WO2023125170A1 - 一种简便的高通量dna甲基化检测方法 - Google Patents

一种简便的高通量dna甲基化检测方法 Download PDF

Info

Publication number
WO2023125170A1
WO2023125170A1 PCT/CN2022/140475 CN2022140475W WO2023125170A1 WO 2023125170 A1 WO2023125170 A1 WO 2023125170A1 CN 2022140475 W CN2022140475 W CN 2022140475W WO 2023125170 A1 WO2023125170 A1 WO 2023125170A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
methylation detection
dna methylation
detection method
simple high
Prior art date
Application number
PCT/CN2022/140475
Other languages
English (en)
French (fr)
Inventor
陈晶晶
卢瑶
侯策
王嫚
曹振
宋东亮
Original Assignee
翌圣生物科技(上海)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 翌圣生物科技(上海)股份有限公司 filed Critical 翌圣生物科技(上海)股份有限公司
Publication of WO2023125170A1 publication Critical patent/WO2023125170A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification

Definitions

  • the application belongs to the field of biotechnology, and in particular relates to a simple high-throughput DNA methylation detection method.
  • DNA methylation is an important research direction in the field of epigenetics. Cytosine methylation (5mC) is the most common modified base on DNA, accounting for 1%-8% of all cytosines, some specific cytosine sites such as Dam methylation sites in bacteria or eukaryotic The methylation ratio of cytosine sites in CpG islands can be as high as nearly 100%, so 5mC is also called the "fifth base”. DNA methylation is the main way for bacteria to identify and distinguish internal and external DNA, and it is also an identity marker for bacteria to identify themselves. In recent years, a large number of studies have shown that the abnormal level of DNA methylation is closely related to tumorigenesis, deterioration and cell carcinogenesis. Therefore, detection of cfDNA methylation in blood is an important means for clinical early screening of tumors, with high sensitivity and specificity.
  • the bisulfite conversion kit which uses bisulfite to convert unmethylated cytosine It is converted to uracil by deamination reaction, and then converted to thymine by PCR amplification using a uracil-resistant DNA polymerase.
  • the effect of converting unmethylated cytosine into thymine is achieved, while the methylated cytosine site will not change.
  • this method will cause severe DNA damage (about 90% of DNA will be broken), and has a high false negative rate, which affects the sensitivity and accuracy of methylation detection.
  • the second is the enzyme conversion kit (EM-seq).
  • the principle is to use TET enzyme to convert 5mC into 5caC through a three-step oxidation reaction (5mC-5hmC-5fC-5caC), and then use APOBEC deaminase to convert the untreated 5caC into 5caC.
  • Methylated C is converted to U by deamination reaction, and finally converted to T by PCR.
  • This method has little damage to DNA and can detect methylation sites and levels in DNA samples as low as 10 ng. But this method has high false positive and false negative, and the operation is relatively complicated.
  • DNA methylation detection methods need to convert all unmethylated cytosines into thymines, which affects the quality of sequencing data and the accuracy of alignment.
  • This application provides a simple high-throughput DNA methylation detection method, which has the advantages of short time consumption and high targeting of methylation sites.
  • This application provides a simple high-throughput DNA methylation detection method, the steps of which include:
  • the strong base described in step (1) is NaOH or KOH.
  • the concentration of the strong base in step (1) is 0.05M-0.4M.
  • the oxidation treatment temperature in step (1) is 50-80°C.
  • the oxidation treatment time in step (1) is 0.5-2h.
  • the DNA sample in step (1) is subjected to DNA fragmentation, end repair and adapter ligation before the oxidation treatment.
  • the DNA fragmentation is interrupted by ultrasonic method or enzyme cutting method.
  • the acid described in step (2) is hydrochloric acid, sulfuric acid or acetic acid.
  • the uracil-intolerant high-fidelity DNA polymerase described in step (3) is 2 ⁇ Super II High-Fidelity Mix for Library Amplification, Ultra TM II Master Mix or Phusion Flash High-Fidelity PCR Master Mix.
  • the reaction principle of this application is as follows: DNA samples are treated with a strong base, methylated 5mC and unmethylated C are oxidatively deaminated, and methylated 5mC becomes thymine after oxidative deamination (T), unmethylated C becomes uracil (dU) after oxidative deamination reaction, and then amplifies using a DNA polymerase sensitive to uracil, the template containing T can be amplified, and the template containing dU The template cannot be amplified, thereby achieving the purpose of specifically amplifying methylated DNA.
  • DMA-seq Deamination and Methyl-C Amplification sequencing.
  • DMA-seq has the advantages of simple operation (one-step operation), short time-consuming, less DNA damage, good data quality, and high targeting of methylation sites. It is used for the detection of high-abundance DNA methylation sites, especially for the early screening of tumors.
  • Figure 1 is a schematic diagram of the DMA-seq process.
  • Figure 2 is the sequence of 5mC methylation standard.
  • Figure 3 is a schematic diagram of the thermal alkali deamination reaction.
  • Figure 4 shows the effect of acid-base combination on the conversion rate of DMA-seq.
  • Figure 5 shows the effect of the temperature of the hot alkali deamination reaction on the conversion rate of DMA-seq.
  • Figure 6 shows the effect of sodium hydroxide concentration on the conversion rate of DMA-seq in the hot alkali deamination reaction.
  • Figure 7 shows the effect of the reaction time of hot alkali deamination on the conversion rate of DMA-seq.
  • Figure 8 shows the effect of different uracil-sensitive high-fidelity DNA polymerases on the conversion rate of DMA-seq.
  • Embodiment 1 the preparation of 5mC DNA standard substance
  • DNA methylation standard substance (5mC DNA standard substance sequence is shown in Figure 2 (SEQ ID No: 1)) was constructed by PCR technology;
  • Example 2 Effect of DMA-seq on DNA methylation detection.
  • Hieff The Ultima DNA Library Prep Kit for Illumina has established the conversion process and detection method of DMA-seq for 5mC DNA standards (see Figure 1 and Figure 3 for schematic diagrams). The specific process is as follows:
  • Agencourt AMPure XP beads (Beckman, A63881) were added, mixed evenly, and incubated at room temperature for 5 minutes. Put the PCR tube on the magnetic stand. After the solution is clarified, suck off the supernatant, add 200 ⁇ L of freshly prepared 80% ethanol and let it stand for 30 seconds, and then suck up the ethanol; add 200 ⁇ L of freshly prepared 80% ethanol and let it stand for 30 seconds, and then suck it up Ethanol, let stand at room temperature to dry for 3min. After adding 21 ⁇ L ddH 2 O to suspend the magnetic beads, let stand at room temperature for 5 minutes. Place the PCR tube on the magnetic stand, and take the supernatant after the solution is clarified.
  • Example 3 Effect of NaOH treatment temperature on DMA-seq data in thermal alkali deamination reaction.
  • Example 4 Effect of NaOH treatment concentration on DMA-seq data in thermal alkali deamination reaction.
  • Example 5 Effect of NaOH treatment time on DMA-seq data in hot alkaline deamination reaction.
  • Example 6 Effect of uracil-intolerant high-fidelity DNA polymerases on DMA-seq data.
  • Example 7 The methylation detection effect of DMA-seq on different DNA input amounts.
  • DMA-seq has good library construction effect and positive conversion rate for 5mC standards with different inputs, and has good data quality (Q30) and comparison rate.
  • Example 8 DMA-seq detection of methylation of Control DNA CpG methylated pUC19.
  • DMA-seq is used to detect the methylation site of Control DNA CpG methylated pUC19, the specific process is as follows:
  • DMA-seq has good library construction effect and positive conversion rate for Control DNA CpG methylated pUC19 standard products with different inputs, and has good data quality (Q30) and comparison rate .
  • DMA-seq Deamination and Methyl-C Amplification sequencing.
  • DMA-seq has the advantages of simple operation (one-step operation), short time-consuming, less DNA damage, good data quality, and high targeting of methylation sites. It is used for the detection of high-abundance DNA methylation sites, especially for the early screening of tumors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本申请提供一种简便的高通量DNA甲基化检测方法,其步骤包括:(1)用强碱对DNA样本进行氧化处理,使DNA样本中的胞嘧啶氧化成尿嘧啶,甲基化胞嘧啶氧化成胸腺嘧啶;(2)加入酸中和强碱,使反应体系的pH值控制在6-8以内;(3)采用不耐尿嘧啶的高保真DNA聚合酶,进行文库扩增及测序。本申请开发了一种简便的高通量DNA胞嘧啶甲基化检测技术,并命名为DMA-seq。相比于现有的DNA甲基化检测试剂盒,DMA-seq具有操作简单、耗时短、DNA损伤小、数据质量好、对甲基化位点靶向性高等优点,适用于高丰度的DNA甲基化位点检测,尤其是肿瘤早期筛查方向。

Description

一种简便的高通量DNA甲基化检测方法 技术领域
本申请属于生物技术领域,具体涉及一种简便的高通量DNA甲基化检测方法,。
背景技术
DNA甲基化是表观遗传学领域的重要研究方向。胞嘧啶甲基化(5mC)是DNA上最常见的修饰碱基,占所有胞嘧啶的1%-8%,有些特定的胞嘧啶位点如细菌的Dam甲基化位点或真核生物的CpG岛中的胞嘧啶位点发生甲基化修饰的比例可高达近100%,因此5mC也被称为“第五种碱基”。DNA甲基化是细菌识别区分内外源DNA的主要方式,是细菌识别自身的身份标记。近年来,大量研究表明DNA甲基化水平异常与肿瘤发生、恶化和细胞癌变进程有着密切的联系。因此,血液的cfDNA甲基化检测是临床上进行肿瘤早筛的重要手段,具有很高的灵敏度和特异性。
目前市面上用于检测胞嘧啶甲基化位点和水平的产品主要分为两种:一种是重亚硫酸盐转化试剂盒,其原理是利用重亚硫酸盐将未甲基化的胞嘧啶通过脱氨反应转变成尿嘧啶,再使用耐尿嘧啶的DNA聚合酶通过PCR扩增将尿嘧啶转变成胸腺嘧啶。最终达到将未甲基化的胞嘧啶转变成胸腺嘧啶的效果,而发生甲基化的胞嘧啶位点不会发生改变。但这种方法会导致严重的DNA损伤(约90%的DNA会发生断裂),且具有较高的假阴性,影响了甲基化检测的灵敏度和准确性。第二种是酶转化法试剂盒(EM-seq),其原理是先利用TET酶将5mC通过三步氧化反应(5mC-5hmC-5fC-5caC)转变成5caC,再利用APOBEC脱氨酶将未甲基化的C通过脱氨反应转变成U,最后通过PCR转变成T。这种方法对DNA的损伤小,能够检测低至10ng的DNA样本中的甲基化位点和水平。但是这种方法具有较高的假阳性和假阴性,且操作较为复杂。此外,DNA甲基化检测方法需要将所有的未甲基化胞嘧啶转变成胸腺嘧啶,这影响了测序数据的质量和比对准确性。
发明内容
本申请提供了一种简便的高通量DNA甲基化检测方法,具有耗时短、对甲基化位点靶向性高的优点。
本申请提供了一种简便的高通量DNA甲基化检测方法,其步骤包括:
(1)用强碱对DNA样本进行氧化处理,使DNA样本中的胞嘧啶氧化成尿嘧啶,甲基化胞嘧啶氧化成胸腺嘧啶;
(2)加入酸中和强碱,使反应体系的pH值控制在6-8之间,以便于后续文库扩增程序的进行;和
(3)采用不耐尿嘧啶的高保真DNA聚合酶,进行文库扩增及测序。
优选的,步骤(1)中所述强碱为NaOH或者KOH。
优选的,步骤(1)中所述强碱的浓度为0.05M-0.4M。
优选的,步骤(1)中所述氧化处理的温度为50-80℃。
优选的,步骤(1)中所述氧化处理的时间为0.5-2h。
优选的,步骤(1)中所述DNA样本在氧化处理前先进行DNA片段化以及末端修复和接头连接处理。
优选的,所述DNA片段化为采用超声法打断或者酶切法打断。
优选的,步骤(2)中所述酸为盐酸、硫酸或者乙酸。
优选的,步骤(3)中所述不耐尿嘧啶的高保真DNA聚合酶为2×Super
Figure PCTCN2022140475-appb-000001
Ⅱ High-Fidelity Mix for Library Amplification、
Figure PCTCN2022140475-appb-000002
Ultra TM II 
Figure PCTCN2022140475-appb-000003
Master Mix或Phusion Flash高保真PCR预混液。
本申请的反应原理(如图3)为:用强碱处理DNA样本,对甲基化5mC和未甲基化C进行氧化脱氨,甲基化的5mC经氧化脱氨反应后变成胸腺嘧啶(T),未甲基化C经氧化脱氨反应后变成尿嘧啶(dU),再使用对尿嘧啶敏感的DNA聚合酶进行扩增,含T的模板可以被扩增,而含dU的模板无法被扩增,从而达到特异性扩增甲基化DNA的目的。
本申请开发了一种简便的高通量DNA胞嘧啶甲基化检测技术,并命名为DMA-seq(Deamination and Methyl-C Amplification sequencing)。相比于现有的DNA甲基化检测试剂盒,DMA-seq具有操作简单(一步操作)、耗时短、DNA损伤小、数据质量好、对甲基化位点靶向性高等优点,适用于高丰度的DNA甲基化位点检测,尤其是肿瘤早期筛查方向。
附图说明
图1为DMA-seq流程示意图。
图2为5mC甲基化标准品序列。
图3为热碱脱氨反应示意图。
图4为酸碱组合对DMA-seq转化率的影响。
图5为热碱脱氨反应温度对DMA-seq转化率的影响。
图6为热碱脱氨反应中氢氧化钠浓度对DMA-seq转化率的影响。
图7为热碱脱氨反应时间对DMA-seq转化率的影响。
图8为不同尿嘧啶敏感的高保真DNA聚合酶对DMA-seq转化率的影响。
具体实施方式
通过以下详细说明结合附图可以进一步理解本申请的特点和优点。所提供的实施例仅是对本申请方法的说明,而不以任何方式限制本申请揭示的其余内容。本实施例所使用的探针和引物序列及修饰如表1所示。
表1探针及引物序列
Figure PCTCN2022140475-appb-000004
实施例1:5mC DNA标准品的制备
在本实施例中,利用PCR技术构建了DNA甲基化标准品(5mC DNA标准品序列如图2(SEQ ID No:1)所示);
Figure PCTCN2022140475-appb-000005
Figure PCTCN2022140475-appb-000006
具体反应体系如下:
表2
Figure PCTCN2022140475-appb-000007
混匀后按照以下程序进行反应:
表3
Figure PCTCN2022140475-appb-000008
PCR结束后,加入40μL Agencourt AMPure XP beads(Beckman,A63881)混匀后,室温静置孵育5min。将PCR管置于磁力架上,待溶液澄清后,吸去上清,加入200μL新鲜配制的80%乙醇静置30s,吸干净乙醇;再次加入200μL新鲜配制的80%乙醇静置30s,吸干净乙醇,室温静置晾干3min。加入20μL ddH 2O悬浮磁珠后,室温静置5min。将将PCR管置于磁力架上,待溶液澄清后,取上清,Nanodrop测定回收的PCR产物浓度,Qsep测定PCR产物纯度,一代测序测定PCR产物序列。
实施例2:DMA-seq对DNA甲基化检测的效果。
在本实施例中,使用翌圣生物的Hieff
Figure PCTCN2022140475-appb-000009
Ultima DNA Library Prep Kit for Illumina建立了DMA-seq对5mC DNA标准品的转化流程以及检测方式(示意图见图1和图3),具体流程如下:
1)DNA末端修复和接头连接
表4
组分 用量
5mC DNA标准品 10ng
Endprep Mix 10μL
补ddH 2O至 60μL
30℃10min,72℃20min,4℃保存。
表5
组分 用量
上述反应体系 60μL
Ligation Enhancer 30μL
Fast T4 DNA Ligase 5μL
DNA Adapter 5μL
Total 100μL
20℃反应15min。
2)强碱高温处理及酸中和:
反应结束后加入11μL 1M NaOH或KOH,60℃反应60min。
反应结束后加入11μL 1M盐酸或乙酸或者0.5M硫酸。
反应结束后加入60μL Agencourt AMPure XP beads(Beckman,A63881)混匀后,室温静置孵育5min。将PCR管置于磁力架上,待溶液澄清后,吸去上清,加入200μL新鲜配制的80%乙醇静置30s,吸干净乙醇;再次加入200μL新鲜配制的80%乙醇静置30s,吸干净乙醇,室温静置晾干3min。加入21μL ddH 2O悬浮磁珠后,室温静置5min。将将PCR管置于磁力架上,待溶液澄清后,取上清。
3)文库扩增及测序
表6
Figure PCTCN2022140475-appb-000010
混匀后按照以下程序进行反应:
表7
Figure PCTCN2022140475-appb-000011
PCR结束后,加入45μL Agencourt AMPure XP beads(Beckman,A63881)混匀后,室温静置孵育5min。按照上述DNA回收方法进行文库回收。Qubit进行文库浓度测定后,在NovaSeq 6000平台上进行文库测序并分析。测序数据分析结果见图4,不同酸碱组合均具有较好的转化率,且假阳性较低。
实施例3:热碱脱氨反应中NaOH处理温度对DMA-seq数据的影响。
在本实施例中,验证了热碱脱氨反应中不同NaOH处理温度对DMA-seq数据的影响,具体流程如下:
1)DNA末端修复和接头连接:与实施例2相同。
2)强碱高温处理及酸中和:
反应结束后加入11μL 1M NaOH,50-80℃反应60min。
反应结束后加入11μL 1M盐酸。
反应结束后使用磁珠回收DNA。
3)文库扩增及测序:与实施例2相同。
测序数据分析结果见图5,随着反应温度升高,阳性率和假阳性率均有升高,其中60-70℃效果最好。
实施例4:热碱脱氨反应中NaOH处理浓度对DMA-seq数据的影响。
在本实施例中,验证了热碱脱氨反应中不同NaOH处理浓度对DMA-seq数据的影响,具体流程如下:
1)DNA末端修复和接头连接:与实施例2相同。
2)强碱高温处理及酸中和:
反应结束后分别加入11μL 0.5、1、2、4M NaOH,70℃反应60min。
反应结束后加入相对应的盐酸进行中和。
反应结束后使用磁珠回收DNA。
测序数据分析结果见图6,随着NaOH处理浓度升高,阳性率和假阳性率均有升高,其中200-400mM效果最好。
实施例5:热碱脱氨反应中NaOH处理时间对DMA-seq数据的影响。
在本实施例中,验证了热碱脱氨反应中不同NaOH处理时间对DMA-seq数据的影响,具体流程如下:
1)DNA末端修复和接头连接:与实施例2相同。
2)强碱高温处理及酸中和:
反应结束后分别加入11μL 4M NaOH,70℃反应30、60、90、120min。
反应结束后加入22μL 2M盐酸进行中和。
反应结束后使用磁珠回收DNA。
3)文库扩增及测序:与实施例2相同。
测序数据分析结果见图7,随着反应时间延长,阳性率和假阳性率均有升高,其中30-60min效果最好。
实施例6:不耐尿嘧啶的高保真DNA聚合酶对DMA-seq数据的影响。
在本实施例中,验证了不耐尿嘧啶的高保真DNA聚合酶对DMA-seq数据的影响,具体流程如下:
1)DNA末端修复和接头连接:与实施例2相同。
2)强碱高温处理及酸中和:
反应结束后分别加入11μL 4M NaOH,70℃反应30min。
反应结束后加入22μL 2M盐酸进行中和。
反应结束后使用磁珠回收DNA。
3)文库扩增及测序:分别使用翌圣生物的2×Super
Figure PCTCN2022140475-appb-000012
Ⅱ High-Fidelity Mix、NEB的
Figure PCTCN2022140475-appb-000013
Ultra TM II
Figure PCTCN2022140475-appb-000014
Master Mix和ThermoFisher的Phusion Flash高保真PCR预混液对文库进行扩增。按照上述DNA回收方法进行文库回收。Qubit进行文库浓度测定后,在NovaSeq 6000平台上进行文库测序并分析。
测序数据分析结果见图8,相较于耐尿嘧啶的DNA聚合酶,不耐尿嘧啶的高保真DNA聚合酶在DMA-seq中能够有效对m5C转化后的DNA序列进行特异性富集扩增,其中2×Super
Figure PCTCN2022140475-appb-000015
Ⅱ High-Fidelity Mix的扩增富集效果最 明显。
实施例7:DMA-seq对不同DNA投入量的甲基化检测效果。
在本实施例中,验证了DMA-seq对不同DNA投入量的甲基化检测效果,具体实施方式如下:
1)DNA末端修复和接头连接
表8
组分 用量
5mC DNA标准品 100pg-100ng
Endprep Mix 10μL
补ddH 2O至 60μL
30℃10min,72℃20min,4℃保存。
表9
组分 用量
上述反应体系 60μL
Ligation Enhancer 30μL
Fast T4 DNA Ligase 5μL
DNA Adapter 5μL
Total 100μL
20℃反应15min。
2)强碱高温处理及酸中和:
反应结束后分别加入11μL 4M NaOH,70℃反应30min。
反应结束后加入22μL 2M盐酸进行中和。
反应结束后使用磁珠回收DNA。
3)文库扩增及测序
表9
Figure PCTCN2022140475-appb-000016
Figure PCTCN2022140475-appb-000017
混匀后按照以下程序进行反应:
表10
Figure PCTCN2022140475-appb-000018
PCR结束后,加入45μL Agencourt AMPure XP beads(Beckman,A63881)混匀后,室温静置孵育5min。按照上述DNA回收方法进行文库回收。Qubit进行文库浓度测定后,在NovaSeq 6000平台上进行文库测序并分析。
测序数据分析结果如表11,DMA-seq对不同投入量的5mC标准品均具有很好的建库效果和阳性转换率,且具有很好的数据质量(Q30)和比对率。
表11
Figure PCTCN2022140475-appb-000019
实施例8:DMA-seq对Control DNA CpG methylated pUC19的甲基化检测。
在本实施例中,使用DMA-seq对Control DNA CpG methylated pUC19的甲基化位点进行检测,具体流程如下:
DNA片段化、末端修复和接头连接
表12
Figure PCTCN2022140475-appb-000020
30℃10min,72℃20min,4℃保存。
表13
组分 用量
上述反应体系 60μL
Ligation Enhancer 30
Fast T4 DNA Ligase 5
DNA Adapter 5
Total 100μL
20℃反应15min。
2)强碱高温处理及酸中和:
反应结束后分别加入11μL 4M NaOH,70℃反应30min。
反应结束后加入22μL 2M盐酸进行中和。
反应结束后使用磁珠回收DNA。
3)文库扩增及测序
表14
Figure PCTCN2022140475-appb-000021
混匀后按照以下程序进行反应:
表15
Figure PCTCN2022140475-appb-000022
PCR结束后,加入45μL Agencourt AMPure XP beads(Beckman,A63881)混匀后,室温静置孵育5min。按照上述DNA回收方法进行文库回收。Qubit进行文库浓度测定后,在NovaSeq 6000平台上进行文库测序并分析。
测序数据分析结果如表16,DMA-seq对不同投入量的Control DNA CpG methylated pUC19标准品均具有很好的建库效果和阳性转换率,且具有很好的数据质量(Q30)和比对率。
表16
Figure PCTCN2022140475-appb-000023
本申请开发了一种简便的高通量DNA胞嘧啶甲基化检测技术,并命名为DMA-seq(Deamination and Methyl-C Amplification sequencing)。相比于现有的DNA甲基化检测试剂盒,DMA-seq具有操作简单(一步操作)、耗时短、DNA损伤小、数据质量好、对甲基化位点靶向性高等优点,适用于高丰度的DNA甲基化位点检测,尤其是肿瘤早期筛查方向。

Claims (9)

  1. 一种简便的高通量DNA甲基化检测方法,其步骤包括:
    (1)用强碱对DNA样本进行氧化处理,使DNA样本中的胞嘧啶氧化成尿嘧啶,甲基化胞嘧啶氧化成胸腺嘧啶;
    (2)加入酸中和强碱,使反应体系的pH值控制在6-8以内;和
    (3)采用不耐尿嘧啶的高保真DNA聚合酶,进行文库扩增及测序。
  2. 根据权利要求1所述的简便的高通量DNA甲基化检测方法,其中,步骤(1)中所述强碱为NaOH或者KOH。
  3. 根据权利要求2所述的简便的高通量DNA甲基化检测方法,其中,步骤(1)中所述强碱的处理浓度为0.05M-0.4M。
  4. 根据权利要求3所述的简便的高通量DNA甲基化检测方法,其中,步骤(1)中所述氧化处理的温度为50-80℃。
  5. 根据权利要求4所述的简便的高通量DNA甲基化检测方法,其中,步骤(1)中所述氧化处理的时间为0.5-2h。
  6. 根据权利要求1-5中任一项所述的简便的高通量DNA甲基化检测方法,其中,步骤(1)中所述DNA样本在氧化处理前先进行DNA片段化以及末端修复和接头连接处理。
  7. 根据权利要求6所述的简便的高通量DNA甲基化检测方法,其中,所述DNA片段化是采用超声法打断或者酶切法打断。
  8. 根据权利要求1-5中任一项所述的简便的高通量DNA甲基化检测方法,其中,步骤(2)中所述酸为盐酸、硫酸或者乙酸。
  9. 根据权利要求1-5中任一项所述的简便的高通量DNA甲基化检测方法,其中,步骤(3)中所述不耐尿嘧啶的高保真DNA聚合酶为2×Super
    Figure PCTCN2022140475-appb-100001
    Ⅱ High-Fidelity Mix for Library Amplification、
    Figure PCTCN2022140475-appb-100002
    Ultra TM II
    Figure PCTCN2022140475-appb-100003
    Master Mix或Phusion Flash高保真PCR预混液。
PCT/CN2022/140475 2021-12-30 2022-12-20 一种简便的高通量dna甲基化检测方法 WO2023125170A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111683728.5A CN114381501A (zh) 2021-12-30 2021-12-30 一种简便的高通量dna甲基化检测方法
CN202111683728.5 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023125170A1 true WO2023125170A1 (zh) 2023-07-06

Family

ID=81199305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140475 WO2023125170A1 (zh) 2021-12-30 2022-12-20 一种简便的高通量dna甲基化检测方法

Country Status (2)

Country Link
CN (1) CN114381501A (zh)
WO (1) WO2023125170A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114381501A (zh) * 2021-12-30 2022-04-22 翌圣生物科技(上海)股份有限公司 一种简便的高通量dna甲基化检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050202490A1 (en) * 2004-03-08 2005-09-15 Makarov Vladimir L. Methods and compositions for generating and amplifying DNA libraries for sensitive detection and analysis of DNA methylation
CN102409042A (zh) * 2010-09-21 2012-04-11 深圳华大基因科技有限公司 一种高通量基因组甲基化dna富集方法及其所使用标签和标签接头
US20150011396A1 (en) * 2012-07-09 2015-01-08 Benjamin G. Schroeder Methods for creating directional bisulfite-converted nucleic acid libraries for next generation sequencing
CN110305946A (zh) * 2019-07-18 2019-10-08 重庆大学附属肿瘤医院 基于高通量测序的dna甲基化检测方法
US20200032330A1 (en) * 2017-03-08 2020-01-30 The University Of Chicago Method for highly sensitive dna methylation analysis
CN114381501A (zh) * 2021-12-30 2022-04-22 翌圣生物科技(上海)股份有限公司 一种简便的高通量dna甲基化检测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014019595A1 (en) * 2012-08-01 2014-02-06 Universität Konstanz Method for the detection of dna methylation and hydroxymethylation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050202490A1 (en) * 2004-03-08 2005-09-15 Makarov Vladimir L. Methods and compositions for generating and amplifying DNA libraries for sensitive detection and analysis of DNA methylation
CN102409042A (zh) * 2010-09-21 2012-04-11 深圳华大基因科技有限公司 一种高通量基因组甲基化dna富集方法及其所使用标签和标签接头
US20150011396A1 (en) * 2012-07-09 2015-01-08 Benjamin G. Schroeder Methods for creating directional bisulfite-converted nucleic acid libraries for next generation sequencing
US20200032330A1 (en) * 2017-03-08 2020-01-30 The University Of Chicago Method for highly sensitive dna methylation analysis
CN110305946A (zh) * 2019-07-18 2019-10-08 重庆大学附属肿瘤医院 基于高通量测序的dna甲基化检测方法
CN114381501A (zh) * 2021-12-30 2022-04-22 翌圣生物科技(上海)股份有限公司 一种简便的高通量dna甲基化检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, JIFENG ET AL.: "High-throughput Sequencing Technology and Its Application in Epigenetics", CHINESE BULLETIN OF LIFE SCIENCES, vol. 24, no. 7, 31 July 2012 (2012-07-31), XP009547381, ISSN: 1004-0374 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114381501A (zh) * 2021-12-30 2022-04-22 翌圣生物科技(上海)股份有限公司 一种简便的高通量dna甲基化检测方法

Also Published As

Publication number Publication date
CN114381501A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
Vaisvila et al. Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA
EP3640341B1 (en) Assays to determine dna methylation and dna methylation markers of cancer
US9290807B2 (en) Methods for detection of nucleotide modification
TWI647312B (zh) Method for screening gene markers of intestinal cancer, gene markers screened by the method, and uses thereof
TWI673496B (zh) 用於檢測肺癌的基因標誌物、試劑組及肺癌檢測方法
Vaisvila et al. EM-seq: detection of DNA methylation at single base resolution from picograms of DNA
WO2023125170A1 (zh) 一种简便的高通量dna甲基化检测方法
Xiao et al. Validation of methylation-sensitive high-resolution melting (MS-HRM) for the detection of stool DNA methylation in colorectal neoplasms
TWI680296B (zh) 用於檢測胰腺癌的基因標誌物、試劑組及胰腺癌檢測方法
WO2018157775A1 (zh) 5-醛基胞嘧啶的标记方法及其在单碱基分辨率测序中的应用
CN107356642B (zh) 一种基于双标记扩增的血浆循环甲基化dna电化学检测方法及试剂盒
WO2017143866A1 (zh) 用于定量检测rprm基因dna甲基化试剂盒及方法
TW201905206A (zh) 用於檢測肝癌的基因標誌物及其用途
WO2019085546A1 (zh) 微生物 16S rDNA 单分子水平测序文库的构建方法
CN114891886B (zh) 用于诊断膀胱癌的核酸产品、试剂盒及应用
CN110669831B (zh) 人sgip1、scand3和myo1g基因甲基化检测试剂盒
Zhou et al. A novel methyl-dependent DNA endonuclease GlaI coupling with double cascaded strand displacement amplification and CRISPR/Cas12a for ultra-sensitive detection of DNA methylation
CN108018336A (zh) 一种dna甲基化检测试剂盒及其使用方法
CN113881739B (zh) 氧化含锯齿末端核酸分子的方法及还原方法与文库构建法
Wu et al. GlaI cleavage assistant isothermal exponential amplification coupling with CRISPR/Cas12a for ultrasensitive detection of CLDN11 methylation: A potential marker for lung adenocarcinoma
CN116219020B (zh) 一种甲基化内参基因及其应用
WO2023078276A1 (zh) 一种基于定量pcr技术dna甲基化检测方法及其试剂盒
Ma et al. CRISPR-empowered electrochemical biosensor for target amplification-free and sensitive detection of miRNA
WO2022257354A1 (zh) 检测核酸分子中n6-甲基腺嘌呤的方法及试剂盒
TW201910772A (zh) 用於檢測肝腫瘤良惡性的基因標誌物、試劑組及檢測方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914424

Country of ref document: EP

Kind code of ref document: A1