WO2023124481A1 - 一种大面积纳米盘的制备方法 - Google Patents

一种大面积纳米盘的制备方法 Download PDF

Info

Publication number
WO2023124481A1
WO2023124481A1 PCT/CN2022/127958 CN2022127958W WO2023124481A1 WO 2023124481 A1 WO2023124481 A1 WO 2023124481A1 CN 2022127958 W CN2022127958 W CN 2022127958W WO 2023124481 A1 WO2023124481 A1 WO 2023124481A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
film
layer
metal
polystyrene microsphere
Prior art date
Application number
PCT/CN2022/127958
Other languages
English (en)
French (fr)
Inventor
陈凯
马楚荣
赵峰
Original Assignee
暨南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 暨南大学 filed Critical 暨南大学
Publication of WO2023124481A1 publication Critical patent/WO2023124481A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0005Separation of the coating from the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/584Non-reactive treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • C23C14/588Removal of material by mechanical treatment

Definitions

  • the invention relates to the field of preparation of nano-disc structures, and more specifically, to a preparation method of large-area nano-discs.
  • Metal and semiconductor nanodisk structures use surface plasmon resonance and Mie resonance effects to break through the diffraction limit and localize the free light field at the sub-wavelength scale.
  • a method for preparing silicon nanostructures based on dry etching and wet etching processes which includes: using a common silicon wafer or SOI material with a [001] crystal orientation as a substrate; depositing an insulating layer on the surface as a mask; Electron beam direct writing process or optical lithography prepares nano-thin line structure on the surface electron beam resist or photoresist; dry etching is carried out after development, and the layout pattern is transferred to the surface silicon; wet stripping ( sulfuric acid plus hydrogen peroxide), and then perform anisotropic wet etching on the surface silicon; by changing the etching depth and angle of dry etching, as well as the temperature and time of wet etching, the nanostructures of inverted tapered support arms and inclined cantilever beams are prepared .
  • the above method uses electron beam direct writing process or optical lithography to prepare nano thin line structure on the electron beam resist or photoresist on the surface of the substrate; dry etching is carried out after development, and the layout pattern is transferred to the surface silicon.
  • the electron beam direct writing process or the optical lithography method requires the use of large-scale equipment, which is costly, and the preparation of nanostructures written in dots takes a long time and has low efficiency.
  • dry etching also requires large-scale equipment, and requires special gases to generate plasma, which will cause environmental pollution.
  • the invention provides a method for preparing a large-area nano-disc to overcome the defects of low preparation efficiency, high cost and environmental pollution in the prior art.
  • the present invention proposes a method for preparing a large-area nanodisk, comprising:
  • the polystyrene microsphere colloidal solution clean the substrate, and spin-coat the polystyrene microsphere colloidal solution on the clean substrate to obtain the polystyrene microsphere substrate; prepare the target nanodisc structure according to the Select the corresponding angle for the ratio of horizontal and vertical dimensions, and deposit a layer of metal film on the surface of the polystyrene microsphere substrate; perform microsphere removal treatment on the polystyrene microsphere substrate deposited with a layer of metal film, to obtain a metal hole film, and Re-depositing a layer of material film on the surface of the metal hole film, and then peeling off the metal film and the material film to obtain the first nano-disk structure; or, depositing a layer of metal film on the surface of the polystyrene microsphere substrate Depositing another layer of material film directly, and then peeling off the metal film and the material film to obtain the second nano-disc structure.
  • the substrate is pretreated with polystyrene microspheres to obtain a polystyrene microsphere substrate, and a layer of metal film and a layer of material are successively deposited on the surface of the polystyrene microsphere substrate by using the coating technology.
  • the thin film does not require the dry etching process required by the traditional nano-disk preparation method, and a large-area nano-disk structure can be obtained by peeling off the metal film and the material film, thereby avoiding environmental pollution.
  • the preparation efficiency of the nanodisc structure is greatly improved and the preparation cost is reduced.
  • configuring the colloidal solution of polystyrene microspheres specifically includes: centrifuging the colloidal solution of polystyrene microspheres at high speed to remove the upper aqueous solution; diluting the colloidal polystyrene microspheres after removing the aqueous solution with ethanol solution, and ultrasonically Processing to obtain polystyrene microsphere colloidal solution of desired concentration.
  • cleaning the substrate specifically includes: placing the substrate in a mixed solution of ammonia water, hydrogen peroxide and deionized water with a volume ratio of 1:1:5, and standing it under the condition of 60-80°C 5-30 minutes, then use nitrogen to blow dry the substrate, and fix the dried substrate on the glue coater.
  • the corresponding angle is selected according to the ratio of the horizontal and vertical dimensions of the target nanodisk structure, and the method of depositing a metal thin film on the surface of the polystyrene microsphere substrate includes oblique deposition and vertical deposition.
  • the first nanodisc structure includes a nanodisc structure and a nanoellipse disc structure; wherein: the polystyrene microsphere substrate after depositing a layer of metal film in a vertical deposition manner is subjected to microsphere removal treatment to obtain a metal hole film, and deposit a layer of material film on the surface of the metal hole film, and then peel off the metal film and the material film to obtain a nanodisc structure; The ethylene microsphere substrate is subjected to microsphere removal treatment to obtain a metal hole film, and a layer of material film is deposited on the surface of the metal hole film, and finally the metal film and the material film are peeled off to obtain a nano-ellipse disk structure.
  • the second nano-disk structure is a nano-lunar disc structure; wherein: a layer of material film is directly deposited on the surface of the polystyrene microsphere substrate after depositing a layer of metal film in an oblique deposition mode, and then the The metal film and the material film are peeled off to obtain a nano-lunate disc structure.
  • the microsphere removal treatment is carried out on the polystyrene microsphere substrate after depositing a layer of metal film, comprising the following steps: soaking the polystyrene microsphere substrate after depositing a layer of metal film in isopropanol solution , and then scrape off the polystyrene microspheres on the surface of the polystyrene microsphere substrate with a polydimethylsiloxane sheet.
  • the material film is a metal material film or a semiconductor material film.
  • the metal film and the material film are peeled off using an adhesive tape.
  • the substrate is quartz, ITO conductive glass or silicon wafer.
  • the beneficial effect of the technical solution of the present invention is: the substrate is pretreated with polystyrene microspheres to obtain a polystyrene microsphere substrate, and the coating technology is used to coat the polystyrene microsphere substrate A layer of metal film and a layer of material film are deposited successively on the surface, which does not require the dry etching process required by the traditional nanodisk preparation method. By peeling off the metal film and the material film, a large-area nanometer disk can be obtained. Disk structure, to avoid environmental pollution. Compared with the existing electron beam lithography and focused ion beam etching methods, the preparation efficiency of the nanodisk structure is greatly improved and the preparation cost is reduced.
  • Fig. 1 is a flow chart of the preparation method of large-area nanodisk.
  • Fig. 2 is a flow chart of preparing large-area nano-elliptical disk structures and nano-lunar disk structures.
  • Fig. 3 is a scanning electron microscope image of the nano-elliptical disk structure and dark field scattering spectra excited by different polarization directions of the nano-elliptical disk structure.
  • Fig. 4 is a scanning electron microscope image of the nano-lunar disk structure and dark field scattering spectra excited by different polarization directions of the nano-elliptical disk structure.
  • Fig. 5 is a flow chart of preparing the nanodisc structure.
  • Figure 6 is a scanning electron microscope image of metallic and semiconductor nanodisc structures.
  • Figure 7 shows the dark field scattering spectra of metal and semiconductor nanodisc structures.
  • this embodiment proposes a method for preparing a large-area nanodisk, including:
  • the polystyrene microsphere substrate deposited with a layer of metal film is subjected to microsphere removal treatment to obtain a metal hole film, and a layer of material film is deposited on the surface of the metal hole film, and then the metal film and the material film are subjected to peeled off to obtain the first nanodisk structure.
  • a layer of material film is directly deposited on the surface of the polystyrene microsphere substrate on which a metal film is deposited, and then the metal film and the material film are peeled off to obtain the second nanodisk structure.
  • This embodiment proposes a method for preparing a large-area nanodisk, including preparing a nano-lunar disc structure and a nano-elliptical disc structure, specifically including:
  • the diameter of polystyrene microspheres is 100-1000 nm; the speed of high-speed centrifugation is 5000 rpm, the centrifugation time is 10 minutes, and the concentration of polystyrene microsphere colloid solution is 1.5 ⁇ 10 -5 w/v .
  • the prepared polystyrene microsphere colloidal solution was spin-coated and dispersed on a clean substrate to obtain a polystyrene microsphere substrate.
  • the substrate is quartz, ITO conductive glass or silicon wafer, and the area of the substrate is 1-10 cm 2 .
  • Figure 2 is a flow chart for preparing a large nano-elliptical disc structure and a nano-lunar disc structure, a metal film is deposited on the surface of the polystyrene microsphere substrate in an oblique deposition mode, and then a metal film will be deposited
  • the final polystyrene microsphere substrate was soaked in isopropanol solution, and then the polystyrene microspheres on the surface of the polystyrene microsphere substrate were scraped off with a polydimethylsiloxane sheet to obtain a metal hole film, and then A layer of material film is deposited on the surface of the metal hole film, and finally the metal film and the material film are peeled off to obtain a nano-ellipse disk structure.
  • Figure 3(a) is a scanning electron microscope image of the nano-elliptical disk structure
  • Figure 3(b) is the dark field scattering spectrum excited by different polarization directions of the nano-elliptical disk structure.
  • the oblique deposition angle of the metal thin film can be adjusted according to the ratio of horizontal and vertical dimensions of the target nanodisk structure. For example, to prepare an elliptical disk with a target nanodisk structure whose aspect ratio is 2:1, the angle of oblique deposition of the metal film should be adjusted to 60°.
  • a metal thin film is deposited on the surface of the polystyrene microsphere substrate in an oblique deposition manner, and then a material thin film is directly deposited, and then the metal thin film and the material thin film are peeled off to obtain a nano-lunate disc structure.
  • Figure 4(a) is a scanning electron microscope image of the nano-lunar disk structure
  • Figure 4(b) is the dark-field scattering spectrum excited by different polarization directions of the nano-lunar disk structure.
  • the metal thin film is gold or copper thin film.
  • the deposition method of electron beam evaporation is used, and the deposition thickness is less than half of the diameter of the polystyrene microsphere. For example: when the diameter of the polystyrene microsphere is 150nm, the thickness of the metal film is 70nm.
  • the material film includes a metal material film such as gold, silver, aluminum or copper, and a semiconductor material film such as silicon, germanium, titanium dioxide or tungsten disulfide.
  • the method for depositing the metal material is electron beam evaporation, and the method for depositing the semiconductor material is magnetron sputtering, and the thickness of the second layer of material film is smaller than that of the first layer of metal film.
  • gold and silver are deposited as metal materials, an adhesion layer with a thickness of several nanometers needs to be deposited in advance, and the material of the adhesion layer is chromium, titanium or nickel.
  • 3M scotch tape is used to peel off the metal film and the material film to obtain a nanodisk structure. Because the bonding force between the metal film and the material film is greater than the bonding force between the metal film and the substrate, the two layers of films can be peeled off the surface of the substrate simultaneously by using an adhesive tape.
  • the thicknesses of the metal thin film and the material thin film are controlled by the power and time of electron beam coating and magnetron sputtering metal and semiconductor targets.
  • This embodiment proposes a method for preparing a large-area nanodisc, including preparing a nanodisc structure, specifically including:
  • FIG. 5 is a flow chart of preparing the nanodisc structure.
  • the oxane sheet scrapes off the polystyrene microspheres on the surface of the polystyrene microsphere substrate to obtain a metal hole film, then deposits a layer of material film on the surface of the metal hole film, and finally peels off the metal film and the material film , to obtain the nanodisc structure.
  • the material film adopts gold, silver and aluminum metal materials, and silicon, titanium dioxide and tungsten disulfide semiconductor materials, and different metal and semiconductor nanodisk structures are prepared, as shown in Figure 6 (a)- Figure 6 (f ), Fig. 6(a)-Fig. 6(f) are scanning electron microscope images of gold, silver, aluminum, silicon, titanium dioxide and tungsten disulfide nanodisc structures, respectively.
  • Figure 7 is the dark field scattering spectrum of metal and semiconductor nanodisc structures, wherein Figure 7 (a) is the dark field scattering spectrum of aluminum, silver and gold nanodisc structures, all of which have a diameter of 150nm, The heights are all 35nm; Figure 7(b) is the dark field scattering spectrum of silicon nanodisk structures with three different diameters, the diameters are 250, 300, 350nm and the height is 40nm; Figure 7(c) is the titanium dioxide with three different heights Dark field scattering spectra of nanodisk structures with diameters of 300 nm and heights of 50, 60, and 70 nm.
  • the above-mentioned metal and semiconductor nanodisk structures can be grown on ITO, quartz, silicon, and other substrates with high quality, with complete geometric structures, and can realize tunable plasmon resonance modes and Mie resonances mode excitation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

本发明提出一种大面积纳米盘的制备方法,包括:配置聚苯乙烯微球胶体溶液,将所述胶体溶液旋涂分散在干净的衬底上;选择不同的角度在聚苯乙烯微球衬底表面沉积一层金属薄膜;对沉积有一层金属薄膜的聚苯乙烯微球衬底进行微球去除处理,并在金属孔薄膜表面再沉积一层材料薄膜,然后对两层薄膜进行剥离,得到第一纳米盘结构;在沉积一层金属薄膜后的聚苯乙烯微球衬底表面直接再沉积一层材料薄膜,然后对两层薄膜进行剥离,得到第二纳米盘结构。相比已有的电子束光刻和聚焦离子束刻蚀法,不需要传统纳米盘制备方法所需的干法刻蚀工艺,大大提高了纳米盘结构的制备效率以及降低了制备成本。

Description

一种大面积纳米盘的制备方法 技术领域
本发明涉及纳米盘结构制备领域,更具体地,涉及一种大面积纳米盘的制备方法。
背景技术
金属和半导体纳米盘结构利用表面等离激元共振效应和米氏共振效应,能够突破衍射极限,将自由光场局域在亚波长尺度,在生物传感、医学检测以及全光集成领域有着广泛的应用。
现有一种基于干法刻蚀和湿法腐蚀工艺制备硅纳米结构的方法,包括:以[001]晶向的普通硅片或SOI材料为衬底;表面淀积一层绝缘层作为掩膜;电子束直写工艺或光学光刻在表面的电子束抗蚀剂或光刻胶上制备纳米细线条结构;显影后进行干法刻蚀,将版图图形转移到表层硅上;湿法去胶(硫酸加双氧水),再对表层硅进行各向异性湿法腐蚀;通过改变干法刻蚀的刻蚀深度和角度,以及湿法腐蚀的温度和时间制备倒锥度支撑臂和倾斜悬臂梁的纳米结构。
上述方法利用电子束直写工艺或光学光刻在衬底表面的电子束抗蚀剂或光刻胶上制备纳米细线条结构;显影后进行干法刻蚀,将版图图形转移到表层硅上。然而,电子束直写工艺或光学光刻方法需要用到大型仪器,成本高且其点点写入的制备纳米结构耗时长,效率低。另外干法刻蚀同样也要用到大型仪器,且需要特殊气体产生等离子体,会带来环境污染。
发明内容
本发明为克服现有技术存在的纳米盘制备效率低和成本高,以及会造成环境污染的缺陷,提供一种大面积纳米盘的制备方法。
为解决上述技术问题,本发明的技术方案如下:
本发明提出一种大面积纳米盘的制备方法,包括:
配置聚苯乙烯微球胶体溶液;对衬底进行清洁处理,将聚苯乙烯微球胶体溶液旋涂分散在干净的衬底上,得到聚苯乙烯微球衬底;根据制备目标纳米盘结构的横纵尺寸比值选择相应的角度,在聚苯乙烯微球衬底表面沉积一层金属薄膜;对沉积有一层金属薄膜的聚苯乙烯微球衬底进行微球去除处理,得到金属孔薄膜, 并在金属孔薄膜表面再沉积一层材料薄膜,然后对所述金属薄膜和所述材料薄膜进行剥离,得到第一纳米盘结构;或,在沉积有一层金属薄膜的聚苯乙烯微球衬底表面直接再沉积一层材料薄膜,然后对所述金属薄膜和所述材料薄膜进行剥离,得到第二纳米盘结构。
通过上述技术方案,利用聚苯乙烯微球对衬底进行预处理,得到聚苯乙烯微球衬底,并利用镀膜技术在聚苯乙烯微球衬底表面先后沉积一层金属薄膜和一层材料薄膜,不需要传统纳米盘制备方法所需的干法刻蚀工艺,通过对所述金属薄膜和所述材料薄膜进行剥离,即可得到大面积的纳米盘结构,避免了环境污染。相比已有的电子束光刻和聚焦离子束刻蚀法,大大提高了纳米盘结构的制备效率以及降低了制备成本。
优选地,配置聚苯乙烯微球胶体溶液具体包括:将聚苯乙烯微球胶体溶液进行高速离心,去除上层水溶液;使用乙醇溶液对去除水溶液后的聚苯乙烯微球胶体进行稀释,并进行超声处理,得到所需浓度的聚苯乙烯微球胶体溶液。
优选地,对衬底进行清洁处理具体包括:将衬底放置于体积比为1:1:5的氨水、过氧化氢和去离子水的混合溶液中,在60~80℃的条件下静置5-30分钟,然后使用氮气吹干衬底,将吹干后的衬底固定在匀胶机上。
优选地,根据制备目标纳米盘结构的横纵尺寸比值选择相应的角度,在聚苯乙烯微球衬底表面沉积一层金属薄膜的方式包括倾斜沉积和垂直沉积。
优选地,所述第一纳米盘结构包括纳米圆盘结构和纳米椭圆盘结构;其中:对以垂直沉积方式沉积一层金属薄膜后的聚苯乙烯微球衬底进行微球去除处理,得到金属孔薄膜,并在金属孔薄膜表面再沉积一层材料薄膜,然后对所述金属薄膜和所述材料薄膜进行剥离,得到纳米圆盘结构;对以倾斜沉积方式沉积一层金属薄膜后的聚苯乙烯微球衬底进行微球去除处理,得到金属孔薄膜,并在金属孔薄膜表面再沉积一层材料薄膜,最后对所述金属薄膜和所述材料薄膜进行剥离,得到纳米椭圆盘结构。
优选地,所述第二纳米盘结构为纳米月牙盘结构;其中:对以倾斜沉积方式沉积一层金属薄膜后的聚苯乙烯微球衬底表面直接再沉积一层材料薄膜,然后对所述金属薄膜和所述材料薄膜进行剥离,得到纳米月牙盘结构。
优选地,对沉积一层金属薄膜后的聚苯乙烯微球衬底进行微球去除处理,包括以下步骤:将沉积一层金属薄膜后的聚苯乙烯微球衬底浸泡在异丙醇溶液中,然后用聚二甲基硅氧烷薄片刮除聚苯乙烯微球衬底表面的聚苯乙烯微球。
优选地,所述材料薄膜为金属材料薄膜或半导体材料薄膜。
优选地,使用胶带对所述金属薄膜和所述材料薄膜进行剥离。
优选地,所述衬底为石英、ITO导电玻璃或硅片。
与现有技术相比,本发明技术方案的有益效果是:利用聚苯乙烯微球对衬底进行预处理,得到聚苯乙烯微球衬底,并利用镀膜技术在聚苯乙烯微球衬底表面先后沉积一层金属薄膜和一层材料薄膜,不需要传统纳米盘制备方法所需的干法刻蚀工艺,通过对所述金属薄膜和所述材料薄膜进行剥离,即可得到大面积的纳米盘结构,避免了环境污染。相比已有的电子束光刻和聚焦离子束刻蚀法,大大提高了纳米盘结构的制备效率以及降低了制备成本。
附图说明
图1为大面积纳米盘的制备方法的流程图。
图2为制备大面积纳米椭圆盘结构和纳米月牙盘结构的流程图。
图3为纳米椭圆盘结构的扫描电子显微镜图和纳米椭圆盘结构不同偏振方向激发的暗场散射光谱。
图4为纳米月牙盘结构的扫描电子显微镜图和纳米椭圆盘结构不同偏振方向激发的暗场散射光谱。
图5为制备纳米圆盘结构的流程图。
图6为金属和半导体纳米圆盘结构的扫描电子显微镜图。
图7为金属和半导体纳米圆盘结构的暗场散射光谱。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;
下面结合附图和实施例对本发明的技术方案做进一步的说明。
实施例1
请参阅图1,本实施例提出一种大面积纳米盘的制备方法,包括:
配置聚苯乙烯微球胶体溶液;对衬底进行清洁处理,将聚苯乙烯微球胶体溶 液旋涂分散在干净的衬底上,得到聚苯乙烯微球衬底;根据制备目标纳米盘结构的横纵尺寸比值选择相应的角度,在聚苯乙烯微球衬底表面沉积一层金属薄膜。
对沉积有一层金属薄膜的聚苯乙烯微球衬底进行微球去除处理,得到金属孔薄膜,并在金属孔薄膜表面再沉积一层材料薄膜,然后对所述金属薄膜和所述材料薄膜进行剥离,得到第一纳米盘结构。
或,在沉积有一层金属薄膜的聚苯乙烯微球衬底表面直接再沉积一层材料薄膜,然后对所述金属薄膜和所述材料薄膜进行剥离,得到第二纳米盘结构。
利用聚苯乙烯微球对衬底进行预处理,得到聚苯乙烯微球衬底,并利用镀膜技术在聚苯乙烯微球衬底表面先后沉积一层金属薄膜和一层材料薄膜,不需要传统纳米盘制备方法所需的干法刻蚀工艺,通过对所述金属薄膜和所述材料薄膜进行剥离,即可得到大面积的纳米盘结构,避免了环境污染。相比已有的电子束光刻和聚焦离子束刻蚀法,大大提高了纳米盘结构的制备效率以及降低了制备成本。
实施例2
本实施例提出一种大面积纳米盘的制备方法,包括制备纳米月牙盘结构和纳米椭圆盘结构,具体包括:
将聚苯乙烯微球胶体溶液进行高速离心,去除上层水溶液;使用乙醇溶液对去除水溶液后的聚苯乙烯微球胶体进行稀释,并进行超声处理,得到所需浓度的聚苯乙烯微球胶体溶液。
本实施例中,聚苯乙烯微球的直径为100-1000nm;高速离心的速率为5000转/min,离心时间为10分钟,聚苯乙烯微球胶体溶液的浓度为1.5x10 -5w/v。
将衬底放置于体积比为1:1:5的氨水、过氧化氢和去离子水的混合溶液中,在60~80℃的条件下静置5-30分钟,然后使用氮气吹干衬底,将吹干后的衬底固定在匀胶机上,得到干净的衬底。将配置好的聚苯乙烯微球胶体溶液旋涂分散在干净的衬底上,得到聚苯乙烯微球衬底。
本实施例中,所述衬底为石英、ITO导电玻璃或硅片,衬底的面积为1~10cm 2
如图2所示,图2为制备大纳米椭圆盘结构和纳米月牙盘结构的流程图,在聚苯乙烯微球衬底表面以倾斜沉积方式沉积一层金属薄膜,然后将沉积一层金属薄膜后的聚苯乙烯微球衬底浸泡在异丙醇溶液中,再用聚二甲基硅氧烷薄片刮除 聚苯乙烯微球衬底表面的聚苯乙烯微球,得到金属孔薄膜,然后在金属孔薄膜表面再沉积一层材料薄膜,最后对所述金属薄膜和所述材料薄膜进行剥离,得到纳米椭圆盘结构。如图3所示,图3(a)为纳米椭圆盘结构的扫描电子显微镜图,图3(b)为纳米椭圆盘结构不同偏振方向激发的暗场散射光谱。金属薄膜倾斜沉积的角度可以根据制备目标纳米盘结构的横纵尺寸比值做相应调整。例如:制备目标纳米盘结构的横纵尺寸比为2:1的椭圆盘,则金属薄膜倾斜沉积的角度应调整为60°。
在聚苯乙烯微球衬底表面以倾斜沉积方式沉积一层金属薄膜,然后直接再沉积一层材料薄膜,然后对所述金属薄膜和所述材料薄膜进行剥离,得到纳米月牙盘结构。如图4所示,图4(a)为纳米月牙盘结构的扫描电子显微镜图,图4(b)为纳米月牙盘结构不同偏振方向激发的暗场散射光谱。
从图3和图4可以看出,通过控制第一次金属薄膜沉积的倾斜角度,实现纳米月牙盘结构和纳米椭圆盘结构的制备,丰富了纳米结构的形状,这两种结构体现出了优秀的偏振特性,通过控制入射光的的电场偏振方向,可以实现不同波长共振行为的调制,为纳米天线的可调谐设计提供了设计思路。
本实施例中,所述金属薄膜为金或铜薄膜。在沉积金属薄膜时,使用电子束蒸镀的沉积方法,沉积厚度小于聚苯乙烯微球直径的一半。例如:当聚苯乙烯微球直径为150nm时,则金属薄膜的厚度为70nm。
本实施例中,所述材料薄膜包括金、银、铝或铜等金属材料薄膜,以及硅、锗、二氧化钛或二硫化钨等半导体材料薄膜。沉积金属材料的方法为电子束蒸镀,沉积半导体材料的方法为磁控溅射,且第二层材料薄膜的厚度要小于第一层金属薄膜的厚度。另外,如果沉积金属材料时金和银,则需要预先沉积几个纳米厚粘附层,所述粘附层材料为铬、钛或镍。
本实施例中,使用3M scotch胶带对所述金属薄膜和所述材料薄膜进行剥离,得到纳米盘结构。因为所述金属薄膜和所述材料薄膜之间的结合力大于金属薄膜与衬底之间得结合力,所以利用胶带可以将两层薄膜同时剥离衬底表面。所述所述金属薄膜和所述材料薄膜的厚度通过电子束镀膜和磁控溅射金属和半导体靶材的功率和时间控制。
利用聚苯乙烯微球对衬底进行预处理,得到聚苯乙烯微球衬底,并利用镀膜技术在聚苯乙烯微球衬底表面先后沉积一层金属薄膜和一层材料薄膜,不需要传统纳米盘制备方法所需的干法刻蚀工艺,通过对所述金属薄膜和所述材料薄膜进行剥离,即可得到大面积的纳米盘结构,避免了环境污染。相比已有的电子束光刻和聚焦离子束刻蚀法,大大提高了纳米盘结构的制备效率以及降低了制备成本。
实施例3
本实施例提出一种大面积纳米盘的制备方法,包括制备纳米圆盘结构,具体包括:
如图5所示,图5为制备纳米圆盘结构的流程图。在聚苯乙烯微球衬底表面以垂直沉积方式沉积一层金属薄膜,然后将沉积一层金属薄膜后的聚苯乙烯微球衬底浸泡在异丙醇溶液中,再用聚二甲基硅氧烷薄片刮除聚苯乙烯微球衬底表面的聚苯乙烯微球,得到金属孔薄膜,然后在金属孔薄膜表面沉积一层材料薄膜,最后对所述金属薄膜和所述材料薄膜进行剥离,得到纳米圆盘结构。
本实施例中,材料薄膜采用金、银和铝金属材料,以及硅、二氧化钛和二硫化钨半导体材料,制备了不同的金属和半导体纳米圆盘结构,如图6(a)-图6(f)所示,图6(a)-图6(f)分别为金、银、铝、硅、二氧化钛和二硫化钨纳米圆盘结构的扫描电子显微镜图。如图7所示,图7为金属和半导体纳米圆盘结构的暗场散射光谱,其中图7(a)为铝、银和金纳米圆盘结构的暗场散射光谱,其直径皆为150nm,高度皆为35nm;图7(b)为三个不同直径的硅纳米圆盘结构的暗场散射光谱,其直径分别为250,300,350nm,高度为40nm;图7(c)为三个不同高度的二氧化钛纳米圆盘结构的暗场散射光谱,其直径分别为300nm,高度分别为50,60,70nm。从图7可以看出上述金属和半导体纳米圆盘结构可以在ITO、石英、硅以及其它衬底上高质量生长,几何结构完整,且能够实现可调谐的等离激元共振模式和米氏共振模式的激发。
利用聚苯乙烯微球对衬底进行预处理,得到聚苯乙烯微球衬底,并利用镀膜技术在聚苯乙烯微球衬底表面先后沉积一层金属薄膜和一层材料薄膜,不需要传统纳米盘制备方法所需的干法刻蚀工艺,通过对所述金属薄膜和所述材料薄膜进行剥离,即可得到大面积的纳米盘结构,避免了环境污染。相比已有的电子束光 刻和聚焦离子束刻蚀法,大大提高了纳米盘结构的制备效率以及降低了制备成本。
附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制;
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种大面积纳米盘的制备方法,其特征在于,包括:
    配置聚苯乙烯微球胶体溶液;
    对衬底进行清洁处理,将聚苯乙烯微球胶体溶液旋涂分散在干净的衬底上,得到聚苯乙烯微球衬底;
    根据制备目标纳米盘结构的横纵尺寸比值选择相应的角度,在聚苯乙烯微球衬底表面沉积一层金属薄膜;
    对沉积有一层金属薄膜的聚苯乙烯微球衬底进行微球去除处理,得到金属孔薄膜,并在金属孔薄膜表面再沉积一层材料薄膜,然后对所述金属薄膜和所述材料薄膜进行剥离,得到第一纳米盘结构;
    或,在沉积有一层金属薄膜的聚苯乙烯微球衬底表面直接再沉积一层材料薄膜,然后对所述金属薄膜和所述材料薄膜进行剥离,得到第二纳米盘结构。
  2. 根据权利要求1所述的大面积纳米盘的制备方法,其特征在于,配置聚苯乙烯微球胶体溶液具体包括:
    将聚苯乙烯微球胶体溶液进行高速离心,去除上层水溶液;
    使用乙醇溶液对去除水溶液后的聚苯乙烯微球胶体进行稀释,并进行超声处理,得到所需浓度的聚苯乙烯微球胶体溶液。
  3. 根据权利要求1所述的大面积纳米盘的制备方法,其特征在于,对衬底进行清洁处理具体包括:
    将衬底放置于体积比为1:1:5的氨水、过氧化氢和去离子水的混合溶液中,在60~80℃的条件下静置5-30分钟,然后使用氮气吹干衬底,将吹干后的衬底固定在匀胶机上。
  4. 根据权利要求1所述的大面积纳米盘的制备方法,其特征在于,根据制备目标纳米盘结构的横纵尺寸比值选择相应的角度,在聚苯乙烯微球衬底表面沉积一层金属薄膜的方式包括倾斜沉积和垂直沉积。
  5. 根据权利要求4所述的大面积纳米盘的制备方法,其特征在于,所述第一纳米盘结构包括纳米圆盘结构和纳米椭圆盘结构;其中:
    对以垂直沉积方式沉积一层金属薄膜后的聚苯乙烯微球衬底进行微球去除处理,得到金属孔薄膜,并在金属孔薄膜表面再沉积一层材料薄膜,然后对所述 金属薄膜和所述材料薄膜进行剥离,得到纳米圆盘结构;
    对以倾斜沉积方式沉积一层金属薄膜后的聚苯乙烯微球衬底进行微球去除处理,得到金属孔薄膜,并在金属孔薄膜表面再沉积一层材料薄膜,最后对所述金属薄膜和所述材料薄膜进行剥离,得到纳米椭圆盘结构。
  6. 根据权利要求4所述的大面积纳米盘的制备方法,其特征在于,所述第二纳米盘结构为纳米月牙盘结构;其中:
    对以倾斜沉积方式沉积一层金属薄膜后的聚苯乙烯微球衬底表面直接再沉积一层材料薄膜,然后对所述金属薄膜和所述材料薄膜进行剥离,得到纳米月牙盘结构。
  7. 根据权利要求1所述的大面积纳米盘的制备方法,其特征在于,对沉积一层金属薄膜后的聚苯乙烯微球衬底进行微球去除处理,包括以下步骤:
    将沉积一层金属薄膜后的聚苯乙烯微球衬底浸泡在异丙醇溶液中,然后用聚二甲基硅氧烷薄片刮除聚苯乙烯微球衬底表面的聚苯乙烯微球。
  8. 根据权利要求1-7任一项所述的大面积纳米盘的制备方法,其特征在于,所述材料薄膜为金属材料薄膜或半导体材料薄膜。
  9. 根据权利要求8所述的大面积纳米盘的制备方法,使用胶带对所述金属薄膜和所述材料薄膜进行剥离。
  10. 根据权利要求1所述的大面积纳米盘的制备方法,其特征在于,所述衬底为石英、ITO导电玻璃或硅片。
PCT/CN2022/127958 2021-12-27 2022-10-27 一种大面积纳米盘的制备方法 WO2023124481A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111620496.9 2021-12-27
CN202111620496.9A CN114481043B (zh) 2021-12-27 2021-12-27 一种大面积纳米盘的制备方法

Publications (1)

Publication Number Publication Date
WO2023124481A1 true WO2023124481A1 (zh) 2023-07-06

Family

ID=81496189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127958 WO2023124481A1 (zh) 2021-12-27 2022-10-27 一种大面积纳米盘的制备方法

Country Status (2)

Country Link
CN (1) CN114481043B (zh)
WO (1) WO2023124481A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114481043B (zh) * 2021-12-27 2023-09-08 暨南大学 一种大面积纳米盘的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102530855A (zh) * 2012-02-14 2012-07-04 中国人民解放军国防科学技术大学 月牙形金属纳米结构的制备方法
US20130143407A1 (en) * 2011-12-06 2013-06-06 National Taiwan University Method for producing a thin single crystal silicon having large surface area
CN112179886A (zh) * 2020-09-01 2021-01-05 西安交通大学 金属纳米半球壳阵列的sers检测透明柔性基底及制备方法
CN114481043A (zh) * 2021-12-27 2022-05-13 暨南大学 一种大面积纳米盘的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102747320A (zh) * 2012-07-31 2012-10-24 武汉大学 贵金属纳米颗粒阵列的制备方法
DE102016114440B3 (de) * 2016-08-04 2017-09-28 Karlsruher Institut für Technologie SERS-Substrat und Verfahren zum Herstellen eines SERS-Substrats
CN110146485B (zh) * 2019-05-23 2021-08-31 中国科学院合肥物质科学研究院 金三角凹坑阵列材料及其制备方法和用途
KR20210081275A (ko) * 2019-12-23 2021-07-01 건국대학교 글로컬산학협력단 공유 기능화를 통해 질화붕소를 박리, 절단하여 질화붕소 나노디스크를 제조하는 방법
CN112499581B (zh) * 2020-11-12 2023-07-04 西安交通大学 一种表面增强拉曼散射衬底的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130143407A1 (en) * 2011-12-06 2013-06-06 National Taiwan University Method for producing a thin single crystal silicon having large surface area
CN102530855A (zh) * 2012-02-14 2012-07-04 中国人民解放军国防科学技术大学 月牙形金属纳米结构的制备方法
CN112179886A (zh) * 2020-09-01 2021-01-05 西安交通大学 金属纳米半球壳阵列的sers检测透明柔性基底及制备方法
CN114481043A (zh) * 2021-12-27 2022-05-13 暨南大学 一种大面积纳米盘的制备方法

Also Published As

Publication number Publication date
CN114481043B (zh) 2023-09-08
CN114481043A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2023124481A1 (zh) 一种大面积纳米盘的制备方法
CN108754418B (zh) 一种具有手性旋光性质的自支持手性纳米中空锥阵列薄膜及其制备方法
CN107831941B (zh) 一种柔性触摸基板的制备方法和柔性触摸基板
US20140154464A1 (en) Graphene membrane with size-tunable nanoscale pores
US8101337B2 (en) Method of synthesizing ITO electron-beam resist and method of forming ITO pattern using the same
CN101295131B (zh) 一种在绝缘衬底上制备纳米结构的方法
JP2004513515A (ja) ホトレジストの改良形接着用アモルファス炭素層
CN102530846B (zh) 带有尖端的金属纳米带阵列的制备方法
CN111071985B (zh) 引入牺牲层的阳极氧化铝薄膜牢固金属纳米颗粒的方法
CN109052377B (zh) 一种大面积石墨烯的制备方法
CN115142021B (zh) 一种复合pi薄膜及其制备方法、光器件
KR101064900B1 (ko) 패턴 형성방법
CN101813884B (zh) 一种在非平整衬底表面制备纳米结构基质的方法
US20190256998A1 (en) Location-specific growth and transfer of single crystalline tmd monolayer arrays
CN114141941A (zh) 一种超导阵列结构的制备方法
CN114044486A (zh) 一种可倒置的手性中空纳米圆台阵列薄膜、制备方法及其应用
RU2656627C1 (ru) Способ селективного осаждения поликристаллического алмазного покрытия на кремниевые основания
JP2016082210A (ja) 樹脂フィルム層の剥離方法及び薄膜素子デバイスの製造方法
KR102272003B1 (ko) 기판 상의 패턴 형성방법 및 이에 따라 제조되는 패턴이 형성된 기판
CN108502840B (zh) 一种高效率制备环状纳米间隙有序阵列的方法
CN103204460B (zh) 基于激光干涉诱导交联反应的金属微纳结构的制备方法
CN118125371A (zh) 一种周期性金属纳米中空火山口结构模板及其制备方法和应用
TWI626210B (zh) 一種奈米器件的製備方法
TWI412615B (zh) 以自組裝有機分子膜改質之基板成長晶相透明導電氧化物的方法
TWI438143B (zh) 奈米光學天線陣列的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913744

Country of ref document: EP

Kind code of ref document: A1