WO2023125084A1 - 移动式辐射检查设备以及移动式辐射检查系统 - Google Patents

移动式辐射检查设备以及移动式辐射检查系统 Download PDF

Info

Publication number
WO2023125084A1
WO2023125084A1 PCT/CN2022/139764 CN2022139764W WO2023125084A1 WO 2023125084 A1 WO2023125084 A1 WO 2023125084A1 CN 2022139764 W CN2022139764 W CN 2022139764W WO 2023125084 A1 WO2023125084 A1 WO 2023125084A1
Authority
WO
WIPO (PCT)
Prior art keywords
boom
imaging device
ray source
ray
vehicle body
Prior art date
Application number
PCT/CN2022/139764
Other languages
English (en)
French (fr)
Inventor
孙尚民
宗春光
杨学敬
樊旭平
宋全伟
史俊平
孟辉
杨洋
喻卫丰
李营
王东宇
刘磊
刘必成
迟豪杰
Original Assignee
同方威视科技(北京)有限公司
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视科技(北京)有限公司, 同方威视技术股份有限公司 filed Critical 同方威视科技(北京)有限公司
Publication of WO2023125084A1 publication Critical patent/WO2023125084A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays

Definitions

  • the present disclosure relates to the field of security inspection, and in particular to a mobile radiation inspection device and a mobile radiation inspection system.
  • scanning inspection equipment is widely used in the field of security inspection to scan and detect the detected objects. According to whether the scanning inspection equipment can be moved, it is divided into fixed scanning inspection equipment and mobile scanning inspection equipment.
  • the fixed scanning inspection equipment includes a radiation source and a detector, both of which are installed at the set position of the detection site, and the position cannot be changed.
  • the object to be detected is transported to the detection site and placed in the detection channel between the radiation source and the detector for detection.
  • the mobile scanning inspection equipment has the advantage of being able to be transported across sites. In actual use, the mobile scanning inspection equipment is moved to the area where the object to be detected is located for detection.
  • the inventors have found that there are at least the following problems in the related art: since the mobile scanning inspection equipment needs to be transported in transit, the equipment parameters of the mobile scanning inspection equipment, such as weight and size, must meet the transportation requirements. Due to the limitations of these factors, the number of radiation sources set in the movable scanning inspection equipment is small, and the scanning mode is relatively simple.
  • the disclosure proposes a mobile radiation inspection device and a mobile radiation inspection system, which are used to expand the functions of the mobile radiation inspection device.
  • Some embodiments of the present disclosure provide a mobile radiation inspection equipment, including:
  • a vehicle body configured to provide support
  • a traveling mechanism installed on the vehicle body to drive the vehicle body to walk;
  • the boom assembly is installed on the car body; the boom assembly is configured to switch between an inspection state and a transportation state; when the boom assembly is in the transportation state, the boom assembly is retracted and The vehicle body is loaded; when the boom assembly is in the inspection state, the boom assembly is deployed and forms an inspection channel together with the vehicle body;
  • the first imaging device includes a first ray source and a first ray detector both installed on the boom assembly; the first ray detector cooperates with the first ray source to detect the first ray source emitted radiation; the first radiation source is located at the top of the inspection channel; and
  • the second imaging device includes a second ray source and a second ray detector; one of the second ray source and the second ray detector is installed on the vehicle body, and the other is installed on the boom assembly;
  • the second ray source is located at the side of the detection channel; the second ray detector cooperates with the second ray source to detect the ray emitted by the second ray source.
  • the first ray source and the first ray detector of the first imaging device jointly form the first beam plane
  • the second ray source and the second ray detector of the second imaging device jointly form the first beam plane.
  • Two beam surfaces; the first beam surface and the second beam surface are parallel.
  • the first imaging device and the second imaging device are independent, each independently controlled.
  • the mobile radiation inspection equipment also includes:
  • the third imaging device includes a third ray source and a third ray detector installed on the boom assembly or the vehicle body; the third ray detector cooperates with the third ray source to detect the The rays emitted by the third ray source; the third ray source is located at the side of the detection channel.
  • the first ray source and the first ray detector of the first imaging device jointly form the first beam plane
  • the second ray source and the second ray detector of the second imaging device jointly form the first beam plane.
  • Two beam planes, the third ray source and the third ray detector of the third imaging device jointly form a third beam plane; the first beam plane, the second beam plane and the third beam plane are parallel.
  • the first imaging device, the second imaging device and the third imaging device are independent and each is independently controlled.
  • the boom assembly includes:
  • the first boom is liftably mounted on the vehicle body, or the first boom is configured to be telescopic; the first boom includes an extended state and a retracted state;
  • a third boom rotatably mounted on the second boom
  • the first boom when the boom assembly is in the transportation state, the first boom is retracted; the second boom and the first boom rotate together to a position where the second boom is parallel to the vehicle body , and located on the top of the vehicle body; the third boom rotates to a position parallel to the second boom, and the third boom is located between the second boom and the vehicle body ;
  • the first arm frame protrudes from the top of the vehicle body, the second arm frame and the first arm frame jointly rotate relative to the vehicle body, and the first arm frame rotates relative to the vehicle body.
  • the three booms rotate to a position perpendicular to the second boom and parallel to the first boom; the first boom, the second boom, the third boom and the vehicle body The sides together form the inspection channel.
  • the first imaging device is mounted on the first arm.
  • the mobile radiation inspection equipment also includes:
  • the second compartment is rotatably mounted on the tail of the car body
  • the second cabin when the boom assembly is in the transport state, the second cabin is located at the tail of the vehicle body; when the boom assembly is in the inspection state, the second cabin rotates to the side of the vehicle body , the second cabin body and the boom assembly are located in the width direction of the vehicle body and on both sides of the vehicle body.
  • the second ray source is installed on the second cabin, and the second ray detector is installed on the third boom; the second cabin, the second ray source
  • the total weight of the boom assembly, the first imaging device and the second radiation detector is configured to be balanced, so that the mobile radiation inspection equipment is within the width of the vehicle body Orientation remains stable; or,
  • the second ray source is installed on the third boom, and the second ray detector is installed on the second cabin; the total weight of the second cabin, the second ray detector and the The total weight of the boom assembly, the first imaging device and the second radiation source is configured to be balanced, so that the mobile radiation inspection equipment remains stable in the width direction of the vehicle body.
  • one of the second ray source and the second ray detector is arranged in the second cabin, and the other is arranged in the third arm of the arm assembly.
  • At least one side of the second cabin is configured to be open, so that when the boom assembly is in the inspection state, the second radiation source located in the second cabin is not Block, shoot directly to the object to be detected.
  • the third imaging device is disposed in the first cabin.
  • At least one side of the first cabin is configured to be open, so that when the boom assembly is in the inspection state, the radiation emitted by the third ray source located in the first cabin The ray is not blocked and directly shoots to the object to be detected.
  • the material of the boom assembly includes aluminum alloy or titanium alloy.
  • the first imaging device is a backscattered imaging device, the first radiation source is a backscattered radiation source, and the first radiation detector is a backscattered electron detector; and/or, the The second imaging device is a transmission imaging device, the second radiation source is a transmission radiation source, and the second radiation detector is a transmission radiation detector.
  • the third imaging device is a backscattered imaging device
  • the third ray source is a backscattered ray source
  • the third ray detector is a backscattered electron detector
  • Some embodiments of the present disclosure also provide a vehicle-mounted radiation inspection system, including the mobile radiation inspection equipment provided by any technical solution of the present disclosure.
  • the mobile radiation inspection equipment has a car body, a traveling mechanism, a boom assembly, a first imaging device, and a second imaging device; the traveling mechanism drives the car body to walk, which will synchronously drive
  • the boom assembly of the body, the first imaging device and the second imaging device can be moved, which realizes that both the first imaging device and the second imaging device can be transported conveniently.
  • the arm frame assembly is configured to be retractable. In the inspection state, the arm frame assembly is unfolded, and the arm frame assembly and the vehicle body jointly form an inspection channel. In the transport mode, the boom assembly retracts, driving the first imaging device and the second imaging device to also retract to the top of the vehicle body.
  • the vehicle body, the running mechanism, the boom assembly, the first imaging device and the second imaging device all maintain a connection relationship.
  • the imaging principles and installation positions of the first imaging device and the second imaging device are different, which realizes multi-angle and multi-mode scanning of the detected object, increases the accuracy of scanning inspection, and realizes mobile
  • the multi-mode and multi-angle scanning of the radiation inspection equipment expands the functions of the mobile radiation inspection equipment.
  • Fig. 1a is a schematic front view of a mobile radiation inspection device in a transport state provided by some embodiments of the present disclosure
  • Fig. 1b is a schematic top view of the mobile radiation inspection equipment in a transport state provided by some embodiments of the present disclosure.
  • Fig. 1c is a schematic left view of the mobile radiation inspection equipment in a transport state according to some embodiments of the present disclosure.
  • Fig. 2a is a schematic front view of a mobile radiation inspection device in an inspection state provided by some embodiments of the present disclosure.
  • Fig. 2b is a schematic top view of the mobile radiation inspection equipment in an inspection state provided by some embodiments of the present disclosure.
  • Fig. 2c is a schematic left view of the mobile radiation inspection equipment in an inspection state provided by some embodiments of the present disclosure.
  • Fig. 3a is a schematic front view of the mobile radiation inspection equipment in a transport state provided by some embodiments of the present disclosure.
  • Fig. 3b is a schematic top view of the mobile radiation inspection equipment in a transport state according to some embodiments of the present disclosure.
  • Fig. 3c is a schematic left view of the mobile radiation inspection equipment in a transport state according to some embodiments of the present disclosure.
  • Fig. 4a is a schematic front view of the mobile radiation inspection equipment in an inspection state provided by some embodiments of the present disclosure.
  • Fig. 4b is a schematic top view of the mobile radiation inspection equipment in an inspection state provided by some embodiments of the present disclosure.
  • Fig. 4c is a schematic left view of the mobile radiation inspection equipment in an inspection state provided by some embodiments of the present disclosure.
  • each orientation 1a to 1c
  • an XYZ coordinate system is established, where the X direction corresponds to the length direction of the vehicle, the Y direction corresponds to the width direction of the vehicle, and the Z direction corresponds to the height direction of the vehicle.
  • an embodiment of the present disclosure provides a mobile radiation inspection device, which includes a car body 1 , a traveling mechanism 2 , a boom assembly 3 , a first imaging device 4 and a second imaging device 5 .
  • the vehicle body 1 is configured to provide support.
  • the traveling mechanism 2 is installed on the car body 1 to drive the car body 1 to walk.
  • Mobile radiation inspection equipment includes transport status and inspection status. When the mobile radiation inspection equipment is in the transport state, the boom assembly 3 is also in the transport state. When the mobile radiation inspection equipment is in the inspection state, the boom assembly 3 is also in the inspection state.
  • the vehicle body 1 is the main part of the mobile radiation inspection equipment, and is used to set up the driver's cab, carriage, chassis and so on.
  • the running gear 2 can be realized in multiple ways such as wheels and crawler belts. If wheels are used, two tires can be mounted on each axle of the vehicle at the tire-mounted end.
  • the boom assembly 3 is installed on the vehicle body 1 .
  • the arm frame assembly 3 is configured to switch between the inspection state and the transport state; when the arm frame assembly 3 is in the transport state, the arm frame assembly 3 is shrunk to be carried by the car body 1, and further, all the mobile radiation inspection equipment The components are all carried by themselves, and there is no need to dismantle some components, and there is no need to use other transfer vehicles.
  • the arm frame assembly 3 When the arm frame assembly 3 is in the inspection state, the arm frame assembly 3 cooperates with the side of the car body 1 to form an inspection channel after being unfolded.
  • the power required for the deployment of the boom assembly 3 comes from the mobile radiation inspection equipment itself, and no additional driving mechanism is required to drive the boom assembly 3 to deform.
  • the weight of the boom assembly 3 is an important part of the total weight of the mobile radiation inspection equipment.
  • the carrying capacity of the chassis is certain, and if the boom assembly 3 is too heavy, the number of imaging devices that can be installed in the mobile radiation inspection device will be limited. However, if the arm support assembly 3 is too light, its carrying capacity will be limited, which will also affect the number of imaging devices. It can be seen that the arm frame assembly 3 with weak carrying capacity may not be able to carry the imaging device. The boom assembly 3 with a strong load-bearing capacity may still be unable to install the imaging device because of its heavy weight, which limits the load-bearing capacity of the mobile radiation inspection equipment.
  • the technical solution of the present application optimizes the material of the jib assembly 3, and the material of the jib assembly 3 is selected from lightweight materials such as aluminum alloy or titanium alloy with high load-bearing capacity.
  • each boom of the boom assembly 3 is also provided with structures such as reinforcing ribs, so as to reduce the risk of bending deformation of the boom assembly 3 .
  • the main girder of the jib assembly 3 can be arranged side by side with multiple profiles, and the main girder of this structure also has relatively high bending resistance.
  • the vehicle-mounted inspection equipment provided by the above-mentioned technical solution can meet the transport restrictions on vehicle weight, size, chassis carrying capacity and other aspects imposed by industry regulations.
  • the boom assembly 3 includes a first boom 31 , a second boom 32 and a third boom 33 .
  • the states of the first arm frame 31 , the second arm frame 32 and the third arm frame 33 can all be switched.
  • the first arm frame 31 , the second arm frame 32 and the third arm frame 33 are located on the top of the vehicle body 1 and are transported along with the vehicle body 1 .
  • the boom assembly 3 is in the detection state, the first boom 31 , the second boom 32 and the third boom 33 are unfolded to form a detection channel P on the side of the vehicle body 1 .
  • the jib assembly 3 does not need to be disassembled and assembled repeatedly, and the transition transportation is more convenient.
  • the first arm frame 31 is installed on the car body 1 in a liftable manner, and the first arm frame 31 is specifically installed on the top of the car body 1 .
  • a lifting drive mechanism is set on the car body 1, and the lifting drive mechanism adopts belt drive, gear drive and the like, for example.
  • the driving mechanism drives the first arm frame 31 to stretch out relative to the vehicle body 1, so that the top of the first arm frame 31 is higher than the roof of the vehicle, and the height of the inspection channel formed is relatively high to meet Inspection requirements for large, high-loaded objects 10 to be inspected.
  • the first boom 31 is configured to be telescopic.
  • the first boom 31 adopts multi-section nested boom sections, and when scanning is required, the boom sections are extended one by one.
  • the first boom 31 includes an extended state and a retracted state.
  • the first boom 31 is lowered to be completely or partially inside the vehicle body 1, so as to shorten the extension of the first boom 31.
  • the height of the vehicle body 1 makes the height of the vehicle meet the requirements of road regulations for vehicles during the transfer of the mobile radiation inspection equipment.
  • the second arm frame 32 is installed on the first arm frame 31 , and the two are fixedly connected by fasteners such as bolts.
  • the first arm frame 31 is installed on the slewing platform 92 described later, and the slewing platform 92 drives the first arm frame 31 , the second arm frame 32 and the third arm frame 33 to rotate relative to the car body 1 synchronously.
  • the second boom 32 serves as the top beam of the inspection channel.
  • the above-mentioned first imaging device 4 is installed on the second arm frame 32 . Regardless of whether the second arm frame 32 is in the inspection state or the transport state, the first imaging device 4 remains connected to the second arm frame 32 , and the relative positional relationship between the two remains unchanged.
  • the second arm frame 32 includes a beam 321 and a detection arm 322 , both of which are fixedly connected, so as to play a role of light weight and ensure bearing capacity.
  • the detection arm 322 is located on the side of the beam 321 .
  • the side view here is taken as an example of the inspection state, that is, the detection arm 322 is located along the direction of the object to be inspected passing through the inspection channel along the direction of the detection arm 322, specifically the relative positions of the detection arm 322 and the beam 321 shown in Fig. 2b and Fig. 2c.
  • the arm frame assembly 3 When the arm frame assembly 3 is in the transport state, the first arm frame 31 is recovered; the second arm frame 32 and the first arm frame 31 are jointly driven by the rotary platform 92 to rotate to the position where the second arm frame 32 is parallel to the car body 1, And it is located on the top of the car body 1.
  • the arm frame assembly 3 When the arm frame assembly 3 is in the inspection state, the first arm frame 31 protrudes from the top of the vehicle body 1 , the second arm frame 32 and the first arm frame 31 rotate together, and most of the second arm frame 32 is located outside the vehicle body 1 .
  • the third arm frame 33 is rotatably mounted on the second arm frame 32 .
  • the third arm frame 33 in the transportation state, the third arm frame 33 is in a folded state, and the third arm frame 33 is located below the detection arm 322 of the second arm frame 32, and the two are stacked together, the third arm frame 33 and the detection arm
  • the total height of the beams 322 stacked together is basically the same as the total height of the beam 321, which can reduce the height of the second boom 32 and the third boom 33 in the transport state, making the overall height of the mobile radiation inspection equipment smaller, It can better meet the requirements of transition transportation and road driving requirements.
  • the third arm frame 33 is parallel to the first arm frame 31 , and the third arm frame 33 and the first arm frame 31 are distributed at two ends of the second arm frame 32 .
  • the first arm frame 31 , the second arm frame 32 and the third arm frame 33 cooperate with the vehicle body 1 to jointly form an inspection channel.
  • the mobile radiation inspection equipment further includes a first cabin 7 and a second cabin 8 .
  • the first cabin 7 and the second cabin 8 can be closed cabins or open cabins. Whether it is closed depends on whether scanning rays are required to pass through the walls of the cabin. If the radiation penetrating the wall of the cabin does not affect or does not affect the scanning inspection effect, the cabin can be set as closed. If the ray penetrates the wall of the cabin body, it will obviously affect the scanning inspection effect, the cabin body needs to be set to be open on the path of the ray, so that the ray can complete the scanning inspection operation well.
  • the first cabin body 7 is fixedly installed on the vehicle body 1, for example, by bolt connection. In the inspection state and the transport state, the position of the first cabin body 7 relative to the vehicle body 1 is fixed, and there is no relative movement between the two.
  • the second cabin body 8 is rotatably mounted on the tail of the vehicle body 1 .
  • the second cabin body 8 when the boom assembly 3 is in the transport state, the second cabin body 8 is positioned at the tail of the car body 1; when the boom assembly 3 is in the inspection state, the second cabin body 8 rotates to the side of the car body 1, and the second cabin body 8 and the boom assembly 3 are located in the width direction of the vehicle body 1 and on both sides of the vehicle body 1 .
  • the car body 1 is equipped with a turning mechanism 9, and the second cabin body 8 is installed on the turning mechanism 9, and the second cabin body 8 is driven to rotate by the turning mechanism 9, so that the second cabin body 8 is in the transportation state and inspection switch between states.
  • the slewing mechanism 9 includes a slewing support 91 and a slewing platform 92 .
  • the slewing support 91 is rotatably installed on the vehicle body 1
  • the slewing platform 92 is installed on the slewing support 91
  • the second cabin body 8 is installed on the slewing platform 92 .
  • External force drives the rotary platform 92 and the second cabin body 8 to rotate synchronously.
  • the mobile radiation inspection equipment includes a first imaging device 4 and a second imaging device 5 .
  • the first imaging device 4 includes a first ray source and a first ray detector both installed on the boom assembly 3 .
  • the first ray detector cooperates with the first ray source to detect the ray emitted by the first ray source; the first ray source is located at the top of the inspection channel.
  • the first imaging device 4 uses the backscatter principle for imaging, and its first ray source and first ray detector are installed on the same side of the detected object. Referring to Fig. 2c, taking the direction shown in the inspection state as an example, both the first radiation source and the first radiation detector are installed on the top of the arm frame assembly 3, that is, the first imaging device 4 is installed on the second arm frame 32, which can be specifically installed on the beam 321 of the second boom 32 .
  • the first imaging device 4 is used for scanning from the top of the detected object.
  • the first imaging device 4 is a backscatter imaging device.
  • the first ray source is a backscattered ray source
  • the first ray detector is a backscattered electron detector.
  • the second imaging device 5 includes a second ray source and a second ray detector installed on the car body 1 and/or the jib; the second ray detector cooperates with the second ray source to detect the second ray detector. Rays emitted by two ray sources.
  • the second ray source is located at the side of the detection channel P.
  • One of the second ray source and the second ray detector is installed on the vehicle body 1 , and the other is installed on the boom assembly 3 .
  • the second ray source is installed on the car body 1
  • the second ray detector is installed on the third boom 33 of the boom assembly 3 .
  • the second imaging device 5 is a transmission imaging device
  • the second radiation source is a transmission radiation source
  • the second radiation detector is a transmission radiation detector.
  • the dotted line S1 is the ray path of the first imaging device 4 .
  • the dotted line S2 is the ray path of the second imaging device 5 . It can be seen from Fig. 2c that the rays of the first imaging device 4 do not completely penetrate the detected object. The rays of the second imaging device 5 completely penetrate the detected object.
  • the first ray source and the first ray detector of the first imaging device 4 jointly form the first beam plane M1
  • the second ray source and the second ray detector of the second imaging device 5 jointly form the second beam surface M1.
  • Surface M2; the first bundle surface M1 is parallel to the second bundle surface M2.
  • the first imaging device 4 and the second imaging device 5 are independent and controlled independently. Parameters such as start-up and stop, dose control, and working time of the first imaging device 4 and the second imaging device 5 are all controlled independently, and will not affect each other.
  • the second ray source is arranged in the second cabin 8 , and the second ray detector is arranged in the third boom 33 of the boom assembly 3 .
  • the second ray source is arranged on the third boom 33 of the boom assembly 3 , and the second ray detector is arranged in the second cabin 8 .
  • the following weight balance scheme is adopted to maintain the balance of the mobile radiation inspection equipment in the width direction of the vehicle:
  • the second ray source is installed on the second cabin 8
  • the second ray detector is installed on the third boom 33 .
  • the total weight of the second cabin body 8, the second ray source, and the total weight of the boom assembly 3, the first imaging device 4 and the second ray detector are configured to be balanced, so that the mobile radiation inspection equipment is placed on the vehicle body. 1 remains stable across its width.
  • the second case the second ray source is installed on the third boom 33 , and the second ray detector is installed on the second cabin 8 .
  • the total weight of the second cabin body 8, the second radiation detector and the total weight of the boom assembly 3, the first imaging device 4 and the second radiation source are configured to be balanced, so that the mobile radiation inspection equipment The vehicle body 1 is kept stable in the width direction.
  • At least one side of the second cabin body 8 is configured as an opening, so that when the boom assembly is in the inspection state, the second ray source located in the second cabin body 8 directly shoots to the Detected substance 10.
  • Fig. 3a to Fig. 4c some other embodiments are introduced below.
  • the difference between these embodiments and the above-mentioned embodiments is that in these embodiments, in addition to the first imaging device 4 and the second imaging device 5 introduced above, the mobile radiation inspection equipment is also provided with a third Imaging device 6.
  • the mobile radiation inspection equipment further includes a third imaging device 6, and the third imaging device 6 includes a third ray source and a third radiation source installed on the boom assembly 3 or the vehicle body 1.
  • Ray detector cooperates with the third ray source to detect the ray emitted by the third ray source; the third ray source is located at the side of the detection channel P.
  • the third imaging device 6 is a backscattered imaging device, the third ray source is a backscattered ray source, and the third ray detector is a backscattered electron detector.
  • the first ray source and the first ray detector of the first imaging device 4 jointly form the first beam surface M1
  • the second ray source and the second ray detector of the second imaging device 5 jointly form the second beam surface M2
  • the third ray source and the third ray detector of the third imaging device 6 jointly form a third beam plane M3; the first beam plane M1, the second beam plane M2 and the third beam plane M3 are parallel.
  • the dotted line S1 is the ray path of the first imaging device 4 .
  • the dotted line S2 is the ray path of the second imaging device 5 .
  • the two-dashed line S3 is the ray path of the third imaging device 6 . It can be seen from FIG. 4 c that the rays of the first imaging device 4 scan the object to be inspected from above, and do not completely penetrate the object to be inspected.
  • the rays of the second imaging device 5 completely penetrate the detected object from the side of the detected object.
  • the ray of the third imaging device 6 scans the detected object from the side, and does not completely penetrate the detected object.
  • the first imaging device 4 , the second imaging device 5 and the third imaging device 6 are independent and controlled independently. Parameters such as start-up and stop, dose control, and working time of the first imaging device 4 , the second imaging device 5 and the third imaging device 6 are all controlled independently, and will not affect each other.
  • the third imaging device 6 is arranged in the first cabin 7 .
  • at least one side of the first cabin body 7 is configured as an opening, so that when the boom assembly is in the inspection state, the third radiation source located in the first cabin body 7 is unobstructed and directly shoot to the detected object 10.
  • An embodiment of the present disclosure also provides a vehicle-mounted radiation inspection system, including the mobile radiation inspection equipment provided by any technical solution of the present disclosure.

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种移动式辐射检查设备以及移动式辐射检查系统,涉及安检领域,用以扩展移动式辐射检查设备的功能。移动式辐射检查设备包括车体(1)、行走机构(2)、臂架组件(3)、第一成像装置(4)以及第二成像装置(5);臂架组件(3)安装于车体(1),且被构造为在检查状态和运输状态之间切换;第一成像装置(4)包括安装于臂架组件(3)的第一射线源和第一射线探测器;第一射线源位于检测通道(P)的顶部;第二成像装置(5)包括第二射线源和第二射线探测器;第二射线探测器与第二射线源配合,以探测第二射线源发出的射线;第二射线源位于检测通道(P)的侧面。移动式辐射检查设备,实现了多角度、多模式扫描。

Description

移动式辐射检查设备以及移动式辐射检查系统
相关申请的交叉引用
本申请是以CN申请号为202111668874.0,申请日为2021年12月30日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及安检领域,具体涉及一种移动式辐射检查设备以及移动式辐射检查系统。
背景技术
目前,安检领域广泛使用扫描检查设备对被检测物进行扫描检测。根据扫描检查设备是否可以移动,将其划分为固定式扫描检查设备和可移动式扫描检查设备。固定式扫描检查设备包括射线源和探测器,射线源和探测器都安装在检测场地的设定位置,不可改变位置。需要检测时,将被检测物运输至检测场地,并置于射线源和探测器之间的检测通道内进行检测。可移动式扫描检查设备具有可以转场运输的优点,实际使用中,将可移动式扫描检查设备移动至被检测物所在的区域,以进行检测。
发明人发现,相关技术中至少存在下述问题:由于可移动式扫描检查设备需要转场运输,所以移动式扫描检查设备的设备参数,比如重量、尺寸等均需要满足运输要求。由于这些因素的限制,可移动式扫描检查设备所设置的射线源数量少,扫描模式比较单一。
发明内容
本公开提出一种移动式辐射检查设备以及移动式辐射检查系统,用以扩展移动式辐射检查设备的功能。
本公开一些实施例提供一种移动式辐射检查设备,包括:
车体,被构造为提供支撑;
行走机构,安装于所述车体,以带动所述车体行走;
臂架组件,安装于所述车体;所述臂架组件被构造为在检查状态和运输状态之间切换;当所述臂架组件处于运输状态下,所述臂架组件被收缩且由所述车体承载;当 所述臂架组件处于检查状态,所述臂架组件被展开且和所述车体共同形成检查通道;
第一成像装置,包括均安装于所述臂架组件的第一射线源和第一射线探测器;所述第一射线探测器与所述第一射线源配合,以探测所述第一射线源发出的射线;所述第一射线源位于所述检查通道的顶部;以及
第二成像装置,包括第二射线源和第二射线探测器;所述第二射线源和第二射线探测器其中之一安装于所述车体,另一安装于所述臂架组件;所述第二射线源位于所述检测通道的侧面;所述第二射线探测器与所述第二射线源配合,以探测所述第二射线源发出的射线。
在一些实施例中,所述第一成像装置的第一射线源和第一射线探测器共同形成第一束面,所述第二成像装置的第二射线源和第二射线探测器共同形成第二束面;所述第一束面和所述第二束面平行。
在一些实施例中,所述第一成像装置和所述第二成像装置是独立的,各自独立控制。
在一些实施例中,移动式辐射检查设备还包括:
第三成像装置,包括安装于所述臂架组件或者所述车体的第三射线源和第三射线探测器;所述第三射线探测器与所述第三射线源配合,以探测所述第三射线源发出的射线;所述第三射线源位于所述检测通道的侧面。
在一些实施例中,所述第一成像装置的第一射线源和第一射线探测器共同形成第一束面,所述第二成像装置的第二射线源和第二射线探测器共同形成第二束面,所述第三成像装置的第三射线源和第三射线探测器共同形成第三束面;所述第一束面、所述第二束面和所述第三束面平行。
在一些实施例中,所述第一成像装置、所述第二成像装置和所述第三成像装置是独立的,各自独立控制。
在一些实施例中,所述臂架组件包括:
第一臂架,可升降地安装于所述车体,或者,所述第一臂架被构造可伸缩的;所述第一臂架包括伸出状态和回缩状态;
第二臂架,安装于所述第一臂架;以及
第三臂架,可转动地安装于所述第二臂架;
其中,当所述臂架组件处于运输状态,所述第一臂架回收;所述第二臂架和所述第一臂架共同转动至所述第二臂架与所述车体平行的位置,且位于所述车体的顶部; 所述第三臂架转动至与所述第二臂架平行的位置,且所述第三臂架位于所述第二臂架和所述车体之间;
当所述臂架组件处于检查状态,所述第一臂架伸出所述车体的顶部,所述第二臂架与所述第一臂架共同相对于所述车体转动,所述第三臂架转动至与所述第二臂架垂直且与所述第一臂架平行的位置;所述第一臂架、所述第二臂架、所述第三臂架和所述车体的侧面共同形成检查通道。
在一些实施例中,所述第一成像装置安装于所述第一臂架。
在一些实施例中,移动式辐射检查设备还包括:
第一舱体,固定安装于所述车体;以及
第二舱体,可转动地安装与所述车体的尾部;
其中,当所述臂架组件处于运输状态,所述第二舱体位于所述车体的尾部;当所述臂架组件处于检查状态,所述第二舱体转动至所述车体的侧面,所述第二舱体和所述臂架组件均位于所述车体的宽度方向,且位于所述车体的两侧。
在一些实施例中,所述第二射线源安装于所述第二舱体,所述第二射线探测器安装于所述第三臂架;所述第二舱体、所述第二射线源的总重量与所述臂架组件、所述第一成像装置和所述第二射线探测器的总重量被配置为是平衡的,以使得所述移动式辐射检查设备在所述车体的宽度方向上保持稳定;或者,
所述第二射线源安装于所述第三臂架,所述第二射线探测器安装于所述第二舱体;所述第二舱体、所述第二射线探测器的总重量与所述臂架组件、所述第一成像装置和所述第二射线源的总重量被配置为是平衡的,以使得所述移动式辐射检查设备在所述车体的宽度方向上保持稳定。
在一些实施例中,所述第二射线源和所述第二射线探测器其中之一布置于所述第二舱体中,另一个布置于所述臂架组件的第三臂架。
在一些实施例中,所述第二舱体的至少一侧被构造为开口的,以使得所述臂架组件处于检查状态时,位于所述第二舱体内的所述第二射线源未经阻挡、直接射向被检测物。
在一些实施例中,所述第三成像装置布置于所述第一舱体中。
在一些实施例中,所述第一舱体的至少一侧被构造为开口的,以使得所述臂架组件处于检查状态时,位于所述第一舱体内的所述第三射线源发出的射线未经阻挡、直接射向被检测物。
在一些实施例中,所述臂架组件的材料包括铝合金或者钛合金。
在一些实施例中,所述第一成像装置为背散成像装置,所述第一射线源为背散射线源,所述第一射线探测器为背散射电子探测器;和/或,所述第二成像装置为透射成像装置,所述第二射线源为透射射线源,所述第二射线探测器为透射射线探测器。
在一些实施例中,所述第三成像装置为背散成像装置,所述第三射线源为背散射线源,所述第三射线探测器为背散射电子探测器。
本公开一些实施例还提供一种车载式辐射检查系统,包括本公开任一技术方案所提供的移动式辐射检查设备。
上述技术方案提供的移动式辐射检查设备,同时具有车体、行走机构、臂架组件、第一成像装置和第二成像装置;行走机构带动车体行走,这会同步带动直接、间接安装于车体的臂架组件、第一成像装置和第二成像装置行走,这实现了第一成像装置和第二成像装置都可以便利地转场运输。另外,臂架组件被构造为可收缩的,在检查状态下,臂架组件展开,臂架组件和车体共同形成检查通道。在运输模式下,臂架组件收缩,带动第一成像装置和第二成像装置也收缩至车体顶部。无论是在检查状态,还是运输状态,车体、行走机构、臂架组件、第一成像装置和第二成像装置都保持连接关系。再则,第一成像装置和第二成像装置的成像原理不相同、设置位置也不相同,这实现了对被检测物多角度、多模式扫描,增加了扫描检查的精确度,实现了移动式辐射检查设备多模式、多角度扫描,拓展了移动式辐射检查设备的功能。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1a为本公开一些实施例提供的移动式辐射检查设备处于运输状态的主视示意图;
图1b为本公开一些实施例提供的移动式辐射检查设备处于运输状态的俯视示意图。
图1c为本公开一些实施例提供的移动式辐射检查设备处于运输状态的左视示意图。
图2a为本公开一些实施例提供的移动式辐射检查设备处于检查状态的主视示意 图。
图2b为本公开一些实施例提供的移动式辐射检查设备处于检查状态的俯视示意图。
图2c为本公开一些实施例提供的移动式辐射检查设备处于检查状态的左视示意图。
图3a为本公开一些实施例提供的移动式辐射检查设备处于运输状态的主视示意图。
图3b为本公开一些实施例提供的移动式辐射检查设备处于运输状态的俯视示意图。
图3c为本公开一些实施例提供的移动式辐射检查设备处于运输状态的左视示意图。
图4a为本公开一些实施例提供的移动式辐射检查设备处于检查状态的主视示意图。
图4b为本公开一些实施例提供的移动式辐射检查设备处于检查状态的俯视示意图。
图4c为本公开一些实施例提供的移动式辐射检查设备处于检查状态的左视示意图。
附图标记:
1、车体;2、行走机构;3、臂架组件;4、第一成像装置;5、第二成像装置;6、第三成像装置;7、第一舱体;8、第二舱体;9、回转机构;10、被检测物;31、第一臂架;32、第二臂架;33、第三臂架;321、梁;322、探测臂;51、靶点;91、回转支撑;92、回转平台。
具体实施方式
下面结合图1a~图4c对本公开提供的技术方案进行更为详细的阐述。
在介绍移动式辐射检查设备的技术方案之前,先定义各个方位。参见图1a至图1c,建立XYZ坐标系,其中X方向对应车辆的长度方向,Y方向对应车辆的宽度方向,Z方向对应车辆的高度方向。
参见图1a至图2c,本公开实施例提供一种移动式辐射检查设备,其包括车体1、行走机构2、臂架组件3、第一成像装置4以及第二成像装置5。车体1被构造提供支 撑。行走机构2安装于车体1,以带动车体1行走。
移动式辐射检查设备包括运输状态和检查状态。当移动式辐射检查设备处于运输状态,臂架组件3也是处于运输状态。当移动式辐射检查设备处于检查状态,臂架组件3也是处于检查状态。
车体1是移动式辐射检查设备的主体部分,用于设置驾驶室、车厢、底盘等。行走机构2可以为车轮、履带等多种实现方式。如果采用车轮,车辆的每个车轴的用于安装轮胎的端部都可以安装两个轮胎。
臂架组件3安装于车体1。臂架组件3被构造为在检查状态和运输状态之间切换;当臂架组件3处于运输状态下,臂架组件3被收缩至由车体1承载,进一步地,移动式辐射检查设备的全部部件均由自身承载运输、并不需要拆卸掉部分部件,也不需要借助其他的转场运输工具。当臂架组件3处于检查状态,臂架组件3展开后配合车体1的侧面共同形成检查通道。臂架组件3展开所需要的动力来自于移动式辐射检查设备自身,不用额外设置其他驱动机构来驱动臂架组件3变形。
臂架组件3的重量是移动式辐射检查设备总重量的重要组成部分。底盘的承载能力是确定的,如果臂架组件3过重,移动式辐射检查设备能够设置的成像设备的数量会受到限制。然而,如果臂架组件3过轻,则其承载能力会受到限制,这同样会使得影响成像设备的数量。可见,承载能力弱的臂架组件3,可能无法承载成像设备。承载能力强的臂架组件3,则又因为自身重量太重,使得移动式辐射检查设备的承载能力受限,仍然可能无法安装成像装置。为了解决这种矛盾,本申请的技术方案,一方面,对臂架组件3的材料进行了优化,臂架组件3的材质选用铝合金或者钛合金等轻便、且承载能力高的材料。另一方面,臂架组件3的各个臂架除了包括主梁外,还设置有加强肋等结构,以降低臂架组件3弯曲变形的风险。再一方面,臂架组件3的主梁可以采用多根型材并列布置,这种结构的主梁也具有比较高的抗弯性能。上述技术方案提供的车载式检查设备,能够满足行业法规对车辆关于重量、尺寸、底盘承载能力等方面的运输限制。
参见图1a至图2c,在一些实施例中,臂架组件3包括第一臂架31、第二臂架32和第三臂架33。第一臂架31、第二臂架32和第三臂架33的状态都可以切换。当臂架组件3处于运输状态,第一臂架31、第二臂架32和第三臂架33都位于车体1的顶部,随着车体1运输。当臂架组件3处于检测状态,第一臂架31、第二臂架32和第三臂架33展开、以在车体1的侧面形成检测通道P。无论是运输状态,还是检查状态, 都不需要将第一臂架31、第二臂架32和第三臂架33从车体1上拆卸下来,第一臂架31、第二臂架32和第三臂架33始终与车体1保持连接。这种设置方式,臂架组件3不需要反复拆装,且转场运输更加方便。
第一臂架31可升降地安装于车体1,第一臂架31具体安装于车体1的顶部。比如在车体1上设置升降驱动机构,升降驱动机构比如采用皮带驱动、齿轮驱动等方式。需要升起第一臂架31时,驱动机构带动第一臂架31相对于车体1伸出,使第一臂架31的顶部高于车顶,形成的检查通道的高度比较高,以满足大型、高承载的被检测物10的检查需求。或者,第一臂架31被构造可伸缩的。比如第一臂架31采用多节嵌套的臂节,需要扫描时,将臂节逐一伸出。第一臂架31包括伸出状态和回缩状态。当移动式辐射检查设备需要转场运输时,即臂架组件3处于运输状态,第一臂架31降落至全部位于车体1内部或者部分位于车体1内部,以缩短第一臂架31伸出车体1的高度,使得移动式辐射检查设备在转场运输过程中,车辆的高度尺寸满足道路法规对车辆的要求。
第二臂架32安装于第一臂架31,两者比如通过螺栓等紧固件固定连接。第一臂架31安装于后文介绍的回转平台92,通过回转平台92,带动第一臂架31、第二臂架32和第三臂架33同步相对于车体1回转。在检查状态下,第二臂架32作为检查通道的顶梁。上文介绍的第一成像装置4安装于第二臂架32。无论第二臂架32处于检查状态还是运输状态,第一成像装置4均与第二臂架32保持连接,两者之间的相对位置关系不变。在一些实施例中,第二臂架32包括梁321以及探测臂322,两者固定连接,以起到轻量、且保证承载能力的作用。探测臂322位于梁321的侧面。此处的侧面是以检查状态为例的,即探测臂322位于梁321沿着被检测物通过检查通道的方向上,具体采用图2b和图2c示意的探测臂322和梁321的相对位置。当臂架组件3处于运输状态,第一臂架31回收;第二臂架32和第一臂架31共同在回转平台92的驱动下转动至第二臂架32与车体1平行的位置,且位于车体1的顶部。当臂架组件3处于检查状态,第一臂架31伸出车体1的顶部,第二臂架32和第一臂架31共同转动,且第二臂架32大部分位于车体1外部。
第三臂架33可转动地安装于第二臂架32。参见图1c,处于运输状态下,第三臂架33处于折叠状态,第三臂架33位于第二臂架32的探测臂322下方,两者叠设在一起,第三臂架33和探测臂322叠设在一起的总高度与梁321的总高度基本相同,这样可以减少第二臂架32和第三臂架33在运输状态的高度,使得移动式辐射检查设 备的整体高度尺寸更小,更能满足转场运输的要求以及道路行驶要求。臂架组件3处于检查状态下,第三臂架33与第一臂架31是平行的,第三臂架33和第一臂架31分布于第二臂架32的两端。第一臂架31、第二臂架32和第三臂架33三者配合车体1,共同形成检查通道。
下面整体介绍臂架组件3在运输状态和检查状态的变化。
如图1a至图1c所示,当臂架组件3处于运输状态,第一臂架31回收;第二臂架32和第一臂架31共同转动至与车体1平行的位置,且位于车体1的顶部;第三臂架33转动至与第二臂架32平行的位置,且第三臂架33位于第二臂架32和车体1之间。
如图2a至图2c所示,当臂架组件3处于检查状态,第一臂架31伸出车体1的顶部,第二臂架32与第一臂架31垂直且第二臂架32的大部分位于车体1外侧,第三臂架33转动至与第二臂架32垂直且与第一臂架31平行的位置;第一臂架31、第二臂架32和第三臂架33在车体1的侧面形成检查通道,检查通道的位置如图2b和图2c所示。
继续参见图1a至图2c,在一些实施例中,移动式辐射检查设备还包括第一舱体7以及第二舱体8。第一舱体7和第二舱体8可以为封闭的舱体或者为敞口的舱体。是否封闭,取决于是否要求扫描射线穿过舱体的壁体。如果射线穿透舱体的壁体不影响、或者不太影响扫描检查效果,则舱体可以设置为封闭的。如果射线穿透舱体的壁体会比较明显地影响扫描检查效果,则舱体在射线的路径上需要设置为敞口的,以使得射线能够良好地完成扫描检测作业。
第一舱体7固定安装于车体1,具体比如采用螺栓连接等。在检查状态和运输状态下,第一舱体7相对于车体1的位置是固定的,两者之间不发生相对移动。
第二舱体8可转动地安装于车体1的尾部。其中,当臂架组件3处于运输状态,第二舱体8位于车体1的尾部;当臂架组件3处于检查状态,第二舱体8转动至车体1的侧面,第二舱体8和臂架组件3均位于车体1的宽度方向,且位于车体1的两侧。
在一些实施例中,车体1安装有回转机构9,第二舱体8安装于回转机构9,通过回转机构9带动第二舱体8转动,以实现第二舱体8在运输状态和检查状态之间切换。回转机构9包括回转支撑91和回转平台92。回转支撑91可转动地安装于车体1,回转平台92安装于回转支撑91,第二舱体8安装于回转平台92。外力驱动回转平台92和第二舱体8同步转动。
下面介绍各个辐射成像装置的布置方式。
参见图1a至图2c,如上文所述的,移动式辐射检查设备包括第一成像装置4和第二成像装置5。
第一成像装置4包括均安装于臂架组件3的第一射线源和第一射线探测器。第一射线探测器与第一射线源配合,以探测第一射线源发出的射线;第一射线源位于检查通道的顶部。第一成像装置4利用背散原理成像,其第一射线源和第一射线探测器都安装于被检测物的同一侧。参见图2c,以检查状态示意的方向为例,第一射线源和第一射线探测器都安装于臂架组件3的顶部,即第一成像装置4安装于第二臂架32,具体可以安装于第二臂架32的梁321。第一成像装置4用于从被检测物的顶部扫描。在一些实施例中,第一成像装置4为背散成像装置。第一射线源为背散射线源,第一射线探测器为背散射电子探测器。
参见图2b和图2c,第二成像装置5包括安装于车体1和/或臂架的第二射线源和第二射线探测器;第二射线探测器与第二射线源配合,以探测第二射线源发出的射线。第二射线源位于检测通道P的侧面。第二射线源和第二射线探测器其中之一安装于车体1,另一个安装于臂架组件3。具体地,第二射线源安装于车体1,第二射线探测器安装于臂架组件3的第三臂架33。第二成像装置5的靶点51的位置请参见图2c。在一些实施例中,第二成像装置5为透射成像装置,第二射线源为透射射线源,第二射线探测器为透射射线探测器。
在图2c中,虚线S1为第一成像装置4的射线路径。单点画线S2为第二成像装置5的射线路径。从图2c可以看出,第一成像装置4的射线不会完全穿透被检测物。第二成像装置5的射线则完全穿透被检测物。
继续参见图2b,第一成像装置4的第一射线源和第一射线探测器共同形成第一束面M1,第二成像装置5的第二射线源和第二射线探测器共同形成第二束面M2;第一束面M1和第二束面M2平行。这种设置方式,使得第一成像装置4和第二成像装置5的信号不会相互干扰,且实现了被检测物多种方式、多个角度的检测。
在一些实施例中,第一成像装置4和第二成像装置5是独立的,各自独立控制。第一成像装置4和第二成像装置5的启停、剂量控制、工作时间等参数都是单独控制的,相互之间不会影响。
在一些实施例中,第二射线源布置于第二舱体8中,第二射线探测器布置于臂架组件3的第三臂架33。或者,第二射线源布置于臂架组件3的第三臂架33,第二射线探测器布置于第二舱体8中。
在一些实施例中,根据第二射线源、第二射线探测器安装位置的不同,采用以下重量平衡方案,以保持移动式辐射检查设备在车辆宽度方向上的平衡:
第二射线源安装于第二舱体8,第二射线探测器安装于第三臂架33。第二舱体8、第二射线源的总重量与臂架组件3、第一成像装置4和第二射线探测器的总重量被配置为是平衡的,以使得移动式辐射检查设备在车体1的宽度方向上保持稳定。
第二种情况:第二射线源安装于第三臂架33,第二射线探测器安装于第二舱体8。第二舱体8、第二射线探测器的总重量与臂架组件3、所述第一成像装置4和第二射线源的总重量被配置为是平衡的,以使得移动式辐射检查设备在车体1的宽度方向上保持稳定。
在一些实施例中,第二舱体8的至少一侧被构造为开口的,以使得臂架组件处于检查状态时,位于第二舱体8内的第二射线源未经阻挡、直接射向被检测物10。
参见图3a至图4c,下面介绍一些其他的实施例。这些实施例与上述实施例的不同之处在于,在这些实施例中,移动式辐射检查设备除了设置有上文介绍的第一成像装置4和第二成像装置5之外,还设置有第三成像装置6。
与上述实施例相同的部分,比如车体1、臂架组件3的结构等,此处不再赘述,此处重点描述与第三成像装置6相关的内容。
参见图3a至图4c,在一些实施例中,移动式辐射检查设备还包括第三成像装置6,第三成像装置6包括安装于臂架组件3或者车体1的第三射线源和第三射线探测器。第三射线探测器与第三射线源配合,以探测第三射线源发出的射线;第三射线源位于检测通道P的侧面。在一些实施例中,第三成像装置6为背散成像装置,第三射线源为背散射线源,第三射线探测器为背散射电子探测器。
参见图4b,第一成像装置4的第一射线源和第一射线探测器共同形成第一束面M1,第二成像装置5的第二射线源和第二射线探测器共同形成第二束面M2,第三成像装置6的第三射线源和第三射线探测器共同形成第三束面M3;第一束面M1、第二束面M2和第三束面M3平行。
在图4c中,虚线S1为第一成像装置4的射线路径。单点画线S2为第二成像装置5的射线路径。双点画线S3为第三成像装置6的射线路径。从图4c可以看出,第一成像装置4的射线从上方扫描被检测物,且不会完全穿透被检测物。第二成像装置5的射线则从被检测物的侧面完全穿透被检测物。第三成像装置6的射线从侧面扫描被检测物,且也不会完全穿透被检测物。
在一些实施例中,第一成像装置4、第二成像装置5和第三成像装置6是独立的,各自独立控制。第一成像装置4、第二成像装置5和第三成像装置6各自的启停、剂量控制、工作时间等参数都是单独控制的,相互之间不会影响。
在一些实施例中,第三成像装置6布置于第一舱体7中。为了实现更好的扫描效果,第一舱体7的至少一侧被构造为开口的,以使得臂架组件处于检查状态时,位于第一舱体7内的第三射线源未经阻挡、直接射向被检测物10。
本公开实施例还提供一种车载式辐射检查系统,包括本公开任一技术方案所提供的移动式辐射检查设备。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开保护范围的限制。
最后应当说明的是:以上实施例仅用以说明本公开的技术方案而非对其限制;尽管参照较佳实施例对本公开进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本公开的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本公开技术方案的精神,其均应涵盖在本公开请求保护的技术方案范围当中。

Claims (18)

  1. 一种移动式辐射检查设备,包括:
    车体(1),被构造为提供支撑;
    行走机构(2),安装于所述车体(1),以带动所述车体(1)行走;
    臂架组件(3),安装于所述车体(1);所述臂架组件(3)被构造为在检查状态和运输状态之间切换;当所述臂架组件(3)处于运输状态下,所述臂架组件(3)被收缩且由所述车体(1)承载;当所述臂架组件(3)处于检查状态,所述臂架组件(3)被展开且和所述车体(1)共同形成检查通道;
    第一成像装置(4),包括均安装于所述臂架组件(3)的第一射线源和第一射线探测器;所述第一射线探测器与所述第一射线源配合,以探测所述第一射线源发出的射线;所述第一射线源位于所述检查通道的顶部;以及
    第二成像装置(5),包括第二射线源和第二射线探测器;所述第二射线源和第二射线探测器其中之一安装于所述车体(1),另一安装于所述臂架组件(3);所述第二射线源位于所述检测通道的侧面;所述第二射线探测器与所述第二射线源配合,以探测所述第二射线源发出的射线。
  2. 根据权利要求1所述的移动式辐射检查设备,其中所述第一成像装置(4)的第一射线源和第一射线探测器共同形成第一束面;所述第二成像装置(5)的第二射线源和第二射线探测器共同形成第二束面;所述第一束面和所述第二束面平行。
  3. 根据权利要求1或者2所述的移动式辐射检查设备,其中所述第一成像装置(4)和所述第二成像装置(5)是独立的,各自独立控制。
  4. 根据权利要求1~3任一所述的移动式辐射检查设备,还包括:
    第三成像装置(6),包括安装于所述臂架组件(3)或者所述车体(1)的第三射线源和第三射线探测器;所述第三射线探测器与所述第三射线源配合,以探测所述第三射线源发出的射线;所述第三射线源位于所述检测通道的侧面。
  5. 根据权利要求4所述的移动式辐射检查设备,其中所述第一成像装置(4)的第 一射线源和第一射线探测器共同形成第一束面,所述第二成像装置(5)的第二射线源和第二射线探测器共同形成第二束面,所述第三成像装置(6)的第三射线源和第三射线探测器共同形成第三束面;所述第一束面、所述第二束面和所述第三束面平行。
  6. 根据权利要求4或者5所述的移动式辐射检查设备,其中所述第一成像装置(4)、所述第二成像装置(5)和所述第三成像装置(6)是独立的,各自独立控制。
  7. 根据权利要求1~6任一所述的移动式辐射检查设备,其中所述臂架组件(3)包括:
    第一臂架(31),可升降地安装于所述车体(1),或者,所述第一臂架(31)被构造可伸缩的;所述第一臂架(31)包括伸出状态和回缩状态;
    第二臂架(32),安装于所述第一臂架(31);以及
    第三臂架(33),可转动地安装于所述第二臂架(32);
    其中,当所述臂架组件(3)处于运输状态,所述第一臂架(31)回收;所述第二臂架(32)和所述第一臂架(31)共同转动至所述第二臂架(32)与所述车体(1)平行的位置,且位于所述车体(1)的顶部;所述第三臂架(33)转动至与所述第二臂架(32)平行的位置,且所述第三臂架(33)位于所述第二臂架(32)和所述车体(1)之间;
    当所述臂架组件(3)处于检查状态,所述第一臂架(31)伸出所述车体(1)的顶部,所述第二臂架(32)与所述第一臂架(31)共同相对于所述车体(1)转动,所述第三臂架(33)转动至与所述第二臂架(32)垂直且与所述第一臂架(31)平行的位置;所述第一臂架(31)、所述第二臂架(32)、所述第三臂架(33)和所述车体(1)的侧面共同形成检查通道。
  8. 根据权利要求7所述的移动式辐射检查设备,其中所述第一成像装置(4)安装于所述第一臂架(31)。
  9. 根据权利要求1~8任一所述的移动式辐射检查设备,还包括:
    第一舱体(7),固定安装于所述车体(1);以及
    第二舱体(8),可转动地安装与所述车体(1)的尾部;
    其中,当所述臂架组件处于(3)运输状态,所述第二舱体(8)位于所述车体(1)的尾部;当所述臂架组件(3)处于检查状态,所述第二舱体(8)转动至所述车体(1)的侧面,所述第二舱体(8)和所述臂架组件(3)均位于所述车体(1)的宽度方向,且位于所述车体(1)的两侧。
  10. 根据权利要求9所述的移动式辐射检查设备,其中所述第二射线源安装于所述第二舱体(8),所述第二射线探测器安装于所述第三臂架(33);所述第二舱体(8)、所述第二射线源的总重量与所述臂架组件(3)、所述第一成像装置(4)和所述第二射线探测器的总重量被配置为是平衡的,以使得所述移动式辐射检查设备在所述车体(1)的宽度方向上保持稳定;或者,
    所述第二射线源安装于所述第三臂架(33),所述第二射线探测器安装于所述第二舱体(8);所述第二舱体(8)、所述第二射线探测器的总重量与所述臂架组件(3)、所述第一成像装置(4)和所述第二射线源的总重量被配置为是平衡的,以使得所述移动式辐射检查设备在所述车体(1)的宽度方向上保持稳定。
  11. 根据权利要求9或者10所述的移动式辐射检查设备,其中所述第二射线源和所述第二射线探测器其中之一布置于所述第二舱体(8)中,另一个布置于所述臂架组件(3)的第三臂架(33)。
  12. 根据权利要求11所述的移动式辐射检查设备,其中所述第二舱体(8)的至少一侧被构造为开口的,以使得所述臂架组件(3)处于检查状态时,位于所述第二舱体(8)内的所述第二射线源未经阻挡、直接射向被检测物(10)。
  13. 根据权利要求4~6任一所述的移动式辐射检查设备,其中所述第三成像装置(6)布置于第一舱体(7)中。
  14. 根据权利要求13所述的移动式辐射检查设备,其中所述第一舱体(7)的至少一侧被构造为开口的,以使得所述臂架组件(3)处于检查状态时,位于所述第一舱体(7)内的所述第三射线源发出的射线未经阻挡、直接射向被检测物(10)。
  15. 根据权利要求1~14任一所述的移动式辐射检查设备,其中所述臂架组件(3)的材料包括铝合金或者钛合金。
  16. 根据权利要求1~15任一所述的移动式辐射检查设备,其中所述第一成像装置(4)为背散成像装置,所述第一射线源为背散射线源,所述第一射线探测器为背散射电子探测器;和/或,所述第二成像装置(5)为透射成像装置,所述第二射线源为透射射线源,所述第二射线探测器为透射射线探测器。
  17. 根据权利要求4~6、13、14任一所述的移动式辐射检查设备,其中所述第三成像装置(6)为背散成像装置,所述第三射线源为背散射线源,所述第三射线探测器为背散射电子探测器。
  18. 一种车载式辐射检查系统,包括权利要求1~17任一所述的移动式辐射检查设备。
PCT/CN2022/139764 2021-12-30 2022-12-16 移动式辐射检查设备以及移动式辐射检查系统 WO2023125084A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111668874.0 2021-12-30
CN202111668874.0A CN114137622A (zh) 2021-12-30 2021-12-30 移动式辐射检查设备以及移动式辐射检查系统

Publications (1)

Publication Number Publication Date
WO2023125084A1 true WO2023125084A1 (zh) 2023-07-06

Family

ID=80384036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139764 WO2023125084A1 (zh) 2021-12-30 2022-12-16 移动式辐射检查设备以及移动式辐射检查系统

Country Status (3)

Country Link
EP (1) EP4206751A1 (zh)
CN (1) CN114137622A (zh)
WO (1) WO2023125084A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137622A (zh) * 2021-12-30 2022-03-04 同方威视科技(北京)有限公司 移动式辐射检查设备以及移动式辐射检查系统

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2572400Y (zh) * 2002-10-16 2003-09-10 清华大学 一种车载移动式集装箱检查系统
CN1490616A (zh) * 2002-10-16 2004-04-21 �廪��ѧ 一种车载移动式集装箱检查系统
US20070110215A1 (en) * 2003-12-10 2007-05-17 Nuctech Company Limited Combined mobile container inspection system with low target
CN102012527A (zh) * 2010-11-25 2011-04-13 上海英迈吉东影图像设备有限公司 移动式x射线检查车及其检查方法
CN102854539A (zh) * 2011-06-29 2013-01-02 上海英迈吉东影图像设备有限公司 一种基于背散射成像的外挂式移动检查系统
CN204086172U (zh) * 2014-09-02 2015-01-07 清华大学 车载式检查系统
CN106290420A (zh) * 2016-08-31 2017-01-04 同方威视技术股份有限公司 可移动式物品检查系统及检查方法
CN106772650A (zh) * 2016-12-26 2017-05-31 同方威视技术股份有限公司 移动式排爆透射成像装置
CN206573504U (zh) * 2017-02-17 2017-10-20 清华大学 多视角背散射检查系统
CN107861165A (zh) * 2017-10-17 2018-03-30 青岛新前湾集装箱码头有限责任公司 移动式物品检查系统
CN212872940U (zh) * 2020-07-22 2021-04-02 中国原子能科学研究院 一种车载式集装箱或货车透视扫描快速安检装置
CN114137622A (zh) * 2021-12-30 2022-03-04 同方威视科技(北京)有限公司 移动式辐射检查设备以及移动式辐射检查系统
CN217060528U (zh) * 2021-12-30 2022-07-26 同方威视科技(北京)有限公司 移动式辐射检查设备以及移动式辐射检查系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3242315T3 (pl) * 2012-02-03 2024-02-19 Rapiscan Systems, Inc. Rentgenowski układ inspekcyjny do skanowania obiektu
CN105445294B (zh) * 2014-09-02 2019-02-22 清华大学 车载式检查系统

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2572400Y (zh) * 2002-10-16 2003-09-10 清华大学 一种车载移动式集装箱检查系统
CN1490616A (zh) * 2002-10-16 2004-04-21 �廪��ѧ 一种车载移动式集装箱检查系统
US20070110215A1 (en) * 2003-12-10 2007-05-17 Nuctech Company Limited Combined mobile container inspection system with low target
CN102012527A (zh) * 2010-11-25 2011-04-13 上海英迈吉东影图像设备有限公司 移动式x射线检查车及其检查方法
CN102854539A (zh) * 2011-06-29 2013-01-02 上海英迈吉东影图像设备有限公司 一种基于背散射成像的外挂式移动检查系统
CN204086172U (zh) * 2014-09-02 2015-01-07 清华大学 车载式检查系统
CN106290420A (zh) * 2016-08-31 2017-01-04 同方威视技术股份有限公司 可移动式物品检查系统及检查方法
CN106772650A (zh) * 2016-12-26 2017-05-31 同方威视技术股份有限公司 移动式排爆透射成像装置
CN206573504U (zh) * 2017-02-17 2017-10-20 清华大学 多视角背散射检查系统
CN107861165A (zh) * 2017-10-17 2018-03-30 青岛新前湾集装箱码头有限责任公司 移动式物品检查系统
CN212872940U (zh) * 2020-07-22 2021-04-02 中国原子能科学研究院 一种车载式集装箱或货车透视扫描快速安检装置
CN114137622A (zh) * 2021-12-30 2022-03-04 同方威视科技(北京)有限公司 移动式辐射检查设备以及移动式辐射检查系统
CN217060528U (zh) * 2021-12-30 2022-07-26 同方威视科技(北京)有限公司 移动式辐射检查设备以及移动式辐射检查系统

Also Published As

Publication number Publication date
EP4206751A1 (en) 2023-07-05
CN114137622A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
CN101162206B (zh) 移动式车辆检查系统
WO2023125084A1 (zh) 移动式辐射检查设备以及移动式辐射检查系统
US6516917B1 (en) Outrigger assembly for a mobile telescopic belt conveyor
WO2020140981A1 (zh) 辐射检查设备
US20220099858A1 (en) Security inspection device
CN102147485B (zh) 移动式车辆检查系统
US12017617B2 (en) Vehicle cargo rack system with powered lift
CN112946770B (zh) 扫描检查设备以及扫描检查系统
US7112030B2 (en) Roll off hoist with front retractable loading frame
CN217060528U (zh) 移动式辐射检查设备以及移动式辐射检查系统
US5067740A (en) Stretch trailer mixer
CN109490977A (zh) 检查设备
WO2022068411A1 (zh) 运车架及具有其的集装箱
CN110641346A (zh) 集装箱运输车
WO2023125122A1 (zh) 移动式检查设备和移动式检查方法
CN200989886Y (zh) 移动式车辆检查系统
CN102147487A (zh) 移动式车辆检查系统
US3874528A (en) Vehicle mounted loader for handling concrete castings
ES2387532T3 (es) Dispositivo de manipulación-rodaje para contenedor o análogo y procedimiento para desplazar dichos dispositivos en ausencia de un contenedor
WO2011051701A2 (en) An inspection apparatus
US4518304A (en) Load handling apparatus
CN210416360U (zh) 一种车载起重机
CN209525469U (zh) 检查设备
US3827743A (en) Load handling apparatus
EP0022676B1 (en) A trailer assembly for use with a truck

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914338

Country of ref document: EP

Kind code of ref document: A1