WO2023124633A1 - Dna甲基化修饰的检测方法 - Google Patents

Dna甲基化修饰的检测方法 Download PDF

Info

Publication number
WO2023124633A1
WO2023124633A1 PCT/CN2022/132920 CN2022132920W WO2023124633A1 WO 2023124633 A1 WO2023124633 A1 WO 2023124633A1 CN 2022132920 W CN2022132920 W CN 2022132920W WO 2023124633 A1 WO2023124633 A1 WO 2023124633A1
Authority
WO
WIPO (PCT)
Prior art keywords
methylation
dna
dna methylation
detection method
modification according
Prior art date
Application number
PCT/CN2022/132920
Other languages
English (en)
French (fr)
Inventor
肖莉
袁梦兮
罗晶晶
廖端芳
殷宇芳
张佳
李凯
何超平
Original Assignee
湖南中医药大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南中医药大学 filed Critical 湖南中医药大学
Publication of WO2023124633A1 publication Critical patent/WO2023124633A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay

Definitions

  • the invention relates to the technical field of molecular biology, in particular to a method for detecting DNA methylation modification.
  • Epigenetics is a branch of genetics that studies the regulation of gene expression through DNA methylation and histone modification without changing the nucleotide sequence of the gene. It not only plays an important role in gene expression, regulation, and inheritance, but also plays an important role in the occurrence and prevention of many diseases such as tumors and immunity.
  • DNA methylation is an important part of epigenetics and plays an important role in maintaining normal cell function, genetic imprinting, embryonic development and tumorigenesis, and is one of the current research hotspots.
  • DNA methylation is catalyzed by DNA methyltransferase, using S-adenosylmethionine to provide a methyl group, and adding a methyl group to the fifth carbon atom of the cytosine pyrimidine ring in a CpG dinucleotide covalent modification process.
  • CpG densities are high, forming so-called CpG islands. It is usually located in the promoter region or the first exon region of the gene.
  • DNA methylation can shut down the activity of certain genes, and demethylation can induce the reactivation and expression of genes.
  • Traditional DNA methylation detection methods include SssI methyltransferase method, chloroacetaldehyde reaction method, immunological method, restriction enzyme PCR, Methylation-specific PCR (MSP), methylation-sensitive single nucleotide primer extension (MS SNuPE), combined sulfite restriction assay (COBRA), DHPLC, Methylight, microarray.
  • Traditional DNA methylation detection methods are relatively complicated. Immunostaining of cell methylation with an antibody against methylated cytosine can visualize partially methylated cytosine, but cannot stain the region where unmethylated CpG is located, and cannot obtain unmethylated and The relative ratio of methylation. Therefore, how to use a simple method to detect the level of DNA methylation modification is a technical problem that needs to be solved.
  • the main purpose of the present invention is to provide a simple and easy-to-operate detection method for DNA methylation modification.
  • a detection method for DNA methylation modification comprising the steps of:
  • the sample to be tested undergoes a visual labeling reaction in the visual labeling reaction solution, and a fluorescent label is added to the end of the digestion;
  • Enzyme digestion adopts a methylation restriction endonuclease, and the methylation restriction endonuclease is selected from one of methylation sensitive restriction endonuclease and methylation dependent restriction endonuclease or various;
  • the visualization labeling reaction solution comprises: one or more of fluorescently labeled dNTPs and fluorescently labeled ddNTPs, and one or more of DNA ligase and DNA polymerase.
  • the methylation-sensitive restriction enzyme is selected from one or more of Acil, HpaII, HinP1I, HpyCHIV and ClaI.
  • the methylation-dependent restriction enzyme is selected from one or more of AbaSI, FspEI, LpnPI, and MspJI.
  • the DNA polymerase is terminal deoxynucleotidyl transferase.
  • the fluorescent label adopts an indirect chromogenic chromogen.
  • the chromogenic agent for indirect chromogenicity is biotin.
  • the fluorescent label adopts a chromogen that develops directly.
  • the chromogenic agent for direct color development is fluorescein.
  • the fluorescein is selected from one or more of TMR red and Fluorescein.
  • the detection method further includes: before the enzyme digestion, further fixing and permeabilizing the sample to be tested.
  • the fixative used for fixation is PBS buffer containing paraformaldehyde.
  • the permeabilization solution used for permeabilization is sodium citrate solution containing Triton X-100.
  • the present invention has the following technical effects:
  • the combination of methylation restriction endonuclease and DNA polymerase/DNA ligase is skillfully applied to the detection of DNA methylation modification.
  • the methylation restriction endonuclease introduces a cut into the sample DNA, Then use DNA polymerase/DNA ligase to add fluorescently labeled nucleotides to the cut, so as to realize the visualization of whether the C site of the sample DNA is methylated or not, and then detect the sample to be tested.
  • the relative intensity of different fluorescent colors and the spatial distribution of different fluorescent colors can visually judge the relative level of unmethylation and methylation modification of CpG sites.
  • This detection method is suitable for the detection of methylation levels in cells, tissue sections, chromosome samples, etc.
  • the step of extracting DNA from cells and tissues is omitted.
  • the operation is simple, easy to master, and has high safety. Low, short detection cycle, in addition, because the hypomethylation and hypermethylation can be dyed in different colors, it can provide a certain spatial information positioning of hypomethylation and hypermethylation.
  • Fig. 1 is the results of human colon cancer cell HCT-116 stained with a methylation-sensitive restriction endonuclease ClaI by a confocal microscope with a magnification of 200 times in Example 1;
  • Fig. 2 is the results of human colon cancer cell HCT-116 stained with methylation-sensitive restriction endonuclease ClaI by a confocal microscope with a magnification of 400 times in Example 1;
  • Fig. 3 is the result map of human colon cancer cell HCT-116 stained with methylation-dependent restriction endonuclease AbaSI in embodiment 2 with a magnification of 200 times confocal microscope;
  • Fig. 4 is the result map of human colon cancer cell HCT-116 stained with methylation-dependent restriction endonuclease AbaSI in embodiment 2 with a magnification of 400 times confocal microscope;
  • Figure 5 shows the results of human colon cancer cell HCT-116 stained with the methylation-sensitive restriction enzyme ClaI and the methylation-dependent restriction enzyme AbaSI using a confocal microscope with a magnification of 200 times in Example 3. ;
  • Figure 6 shows the results of human colon cancer cell HCT-116 stained with the methylation-sensitive restriction enzyme ClaI and the methylation-dependent restriction enzyme AbaSI using a confocal microscope with a magnification of 400 times in Example 3. ;
  • Fig. 7 is a 200-fold magnification confocal microscope in Example 4 and the results of staining human peripheral blood chromosomes with the methylation-sensitive restriction endonuclease ClaI;
  • Fig. 8 is a 400 times magnification confocal microscope image taken in Example 4 and results of human peripheral blood chromosome stained with methylation-sensitive restriction endonuclease ClaI;
  • Fig. 9 is a 200-fold magnification confocal microscope image taken in Example 5 showing the results of human peripheral blood chromosomes stained with the methylation-dependent restriction endonuclease AbaSI;
  • Figure 10 is a 400-fold magnification confocal microscope in Example 5 to take the results of methylation-dependent restriction endonuclease AbaSI staining of human peripheral blood chromosomes;
  • Figure 11 is the results of human gastric cancer sections stained with methylation-sensitive restriction endonuclease ClaI taken under a 200-fold magnification confocal microscope in Example 6;
  • FIG. 12 is a diagram showing the results of human gastric cancer sections stained with the methylation-sensitive restriction endonuclease ClaI under a 400-fold magnification confocal microscope in Example 6.
  • FIG. 12 is a diagram showing the results of human gastric cancer sections stained with the methylation-sensitive restriction endonuclease ClaI under a 400-fold magnification confocal microscope in Example 6.
  • the optional range of the terms “and/or”, “or/and”, “and/or” includes any of two or more of the associated listed items, and also includes any of the associated listed items. Any and all combinations of any and all of the relevant listed items include any combination of any two of the relevant listed items, any more of the relevant listed items, or all of the relevant listed items.
  • the technical features described in open form include closed technical solutions consisting of the enumerated features, as well as open technical solutions including the enumerated features.
  • the percentage content involved in the present invention refers to mass percentage for solid-liquid phase mixing and solid-solid phase mixing, and refers to volume percentage for liquid-liquid phase mixing.
  • the percentage concentration involved in the present invention refers to the final concentration unless otherwise specified.
  • the final concentration refers to the proportion of the added component in the system after the component is added.
  • the temperature parameters in the present invention allow either constant temperature treatment or treatment within a certain temperature range.
  • the isothermal treatment allows the temperature to fluctuate within the precision of the instrument control.
  • the present invention provides a kind of detection method of DNA methylation modification, and described detection method comprises the following steps:
  • the sample to be tested undergoes a visual labeling reaction in the visual labeling reaction solution, and a fluorescent label is added to the end of the digestion;
  • Enzyme digestion adopts a methylation restriction endonuclease, and the methylation restriction endonuclease is selected from one of methylation sensitive restriction endonuclease and methylation dependent restriction endonuclease or various;
  • the visualization labeling reaction solution comprises: one or more of fluorescently labeled dNTPs and fluorescently labeled ddNTPs, and one or more of DNA ligase and DNA polymerase.
  • the type of sample to be tested is not particularly limited, and it may be a cell sample or a tissue sample (such as a tissue section).
  • the combination of methylation restriction endonuclease and DNA polymerase/DNA ligase is skillfully applied to the detection of DNA methylation modification. Introduce a cut into the DNA, and then use DNA polymerase/DNA ligase to add fluorescently labeled nucleotides to the cut, so as to realize the visualization of whether the C site of the sample DNA is methylated or not, and then you can By detecting the relative fluorescence intensity of red, green, yellow and the spatial distribution of different fluorescence colors of the samples to be tested, the relative level of overall unmethylation and methylation modification of CpG sites can be visually judged.
  • This detection method is suitable for the detection of methylation levels in cells and tissue sections. Compared with the traditional method, the step of extracting DNA from cells and tissues is omitted. The operation is simple, easy to master, high in safety, and has low requirements for equipment. Short cycle.
  • the detection method provided by the present invention can respectively stain hypomethylation and hypermethylation in different colors, and thus can provide certain spatial information positioning of hypomethylation and hypermethylation. It can also be used for the comparison of multiple samples, such as setting a control sample and comparing the methylation level of the test sample and the control sample.
  • the type of the control sample is not particularly limited. On the basis of the technical concept of the present invention, the type of the control sample can be determined according to the detection requirements.
  • control samples can be selected from normal cells corresponding to tumor cells, cells in other growth stages corresponding to the tumor cells, and cells different from the tumor cells. Cells of other types of tumor cells.
  • the methylation-sensitive restriction enzyme is selected from one or more of Acil, HpaII, HinP1I, HpyCHIV and ClaI.
  • the methylation-dependent restriction enzyme is selected from one or more of AbaSI, FspEI, LpnPI and MspJI.
  • the DNA polymerase is terminal deoxynucleotidyl transferase.
  • the methylation restriction endonuclease is a methylation sensitive restriction endonuclease
  • the methylation sensitive restriction endonuclease is ClaI
  • the DNA polymerase is terminal deoxynucleotidyl transferase.
  • the methylation restriction enzyme is a methylation-dependent restriction enzyme
  • the methylation-dependent restriction enzyme is AbaSI
  • the DNA polymerase is deoxynucleotidyl transferase.
  • fluorescent labels employ indirect chromogenic chromogens.
  • the chromogenic agent for indirect chromogenicity is biotin.
  • fluorescent labels employ directly chromogenic chromogens.
  • the chromogenic agent for direct color development is fluorescein.
  • the fluorescein used in the present invention includes but not limited to one or more of the following types: TMR red, Fluorescein.
  • the detection method further includes: fixing and permeabilizing the test sample and the control sample before enzyme digestion.
  • the fixative used for fixation is PBS buffer containing paraformaldehyde.
  • the permeabilization fluid is sodium citrate solution containing Triton X-100.
  • the methylation restriction endonuclease can realize DNA methylation modification when a methylation-sensitive restriction endonuclease or a methylation-dependent restriction endonuclease is selected.
  • a methylation-sensitive restriction endonuclease or a methylation-dependent restriction endonuclease is selected.
  • the color development and quantification of methylated fragments and unmethylated fragments with different ratios can be detected by fluorescent detection equipment. There is a color form and quantification of the intermediate color formed by the mixture of two colors. Since the DNA methylation levels of cells in different states vary greatly, the methylation status of cells can be determined by comparing the changes in color development. Qualitative and quantitative rapid analysis has practical value in many fields such as biomedicine.
  • test methods described in the following examples are conventional methods; the reagents and biological materials, unless otherwise specified, can be obtained from commercial sources.
  • Example 1 Staining of human colon cancer cell HCT-116 using methylation-sensitive restriction enzyme ClaI alone
  • Figure 2 The result of staining human colon cancer cell HCT-116 with methylation-sensitive restriction endonuclease ClaI under a confocal microscope at 400 times magnification.
  • Example 2 Staining of human colon cancer cells HCT-116 using methylation-dependent restriction enzyme AbaSI alone
  • Cells were analyzed by confocal microscopy in 250 ⁇ L PBS buffer.
  • excitation wavelengths in the range 450-500 nm (e.g. 488 nm) and detection in the range 515-565 nm (green) are used.
  • Figure 3 200 times magnification confocal microscope to take the results of methylation-dependent restriction endonuclease AbaSI staining of human colon cancer cell HCT-116;
  • Fig. 4 The results of human colon cancer cell HCT-116 stained with the methylation-dependent restriction endonuclease AbaSI under a confocal microscope at 400 times magnification.
  • Example 3 Staining of human colon cancer cell HCT-116 using methylation-sensitive restriction enzyme ClaI and methylation-dependent restriction enzyme AbaSI successively
  • Cells were analyzed by confocal microscope in 250 ⁇ L PBS buffer to detect red fluorescence, green fluorescence and blue fluorescence respectively.
  • Fig. 6 Staining results of human colon cancer cell HCT-116 with methylation-sensitive restriction enzyme ClaI and methylation-dependent restriction enzyme AbaSI taken by confocal microscope at 400 times magnification.
  • PHA phytohemagglutinin
  • Trypsin banding was performed for 15-55s, rinsed with saline, and stained with Giemsa for 5 minutes.
  • Figure 7 200 times magnified confocal microscope image of human peripheral blood chromosome stained with methylation-sensitive restriction endonuclease ClaI.
  • PHA phytohemagglutinin
  • Trypsin banding was performed for 15-55s, rinsed with saline, and stained with Giemsa for 5 minutes.
  • excitation wavelengths in the range 450-500 nm eg 488 nm
  • detection in the range 515-565 nm green
  • Fig. 9 is a 200-fold magnification confocal microscope image taken in Example 5 showing the results of human peripheral blood chromosomes stained with the methylation-dependent restriction endonuclease AbaSI;
  • FIG. 10 is a graph showing the results of staining human peripheral blood chromosomes with the methylation-dependent restriction endonuclease AbaSI under a confocal microscope at 400 times magnification in Example 5.
  • Figure 11 The results of staining human gastric cancer sections with methylation-sensitive restriction endonuclease ClaI taken under a confocal microscope at 200 times magnification.
  • Figure 12 The results of staining human gastric cancer sections with the methylation-sensitive restriction endonuclease ClaI taken under a confocal microscope at 400 times magnification.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

公开了一种DNA甲基化修饰的检测方法,包括如下步骤:对待测样本的DNA进行酶切;酶切后的待测样本在可视化标签反应液中发生可视化标签反应,在酶切末端添加荧光标记;对可视化的所述荧光标记的信号进行检测。

Description

DNA甲基化修饰的检测方法 技术领域
本发明涉及分子生物技术领域,特别是涉及一种DNA甲基化修饰的检测方法。
背景技术
表观遗传学是研究基因的核苷酸序列不发生改变的情况下,通过DNA甲基化和组蛋白修饰等调控基因表达的一门遗传学分支学科。它不仅对基因表达、调控、遗传有重要作用,而且在肿瘤、免疫等许多疾病的发生和防治中具有重要意义。DNA甲基化是表观遗传学的重要组成部分,在维持正常细胞功能、遗传印记、胚胎发育以及肿瘤发生中起着重要作用,是目前研究热点之一。DNA甲基化是在DNA甲基转移酶催化作用下,利用S-腺苷甲硫氨酸提供甲基,在CpG二核苷酸中胞嘧啶嘧啶环的五号碳原子上加上甲基的共价修饰过程。在哺乳动物基因组的某些区域,CpG密度很高,形成所谓的CpG岛。它通常位于基因的启动子区或第一外显子区。DNA甲基化能关闭某些基因的活性,去甲基化则可诱导基因的重新活化和表达。
传统的DNA甲基化修饰的检测方法包括李海飞、李洪义在“DNA甲基化的分析与状态检测”中汇总的SssI甲基转移酶法、氯乙醛反应法、免疫学法、限制酶PCR、甲基化特异性PCR(MSP)、甲基化敏感的单核苷酸引物延伸(MS SNuPE)、结合亚硫酸盐限制性分析法(COBRA)、DHPLC、Methylight、微阵列法。传统的DNA甲基化修饰的检测方法相对复杂。利用抗甲基化胞嘧啶的抗体对细胞甲基化进行免疫染色,可以对部分甲基化胞嘧啶实现可视化,但不能对未甲基化的CpG所在区域进行染色,无法获得未甲基化与甲基化的相对比例关 系。因此,如何采用简单的方法实现DNA甲基化修饰水平的检测是需要解决的技术问题。
发明内容
基于上述技术问题,本发明的主要目的在于提供一种操作简单的DNA甲基化修饰的检测方法。
本发明的目的可以通过以下技术方案实现:
一种DNA甲基化修饰的检测方法,所述检测方法包括如下步骤:
对待测样本的DNA进行酶切;
酶切后的待测样本在可视化标签反应液中发生可视化标签反应,在酶切末端添加荧光标记;
对可视化的所述荧光标记的信号进行检测;
其中,
酶切采用甲基化限制性内切酶,所述甲基化限制性内切酶选自甲基化敏感性限制性内切酶和甲基化依赖性限制性内切酶中的一种或者多种;
所述可视化标签反应液包含:荧光标记的dNTP和荧光标记的ddNTP中的一种或者多种,以及,DNA连接酶和DNA聚合酶中的一种或者多种。
在其中一些实施例中,所述甲基化敏感性限制性内切酶选自AciI、HpaII、HinP1I、HpyCHIV和ClaI中的一种或者多种。
在其中一些实施例中,所述甲基化依赖性限制性内切酶选自AbaSI、FspEI、LpnPI、和MspJI中的一种或者多种。
在其中一些实施例中,所述DNA聚合酶为末端脱氧核苷酸转移酶。
在其中一些实施例中,荧光标记采用间接显色的显色剂。
在其中一些实施例中,所述间接显色的显色剂为生物素。
在其中一些实施例中,荧光标记采用直接显色的显色剂。
在其中一些实施例中,所述直接显色的显色剂为荧光素。
在其中一些实施例中,所述荧光素选自TMR red和Fluorescein中的一种或者几种。
在其中一些实施例中,所述检测方法还包括:酶切之前,还对所述待测样本进行固定和透化。
在其中一些实施例中,固定采用的固定液为含多聚甲醛的PBS缓冲液。
在其中一些实施例中,透化采用的透化液为含Triton X-100的柠檬酸钠溶液。
相对于传统技术,本发明具有以下技术效果:
本发明巧妙地将甲基化限制性内切酶和DNA聚合酶/DNA连接酶结合应用于DNA甲基化修饰的检测中,先通过甲基化限制性内切酶在样本DNA中引入切口,再利用DNA聚合酶/DNA连接酶在该切口处加入荧光标记的核苷酸,从而实现对样本DNA的C位点是否甲基化分别进行不同颜色标记的可视化,然后便可以通过检测待测样本的不同荧光的相对强度和不同荧光颜色的空间分布,达到可视化地判断CpG位点整体非甲基化与甲基化修饰的相对水平。该检测方法,适用于细胞、组织切片、染色体标本等甲基化水平检测,相对于传统方法省去了从细胞、组织中提取DNA的步骤,操作简单,易于掌握,安全性高,对设备要求低,检测周期短,另外由于可以分别对低甲基化与高甲基化进行不同颜色的染色,因而可以提供低甲基化与高甲基化进行一定的空间信息定位。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见 地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1中放大200倍共聚焦显微镜拍摄甲基化敏感性限制性内切酶ClaI染色人结肠癌细胞HCT-116结果图;
图2为实施例1中放大400倍共聚焦显微镜拍摄甲基化敏感性限制性内切酶ClaI染色人结肠癌细胞HCT-116结果图;
图3为实施例2中放大200倍共聚焦显微镜拍摄甲基化依赖性限制性内切酶AbaSI染色人结肠癌细胞HCT-116结果图;
图4为实施例2中放大400倍共聚焦显微镜拍摄甲基化依赖性限制性内切酶AbaSI染色人结肠癌细胞HCT-116结果图;
图5为实施例3中放大200倍共聚焦显微镜拍摄先后分别使用甲基化敏感性限制性内切酶ClaI和甲基化依赖性限制性内切酶AbaSI染色人结肠癌细胞HCT-116结果图;
图6为实施例3中放大400倍共聚焦显微镜拍摄先后分别使用甲基化敏感性限制性内切酶ClaI和甲基化依赖性限制性内切酶AbaSI染色人结肠癌细胞HCT-116结果图;
图7为实施例4中放大200倍共聚焦显微镜拍摄甲基化敏感性限制性内切酶ClaI染色人外周血染色体结果图;
图8为实施例4中放大400倍共聚焦显微镜拍摄甲基化敏感性限制性内切酶ClaI染色人外周血染色体结果图;
图9为实施例5中放大200倍共聚焦显微镜拍摄甲基化依赖性限制性内切酶AbaSI染色人外周血染色体结果图;
图10为实施例5中放大400倍共聚焦显微镜拍摄甲基化依赖性限制性内切 酶AbaSI染色人外周血染色体结果图;
图11为实施例6中放大200倍共聚焦显微镜拍摄甲基化敏感性限制性内切酶ClaI染色人胃癌切片结果图;
图12为实施例6中放大400倍共聚焦显微镜拍摄甲基化敏感性限制性内切酶ClaI染色人胃癌切片结果图。
具体实施方式
为了便于理解本发明,下面将对本发明进行更详细的描述。但是,应当理解,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式或实施例。相反地,提供这些实施方式或实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式或实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”的可选范围包括两个或两个以上相关所列项目中任一个,也包括相关所列项目的任意的和所有的组合,所述任意的和所有的组合包括任意的两个相关所列项目、任意的更多个相关所列项目、或者全部相关所列项目的组合。
除非另外说明或存在矛盾之处,本文中使用的术语或短语具有以下含义:
本文所使用的术语“和/或”、“或/和”、“及/或”的可选范围包括两个或两个以上相关所列项目中任一个项目,也包括相关所列项目的任意的和所有的组合,所述任意的和所有的组合包括任意的两个相关所列项目、任意的更多个相关所列项目、或者全部相关所列项目的组合。
本文中,“优选”仅为描述效果更好的实施方式或实施例,应当理解,并不构 成对本发明保护范围的限制。
本发明中,以开放式描述的技术特征中,包括所列举特征组成的封闭式技术方案,也包括包含所列举特征的开放式技术方案。
本发明中,涉及到数值区间,如无特别说明,则包括数值区间的两个端点。
本发明中涉及的百分比含量,如无特别说明,对于固相-液相混合和固相-固相混合均指质量百分比,对于液相-液相混合指体积百分比。
本发明中涉及的百分比浓度,如无特别说明,均指终浓度。所述终浓度,指添加成分在添加该成分后的体系中的占比。
本发明中的温度参数,如无特别限定,既允许为恒温处理,也允许在一定温度区间内进行处理。所述的恒温处理允许温度在仪器控制的精度范围内进行波动。
本发明提供一种DNA甲基化修饰的检测方法,所述检测方法包括如下步骤:
对待测样本的DNA进行酶切;
酶切后的待测样本在可视化标签反应液中发生可视化标签反应,在酶切末端添加荧光标记;
对可视化的所述荧光标记的信号进行检测;
其中,
酶切采用甲基化限制性内切酶,所述甲基化限制性内切酶选自甲基化敏感性限制性内切酶和甲基化依赖性限制性内切酶中的一种或者多种;
所述可视化标签反应液包含:荧光标记的dNTP和荧光标记的ddNTP中的一种或者多种,以及,DNA连接酶和DNA聚合酶中的一种或者多种。
本发明提供的检测方法,对待测样本的种类不做特别限定,可以是细胞样本,也可以是组织样本(例如组织切片)。
本发明提供的检测方法,巧妙地将甲基化限制性内切酶和DNA聚合酶/DNA连接酶结合应用于DNA甲基化修饰的检测中,先通过甲基化限制性内切酶在样本DNA中引入切口,再利用DNA聚合酶/DNA连接酶在该切口处加入荧光标记的核苷酸,从而实现对样本DNA的C位点是否甲基化分别进行不同颜色标记的可视化,然后便可以通过检测待测样本的相对荧光红绿黄不同荧光的相对强度和不同荧光颜色的空间分布,达到可视化地判断CpG位点整体非甲基化与甲基化修饰的相对水平。该检测方法,适用于细胞、组织切片等甲基化水平检测,相对于传统方法省去了从细胞、组织中提取DNA的步骤,操作简单,易于掌握,安全性高,对设备要求低,检测周期短。
本发明提供的检测方法,可以分别对低甲基化与高甲基化进行不同颜色的染色,因而可以提供低甲基化与高甲基化进行一定的空间信息定位。也可用于多个样本的比较,例如设置对照样本,比较待测样本和对照样本的甲基化水平的高低。在用于多个样本甲基化水平的研究时,对对照样本的种类不做特别限定,在本发明的技术构思的基础上,可以根据检测需求确定对照样本的种类。例如:将本发明的检测方法应用于DNA甲基化修饰水平对肿瘤细胞特性的技术研究,那么对照样本可以选用肿瘤细胞对应的正常细胞、该肿瘤细胞对应的其他生长阶段细胞、不同于该肿瘤细胞的其他种类的肿瘤细胞。
在其中一个示例中,所述甲基化敏感性限制性内切酶选自AciI、HpaII、HinP1I、HpyCHIV和ClaI中的一种或者多种。
在其中一个示例中,所述甲基化依赖性限制性内切酶选自AbaSI、FspEI、LpnPI和MspJI中的一种或者多种。
在其中一个示例中,所述DNA聚合酶为末端脱氧核苷酸转移酶。
在其中一个示例中,所述甲基化限制性内切酶为甲基化敏感性限制性内切 酶,所述甲基化敏感性限制性内切酶为ClaI,所述DNA聚合酶为末端脱氧核苷酸转移酶。
在其中一个示例中,所述甲基化限制性内切酶为甲基化依赖性限制性内切酶,所述甲基化依赖性限制性内切酶为AbaSI,所述DNA聚合酶为末端脱氧核苷酸转移酶。
在其中一个示例中,荧光标记采用间接显色的显色剂。
在其中一个示例中,所述间接显色的显色剂为生物素。
在其中一个示例中,荧光标记采用直接显色的显色剂。
在其中一个示例中,所述直接显色的显色剂为荧光素。本发明选用的荧光素包括不限于如下种类中的一种或者多种:TMR red、Fluorescein。
在其中一个示例中,所述检测方法还包括:酶切之前,对所述待测样本和所述对照样本进行固定和透化。
在其中一个示例中,固定采用的固定液为含多聚甲醛的PBS缓冲液。
在其中一个示例中,透化采用透化液为含Triton X-100的柠檬酸钠溶液。
本发明的提供的上述检测方法,所述甲基化限制性内切酶在选用甲基化敏感性限制性内切酶或者甲基化依赖性限制性内切酶均能实现DNA甲基化修饰的检测,当然,同时选用甲基化敏感性限制性内切酶和甲基化依赖性限制性内切酶也是可行的。
在其中一个示例中,基于本发明提供的整体技术构思,同时选用甲基化敏感性限制性内切酶和甲基化依赖性限制性内切酶的条件下,在基于其中一种甲基化限制性内切酶进行酶切并在切口处引入荧光标记之后,再采用另一种甲基化限制性内切酶对上一轮酶切、荧光标记的产物进行第二轮的酶切和荧光染色以实现在本轮酶切切口引入荧光标记,当然,在两轮酶切对应产生的切口引入 的荧光标记是不同的。在采用两种甲基化限制性内切酶进行酶切并进行不同荧光染色时,能通过荧光检测设备检测到不同比例甲基化片段和未甲基化片段的显色形态和定量情况,还有两种颜色混合形成的中间色的显色形态和定量情况,由于不同状态细胞的DNA甲基化水平差异很大,通过比对显色的变化情况能对细胞的甲基化状态进行一定的定性与定量快速分析,在生物医学等多个领域具有实用价值。
下述实施例中所述试验方法,如无特别说明,均为常规方法;所述试剂和生物材料,如无特别说明,均可从商业途径获得。
下述实施例中,所述百分含量如无特别说明,均为质量百分含量。
实施例1.单独使用甲基化敏感性限制性内切酶ClaI染色人结肠癌细胞HCT-116
实验步骤:
1.用新鲜制备的4%多聚甲醛固定液(含4%多聚甲醛的PBS缓冲液,pH 7.4)在15至25℃下固定、风干细胞样品1小时。
2.用PBS缓冲液(200μL/孔)洗涤细胞两次。
3.在冰上(2至8℃)于透化溶液(0.1%Triton X-100的0.1%柠檬酸钠溶液,新鲜制备)中孵育2分钟。
4.用PBS缓冲液(200μL/孔)洗涤细胞两次。
5.采用150U/mL ClaI酶溶液孵育经固定和透化的HCT-116细胞30分钟。
6.用PBS缓冲液(200μL/孔)洗涤细胞两次。
7.新鲜配置染色混合液(50μL TdT酶溶液混合450μL红色荧光探针荧光素TMR red标记的dUTP溶液),每孔加50μL盖上盖子在37℃的潮湿环境中避光孵育固定和透化的HCT-116细胞60分钟。
8.在PBS缓冲液中清洗样品两次。
9.细胞在250μL PBS缓冲液中,通过共聚焦显微镜进行分析。对于荧光显微镜评估,使用520-560nm(最大540nm;绿色)范围内的激发波长和570-620nm(最大580nm,红色)范围内的检测。图1.放大200倍共聚焦显微镜拍摄甲基化敏感性限制性内切酶ClaI染色人结肠癌细胞HCT-116结果图;
图2.放大400倍共聚焦显微镜拍摄甲基化敏感性限制性内切酶ClaI染色人结肠癌细胞HCT-116结果图。
实施例2.单独使用甲基化依赖性限制性内切酶AbaSI染色人结肠癌细胞HCT-116
实验步骤:
1.用新鲜制备的4%多聚甲醛固定液(4%多聚甲醛的PBS缓冲液,pH7.4)在15至25℃下固定风干细胞样品1小时。
2.用PBS缓冲液(200μL/孔)洗涤细胞两次。
3.在冰上(2至8℃)于透化溶液(0.1%Triton X-100的0.1%柠檬酸钠溶液,新鲜制备)中孵育2分钟。
4.用PBS缓冲液(200μL/孔)洗涤细胞两次。
5.采用150U/mL AbaSI酶溶液孵育经固定和透化的HCT-116细胞30分钟。
6.用PBS缓冲液(200μL/孔)洗涤细胞两次。
7.新鲜配置染色混合液(50μL TdT酶溶液混合450μL绿色荧光探针荧光素Fluorescein标记的dUTP溶液),每孔加50μL/孔盖上盖子在37℃的潮湿环境中避光孵育经固定和透化的HCT-116细胞60分钟。
8.在PBS缓冲液中清洗样品两次。
9.细胞在250μL PBS缓冲液中,通过共聚焦显微镜进行分析。对于荧光显 微镜评估,使用450-500nm(如488nm)范围内的激发波长和515-565nm(绿色)范围内的检测。
图3.放大200倍共聚焦显微镜拍摄甲基化依赖性限制性内切酶AbaSI染色人结肠癌细胞HCT-116结果图;
图4.放大400倍共聚焦显微镜拍摄甲基化依赖性限制性内切酶AbaSI染色人结肠癌细胞HCT-116结果图。
实施例3.先后分别使用甲基化敏感性限制性内切酶ClaI和甲基化依赖性限制性内切酶AbaSI染色人结肠癌细胞HCT-116
实验步骤:
1.用新鲜制备的4%多聚甲醛固定液(4%多聚甲醛的PBS缓冲液,pH7.4)在15至25℃下固定、风干细胞样品1小时。
2.用PBS缓冲液(200μL/孔)洗涤细胞两次。
3.在冰上(2至8℃)在透化溶液(0.1%Triton X-100的0.1%柠檬酸钠溶液,新鲜制备)中孵育2分钟。
4.用PBS缓冲液(200μL/孔)洗涤细胞两次。
5.采用150U/mL ClaI酶溶液孵育经固定和透化的HCT-116细胞30分钟。
6.用PBS缓冲液(200μL/孔)洗涤细胞两次。
7.新鲜配置染色混合液(50μL TdT酶溶液混合450μL红色荧光探针荧光素TMR red标记的dUTP溶液)。每孔加50μL,盖上盖子在37℃的潮湿环境中避光孵育经固定和透化的HCT-116细胞60分钟。
8.在PBS缓冲液中清洗样品两次。
9.采用150U/mL AbaSI酶溶液孵育经固定和透化的HCT-116细胞30分钟。
10.用PBS缓冲液(200μL/孔)洗涤细胞两次。
11.新鲜配置染色混合液(50μL TdT酶溶液混合450μL绿色荧光探针荧光素Fluorescein标记的dUTP溶液)。每孔加50μL,盖上盖子在37℃的潮湿环境中避光孵育经固定和透化的HCT-116细胞60分钟。
12.在PBS缓冲液中清洗样品两次。
13.用50μL/孔的DAPI染色液染细胞核10分钟(方便共聚焦显微镜拍摄红绿两种荧光时进行细胞定位)。
11.细胞在250μL PBS缓冲液中,通过共聚焦显微镜进行分析分别进行红色荧光、绿色荧光和蓝色荧光的检测。
图5.放大200倍共聚焦显微镜拍摄先后分别使用甲基化敏感性限制性内切酶ClaI和甲基化依赖性限制性内切酶AbaSI染色人结肠癌细胞HCT-116结果图;
图6.放大400倍共聚焦显微镜拍摄先后分别使用甲基化敏感性限制性内切酶ClaI和甲基化依赖性限制性内切酶AbaSI染色人结肠癌细胞HCT-116结果图。
实施例4.单独使用甲基化敏感性限制性内切酶ClaI染色人外周血染色体
实验步骤:
1.取人外周血淋巴细胞,加入植物血凝素(PHA)刺激其转化为淋巴母细胞,接种后37℃恒温培养箱中72小时。
2.加入10μg/mL秋水仙素2-8滴(1mg秋水仙素加入100mL 0.85%生理盐水),37℃恒温培养箱中1.5小时。
3.去上清液加0.075M KCl溶液低渗后,放入37℃恒温培养箱中30分钟。
4.加入1mL固定液(甲醇:冰醋酸=3:1)混匀进行预固定,离心(2000转,10分钟),弃上清;加入6-8mL固定液混匀进行固定,离心弃上清;重复2次,留0.5mL细胞悬液。
5.冰玻片快速滴片,置75℃烤片3小时,室温下放置冷却。
6.胰酶显带15-55s,生理盐水漂洗,吉姆萨染色5分钟。
7.用新鲜制备的人外周血染色体玻片标本(4%多聚甲醛的PBS,pH 7.4)在15至25℃下固定风干样品1小时。
8.用PBS缓冲液(200μL/孔)洗涤样品两次。
9.在冰上(2至8℃)在透化溶液(0.1%Triton X-100的0.1%柠檬酸钠溶液,新鲜制备)中孵育2分钟。
10.用PBS缓冲液(200μL/孔)洗涤样品两次。
11.采用150U/mL ClaI酶溶液孵育固定和透化的染色体标本。
12.用PBS缓冲液(200μL/孔)洗涤样品两次。
13.新鲜配置染色混合液(50μL TdT酶溶液混合450μL红色荧光探针荧光素TMR red标记的dUTP溶液),每片用50μL,盖上盖子在37℃的潮湿环境中避光孵育固定和透化的染色体标本60分钟。
14.在PBS缓冲液中清洗样品两次。
15.通过共聚焦显微镜进行分析。对于共聚焦显微镜评估,使用520-560nm(最大540nm;绿色)范围内的激发波长和570-620nm(最大580nm,红色)范围内的检测。
图7.放大200倍共聚焦显微镜拍摄甲基化敏感性限制性内切酶ClaI染色人外周血染色体结果图。
图8.放大400倍共聚焦显微镜拍摄甲基化敏感性限制性内切酶ClaI染色人外周血染色体结果图。
实施例5.单独使用甲基化依赖性限制性内切酶AbaSI染色人外周血染色体
实验步骤:
1.取人外周血淋巴细胞,加入植物血凝素(PHA)刺激其转化为淋巴母细 胞,接种后37℃恒温培养箱中72小时。
2.加入10μg/mL秋水仙素2-8滴(1mg秋水仙素加入100mL 0.85%生理盐水),37℃恒温培养箱中1.5小时。
3.去上清液加0.075M KCl溶液低渗后,放入37℃恒温培养箱中30分钟。
4.加入1mL固定液(甲醇:冰醋酸=3:1)混匀进行预固定,离心(2000转,10分钟),弃上清;加入6-8mL固定液混匀进行固定,离心弃上清;重复2次,留0.5mL细胞悬液。
5.冰玻片快速滴片,置75℃烤片3小时,室温下放置冷却。
6.胰酶显带15-55s,生理盐水漂洗,吉姆萨染色5分钟。
7.用新鲜制备的人外周血染色体玻片标本(4%多聚甲醛的PBS,pH 7.4)在15至25℃下固定风干样品1小时。
8.用PBS缓冲液(200μL/孔)洗涤样品两次。
9.在冰上(2至8℃)在透化溶液(0.1%Triton X-100的0.1%柠檬酸钠溶液,新鲜制备)中孵育2分钟。
10.用PBS缓冲液(200μL/孔)洗涤样品两次。
11.采用150U/mL AbaSI酶溶液孵育固定和透化的染色体标本。
12.用PBS缓冲液(200μL/孔)洗涤样品两次。
13.新鲜配置染色混合液(50μL TdT酶溶液混合450μL绿色荧光探针荧光素Fluorescein标记的dUTP溶液),每片用50μL,盖上盖子在37℃的潮湿环境中避光孵育固定和透化的染色体标本60分钟。
14.在PBS缓冲液中清洗样品两次。
15.通过共聚焦显微镜进行分析。对于共聚焦显微镜评估,使用450-500nm(如488nm)范围内的激发波长和515-565nm(绿色)范围内的检测。
图9为实施例5中放大200倍共聚焦显微镜拍摄甲基化依赖性限制性内切酶AbaSI染色人外周血染色体结果图;
图10为实施例5中放大400倍共聚焦显微镜拍摄甲基化依赖性限制性内切酶AbaSI染色人外周血染色体结果图。
实施6单独使用甲基化敏感性限制性内切酶ClaI染色人胃癌切片
实验步骤:
1用新鲜制备的人胃癌玻片标本(4%多聚甲醛的PBS,pH 7.4)在15至25℃下固定风干样品1小时。
2.用PBS缓冲液(200μL/孔)洗涤样品两次。
3.在冰上(2至8℃)在透化溶液(0.1%Triton X-100的0.1%柠檬酸钠溶液,新鲜制备)中孵育2分钟。
4.用PBS缓冲液(200μL/孔)洗涤样品两次。
5.采用150U/mL ClaI酶溶液孵育固定和透化的切片标本。
6.用PBS缓冲液(200μL/孔)洗涤切片两次。
7.新鲜配置染色混合液(50μL TdT酶溶液混合450μL红色荧光探针荧光素TMR red标记的dUTP溶液),每片用50μL,盖上盖子在37℃的潮湿环境中避光孵育固定和透化的切片标本60分钟。
9.在PBS缓冲液中清洗样品两次。
10.通过共聚焦显微镜进行分析。对于共聚焦显微镜评估,使用520-560nm(最大540nm;绿色)范围内的激发波长和570-620nm(最大580nm,红色)范围内的检测。
图11.放大200倍共聚焦显微镜拍摄甲基化敏感性限制性内切酶ClaI染色人胃癌切片结果图。
图12.放大400倍共聚焦显微镜拍摄甲基化敏感性限制性内切酶ClaI染色人胃癌切片结果图。
以上所述实施例仅表达了本发明的几种实施方式,便于具体和详细地理解本发明的技术方案,但并不能因此而理解为对发明专利保护范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。应当理解,本领域技术人员在本发明提供的技术方案的基础上,通过合乎逻辑的分析、推理或者有限的试验得到的技术方案,均在本发明所述附权利要求的保护范围内。因此,本发明专利的保护范围应以所附权利要求的内容为准,说明书及附图可以用于解释权利要求的内容。

Claims (10)

  1. 一种DNA甲基化修饰的检测方法,其特征在于,所述检测方法包括如下步骤:
    对待测样本的DNA进行酶切;
    酶切后的待测样本在可视化标签反应液中发生可视化标签反应,在酶切末端添加荧光标记;
    对可视化的所述荧光标记的信号进行检测;
    其中,
    酶切采用甲基化限制性内切酶,所述甲基化限制性内切酶选自甲基化敏感性限制性内切酶和甲基化依赖性限制性内切酶中的一种或者多种;
    所述可视化标签反应液包含:荧光标记的dNTP和荧光标记的ddNTP中的一种或者多种,以及,DNA连接酶和DNA聚合酶中的一种或者多种。
  2. 根据权利要求1所述的DNA甲基化修饰的检测方法,其特征在于,所述甲基化敏感性限制性内切酶选自AciI、HpaII、HinP1I、HpyCHIV和ClaI中的一种或者多种;
    或/和,所述甲基化依赖性限制性内切酶选自AbaSI、FspEI、LpnPI、和MspJI中的一种或者多种。
  3. 根据权利要求1所述的DNA甲基化修饰的检测方法,其特征在于,所述DNA聚合酶为末端脱氧核苷酸转移酶。
  4. 根据权利要求1至3任一项所述的DNA甲基化修饰的检测方法,其特征在于,荧光标记采用间接显色的显色剂。
  5. 根据权利要求4所述的DNA甲基化修饰的检测方法,其特征在于,所述间接显色的显色剂为生物素。
  6. 根据权利要求1至3任一项所述的DNA甲基化修饰的检测方法,其特征 在于,荧光标记采用直接显色的显色剂。
  7. 根据权利要求6所述的DNA甲基化修饰的检测方法,其特征在于,所述直接显色的显色剂为荧光素。
  8. 根据权利要求7所述的DNA甲基化修饰的检测方法,其特征在于,所述荧光素选自TMR red和Fluorescein中的一种或者几种。
  9. 根据权利要求1至3、5、7以及8任一项所述的DNA甲基化修饰的检测方法,其特征在于,所述检测方法还包括:酶切之前,还对所述待测样本进行固定和透化。
  10. 根据权利要求9所述的DNA甲基化修饰的检测方法,其特征在于,固定采用的固定液为含多聚甲醛的PBS缓冲液;或/和,透化采用的透化液为含Triton X-100的柠檬酸钠溶液。
PCT/CN2022/132920 2021-12-31 2022-11-18 Dna甲基化修饰的检测方法 WO2023124633A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111675154.7A CN114381497B (zh) 2021-12-31 2021-12-31 Dna甲基化修饰的检测方法
CN202111675154.7 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023124633A1 true WO2023124633A1 (zh) 2023-07-06

Family

ID=81199310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132920 WO2023124633A1 (zh) 2021-12-31 2022-11-18 Dna甲基化修饰的检测方法

Country Status (2)

Country Link
CN (1) CN114381497B (zh)
WO (1) WO2023124633A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114381497B (zh) * 2021-12-31 2024-01-26 湖南中医药大学 Dna甲基化修饰的检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030148290A1 (en) * 2002-02-06 2003-08-07 Susan Cottrell Quantitative methylation detection in DNA samples
US20050069879A1 (en) * 2001-06-22 2005-03-31 Kurt Berlin Method for high sensitivity detection of cytosine-methylation
WO2008029668A1 (fr) * 2006-09-05 2008-03-13 Olympus Corporation Procédé de détermination d'activité inhibitrice sur la méthylation d'adn
JP2010158240A (ja) * 2008-12-11 2010-07-22 National Agriculture & Food Research Organization 制限酵素の認識配列に依存したdna部位の検出方法
US20140199690A1 (en) * 2013-01-16 2014-07-17 The Hong Kong University Of Science And Technology Materials and methods for high-throughput determination of genome-wide dna methylation profile
CN114381497A (zh) * 2021-12-31 2022-04-22 湖南中医药大学 Dna甲基化修饰的检测方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010068775A (ja) * 2008-09-19 2010-04-02 Nagasaki Univ Dnaメチル化部位の局在検出方法
CN103993083B (zh) * 2014-05-22 2016-01-06 东南大学 限制性内切酶和核酸外切酶ⅲ的无标记荧光检测dna甲基化和甲基转移酶活性的检测方法
WO2016061624A1 (en) * 2014-10-20 2016-04-28 Commonwealth Scientific And Industrial Research Organisation Genome methylation analysis
EP3885448B1 (en) * 2016-09-02 2023-03-22 New England Biolabs, Inc. Analysis of chromatin using a nicking enzyme

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050069879A1 (en) * 2001-06-22 2005-03-31 Kurt Berlin Method for high sensitivity detection of cytosine-methylation
US20030148290A1 (en) * 2002-02-06 2003-08-07 Susan Cottrell Quantitative methylation detection in DNA samples
WO2008029668A1 (fr) * 2006-09-05 2008-03-13 Olympus Corporation Procédé de détermination d'activité inhibitrice sur la méthylation d'adn
JP2010158240A (ja) * 2008-12-11 2010-07-22 National Agriculture & Food Research Organization 制限酵素の認識配列に依存したdna部位の検出方法
US20140199690A1 (en) * 2013-01-16 2014-07-17 The Hong Kong University Of Science And Technology Materials and methods for high-throughput determination of genome-wide dna methylation profile
CN114381497A (zh) * 2021-12-31 2022-04-22 湖南中医药大学 Dna甲基化修饰的检测方法

Also Published As

Publication number Publication date
CN114381497B (zh) 2024-01-26
CN114381497A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
WO2021128519A1 (zh) Dna甲基化生物标志物组合、检测方法和试剂盒
JP6681841B2 (ja) 特別な細胞タイプに由来するdnaの検出とそれに関連する方法
Macville et al. Spectral karyotyping, a 24-colour FISH technique for the identification of chromosomal rearrangements
JP4157164B2 (ja) 前立腺癌に関連する遺伝子の変化
US5580730A (en) Enzyme digestion method for the detection of amplified DNA
US20050221314A1 (en) Method and device for determination of tissue specificity of free floating dna in bodily fluids
CN109689896A (zh) 使用在胎儿和怀孕雌性动物之间差异甲基化的dna区域检测胎儿染色体非整倍性
CN106460046A (zh) 检测结直肠赘生物
WO2023124633A1 (zh) Dna甲基化修饰的检测方法
CN109609629A (zh) 用于检测肝癌的组合物及其用途
CN108220428B (zh) 用于检测胃癌的组合物及其试剂盒和用途
US20080124735A1 (en) Method for detection of one or more CpG positions
CN112501255A (zh) 一种多位点miRNA联合检测方法
Li et al. DNAzyme based visual detection of DNA methylation
Liu et al. A novel DNA methylation biosensor by combination of isothermal amplification and lateral flow device
JP2022530140A (ja) ハイブリダイゼーション組成物ならびに組成物を調製および使用するための方法
EP3447495B2 (en) Papanicolaou test for ovarian and endometrial cancers
WO2021091239A1 (ko) 대장암 검출 방법
Wang et al. Protocol for assaying chromatin accessibility using ATAC-seq in plants
CN113846168B (zh) 一种原发性肝癌的分子标记物的检测试剂及其应用
WO2005021743A1 (ja) 核酸増幅用プライマー及びこれを用いた大腸癌の検査方法
EP1914320A2 (en) A method for detection of one or more CpG positions
CN112430643A (zh) 一种基于等温扩增的miRNA多位点联合检测方法
Burbulis et al. Improved molecular karyotyping in glioblastoma
Hackel et al. Interphase cytogenetics using fluorescence in situ hybridization: an overview of its application to diffuse and solid tissue

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913891

Country of ref document: EP

Kind code of ref document: A1