WO2023125004A1 - 玻璃陶瓷模具及其制备方法 - Google Patents

玻璃陶瓷模具及其制备方法 Download PDF

Info

Publication number
WO2023125004A1
WO2023125004A1 PCT/CN2022/138935 CN2022138935W WO2023125004A1 WO 2023125004 A1 WO2023125004 A1 WO 2023125004A1 CN 2022138935 W CN2022138935 W CN 2022138935W WO 2023125004 A1 WO2023125004 A1 WO 2023125004A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
parts
weight
mold
ceramic mold
Prior art date
Application number
PCT/CN2022/138935
Other languages
English (en)
French (fr)
Inventor
黄昊
路广宇
田迁
何程尧
Original Assignee
重庆鑫景特种玻璃有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆鑫景特种玻璃有限公司 filed Critical 重庆鑫景特种玻璃有限公司
Publication of WO2023125004A1 publication Critical patent/WO2023125004A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • C03C10/0045Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/02Other methods of shaping glass by casting molten glass, e.g. injection moulding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present application relates to the technical field of molding and processing mold preparation, in particular to a glass ceramic mold and a preparation method thereof.
  • Hot bending glass is a curved glass made by heating and softening a flat glass blank, forming it in a mold, and then annealing it. During the hot bending process, the glass needs to transfer heat and force from the mold without affecting the precision and characteristics of the glass. Therefore, the material of the mold needs to have the characteristics of easy processing, high thermal conductivity, high temperature resistance, low expansion, high softening point and high thermal shock resistance.
  • metal and graphite are metal and graphite.
  • Metal materials are variable at high temperatures, have a long heat transfer time, and have high thermal expansion, which may cause defects or dimensional deviations after the glass is bent; while graphite molds have poor oxidation resistance and are easily oxidized at high temperatures, resulting in mold failure.
  • the life is shortened, the cost is increased, and its thermal shock resistance is poor, it is not suitable for long-term use, and it is easy to cause deviations in the dimensional accuracy of the blank. Due to the characteristics of metal molds and graphite molds, the yield rate of mass production of 3D glass is very low, the efficiency is very low, and the cost is high.
  • the existing hot bending dies often have the problem of a narrow range of thermal expansion coefficients under the condition of low expansion, which limits their application range.
  • the present application discloses a glass ceramic mold
  • the main crystal phase of the glass ceramic mold includes one or more of ⁇ -quartz, ⁇ -spodumene and ⁇ -eucryptite
  • the mass of the ⁇ -quartz The fraction + the mass fraction of the ⁇ -spodumene + the mass fraction of the ⁇ -eucryptite is in the range of 0.1% to 70.0%.
  • the main crystal phase further includes one or more of MgAl 2 Si 3 O 10 , MgAl 2 O 4 , ZnAl 2 O 4 and mullite.
  • the coefficient of thermal expansion of the glass-ceramic mold is -1.0 ⁇ 10 -6 -3.0 ⁇ 10 -5 /K in the temperature range of 25-1000°C.
  • the composition of the glass-ceramic mold includes Li 2 O, in the range of 0.50%-10.00% by mass fraction.
  • the composition of the glass-ceramic mold further includes Na 2 O and K 2 O, and the mass ratio of Na 2 O, K 2 O and Li 2 O is required as follows: (Na 2 O+K 2 O)/Li 2 O ⁇ 1.00, and the total mass fraction of Na 2 O and K 2 O is ⁇ 8.00%.
  • the following raw materials are included in parts by weight: SiO 2 : 40.00-80.00 parts; Al 2 O 3 : 18.00-40.00 parts; ZrO 2 : 0.50-10.00 parts; Li 2 O: 0.50-10.00 parts Na 2 O: 0.00-2.00 parts; B 2 O 3 : 0.00-5.00 parts; K 2 O: 0.00-5.00 parts; MgO: 0.00-20.00 parts; CaO: 0.00-5.00 parts; P 2 O 5 : 0.00 ⁇ 5.00 parts; TiO 2 : 0.00 ⁇ 5.00 parts; BaO: 0.00 ⁇ 2.00 parts; ZnO: 0.00 ⁇ 10.00 parts.
  • the glass transition temperature of the glass ceramic mold is greater than or equal to 700°C.
  • the thermal conductivity of the glass-ceramic mold is greater than or equal to 1 W/(m ⁇ k) within the temperature range of 25-1000°C.
  • the present application also discloses a method for preparing a glass-ceramic mold, which is characterized in that it includes the following steps:
  • each raw material is weighed and mixed uniformly to form a basic mixture, and each raw material includes the following parts by weight:
  • SiO 2 40.00-80.00 parts; Al 2 O 3 : 18.00-40.00 parts; ZrO 2 : 0.50-10.00 parts; Li 2 O: 0.50-10.00 parts; Na 2 O: 0.00-2.00 parts; B 2 O 3 : 0.00 ⁇ 5.00 parts; K 2 O: 0.00 ⁇ 5.00 parts; MgO: 0.00 ⁇ 20.00 parts; CaO: 0.00 ⁇ 5.00 parts; P 2 O 5 : 0.00 ⁇ 5.00 parts; TiO 2 : 0.00 ⁇ 5.00 parts; BaO: 0.00 ⁇ 2.00 parts parts; ZnO: 0.00 ⁇ 10.00 parts;
  • Forming process making the basic glass part into a glass mold part of the desired shape
  • a microcrystallization treatment process wherein the glass mold parts are subjected to nucleation and crystallization treatments in sequence to make the microcrystallization mold parts;
  • the microcrystallization mold part is cooled to room temperature to form a glass ceramic mold.
  • the melting temperature is 1500-1700° C.
  • the melting time is 3-16 hours.
  • the nucleation temperature is 650-1000°C, and the nucleation time is 1-6 hours; the crystallization temperature is 900-1400°C, and the crystallization The time ranges from 0 to 15 hours.
  • the forming process is hot bending forming, and the microcrystallization treatment process is performed simultaneously with the hot bending forming.
  • the forming process is cold engraving.
  • an annealing process is further included before the cold engraving, and the annealing process is to anneal the basic glass piece and cool it to room temperature.
  • the annealing temperature in the annealing step is 600-900° C.
  • the annealing time is 30-1200 hours
  • the temperature is cooled to room temperature at a cooling rate of 5-20° C./h.
  • the cooling rate in the cooling step is 5-40° C./h.
  • a polishing process for the glass-ceramic mold is also included.
  • the glass ceramic mold provided by this application has the advantages of high thermal conductivity, high temperature resistance, high softening point and high thermal shock resistance, excellent fracture resistance, long service life, easy machining, and can meet the demanding requirements of hot bending molds .
  • the glass-ceramic mold of the present application also has a wide and adjustable range of thermal expansion coefficient while meeting the requirements of low thermal expansion coefficient of the mold, and has a wide application range, which greatly improves the applicability of the hot bending mold.
  • Fig. 1 is a schematic flow chart of the method for preparing a glass-ceramic mold disclosed in the present application.
  • the application provides a glass-ceramic mold
  • the main crystal phase of the glass-ceramic mold includes one or more of ⁇ -quartz, ⁇ -spodumene and ⁇ -eucryptite, and the mass fraction of ⁇ -quartz+
  • the mass fraction of the ⁇ -spodumene + the mass fraction of the ⁇ -eucryptite is in the range of 0.1% to 70.0%.
  • the main crystal phase further includes one of MgAl 2 Si 3 O 10 , MgAl 2 O 4 (magnesium spinel), ZnAl 2 O 4 (gahnite) and mullite or Various.
  • the instrument is set to a voltage of 40mV, a current of 30mA, a test range of 10-50°, a scanning speed of 1°/min, and a step size of 0.02°/step to analyze the X-ray diffraction data after detection. Confirm the ratio of each crystal phase.
  • the glass ceramic mold includes the following raw materials in parts by weight: SiO 2 : 40.00-80.00 parts; Al 2 O 3 : 18.00-40.00 parts; ZrO 2 : 0.50-10.00 parts; Li 2 O: 0.50-10.00 parts; Na 2 O: 0.00 ⁇ 2.00 parts; B 2 O 3 : 0.00 ⁇ 5.00 parts; K 2 O: 0.00 ⁇ 5.00 parts; MgO: 0.00 ⁇ 20.00 parts; CaO: 0.00 ⁇ 5.00 parts; P 2 O 5 : 0.00 ⁇ 5.00 parts; TiO 2 : 0.00-5.00 parts; BaO: 0.00-2.00 parts; ZnO: 0.00-10.00 parts.
  • Li 2 O will speed up the precipitation of ⁇ -quartz, ⁇ -quartz solid solution crystals, ⁇ -spodumene and ⁇ -eucryptite with low thermal expansion coefficient, and significantly reduce the thermal expansion coefficient of glass ceramics. It is also possible to control the mass fractions of negative expansion coefficient crystals ⁇ -quartz, ⁇ -spodumene and ⁇ -eucryptite in the glass ceramic mold after crystallization of the basic glass. However, too much lithium will lead to the transformation of the precipitated crystal phase, which will instead increase the thermal expansion coefficient of the glass ceramics.
  • the mass fraction of Li 2 O is controlled at 0.50% to 10.00%, which is convenient for controlling the glass ceramic mold to obtain a suitable range of thermal expansion coefficients.
  • the mass fraction of Li 2 O includes 0.50% by weight to 10.00% by weight and all ranges and sub-ranges therebetween, for example, it can be controlled at 0.50% by weight to 7.50% by weight, 0.50% by weight to 5.00% by weight, 0.50% by weight - 2.50% by weight, 2.00% by weight - 10.00% by weight, 2.00% by weight - 7.50% by weight, 2.00% by weight - 5.00% by weight, 5.00% by weight - 10.00% by weight, 5.00% by weight - 7.50% by weight, 7.50% by weight %-10.00% by weight etc.
  • the content of Li2O can be controlled at 0.00 wt%, 0.50 wt%, 1.00 wt%, 2.00 wt%, 3.00 wt%, 4.00 wt%, 5.00 wt%, 6.00 wt%, 7.00 wt%, 8.00% by weight, 9.00% by weight, 10.00% by weight, etc.
  • Na 2 O and K 2 O can reduce the crystallization upper limit temperature of glass-ceramics, thereby reducing the difficulty of production and molding of basic glass (uncrystallized glass, called basic glass).
  • Na and K are generally in the base glass crystal.
  • Excessive Na 2 O and K 2 O will significantly increase the thermal expansion coefficient and reduce the glass transition temperature of glass ceramics.
  • the mass fraction of Na 2 O includes 0.00% by weight to 2.00% by weight and all ranges and sub-ranges therebetween, for example, it can be controlled at 0.25% by weight to 2.00% by weight, 0.25% by weight to 1.50% by weight, 0.25% by weight-1.00% by weight, 1.00% by weight-2.00% by weight, 1.00% by weight-1.50% by weight, etc.
  • the content of Na 2 O can be controlled at 0.00% by weight, 0.25% by weight, 1.00% by weight, 1.25% by weight, 1.50% by weight, 1.75% by weight, 2.00% by weight and so on.
  • the mass fraction of K 2 O includes 0.00% by weight to 5.00% by weight and all ranges and subranges therebetween, for example, it can be controlled at 0.80% by weight to 5.00% by weight, 0.80% by weight to 4.00% by weight, 0.80 wt%-3.00 wt%, 0.80 wt%-2.00 wt%, 0.80 wt%-1.00 wt%, 1.00 wt%-5.00 wt%, 2.00 wt%-5.00 wt%, 3.00 wt%-5.00 wt%, 4.00 wt% %-5.00% by weight, 2.00%-4.00% by weight, 2.00%-3.00% by weight, etc.
  • the content of K2O can be controlled at 0.00 wt%, 0.80 wt%, 1.00 wt%, 1.50 wt%, 2.00 wt%, 2.50 wt%, 3.00 wt%, 3.50 wt%, 4.00 wt%, 4.50% by weight, 5.00% by weight, etc.
  • B 2 O 3 can reduce the thermal expansion coefficient of the glass phase in glass ceramics (there are glass phase and crystal phase in glass ceramics), but too much B 2 O 3 will reduce the strength of glass ceramics.
  • the mass fraction of B 2 O 3 includes 0.00% by weight to 5.00% by weight and all ranges and sub-ranges therebetween, for example, it can be controlled at 0.75% by weight to 5.00% by weight, and 0.75% by weight to 4.00% by weight , 0.75% by weight-3.00% by weight, 0.75% by weight-2.00% by weight, 0.75% by weight-1.00% by weight, 1.00% by weight-5.00% by weight, 2.00% by weight-5.00% by weight, 3.00% by weight-5.00% by weight, 4.00 % by weight-5.00% by weight, 2.00% by weight-4.00% by weight, 2.00% by weight-3.00% by weight, etc.
  • the mass fraction of B2O3 can be controlled at 0.00% by weight, 0.50% by weight, 0.75% by weight, 1.00% by weight, 1.50% by weight, 2.00% by weight, 2.50% by weight, 3.00% by weight, 3.50% by weight %, 4.00% by weight, 4.50% by weight, 5.00% by weight, etc.
  • MgO and ZnO participate in glass ceramics MgAl 2 Si 3 O 10 , ZnAl 2 O 4 , MgAl 2 O 4 , mullite, cordierite, ⁇ -quartz, ⁇ -quartz solid solution, ⁇ -spodumene and ⁇ -eucryptite formation of magnesium-containing crystals.
  • the mass fraction of MgO includes 0.00% by weight to 20.00% by weight and all ranges and sub-ranges therebetween, for example, it can be controlled at 0.00% by weight to 19.00% by weight, 0.00% by weight to 18.70% by weight, and 0.00% by weight %-16.00% by weight, 0.00% by weight-14.00% by weight, 0.00% by weight-13.30% by weight, 0.00% by weight-11.00% by weight, 0.00% by weight-9.00% by weight, 10.00% by weight-20.00% by weight, 13.30% by weight -20.00 wt%, 15.00 wt%-20.00 wt%, 17.00 wt%-20.00 wt%, 18.70 wt%-20.00 wt%, etc.
  • the mass fraction of MgO can be controlled at 0.00% by weight, 1.00% by weight, 2.00% by weight, 3.00% by weight, 4.00% by weight, 5.00% by weight, 6.00% by weight, 7.00% by weight, 8.00% by weight, 9.00% by weight % by weight, 10.00% by weight, 11.00% by weight, 12.00% by weight, 13.00% by weight, 14.00% by weight, 15.00% by weight, 16.00% by weight, 17.00% by weight, 18.00% by weight, 19.00% by weight, 20.00% by weight, etc.
  • ZrO 2 and P 2 O 5 are mainly used to control the crystal growth rate on the surface and inside of the basic glass.
  • the mass fraction of ZrO 2 should be controlled between 0.50 and 10.00%, and the mass fraction of P 2 O 5 The score should be controlled within 0.00 ⁇ 5.00%.
  • the mass fraction of ZrO 2 includes 0.50% by weight to 10.00% by weight and all ranges and sub-ranges therebetween, for example, it can be controlled at 0.50% by weight to 10.00% by weight, 0.50% by weight to 7.50% by weight, 0.50 % by weight-4.00% by weight, 0.80% by weight-10.00% by weight, 0.80% by weight-4.00% by weight, 4.00% by weight-10.00% by weight, 4.00% by weight-8.00% by weight, 4.00% by weight-6.00% by weight, etc.
  • the content of ZrO2 can be controlled at 0.00% by weight, 0.50% by weight, 0.80% by weight, 1.00% by weight, 2.00% by weight, 3.00% by weight, 4.00% by weight, 5.00% by weight, 6.00% by weight, 7.00% by weight % by weight, 8.00% by weight, 9.00% by weight, 10.00% by weight, etc.
  • the mass fraction of P 2 O 5 includes 0.00% by weight to 5.00% by weight and all ranges and sub-ranges therebetween, for example, it can be controlled at 1.00% by weight to 5.00% by weight, and 1.00% by weight to 4.00% by weight , 1.00% by weight-3.00% by weight, 1.00% by weight-2.00% by weight, 2.00% by weight-5.00% by weight, 3.00% by weight-5.00% by weight, 4.00% by weight-5.00% by weight, 2.00% by weight-4.00% by weight, 2.00 % by weight - 3.00% by weight, etc.
  • the mass fraction of P2O5 can be controlled at 0.00% by weight, 0.50% by weight, 0.75% by weight, 1.00% by weight, 1.50% by weight, 2.00% by weight, 2.50% by weight, 3.00% by weight, 3.50% by weight %, 4.00% by weight, 4.50% by weight, 5.00% by weight, etc.
  • TiO 2 as an effective nucleating agent can control the precipitated crystal size of the base glass to less than 2 ⁇ m, reducing the risk of cracks in the base glass due to the formation of large crystals.
  • the mass fraction of TiO 2 includes 0.00% by weight to 5.00% by weight and all ranges and sub-ranges therebetween, for example, it can be controlled at 1.00% by weight to 5.00% by weight, 1.00% by weight to 4.70% by weight, 1.00% by weight % by weight - 4.60% by weight, 1.00% by weight - 4.00% by weight, 1.00% by weight - 3.00% by weight, 1.00% by weight - 2.00% by weight, 2.00% by weight - 5.00% by weight, 2.00% by weight - 4.00% by weight, 3.00% by weight -5.00 wt%, 3.00 wt%-4.00 wt%, 2.00 wt%-3.00 wt%, etc.
  • the mass fraction of TiO2 can be controlled at 0.00% by weight, 0.50% by weight, 0.75% by weight, 1.00% by weight, 1.50% by weight, 2.00% by weight, 2.50% by weight, 3.00% by weight, 3.50% by weight, 4.00% by weight, 4.60% by weight, 4.70% by weight, 5.00% by weight, etc.
  • the addition of CaO can effectively reduce the liquidus viscosity of the basic glass, thereby reducing the difficulty of forming, but too much CaO will cause crystallization during the forming process of the basic glass.
  • the mass fraction of CaO in this application is 0.00-5.00%.
  • the mass fraction of CaO includes 0.00% by weight to 5.00% by weight and all ranges and sub-ranges therebetween, for example, it can be controlled at 1.00% by weight to 5.00% by weight, 1.50% by weight to 5.00% by weight, and 2.00% by weight %-5.00% by weight, 3.00%-5.00% by weight, 4.00%-5.00% by weight, 2.00%-4.00% by weight, 2.00%-3.00% by weight, etc.
  • the content of K2O can be controlled at 0.00% by weight, 1.00% by weight, 1.50% by weight, 2.00% by weight, 2.50% by weight, 3.00% by weight, 3.50% by weight, 4.00% by weight, 4.50% by weight, 5.00% by weight etc.
  • the material of the blank to be bent is glass or glass ceramics, and its coefficient of thermal expansion has a large range. If the thermal expansion coefficient of the hot bending mold and the blank to be bent is greatly different, the The roughness is greatly increased, so the mold is required to have a wide range and adjustable coefficient of thermal expansion.
  • the average roughness of the blank after hot bending is only 12 higher than that before hot bending % to 40%, further, when the absolute value of the ratio of the thermal expansion coefficient A1 of the glass-ceramic mold to the thermal expansion coefficient A2 of the blank to be bent is between 0.3 and 0.7, the average roughness of the blank after hot bending is relative to Only 15% to 30% increase before hot bending.
  • the average roughness of the blank after hot bending is only Increase in 70% to 95%.
  • the increase of the average roughness of the hot-bent blank of the glass-ceramic mold of the present invention has been greatly improved.
  • the problem of greatly increased roughness caused by the difference in expansion coefficient between the traditional hot bending mold and the glass/glass-ceramic to be bent has also been solved.
  • the coefficient of thermal expansion is tested with a Lindsay DIL-L76 thermal dilatometer at 25-1000°C for the glass-ceramic mold, and the sample size for the glass-ceramic mold test is 5mm*5mm*50mm.
  • the mass fraction of Li 2 O is controlled at 0.50-10.00%, and the mass ratio of Na 2 O, K 2 O, and Li 2 O in the raw material satisfies: (Na 2 O+K 2 O)/Li 2 O ⁇ 1.00, the total mass fraction of Na 2 O and K 2 O is ⁇ 8.00%, Na and K are generally enriched in the glass phase after crystallization of the basic glass, too much Na 2 O and K 2 O will significantly increase Coefficient of thermal expansion, reducing the glass transition temperature of glass ceramics, while controlling the mass fraction of ⁇ -quartz, ⁇ -spodumene and ⁇ -eucryptite in the range of 0.1% to 70.0%, ⁇ -quartz, ⁇ -spodumene and ⁇ - Eucryptite is three kinds of crystals with low thermal expansion coefficient.
  • Controlling their total mass proportion can contribute to the adjustment of the overall thermal expansion coefficient of the glass-ceramic mold, thus realizing the thermal expansion coefficient of the glass-ceramic mold at 25-1000°C It can be adjusted within the temperature range of -1.0 ⁇ 10 -6 ⁇ 3.0 ⁇ 10 -5 /K.
  • the glass ceramic mold of the present application also has a wide adjustable range of thermal expansion coefficient, so that the mold has a wider application range and improves the applicability of the mold.
  • the glass transition temperature of the glass-ceramic mold of the present application is greater than or equal to 700°C.
  • the glass transition temperature of the glass-ceramic mold is higher, that is, the softening point is higher, which can adapt to the high temperature during the hot bending process, and avoid the deformation of the hot bending blank and the reduction of dimensional accuracy.
  • the transition temperature of the residual glass phase after the crystallization of the mold will also increase, which can reduce the deformation of the glass phase of the mold when the mold is in use.
  • ⁇ -quartz includes ⁇ -quartz solid solution and ⁇ -quartz.
  • mass fraction of the sum of ⁇ -quartz, ⁇ -spodumene and ⁇ -eucryptite in glass ceramics is greater than 70.0%, it will significantly reduce the overall thermal expansion coefficient of the glass ceramic mold, resulting in a temperature range of 25 to 1000 °C for the glass ceramic mold.
  • the range of the coefficient of thermal expansion within the range is narrowed to a greater extent, especially the upper limit of the range of the coefficient of thermal expansion is weakened.
  • the sum of the mass fractions of ⁇ -quartz, ⁇ -spodumene and ⁇ -eucryptite in the glass-ceramics of the present application includes all ranges and sub-ranges between 0.1% and 70.0%, such as Controlled at 0.1%-70.0%, 5.0%-70.0%, 5.0%-60.0%, 5.0%-50.0%, 5.0%-47.0%, 5.0%-37.0%, 5.0%-35.0%, 5.0%-33.0%, 5.0%-30.0%, 5.0%-25.0%, 5.0%-16.0%, 16.0%-60.0%, 16.0%-50.0%, 16.0%-47.0%, 16.0%-35.0%, 16.0%-20.0%, 33.0% -70.0%, 33.0%-60.0%, 33.0%-50.0%, 33.0%-47.0%, etc.
  • the sum of the mass fractions of ⁇ -quartz, ⁇ -spodumene and ⁇ -eucryptite in the glass ceramics of the present application can be controlled at 10.0% by weight, 11.0% by weight, 12.0% by weight, 13.0% by weight, 14.0 wt%, 15.0 wt%, 16.0 wt%, 17.0 wt%, 18.0 wt%, 19.0 wt%, 20.0 wt%, 21.0 wt%, 22.0 wt%, 23.0 wt%, 24.0 wt%, 25.0 wt%, 26.0 wt% %, 27.0 wt%, 28.0 wt%, 29.0 wt%, 30.0 wt%, 31.0 wt%, 32.0 wt%, 33.0 wt%, 34.0 wt%, 35.0 wt%, 36.0 wt%, 37.0 wt%, 38.0 wt%, 39.0 wt
  • the thermal conductivity of the glass-ceramic mold provided by the present application is greater than or equal to 1 W/(m ⁇ k) within the temperature range of 25-1000°C. In this way, the mold can be heated up quickly, the heat can be better transferred to the hot-bending blank, and the temperature of the mold and the blank can be quickly reached, and the temperature consistency of each part of the mold can be ensured.
  • the present application also provides a method for preparing a glass-ceramic mold, and an embodiment of the method for preparing a glass-ceramic mold disclosed in the present application will be described in detail below with reference to FIG. 1 .
  • the method disclosed in this embodiment mainly includes the following steps S100 to S500.
  • Step S100 a mixing process, weighing and mixing each raw material uniformly to form a basic mixture, and each raw material includes the following parts by weight:
  • SiO 2 40.00-80.00 parts; Al 2 O 3 : 18.00-40.00 parts; ZrO 2 : 0.50-10.00 parts; Li 2 O: 0.50-10.00 parts; Na 2 O: 0.00-2.00 parts; B 2 O 3 : 0.00 ⁇ 5.00 parts; K 2 O: 0.00 ⁇ 5.00 parts; MgO: 0.00 ⁇ 20.00 parts; CaO: 0.00 ⁇ 5.00 parts; P 2 O 5 : 0.00 ⁇ 5.00 parts; TiO 2 : 0.00 ⁇ 5.00 parts; BaO: 0.00 ⁇ 2.00 parts parts; ZnO: 0.00 to 10.00 parts.
  • the above-mentioned raw materials and clarifiers are accurately weighed and fully mixed evenly, and put into a corundum crucible.
  • the clarifiers are selected from As2O3, Sb2O3, SnO2, chlorides, fluorides, compounds containing SO3-, and compounds containing NO3-
  • One or more of the compounds preferably one or more selected from SnO2, SO3-containing compounds, chlorides, and NO3-containing compounds; preferably the clarifier content is 0-2% by weight.
  • Step S200 a melting process, melting the basic mixture and pouring it into a mold to generate a basic glass piece.
  • the above-mentioned corundum crucible with uniformly mixed raw materials is placed in a silicon-molybdenum rod electric furnace, and melted at 1500-1700° C. for 3-16 hours. After the glass liquid is clarified and homogenized, it is poured into a mold to form a basic glass piece.
  • the mold described here is a molten mixture containing glass raw materials, which is cooled to obtain a basic glass piece.
  • Step S300 forming process, making the basic glass part into a glass mold part of desired shape.
  • the forming process is cold engraving or hot bending.
  • a 3D hot bending machine on the market to perform hot bending to obtain a glass mold part, such as a commercially available model from DTK, a commercially available model from Mengli, and the like.
  • DTK-DGP-3D12S3D hot bending machine, or Mengli CG07-4222 hot bending machine can be used.
  • an annealing process is also included before the forming process, and the annealing process is to anneal the basic glass piece and cool it to room temperature.
  • the annealing of glass is to reheat the glass product with permanent stress to the temperature where the particles inside the glass can move, and use the displacement of the particle to disperse the stress to eliminate or weaken the permanent stress, thereby improving the thermal expansion uniformity and mechanical strength of the glass product.
  • the annealing range of glass is generally between the annealing point and the strain point, and the corresponding glass viscosity is 1013dPa ⁇ s to 1014.7dPa ⁇ s.
  • the glass will soften and deform; when it is lower than the lower limit of the annealing temperature, the glass structure can actually be considered fixed, and the internal particles can no longer move, so it is impossible to disperse or eliminate stress.
  • the internal stress of the glass can be eliminated within a few hours near the strain point.
  • the longer the annealing time the smaller the stress of the glass and the higher the uniformity.
  • new stress will be newly generated during the annealing and cooling process of the glass. The slower the cooling rate, the smaller the stress generated, the higher the stress uniformity of the inner and outer glass, and the higher the uniformity of the thermal expansion coefficient of the glass.
  • the obtained basic glass parts are annealed at 600-900°C for 30-1200 hours. Further, in order to control the consistency of the expansion coefficient of different parts of the mold, the annealing time is preferably more than 120 hours.
  • the strain point is determined by extrapolation of the annealing point data, the strain point is the temperature when the viscous deflection velocity is 0.0316 times the annealing viscous deflection velocity, the annealing of this application
  • the temperature is the temperature at which the annealing viscous deflection velocity of the glass is 0.02 to 0.0316 times. In this temperature range, a better annealing effect can be obtained, that is, the higher the uniformity of the thermal expansion coefficient.
  • the glass mold parts are obtained.
  • Step S400 a microcrystallization treatment process, performing nucleation and crystallization treatments on the glass mold part in sequence to make the microcrystallization mold part;
  • the nucleation temperature is 650-1000°C, and the nucleation time is 1-6 hours; the crystallization temperature is 900-1400°C, and the crystallization time is 0-15 hours.
  • the microcrystallization treatment process can be performed simultaneously with the hot bending forming, specifically, the microcrystallization treatment is performed while the glass mold part is hot bending forming.
  • the process of nucleation treatment by introducing an appropriate crystal nucleating agent into the glass component, in the subsequent heat treatment process, the viscosity of the glass will decrease, and a large number of uniform tiny crystals will be precipitated (nucleated and grown) in the glass, that is crystal nucleus.
  • the process of crystallization treatment the required crystals are grown on the surface of the precipitated crystal nuclei, so that the internal composition of the glass changes into a crystal phase and a glass phase.
  • Appropriate nucleation temperature and time are conducive to the precipitation of uniform and fine crystal nuclei, and further growth of uniform and fine crystals during the crystallization process.
  • Crystallization is the growth of crystals through heat treatment in glass ceramics or glasses that have formed crystal nuclei.
  • thermal shock resistance when cracks propagate along the boundaries of different particles with greatly different thermal expansion coefficients, the thermal resistance of the material can be improved due to the bending, passivation and branching of the cleavage plane in the crystal. Vibration has been improved. Therefore, glass ceramics with high thermal shock resistance can be obtained by adjusting the raw material composition, crystallization temperature and crystallization time.
  • the glass mold part is nucleated at 650-1000°C for 1-6h, and then crystallized at 900-1400°C for 0-15h, further, the crystallization time includes 0-15h and all ranges and sub-ranges therebetween , such as 1h ⁇ 2h, 1h ⁇ 3h, 1h ⁇ 4h, 1h ⁇ 5h, 2h ⁇ 3h, 2h ⁇ 4h, 2h ⁇ 5h, 5h ⁇ 15h, 10h ⁇ 11h, 10h ⁇ 12h, 10h ⁇ 13h, 10h ⁇ 14h, 10h ⁇ 15h, 14h ⁇ 15, etc., preferably 5h ⁇ 15h, including 6h ⁇ 15h, 7h ⁇ 12h, 7h ⁇ 14h, 7h ⁇ 15h, etc.
  • Step S500 cooling process, annealing and cooling the microcrystallized mold part to room temperature to form a glass ceramic mold.
  • a polishing process for the glass-ceramic mold is also included. After the mold is prepared, put the blank to be bent into the above-mentioned mold when the blank is to be bent, then put it into the bending machine, set the bending process, and take it out after cooling.
  • the hot bending mold has the advantages of high thermal conductivity, high temperature resistance, high softening point and high thermal shock resistance, and the dimensional accuracy of the glass after hot bending has not changed. It is also resistant to oxidation at high temperatures and has a long service life, suitable for mass production of 2.5D or 3D glass.
  • the method for testing the uniformity of the coefficient of expansion is as follows: on the prepared basic mold, take samples A and B with a diameter of 6 mm and a thickness of 10 mm, and test the coefficient of thermal expansion respectively, A/B is 0.995-1.005, That is to meet the uniformity requirements of the annealing expansion coefficient.
  • the test instrument is Germany NETZSCH-DIL402C high temperature thermal expansion coefficient meter.
  • the thermal conductivity test method of the glass ceramic mold is: the size of the test sample is 100mm*100*1mm in length, width and thickness.
  • the test instrument is the heat flow method thermal conductivity tester HFM436.
  • the average roughness test method is as follows: use the Huaguo TR200 roughness meter to test the surface of the sample three times, each sampling length is 20mm, and the average roughness of the three times is taken as the average roughness of the sample.
  • table 1-1 is the raw material composition table of each glass-ceramic mold base glass in embodiment 1-6 and comparative example 1
  • table 1-2 is the concrete of each glass-ceramic mold preparation process of embodiment 1-6 and comparative example 1
  • Process parameter table table 1-3 is the main crystal phase and performance parameter table of each glass ceramic mold prepared in embodiment 1-6 and comparative example 1.
  • Example 1 the preparation process of the glass-ceramic mold is specifically described according to the data in Table 1-1 and 1-2:
  • Examples 2-6 and Comparative Example 1 also refer to the data requirements of Table 1-1 and Table 1-2, and the preparation process is the same as that of Example 1, and will not be repeated here.
  • Table 1-3 is a table of main crystal phases and performance parameters of glass hot bending molds prepared based on Table 1-1 and Table 1-2.
  • Example 1 describe the prepared hot bending mold according to Table 1-3:
  • the main crystal phase of the prepared glass ceramic mold includes: cordierite, ⁇ -quartz solid solution, ⁇ -quartz, and the sum of ⁇ -quartz solid solution, ⁇ -quartz, ⁇ -spodumene and ⁇ -eucryptite in the crystal phase
  • the mass fraction is 16wt.0%, and the glass transition temperature of the crystallized glass-ceramic mold is 760°C; the coefficient of thermal expansion at 25-1000°C is 2.2 ⁇ 10 -6 /K;
  • a and B samples with a thickness of 6mm and a thickness of 10mm were tested with a German NETZSCH-DIL402C high-temperature thermal expansion coefficient meter to test the thermal expansion coefficients of A and B samples respectively, and the A/B was 0.996, which met the uniformity requirements of the annealing expansion coefficient;
  • a sample with a length, width, and thickness of 100mm*100*1mm is obtained on a glass ceramic mold, and the heat flow method thermal conductivity tester HFM436 is used for testing.
  • the thermal conductivity is 2.81W/(m k)
  • the glass ceramic mold is tested During the average roughness, use the ore TR200 roughness meter to test respectively three times on the glass-ceramic mold surface of embodiment 1, each sampling length 20mm, take the average roughness measured three times as the average roughness of the sample, the measured The average roughness of the glass-ceramic mold of Example 1 was 0.008 ⁇ m.
  • Embodiments 2-6 and Comparative Example 1 are the same as above, and will not be repeated here.
  • comparative example 1 and embodiment 3 have the same raw material composition
  • the crystallization temperature in the preparation process is 1450 degrees, greater than 1400 degrees
  • the crystallization time is 30, greater than 15h
  • the main crystal phase of the prepared hot bending mold is ⁇ - Quartz solid solution
  • the mass fraction of the sum of ⁇ -quartz solid solution, ⁇ -quartz, ⁇ -spodumene and ⁇ -eucryptite of the prepared hot-bending mold is 73wt%, greater than 70wt%, which reduces the overall weight of the glass-ceramic mold Thermal expansion coefficient.
  • each glass-ceramic mold prepared in the above Examples 1-6 to hot-bend the glass or glass-ceramic blanks, select A-E five blanks to be bent, and see Table 1 for the raw material composition and performance parameters of each blank to be bent. -4.
  • the blanks B and C are glass, and the blanks A, D and E are glass ceramics.
  • blanks A of different batches are selected and prepared using Examples 1-6.
  • the roughness of the blank A produced in different batches is different, and the properties of the blank A after hot bending are shown in Table 1-5.
  • the glass-ceramic molds prepared in Examples 1-6 are used to hot-bend different batches of blanks A, and the average roughness of the blanks A after hot-bending has a small increase, which is much smaller than that used in The 400% increase in the average roughness of the hot-bent blank in the metal mold or graphite mold, and when the absolute value of the ratio of the thermal expansion coefficient A1 of the glass-ceramic mold to the thermal expansion coefficient A2 of the blank to be hot-bent is in the range of 0.2 to 1.4 When inside, the average roughness of the blank after hot bending is in the range of 12% to 40%. As above, for blanks with the same glass system but different roughness, the glass-ceramic mold of the present application has good applicability.
  • Example 1 the glass-ceramic mold prepared in Example 1 was selected to carry out hot bending processing on the blanks A and E in the above Tables 1-4 respectively, and the properties of the processed blanks are shown in Tables 1-6.
  • the blanks A-blank E of different systems are hot-bent using the hot-bending die prepared in Example 1, the blank system after hot-bending will not change, and the average roughness will be higher than Small, and when the absolute value of the ratio of the thermal expansion coefficient A1 of the glass ceramic mold to the thermal expansion coefficient A2 of the blank to be hot-bent is in the range of 0.2 to 1.4, the average roughness of the blank after hot bending is in the range of 12% to 40%.
  • the glass ceramic mold of the present application has good applicability.
  • Example 1 For the range of process parameters provided in Example 1, a set of comparative examples are provided for the annealing time, nucleation time, crystallization time and annealing temperature respectively.
  • the performance of the hot bending die and the blank after hot bending are shown in Table 1- 7 shows:
  • the application also provides a pair of ratios, which are common graphite hot-bending molds on the market, using the graphite mold of ratio 1 and the glass-ceramic mold of Example 1 to hot-bend the same blank to be hot-bent, and its performance is the same as Embodiment 1 contrasts, and sees the following table:
  • the prepared glass ceramic mold has good performance.
  • the transformation temperature is greater than or equal to 700°C
  • the mass fraction of Li 2 O in the raw material is controlled at 0.50-10.00%, so that the mass fraction of the sum of ⁇ -quartz, ⁇ -spodumene and ⁇ -eucryptite after crystallization is 0.1% ⁇ 70.0%, so that the coefficient of thermal expansion of the glass-ceramic mold can be adjusted within the temperature range of 25-1000°C (the adjustment range is -1.0 ⁇ 10 -6 ⁇ 3.0 ⁇ 10 -5 /K).
  • the glass-ceramic mold since the glass-ceramic mold has a wide adjustable coefficient of thermal expansion, it can adapt to the thermal expansion coefficient of the blank, improve the large difference in thermal expansion coefficient, and avoid the problem of a large increase in roughness.
  • the glass transition temperature of the glass-ceramic mold is higher, that is, the softening point is higher, which can adapt to the high temperature during the hot bending process, and avoid the deformation of the hot bending blank and the reduction of dimensional accuracy.
  • the thermal conductivity of the prepared glass-ceramic mold is greater than or equal to 1W/(m ⁇ k) in the temperature range of 25-1000°C, which has good thermal conductivity and can realize rapid heat transfer. Further, by controlling the process parameters The annealing time, annealing temperature, nucleation time and crystallization time are within a reasonable range to control the uniformity of the expansion coefficient of different parts of the glass ceramic mold and to ensure the low roughness of the blank after hot bending.
  • the average roughness of the hot-bending blank before bending is 0.0076 ⁇ m when the bending temperature is 760°C, and the average roughness of the mold is similar
  • the improvement of the average roughness of the glass-ceramic mold hot-bending blank provided by the application is far less than that of the traditional graphite mold, and the reduction of the mold mass after the hot-bending blank of the glass-ceramic mold is 0%, while the reduction of the graphite mold 12%, and the service temperature of the glass-ceramic mold provided by the present application is much higher than that of the traditional graphite mold.
  • the glass-ceramic mold provided by this application overcomes the shortcomings of traditional graphite molds such as low oxidation resistance, short service life, and low operating temperature, and realizes the advantages of high thermal conductivity, high temperature resistance, high softening point, and high thermal shock resistance. The dimensional accuracy after hot bending has not changed.

Abstract

本申请公开了一种玻璃陶瓷模具及其制备方法,玻璃陶瓷模具的主晶相包括β-石英、β-锂辉石和β-锂霞石中的一种或多种,且β-石英的质量分数+所述β-锂辉石的质量分数+所述β-锂霞石的质量分数在0.1%~70.0%范围内。本申请提供的玻璃陶瓷模具具有高热导率、耐高温、高软化点和高抗热震性等优点,耐碎裂性优异,使用寿命长,易于机械加工,能够满足热弯模具苛刻的使用要求。同时本申请的玻璃陶瓷模具在满足模具低热膨胀系数要求的情况下,还具有宽泛可调的热膨胀系数范围,适用范围宽,大大提升了热弯模具的适用性。

Description

玻璃陶瓷模具及其制备方法 技术领域
本申请涉及成型加工模具制备技术领域,特别涉及一种玻璃陶瓷模具及其制备方法。
背景技术
热弯玻璃是由平板玻璃坯件加热软化在模具中成型,再经退火制成的曲面玻璃。玻璃在热弯过程中需要由模具传热传力,而且不影响玻璃的精度和特性。因此,模具的材质需要具备易加工、高热导率、耐高温、低膨胀、高软化点和高抗热震性等特点。
传统的热弯模具材质大多数是金属和石墨。金属材质在高温下易变性,传热时间长,具有高热膨胀性,可能会导致玻璃热弯后产生缺陷或尺寸出现偏差;而石墨材质的模具抗氧化性差,在高温下容易被氧化,造成模具寿命缩短,成本增加,且它的抗热震性能较差,不适合长时间使用,容易导致坯件的尺寸精度出现偏差。由于金属模具和石墨模具自身的特性,导致目前3D玻璃批量生产的良率很低,效率很低,成本很高。
为了实现低成本、高良率、高效率的3D玻璃批量生产,技术人员正在努力寻求一种自身性能优异的热弯模具。在与玻璃成型模具行业的专家交流中发现他们排除了使用玻璃或玻璃陶瓷材质作为玻璃成型模具。因为热玻璃成型和最终成品所发生的许多复杂物理化学与机械过程,对模具材料提出的苛刻要求,现有的玻璃或玻璃陶瓷材质难以达到。苛刻要求比如:易于机械加工,耐碎裂;耐热耐磨;导热 性好;热膨胀系数小;致密均匀;粘附温度高;成型表面光洽度好等等。
而且,现有的热弯模具在满足低膨胀性的条件下,往往都存在着热膨胀系数范围较窄的问题,导致其适用范围受限。
发明内容
(一)申请目的
基于此,为了实现玻璃陶瓷材质在热弯模具领域的应用,使玻璃陶瓷模具满足热弯模具的要求,提高热弯模具的适用寿命,并扩宽热弯模具的适用范围,本申请公开了以下技术方案。
(二)技术方案
本申请公开了一种玻璃陶瓷模具,所述玻璃陶瓷模具的主晶相包括β-石英、β-锂辉石和β-锂霞石中的一种或多种,且所述β-石英的质量分数+所述β-锂辉石的质量分数+所述β-锂霞石的质量分数在0.1%~70.0%范围内。
在一种可能的实施方式中,所述主晶相还包括MgAl 2Si 3O 10、MgAl 2O 4、ZnAl 2O 4和莫来石中的一种或多种。
在一种可能的实施方式中,所述玻璃陶瓷模具的热膨胀系数在25~1000℃的温度范围内为-1.0×10 -6~3.0×10 -5/K。
在一种可能的实施方式中,所述玻璃陶瓷模具的组分包括Li 2O,以质量分数计在0.50%~10.00%范围内。
在一种可能的实施方式中,所述玻璃陶瓷模具的组分还包括Na 2O和K 2O,Na 2O、K 2O和Li 2O的质量比要求如下:(Na 2O+K 2O)/Li 2O <1.00,且Na 2O和K 2O总质量分数≤8.00%。
在一种可能的实施方式中,包括以下重量份的各原料:SiO 2:40.00~80.00份;Al 2O 3:18.00~40.00份;ZrO 2:0.50~10.00份;Li 2O:0.50~10.00份;Na 2O:0.00~2.00份;B 2O 3:0.00~5.00份;K 2O:0.00~5.00份;MgO:0.00~20.00份;CaO:0.00~5.00份;P 2O 5:0.00~5.00份;TiO 2:0.00~5.00份;BaO:0.00~2.00份;ZnO:0.00~10.00份。
在一种可能的实施方式中,所述玻璃陶瓷模具的玻璃化转变温度大于或等于700℃。
在一种可能的实施方式中,所述玻璃陶瓷模具的热导率在25~1000℃的温度范围内大于或等于1W/(m·k)。
作为本申请的第二方面,本申请还公开了一种玻璃陶瓷模具的制备方法,其特征在于,包括如下步骤:
混合工序,将各原料称量并混合均匀,制成基础混合物,所述各原料包括以下重量份:
SiO 2:40.00~80.00份;Al 2O 3:18.00~40.00份;ZrO 2:0.50~10.00份;Li 2O:0.50~10.00份;Na 2O:0.00~2.00份;B 2O 3:0.00~5.00份;K 2O:0.00~5.00份;MgO:0.00~20.00份;CaO:0.00~5.00份;P 2O 5:0.00~5.00份;TiO 2:0.00~5.00份;BaO:0.00~2.00份;ZnO:0.00~10.00份;
熔制工序,将所述基础混合物熔制并浇注至模具中,生成基础玻璃件;
成型工序,将所述基础玻璃件制成所需形状的玻璃模具件;
微晶化处理工序,将所述玻璃模具件依次进行核化、晶化处理,制成所述微晶化模具件;
冷却工序,将所述微晶化模具件冷却至室温后,生成玻璃陶瓷模具。
在一种可能的实施方式中,所述熔制的温度为1500~1700℃,所述熔制的时间为3~16小时。
在一种可能的实施方式中,所述核化的温度为650~1000℃,所述核化的时间为1~6小时;所述晶化的温度为900~1400℃,所述晶化的时间为0~15小时。
在一种可能的实施方式中,所述成型工序为热弯成型,且所述微晶化处理工序与所述热弯成型同时进行。
在一种可能的实施方式中,所述成型工序为冷雕加工。
在一种可能的实施方式中,在所述冷雕加工前还包括退火工序,所述退火工序为将所述基础玻璃件退火,冷却至室温。
在一种可能的实施方式中,所述退火工序中退火的温度为600~900℃,所述退火的时间为30~1200小时,并以5~20℃/h的降温速度冷却到室温。
在一种可能的实施方式中,所述冷却工序中冷却的速度为5~40℃/h。
在一种可能的实施方式中,所述冷却工序后,还包括对所述玻璃陶瓷模具的抛光工序。
(三)有益效果
本申请提供的玻璃陶瓷模具具有高热导率、耐高温、高软化点和高抗热震性等优点,耐碎裂性优异,使用寿命长,易于机械加工,能够满足热弯模具苛刻的使用要求。同时本申请的玻璃陶瓷模具在满足模具低热膨胀系数要求的情况下,还具有宽泛可调的热膨胀系数范围,适用范围宽,大大提升了热弯模具的适用性。
附图说明
以下参考附图描述的实施例是示例性的,旨在用于解释和说明本申请,而不能理解为对本申请的保护范围的限制。
图1是本申请公开的玻璃陶瓷模具制备方法的流程示意图。
具体实施方式
为使本申请实施的目的、技术方案和优点更加清楚,下面对本申请实施例中的技术方案进行更加详细的描述。
本申请提供一种玻璃陶瓷模具,所述玻璃陶瓷模具主晶相包括β-石英、β-锂辉石和β-锂霞石中的一种或多种,且所述β-石英的质量分数+所述β-锂辉石的质量分数+所述β-锂霞石的质量分数在0.1%~70.0%范围内。
在一个实施例中,所述主晶相还包括MgAl 2Si 3O 10、MgAl 2O 4(镁尖晶石)、ZnAl 2O 4(锌尖晶石)和莫来石中的一种或多种。
具体的,使用射线衍射仪,仪器设置电压40mV,电流30mA,测试范围10-50°,扫描速度1°/min,步长设置0.02°/步,对检测后的X射线衍射数据进行分析,从而确认各晶相的比例。
玻璃陶瓷模具包括以下重量份的各原料:SiO 2:40.00~80.00份; Al 2O 3:18.00~40.00份;ZrO 2:0.50~10.00份;Li 2O:0.50~10.00份;Na 2O:0.00~2.00份;B 2O 3:0.00~5.00份;K 2O:0.00~5.00份;MgO:0.00~20.00份;CaO:0.00~5.00份;P 2O 5:0.00~5.00份;TiO 2:0.00~5.00份;BaO:0.00~2.00份;ZnO:0.00~10.00份。
本申请提供的玻璃陶瓷模具各原料的作用如下:
Li 2O的加入会加快析出热膨胀系数较低的β-石英、β-石英固溶体晶体、β-锂辉石和β-锂霞石,显著降低玻璃陶瓷的热膨胀系数。还可以控制基础玻璃晶化后玻璃陶瓷模具中负膨胀系数晶体β-石英、β-锂辉石和β-锂霞石的质量分数。但是过多的锂会导致析出晶相的转变,反而升高玻璃陶瓷的热膨胀系数,将Li 2O的质量分数控制在0.50%~10.00%,便于控制玻璃陶瓷模具获取合适范围的热膨胀系数。
在一些实施方式中,Li 2O的质量分数包括0.50重量%~10.00重量%及其之间的所有范围和子范围,比如可以控制在0.50重量%-7.50重量%,0.50重量%-5.00重量%,0.50重量%-2.50重量%,2.00重量%-10.00重量%,2.00重量%-7.50重量%,2.00重量%-5.00重量%,5.00重量%-10.00重量%,5.00重量%-7.50重量%,7.50重量%-10.00重量%等。在一些实施方式中,Li 2O的含量可控制在0.00重量%,0.50重量%,1.00重量%,2.00重量%,3.00重量%,4.00重量%,5.00重量%,6.00重量%,7.00重量%,8.00重量%,9.00重量%,10.00重量%等。
Na 2O和K 2O的加入可以降低微晶玻璃的析晶上限温度,从而降低基础玻璃(未晶化的玻璃,称为基础玻璃)的生产和成型难度, Na和K一般在基础玻璃晶化后富集于玻璃相内,过多的Na 2O和K 2O会显著升高热膨胀系数,降低玻璃陶瓷的玻璃化转变温度。为控制热膨胀系数及降低玻璃陶瓷的玻璃化转变温度,控制所述Na 2O和K 2O的含量,需要控制Na 2O、K 2O和Li 2O的质量比满足如下要求:(Na 2O+K 2O)/Li 2O<1.00,且Na 2O和K 2O总质量分数≤8.00%。
在一些实施方式中,Na 2O的质量分数包括0.00重量%~2.00重量%及其之间的所有范围和子范围,比如可以控制在0.25重量%-2.00重量%,0.25重量%-1.50重量%,0.25重量%-1.00重量%,1.00重量%-2.00重量%,1.00重量%-1.50重量%等。在一些实施方式中,Na 2O的含量可控制在0.00重量%,0.25重量%,1.00重量%,1.25重量%,1.50重量%,1.75重量%,2.00重量%等。
在一些实施方式中,K 2O的质量分数包括0.00重量%~5.00重量%及其之间的所有范围和子范围,比如可以控制在0.80重量%-5.00重量%,0.80重量%-4.00重量%,0.80重量%-3.00重量%,0.80重量%-2.00重量%,0.80重量%-1.00重量%,1.00重量%-5.00重量%,2.00重量%-5.00重量%,3.00重量%-5.00重量%,4.00重量%-5.00重量%,2.00重量%-4.00重量%,2.00重量%-3.00重量%等。在一些实施方式中,K 2O的含量可控制在0.00重量%,0.80重量%,1.00重量%,1.50重量%,2.00重量%,2.50重量%,3.00重量%,3.50重量%,4.00重量%,4.50重量%,5.00重量%等。
B 2O 3的加入可以降低玻璃陶瓷中玻璃相(玻璃陶瓷中存在玻璃相和晶体相)的热膨胀系数,但是过多的B 2O 3会降低玻璃陶瓷的强 度。
在一些实施方式中,B 2O 3的质量分数包括0.00重量%~5.00重量%及其之间的所有范围和子范围,比如可以控制在0.75重量%-5.00重量%,0.75重量%-4.00重量%,0.75重量%-3.00重量%,0.75重量%-2.00重量%,0.75重量%-1.00重量%,1.00重量%-5.00重量%,2.00重量%-5.00重量%,3.00重量%-5.00重量%,4.00重量%-5.00重量%,2.00重量%-4.00重量%,2.00重量%-3.00重量%等。在一些实施方式中,B 2O 3的质量分数可控制在0.00重量%,0.50重量%,0.75重量%,1.00重量%,1.50重量%,2.00重量%,2.50重量%,3.00重量%,3.50重量%,4.00重量%,4.50重量%,5.00重量%等。
MgO和ZnO参与了玻璃陶瓷MgAl 2Si 3O 10、ZnAl 2O 4、MgAl 2O 4、莫来石、堇青石、β-石英、β-石英固溶体、β-锂辉石和β-锂霞石等含镁晶体的形成。
在一些实施方式中,MgO的质量分数包括0.00重量%~20.00重量%及其之间的所有范围和子范围,比如可以控制在0.00重量%-19.00重量%,0.00重量%-18.70重量%,0.00重量%-16.00重量%,0.00重量%-14.00重量%%,0.00重量%-13.30重量%,0.00重量%-11.00重量%,0.00重量%-9.00重量%,10.00重量%-20.00重量%,13.30重量%-20.00重量%,15.00重量%-20.00重量%,17.00重量%-20.00重量%,18.70重量%-20.00重量%等。在一些实施方式中,MgO的质量分数可控制在0.00重量%,1.00重量%,2.00重量%,3.00重量%,4.00重量%,5.00重量%,6.00重量%,7.00重量%,8.00重量%, 9.00重量%,10.00重量%,11.00重量%,12.00重量%,13.00重量%,14.00重量%,15.00重量%,16.00重量%,17.00重量%,18.00重量%,19.00重量%,20.00重量%等。
ZrO 2和P 2O 5作为有效的成核剂,主要用于控制基础玻璃表面和内部的晶体生长速度一致,ZrO 2的质量分数应控制在0.50~10.00%之间,P 2O 5的质量分数应控制在0.00~5.00%。
在一些实施方式中,ZrO 2的质量分数包括0.50重量%~10.00重量%及其之间的所有范围和子范围,比如可以控制在0.50重量%-10.00重量%,0.50重量%-7.50重量%,0.50重量%-4.00重量%,0.80重量%-10.00重量%,0.80重量%-4.00重量%,4.00重量%-10.00重量%,4.00重量%-8.00重量%,4.00重量%-6.00重量%等。在一些实施方式中,ZrO 2的含量可控制在0.00重量%,0.50重量%,0.80重量%,1.00重量%,2.00重量%,3.00重量%,4.00重量%,5.00重量%,6.00重量%,7.00重量%,8.00重量%,9.00重量%,10.00重量%等。
在一些实施方式中,P 2O 5的质量分数包括0.00重量%~5.00重量%及其之间的所有范围和子范围,比如可以控制在1.00重量%-5.00重量%,1.00重量%-4.00重量%,1.00重量%-3.00重量%,1.00重量%-2.00重量%,2.00重量%-5.00重量%,3.00重量%-5.00重量%,4.00重量%-5.00重量%,2.00重量%-4.00重量%,2.00重量%-3.00重量%等。在一些实施方式中,P 2O 5的质量分数可控制在0.00重量%,0.50重量%,0.75重量%,1.00重量%,1.50重量%,2.00重量%, 2.50重量%,3.00重量%,3.50重量%,4.00重量%,4.50重量%,5.00重量%等。
TiO 2作为有效的成核剂加入能控制基础玻璃的析出晶体尺寸小于2μm,减小基础玻璃因生成大晶体产生裂纹的风险。
在一些实施方式中,TiO 2的质量分数包括0.00重量%~5.00重量%及其之间的所有范围和子范围,比如可以控制在1.00重量%-5.00重量%,1.00重量%-4.70重量%,1.00重量%-4.60重量%,1.00重量%-4.00重量%,1.00重量%-3.00重量%,1.00重量%-2.00重量%,2.00重量%-5.00重量%,2.00重量%-4.00重量%,3.00重量%-5.00重量%,3.00重量%-4.00重量%,2.00重量%-3.00重量%等。在一些实施方式中,TiO 2的质量分数可控制在0.00重量%,0.50重量%,0.75重量%,1.00重量%,1.50重量%,2.00重量%,2.50重量%,3.00重量%,3.50重量%,4.00重量%,4.60重量%,4.70重量%,5.00重量%等。
CaO的加入能有效降低基础玻璃的液相线粘度,从而降低成型难度,但是过多的CaO会造成基础玻璃成型过程中的析晶,本申请中CaO的质量分数为0.00~5.00%。
在一些实施方式中,CaO的质量分数包括0.00重量%~5.00重量%及其之间的所有范围和子范围,比如可以控制在1.00重量%-5.00重量%,1.50重量%-5.00重量%,2.00重量%-5.00重量%,3.00重量%-5.00重量%,4.00重量%-5.00重量%,2.00重量%-4.00重量%,2.00重量%-3.00重量%等。在一些实施方式中,K 2O的含量可控制在 0.00重量%,1.00重量%,1.50重量%,2.00重量%,2.50重量%,3.00重量%,3.50重量%,4.00重量%,4.50重量%,5.00重量%等。
本申请中,待热弯坯件的材质为玻璃或者玻璃陶瓷,其热膨胀系数范围较大,若热弯模具与待热弯坯件的热膨胀系数差异较大,会使热弯后的坯件的粗糙度大幅增加,所以要求模具具有较宽范围的且可调的热膨胀系数。
当玻璃陶瓷模具的热膨胀系数A1和待热弯坯件的热膨胀系数A2的比值的绝对值在0.2~1.4之间时,热弯后的坯件的平均粗糙度相对于热弯前仅升高12%~40%,进一步,当玻璃陶瓷模具的热膨胀系数A1和待热弯坯件的热膨胀系数A2的比值的绝对值在0.3~0.7之间时,热弯后的坯件的平均粗糙度相对于热弯前仅升高15%~30%。
当所述模具的热膨胀系数A1和所述待热弯坯件的热膨胀系数A2的比值的绝对值在0~0.2之间时,热弯后的坯件的平均粗糙度相对于热弯前也仅仅升高在70%~95%。
与应用在金属模具或石墨模具中的热弯后坯件400%的平均粗糙度的涨幅相比,本发明玻璃陶瓷模具热弯后的坯件的平均粗糙度的涨幅,得到了大大的改善,传统热弯模具与待热弯玻璃/玻璃陶瓷膨胀系数差所导致的粗糙度大幅增加的问题也得到了解决。
本申请中,热膨胀系数使用林赛斯DIL-L76热膨胀仪测试玻璃陶瓷模具的25~1000℃的热膨胀系数,玻璃陶瓷模具测试制样尺寸为5mm*5mm*50mm。
由此,本申请中Li 2O的质量分数控制在0.50~10.00%,且原料 中的Na 2O、K 2O、Li 2O的质量比满足:(Na 2O+K 2O)/Li 2O<1.00,Na 2O和K 2O总质量分数≤8.00%,Na和K一般在基础玻璃晶化后富集于玻璃相内,过多的Na 2O和K 2O会显著升高热膨胀系数,降低玻璃陶瓷的玻璃化转变温度,同时控制β-石英、β-锂辉石和β-锂霞石的质量分数在0.1%~70.0%范围内,β-石英、β-锂辉石和β-锂霞石是三种热膨胀系数较低的晶体,控制它们的总质量占比,能够对玻璃陶瓷模具整体的热膨胀系数的调节作出贡献,从而实现了玻璃陶瓷模具的热膨胀系数在25~1000℃的温度范围内可调,调节范围为-1.0×10 -6~3.0×10 -5/K。
在满足低热膨胀系数要求的情况下,本申请的玻璃陶瓷模具还具有宽泛可调的热膨胀系数范围,使得模具具有较宽的适用范围,提升了模具的适用性。
本申请玻璃陶瓷模具的玻璃化转变温度大于或等于700℃。玻璃陶瓷模具的玻璃化转变温度较高,即软化点较高,可适应热弯过程中的高温,避免热弯坯件变形及尺寸精确度降低等现象发生。同时模具晶化后残余玻璃相的转变温度也会升高,可以减少模具在使用时模具玻璃相的形变。
需要说明的是,β-石英包括β-石英固溶体和β-石英两种类型。玻璃陶瓷中β-石英、β-锂辉石和β-锂霞石的和的质量分数大于70.0%时,会显著降低玻璃陶瓷模具整体的热膨胀系数,导致玻璃陶瓷模具在25~1000℃的温度范围内的热膨胀系数范围较大程度的缩减变窄,特别是减弱其热膨胀系数范围的上限值。
在一些实施方式中,本申请玻璃陶瓷中的β-石英、β-锂辉石和β-锂霞石的质量分数之和包括在0.1%~70.0%及其之间的所有范围和子范围,比如可以控制在0.1%-70.0%,5.0%-70.0%,5.0%-60.0%,5.0%-50.0%,5.0%-47.0%,5.0%-37.0%,5.0%-35.0%,5.0%-33.0%,5.0%-30.0%,5.0%-25.0%,5.0%-16.0%,16.0%-60.0%,16.0%-50.0%,16.0%-47.0%,16.0%-35.0%,16.0%-20.0%,33.0%-70.0%,33.0%-60.0%,33.0%-50.0%,33.0%-47.0%等。在一些实施方式中,本申请玻璃陶瓷中的β-石英、β-锂辉石和β-锂霞石的质量分数之和可控制在10.0重量%,11.0重量%,12.0重量%,13.0重量%,14.0重量%,15.0重量%,16.0重量%,17.0重量%,18.0重量%,19.0重量%,20.0重量%,21.0重量%,22.0重量%,23.0重量%,24.0重量%,25.0重量%,26.0重量%,27.0重量%,28.0重量%,29.0重量%,30.0重量%,31.0重量%,32.0重量%,33.0重量%,34.0重量%,35.0重量%,36.0重量%,37.0重量%,38.0重量%,39.0重量%,40.0重量%,41.0重量%,42.0重量%,43.0重量%,44.0重量%,45.0重量%,46.0重量%,47.0重量%,48.0重量%,49.0重量%,50.0重量%,51.0重量%,52.0重量%,53.0重量%,54.0重量%,55.0重量%,56.0重量%,57.0重量%,58.0重量%,59.0重量%,60.0重量%,61.0重量%,62.0重量%,63.0重量%,64.0重量%,65.0重量%,66.0重量%,67.0重量%,68.0重量%,69.0重量%,70.0重量%等。
本申请中,使用梅特勒-托利多DSC-3差示扫描热仪测试玻璃陶 瓷模具的玻璃化转变温度,玻璃陶瓷模具提前使用玛瑙碾钵磨粉,之后过200目筛,取过筛后粉末测试。
在至少一种实施方式中,本申请提供的玻璃陶瓷模具的热导率在25~1000℃的温度范围内大于或等于1W/(m·k)。这样,能够使得模具实现快速升温,能更好的将热量传递到热弯坯件,保证模具和坯件温度快速达到一致,另外保证模具各部位温度的一致性。
本申请还提供了一种玻璃陶瓷模具的制备方法,下面参考图1详细描述本申请公开的玻璃陶瓷模具的制备方法实施例。如图1所示,本实施例公开的方法主要包括有以下步骤S100至步骤S500。
步骤S100,混合工序,将各原料称量并混合均匀,制成基础混合物,所述各原料包括以下重量份:
SiO 2:40.00~80.00份;Al 2O 3:18.00~40.00份;ZrO 2:0.50~10.00份;Li 2O:0.50~10.00份;Na 2O:0.00~2.00份;B 2O 3:0.00~5.00份;K 2O:0.00~5.00份;MgO:0.00~20.00份;CaO:0.00~5.00份;P 2O 5:0.00~5.00份;TiO 2:0.00~5.00份;BaO:0.00~2.00份;ZnO:0.00~10.00份。
具体的,将上述各原料与澄清剂准确称量后充分混合均匀,装入刚玉坩埚内,澄清剂选自As2O3、Sb2O3、SnO2、氯化物、氟化物、含SO3-的化合物、和含NO3-的化合物中的一种以上,优选选自SnO2、含SO3-的化合物、氯化物、和含NO3-的化合物中的一种以上;优选所述澄清剂含量为0-2重量%。
步骤S200,熔制工序,将所述基础混合物进行熔制并浇注至模 具中,生成基础玻璃件。
具体的,将上述装有混合均匀的原料的刚玉坩埚置于硅钼棒电炉中,于1500~1700℃下熔制3~16h。待玻璃液澄清均化后,浇注到模具中,生成基础玻璃件。
需要说明的是,此处所述的模具为盛放玻璃原料的熔化混合物,并进行降温冷却得到基础玻璃件。
步骤S300,成型工序,将所述基础玻璃件制成所需形状的玻璃模具件。
具体的,成型工序为冷雕加工或为热弯成型。
进一步地,成型工序为热弯成型时,采用市面上的3D热弯机进行热弯成型得到玻璃模具件,如DTK市售机型,盟立市售机型等。在一些实施方式中可选用DTK-DGP-3D12S3D热弯机,或者盟立CG07-4222热弯机等。
进一步地,成型工序为冷雕加工时,在所述成型工序前还包括退火工序,所述退火工序为将所述基础玻璃件退火,冷却至室温。玻璃的退火,就是把具有永久应力的玻璃制品重新加热到玻璃内部质点可以移动的温度,利用质点的位移使应力分散来消除或减弱永久应力,从而提高玻璃制品的热膨胀均匀性和机械强度。
玻璃的退火范围一般为退火点和应变点之间,对应的玻璃粘度为1013dPa·s至1014.7dPa·s。高于退火点温度时,玻璃会软化变形;低于退火温度下限时,玻璃结构实际上可认为已固定,内部质点已不能移动,也就无法分散或消除应力。在应变点附近可在数小时内消除 玻璃内部应力,理论上退火时间越长玻璃的应力越小,均匀性越高。另外,新的应力会在玻璃退火降温过程中新产生,降温速率越慢,所产生的应力越小,内外玻璃的应力均匀性越高,玻璃的热膨胀系数均匀性也越高。
具体地,将获取的基础玻璃件于600~900℃退火30~1200h,进一步,为控制模具不同部位膨胀系数的一致性,优选120h以上退火时间,本申请中依照标准GB/T 28196-2011《玻璃退火点和应变点测试方法》确认玻璃的退火点,应变点由退火点数据外推确定,应变点是粘滞挠曲速度为退火粘滞挠曲速度0.0316倍时的温度,本申请的退火温度为玻璃退火粘滞挠曲速度0.02~0.0316倍时的温度,在此温度范围内可获得更好的退火效果,即热膨胀系数均匀性越高。
进而再以5~20℃/h的降温速度冷却到室温,随后通过CNC冷雕,对基础玻璃进行磨边,去除余量,并通过钻头将基础玻璃进行倒边和钻孔等工序,以满足终成品要求,得到玻璃模具件。
步骤S400,微晶化处理工序,将所述玻璃模具件依次进行核化、晶化处理,制成所述微晶化模具件;
具体的,所述核化的温度为650~1000℃,核化的时间为1~6小时;晶化的温度为900~1400℃,晶化的时间为0~15小时。
在一种实施方式中,当成型工序为热弯成型时,微晶化处理工序能够与热弯成型同时进行,具体地,在对玻璃模具件热弯成型的同时,进行微晶化处理。
其中,核化处理的过程:通过在玻璃组分中引入适当的晶核剂, 在随后的热处理过程中,玻璃的粘度降低,玻璃中会析出(成核和生长)大量均匀的微小晶体,即晶核。
晶化处理的过程:在析出的晶核表面生长出所需的晶体,使玻璃内部组成变为晶体相和玻璃相。
合适的核化温度和时间有利于析出尺寸均匀和细小的晶核,进一步在晶化处理过程中生长出尺寸均匀和细小的晶体。
本申请中核化温度的确认:使用差示扫描量热法(DSC)测试玻璃的玻璃化转变温度Tg,核化温度为(Tg-20)~(Tg+130)℃。具体的测试条件为玻璃退火后磨粉,过200目筛,过筛后玻璃粉经300℃烘干60min后,取玻璃粉20mg烘干以10℃/min的升温速率,测试室温~1500℃的DSC数据,以DSC曲线的第一个吸热峰的斜率最大处为Tg点。
晶化即为在已形成晶核的玻璃陶瓷或玻璃中通过热处理生长出晶体。
本申请中晶化温度的确认:使用差示扫描量热法(DSC)测试玻璃的首个析晶峰值温度Tc,晶化温度为(Tc-50)~(Tc+50)℃。具体的测试条件为玻璃退火后磨粉,过200目筛,过筛后玻璃粉经300℃烘干60min后,取玻璃粉20mg烘干以10℃/min的升温速率,测试室温~1500℃的DSC数据,以DSC曲线的第一个放热峰的斜率最小处为Tc点。
晶化对热膨胀系数的影响:通过控制坯件的晶化温度和晶化时间可获得不同结晶度,不同晶相的玻璃陶瓷的热膨胀系数差异较大,因 此,可以通过调整组成、晶化温度和晶化时间来调控玻璃陶瓷的热膨胀系数。
晶化对抗热震性的影响:当裂纹沿着热膨胀系数相差很大的不同颗粒的边界进行扩展时,由于可通过晶内的解理面发生弯曲、钝化和分支,从而使得材料的抗热震性得到改善。因此,可以通过调整原料组成、晶化温度和晶化时间来获得抗热震性高的玻璃陶瓷。
具体的,将所述玻璃模具件在650~1000℃核化1~6h,然后在900~1400℃晶化0~15h,进一步,晶化时间包括0~15h及其之间所有的范围和子范围,例如1h~2h、1h~3h、1h~4h、1h~5h、2h~3h、2h~4h、2h~5h、5h~15h、10h~11h、10h~12h、10h~13h、10h~14h、10h~15h、14h~15等,优选为5h~15h,包括6h~15h、7h~12h、7h~14h、7h~15h等。
步骤S500,冷却工序,将所述微晶化模具件退火冷却至室温后生成玻璃陶瓷模具。
具体的,以5~40℃/h的降温速度冷却到室温,为控制模具不同部位膨胀系数的均匀性,优选5~20℃/h的冷却速度。
在至少一种实施方式中,所述冷却工序后,还包括对所述玻璃陶瓷模具的抛光工序。模具制备完成后,在待热弯坯件进行热弯时,将待热弯坯件放入上述模具中,然后放入热弯机中,设置热弯工艺,待冷却后取出。该热弯模具具备高热导率、耐高温、高软化点和高抗热震性等优点,且玻璃热弯后的尺寸精度并未发生改变。并且高温下抗氧化,使用寿命长,适合2.5D或3D玻璃批量生产。
在至少一种实施方式中,膨胀系数均匀性测试方法为:在所制备基础模具上,取直径为6mm,厚度10mm的的A、B样品,分别测试热膨胀系数,A/B在0.995~1.005,即满足退火膨胀系数的均匀性要求。测试仪器为德国NETZSCH-DIL402C高温热膨胀系数仪。
玻璃陶瓷模具的热导率测试方法为:测试样品尺寸长宽厚为100mm*100*1mm。测试仪器为热流法导热测试仪HFM436。
平均粗糙度测试的方法为:使用化矿TR200粗糙度仪在样品表面分别测试三次,每次取样长度20mm,以三次所测粗糙的平均值作为样品的平均粗糙度。
下面通过具体实施例及对比例来说明本申请制备的玻璃陶瓷模具的性能参数。
下述表1-1为实施例1-6及对比例1中各玻璃陶瓷模具基础玻璃的原料组成表,表1-2为实施例1-6及对比例1各玻璃陶瓷模具制备过程的具体工艺参数表,表1-3为实施例1-6及对比例1制备好的各玻璃陶瓷模具的主晶相及性能参数表。
表1-1玻璃陶瓷模具基础玻璃组成表
Figure PCTCN2022138935-appb-000001
Figure PCTCN2022138935-appb-000002
表1-2玻璃陶瓷模具制备工艺参数表
Figure PCTCN2022138935-appb-000003
Figure PCTCN2022138935-appb-000004
下面以实施例1为例,根据表1-1、和1-2的数据具体描述玻璃陶瓷模具的制备流程:
准确称取各原料:SiO 2:47.10份;Al 2O 3:28.50份;ZrO 2:0.80份;Li 2O:2.50份;Na 2O:0.00份,B 2O 3:0.00份,K 2O:0.80份,MgO:13.30份,CaO:0.00份,P 2O 5:0.00份,TiO 2:4.70份,BaO:0.00份,ZnO:2.30份。将各原料充分混合均匀,装入刚玉坩埚内,加入澄清剂,将刚玉坩埚置于硅钼棒电炉中于1640℃下熔制5h,待玻璃液澄清均化后,浇注到模具中生成基础玻璃件。将获取的基础玻璃件于720℃退火120h,再以6℃/h的降温速度冷却到室温,随后进行CNC冷雕,并对基础玻璃进行磨边,去除余量,通过钻头将基础玻璃进行倒边和钻孔等工序,以满足终成品要求,得到玻璃模具件。 将所述玻璃模具件在830℃温度下核化2h,然后在1200℃温度下晶化3h,再以7℃/h的降温速度冷却到室温,然后进行抛光工序,即完成玻璃陶瓷模具的制备过程。
实施例2-6及对比例1同样参照表1-1和表1-2的数据要求并与实施例1的制备流程相同,此处不再赘述。表1-3为基于表1-1和表1-2制备的玻璃热弯模具的主晶相及性能参数表。
表1-3玻璃陶瓷模具晶相及性能参数表
Figure PCTCN2022138935-appb-000005
Figure PCTCN2022138935-appb-000006
下面以实施例1为例,根据表格1-3描述制备完成的热弯模具:
制备完成的玻璃陶瓷模具的主晶相包括:堇青石、β-石英固溶体、β-石英,且晶相中β-石英固溶体、β-石英、β-锂辉石和β-锂霞石的和的质量分数为16wt.0%,晶化后的玻璃陶瓷模具的玻璃化转变温度为760℃;25~1000℃的热膨胀系数为2.2×10 -6/K;在所制备的基础模具上,取直径为6mm,厚度10mm的A、B样品,利用德国NETZSCH-DIL402C高温热膨胀系数仪分别测试A、B样品热膨胀系数,得出A/B为0.996,满足退火膨胀系数的均匀性要求;
测试热导率时,在玻璃陶瓷模具上获取长宽厚为100mm*100*1mm的样品,利用热流法导热测试仪HFM436进行测试,热导率为2.81W/(m·k),测试玻璃陶瓷模具的平均粗糙度时,使用化矿TR200粗糙度仪在实施例1的玻璃陶瓷模具表面分别测试三次,每次取样长度20mm,以三次所测粗糙的平均值作为样品的平均粗糙度,测得的实施例1的玻璃陶瓷模具的平均粗糙度为0.008μm。实施例2-6和对比例1同上,此处不再赘述。
其中,对比例1与实施例3的原料组成相同,制备过程中的晶化温度为1450度,大于1400度,晶化时间为30,大于15h,制备的热 弯模具的主晶相为β-石英固溶体,且制备的热弯模具的的β-石英固溶体、β-石英、β-锂辉石和β-锂霞石的和的质量分数为73wt%,大于70wt%,降低了玻璃陶瓷模具整体的热膨胀系数。
利用以上实施例1-6中制备的各玻璃陶瓷模具对玻璃或玻璃陶瓷坯件进行热弯,选取A-E五件待热弯坯件,各待热弯坯件的原料组成及性能参数见表1-4。
表1-4待热弯坯件原料组成及性能表
Figure PCTCN2022138935-appb-000007
根据表1-4可知,其中,坯件B和坯件C为玻璃,坯件A、坯件D和坯件E为玻璃陶瓷,首先选取不同批次的坯件A利用实施例1-6制备的热弯模具进行热弯,不同批次生产的坯件A的粗糙度不同,热弯后的坯件的性能见表1-5。
表1-5坯件A热弯后性能参数表
Figure PCTCN2022138935-appb-000008
根据表1-5可知,利用实施例1-6制备的玻璃陶瓷模具对不同批次的坯件A进行热弯,热弯后的坯件A的平均粗糙度提升均较小,远小于应用在金属模具或石墨模具中的热弯后坯件400%的平均粗糙度的涨幅,且当玻璃陶瓷模具的热膨胀系数A1和待热弯坯件的热膨胀系数A2的比值的绝对值在0.2~1.4范围内时,坯件热弯后的平均粗糙度在12%~40%范围内。如上,针对同一个玻璃体系但不同粗糙 度的坯件,本申请玻璃陶瓷模具有着良好的适用性。
进一步,选取实施例1制备的玻璃陶瓷模具对上述表1-4中的坯件A坯件E分别进行热弯加工,加工后的坯件的性能见表1-6。
表1-6坯件A-E热弯后性能参数表
Figure PCTCN2022138935-appb-000009
根据表1-6可知,利用实施例1制备的热弯模具对不同体系的坯件A-坯件E分别进行热弯,热弯后的坯件体系不会发生改变,平均粗糙度提升均较小,且当玻璃陶瓷模具的热膨胀系数A1和待热弯坯件的热膨胀系数A2的比值的绝对值在0.2~1.4范围内时,坯件热弯后的平均粗糙度在12%~40%范围内。可见,针对不同玻璃体系的坯件,本申请玻璃陶瓷模具有着良好的适用性。
针对实施例1提供的工艺参数范围,分别针对退火时间、核化时间、晶化时间和退火温度各提供一组对比例,得到的热弯模具性能及 热弯后的坯件情况见表1-7所示:
表1-7工艺参数对比例表
Figure PCTCN2022138935-appb-000010
Figure PCTCN2022138935-appb-000011
根据表1-7可知,当退火时间小于30h时,25-1000℃热膨胀系数较大,且热膨胀系数均匀性较不稳定,坯件热弯后的平均粗糙度大幅提升;当核化时间小于1h时,由于核化时间过短,玻璃在晶化时发生非均匀的析晶,晶化后玻璃破裂,无法使用;当晶化时间大于15h时,25-1000℃热膨胀系数较大,且热膨胀系数均匀性较不稳定,坯件热弯后的平均粗糙度大幅提升;当退火温度大于900℃时,25-1000℃热膨胀系数较大,且热膨胀系数均匀性较不稳定,坯件热弯后的平均粗糙度大幅提升;由此可见,利用本申请限定的退火时间、核化时间、晶化时间和退火温度才能制得热膨胀系数合适、均匀性较好,且坯件热弯后平均粗糙度低的玻璃陶瓷模具。
本申请还提供一对比例,该对比例为市面上常见的石墨热弯模具, 利用比例1的石墨模具与实施例1的玻璃陶瓷模具对相同的待热弯坯件进行热弯,其性能与实施例1对比,见下表:
表1-8性能参数对比表
性能参数 实施例1 石墨模具
热膨胀系数(25~1000℃)/(×10 -6/K) 2.2 4.0
热导率(25~1000℃)/[W/(m·k)] 2.81 4.18
热弯温度(℃,空气气氛) 760 760
正常热弯使用温度(℃,空气气氛) 700-1100 <350
模具的平均粗糙度(μm) 0.008 0.009
待热弯坯件热弯前的平均粗糙度(μm) 0.0076 0.0076
待热弯坯件热弯后的平均粗糙度提升 23% 320%
热弯后模具粗糙度增加百分比 4% 450%
热弯后模具质量减少量 0% 12%
根据上述表格1-1至1-8可知,通过原料比例的配合和调整,以及制备工艺的严格控制,制备出的玻璃陶瓷模具具备良好的性能,通过控制原料中(Na 2O+K 2O)/Li 2O<1.00,且Na 2O和K 2O总质量分数≤8.00%,使得玻璃陶瓷的热膨胀系数控制在-1.0×10-6~3.0×10-5/K,且其玻璃化转变温度大于等于700℃,而原料中Li 2O的质量分数控制在0.50~10.00%,使得晶化后的β-石英、β-锂辉石和β-锂霞石的和的质量分数在0.1%~70.0%范围内,从而实现玻璃陶瓷模具的热膨胀系数在25~1000℃的温度范围内可调节(调节范围为-1.0×10 -6~3.0×10 -5/K)。
由此,由于玻璃陶瓷模具有宽泛可调的热膨胀系数,能适配坯件的热膨胀系数,改进较大的热膨胀系数差异,进而避免粗糙度提升较大的问题。
且玻璃陶瓷模具的玻璃化转变温度较高,即软化点较高,可适应热弯过程中的高温,避免热弯坯件变形及尺寸精确度降低等现象发生。
另一方面,制备的玻璃陶瓷模具的热导率在25~1000℃的温度范围内大于等于1W/(m·k),具有良好的导热性,能够实现快速传热,进一步,通过控制工艺参数中的退火时间、退火温度、核化时间和晶化时间在合理范围内,来控制玻璃陶瓷模具不同部位膨胀系数的均匀性、以及保证热弯后坯件的低粗糙度。
进一步,根据表1-8中对比例与实施例1对比可知,在热弯温度均为760℃、待热弯坯件热弯前的平均粗糙度均为0.0076μm,且模具的平均粗糙度相近的条件下,本申请提供的玻璃陶瓷模具热弯坯件后平均粗糙度的提升远小于传统的石墨模具,且玻璃陶瓷模具热弯坯件后模具质量减少量为0%,而石墨模具减少量为12%,以及本申请提供的玻璃陶瓷模具的使用温度远远高于传统石墨模具。
由此,本申请提供的玻璃陶瓷模具克服传统石墨模具不耐氧化,寿命短,使用温度低的缺点,实现了高热导率、耐高温、高软化点和高抗热震性等优点,且玻璃热弯后的尺寸精度并未发生改变。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。 因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种玻璃陶瓷模具,其特征在于,所述玻璃陶瓷模具的主晶相包括β-石英、β-锂辉石和β-锂霞石中的一种或多种,且所述β-石英的质量分数+所述β-锂辉石的质量分数+所述β-锂霞石的质量分数在0.1%~70.0%范围内。
  2. 如权利要求1所述的玻璃陶瓷模具,其特征在于,所述主晶相还包括MgAl 2Si 3O 10、MgAl 2O 4、ZnAl 2O 4和莫来石中的一种或多种。
  3. 如权利要求1所述的玻璃陶瓷模具,其特征在于,所述玻璃陶瓷模具的热膨胀系数在25~1000℃的温度范围内为-1.0×10 -6~3.0×10 -5/K。
  4. 如权利要求1所述的玻璃陶瓷模具,其特征在于,所述玻璃陶瓷模具的组分包括Li 2O,以质量分数计在0.50%~10.00%范围内。
  5. 如权利要求4所述的玻璃陶瓷模具,其特征在于,所述玻璃陶瓷模具的组分还包括Na 2O和K 2O,Na 2O、K 2O和Li 2O的质量比要求如下:(Na 2O+K 2O)/Li 2O<1.00,且Na 2O和K 2O总质量分数≤8.00%。
  6. 如权利要求1所述的玻璃陶瓷模具,其特征在于,包括以下重量份的各原料:SiO 2:40.00~80.00份;Al 2O 3:18.00~40.00份;ZrO 2:0.50~10.00份;Li 2O:0.50~10.00份;Na 2O:0.00~2.00份;B 2O 3:0.00~5.00份;K 2O:0.00~5.00份;MgO:0.00~20.00份;CaO:0.00~5.00份;P 2O 5:0.00~5.00份;TiO 2:0.00~5.00份;BaO:0.00~2.00份;ZnO:0.00~10.00份。
  7. 如权利要求6所述的玻璃陶瓷模具,其特征在于,所述玻璃 陶瓷模具的玻璃化转变温度大于或等于700℃。
  8. 如权利要求1-7任一项所述的玻璃陶瓷模具,其特征在于,所述玻璃陶瓷模具的热导率在25~1000℃的温度范围内大于或等于1W/(m·k)。
  9. 一种玻璃陶瓷模具的制备方法,其特征在于,包括如下步骤:
    混合工序,将各原料称量并混合均匀,制成基础混合物,所述各原料包括以下重量份:
    SiO 2:40.00~80.00份;Al 2O 3:18.00~40.00份;ZrO 2:0.50~10.00份;Li 2O:0.50~10.00份;Na 2O:0.00~2.00份;B 2O 3:0.00~5.00份;K 2O:0.00~5.00份;MgO:0.00~20.00份;CaO:0.00~5.00份;P 2O 5:0.00~5.00份;TiO 2:0.00~5.00份;BaO:0.00~2.00份;ZnO:0.00~10.00份;
    熔制工序,将所述基础混合物熔制并浇注至模具中,生成基础玻璃件;
    成型工序,将所述基础玻璃件制成所需形状的玻璃模具件;
    微晶化处理工序,将所述玻璃模具件依次进行核化、晶化处理,制成所述微晶化模具件;
    冷却工序,将所述微晶化模具件冷却至室温后,生成玻璃陶瓷模具。
  10. 如权利要求9所述的方法,其特征在于,所述熔制的温度为1500~1700℃,所述熔制的时间为3~16小时。
  11. 如权利要求9所述的方法,其特征在于,所述核化的温度为 650~1000℃,所述核化的时间为1~6小时;所述晶化的温度为900~1400℃,所述晶化的时间为0~15小时。
  12. 如权利要求9所述的方法,其特征在于,所述成型工序为热弯成型,且所述微晶化处理工序与所述热弯成型同时进行。
  13. 如权利要求9所述的方法,其特征在于,所述成型工序为冷雕加工。
  14. 如权利要求13所述的方法,其特征在于,在所述冷雕加工前还包括退火工序,所述退火工序为将所述基础玻璃件退火,冷却至室温。
  15. 如权利要求14所述的方法,其特征在于,所述退火工序中退火的温度为600~900℃,所述退火的时间为30~1200小时,并以5~20℃/h的降温速度冷却到室温。
  16. 如权利要求9所述的方法,其特征在于,所述冷却工序中冷却的速度为5~40℃/h。
  17. 如权利要求9所述的方法,其特征在于,所述冷却工序后,还包括对所述玻璃陶瓷模具的抛光工序。
PCT/CN2022/138935 2021-12-31 2022-12-14 玻璃陶瓷模具及其制备方法 WO2023125004A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111679663.7 2021-12-31
CN202111679663.7A CN116409936A (zh) 2021-12-31 2021-12-31 玻璃陶瓷模具及其制备方法

Publications (1)

Publication Number Publication Date
WO2023125004A1 true WO2023125004A1 (zh) 2023-07-06

Family

ID=86997753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138935 WO2023125004A1 (zh) 2021-12-31 2022-12-14 玻璃陶瓷模具及其制备方法

Country Status (2)

Country Link
CN (1) CN116409936A (zh)
WO (1) WO2023125004A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059428A (en) * 1976-02-20 1977-11-22 Corning Glass Works Method of forming sagging mold from a glass ceramic
US4246207A (en) * 1979-05-14 1981-01-20 Corning Glass Works Method for casting glass-plastic lenses comprising allyl diglycol carbonate plastic
JPS62182134A (ja) * 1986-02-05 1987-08-10 Koumei:Kk 樹脂レンズ成形用ガラスセラミツクスモ−ルド
US4938802A (en) * 1989-01-19 1990-07-03 Corning Incorporated Reusable ceramic mold
JP2001150452A (ja) * 1999-11-25 2001-06-05 Ohara Inc 樹脂成形用型及びその製造方法
CN1495134A (zh) * 2002-08-16 2004-05-12 Ф�ز�����˾ 玻璃和玻璃陶瓷的成型方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059428A (en) * 1976-02-20 1977-11-22 Corning Glass Works Method of forming sagging mold from a glass ceramic
US4246207A (en) * 1979-05-14 1981-01-20 Corning Glass Works Method for casting glass-plastic lenses comprising allyl diglycol carbonate plastic
JPS62182134A (ja) * 1986-02-05 1987-08-10 Koumei:Kk 樹脂レンズ成形用ガラスセラミツクスモ−ルド
US4938802A (en) * 1989-01-19 1990-07-03 Corning Incorporated Reusable ceramic mold
JP2001150452A (ja) * 1999-11-25 2001-06-05 Ohara Inc 樹脂成形用型及びその製造方法
CN1495134A (zh) * 2002-08-16 2004-05-12 Ф�ز�����˾ 玻璃和玻璃陶瓷的成型方法

Also Published As

Publication number Publication date
CN116409936A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
JP7048767B2 (ja) 電子デバイスカバープレート用ガラスセラミック物品およびガラスセラミック
CN110104954B (zh) 一种低温晶化的可离子交换玻璃陶瓷
TW202016039A (zh) 微晶玻璃、微晶玻璃製品及其製造方法
CN109320091A (zh) 电子设备盖板用微晶玻璃制品和微晶玻璃
EP0265045B1 (en) Refractory glass-ceramics containing enstatite
TW201827371A (zh) 玻璃陶瓷
CN102503141B (zh) 一种微晶玻璃及其制备方法
CN109809696A (zh) 一种镁铝硅尖晶石微晶玻璃
US3236662A (en) Semicrystalline body and method of making it
CN111592225A (zh) 锂铝硅酸盐纳米晶透明陶瓷、其制备方法及产品
CN1944300B (zh) 低膨胀系数微晶玻璃及其热处理方法
JP2010503601A (ja) 薄板形状でのガラスセラミック素材の製造方法、それらを含んだ薄板及びそれらの使用方法
CN110577364A (zh) 一种锂铝硅酸盐纳米晶玻璃陶瓷及其制备方法
CN112552032A (zh) 一种合成β-锂辉石固溶体、含该合成β-锂辉石固溶体制造的微晶玻璃及其制造方法
US3467534A (en) Barium silicate glass-ceramic body and method of making it
US4187115A (en) Anorthite glass-ceramics
WO2023125004A1 (zh) 玻璃陶瓷模具及其制备方法
US3899340A (en) High elastic modulus glass-ceramic articles
US3540893A (en) Glass yielding glass ceramic of moderately low expansion,and method
CN111116040A (zh) 一种具有非单一表面压应力斜率的钢化玻璃制品及其制备方法
WO2023125005A1 (zh) 玻璃制品的加工方法及玻璃陶瓷模具
JP4220013B2 (ja) 複合ガラスセラミックスおよびその製造方法
CN111646704A (zh) 掺杂β-锂霞石晶须的玻璃陶瓷及其制备方法、化学强化玻璃陶瓷
Zhou et al. Effect of Na2O content on the structure and properties of las glass-ceramics prepared by spodumene
JP4990805B2 (ja) プレス成形用ガラス素材の製造方法、ガラスプレス成形品の製造方法、ならびに光学素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914259

Country of ref document: EP

Kind code of ref document: A1