WO2023124790A1 - 中空容器吹塑材料及其制备方法和应用 - Google Patents

中空容器吹塑材料及其制备方法和应用 Download PDF

Info

Publication number
WO2023124790A1
WO2023124790A1 PCT/CN2022/136460 CN2022136460W WO2023124790A1 WO 2023124790 A1 WO2023124790 A1 WO 2023124790A1 CN 2022136460 W CN2022136460 W CN 2022136460W WO 2023124790 A1 WO2023124790 A1 WO 2023124790A1
Authority
WO
WIPO (PCT)
Prior art keywords
blow molding
hollow container
reactor
ethylene
molding material
Prior art date
Application number
PCT/CN2022/136460
Other languages
English (en)
French (fr)
Inventor
高克京
荔栓红
张丽洋
王仪森
祝文亲
周京生
何盛宝
胡杰
李兵
任晓兵
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Publication of WO2023124790A1 publication Critical patent/WO2023124790A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used

Definitions

  • the invention relates to the field of polymer materials, in particular to a hollow container blow molding material and its preparation method and application.
  • High-density polyethylene has high density, good balance of rigidity and toughness, excellent chemical corrosion resistance, no moisture absorption, and good water resistance. It can be used to produce large container containers, as well as 200L barrels and automobiles. Hollow container products of various volumes such as fuel tanks and milk bottles.
  • chromium (Cr) catalysts are often used to catalyze the synthesis of special materials for small hollow containers. Because the resin synthesized by catalysis contains a certain amount of components with relatively high molecular weight, it can meet the needs of small and medium-sized containers to a certain extent.
  • the processing requirements and mechanical performance requirements of hollow containers for example, the patent document CN103554631A discloses a small hollow container blow molding material and its preparation method.
  • the raw materials ethylene and 1-hexene are placed in the reaction
  • Add the activated catalyst to the container adjust the reaction temperature in the reaction container to 99-101°C, until the melt flow rate of the reaction product is 0.45-0.55g/10min and the density is 0.953-0.955kg/ m3 , to obtain ethylene-hexene copolymerized polyethylene base resin, and then mix the base resin with antioxidant and secondary antioxidant, add the mixer to extrude the particles into cooling water, and obtain granular polyethylene products with low corrosion resistance Hollow blow molding material, the catalyst used is 969MPI-788-RCP3, which belongs to Cr series catalyst.
  • Cr-based catalysts have strong toxicity and carcinogenic properties, making the small hollow containers made very difficult. It is difficult to meet the requirements of food, medicine, and high-cleanliness chemical products.
  • Ti-based catalysts There is also a process for catalyzing the synthesis of polyolefin materials using titanium (Ti)-based catalysts.
  • Ti-based catalysts The activity of Ti-based catalysts is higher than that of Cr-based catalysts, which can reduce the catalyst components in polymeric materials and make them cleaner, and Ti-based catalysts do not have Cr Carcinogenicity and other harmful properties of Ti-based catalysts, the prepared polymeric materials can be used in food packaging, etc., therefore, the Ti-based catalytic synthesis process using Ti-based catalysts has gradually become a development trend for synthesizing polyolefin materials, for example, patent document CN103113499A Disclosed is a wide distribution polyolefin catalyst and its preparation method and application.
  • the catalyst includes a main catalyst and a cocatalyst, wherein the main catalyst is composed of a carrier, a transition metal halide, an organic alcohol compound and a siloxane electron donor, and the transition
  • the metal halide is produced by the reaction of titanate and silicon halide during the preparation of the catalyst.
  • the catalyst belongs to the Ti series catalyst and is used for the polymerization of ethylene or the copolymerization of ethylene and comonomers to produce polyolefin materials with wide distribution.
  • the invention provides a hollow container blow molding material and its preparation method and application, which can improve performances such as environmental stress cracking resistance of the hollow container blow molding material.
  • a method for preparing hollow container blow molding materials comprising: entering the first part of ethylene into the first reactor, and performing the first polymerization reaction in the presence of a titanium-based catalyst and hydrogen to generate a melt index of 100g /10min ⁇ 200g/10min of polyethylene; wherein, the melt index of the polyethylene refers to the melting index of the polyethylene measured at a temperature of 190°C ⁇ 1°C and a load of 2.16kg according to the GB/T3682-2000 standard.
  • the second polymerization reaction is carried out in the presence of the hollow container blow molding material with a melt index of 1.0g/10min to 2.0g/10min; wherein, the melt index of the hollow container blow molding material refers to the GB/T3682-2000 standard
  • the melt mass flow rate of the hollow container blow molding material measured at a temperature of 190°C ⁇ 1°C and a load of 5kg.
  • the ratio of the weight-average molecular weight to the number-average molecular weight of the hollow container blow molding material is 8-15; and/or, the density of the hollow container blow molding material is 0.950 g/cm 3 - 0.955g/cm 3 .
  • the mass of the first portion of ethylene accounts for 45% to 55% of the sum of the mass of the first portion of ethylene and the mass of the second portion of ethylene.
  • the monomer raw material further includes butene.
  • the conditions of the first polymerization reaction are: the temperature is 75°C-87°C, and the pressure is 0.2MPa-0.5MPa; and/or, the conditions of the second polymerization reaction are: the temperature is 75°C ⁇ 87°C, pressure 0.05MPa ⁇ 0.3MPa.
  • the titanium-based catalyst includes a main catalyst and a co-catalyst, wherein the main catalyst is compounded from a magnesium compound, an aliphatic alcohol, an organosilicon compound, and a titanium halide, and the organosilicon compound includes Tetraalkoxysilane of the following formula 1 structure:
  • R 2 , R 3 , R 4 , and R 5 are each independently selected from a C 1 -C 15 alkyl group, a C 3 -C 20 cycloalkyl group or a C 6 -C 30 aryl group;
  • the cocatalyst includes an organoaluminum compound with the general formula AlR' n X 3-n .
  • R' is hydrogen or a C 1 -C 20 alkyl group
  • X is a halogen
  • the mass of the organosilicon compound is 1% to 20% of the mass of the main catalyst; and/or, the cocatalyst includes triethylaluminum (AlEt 3 ), triisobutyl aluminum (Al(iso-Bu) 3 ), tri-n-hexyl aluminum (Al(nC 6 H 13 ) 3 ), tri-n-octyl aluminum (Al(nC 8 H 17 ) 3 ), diethyl aluminum chloride ( at least one of AlEt 2 Cl).
  • AlEt 3 triethylaluminum
  • Al(iso-Bu) 3 tri-n-hexyl aluminum
  • Al(nC 8 H 17 ) 3 tri-n-octyl aluminum
  • diethyl aluminum chloride at least one of AlEt 2 Cl.
  • the molar ratio of the co-catalyst to the titanium in the main catalyst is (1-500):1.
  • Another aspect of the present invention provides a hollow container blow molding material, which is prepared according to the above preparation method.
  • Another aspect of the present invention provides a method for preparing a hollow container, comprising: using the above-mentioned hollow container blow molding material, blow molding it to form a hollow container; or, preparing the hollow container blow molding material according to the above preparation method, and making the The obtained hollow container blow-molding material is blow-molded to form a hollow container.
  • a titanium-based catalyst is used, and through a series process of double reactors (that is, the first reactor and the second reactor), not only can the blow molding material suitable for blow molding to form a hollow container be produced, but also the blow molding material can be significantly improved.
  • Environmental stress cracking resistance, mechanical properties and other qualities of plastic materials have shown that the tensile yield strength of the blow molding material is greater than 25MPa, the flexural modulus is greater than 1000MPa, the Charpy impact strength is greater than 10kJ/m 2 , and the melt strength is low.
  • the present invention uses a titanium-based catalyst, which has good reaction efficiency, low catalyst toxicity, and less dosage, which can meet the high cleaning requirements of hollow container products. It is applied to electronic-grade hollow containers with high cleanliness requirements, high-cleanliness chemical products, food, medicine, etc. Therefore, the hollow container blow molding material prepared by the present invention also has the advantages of high cleanliness and wide application range. In addition, the present invention also has the advantages of simple preparation process, mild reaction conditions and low energy consumption, which is of great significance for practical industrial application.
  • the preparation method of the hollow container blow molding material provided by the present invention includes: entering the first part of ethylene into the first reactor, and performing the first polymerization reaction in the presence of a titanium catalyst and hydrogen to form a melt index of 100g/10min to 200g/10min.
  • melt index of polyethylene refers to the melt mass flow rate of polyethylene measured under the conditions of 190°C ⁇ 1°C temperature and 2.16kg load according to GB/T3682-2000 standard; then the first The material in the reactor is transferred to a second reactor, and a monomer raw material comprising a second part of ethylene is added to the second reactor; the material in the second reactor is subjected to a second polymerization reaction in the presence of hydrogen to produce Blow molding materials for hollow containers with a melt index of 1.0g/10min to 2.0g/10min; among them, the melt index of blow molding materials for hollow containers refers to the temperature of 190°C ⁇ 1°C and a load of 5kg according to the GB/T3682-2000 standard. Melt mass flow rate of blow molding materials for hollow containers measured under conditions.
  • the melt index of polyethylene generated in the first reactor is 100g/10min, 110g/10min, 120g/10min, 130g/10min, 140g/10min, 150g/10min, 160g/10min, 170g/10min, 180g /10min, 190g/10min, 200g/10min or any two of them;
  • the melt index of hollow container blow molding material is 1.0g/10min, 1.1g/10min, 1.2g/10min, 1.3g/10min, 1.4 g/10min, 1.5g/10min, 1.6g/10min, 1.7g/10min, 1.8g/10min, 1.9g/10min, 2.0g/10min or any combination thereof.
  • the first part of ethylene produces polyethylene with a melt index of 100g/10min-200g/10min (referred to as the first polymer), and at the same time, the titanium-based catalyst may be partially lost Therefore, the material in the first reactor contains polyethylene, possibly unreacted ethylene, undeactivated titanium-based catalysts, and possibly partially deactivated titanium-based catalysts, etc., all of which are transferred
  • the monomer in the second reactor is subjected to a second polymerization reaction in the presence of the titanium-based catalyst from the first reactor, and the second polymer produced is combined with the first polymer from the first reactor.
  • a polymer is compounded to produce a hollow container blow molding material.
  • the first polymer generated in the first reactor is in the form of particles (referred to as first polymer particles), and after it enters the second reactor with the material in the first reactor, the polymer produced in the second reactor
  • the second polymer is attached to the surface of the first polymer particle to form a particle-shaped hollow container blow molding material.
  • the second polymer makes the dispersion of the first polymer and the second polymer more uniform, and at the same time, the second polymer covers the first polymer, thereby improving the environmental stress cracking resistance and mechanical properties of the blow molding material.
  • which can be used as a special material for blow molding polyethylene for hollow containers, especially for blow molding polyethylene for small hollow containers.
  • the first polymer generated in the first reactor can be controlled to account for 48% to 52% of the mass of the hollow container blow molding material produced
  • the second polymer generated in the second reactor can be controlled to account for the total mass of the hollow container blow molding material. 48% to 52% of the mass of the obtained hollow container blow molding material, wherein the sum of the mass percentage of the first polymer in the hollow container blow molding material and the mass percentage of the second polymer in the hollow container blow molding material is basically 100%.
  • the mass percentages of the first polymer and the second polymer in the prepared hollow blow molding material can be controlled by adjusting the amount of the first part of ethylene and the second part of ethylene and other conditions.
  • the mass of the first portion of ethylene is 45% to 55% of the sum of the mass of the first portion of ethylene and the mass of the second portion of ethylene, such as 45%, 48%, 50%, 52%, 55% or any of them
  • the range of any combination of the two, correspondingly, the mass of the second part of ethylene is 45% to 55% of the sum of the mass of the first part of ethylene and the second part of ethylene, such as 45%, 48%, 50%, 52%, 55% % or a range consisting of any two of them.
  • the first part of ethylene in the first reactor can be reacted as completely as possible before entering the second reactor, and the monomers in the second reactor can be reacted as completely as possible before being discharged, and further purified to obtain Hollow container blow molding material.
  • the present invention can detect the degree of polymerization of monomers such as ethylene by conventional methods in the art, which is not particularly limited and will not be described in detail.
  • the material form in the first reactor is a mixture of solid, liquid (such as polymerization medium) and gas, wherein the solid is mainly solid particles such as the generated first polymer and titanium-based catalyst, and in some embodiments, also
  • the solid content (by mass) of the materials in the first reactor can be detected, and generally can enter the second reactor when the solid content reaches 20%-50%.
  • comonomers such as butene
  • the comonomer may especially be added in the second reactor, for example as monomer feed together with the second portion of ethylene.
  • the above-mentioned monomer raw materials also include butene, which may specifically be composed of the second part of ethylene and butene; wherein, the butene may include 1-butene, and the quality of the butene may be the first part of ethylene 0.01% to 0.30% of the sum of the mass of the second part of ethylene, such as 0.01%, 0.05%, 0.1%, 0.15%, 0.2%, 0.25%, 0.3%, or any two of them.
  • the prepared hollow container blow molding material may have a density of 0.950g/cm 3 to 0.955g/cm 3 , such as 0.950g/cm 3 , 0.951g/cm 3 , 0.952g/cm 3 , 0.953g/cm 3 , 0.954g/cm 3 , 0.955g/cm 3 or any combination thereof.
  • the first polymerization reaction and the second polymerization reaction are respectively carried out in the presence of hydrogen.
  • the greater the amount of hydrogen added in the reactor that is, the greater the partial pressure of hydrogen
  • the yield of polymers such as polyethylene The larger the melt index, the hydrogen partial pressure in the first reactor is greater than the hydrogen partial pressure in the second reactor, thus, the first polymer is first polymerized under a larger hydrogen partial pressure by the first reactor, Then, the second polymer is polymerized under the condition of a smaller partial pressure of hydrogen in a second reactor, so as to prepare a hollow container blow molding material containing the first polymer and the second polymer.
  • the amount of hydrogen added (hydrogen partial pressure) in the first reactor and the second reactor is not particularly limited, as long as the above-mentioned corresponding melt index polymers can be synthesized.
  • conditions such as the amount of hydrogen added (hydrogen partial pressure) in each reactor can be controlled to synthesize polymers with corresponding melt indices.
  • the molecular weight distribution of the hollow container blow molding material obtained is wide.
  • the molecular weight distribution width of the above hollow container blow molding material (that is, the ratio of the weight average molecular weight to the number average molecular weight) is 8-15, such as 8, 9, 10, 11, 12, 13, 14, 15 or any two of them.
  • the hollow container blow molding material with a wide molecular weight distribution can be obtained by adjusting the conditions such as the hydrogen content in each reactor.
  • the conditions of the first polymerization reaction are: the temperature is 75°C to 87°C (that is, the temperature of the first reactor is 75°C to 87°C), such as 75°C, 77°C, 80°C, 82°C, 85°C, 87°C or any combination thereof, the pressure is 0.2MPa ⁇ 0.5MPa (that is, the pressure of the first reactor is 0.2MPa ⁇ 0.5MPa), such as 0.2MPa, 0.25MPa, 0.3MPa, 0.35MPa , 0.4MPa, 0.42MPa, 0.45MPa, 0.48MPa, 0.5MPa or any two of them, the reaction conditions are mild, the energy consumption is low, and the environment resistance of the prepared hollow container blow molding material can be further optimized properties such as stress cracking resistance.
  • the conditions of the second polymerization reaction are: the temperature is 75°C to 87°C (that is, the temperature of the second reactor is 75°C to 87°C), such as 75°C, 77°C, 80°C, 82°C, 85°C, 87°C or any combination thereof, the pressure is 0.05MPa ⁇ 0.5MPa (that is, the pressure of the second reactor is 0.15MPa ⁇ 0.5MPa), such as 0.05MPa, 0.1MPa, 0.15MPa, 0.2MPa , 0.25MPa, 0.3MPa, 0.35MPa, 0.4MPa, 0.45MPa, 0.5MPa or any two of them, the reaction conditions are mild, the energy consumption is low, and the hollow container blow molding material can be further optimized Environmental stress cracking resistance and other properties.
  • the titanium-based catalyst used in the present invention may be the broadly distributed polyolefin catalyst disclosed in Chinese patent document CN103113499A, or the catalyst prepared according to the catalyst preparation method disclosed therein.
  • the blow molding material suitable for hollow containers can be prepared by using the above-mentioned titanium series catalyst combined with the double reactor series polymerization process of the present invention, and the blow molding material can be improved. Environmental stress cracking resistance and other properties.
  • the titanium-based catalyst includes a main catalyst and a co-catalyst, wherein the main catalyst is compounded by a magnesium compound, an aliphatic alcohol, an organosilicon compound, and a titanium halide, and the organosilicon compound includes tetraalkane with the following structure Oxysilane:
  • R 2 , R 3 , R 4 , and R 5 are each independently selected from C 1 -C 15 alkyl, C 3 -C 20 cycloalkyl or C 6 -C 30 aryl, R 2 , R 3 , R 4 , and R 5 may be the same or different, for example, three of them are the same, or two are the same, or all four are different from each other.
  • the carbon (C) number of the C 1 -C 15 alkyl group can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or any two of them; the carbon number of C 3 -C 20 cycloalkyl can be 3, 6, 8, 10, 12, 15, 18, 20 or any two of them,
  • the carbon number of the C 6 -C 30 aryl group may be 6, 12, 15, 18, 20, 24, 30 or any combination thereof.
  • the organosilicon compound includes triethoxyisopropoxysilane, diethoxyisopropoxy tert-butoxysilane, triisopropoxy tert-butoxysilane, diisopropoxy Di-tert-butoxysilane, diethoxycyclohexyl-tert-butoxysilane, diethoxyphenoxy-tert-butoxysilane, monoethoxydiisopropoxy-tert-butoxysilane or One or more mixtures of ethoxyisopropoxy tert-butoxycyclohexyloxysilane.
  • the addition of the above organosilicon compound is beneficial to catalyze the synthesis of blow molding materials with a wide molecular weight distribution.
  • the mass of the organosilicon compound is 1% to 20% of the mass of the main catalyst, such as 1%, 3%, 5%. , 7%, 10%, 12%, 15%, 18%, 20%, or any two of them.
  • the aforementioned fatty alcohols may include alcohols that are R 1OH at the same time, and R 1 is a C 1 -C 20 alkyl group, such as methyl, ethyl, propyl, butyl, octyl, etc.
  • the fatty alcohol includes at least one of methanol, ethanol, n-propanol, glycerin, n-butanol, and isooctyl alcohol.
  • the above-mentioned magnesium compound may include magnesium chloride and/or ethoxymagnesium, and the titanium halide includes titanium tetrachloride.
  • the main catalyst can be prepared according to a process comprising the following steps: mixing a magnesium compound, an aliphatic alcohol and a solvent, adding an organosilicon compound thereto, stirring at 50-150°C for 1h-5h, and then adding a titanium halide therein, Keep stirring at 10-150°C for 1h-4h, and after filtering, dry the obtained solid product to obtain the main catalyst.
  • the magnesium compound can be dispersed in the solvent first, after adding the fatty alcohol, maintain it at 50-150°C until it is completely dissolved (the maintenance time can generally be 1h-6h), and then maintain the temperature of the system at 50-150°C Under certain conditions, add organosilicon compound to it, stir for 1h to 4h, and then slowly add titanium halide to it while maintaining the system temperature at 10°C to 150°C under stirring conditions (for example, drop a solution containing titanium halide into the system) , the addition time of titanium halide can generally be controlled at 1h ⁇ 5h.
  • the solvent used includes an organic solvent, for example at least one of toluene, cyclohexane, chlorocyclohexane, chlorobenzene and n-hexane, preferably toluene.
  • the above cocatalysts include organoaluminum compounds with the general formula AlR' n X 3-n , where R' is hydrogen or C 1 -C 20 alkyl, X is halogen, and 1 ⁇ n ⁇ 3.
  • X is, for example, chlorine (Cl)
  • R' is, for example, a C 2 -C 10 alkyl group or a C 2 -C 8 alkyl group.
  • the cocatalyst includes triethylaluminum (AlEt 3 ), triisobutylaluminum (Al(iso-Bu) 3 ), tri-n-hexylaluminum (Al(nC 6 H 13 ) 3 ), tri-n- At least one of octylaluminum (Al(nC 8 H 17 ) 3 ) and diethylaluminum monochloride (AlEt 2 Cl).
  • the molar ratio of the co-catalyst to the titanium in the main catalyst is (1-500):1, such as 1:1, 5:1, 10:1, 30:1, 50:1, 100:1 , 150:1, 200:1, 250:1, 300:1, 350:1, 400:1, 450:1, 500:1 or any two of them.
  • a polymerization medium may also be added, and the polymerization medium includes, for example, hexane.
  • a continuous reaction device formed by connecting the first reactor and the second reactor in series can be adopted, so that the above-mentioned first polymerization reaction and the second polymerization reaction are continuous reactions, and the continuous reaction of the hollow container blow molding material is carried out. chemical production.
  • the main catalyst and co-catalyst can be added to the first reactor first, and then the first part of ethylene and hydrogen are added to it to carry out the first polymerization reaction, and the materials in the first reactor flow into the second reactor
  • the second reactor add the above-mentioned monomer raw materials and hydrogen to the second reactor at the same time to carry out the second polymerization reaction, dry the product output from the second reactor, remove the medium such as hexane, and remove the remaining
  • the catalyst that is, the hollow container blow molding material is prepared.
  • the hollow container blow molding material provided by the present invention is prepared according to the above-mentioned preparation method.
  • the hollow container blow molding material is in the form of particles (or particles), which include the first polymer, and the first polymer present on the surface of the first polymer.
  • the second polymer wherein, the mass content of the first polymer can be 48%-52%, and the balance is the second polymer.
  • the hollow container blow molding material has the following characteristics: the melt index is 1.0g/10min-2.0g/10min, the ratio of weight-average molecular weight to number-average molecular weight is 8-15, and the density is 0.950g/ cm3 ⁇ 0.955g/cm 3 , tensile yield strength greater than 25MPa, flexural modulus greater than 1000MPa, further greater than 1100MPa, Charpy impact strength greater than 10kJ/m 2 , melt strength not less than 22cN, environmental stress cracking resistance test results Not less than 168h.
  • the hollow container blow molding material has a wide molecular weight distribution, good environmental stress cracking resistance, high strength, high modulus and other mechanical properties, and can be used as a hollow container blow molding material, especially as a volume of 1 liter to 20 liters. Small hollow containers for blow molding materials.
  • the preparation method of the hollow container includes: using the above hollow container blow molding material, blow molding it to form a hollow container; or, preparing the hollow container blow molding material according to the above hollow container blow molding material; blowing the hollow container The plastic material is blown to form a hollow container.
  • the hollow container may include a small hollow container with a volume of 1 liter to 20 liters, such as 1 liter, 3 liters, 5 liters, 7 liters, 10 liters, 12 liters, 15 liters, 18 liters, 20 liters, or The range of any combination of the two.
  • the material performance testing process is as follows:
  • Tensile performance test with reference to the standard GB/T1040.2-2006, the electronic universal testing machine of Zwick/Roell Instrument Technology Co., Ltd. is used to measure the tensile performance.
  • Strength when the tensile speed is set to 50mm/min, the speed when measuring the tensile elastic modulus (ie flexural modulus) is set to 1mm/min, to ensure that the tested sample is horizontal to the axis of the machine, pre-stretched After stretching, install the adjusted digital (digital) extensometer to the middle of the sample and adjust it to minimize the deformation and damage of the sample;
  • Impact performance test refer to the standard GB/T1043.1-2008, use the pendulum impact testing machine produced by ZWICK company in Germany, and test the Charpy impact strength of the material in a constant temperature and humidity environment with a temperature of 26 ° C and a humidity of 50%. , during the test, lift the pendulum to the specified height, and place the sample to be tested so that the punching knife is facing the center of the notch of the sample;
  • the melt strength test device includes a single-screw extruder and a melt strength test unit. First, the material melt is extruded from the extruder at 200°C to obtain a melt bundle (spline) , pulled by two rollers with opposite moving directions installed on the balance beam, the rollers accelerate uniformly until the melt beam breaks, and the force when the melt beam breaks is defined as the melt strength, and the unit is centinewton (cN ).
  • a melt bundle spline
  • cN centinewton
  • the main catalyst used is prepared according to the preparation method of the main catalyst in Example 1 of Chinese patent document CN103113499A, and the co-catalyst is triethylaluminum.
  • hexane was used as the polymerization medium.
  • melt index of the polyethylene produced by the first reactor refers to the polyethylene melt index measured at a temperature of 190°C and a load of 2.16kg according to the GB/T3682-2000 standard.
  • Melt mass flow rate the melt index of the hollow container blow molding material produced by the second reactor refers to the melt quality of the hollow container blow molding material measured at a temperature of 190°C and a load of 5kg in accordance with GB/T3682-2000 flow rate.
  • a continuous reaction device with double reactors in series is adopted. Based on the total mass of the first part of ethylene and the second part of ethylene, the first part of ethylene and the second part of ethylene each account for 50 wt%.
  • the preparation process of hollow container blow molding materials As follows: Add the main catalyst and co-catalyst to the first reactor, add the first part of ethylene and hydrogen to it, carry out the first polymerization reaction under the conditions of 84°C and 0.48MPa, control the amount of hydrogen added, and generate a melt index of 100g/10min The polyethylene; the material in the first reactor flows into the second reactor, and at the same time, the monomer raw material and hydrogen composed of the second part of ethylene and a small amount of 1-butene are added to the second reactor, at 84 ° C, 0.48 Carry out the second polymerization reaction under the MPa condition, control the amount of hydrogen added, and make a hollow container blow molding material with a melt index of 1.0g/10min; wherein, the material output from the
  • a continuous reaction device with double reactors connected in series is adopted. Based on the total mass of the first part of ethylene and the second part of ethylene, the first part of ethylene accounts for 45 wt%, and the second part of ethylene accounts for 55 wt%.
  • the preparation process is as follows: add the main catalyst and co-catalyst to the first reactor, add the first part of ethylene and hydrogen to it, carry out the first polymerization reaction under the conditions of 84°C and 0.47MPa, control the amount of hydrogen added, and generate a melt index of 130g /10min of polyethylene; the material in the first reactor flows into the second reactor, and at the same time, the monomer raw material and hydrogen composed of the second part of ethylene and a small amount of 1-butene are added to the second reactor, at 84 ° C , 0.22MPa, carry out the second polymerization reaction, control the amount of hydrogen added, and make a hollow container blow molding material with a melt index of 1.2g/10min; wherein, the material output from the second reactor is dried to remove impurities such as hexane , and use steam to decompose and remove the residual catalyst, and obtain a hollow container blow molding material with a melt index of 1.2g/10min.
  • a continuous reaction device with double reactors connected in series is adopted. Based on the total mass of the first part of ethylene and the second part of ethylene, the first part of ethylene accounts for 48wt%, and the second part of ethylene accounts for 52wt%.
  • the preparation process is as follows: add the main catalyst and co-catalyst to the first reactor, add the first part of ethylene and hydrogen to it, carry out the first polymerization reaction at 84°C and 0.45MPa, control the amount of hydrogen added, and produce a melt index of 170g /10min of polyethylene; the material in the first reactor flows into the second reactor, and at the same time, the monomer raw material and hydrogen composed of the second part of ethylene and a small amount of 1-butene are added to the second reactor, at 84 ° C Carry out the second polymerization reaction under the condition of 0.22MPa, control the amount of hydrogen added, and make a hollow container blow molding material with a melt index of 1.9g/10min; wherein, the material output from the second reactor is dried to remove impurities such as hexane , and use steam to decompose and remove the residual catalyst, that is, to obtain a hollow container blow molding material with a melt index of 1.9 g/10 min.
  • a continuous reaction device with double reactors in series is adopted. Based on the total mass of the first part of ethylene and the second part of ethylene, the first part of ethylene and the second part of ethylene each account for 50 wt%.
  • the preparation process of hollow container blow molding materials As follows: add the main catalyst and co-catalyst to the first reactor, add the first part of ethylene and hydrogen to it, carry out the first polymerization reaction under the conditions of 84°C and 0.48MPa, control the amount of hydrogen added, and generate a melt index of 190g/10min polyethylene; the material in the first reactor flows into the second reactor, and at the same time, the monomer raw material and hydrogen composed of the second part of ethylene and a small amount of 1-butene are added to the second reactor, at 84 ° C, 0.22 Under the condition of MPa, carry out the second polymerization reaction, control the amount of hydrogen added, and make a hollow container blow molding material with a melt index of 1.5g/10min; wherein, the material output from the
  • a continuous reaction device with double reactors in series is adopted. Based on the total mass of the first part of ethylene and the second part of ethylene, the first part of ethylene and the second part of ethylene each account for 50 wt%.
  • the preparation process of hollow container blow molding materials As follows: add the main catalyst and co-catalyst to the first reactor, add the first part of ethylene and hydrogen to it, carry out the first polymerization reaction under the conditions of 80°C and 0.46MPa, control the amount of hydrogen added, and generate a melt index of 160g/10min polyethylene; the material in the first reactor flows into the second reactor, and at the same time, the monomer raw material and hydrogen composed of the second part of ethylene and a small amount of 1-butene are added to the second reactor, at 85 ° C, 0.18 Under the condition of MPa, carry out the second polymerization reaction, control the amount of hydrogen added, and make a hollow container blow molding material with a melt index of 1.1g/10min; wherein, the material output from the second reactor
  • a continuous reaction device with double reactors connected in series is adopted. Based on the total mass of the first part of ethylene and the second part of ethylene, the first part of ethylene accounts for 55 wt%, and the second part of ethylene accounts for 45 wt%.
  • the preparation process is as follows: add the main catalyst and co-catalyst to the first reactor, add the first part of ethylene and hydrogen to it, carry out the first polymerization reaction under the conditions of 82°C and 0.45MPa, control the amount of hydrogen added, and generate a melt index of 160g /10min of polyethylene; the material in the first reactor flows into the second reactor, and at the same time, the monomer raw material and hydrogen composed of the second part of ethylene and a small amount of 1-butene are added to the second reactor, at 80 ° C , 0.25MPa, carry out the second polymerization reaction, control the amount of hydrogen added, and make a hollow container blow molding material with a melt index of 1.5g/10min; wherein, the material output from the second reactor is dried to remove impurities such as hexane , and use steam to decompose and remove the residual catalyst, that is, to obtain a hollow container blow molding material with a melt index of 1.5g/10min.
  • the carrier of the Cr-based catalysts is porous silica gel, the average particle size of the porous silica gel is 40Um, the bulk density is 0.26g/cm 3 , and the catalyst activation temperature is 600°C;
  • the co-catalyst is The consumption of triethylaluminum, Cr series catalyst and cocatalyst satisfies: in the catalyst that the two forms, the molar ratio of aluminum and chromium is 1.5:1;
  • a single-reactor gas-phase fluidized bed device is used.
  • the reaction pressure in the gas-phase fluidized bed is 2.0MPa
  • the partial pressure of ethylene is 1.0MPa
  • the reaction temperature is 95°C.
  • hydrogen is added, and the amount of hydrogen added is controlled. Adjust the molecular weight of the synthesized polyethylene; during the polymerization process, hexene and ethylene are used as synthetic monomers.
  • the molar ratio of hexene and ethylene is controlled to be 0.003:1; after the polymerization reaction is completed, steam Decompose and remove the residual catalyst in the polyethylene product output from the reactor to obtain a polyethylene material with a melt index of 1.5g/10min.
  • the melt index refers to the conditions in accordance with GB/T3682-2000 at a temperature of 190°C and a load of 5kg The melt mass flow rate of the polyethylene material measured below.
  • comparative example 2 The difference between comparative example 2 and comparative example 1 is: (1) in the catalyst used, the consumption of Cr series catalyst and cocatalyst meets: the molar ratio of aluminum, chromium is 1.5:1;
  • Butene is used to replace hexene (that is, butene and ethylene are used as synthetic monomers), and the molar ratio of butene to ethylene is 0.005:1;
  • a continuous reaction device with double reactors in series is adopted. Based on the total mass of the first part of ethylene and the second part of ethylene, the first part of ethylene and the second part of ethylene each account for 50 wt%.
  • the preparation process of the polyethylene material is as follows: the main catalyst and the auxiliary Add the catalyst to the first reactor, add the first part of ethylene and hydrogen to it, carry out the first polymerization reaction under the conditions of 85°C and 0.46MPa, control the amount of hydrogen added, and generate polyethylene with a melt index of 110g/10min; the first reaction
  • the material in the reactor flows into the second reactor, and at the same time, the monomer raw material composed of the second part of ethylene and a small amount of 1-butene and hydrogen are added to the second reactor, and the second polymerization is carried out at 85 ° C and 0.18 MPa.
  • Reaction control the amount of hydrogen added, and make a polyethylene material with a melt index of 1.5g/10min; wherein, the material output from the second reactor is dried to remove impurities such as hexane, and the residual catalyst is removed by steam decomposition to obtain Polyethylene material with a melt index of 1.5g/10min.
  • a continuous reaction device with double reactors in series is adopted. Based on the total mass of the first part of ethylene and the second part of ethylene, the first part of ethylene and the second part of ethylene each account for 50 wt%.
  • the preparation process of the polyethylene material is as follows: the main catalyst and the auxiliary Add the catalyst to the first reactor, add the first part of ethylene and hydrogen to it, carry out the first polymerization reaction under the conditions of 85°C and 0.46MPa, control the amount of hydrogen added, and generate polyethylene with a melt index of 115g/10min; the first reaction
  • the material in the reactor flows into the second reactor, and at the same time, the monomer raw material composed of the second part of ethylene and a small amount of 1-butene and hydrogen are added to the second reactor, and the second polymerization is carried out at 85 ° C and 0.18 MPa.
  • BCH titanium series catalyst purchased from Sinopec as the main catalyst, and the cocatalyst is the same as Example 1;
  • a continuous reaction device with double reactors in series is adopted. Based on the total mass of the first part of ethylene and the second part of ethylene, the first part of ethylene and the second part of ethylene each account for 50 wt%.
  • the preparation process of the polyethylene material is as follows: the main catalyst and the auxiliary Add the catalyst to the first reactor, add the first part of ethylene and hydrogen to it, carry out the first polymerization reaction at 85°C and 0.46MPa, control the amount of hydrogen added, and generate polyethylene with a melt index of 165g/10min; the first reaction
  • the material in the reactor flows into the second reactor, and at the same time, the monomer raw material composed of the second part of ethylene and a small amount of 1-butene and hydrogen are added to the second reactor, and the second polymerization is carried out at 85 ° C and 0.18 MPa.
  • BCE titanium series catalyst purchased from Sinopec as the main catalyst, and the cocatalyst is the same as Example 1;
  • a continuous reaction device with double reactors in series is adopted. Based on the total mass of the first part of ethylene and the second part of ethylene, the first part of ethylene and the second part of ethylene each account for 50 wt%.
  • the preparation process of the polyethylene material is as follows: the main catalyst and the auxiliary Add the catalyst to the first reactor, add the first part of ethylene and hydrogen to it, carry out the first polymerization reaction under the conditions of 85°C and 0.46MPa, control the amount of hydrogen added, and generate polyethylene with a melt index of 118g/10min; the first reaction
  • the material in the reactor flows into the second reactor, and at the same time, the monomer raw material composed of the second part of ethylene and a small amount of 1-butene and hydrogen are added to the second reactor, and the second polymerization is carried out at 85 ° C and 0.18 MPa.
  • Reaction control the amount of hydrogen added, and make a polyethylene material with a melt index of 1.2g/10min; wherein, the material output from the second reactor is dried to remove impurities such as hexane, and the residual catalyst is removed by steam decomposition to obtain Polyethylene material with a melt index of 1.2 g/10 min.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明提供一种中空容器吹塑材料及其制备方法和应用,所述制备方法包括使第一部分乙烯进入第一反应器中,在钛系催化剂和氢气存在下进行第一聚合反应,生成熔融指数为100g/10min~200g/10min的聚乙烯;使第一反应器中的物料转移至第二反应器中,并向第二反应器中加入包含第二部分乙烯的单体原料,使第二反应器中的物料在氢气存在下进行第二聚合反应,制成熔融指数为1.0 g/10min~2.0g/10min的中空容器吹塑材料。本发明能够提高中空容器吹塑材料的耐环境应力开裂性等性能。

Description

中空容器吹塑材料及其制备方法和应用 技术领域
本发明涉及高分子材料领域,具体涉及一种中空容器吹塑材料及其制备方法和应用。
背景技术
高密度聚乙烯(HDPE)密度大,刚性和韧性平衡性好,具有优良的耐化学药品腐蚀性、不吸湿、以及良好的防水性等性能,可用于生产大型集装容器、以及200L桶、汽车油箱、果奶瓶等各种容积的中空容器制品。
传统聚乙烯类材料的生产工艺中,常用铬(Cr)系催化剂催化合成小中空容器专用料,由于其催化合成的树脂中含有一定量相对分子量较高的组分,能够在一定程度上满足小型中空容器的加工要求和力学性能要求,例如,专利文献CN103554631A公开了一种小中空容器吹塑材料及其制备方法,在稀释剂始终处于循环状态下,将原料乙烯、1-己烯置于反应容器中,并加入经活化处理的催化剂,调节反应容器内的反应温度为99~101℃,至反应产物的熔体流动速率为0.45~0.55g/10min和密度为0.953~0.955kg/m 3时,制得乙烯己烯共聚聚乙烯基础树脂,再将该基础树脂与抗氧剂和助抗氧剂混匀后,加入混炼机挤出颗粒至冷却水中,获得颗粒状聚乙烯产品耐腐蚀小中空吹塑材料,其所用的催化剂为969MPI-788-RCP3,属于Cr系催化剂。然而,Cr系催化剂的活性较低,使得合成效率低,且会造成最终产品中的灰份含量高,加之Cr系催化剂具有较强的毒性和致癌性等性质,使得制成的小中空容器很难满足食品、医药、以及高清洁度化工产品的要求。
另有采用钛(Ti)系催化剂催化合成聚烯烃材料的工艺,Ti系催化剂的活性高于Cr系催化剂的活性,可以使得聚合材料中的催化剂组分减少,更加清洁,且Ti系催化剂没有Cr系催化剂的致癌性等有害性质,所制得的聚合材料可应用于食品包装等方面,因此,采用Ti系催化剂的Ti系催化合成工艺逐渐成为合成聚烯烃材料的发展趋势,例如,专利文献CN103113499A公开了一种宽分布聚烯烃催化剂及其制备方法和应用,该 催化剂包括主催化剂和助催化剂,其中的主催化剂由载体、过渡金属卤化物、有机醇化合物和硅氧烷给电子体组成,过渡金属卤化物是在催化剂制备过程中,由钛酸酯与卤化硅反应生成,该催化剂属于Ti系催化剂,用于乙烯聚合或乙烯与共聚单体的共聚合,制得宽分布聚烯烃材料。
虽然目前已有关于聚乙烯材料及其制备方法的研究和报道,但作为中空容器吹塑材料,对聚乙烯材料的耐环境应力开裂性等性能具有较高的要求,优化中空容器吹塑材料的制备工艺,提高中空容器吹塑材料的耐环境应力开裂性等性能,仍然是本领域技术人员所面临的重要课题。
发明内容
本发明提供一种中空容器吹塑材料及其制备方法和应用,能够提高中空容器吹塑材料的耐环境应力开裂性等性能。
本发明的一方面,提供一种中空容器吹塑材料的制备方法,包括:使第一部分乙烯进入第一反应器中,在钛系催化剂和氢气存在下进行第一聚合反应,生成熔融指数为100g/10min~200g/10min的聚乙烯;其中,所述聚乙烯的熔融指数是指按照GB/T3682-2000标准在190℃±1℃温度、2.16kg负荷的条件下测定的所述聚乙烯的熔体质量流动速率;然后使第一反应器中的物料转移至第二反应器中,并向第二反应器中加入包含第二部分乙烯的单体原料,使第二反应器中的物料在氢气存在下进行第二聚合反应,制成熔融指数为1.0g/10min~2.0g/10min的中空容器吹塑材料;其中,所述中空容器吹塑材料的熔融指数是指按照GB/T3682-2000标准在190℃±1℃温度、5kg负荷的条件下测定的所述中空容器吹塑材料的熔体质量流动速率。
根据本发明的一实施方式,所述中空容器吹塑材料的重均分子量与数均分子量之比为8~15;和/或,所述中空容器吹塑材料的密度为0.950g/cm 3~0.955g/cm 3
根据本发明的一实施方式,所述第一部分乙烯的质量占所述第一部分乙烯与所述第二部分乙烯的质量之和的45%~55%。
根据本发明的一实施方式,所述单体原料还包含丁烯。
根据本发明的一实施方式,所述第一聚合反应的条件为:温度为75℃~87℃,压力为0.2MPa~0.5MPa;和/或,所述第二聚合反应的条件为: 温度为75℃~87℃,压力为0.05MPa~0.3MPa。
根据本发明的一实施方式,所述钛系催化剂包括主催化剂和助催化剂,其中,所述主催化剂由镁化合物、脂肪醇、有机硅化合物、卤化钛复配而成,所述有机硅化合物包括如下式1结构的四烷氧基硅烷:
Figure PCTCN2022136460-appb-000001
其中,R 2、R 3、R 4、R 5各自独立地选自C 1-C 15的烷基、C 3-C 20的环烷基或C 6-C 30的芳基;
所述助催化剂包括通式为AlR' nX 3-n的有机铝化合物,所述通式中,R'为氢或C 1~C 20的烷基,X为卤素,1<n≤3。
根据本发明的一实施方式,所述有机硅化合物的质量为所述主催化剂的质量的1%~20%;和/或,所述助催化剂包括三乙基铝(AlEt 3)、三异丁基铝(Al(iso-Bu) 3)、三正己基铝(Al(n-C 6H 13) 3)、三正辛基铝(Al(n-C 8H 17) 3)、一氯二乙基铝(AlEt 2Cl)中的至少一种。
根据本发明的一实施方式,所述助催化剂与所述主催化剂中的钛的摩尔比为(1~500):1。
本发明的另一方面,提供一种中空容器吹塑材料,按照上述制备方法制得。
本发明的再一方面,提供一种中空容器的制备方法,包括:采用上述中空容器吹塑材料,将其吹塑形成中空容器;或者,按照上述制备方法制得中空容器吹塑材料,将所制得的中空容器吹塑材料吹塑形成中空容器。
本发明中,采用钛系催化剂,通过双反应器(即第一反应器和第二反应器)串联工艺,不仅能够制得适用于吹塑形成中空容器的吹塑材料,而且可显著提高该吹塑材料的耐环境应力开裂性能、力学性能等品质,研究显示,该吹塑材料的拉伸屈服强度大于25MPa,弯曲模量大于1000MPa,简支梁冲击强度大于10kJ/m 2,熔体强度不小于22cN,耐环境应力开裂性能测试结果不低于168h;同时,本发明采用钛系催化剂,具有良好的反应效率,且催化剂毒性低、用量少,可以满足中空容器制品的高清洁要求,可应用于高清洁度要求的电子级中空容器、高清洁度化工产品、以及食品、医药 等方面,由此,本发明制得的中空容器吹塑材料还具有清洁度高、适用范围广等优点,此外,本发明还具有制备过程简单、反应条件温和、能耗低等优点,对于实际产业化应用具有重要意义。
具体实施方式
为使本领域技术人员更好地理解本发明的方案,下面对本发明作进一步地详细说明。以下所列举具体实施方式只是对本发明的原理和特征进行描述,所举实例仅用于解释本发明,并非限定本发明的范围。基于本发明实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。在本发明的描述中,“第一”、“第二”等术语仅用于描述目的,例如区分各成分,以更清楚说明/解释技术方案,而不能理解为指示或暗示所指示的技术特征的数量或具有实质性意义的顺序等含义。
本发明提供的中空容器吹塑材料的制备方法,包括:使第一部分乙烯进入第一反应器中,在钛系催化剂和氢气存在下进行第一聚合反应,生成熔融指数为100g/10min~200g/10min的聚乙烯;其中,聚乙烯的熔融指数是指按照GB/T3682-2000标准在190℃±1℃温度、2.16kg负荷的条件下测定的聚乙烯的熔体质量流动速率;然后使第一反应器中的物料转移至第二反应器中,并向第二反应器中加入包含第二部分乙烯的单体原料;使第二反应器中的物料在氢气存在下进行第二聚合反应,制成熔融指数为1.0g/10min~2.0g/10min的中空容器吹塑材料;其中,中空容器吹塑材料的熔融指数是指按照GB/T3682-2000标准在190℃±1℃温度、5kg负荷的条件下测定的中空容器吹塑材料的熔体质量流动速率。
示例性地,第一反应器中生成的聚乙烯的熔融指数为100g/10min、110g/10min、120g/10min、130g/10min、140g/10min、150g/10min、160g/10min、170g/10min、180g/10min、190g/10min、200g/10min或其中的任意两者组成的范围;中空容器吹塑材料的熔融指数为1.0g/10min、1.1g/10min、1.2g/10min、1.3g/10min、1.4g/10min、1.5g/10min、1.6g/10min、1.7g/10min、1.8g/10min、1.9g/10min、2.0g/10min或其中的任意两者组成的范围。
具体地,第一反应器中,经第一聚合反应后,第一部分乙烯生成熔融指 数为100g/10min~200g/10min的聚乙烯(记为第一聚合物),同时钛系催化剂可能会部分失活,由此,第一反应器中的物料存在反应生成的聚乙烯、可能未反应完的乙烯、以及未失活的钛系催化剂和可能存在的部分失活钛系催化剂等物质,其全部转移至第二反应器中,第二反应器中的单体在来自于第一反应器的钛系催化剂的存在下进行第二聚合反应,生成的第二聚合物与来自于第一反应器的第一聚合物复合,从而制得中空容器吹塑材料。
一般情况下,第一反应器中生成的第一聚合物为粒子状(记为第一聚合物粒子),其随第一反应器中的物料进入第二反应器后,第二反应器中生成的第二聚合物附着在第一聚合物粒子的表面,形成粒子状的中空容器吹塑材料。通过上述制备过程,从分子级别使不同熔融指数的第一聚合物和第二聚合物复合,使得吹塑材料粒子中,每一个粒子基本均含有第一聚合物和存在于第一聚合物表面的第二聚合物,使第一聚合物和第二聚合物分散更为均匀,同时第二聚合物包覆第一聚合物,由此可以提高吹塑材料的耐环境应力开裂性能、力学性能等品质,其可作为中空容器吹塑聚乙烯专用料,尤其可作为小中空容器吹塑聚乙烯专用料。
一般情况下,可以控制第一反应器中生成的第一聚合物占所制得的中空容器吹塑材料的质量的48%~52%,控制第二反应器中生成的第二聚合物占所制得的中空容器吹塑材料的质量的48%~52%,其中,第一聚合物占中空容器吹塑材料的质量百分比与第二聚合物占中空容器吹塑材料的质量百分比之和基本为100%。具体实施时,可以通过调控第一部分乙烯、第二部分乙烯的用量等条件,控制第一聚合物和第二聚合物占所制得的中空吹塑材料的质量百分比。
在一些优选实施例中,第一部分乙烯的质量为第一部分乙烯与第二部分乙烯的质量之和的45%~55%,例如45%、48%、50%、52%、55%或其中的任意两者组成的范围,相应地,第二部分乙烯的质量为第一部分乙烯与第二部分乙烯的质量之和的45%~55%,例如45%、48%、50%、52%、55%或其中的任意两者组成的范围。
具体实施时,可以使第一反应器中的第一部分乙烯尽可能反应完全后再进入第二反应器中,使第二反应器中的单体尽可能反应完全后再出料,进一步纯化,得到中空容器吹塑材料。本发明可通过本领域常规方法检测乙烯等 单体的聚合反应程度,对此不作特别限制,不再赘述。
此外,第一反应器中的物料形态为固体、液体(如聚合介质)和气体的混合物,其中的固体主要为生成的第一聚合物和钛系催化剂等固体颗粒,在一些实施例中,还可以检测第一反应器的物料中的固含量(以质量计),一般可在其固含量达到20%~50%时进入第二反应器中。
本发明中,还可以在上述制备体系中引入其他小分子烯烃作为共聚单体,该共聚单体例如包括丁烯,利于调控所制得的中空容器吹塑材料的密度等特性,进一步优化其使用性能。此外,该共聚单体尤其可以在第二反应器中加入,例如随着第二部分乙烯一起作为单体原料加入第二反应器中。在一些优选实施例中,上述单体原料还包含丁烯,其具体可以是由第二部分乙烯和丁烯组成;其中,丁烯可以包括1-丁烯,丁烯的质量可以为第一部分乙烯和第二部分乙烯的质量之和的0.01%~0.30%,例如0.01%、0.05%、0.1%、0.15%、0.2%、0.25%、0.3%或其中的任意两者组成的范围。
在一些实施例中,所制得的中空容器吹塑材料的密度可以为0.950g/cm 3~0.955g/cm 3,例如0.950g/cm 3、0.951g/cm 3、0.952g/cm 3、0.953g/cm 3、0.954g/cm 3、0.955g/cm 3或其中的任意两者组成的范围。
本发明中,第一聚合反应和第二聚合反应分别在氢气存在下进行,一般情况下,反应器中氢气的加入量越大(即氢气分压越大),合成的聚乙烯等聚合物的熔融指数越大,第一反应器中的氢气分压大于第二反应器中的氢气分压,由此,先通过第一反应器在较大的氢气分压条件下聚合生成第一聚合物,再通过第二反应器在较小的氢气分压条件下聚合生成第二聚合物,从而制得含有第一聚合物和第二聚合物的中空容器吹塑材料。
本发明中,对第一反应器、第二反应器中的氢气加入量(氢气分压)不作特别限制,只要能够合成上述相应熔融指数的聚合物即可。具体实施时,可以通过调控各反应器中氢气的加入量(氢气分压)等条件控制合成相应熔融指数的聚合物,例如,可以检测各反应器生成的聚合物的熔融指数,根据检测结果调节反应器中的氢气分压等条件,以满足合成所需熔融指数的聚合物。
此外,通过上述制备过程,所制得的中空容器吹塑材料的分子量分布宽,在一些实施例中,上述中空容器吹塑材料的分子量分布宽度(即重均分子量 与数均分子量之比)为8~15,例如8、9、10、11、12、13、14、15或其中的任意两者组成的范围。具体实施时,可以通过调控各反应器中的氢气含量等条件,获得宽分子量分布的中空容器吹塑材料。
在一些实施例中,第一聚合反应的条件为:温度为75℃~87℃(即第一反应器的温度为75℃~87℃),例如75℃、77℃、80℃、82℃、85℃、87℃或其中的任意两者组成的范围,压力为0.2MPa~0.5MPa(即第一反应器的压力为0.2MPa~0.5MPa),例如0.2MPa、0.25MPa、0.3MPa、0.35MPa、0.4MPa、0.42MPa、0.45MPa、0.48MPa、0.5MPa或其中的任意两者组成的范围,该反应条件温和,能耗低,且能够进一步优化所制得的中空容器吹塑材料的耐环境应力开裂性等性能。
在一些实施例中,第二聚合反应的条件为:温度为75℃~87℃(即第二反应器的温度为75℃~87℃),例如75℃、77℃、80℃、82℃、85℃、87℃或其中的任意两者组成的范围,压力为0.05MPa~0.5MPa(即第二反应器的压力为0.15MPa~0.5MPa),例如0.05MPa、0.1MPa、0.15MPa、0.2MPa、0.25MPa、0.3MPa、0.35MPa、0.4MPa、0.45MPa、0.5MPa或其中的任意两者组成的范围,该反应条件温和,能耗低,且能够进一步优化所制得的中空容器吹塑材料的耐环境应力开裂性等性能。
本发明所用的钛系催化剂可以是中国专利文献CN103113499A所公开的宽分布聚烯烃催化剂,或者按照其所公开的催化剂的制备方法制得的催化剂。根据本发明的研究,采用上述钛系催化剂,结合本发明的於浆法双反应器串联聚合过程,可制得适用于中空容器的吹塑材料,且可提高所制得的吹塑材料的耐环境应力开裂性等性能。
在一些优选实施例中,钛系催化剂包括主催化剂和助催化剂,其中,主催化剂由镁化合物、脂肪醇、有机硅化合物、卤化钛复配而成,有机硅化合物包括如下式1结构的四烷氧基硅烷:
Figure PCTCN2022136460-appb-000002
其中,R 2、R 3、R 4、R 5各自独立地选自C 1-C 15的烷基、C 3-C 20的环烷基或C 6-C 30的芳基,R 2、R 3、R 4、R 5可以相同或不同,例如其中的三个相 同、或两个相同、或四个都互不相同。
示例性地,C 1-C 15的烷基的碳(C)个数可以是1、2、3、4、5、6、7、8、9、10、11、12、13、14、15或其中的任意两者组成的范围;C 3-C 20的环烷基的碳个数可以是3、6、8、10、12、15、18、20或其中的任意两者组成的范围,C 6-C 30的芳基的碳个数可以是6、12、15、18、20、24、30或其中的任意两者组成的范围。在一些具体实施例中,有机硅化合物包括三乙氧基异丙氧基硅烷、二乙氧基异丙氧基叔丁氧基硅烷、三异丙氧基叔丁氧基硅烷、二异丙氧基二叔丁氧基硅烷、二乙氧基环己氧基叔丁氧基硅烷、二乙氧基苯氧基叔丁氧基硅烷、一乙氧基二异丙氧基叔丁氧基硅烷或乙氧基异丙氧基叔丁氧基环己氧基硅烷的一种或几种的混合。优选三乙氧基异丙氧基硅烷、二乙氧基异丙氧基叔丁氧基硅烷、三异丙氧基叔丁氧基硅烷、二异丙氧基二叔丁氧基硅烷、二乙氧基环己氧基叔丁氧基硅烷或一乙氧基二异丙氧基叔丁氧基硅烷中的至少一种。
上述有机硅化合物的加入,利于催化合成宽分子量分布的吹塑材料,在一些实施例中,有机硅化合物的质量为主催化剂的质量的1%~20%,例如1%、3%、5%、7%、10%、12%、15%、18%、20%或其中的任意两者组成的范围。
上述脂肪醇可以包括同时为R 1OH的醇,R 1为C 1-C 20的烷基,例如为甲基、乙基、丙基、丁基、辛基等。在一些实施例中,脂肪醇包括甲醇、乙醇、正丙醇、丙三醇、正丁醇、异辛醇中的至少一种。此外,上述镁化合物可以包括氯化镁和/或乙氧基镁,卤化钛包括四氯化钛。
具体地,主催化剂可以按照包括如下步骤的过程制得:将镁化合物、脂肪醇和溶剂混合,向其中加入有机硅化合物,在50~150℃下搅拌1h~5h后,再向其中加入卤化钛,维持10~150℃搅拌1h~4h,经过滤后,将得到的固体产物进行干燥,得到主催化剂。
具体实施时,可以先将镁化合物分散在溶剂中,加入脂肪醇后,在50~150℃维持至完全溶解(维持时间一般可以为1h~6h),然后在维持体系温度为50~150℃的条件下,向其中加入有机硅化合物,搅拌1h~4h,再在维持体系温度为10℃~150℃及搅拌条件下,向其中缓慢加入卤化钛(例如向体系中滴加含有卤化钛的溶液),卤化钛的加入时间一般可以控制为1h~5h, 加入完毕后,继续维持10~150℃在搅拌条件下反应1h~4h,然后停止反应,静置沉淀,经过滤后,将得到的固体产物进行干燥,得到主催化剂。其中,所用溶剂包括有机溶剂,例如包括甲苯、环己烷、氯代环己烷、氯苯和正己烷中的至少一种,优选包括甲苯。
此外,上述助催化剂包括通式为AlR' nX 3-n的有机铝化合物,通式中,R'为氢或C 1~C 20的烷基,X为卤素,1<n≤3。其中,X例如为氯(Cl),R'例如为C 2~C 10的烷基或C 2~C 8的烷基。在一些实施例中,助催化剂包括三乙基铝(AlEt 3)、三异丁基铝(Al(iso-Bu) 3)、三正己基铝(Al(n-C 6H 13) 3)、三正辛基铝(Al(n-C 8H 17) 3)、一氯二乙基铝(AlEt 2Cl)中的至少一种。
在一些实施例中,助催化剂与主催化剂中的钛的摩尔比为(1~500):1,例如1:1、5:1、10:1、30:1、50:1、100:1、150:1、200:1、250:1、300:1、350:1、400:1、450:1、500:1或其中的任意两个比值组成的范围。
此外,在上述第一反应器和第二反应器中,还可以加入聚合介质,该聚合介质例如包括己烷。
本发明中,一般可以采用由第一反应器和第二反应器串联形成的连续化反应装置,以使上述第一聚合反应和第二聚合反应为连续化反应,进行中空容器吹塑材料的连续化生产。具体实施时,可以先将主催化剂和助催化剂加入到第一反应器中,然后再向其中加入第一部分乙烯和氢气,以进行第一聚合反应,第一反应器中的物料流入第二反应器中,同时向第二反应器中加入上述单体原料和氢气,以进行第二聚合反应,对第二反应器输出的产物进行干燥,除去己烷等介质,并通过蒸汽分解等方式除去其中残留的催化剂,即制得中空容器吹塑材料。
本发明提供的中空容器吹塑材料按照上述制备方法制得,具体来说,该中空容器吹塑材料为粒子(或称颗粒)状,其包括第一聚合物、以及存在于第一聚合物表面的第二聚合物,其中,第一聚合物的质量含量可以为48%~52%,余量为第二聚合物。
根据本发明的研究,该中空容器吹塑材料具有如下特征:熔融指数为1.0g/10min~2.0g/10min,重均分子量与数均分子量之比为8~15,密度为0.950g/cm 3~0.955g/cm 3,拉伸屈服强度大于25MPa,弯曲模量大于1000MPa,进 一步可大于1100MPa,简支梁冲击强度大于10kJ/m 2,熔体强度不小于22cN,耐环境应力开裂性能测试结果不低于168h。该中空容器吹塑材料分子量分布宽,并具有良好的耐环境应力开裂性能,同时具有高强度、高模量等力学性能,可作为中空容器吹塑材料,尤其可作为容积为1升~20升的小中空容器吹塑材料。
本发明提供的中空容器的制备方法括:采用上述中空容器吹塑材料,将其吹塑形成中空容器;或者,按照上述中空容器吹塑材料制备方法制得中空容器吹塑材料;将中空容器吹塑材料吹塑形成中空容器。其中,中空容器可以包括容积为1升~20升的小中空容器,其容积例如为1升、3升、5升、7升、10升、12升、15升、18升、20升或其中的任意两者组成的范围。
本发明中,如无特别说明,材料性能测试过程如下:
(1)参考标准GB/T3682-2000测定材料熔融指数;
(2)参考标准GB/T 1033-1986测定材料密度;
(3)参照标准GB/T 1842-2008测定耐环境应力开裂性能;
(4)材料分子量分布测试:使用西班牙Polymer char公司的全自动高温凝胶色谱仪,该色谱仪配置有3根mix-edB色谱柱,测试时,取5mg~10mg样品置于盛有玻璃瓶内,设定测试温度为160℃,所用溶剂为1,2,4-三氯苯,为防止降解,在1,2,4-三氯苯溶剂中加入0.05%抗氧剂1010,测试时流速设置为1mL/min;
(5)拉伸性能测试:参考标准GB/T1040.2-2006,采用Zwick/Roell仪器科技有限公司的电子万能试验机测定拉伸性能,其中,测定试样拉伸屈服应力(即拉伸屈服强度)时的拉伸速度设定为50mm/min,测定拉伸弹性模量(即弯曲模量)时的速度设定为1mm/min,保证被测试样与机器的轴线成水平状,预拉伸后将调整好的数字(digital)引伸计安装到试样的中部并调整,使试样产生的变形和损坏最少;
(6)冲击性能测试:参考标准GB/T1043.1-2008,使用德国ZWICK公司生产的摆锤冲击试验机,在温度26℃、湿度50%的恒温恒湿环境下测试材料简支梁冲击强度,测试过程中,将摆锤抬到指定的高度,摆正待测试样,使冲刀正对着试样的缺口中心;
(7)熔体强度测试:熔体强度测试的装置包括单螺杆挤出机和熔体强度测试单元,首先在200℃将材料熔体从挤出机挤出,得到熔体束(样条),用装在平衡梁上的两个运动方向相反的辊子牵引,辊子均匀加速运动,直到熔体束断裂,将熔体束断裂时所受的力定义为熔体强度,单位为厘牛(cN)。
为使本发明的目的、技术方案和优点更加清楚,下面将结合具体实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下实施例中,所用主催化剂按照中国专利文献CN103113499A实施例1中的主催化剂的制备方法制得,助催化剂为三乙基铝。以下实施例及对比例3~6中,均采用己烷作为聚合介质。
以下实施例和对比例中,如无特别说明,第一反应器生成的聚乙烯的熔融指数是指按照GB/T3682-2000标准在190℃℃温度、2.16kg负荷的条件下测定的聚乙烯的熔体质量流动速率,第二反应器产生的中空容器吹塑材料的熔融指数是指按照GB/T3682-2000标准在190℃温度、5kg负荷的条件下测定的中空容器吹塑材料的熔体质量流动速率。
实施例1
本实施例中,采用双反应器串联的连续化反应装置,基于第一部分乙烯和第二部分乙烯的总质量,第一部分乙烯和第二部分乙烯各占50wt%,中空容器吹塑材料的制备过程如下:将主催化剂和助催化剂加入到第一反应器,向其中加入第一部分乙烯和氢气,在84℃、0.48MPa条件下进行第一聚合反应,控制氢气加入量,生成熔融指数为100g/10min的聚乙烯;第一反应器中的物料流入第二反应器中,同时向第二反应器中加入由第二部分乙烯和少量1-丁烯组成的单体原料和氢气,在84℃、0.48MPa条件下进行第二聚合反应,控制氢气加入量,制得熔融指数为1.0g/10min的中空容器吹塑材料;其中,将第二反应器输出的物料进行干燥,除去己烷等杂质,并用蒸气分解除去残留的催化剂,即得到熔融指数为1.0g/10min的中空容 器吹塑材料。
实施例2
本实施例中,采用双反应器串联的连续化反应装置,基于第一部分乙烯和第二部分乙烯的总质量,第一部分乙烯占45wt%、第二部分乙烯占55wt%,中空容器吹塑材料的制备过程如下:将主催化剂和助催化剂加入到第一反应器,向其中加入第一部分乙烯和氢气,在84℃、0.47MPa条件下进行第一聚合反应,控制氢气加入量,生成熔融指数为130g/10min的聚乙烯;第一反应器中的物料流入第二反应器中,同时向第二反应器中加入由第二部分乙烯和少量1-丁烯组成的单体原料和氢气,在84℃、0.22MPa条件下进行第二聚合反应,控制氢气加入量,制得熔融指数为1.2g/10min的中空容器吹塑材料;其中,将第二反应器输出的物料进行干燥,除去己烷等杂质,并用蒸气分解除去残留的催化剂,即得到熔融指数为1.2g/10min的中空容器吹塑材料。
实施例3
本实施例中,采用双反应器串联的连续化反应装置,基于第一部分乙烯和第二部分乙烯的总质量,第一部分乙烯占48wt%,第二部分乙烯占52wt%,中空容器吹塑材料的制备过程如下:将主催化剂和助催化剂加入到第一反应器,向其中加入第一部分乙烯和氢气,在84℃、0.45MPa条件下进行第一聚合反应,控制氢气加入量,生成熔融指数为170g/10min的聚乙烯;第一反应器中的物料流入第二反应器中,同时向第二反应器中加入由第二部分乙烯和少量1-丁烯组成的单体原料和氢气,在84℃、0.22MPa条件下进行第二聚合反应,控制氢气加入量,制得熔融指数为1.9g/10min的中空容器吹塑材料;其中,将第二反应器输出的物料进行干燥,除去己烷等杂质,并用蒸气分解除去残留的催化剂,即得到熔融指数为1.9g/10min的中空容器吹塑材料。
实施例4
本实施例中,采用双反应器串联的连续化反应装置,基于第一部分乙 烯和第二部分乙烯的总质量,第一部分乙烯和第二部分乙烯各占50wt%,中空容器吹塑材料的制备过程如下:将主催化剂和助催化剂加入到第一反应器,向其中加入第一部分乙烯和氢气,在84℃、0.48MPa条件下进行第一聚合反应,控制氢气加入量,生成熔融指数为190g/10min的聚乙烯;第一反应器中的物料流入第二反应器中,同时向第二反应器中加入由第二部分乙烯和少量1-丁烯组成的单体原料和氢气,在84℃、0.22MPa条件下进行第二聚合反应,控制氢气加入量,制得熔融指数为1.5g/10min的中空容器吹塑材料;其中,将第二反应器输出的物料进行干燥,除去己烷等杂质,并用蒸气分解除去残留的催化剂,即得到熔融指数为1.5g/10min的中空容器吹塑材料。
实施例5
本实施例中,采用双反应器串联的连续化反应装置,基于第一部分乙烯和第二部分乙烯的总质量,第一部分乙烯和第二部分乙烯各占50wt%,中空容器吹塑材料的制备过程如下:将主催化剂和助催化剂加入到第一反应器,向其中加入第一部分乙烯和氢气,在80℃、0.46MPa条件下进行第一聚合反应,控制氢气加入量,生成熔融指数为160g/10min的聚乙烯;第一反应器中的物料流入第二反应器中,同时向第二反应器中加入由第二部分乙烯和少量1-丁烯组成的单体原料和氢气,在85℃、0.18MPa条件下进行第二聚合反应,控制氢气加入量,制得熔融指数为1.1g/10min的中空容器吹塑材料;其中,将第二反应器输出的物料进行干燥,除去己烷等杂质,并用蒸气分解除去残留的催化剂,即得到熔融指数为1.1g/10min的中空容器吹塑材料。
实施例6
本实施例中,采用双反应器串联的连续化反应装置,基于第一部分乙烯和第二部分乙烯的总质量,第一部分乙烯占55wt%,第二部分乙烯占45wt%,中空容器吹塑材料的制备过程如下:将主催化剂和助催化剂加入到第一反应器,向其中加入第一部分乙烯和氢气,在82℃、0.45MPa条件下进行第一聚合反应,控制氢气加入量,生成熔融指数为160g/10min的聚 乙烯;第一反应器中的物料流入第二反应器中,同时向第二反应器中加入由第二部分乙烯和少量1-丁烯组成的单体原料和氢气,在80℃、0.25MPa条件下进行第二聚合反应,控制氢气加入量,制得熔融指数为1.5g/10min的中空容器吹塑材料;其中,将第二反应器输出的物料进行干燥,除去己烷等杂质,并用蒸气分解除去残留的催化剂,即得到熔融指数为1.5g/10min的中空容器吹塑材料。
对比例1
使用Cr系催化剂和助催化剂,其中,该Cr系催化剂的载体为多孔硅胶,多孔硅胶的平均粒径为40Um,堆积松密度为0.26g/cm 3,催化剂活化的温度为600℃;助催化剂为三乙基铝,Cr系催化剂和助催化剂的用量满足:二者组成的催化剂中,铝和铬的摩尔比为1.5:1;
采用单反应器的气相流化床装置,聚合过程中,气相流化床中的反应压力为2.0MPa,乙烯分压为1.0MPa,反应温度为95℃,同时加入氢气,并通过控制氢气加入量调节所合成的聚乙烯的分子量;聚合过程中,采用己烯和乙烯为合成单体,为调控聚乙烯的密度,控制己烯和乙烯的摩尔比为0.003∶1;聚合反应完成后,通过蒸汽分解除去反应器输出的聚乙烯产物中残留的催化剂,制得熔融指数为1.5g/10min的聚乙烯材料,其熔融指数是指按照GB/T3682-2000标准在190℃℃温度、5kg负荷的条件下测定的聚乙烯材料的熔体质量流动速率。
对比例2
对比例2与对比例1的区别在于:(1)所用的催化剂中,Cr系催化剂和助催化剂的用量满足:铝、铬的摩尔比为1.5:1;
(2)采用丁烯替换己烯(即采用丁烯和乙烯为合成单体),丁烯与乙烯的摩尔比为0.005∶1;
(3)聚合反应完成后,通过蒸汽分解除去反应器输出的聚乙烯产物中残留的催化剂,制得熔融指数为1.1g/10min的聚乙烯材料,其熔融指数是指按照GB/T3682-2000标准在190℃℃温度、5kg负荷的条件下测定的聚乙烯材料的熔体质量流动速率;
其余条件与对比例1相同。
对比例3
使用购自日本三井化学公司的RZ钛系催化剂作为主催化剂,助催化剂与实施例1相同;
采用双反应器串联的连续化反应装置,基于第一部分乙烯和第二部分乙烯的总质量,第一部分乙烯和第二部分乙烯各占50wt%,聚乙烯材料的制备过程如下:将主催化剂和助催化剂加入到第一反应器,向其中加入第一部分乙烯和氢气,在85℃、0.46MPa条件下进行第一聚合反应,控制氢气加入量,生成熔融指数为110g/10min的聚乙烯;第一反应器中的物料流入第二反应器中,同时向第二反应器中加入由第二部分乙烯和少量1-丁烯组成的单体原料和氢气,在85℃、0.18MPa条件下进行第二聚合反应,控制氢气加入量,制得熔融指数为1.5g/10min的聚乙烯材料;其中,将第二反应器输出的物料进行干燥,除去己烷等杂质,并用蒸气分解除去残留的催化剂,即得到熔融指数为1.5g/10min的聚乙烯材料。
对比例4
使用购自日本三井化学公司的PZ钛系催化剂作为主催化剂,助催化剂与实施例1相同;
采用双反应器串联的连续化反应装置,基于第一部分乙烯和第二部分乙烯的总质量,第一部分乙烯和第二部分乙烯各占50wt%,聚乙烯材料的制备过程如下:将主催化剂和助催化剂加入到第一反应器,向其中加入第一部分乙烯和氢气,在85℃、0.46MPa条件下进行第一聚合反应,控制氢气加入量,生成熔融指数为115g/10min的聚乙烯;第一反应器中的物料流入第二反应器中,同时向第二反应器中加入由第二部分乙烯和少量1-丁烯组成的单体原料和氢气,在85℃、0.18MPa条件下进行第二聚合反应,控制氢气加入量,制得熔融指数控制为1.7g/10min的聚乙烯材料;其中,将第二反应器输出的物料进行干燥,除去己烷等杂质,并用蒸气分解除去残留的催化剂,即得到熔融指数为1.7g/10min的聚乙烯材料。
对比例5
使用购自中石化的BCH钛系催化剂作为主催化剂,助催化剂与实施例1相同;
采用双反应器串联的连续化反应装置,基于第一部分乙烯和第二部分乙烯的总质量,第一部分乙烯和第二部分乙烯各占50wt%,聚乙烯材料的制备过程如下:将主催化剂和助催化剂加入到第一反应器,向其中加入第一部分乙烯和氢气,在85℃、0.46MPa条件下进行第一聚合反应,控制氢气加入量,生成熔融指数为165g/10min的聚乙烯;第一反应器中的物料流入第二反应器中,同时向第二反应器中加入由第二部分乙烯和少量1-丁烯组成的单体原料和氢气,在85℃、0.18MPa条件下进行第二聚合反应,控制氢气加入量,制得熔融指数为1.7g/10min的聚乙烯材料;其中,将第二反应器输出的物料进行干燥,除去己烷等杂质,并用蒸气分解除去残留的催化剂,即得到熔融指数为1.7g/10min的聚乙烯材料。
对比例6
使用购自中石化的BCE钛系催化剂作为主催化剂,助催化剂与实施例1相同;
采用双反应器串联的连续化反应装置,基于第一部分乙烯和第二部分乙烯的总质量,第一部分乙烯和第二部分乙烯各占50wt%,聚乙烯材料的制备过程如下:将主催化剂和助催化剂加入到第一反应器,向其中加入第一部分乙烯和氢气,在85℃、0.46MPa条件下进行第一聚合反应,控制氢气加入量,生成熔融指数为118g/10min的聚乙烯;第一反应器中的物料流入第二反应器中,同时向第二反应器中加入由第二部分乙烯和少量1-丁烯组成的单体原料和氢气,在85℃、0.18MPa条件下进行第二聚合反应,控制氢气加入量,制得熔融指数为1.2g/10min的聚乙烯材料;其中,将第二反应器输出的物料进行干燥,除去己烷等杂质,并用蒸气分解除去残留的催化剂,即得到熔融指数为1.2g/10min的聚乙烯材料。
测得各实施例制得的中空容器吹塑材料、各对比例制得的聚乙烯材料的密度、分子量分布宽度拉伸屈服强度DP、弯曲模量、简支梁冲击强度、耐环境应力开裂性能见表1。
表1各实施例及对比例制得的材料性能测试结果
Figure PCTCN2022136460-appb-000003
以上对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种中空容器吹塑材料的制备方法,其特征在于,包括:
    使第一部分乙烯进入第一反应器中,在钛系催化剂和氢气存在下进行第一聚合反应,生成熔融指数为100g/10min~200g/10min的聚乙烯;其中,所述聚乙烯的熔融指数是指按照GB/T3682-2000标准在190℃±1℃温度、2.16kg负荷的条件下测定的所述聚乙烯的熔体质量流动速率;
    然后使第一反应器中的物料转移至第二反应器中,并向第二反应器中加入包含第二部分乙烯的单体原料,使第二反应器中的物料在氢气存在下进行第二聚合反应,制成熔融指数为1.0g/10min~2.0g/10min的中空容器吹塑材料;其中,所述中空容器吹塑材料的熔融指数是指按照GB/T3682-2000标准在190℃±1℃温度、5kg负荷的条件下测定的所述中空容器吹塑材料的熔体质量流动速率。
  2. 根据权利要求1所述的制备方法,其特征在于,
    所述中空容器吹塑材料的重均分子量与数均分子量之比为8~15;和/或,
    所述中空容器吹塑材料的密度为0.950g/cm 3~0.955g/cm 3
  3. 根据权利要求1所述的制备方法,其特征在于,所述第一部分乙烯的质量占所述第一部分乙烯与所述第二部分乙烯的质量之和的45%~55%。
  4. 根据权利要求1或3所述的制备方法,其特征在于,所述单体原料还包含丁烯。
  5. 根据权利要求1所述的制备方法,其特征在于,
    所述第一聚合反应的条件为:温度为75℃~87℃,压力为0.2MPa~0.5MPa;和/或,
    所述第二聚合反应的条件为:温度为75℃~87℃,压力为0.05MPa~0.3MPa。
  6. 根据权利要求1所述的制备方法,其特征在于,所述钛系催化剂包括主催化剂和助催化剂,其中,
    所述主催化剂由镁化合物、脂肪醇、有机硅化合物、卤化钛复配而成,所述有机硅化合物包括如下式1结构的四烷氧基硅烷:
    Figure PCTCN2022136460-appb-100001
    其中,R 2、R 3、R 4、R 5各自独立地选自C 1-C 15的烷基、C 3-C 20的环烷基或C 6-C 30的芳基;
    所述助催化剂包括通式为AlR' nX 3-n的有机铝化合物,所述通式中,R'为氢或C 1~C 20的烷基,X为卤素,1<n≤3。
  7. 根据权利要求6所述的制备方法,其特征在于,
    所述有机硅化合物的质量为所述主催化剂的质量的1%~20%;和/或,
    所述助催化剂包括三乙基铝(AlEt 3)、三异丁基铝(Al(iso-Bu) 3)、三正己基铝(Al(n-C 6H 13) 3)、三正辛基铝(Al(n-C 8H 17) 3)、一氯二乙基铝(AlEt 2Cl)中的至少一种。
  8. 根据权利要求6或7所述的制备方法,其特征在于,所述助催化剂与所述主催化剂中的钛的摩尔比为(1~500):1。
  9. 一种中空容器吹塑材料,其特征在于,按照权利要求1-8任一项所述的制备方法制得。
  10. 一种中空容器的制备方法,其特征在于,包括:
    采用权利要求9所述的中空容器吹塑材料,将其吹塑形成中空容器;或者,
    按照权利要求1-8任一项所述的制备方法制得中空容器吹塑材料;将所述中空容器吹塑材料吹塑形成中空容器。
PCT/CN2022/136460 2021-12-28 2022-12-05 中空容器吹塑材料及其制备方法和应用 WO2023124790A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111633754.7A CN114133489B (zh) 2021-12-28 2021-12-28 中空容器吹塑材料及其制备方法和应用
CN202111633754.7 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023124790A1 true WO2023124790A1 (zh) 2023-07-06

Family

ID=80383480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136460 WO2023124790A1 (zh) 2021-12-28 2022-12-05 中空容器吹塑材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114133489B (zh)
WO (1) WO2023124790A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114133489B (zh) * 2021-12-28 2024-02-02 中国石油天然气股份有限公司 中空容器吹塑材料及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1190615A (zh) * 1995-11-07 1998-08-19 联合碳化化学品及塑料技术公司 由乙烯共聚物的共混料挤塑的薄膜
CN1392190A (zh) * 2001-04-23 2003-01-22 三井化学株式会社 制备乙烯聚合物组合物的方法,乙烯聚合物组合物的颗粒和由该颗粒制成的膜
JP2006131814A (ja) * 2004-11-09 2006-05-25 Nippon Polyethylene Kk エチレン系共重合体の製造方法及びエチレン系共重合体並びに成形品
US20090253863A1 (en) * 2004-11-03 2009-10-08 Borealis Technology Oy Polyethylene composition for injection molded caps and closure articles
CN103113499A (zh) * 2013-01-30 2013-05-22 中国石油天然气股份有限公司 一种宽分布聚烯烃催化剂及其制备和应用
CN112724301A (zh) * 2019-10-29 2021-04-30 中国石油化工股份有限公司 一种聚乙烯树脂及其制备方法和其注射吹塑的中空制品
CN112745408A (zh) * 2019-10-29 2021-05-04 中国石油化工股份有限公司 用于挤出吹塑小中空制品的双峰聚乙烯树脂及其制备方法和应用
CN114133489A (zh) * 2021-12-28 2022-03-04 中国石油天然气股份有限公司 中空容器吹塑材料及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2691155B1 (fr) * 1992-05-15 1995-07-21 Bp Chemicals Snc Procede de polymerisation de l'ethylene en plusieurs etapes.
BE1006439A3 (fr) * 1992-12-21 1994-08-30 Solvay Societe Annonyme Procede de preparation d'une composition de polymeres d'ethylene, composition de polymeres d'ethylene et son utilisation.
CN100424105C (zh) * 2006-08-03 2008-10-08 中国石化扬子石油化工有限公司 一种高密度聚乙烯通信电缆绝缘料的制备方法
CN105985490A (zh) * 2015-02-16 2016-10-05 中国石油天然气股份有限公司 耐热聚乙烯共聚物的制备方法及耐热聚乙烯共聚物、管材
CN106317546A (zh) * 2015-07-01 2017-01-11 中国石油化工股份有限公司 一种大型中空容器用高密度聚乙烯树脂
CN110551242B (zh) * 2018-05-31 2022-03-29 中国石油天然气股份有限公司 一种抗冲共聚聚丙烯及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1190615A (zh) * 1995-11-07 1998-08-19 联合碳化化学品及塑料技术公司 由乙烯共聚物的共混料挤塑的薄膜
CN1392190A (zh) * 2001-04-23 2003-01-22 三井化学株式会社 制备乙烯聚合物组合物的方法,乙烯聚合物组合物的颗粒和由该颗粒制成的膜
US20090253863A1 (en) * 2004-11-03 2009-10-08 Borealis Technology Oy Polyethylene composition for injection molded caps and closure articles
JP2006131814A (ja) * 2004-11-09 2006-05-25 Nippon Polyethylene Kk エチレン系共重合体の製造方法及びエチレン系共重合体並びに成形品
CN103113499A (zh) * 2013-01-30 2013-05-22 中国石油天然气股份有限公司 一种宽分布聚烯烃催化剂及其制备和应用
CN112724301A (zh) * 2019-10-29 2021-04-30 中国石油化工股份有限公司 一种聚乙烯树脂及其制备方法和其注射吹塑的中空制品
CN112745408A (zh) * 2019-10-29 2021-05-04 中国石油化工股份有限公司 用于挤出吹塑小中空制品的双峰聚乙烯树脂及其制备方法和应用
CN114133489A (zh) * 2021-12-28 2022-03-04 中国石油天然气股份有限公司 中空容器吹塑材料及其制备方法和应用

Also Published As

Publication number Publication date
CN114133489B (zh) 2024-02-02
CN114133489A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
US9249286B2 (en) Multimodal polyethylene pipe resins and process
US8911872B2 (en) Bimodal polyethylene
US5284613A (en) Producing blown film and blends from bimodal high density high molecular weight film resin using magnesium oxide-supported Ziegler catalyst
EP1773892B1 (en) Multistage process for producing ethylene polymer compositions
CN109535290B (zh) 适合生产超细粒径聚烯烃的催化剂及其制备方法和应用
EP1756175B1 (en) Chromium based polymerization catalyst, the method to prepare it and polymers prepared therewith
US20100291334A1 (en) Broad Molecular Weight Polyethylene Having Improved Properties
WO1995017434A1 (en) Catalyst composition
JP4925593B2 (ja) ポリエチレン系重合体組成物
US7671149B2 (en) Hydrogen response through catalyst modification
WO2023124790A1 (zh) 中空容器吹塑材料及其制备方法和应用
US5595950A (en) Polymerization catalyst systems, their production and use
KR100269845B1 (ko) 에틸렌 중합체(ethylene polymer)
CA2812628A1 (en) Process for polymerisation of ethylene
JP4596510B2 (ja) ポリエチレン組成物
CN110343206A (zh) 一种双反应器串联的乙烯聚合工艺方法
CN114181349B (zh) 聚乙烯管材材料及其制备方法和应用
US7084216B2 (en) Process for the polymerization of olefins
CN114292356B (zh) 大中空容器吹塑聚乙烯专用料、其制备方法及应用
US6194526B1 (en) Processes that produce polymers
JP4108415B2 (ja) ポリエチレン組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914045

Country of ref document: EP

Kind code of ref document: A1