CN114481043A - 一种大面积纳米盘的制备方法 - Google Patents
一种大面积纳米盘的制备方法 Download PDFInfo
- Publication number
- CN114481043A CN114481043A CN202111620496.9A CN202111620496A CN114481043A CN 114481043 A CN114481043 A CN 114481043A CN 202111620496 A CN202111620496 A CN 202111620496A CN 114481043 A CN114481043 A CN 114481043A
- Authority
- CN
- China
- Prior art keywords
- film
- substrate
- polystyrene microsphere
- layer
- metal film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/28—Vacuum evaporation by wave energy or particle radiation
- C23C14/30—Vacuum evaporation by wave energy or particle radiation by electron bombardment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0005—Separation of the coating from the substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/024—Deposition of sublayers, e.g. to promote adhesion of the coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0623—Sulfides, selenides or tellurides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/083—Oxides of refractory metals or yttrium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/225—Oblique incidence of vaporised material on substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/584—Non-reactive treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5873—Removal of material
- C23C14/588—Removal of material by mechanical treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Toxicology (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
- Laminated Bodies (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
本发明提出一种大面积纳米盘的制备方法,包括:配置聚苯乙烯微球胶体溶液,将所述胶体溶液旋涂分散在干净的衬底上;选择不同的角度在聚苯乙烯微球衬底表面沉积一层金属薄膜;对沉积有一层金属薄膜的聚苯乙烯微球衬底进行微球去除处理,并在金属孔薄膜表面再沉积一层材料薄膜,然后对两层薄膜进行剥离,得到第一纳米盘结构;在沉积一层金属薄膜后的聚苯乙烯微球衬底表面直接再沉积一层材料薄膜,然后对两层薄膜进行剥离,得到第二纳米盘结构。相比已有的电子束光刻和聚焦离子束刻蚀法,不需要传统纳米盘制备方法所需的干法刻蚀工艺,大大提高了纳米盘结构的制备效率以及降低了制备成本。
Description
技术领域
本发明涉及纳米盘结构制备领域,更具体地,涉及一种大面积纳米盘的制备方法。
背景技术
金属和半导体纳米盘结构利用表面等离激元共振效应和米氏共振效应,能够突破衍射极限,将自由光场局域在亚波长尺度,在生物传感、医学检测以及全光集成领域有着广泛的应用。
现有一种基于干法刻蚀和湿法腐蚀工艺制备硅纳米结构的方法,包括:以[001]晶向的普通硅片或SOI材料为衬底;表面淀积一层绝缘层作为掩膜;电子束直写工艺或光学光刻在表面的电子束抗蚀剂或光刻胶上制备纳米细线条结构;显影后进行干法刻蚀,将版图图形转移到表层硅上;湿法去胶(硫酸加双氧水),再对表层硅进行各向异性湿法腐蚀;通过改变干法刻蚀的刻蚀深度和角度,以及湿法腐蚀的温度和时间制备倒锥度支撑臂和倾斜悬臂梁的纳米结构。
上述方法利用电子束直写工艺或光学光刻在衬底表面的电子束抗蚀剂或光刻胶上制备纳米细线条结构;显影后进行干法刻蚀,将版图图形转移到表层硅上。然而,电子束直写工艺或光学光刻方法需要用到大型仪器,成本高且其点点写入的制备纳米结构耗时长,效率低。另外干法刻蚀同样也要用到大型仪器,且需要特殊气体产生等离子体,会带来环境污染。
发明内容
本发明为克服现有技术存在的纳米盘制备效率低和成本高,以及会造成环境污染的缺陷,提供一种大面积纳米盘的制备方法。
为解决上述技术问题,本发明的技术方案如下:
本发明提出一种大面积纳米盘的制备方法,包括:
配置聚苯乙烯微球胶体溶液;对衬底进行清洁处理,将聚苯乙烯微球胶体溶液旋涂分散在干净的衬底上,得到聚苯乙烯微球衬底;根据制备目标纳米盘结构的横纵尺寸比值选择相应的角度,在聚苯乙烯微球衬底表面沉积一层金属薄膜;对沉积有一层金属薄膜的聚苯乙烯微球衬底进行微球去除处理,得到金属孔薄膜,并在金属孔薄膜表面再沉积一层材料薄膜,然后对所述金属薄膜和所述材料薄膜进行剥离,得到第一纳米盘结构;或,在沉积有一层金属薄膜的聚苯乙烯微球衬底表面直接再沉积一层材料薄膜,然后对所述金属薄膜和所述材料薄膜进行剥离,得到第二纳米盘结构。
通过上述技术方案,利用聚苯乙烯微球对衬底进行预处理,得到聚苯乙烯微球衬底,并利用镀膜技术在聚苯乙烯微球衬底表面先后沉积一层金属薄膜和一层材料薄膜,不需要传统纳米盘制备方法所需的干法刻蚀工艺,通过对所述金属薄膜和所述材料薄膜进行剥离,即可得到大面积的纳米盘结构,避免了环境污染。相比已有的电子束光刻和聚焦离子束刻蚀法,大大提高了纳米盘结构的制备效率以及降低了制备成本。
优选地,配置聚苯乙烯微球胶体溶液具体包括:将聚苯乙烯微球胶体溶液进行高速离心,去除上层水溶液;使用乙醇溶液对去除水溶液后的聚苯乙烯微球胶体进行稀释,并进行超声处理,得到所需浓度的聚苯乙烯微球胶体溶液。
优选地,对衬底进行清洁处理具体包括:将衬底放置于体积比为1:1:5的氨水、过氧化氢和去离子水的混合溶液中,在60~80℃的条件下静置5-30分钟,然后使用氮气吹干衬底,将吹干后的衬底固定在匀胶机上。
优选地,根据制备目标纳米盘结构的横纵尺寸比值选择相应的角度,在聚苯乙烯微球衬底表面沉积一层金属薄膜的方式包括倾斜沉积和垂直沉积。
优选地,所述第一纳米盘结构包括纳米圆盘结构和纳米椭圆盘结构;其中:对以垂直沉积方式沉积一层金属薄膜后的聚苯乙烯微球衬底进行微球去除处理,得到金属孔薄膜,并在金属孔薄膜表面再沉积一层材料薄膜,然后对所述金属薄膜和所述材料薄膜进行剥离,得到纳米圆盘结构;对以倾斜沉积方式沉积一层金属薄膜后的聚苯乙烯微球衬底进行微球去除处理,得到金属孔薄膜,并在金属孔薄膜表面再沉积一层材料薄膜,最后对所述金属薄膜和所述材料薄膜进行剥离,得到纳米椭圆盘结构。
优选地,所述第二纳米盘结构为纳米月牙盘结构;其中:对以倾斜沉积方式沉积一层金属薄膜后的聚苯乙烯微球衬底表面直接再沉积一层材料薄膜,然后对所述金属薄膜和所述材料薄膜进行剥离,得到纳米月牙盘结构。
优选地,对沉积一层金属薄膜后的聚苯乙烯微球衬底进行微球去除处理,包括以下步骤:将沉积一层金属薄膜后的聚苯乙烯微球衬底浸泡在异丙醇溶液中,然后用聚二甲基硅氧烷薄片刮除聚苯乙烯微球衬底表面的聚苯乙烯微球。
优选地,所述材料薄膜为金属材料薄膜或半导体材料薄膜。
优选地,使用胶带对所述金属薄膜和所述材料薄膜进行剥离。
优选地,所述衬底为石英、ITO导电玻璃或硅片。
与现有技术相比,本发明技术方案的有益效果是:利用聚苯乙烯微球对衬底进行预处理,得到聚苯乙烯微球衬底,并利用镀膜技术在聚苯乙烯微球衬底表面先后沉积一层金属薄膜和一层材料薄膜,不需要传统纳米盘制备方法所需的干法刻蚀工艺,通过对所述金属薄膜和所述材料薄膜进行剥离,即可得到大面积的纳米盘结构,避免了环境污染。相比已有的电子束光刻和聚焦离子束刻蚀法,大大提高了纳米盘结构的制备效率以及降低了制备成本。
附图说明
图1为大面积纳米盘的制备方法的流程图。
图2为制备大面积纳米椭圆盘结构和纳米月牙盘结构的流程图。
图3为大面积纳米椭圆盘结构的扫描电子显微镜图和大面积纳米椭圆盘结构不同偏振方向激发的暗场散射光谱。
图4为大面积纳米月牙盘结构的扫描电子显微镜图和大面积纳米椭圆盘结构不同偏振方向激发的暗场散射光谱。
图5为制备大面积纳米圆盘结构的流程图。
图6为大面积金属和半导体纳米圆盘结构的扫描电子显微镜图。
图7为大面积金属和半导体纳米圆盘结构的暗场散射光谱。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;
下面结合附图和实施例对本发明的技术方案做进一步的说明。
实施例1
请参阅图1,本实施例提出一种大面积纳米盘的制备方法,包括:
配置聚苯乙烯微球胶体溶液;对衬底进行清洁处理,将聚苯乙烯微球胶体溶液旋涂分散在干净的衬底上,得到聚苯乙烯微球衬底;根据制备目标纳米盘结构的横纵尺寸比值选择相应的角度,在聚苯乙烯微球衬底表面沉积一层金属薄膜。
对沉积有一层金属薄膜的聚苯乙烯微球衬底进行微球去除处理,得到金属孔薄膜,并在金属孔薄膜表面再沉积一层材料薄膜,然后对所述金属薄膜和所述材料薄膜进行剥离,得到第一纳米盘结构。
或,在沉积有一层金属薄膜的聚苯乙烯微球衬底表面直接再沉积一层材料薄膜,然后对所述金属薄膜和所述材料薄膜进行剥离,得到第二纳米盘结构。
利用聚苯乙烯微球对衬底进行预处理,得到聚苯乙烯微球衬底,并利用镀膜技术在聚苯乙烯微球衬底表面先后沉积一层金属薄膜和一层材料薄膜,不需要传统纳米盘制备方法所需的干法刻蚀工艺,通过对所述金属薄膜和所述材料薄膜进行剥离,即可得到大面积的纳米盘结构,避免了环境污染。相比已有的电子束光刻和聚焦离子束刻蚀法,大大提高了纳米盘结构的制备效率以及降低了制备成本。
实施例2
本实施例提出一种大面积纳米盘的制备方法,包括制备大面积纳米月牙盘结构和大面积纳米椭圆盘结构,具体包括:
将聚苯乙烯微球胶体溶液进行高速离心,去除上层水溶液;使用乙醇溶液对去除水溶液后的聚苯乙烯微球胶体进行稀释,并进行超声处理,得到所需浓度的聚苯乙烯微球胶体溶液。
本实施例中,聚苯乙烯微球的直径为100-1000nm;高速离心的速率为5000转/min,离心时间为10分钟,聚苯乙烯微球胶体溶液的浓度为1.5x10-5w/v。
将衬底放置于体积比为1:1:5的氨水、过氧化氢和去离子水的混合溶液中,在60~80℃的条件下静置5-30分钟,然后使用氮气吹干衬底,将吹干后的衬底固定在匀胶机上,得到干净的衬底。将配置好的聚苯乙烯微球胶体溶液旋涂分散在干净的衬底上,得到聚苯乙烯微球衬底。
本实施例中,所述衬底为石英、ITO导电玻璃或硅片,衬底的面积为1~10cm2。
如图2所示,图2为制备大面积纳米椭圆盘结构和纳米月牙盘结构的流程图,在聚苯乙烯微球衬底表面以倾斜沉积方式沉积一层金属薄膜,然后将沉积一层金属薄膜后的聚苯乙烯微球衬底浸泡在异丙醇溶液中,再用聚二甲基硅氧烷薄片刮除聚苯乙烯微球衬底表面的聚苯乙烯微球,得到金属孔薄膜,然后在金属孔薄膜表面再沉积一层材料薄膜,最后对所述金属薄膜和所述材料薄膜进行剥离,得到大面积纳米椭圆盘结构。如图3所示,图3(a)为大面积纳米椭圆盘结构的扫描电子显微镜图,图3(b)为大面积纳米椭圆盘结构不同偏振方向激发的暗场散射光谱。金属薄膜倾斜沉积的角度可以根据制备目标纳米盘结构的横纵尺寸比值做相应调整。例如:制备目标纳米盘结构的横纵尺寸比为2:1的椭圆盘,则金属薄膜倾斜沉积的角度应调整为60°。
在聚苯乙烯微球衬底表面以倾斜沉积方式沉积一层金属薄膜,然后直接再沉积一层材料薄膜,然后对所述金属薄膜和所述材料薄膜进行剥离,得到大面积纳米月牙盘结构。如图4所示,图4(a)为大面积纳米月牙盘结构的扫描电子显微镜图,图4(b)为大面积纳米月牙盘结构不同偏振方向激发的暗场散射光谱。
从图3和图4可以看出,通过控制第一次金属薄膜沉积的倾斜角度,实现纳米月牙盘结构和纳米椭圆盘结构的制备,丰富了纳米结构的形状,这两种结构体现出了优秀的偏振特性,通过控制入射光的的电场偏振方向,可以实现不同波长共振行为的调制,为纳米天线的可调谐设计提供了设计思路。
本实施例中,所述金属薄膜为金或铜薄膜。在沉积金属薄膜时,使用电子束蒸镀的沉积方法,沉积厚度小于聚苯乙烯微球直径的一半。例如:当聚苯乙烯微球直径为150nm时,则金属薄膜的厚度为70nm。
本实施例中,所述材料薄膜包括金、银、铝或铜等金属材料薄膜,以及硅、锗、二氧化钛或二硫化钨等半导体材料薄膜。沉积金属材料的方法为电子束蒸镀,沉积半导体材料的方法为磁控溅射,且第二层材料薄膜的厚度要小于第一层金属薄膜的厚度。另外,如果沉积金属材料时金和银,则需要预先沉积几个纳米厚粘附层,所述粘附层材料为铬、钛或镍。
本实施例中,使用3M scotch胶带对所述金属薄膜和所述材料薄膜进行剥离,得到纳米盘结构。因为所述金属薄膜和所述材料薄膜之间的结合力大于金属薄膜与衬底之间得结合力,所以利用胶带可以将两层薄膜同时剥离衬底表面。所述所述金属薄膜和所述材料薄膜的厚度通过电子束镀膜和磁控溅射金属和半导体靶材的功率和时间控制。
利用聚苯乙烯微球对衬底进行预处理,得到聚苯乙烯微球衬底,并利用镀膜技术在聚苯乙烯微球衬底表面先后沉积一层金属薄膜和一层材料薄膜,不需要传统纳米盘制备方法所需的干法刻蚀工艺,通过对所述金属薄膜和所述材料薄膜进行剥离,即可得到大面积的纳米盘结构,避免了环境污染。相比已有的电子束光刻和聚焦离子束刻蚀法,大大提高了纳米盘结构的制备效率以及降低了制备成本。
实施例3
本实施例提出一种大面积纳米盘的制备方法,包括制备大面积纳米圆盘结构,具体包括:
如图5所示,图5为制备大面积纳米圆盘结构的流程图。在聚苯乙烯微球衬底表面以垂直沉积方式沉积一层金属薄膜,然后将沉积一层金属薄膜后的聚苯乙烯微球衬底浸泡在异丙醇溶液中,再用聚二甲基硅氧烷薄片刮除聚苯乙烯微球衬底表面的聚苯乙烯微球,得到金属孔薄膜,然后在金属孔薄膜表面沉积一层材料薄膜,最后对所述金属薄膜和所述材料薄膜进行剥离,得到大面积纳米圆盘结构。
本实施例中,材料薄膜采用金、银和铝金属材料,以及硅、二氧化钛和二硫化钨半导体材料,制备了不同的金属和半导体纳米圆盘结构,如图6(a)-图6(f)所示,图6(a)-图6(f)分别为金、银、铝、硅、二氧化钛和二硫化钨纳米圆盘结构的扫描电子显微镜图。如图7所示,图7为大面积金属和半导体纳米圆盘结构的暗场散射光谱,其中图7(a)为铝、银和金纳米圆盘结构的暗场散射光谱,其直径皆为150nm,高度皆为35nm;图7(b)为三个不同直径的硅纳米圆盘结构的暗场散射光谱,其直径分别为250,300,350nm,高度为40nm;图7(c)为三个不同高度的二氧化钛纳米圆盘结构的暗场散射光谱,其直径分别为300nm,高度分别为50,60,70nm。从图7可以看出上述金属和半导体纳米圆盘结构可以在ITO、石英、硅以及其它衬底上高质量生长,几何结构完整,且能够实现可调谐的等离激元共振模式和米氏共振模式的激发。
利用聚苯乙烯微球对衬底进行预处理,得到聚苯乙烯微球衬底,并利用镀膜技术在聚苯乙烯微球衬底表面先后沉积一层金属薄膜和一层材料薄膜,不需要传统纳米盘制备方法所需的干法刻蚀工艺,通过对所述金属薄膜和所述材料薄膜进行剥离,即可得到大面积的纳米盘结构,避免了环境污染。相比已有的电子束光刻和聚焦离子束刻蚀法,大大提高了纳米盘结构的制备效率以及降低了制备成本。
附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制;
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。
Claims (10)
1.一种大面积纳米盘的制备方法,其特征在于,包括:
配置聚苯乙烯微球胶体溶液;
对衬底进行清洁处理,将聚苯乙烯微球胶体溶液旋涂分散在干净的衬底上,得到聚苯乙烯微球衬底;
根据制备目标纳米盘结构的横纵尺寸比值选择相应的角度,在聚苯乙烯微球衬底表面沉积一层金属薄膜;
对沉积有一层金属薄膜的聚苯乙烯微球衬底进行微球去除处理,得到金属孔薄膜,并在金属孔薄膜表面再沉积一层材料薄膜,然后对所述金属薄膜和所述材料薄膜进行剥离,得到第一纳米盘结构;
或,在沉积有一层金属薄膜的聚苯乙烯微球衬底表面直接再沉积一层材料薄膜,然后对所述金属薄膜和所述材料薄膜进行剥离,得到第二纳米盘结构。
2.根据权利要求1所述的大面积纳米盘的制备方法,其特征在于,配置聚苯乙烯微球胶体溶液具体包括:
将聚苯乙烯微球胶体溶液进行高速离心,去除上层水溶液;
使用乙醇溶液对去除水溶液后的聚苯乙烯微球胶体进行稀释,并进行超声处理,得到所需浓度的聚苯乙烯微球胶体溶液。
3.根据权利要求1所述的大面积纳米盘的制备方法,其特征在于,对衬底进行清洁处理具体包括:
将衬底放置于体积比为1:1:5的氨水、过氧化氢和去离子水的混合溶液中,在60~80℃的条件下静置5-30分钟,然后使用氮气吹干衬底,将吹干后的衬底固定在匀胶机上。
4.根据权利要求1所述的大面积纳米盘的制备方法,其特征在于,根据制备目标纳米盘结构的横纵尺寸比值选择相应的角度,在聚苯乙烯微球衬底表面沉积一层金属薄膜的方式包括倾斜沉积和垂直沉积。
5.根据权利要求4所述的大面积纳米盘的制备方法,其特征在于,所述第一纳米盘结构包括纳米圆盘结构和纳米椭圆盘结构;其中:
对以垂直沉积方式沉积一层金属薄膜后的聚苯乙烯微球衬底进行微球去除处理,得到金属孔薄膜,并在金属孔薄膜表面再沉积一层材料薄膜,然后对所述金属薄膜和所述材料薄膜进行剥离,得到纳米圆盘结构;
对以倾斜沉积方式沉积一层金属薄膜后的聚苯乙烯微球衬底进行微球去除处理,得到金属孔薄膜,并在金属孔薄膜表面再沉积一层材料薄膜,最后对所述金属薄膜和所述材料薄膜进行剥离,得到纳米椭圆盘结构。
6.根据权利要求4所述的大面积纳米盘的制备方法,其特征在于,所述第二纳米盘结构为纳米月牙盘结构;其中:
对以倾斜沉积方式沉积一层金属薄膜后的聚苯乙烯微球衬底表面直接再沉积一层材料薄膜,然后对所述金属薄膜和所述材料薄膜进行剥离,得到纳米月牙盘结构。
7.根据权利要求1所述的大面积纳米盘的制备方法,其特征在于,对沉积一层金属薄膜后的聚苯乙烯微球衬底进行微球去除处理,包括以下步骤:
将沉积一层金属薄膜后的聚苯乙烯微球衬底浸泡在异丙醇溶液中,然后用聚二甲基硅氧烷薄片刮除聚苯乙烯微球衬底表面的聚苯乙烯微球。
8.根据权利要求1-7任一项所述的大面积纳米盘的制备方法,其特征在于,所述材料薄膜为金属材料薄膜或半导体材料薄膜。
9.根据权利要求8所述的大面积纳米盘的制备方法,使用胶带对所述金属薄膜和所述材料薄膜进行剥离。
10.根据权利要求1所述的大面积纳米盘的制备方法,其特征在于,所述衬底为石英、ITO导电玻璃或硅片。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111620496.9A CN114481043B (zh) | 2021-12-27 | 2021-12-27 | 一种大面积纳米盘的制备方法 |
PCT/CN2022/127958 WO2023124481A1 (zh) | 2021-12-27 | 2022-10-27 | 一种大面积纳米盘的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111620496.9A CN114481043B (zh) | 2021-12-27 | 2021-12-27 | 一种大面积纳米盘的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114481043A true CN114481043A (zh) | 2022-05-13 |
CN114481043B CN114481043B (zh) | 2023-09-08 |
Family
ID=81496189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111620496.9A Active CN114481043B (zh) | 2021-12-27 | 2021-12-27 | 一种大面积纳米盘的制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114481043B (zh) |
WO (1) | WO2023124481A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023124481A1 (zh) * | 2021-12-27 | 2023-07-06 | 暨南大学 | 一种大面积纳米盘的制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102530855A (zh) * | 2012-02-14 | 2012-07-04 | 中国人民解放军国防科学技术大学 | 月牙形金属纳米结构的制备方法 |
CN102747320A (zh) * | 2012-07-31 | 2012-10-24 | 武汉大学 | 贵金属纳米颗粒阵列的制备方法 |
EP3279643A1 (de) * | 2016-08-04 | 2018-02-07 | Karlsruher Institut für Technologie | Sers-substrat und verfahren zum herstellen eines sers-substrats |
CN110146485A (zh) * | 2019-05-23 | 2019-08-20 | 中国科学院合肥物质科学研究院 | 金三角凹坑阵列材料及其制备方法和用途 |
CN112499581A (zh) * | 2020-11-12 | 2021-03-16 | 西安交通大学 | 一种表面增强拉曼散射衬底的制备方法 |
KR20210081275A (ko) * | 2019-12-23 | 2021-07-01 | 건국대학교 글로컬산학협력단 | 공유 기능화를 통해 질화붕소를 박리, 절단하여 질화붕소 나노디스크를 제조하는 방법 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI419202B (zh) * | 2011-12-06 | 2013-12-11 | Univ Nat Taiwan | 大面積薄型單晶矽之製作技術 |
CN112179886A (zh) * | 2020-09-01 | 2021-01-05 | 西安交通大学 | 金属纳米半球壳阵列的sers检测透明柔性基底及制备方法 |
CN114481043B (zh) * | 2021-12-27 | 2023-09-08 | 暨南大学 | 一种大面积纳米盘的制备方法 |
-
2021
- 2021-12-27 CN CN202111620496.9A patent/CN114481043B/zh active Active
-
2022
- 2022-10-27 WO PCT/CN2022/127958 patent/WO2023124481A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102530855A (zh) * | 2012-02-14 | 2012-07-04 | 中国人民解放军国防科学技术大学 | 月牙形金属纳米结构的制备方法 |
CN102747320A (zh) * | 2012-07-31 | 2012-10-24 | 武汉大学 | 贵金属纳米颗粒阵列的制备方法 |
EP3279643A1 (de) * | 2016-08-04 | 2018-02-07 | Karlsruher Institut für Technologie | Sers-substrat und verfahren zum herstellen eines sers-substrats |
CN110146485A (zh) * | 2019-05-23 | 2019-08-20 | 中国科学院合肥物质科学研究院 | 金三角凹坑阵列材料及其制备方法和用途 |
KR20210081275A (ko) * | 2019-12-23 | 2021-07-01 | 건국대학교 글로컬산학협력단 | 공유 기능화를 통해 질화붕소를 박리, 절단하여 질화붕소 나노디스크를 제조하는 방법 |
CN112499581A (zh) * | 2020-11-12 | 2021-03-16 | 西安交通大学 | 一种表面增强拉曼散射衬底的制备方法 |
Non-Patent Citations (1)
Title |
---|
李浩 等: ""反应离子刻蚀制备石墨烯纳米盘阵列"", 《人工晶体学报》, vol. 46, no. 1, pages 94 - 97 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023124481A1 (zh) * | 2021-12-27 | 2023-07-06 | 暨南大学 | 一种大面积纳米盘的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114481043B (zh) | 2023-09-08 |
WO2023124481A1 (zh) | 2023-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Deckman et al. | Applications of surface textures produced with natural lithography | |
US10400322B2 (en) | Fabrication of thermally stable nanocavities and particle-in-cavity nanostructures | |
CN114481043B (zh) | 一种大面积纳米盘的制备方法 | |
CN111071985B (zh) | 引入牺牲层的阳极氧化铝薄膜牢固金属纳米颗粒的方法 | |
CN109300774B (zh) | 一种微米级含有金属电极的石墨烯层的加工和转移的方法 | |
CN102473598A (zh) | 用于布置微结构的方法 | |
JPH1164350A (ja) | 微小開口の形成方法と微小開口を有する突起、及びそれらによるプローブまたはマルチプローブ、並びに該プローブを用いた表面観察装置、露光装置、情報処理装置 | |
CN111613661A (zh) | 隧道结、其制备方法和应用 | |
CN113049853A (zh) | 尺寸、倾斜角可控的超大高宽比倾斜afm探针针尖制备方法 | |
JP3253716B2 (ja) | 貴金属単結晶群の適用品及びその製造方法 | |
Lewis et al. | Patterning of silicon nanopillars formed with a colloidal gold etch mask | |
CN109946340B (zh) | 一种二维层状材料样品电学测试微电极的制备方法 | |
Hua et al. | Spatial patterning of colloidal nanoparticle-based thin film by a combinative technique of layer-by-layer self-assembly and lithography | |
Boarino et al. | Fabrication of ordered silicon nanopillars and nanowires by self‐assembly and metal‐assisted etching | |
Zhang et al. | Controlled fabrication of silicon nanostructures by the nanosphere lithography: application for low reflection over wide spectrum | |
Amalathas et al. | Fabrication and replication of periodic nanopyramid structures by laser interference lithography and UV nanoimprint lithography for solar cells applications | |
Wang et al. | Effect of the Different Substrates and the Film Thickness on the Surface Roughness of Step Structure | |
CN108502840B (zh) | 一种高效率制备环状纳米间隙有序阵列的方法 | |
KR100826587B1 (ko) | 원자 힘 현미경 리소그래피 기술을 이용한 박막의 패터닝 방법 | |
CN1063552C (zh) | 一种量子线超微细图形的制作方法 | |
WO2022088372A1 (zh) | 一种微纳米结构定点缺陷掺杂的方法及nv色心传感器 | |
Luo et al. | Investigating the edge effects of Cu electroplating on the SAMs-coated Si substrate | |
CN103204460B (zh) | 基于激光干涉诱导交联反应的金属微纳结构的制备方法 | |
US10859875B2 (en) | Method for forming pattern for liquid crystal orientation of zenithal bi-stable liquid crystal panel, liquid crystal orientation substrate including pattern formed thereby, and mask substrate used for forming pattern | |
TWI626210B (zh) | 一種奈米器件的製備方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |