例如间距为40~80mm。
弯鞘201上设置显影标识F3和F4,调弯鞘201上的显影标识F3、F4间距为40~80mm。柔性导管101中的显影标识,可获知直段10132以及远端位置,调弯鞘201的显影标识,一方面可获知自身远端位置,还可以配合柔性导管101最远端的显影标识获知是否完全伸出柔性导管101最远端,至少大部分区域延伸出柔性导管101才便于调 弯,否则会受到柔性导管101的干涉,影响调弯效果。
本申请方案所公开的技术手段不仅限于上述实施方式所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (30)

  1. 一种自适应导引装置,其特征在于,包括:中空的柔性导管,所述柔性导管经过预塑形处理,在自然状态下具有弯折;
    所述柔性导管的远端部位包括远端段,所述远端段包括过渡段以及直段,所述过渡段配置为可调弯以改变所述直段的指向,调弯的施力点邻近所述过渡段与所述直段的衔接部位。
  2. 根据权利要求1所述的自适应导引装置,其特征在于,所述直段的长度为l,其中,0<l<80mm。
  3. 根据权利要求2所述的自适应导引装置,其特征在于,所述直段的长度为40~80mm。
  4. 根据权利要求1所述的自适应导引装置,其特征在于,所述过渡段预塑形为圆弧状。
  5. 根据权利要求4所述的自适应导引装置,其特征在于,所述过渡段对应的圆心角为a5,所述过渡段圆弧弯曲的半径为R5,其中,15°≤a5≤70°,25mm≤R5≤45mm。
  6. 根据权利要求1所述的自适应导引装置,其特征在于,所述柔性导管包括由近及远依次连接并连通的主体段、过主动脉弓段以及所述远端段,所述过主动脉弓段为仿主动脉弓形的曲线结构;所述过渡段的两端分别与所述直段、过主动脉弓段相切。
  7. 根据权利要求1所述的自适应导引装置,其特征在于,所述柔性导管在自然状态下其沿自身的中轴线朝不同平面多次弯折。
  8. 根据权利要求7所述的自适应导引装置,其特征在于,所述柔性导管弯折至少五次。
  9. 根据权利要求8所述的自适应导引装置,其特征在于,至少四次连续弯折的平面之间角度小于90°。
  10. 根据权利要求7所述的自适应导引装置,其特征在于,最靠近远端的一次弯折的两平面之间的夹角大于90°。
  11. 根据权利要求6所述的自适应导引装置,其特征在于,所述过主动脉弓段包括依次连接且相切的第一弧段、第二弧段、第三弧段及第四弧段,所述第一弧段、所述第二弧段、所述第三弧段及所述第四弧段分布在不同平面上,其中,所述第一弧段与所述主体段连接并连通,所述第四弧段与所述远端段连接并连通。
  12. 根据权利要求11所述的自适应导引装置,其特征在于,所述第一弧段的角度为a1,所述第一弧段圆弧弯曲的半径为R1;所述第二弧段的角度为a2,所述第二弧段圆弧弯曲的半径为R2;所述第三弧段的角度为a3,所述第三弧段圆弧弯曲的半径为R3;所述第四弧段的角度为a4,所述第四弧段圆弧弯曲的半径为R4;
    其中,4.5°≤a1≤30°,90mm≤R1≤450mm;25°≤a2≤80°,10mm≤R2≤60mm;20°≤a3≤70°,25mm≤R3≤50mm;20°≤a4≤110°,20mm≤R4≤50mm。
  13. 根据权利要求6所述的自适应导引装置,其特征在于,所述直段在第一平面、第二平面、第三平面上投影的中心轴线分别与所述主体段中心轴线所成的夹角分别为α、β、 γ,其中,第一平面为竖直平面,第二平面为与竖直平面垂直的垂直面,第三平面为与竖直平面、垂直面均垂直的水平面,35°≤α≤85°,25°≤β≤80°,20°≤γ≤75°。
  14. 根据权利要求13所述的自适应导引装置,其特征在于,所述过渡段在第一平面上投影的中心轴线与所述主体段中心轴线所成的夹角为δ,0<δ≤45°。
  15. 根据权利要求6所述的自适应导引装置,其特征在于,所述自适应导引装置还包括操作手柄,所述操作手柄与所述主体段连接,用于驱动所述柔性导管做轴向运动和周向运动。
  16. 根据权利要求15所述的自适应导引装置,其特征在于,所述自适应导引装置还包括牵引组件,其中,所述牵引组件包括牵引丝、牵引通道以及锚定环,所述牵引通道设置于所述柔性导管的管壁中,供所述牵引丝穿入,所述锚定环与所述远端段的过渡段固定连接,所述牵引丝与所述锚定环、所述操作手柄分别连接。
  17. 根据权利要求16所述的自适应导引装置,其特征在于,所述锚定环邻近所述过渡段与所述直段的衔接部位。
  18. 根据权利要求16所述的自适应导引装置,其特征在于,所述锚定环兼做显影标识。
  19. 根据权利要求18所述的自适应导引装置,其特征在于,所述直段的远端还配置有显影标识。
  20. 根据权利要求16所述的自适应导引装置,其特征在于,所述牵引丝绕所述柔性导管的中轴线偏移。
  21. 根据权利要求20所述的自适应导引装置,其特征在于,所述牵引丝绕所述柔性导管的中轴线偏移幅度为旋转90°。
  22. 根据权利要求16所述的自适应导引装置,其特征在于,所述牵引通道在所述远端段的旋转起点为A,点A绕所述柔性导管的周向旋转90°后的点为B,点A和点B之间形成牵引过渡段,所述牵引过渡段包括所述过主动脉弓段的一部分或全部,或者包括所述主体段的一部分或全部。
  23. 根据权利要求22所述的自适应导引装置,其特征在于,所述牵引过渡段的长度为L,其中,0mm<L≤250mm。
  24. 一种经导管治疗系统,其特征在于,包括权利要求1-23任一项所述的自适应导引装置,还包括活动地穿装于所述柔性导管中的治疗装置,所述柔性导管用于建立体外至体内的通路,所述治疗装置经由所述柔性导管穿过主动脉弓部。
  25. 根据权利要求24所述的经导管治疗系统,其特征在于,所述治疗装置选自心肌注射装置、心肌消融装置、瓣膜修复装置或瓣膜置换装置中的至少一种。
  26. 根据权利要求25所述的经导管治疗系统,其特征在于,所述治疗装置包括调弯鞘、内鞘管和治疗组件,其中,所述调弯鞘活动穿设于所述柔性导管内,并能够单向调弯;所述内鞘管活动穿设于所述调弯鞘内,所述治疗组件穿设于所述内鞘管中。
  27. 根据权利要求26所述的经导管治疗系统,其特征在于,所述调弯鞘调弯的方向与所述自适应导引装置的柔性导管的远端段的调弯方向不同。
  28. 根据权利要求27所述的经导管治疗系统,其特征在于,所述调弯鞘调弯的方向与所述自适应导引装置的柔性导管的远端段的调弯方向大致垂直。
  29. 根据权利要求28所述的经导管治疗系统,其特征在于,所述内鞘管的远端固定连接有限位件,所述内鞘管自所述调弯鞘远端伸出后,所述限位件贴靠至组织表面。
  30. 根据权利要求26所述的经导管治疗系统,其特征在于,所述治疗组件选自注射组件、消融组件、人工心脏瓣膜、瓣膜成形环、瓣膜夹持装置、缝线、组织锚定件或组织穿刺件中的至少一种。
PCT/CN2022/142506 2021-12-31 2022-12-27 一种自适应导引装置以及经导管治疗系统 WO2023125572A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111679305.6A CN114424972B (zh) 2021-12-31 2021-12-31 一种自适应导引装置以及经导管治疗系统
CN202111679305.6 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023125572A1 true WO2023125572A1 (zh) 2023-07-06

Family

ID=81310814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142506 WO2023125572A1 (zh) 2021-12-31 2022-12-27 一种自适应导引装置以及经导管治疗系统

Country Status (2)

Country Link
CN (1) CN114424972B (zh)
WO (1) WO2023125572A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116764068A (zh) * 2023-08-21 2023-09-19 深圳欢影医疗科技有限公司 一种介入类的可调弯导管

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114424972B (zh) * 2021-12-31 2023-12-08 杭州德柯医疗科技有限公司 一种自适应导引装置以及经导管治疗系统
WO2023125569A1 (zh) * 2021-12-30 2023-07-06 杭州德柯医疗科技有限公司 用于经导管治疗系统的导向管组件、治疗系统和方法
CN117653323A (zh) * 2022-08-31 2024-03-08 杭州诺沁医疗器械有限公司 引导组件、消融装置及消融系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4898577A (en) * 1988-09-28 1990-02-06 Advanced Cardiovascular Systems, Inc. Guiding cathether with controllable distal tip
US5195990A (en) * 1991-09-11 1993-03-23 Novoste Corporation Coronary catheter
US20030109852A1 (en) * 2001-12-11 2003-06-12 Cardiac Pacemakers, Inc. Deflectable telescoping guide catheter
CN103566452A (zh) * 2012-07-20 2014-02-12 泰尔茂株式会社 冠状动脉用导管及其卡合方法
CN109689147A (zh) * 2017-07-27 2019-04-26 先健科技(深圳)有限公司 可调弯鞘管和医疗器械
CN114424972A (zh) * 2021-12-31 2022-05-03 杭州德柯医疗科技有限公司 一种自适应导引装置以及经导管治疗系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5584803A (en) * 1991-07-16 1996-12-17 Heartport, Inc. System for cardiac procedures
US7623899B2 (en) * 2005-09-16 2009-11-24 Biosense Webster, Inc. Catheter with flexible pre-shaped tip section
WO2010085456A1 (en) * 2009-01-20 2010-07-29 Guided Delivery Systems Inc. Anchor deployment devices and related methods
US20120158021A1 (en) * 2010-12-19 2012-06-21 Mitralign, Inc. Steerable guide catheter having preformed curved shape
CA3016513C (en) * 2016-03-24 2023-12-05 Edwards Lifesciences Corporation Delivery system for prosthetic heart valve
CN111110985A (zh) * 2018-10-31 2020-05-08 杭州唯强医疗科技有限公司 调弯手柄及可调弯导管

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4898577A (en) * 1988-09-28 1990-02-06 Advanced Cardiovascular Systems, Inc. Guiding cathether with controllable distal tip
US5195990A (en) * 1991-09-11 1993-03-23 Novoste Corporation Coronary catheter
US20030109852A1 (en) * 2001-12-11 2003-06-12 Cardiac Pacemakers, Inc. Deflectable telescoping guide catheter
CN103566452A (zh) * 2012-07-20 2014-02-12 泰尔茂株式会社 冠状动脉用导管及其卡合方法
CN109689147A (zh) * 2017-07-27 2019-04-26 先健科技(深圳)有限公司 可调弯鞘管和医疗器械
CN114424972A (zh) * 2021-12-31 2022-05-03 杭州德柯医疗科技有限公司 一种自适应导引装置以及经导管治疗系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116764068A (zh) * 2023-08-21 2023-09-19 深圳欢影医疗科技有限公司 一种介入类的可调弯导管
CN116764068B (zh) * 2023-08-21 2023-11-28 深圳欢影医疗科技有限公司 一种介入类的可调弯导管

Also Published As

Publication number Publication date
CN114424972B (zh) 2023-12-08
CN114424972A (zh) 2022-05-03

Similar Documents

Publication Publication Date Title
WO2023125572A1 (zh) 一种自适应导引装置以及经导管治疗系统
US11890194B2 (en) Translation catheters, systems, and methods of use thereof
US11925558B2 (en) Coronary sinus mitral valve annuloplasty procedure and coronary artery and myocardial protection device
US11259926B2 (en) Cardiac annuloplasty and pacing procedures, related devices and methods
US20220117736A1 (en) Annuloplasty procedures, related devices and methods
US11039923B2 (en) Annuloplasty procedures, related devices and methods
EP2465568B1 (en) Steerable guide catheter having preformed curved shape
US9271833B2 (en) Transcatheter coronary sinus mitral valve annuloplasty procedure and coronary artery and myocardial protection device
WO2019091172A1 (zh) 人工腱索植入系统
CN111163701A (zh) 包括使用磁性工具的用于重塑心脏瓣膜瓣环的递送系统和方法
US20050216039A1 (en) Method and device for catheter based repair of cardiac valves
WO2017151292A1 (en) Transcatheter coronary sinus mitral valve annuloplasty procedure and coronary artery and myocardial protection device
US11007059B2 (en) Annuloplasty procedures, related devices and methods
KR20220101149A (ko) 경도관 의료용 이식물 전달
CN113662714B (zh) 夹持器械
WO2023125569A1 (zh) 用于经导管治疗系统的导向管组件、治疗系统和方法
CN118076307A (zh) 一种自适应导引装置以及经导管治疗系统
CN118105160A (zh) 一种预塑形自适应导引装置以及经导管治疗系统
CN115645027A (zh) 远端可调的导管、消融装置及消融系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914824

Country of ref document: EP

Kind code of ref document: A1