WO2023124438A1 - 一种可降解材料及其制备方法和应用 - Google Patents

一种可降解材料及其制备方法和应用 Download PDF

Info

Publication number
WO2023124438A1
WO2023124438A1 PCT/CN2022/126302 CN2022126302W WO2023124438A1 WO 2023124438 A1 WO2023124438 A1 WO 2023124438A1 CN 2022126302 W CN2022126302 W CN 2022126302W WO 2023124438 A1 WO2023124438 A1 WO 2023124438A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
powder
degradable material
bran
bran powder
Prior art date
Application number
PCT/CN2022/126302
Other languages
English (en)
French (fr)
Inventor
王艺章
王计耀
Original Assignee
厦门糠宝瑞新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门糠宝瑞新材料科技有限公司 filed Critical 厦门糠宝瑞新材料科技有限公司
Publication of WO2023124438A1 publication Critical patent/WO2023124438A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the invention relates to the technical field of environmental protection materials, in particular to a degradable material and its preparation method and application.
  • Plastic products have the characteristics of high strength, high toughness, light weight, and low price, and are widely used in people's production and life.
  • the application of plastic products not only brings great convenience to people, but also brings serious negative effects.
  • most waste plastic products can be degraded under special conditions, their light and biodegradation speeds in the natural environment are very slow , although it can be disposed of by methods such as burial and incineration, but these methods have great defects.
  • "White garbage” not only affects the ecological balance, but also threatens human health.
  • degradable plastic materials have become the focus of researchers. Although the research on degradable materials has achieved certain results, the existing degradable materials generally have insufficient degradation, long degradation time, high brittleness, High cost of raw materials, poor waterproof performance, complex production process, low production capacity and other defects limit its application range.
  • the purpose of the present invention is to provide a degradable material and its preparation method and application.
  • the degradable material of the present invention has good physical properties and waterproof performance, and the products are cheap, and the production process is simple and fast.
  • the product is safe and environmentally friendly and has good disintegration and degradation properties.
  • a degradable material comprising the following components in parts by weight: 40-60 parts of bran powder, 15-25 parts of modified plant fiber powder, 1-5 parts of natural plasticizer, 0.5-1 part of curing agent, 5-2 parts of 10 parts of modified starch, 1-5 parts of additives, and 1-10 parts of melamine formaldehyde resin.
  • the bran powder is one or more of rice bran powder and wheat bran powder.
  • Both rice bran powder and wheat bran powder belong to the middle layer of grain shell and fruit, rich in dietary fiber, crude fiber, vegetable oil and a certain amount of starch, polysaccharide and other substances with high viscosity.
  • the modified plant fiber powder is prepared from one or more of rice husk fiber powder, bamboo fiber powder and straw fiber powder after alkaline oxidation and decay.
  • the fiber after oxidation and corrosion will become a structure with a large number of exposed hydroxyl groups and a large surface area with a concave-convex structure.
  • the fiber is softened from the state of hard fiber but can still maintain high toughness. Compared with the original hard fiber, the fluidity and dispersion performance are greatly improved. Improve and can also improve the problem that the final product of melamine formaldehyde resin is too brittle after accelerated curing.
  • the natural plasticizer is one or more of glycerin, behenitol, and epoxidized soybean oil.
  • the modified starch is prepared from one or more of glutinous rice starch, corn starch and tapioca starch after acid oxidation, the hydroxyl content after acid oxidation is higher than 4wt%, and the pH value is 4-6.
  • the gain effect is that starch has high viscosity and plays the main role of adhesion.
  • the oxidized carboxyl group of starch can react with free formaldehyde to reduce the content of free formaldehyde.
  • the agent can synergistically accelerate the curing of melamine formaldehyde resin for waterproof materials, thereby shortening the curing time of the resin and increasing production capacity.
  • the auxiliary agent is one or more of maltodextrin, yellow dextrin and white dextrin.
  • Compression molding is a physical change, and the cake needs to be in a state where it does not lose powder.
  • the gain effect of adding additives is to avoid the high-frequency microwave preheating mode of conventional melamine molding.
  • High-frequency microwave block formation is time-consuming and laborious, and the degree of automation is low, resulting in low final molding output. And because the resin content in this formula is very low, it cannot be microwaved into blocks.
  • Cake molding can solve this problem very well, preventing dust from flying and causing workshop pollution and automatic production equipment damage; at the same time, a large amount of curing agent in the formula also shortens the molding time. Shorter.
  • the present invention also discloses a preparation method of the above-mentioned degradable material, comprising the following steps:
  • the material under the 20-mesh sieve is mostly oily wheat germ particles, which are rich in wheat germ oil. If it is too thick, it will easily cause the surface of the final product Oily bulges, need to be crushed to 200-300 mesh to fully release wheat oil, can be used as a natural plasticizer, and at the same time help to improve the hydrophobicity of the product.
  • step S3 Get 40 ⁇ 60 parts of mixed bran powder prepared in step S1, 15 ⁇ 25 parts of modified plant fiber powder prepared in step S2, and 5 ⁇ 10 parts of modified starch into a heat supply ball mill. Mix at ⁇ 80°C for 20-30 minutes to prepare mixed powder; in ball milling at 70-80°C, the moisture content of gluten powder at a higher level of 12-15% will be balanced and transferred to the soft gluten powder with lower moisture content. In the fiber powder and starch, the continuous slight swelling and gelatinization in the impact of the iron ball is conducive to the rapid gelatinization of the later stage molding. The transfer of the moisture content of the gluten itself can effectively avoid the partial agglomeration of the starch polysaccharide or the partial high water content resulting in the later stage Bubbly and bubbly.
  • step S4 Ball milling and mixing the mixed powder prepared in step S3 with 1 to 10 parts of melamine formaldehyde resin, 1 to 5 parts of auxiliary agent, and 0.1 to 0.5 parts of curing agent for 1.5 to 2 hours;
  • step S5 Make the powder obtained in step S4 into a finished product and pack it into a box.
  • the alkaline oxidative decay of the plant fibers specifically includes the following steps: adding 100 parts of plant fibers, 0.1-0.5 parts of calcium oxide, and 5-10 parts of 10 wt% hydrogen peroxide into a high-speed mixer, and first Mix at a speed of 2000-3000r/min for 1-3 minutes, then reduce the speed to 30-50r/min and open the exhaust port of the mixer and stir for 1-1.5 hours.
  • step S5 making the powder into a finished product specifically includes the following steps:
  • the automatic block making machine is used to make raw material blocks of limited weight
  • Molding parameters upper mold temperature 155-180°C, lower mold temperature 165-190°C, machine pressure 10-15Mpa, holding time 8-10s; conventional molding
  • the molding time of the process is long. Whether it is thin or thick, the final molding time of the product needs to be based on the curing time of the resin.
  • the molding and holding time is 60-120s according to the production situation.
  • the production efficiency is low in automation.
  • the amino resin curing agent and acid oxidized starch form a cooperative catalytic curing method, which greatly shortens the molding and curing time of the product.
  • most disposable products are mainly light and thin.
  • the holding time can be compressed to 8-10s, which can fully meet the automatic production efficiency of disposable products.
  • the invention also discloses the application of the above-mentioned disposable degradable material or the disposable degradable material prepared by the above-mentioned method, which is used to make environmentally friendly and degradable disposable articles.
  • the degradable material prepared by the present invention has a wide range of applications, is suitable for large-scale promotion and use, is easy to degrade, does not pollute the environment after degradation, does not produce secondary pollution, is safe and environmentally friendly, and can effectively protect the environment; the selection of materials is green and safe, Harmless to the body, long-term use will not cause the accumulation of harmful toxins.
  • Fig. 1 is the infrared spectrogram of the product that embodiment two makes.
  • a degradable material including 40 parts of rice bran powder, 15 parts of modified rice husk fiber powder, 1 part of glycerin, 0.5 parts of curing agent, which can be selected from benzoic acid, etc., 5 parts of modified glutinous rice starch, 1 part of maltodextrin 1 part, 1 part of melamine formaldehyde resin.
  • Step 1 Pass the rice bran flakes through a 20-mesh sieve, keep the moisture content of the crude fiber powder on the sieve at 12-15%, and then pulverize it to 80-120 mesh to obtain coarse bran powder, and pulverize the oily seeds and notched sprouts under the sieve
  • the fine bran powder is obtained to 200-300 meshes, and then the coarse bran powder and the fine bran powder are ball-milled and mixed to obtain mixed bran powder.
  • Step 2 Add 100 parts of rice husk fiber, 0.1 to 0.5 parts of calcium oxide, and 5 to 10 parts of 10 wt% hydrogen peroxide into a high-speed mixer, mix at a speed of 2000 to 3000 r/min for 1 to 3 minutes, and then reduce the speed to 30 ⁇ 50r/min and open the exhaust port of the mixer to stir for 1 ⁇ 1.5h, add 1 part of glycerin, stir for 10 ⁇ 30min, pass through a 60-mesh sieve to remove agglomerated particles, and obtain modified rice husk fiber powder.
  • Step 3 Take 40 parts of mixed bran powder prepared in step 1, 15 parts of modified rice husk fiber powder prepared in step 2, and 5 parts of modified glutinous rice starch and add them to a heat supply ball mill, Mix for 20 to 30 minutes under certain conditions to obtain a mixed powder.
  • the modified glutinous rice starch is obtained by acid oxidation of the glutinous rice starch, the hydroxyl content after acid oxidation is higher than 4wt%, and the pH value is 4-6.
  • Step 4 Ball mill and mix the mixed powder prepared in step 3 with 1 part of melamine formaldehyde resin, 1 part of maltodextrin and 0.5 part of curing agent for 2 hours.
  • Step 5 After the powder prepared in step 4 passes through the automatic weighing machine, the automatic block making machine is used to make a raw material block with a limited weight, and the raw material block is transported to the silo of the forming manipulator through the conveyor belt, and then transported from the silo to the molding machine. manipulator.
  • Step 6 Put the raw material block in the mold by the robot, and use the molding process to form it. Molding parameters: upper mold temperature 155-180°C, lower mold temperature 165-190°C, machine pressure 10-15Mpa, pressure holding time 8-10s After demoulding, the manipulator takes out the product and places it on the conveyor belt.
  • Step 7 The conveyor belt transports the molded finished product to the hot channel, and the temperature is controlled at 130-150°C to ensure that the passing time of each finished product is greater than 40s.
  • Step 8 Grind the finished product and pack it into a box after the edging is completed.
  • a degradable material including 50 parts of wheat bran powder, 20 parts of modified bamboo fiber powder, 3 parts of behenitol, 1 part of curing agent, which can be selected from benzoic acid, etc., 8 parts of modified corn starch, 3 parts of yellow dextrin Parts, 5 parts of melamine formaldehyde resin.
  • Step 1 Pass the wheat bran flakes through a 20-mesh sieve, keep the moisture content of the crude fiber powder on the sieve at 12-15%, and then pulverize it to 80-120 mesh to obtain coarse bran powder, and pulverize the oily seeds and notched sprouts under the sieve
  • the fine bran powder is obtained to 200-300 meshes, and then the coarse bran powder and the fine bran powder are ball-milled and mixed to obtain mixed bran powder.
  • Step 2 Add 100 parts of bamboo fiber, 0.1-0.5 parts of calcium oxide, and 5-10 parts of 10wt% hydrogen peroxide into a high-speed mixer, first mix at a speed of 2000-3000r/min for 1-3 minutes, and then reduce the speed to 30- 50r/min and open the exhaust port of the mixer to stir for 1-1.5h, add 1 part of behenitol, stir for 10-30min, pass through a 60-mesh sieve to remove agglomerated particles, and obtain modified bamboo fiber powder.
  • Step 3 Take 50 parts of the mixed bran powder prepared in step 1, 20 parts of the modified bamboo fiber powder prepared in step 2, and 8 parts of modified corn starch and add them to the heat supply ball mill, Mix at low speed for 20-30 minutes to obtain mixed powder.
  • the modified corn starch is obtained by acid oxidation of corn starch, the hydroxyl content after acid oxidation is higher than 4 wt%, and the pH value is 4-6.
  • Step 4 Ball mill and mix the mixed powder prepared in step 3 with 5 parts of melamine formaldehyde resin, 3 parts of yellow dextrin and 1 part of curing agent for 2 hours.
  • Step 5 After the powder prepared in step 4 passes through the automatic weighing machine, the automatic block making machine is used to make a raw material block with a limited weight, and the raw material block is transported to the silo of the forming manipulator through the conveyor belt, and then transported from the silo to the molding machine. manipulator.
  • Step 6 Put the raw material block in the mold by the robot, and use the molding process to form it. Molding parameters: upper mold temperature 155-180°C, lower mold temperature 165-190°C, machine pressure 10-15Mpa, pressure holding time 8-10s After demoulding, the manipulator takes out the product and places it on the conveyor belt.
  • Step 7 The conveyor belt transports the molded finished product to the hot channel, and the temperature is controlled at 130-150°C to ensure that the passing time of each finished product is greater than 40s.
  • Step 8 Grind the finished product and pack it into a box after the edging is completed.
  • a degradable material including 60 parts of wheat bran powder, 25 parts of modified straw fiber powder, 5 parts of epoxy soybean oil, 1 part of curing agent, which can be selected from benzoic acid, etc., 10 parts of modified cassava flour, white paste 5 parts of essence, 10 parts of melamine formaldehyde resin.
  • Step 1 Pass the wheat bran flakes through a 20-mesh sieve, keep the moisture content of the crude fiber powder on the sieve at 12-15%, and then pulverize it to 80-120 mesh to obtain coarse bran powder, and pulverize the oily seeds and notched sprouts under the sieve
  • the fine bran powder is obtained to 200-300 meshes, and then the coarse bran powder and the fine bran powder are ball-milled and mixed to obtain mixed bran powder.
  • Step 2 Add 100 parts of straw fiber, 0.1 to 0.5 parts of calcium oxide, and 5 to 10 parts of 10wt% hydrogen peroxide into a high-speed mixer, mix at a speed of 2000 to 3000r/min for 1 to 3 minutes, and then reduce the speed to 30 to 50r/min and open the exhaust port of the mixer to stir for 1-1.5h, add 1 part of epoxy soybean oil, stir for 10-30min, pass through a 60-mesh sieve to remove agglomerated particles, and obtain modified straw fiber powder.
  • Step 3 Take 60 parts of the mixed bran powder prepared in step 1, 25 parts of the modified straw fiber powder prepared in step 2, and 10 parts of modified cassava starch and add them to a heat supply ball mill. Mix at low speed for 20-30 minutes to obtain mixed powder.
  • the modified tapioca starch is obtained by acid oxidation of tapioca starch, the hydroxyl content after acid oxidation is higher than 4wt%, and the pH value is 4-6.
  • Step 4 Ball mill and mix the mixed powder prepared in step 3 with 10 parts of melamine formaldehyde resin, 5 parts of white dextrin and 1 part of curing agent for 2 hours.
  • Step 5 After the powder prepared in step 4 passes through the automatic weighing machine, the automatic block making machine is used to make a raw material block with a limited weight, and the raw material block is transported to the silo of the forming manipulator through the conveyor belt, and then transported from the silo to the molding machine. manipulator.
  • Step 6 Put the raw material block in the mold by the robot, and use the molding process to form it. Molding parameters: upper mold temperature 155-180°C, lower mold temperature 165-190°C, machine pressure 10-15Mpa, pressure holding time 8-10s After demoulding, the manipulator takes out the product and places it on the conveyor belt.
  • Step 7 The conveyor belt transports the molded finished product to the hot channel, and the temperature is controlled at 130-150°C to ensure that the passing time of each finished product is greater than 40s.
  • Step 8 Grind the finished product and pack it into a box after the edging is completed.
  • Test items, test basis and test conditions including simulants, soaking temperature, soaking time
  • Table 3 shows the results of food microbiological testing:
  • Table 4 shows the inspection results of pesticide residues:
  • Table 5 is the heavy metal inspection results:
  • Example 1 Heavy metal Example unit reporting limit Test results Zn Example 1, 2, 3 mg/kg 5 ⁇ RL Cu Example 1, 2, 3 mg/kg 5 ⁇ RL Ni Example 1, 2, 3 mg/kg 5 ⁇ RL Cd Example 1, 2, 3 mg/kg 0.25 ⁇ RL Pb Example 1, 2, 3 mg/kg 5 ⁇ RL Hg Example 1, 2, 3 mg/kg 0.2 ⁇ RL Cr Example 1, 2, 3 mg/kg 5 ⁇ RL Mo Example 1, 2, 3 mg/kg 0.25 ⁇ RL Se Example 1, 2, 3 mg/kg 0.25 ⁇ RL As Example 1, 2, 3 mg/kg 0.25 ⁇ RL f Example 1, 2, 3 mg/kg 50 ⁇ RL co Example 1, 2, 3 mg/kg 3 ⁇ RL
  • Table 6 shows the test results of volatile solid content and total dry solid content:
  • Fig. 1 is the infrared spectrogram of the product made in embodiment 2, can find out from this figure that the sample sent for inspection does have 813 peaks (melamine Formaldehyde resin), but can eventually reach the level of disintegration and degradation.
  • Table 7 is the thickness detection result of the product made by embodiment two:
  • Table 8 is the blank compost comparison sample test results, the blank comparison sample composition: 6.7 kilograms of soil, 1.7 kilograms of onions, 1.7 kilograms of carrots, 1.7 kilograms of peppers, 4.2 kilograms of rice and 4.2 kilograms of soybean mixture (the quality of rice and soybeans is soaked in water for 12 hours. wet mass)
  • Moisture content% 64 Total dry mass of volatile solids 54 CN 2.2 Ph 7.1
  • Table 9 is the disintegration result of reactor compost in 90 days:
  • Table 10 is the test results of the parameters in the soil after the sample composting:
  • Example 1 Example 2
  • Example 3 total dry solids % 57.2 60.4 56.6 58.8 Volatile solids % 58.5 61.7 56.4 60.1 pH - 6.5 6.7 6.6 6.6 Phosphorus content mg/kg 5665.5 3999 3789 4232 Nitrite (nitrogen) mg/kg 0.24 0.37 0.32 0.3
  • Conductivity mS/m 199 377 396 359 total nitrogen g/kg 21.4 25.2 26.1 23.3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)

Abstract

本发明公开了一种可降解材料及其制备方法和应用,该降解材料具体包括如下重量份数的组分:40~60份麸粉、15~25份改性植物纤维粉、1~5份天然塑化剂、0.5~1份固化剂、5~10份改性淀粉、1~5份助剂、1~10份三聚氰胺甲醛树脂。本发明通过麸类及壳类农业副作物的改性与复合,辅以三聚氰胺甲醛树脂增加其物理性能及防水性能,产品韧性好,脆性小,制品取材廉价,生产工艺简单快捷,可广泛应用于一次性餐具、厨具、花盆等领域,产品安全环保并具有良好的崩解及降解性能。

Description

一种可降解材料及其制备方法和应用 技术领域
本发明涉及环保材料技术领域,特别涉及一种可降解材料及其制备方法和应用。
背景技术
塑料制品具有高强度高韧性、质量轻、价格低等特点,在人们的生产生活中得到广泛应用。塑料制品的应用在给人们带来极大方便的同时也带来严重的负面影响,大部分废弃的塑料制品除了可在特殊条件下降解外,其在自然界环境中的光、生物降解速度非常缓慢,虽然其可通过掩埋、焚烧等方法来处理,但这些方法存在极大的缺陷,“白色垃圾”不仅影响生态平衡,同时也威胁着人类的健康。
为了解决这一问题,可降解塑料的材料成为研究者们关注的热点,虽然可降解材料的研究取得了一定成果,但现有的可降解材料普遍存在降解不充分、降解时间长、脆性大、原材料成本高、防水性能差、生产工艺复杂、产能低等缺陷,使其应用范围受到了限制。
发明内容
针对背景技术中所存在的技术问题,本发明的目的在于提供一种可降解材料及其制备方法和应用,本发明的可降解材料物理性能及防水性能佳,制品取材廉价,生产工艺简单快捷,产品安全环保并具有良好的崩解及降解性能。
为了实现上述目的,本发明采用的技术方案如下:
一种可降解材料,包括如下重量份数的组分:40~60份麸粉、15~25份改性植物纤维粉、1~5份天然塑化剂、0.5~1份固化剂、5~10份改性淀粉、1~5份助剂、1~10份三聚氰胺甲醛树脂。
优选地,所述的麸粉为米麸粉、麦麸粉中的一种或多种。米麸粉或麦麸粉均属于粮食壳层与果实的中间层,有丰富膳食纤维、粗纤维,植物油脂同时还有一定量的淀粉、多糖等物质具备较高粘性。
优选地,所述的改性植物纤维粉由稻壳纤维粉、竹纤维粉、秸秆纤维粉中的一种或多种经碱性氧化腐化后制得。氧化腐化后的纤维会变为裸露大量羟基,具有凹凸结构的大表面积的结构,纤维由硬质纤维的状态软化但是还能保持较高的韧性,相对原始硬质纤维流动性及分散性能大幅度提高且也能够改善提速固化后三聚氰胺甲醛树脂最终产品过脆的问题。
优选地,所述的天然塑化剂为甘油、山里醇、环氧大豆油中的一种或多种。
优选地,所述的改性淀粉由糯米淀粉、玉米淀粉、木薯淀粉中的一种或多种经酸性氧化后制得,酸性氧化后的羟基含量高于4wt%,pH值为4~6。其增益效果为淀粉具有很高的粘性,起主要粘合作用,同时在在高温模压过程中,淀粉氧化羧基可以与游离的的甲醛反应,降低游离甲醛的含量,PH4-6的酸性淀粉与固化剂可协同对于防水材料的三聚氰安甲醛树脂固化也能起到促进作用从而缩短树脂固化时间,提升产能。
优选地,所述的助剂为麦芽糊精、黄糊精、白糊精中的一种或多种。模压成型为物理变化,饼块需要达到不掉粉的状态,添加助剂的增益效果在于:避免常规三聚氰胺成型高周波微波预热成块模式。高周波微波成块费时费力,自动化程度低,导致最终模压产量低。且由于本配方中树脂含量很低,无法微波成块,饼状成型能很好解决这个问题,防止粉尘纷飞导致车间污染及自动化生产设备损坏;同时配方中大量的固化剂也使成型时间压缩得更短。
本发明还公开了上述可降解材料的制备方法,包括如下步骤:
S1.将油脂性麸片过20目筛,将筛上粗纤维粉水分保持在12~15%进行粉碎,粉碎至80~120目得到粗麸粉,将筛下油脂性种子及缺口芽头粉碎至200~300目得到细麸粉,再将粗麸粉和细麸粉进行球磨混合,制得混合麸粉;油脂性麸片20目筛上物质具有较高的纤维含量,粉碎的目数保持在80-120目能保留有一定程度的纤维形状,对终产品有增韧效果,20目筛下物质多为油脂性小麦胚芽颗粒,含有丰富的小麦胚芽油,如果过于粗易导致终产品表面油脂性鼓包,需要粉碎至200-300目充分释放小麦油,可作为天然塑化剂,同时有利于改善产品疏水性能。
S2.将植物纤维进行碱性氧化腐化后,加入1~5份天然塑化剂,搅拌10~30min后过60目筛除去结团颗粒,制得改性植物纤维粉;
S3.取40~60份步骤S1中所制得的混合麸粉、15~25份步骤S2中所制得的改性植物纤维粉、5~10份改性淀粉加入热供球磨机中,在70~80℃条件下混合20~30min,制得混合粉末;在70-80℃球磨混合中,含水分在12-15%的较高水平的麸质粉末水分会平衡转移至水分较低的软质纤维粉与淀粉中,在铁球的撞击中不断地轻微溶胀与糊化,有利于后期成型快速糊化,麸质本身的含水率转移可以有效避免淀粉多糖局部结块或者水分局部过高导致后期鼓包起泡。
S4.将步骤S3中所制得的混合粉末与1~10份三聚氰胺甲醛树脂、1~5份助剂、0.1~0.5份固化剂球磨混合1.5~2h;
S5.将步骤S4中所制得的粉末制成成品后装箱。
进一步地,所述步骤S2中,将植物纤维进行碱性氧化腐化具体包括如下步骤:将100 份植物纤维、0.1~0.5份氧化钙、5~10份10wt%含量双氧水加入高速搅拌机中,先在2000~3000r/min的转速下混合1~3min,然后降低转速至30~50r/min并打开搅拌机排气口搅拌1~1.5h。
进一步地,所述步骤S5中,将粉末制成成品具体包括如下步骤:
Q1.将粉末经过自动称量机后由自动制块机制成限定重量的原料块;
Q2.将原料块放置于模具中,采用模压工艺成型,模压参数:上模温度155~180℃,下模温度165~190℃,机台压力10~15Mpa,保压时间8~10s;常规模压工艺模压时间长,无论是薄或厚的产品最终成型时间都需要以树脂固化时间为准,成型保压时间根据产情况为60~120s,生产效率自动化程度低,此工艺配方中固化剂由常规氨基树脂固化剂与酸性氧化淀粉组成协作催化固化方式,大幅度缩短了产品模压固化时间,同时大部分一次性产品均以轻薄为主,产品主体结构的麸质纤维油脂具有更高导热效率,成型保压时间可以压缩至8~10s完全可以满足一次性产品的自动化生产效率。
Q3.将模压成品运输至热通道,温度控制在130~150℃,保证每个成品的通过时间大于40s;本步骤的增益效果在于:继续固化未完全固化三聚氰胺甲醛树脂,使产品中的持续水分挥发糊化淀粉继续干燥老化,让亲水性羟基向内向收拢,以达到天然防水的效果从而加强产品防水能力。
Q4.将成品进行磨边,磨边完成后装箱。
本发明还公开了上述一次性可降解材料或采用上述方法所制得的一次性可降解材料的应用,用于制成环保可降解的一次性用品。
本发明具有如下有益效果:
1、提供一种可降解材料,通过麸类及壳类农业副作物的改性与复合,辅以三聚氰胺甲醛树脂增加其物理性能及防水性能,制品取材廉价,可广泛应用于一次性餐具、厨具、花盆等领域,产品安全环保并具有良好的崩解及降解性能;采用本发明的可降解材料制得的产品不仅理化性能优于一次性餐具安全使用标准,降解性能也能通过可降解材料相关法规的标准。
2、提供一种可降解材料的制备方法,该方法简单快捷,生产效率高,产能高;
3、本发明制备的可降解材料应用范围广,适用于大规模推广和使用,容易降解,降解后对环境没有污染,没有二次污染的产生,安全环保,可有效保护环境;选材绿色安全,对身体无害,长期使用亦不会造成有害毒素的积累。
附图说明
图1为实施例二所制得产品的红外光谱图。
具体实施方式
下面结合附图和具体实施方式,对本发明做进一步说明。
实施例一
一种可降解材料,包括米麸粉40份,改性稻壳纤维粉15份,甘油1份,固化剂0.5份,固化剂可以选择苯甲酸等,改性糯米淀粉5份,麦芽糊精1份,三聚氰胺甲醛树脂1份。
本实施例的制备方法包括如下步骤:
步骤1:将米麸片过20目筛,将筛上粗纤维粉水分保持在12~15%进行粉碎,粉碎至80~120目得到粗麸粉,将筛下油脂性种子及缺口芽头粉碎至200~300目得到细麸粉,再将粗麸粉和细麸粉进行球磨混合,制得混合麸粉。
步骤2:将100份稻壳纤维、0.1~0.5份氧化钙、5~10份10wt%含量双氧水加入高速搅拌机中,先在2000~3000r/min的转速下混合1~3min,然后降低转速至30~50r/min并打开搅拌机排气口搅拌1~1.5h,加入1份甘油,搅拌10~30min后过60目筛除去结团颗粒,制得改性稻壳纤维粉。
步骤3:取40份步骤1中所制得的混合麸粉、15份步骤2中所制得的改性稻壳纤维粉、5份改性糯米淀粉加入热供球磨机中,在70~80℃条件下混合20~30min,制得混合粉末。其中,改性糯米淀粉为糯米淀粉经酸性氧化后制得,酸性氧化后的羟基含量高于4wt%,pH值为4~6。
步骤4.将步骤3中所制得的混合粉末与1份三聚氰胺甲醛树脂、1份麦芽糊精、0.5份固化剂球磨混合2h。
步骤5:将步骤4中所制得的粉末经过自动称量机后由自动制块机制成限定重量的原料块,将原料块经输送带输送至成型机械手料仓,再由料仓输送给成型机械手。
步骤6:由机械手将原料块放置于模具中,采用模压工艺成型,模压参数:上模温度155~180℃,下模温度165~190℃,机台压力10~15Mpa,保压时间8~10s,脱模后机械手取出产品置于传送带中。
步骤7:传送带将模压成品运输至热通道,温度控制在130~150℃,保证每个成品的通过时间大于40s。
步骤8:将成品进行磨边,磨边完成后装箱。
实施例二
一种可降解材料,包括麦麸粉50份,改性竹纤维粉20份,山里醇3份,固化剂1份,固化剂可以选择苯甲酸等,改性玉米淀粉8份,黄糊精3份,三聚氰胺甲醛树脂5份。
本实施例的制备方法包括如下步骤:
步骤1:将麦麸片过20目筛,将筛上粗纤维粉水分保持在12~15%进行粉碎,粉碎至80~120目得到粗麸粉,将筛下油脂性种子及缺口芽头粉碎至200~300目得到细麸粉,再将粗麸粉和细麸粉进行球磨混合,制得混合麸粉。
步骤2:将100份竹纤维、0.1~0.5份氧化钙、5~10份10wt%含量双氧水加入高速搅拌机中,先在2000~3000r/min的转速下混合1~3min,然后降低转速至30~50r/min并打开搅拌机排气口搅拌1~1.5h,加入1份山里醇,搅拌10~30min后过60目筛除去结团颗粒,制得改性竹纤维粉。
步骤3:取50份步骤1中所制得的混合麸粉、20份步骤2中所制得的改性竹纤维粉、8份改性玉米淀粉加入热供球磨机中,在70~80℃条件下混合20~30min,制得混合粉末。其中,改性玉米淀粉为玉米淀粉经酸性氧化后制得,酸性氧化后的羟基含量高于4wt%,pH值为4~6。
步骤4.将步骤3中所制得的混合粉末与5份三聚氰胺甲醛树脂、3份黄糊精、1份固化剂球磨混合2h。
步骤5:将步骤4中所制得的粉末经过自动称量机后由自动制块机制成限定重量的原料块,将原料块经输送带输送至成型机械手料仓,再由料仓输送给成型机械手。
步骤6:由机械手将原料块放置于模具中,采用模压工艺成型,模压参数:上模温度155~180℃,下模温度165~190℃,机台压力10~15Mpa,保压时间8~10s,脱模后机械手取出产品置于传送带中。
步骤7:传送带将模压成品运输至热通道,温度控制在130~150℃,保证每个成品的通过时间大于40s。
步骤8:将成品进行磨边,磨边完成后装箱。
实施例三
一种可降解材料,包括麦麸粉60份,改性秸秆纤维粉25份,环氧大豆油5份,固化剂1份,固化剂可以选择苯甲酸等,改性木薯粉10份,白糊精5份,三聚氰胺甲醛树脂10份。
本实施例的制备方法包括如下步骤:
步骤1:将麦麸片过20目筛,将筛上粗纤维粉水分保持在12~15%进行粉碎,粉碎至 80~120目得到粗麸粉,将筛下油脂性种子及缺口芽头粉碎至200~300目得到细麸粉,再将粗麸粉和细麸粉进行球磨混合,制得混合麸粉。
步骤2:将100份秸秆纤维、0.1~0.5份氧化钙、5~10份10wt%含量双氧水加入高速搅拌机中,先在2000~3000r/min的转速下混合1~3min,然后降低转速至30~50r/min并打开搅拌机排气口搅拌1~1.5h,加入1份环氧大豆油,搅拌10~30min后过60目筛除去结团颗粒,制得改性秸秆纤维粉。
步骤3:取60份步骤1中所制得的混合麸粉、25份步骤2中所制得的改性秸秆纤维粉、10份改性木薯淀粉加入热供球磨机中,在70~80℃条件下混合20~30min,制得混合粉末。其中,改性木薯淀粉为木薯淀粉经酸性氧化后制得,酸性氧化后的羟基含量高于4wt%,pH值为4~6。
步骤4.将步骤3中所制得的混合粉末与10份三聚氰胺甲醛树脂、5份白糊精、1份固化剂球磨混合2h。
步骤5:将步骤4中所制得的粉末经过自动称量机后由自动制块机制成限定重量的原料块,将原料块经输送带输送至成型机械手料仓,再由料仓输送给成型机械手。
步骤6:由机械手将原料块放置于模具中,采用模压工艺成型,模压参数:上模温度155~180℃,下模温度165~190℃,机台压力10~15Mpa,保压时间8~10s,脱模后机械手取出产品置于传送带中。
步骤7:传送带将模压成品运输至热通道,温度控制在130~150℃,保证每个成品的通过时间大于40s。
步骤8:将成品进行磨边,磨边完成后装箱。
将实施例1-3所制得的成品进行理化指标测试,测试结果如下,表1为迁移测试结果:
Figure PCTCN2022126302-appb-000001
Figure PCTCN2022126302-appb-000002
表1:迁移测试结果
从表1的实验数据中可以得出结论:各模拟液单次总迁移量均符合食品接触性材料国标法规要求,可以满足作为日常一次性用品需求。
表2为脱色实验结果:
Figure PCTCN2022126302-appb-000003
表2:脱色实验结果
从表2的实验数据中可以得出结论:产品本身颜色不存在脱色问题。
备注:
1.检测项目、检测依据何测试条件(包括模拟物、浸泡温度、浸泡时间);
2.因为一次性使用产品迁移实验、脱色实验均取第一次浸泡的溶液用于测试并报告结果;
3.(S/V)=浸泡液寄出的样品表面积/浸泡液体积。
表3为食品微生物检验结果:
Figure PCTCN2022126302-appb-000004
Figure PCTCN2022126302-appb-000005
表3:食品微生物检验结果
从表3的实验数据中可以得出结论:产品满足食品微生物卫生检验标准,可以满足一次性餐具的使用安全问题。
表4为农残检验结果:
Figure PCTCN2022126302-appb-000006
Figure PCTCN2022126302-appb-000007
表4:农残检验结果
从表4的实验数据中可以得出结论:产品选用的大多材料为介于外壳与粮食之间的麸质物质,其余纤维材料也会经过碱处理,在农残安全上也能达到很高水平。
表5为重金属检验结果:
EN15408:2021;EN ISO 17294-2:2016
重金属 实施例 单位 报告限值 检测结果
Zn 实施例1、2、3 mg/kg 5 <RL
Cu 实施例1、2、3 mg/kg 5 <RL
Ni 实施例1、2、3 mg/kg 5 <RL
Cd 实施例1、2、3 mg/kg 0.25 <RL
Pb 实施例1、2、3 mg/kg 5 <RL
Hg 实施例1、2、3 mg/kg 0.2 <RL
Cr 实施例1、2、3 mg/kg 5 <RL
Mo 实施例1、2、3 mg/kg 0.25 <RL
Se 实施例1、2、3 mg/kg 0.25 <RL
As 实施例1、2、3 mg/kg 0.25 <RL
F 实施例1、2、3 mg/kg 50 <RL
Co 实施例1、2、3 mg/kg 3 <RL
表5:重金属检验结果
从表5的实验数据中可以得出结论:产品本身不存在重金属超标问题。
表6为挥发性固体含量及总干固体含量检验结果:
Figure PCTCN2022126302-appb-000008
Figure PCTCN2022126302-appb-000009
表6:挥发性固体含量及总干固体含量检验结果
从表6的实验数据中可以得出结论:产品的灰分含量不高;图1为实施例2所制得产品的红外光谱图,从该图中可以看出送检样品确实存在813波峰(三聚氰胺甲醛树脂),但最终可以达到崩解及降解水平。
表7为将实施例二所制得产品的厚度检测结果:
EN71-1-8.25.1
编号 单位 结果
1 mm 1.49
2 mm 1.49
3 mm 1.51
4 mm 1.48
5 mm 1.51
6 mm 1.51
7 mm 1.52
8 mm 1.53
9 mm 1.49
10 mm 1.51
平局值 mm 15.04
表7:厚度检测结果
从表7的实验数据中可以得出结论:产品1.5mm厚度可达到高水平崩解水平,远高于一般降解塑料(PBAT PLA PBS等90天崩解速度)。
表8为空白堆肥对比样品测试结果,空白对比样组成:6.7公斤土壤,1.7公斤洋葱,1.7公斤胡萝卜,1.7公斤辣椒,4.2公斤大米和4.2公斤大豆混合物(水稻和大豆的质量为水中浸泡12小时候的湿质量)
含水量% 64
挥发性固体总干质量 54
CN 2.2
Ph 7.1
表8:空白堆肥对比样品测试结果
表9为90天反应釜堆肥崩解结果:
实施例1、2、3
参数 单位 结果
用于测试的样品总干质量 g 205
试样90天堆肥后>2mm颗粒总干质量 g 0
崩解程度 100
表9:90天反应釜堆肥结果
从表9的实验数据中可以得出结论:90天反应釜堆肥后崩解后为发现<2mm颗粒,崩解程度100%。
表10为样品堆肥后土壤中参数检测结果:
参数 单位 空白样 实例1 实例2 实例3
总干固体 57.2 60.4 56.6 58.8
挥发性固体 58.5 61.7 56.4 60.1
PH - 6.5 6.7 6.6 6.6
含磷量 mg/kg 5665.5 3999 3789 4232
亚硝酸盐(氮) mg/kg 0.24 0.37 0.32 0.3
导电性 mS/m 199 377 396 359
总氮 g/kg 21.4 25.2 26.1 23.3
硝酸盐(氮) mg/kg 24.4 47.1 46.7 45.7
氨态氮(氮) mg/kg 1286 1911 1944 1898
mg/kg 30051 26600 27135 28325
mg/kg 5190 3378 3648 3984
体积密度 Kg/L 0.71 0.69 0.71 0.7
总有机碳 20.6 24.3 24.5 22.4
表10:样品堆肥后土壤中参数检测结果
从表10的实验数据中可以得出结论:堆肥后的土壤水平接近空白对比样,同时还能提供更多的氮;综合上述实验数据,本发明的产品不仅理化性能优于一次性餐具安全使用标准,降解性能也能通过可降解材料相关法规的标准。
尽管结合优选实施方案具体展示和介绍了本发明,但所属领域的技术人员应该明白,在不脱离所附权利要求书所限定的本发明的精神和范围内,在形式上和细节上对本发明做出各种变化,均为本发明的保护范围。

Claims (10)

  1. 一种可降解材料,其特征在于,包括如下重量份数的组分:40~60份麸粉、15~25份改性植物纤维粉、1~5份天然塑化剂、0.5~1份固化剂、5~10份改性淀粉、1~5份助剂、1~10份三聚氰胺甲醛树脂。
  2. 如权利要求1所述的一种可降解材料,其特征在于:所述的麸粉为米麸粉、麦麸粉中的一种或多种。
  3. 如权利要求1所述的一种一次性可降解材料,其特征在于:所述的改性植物纤维粉由稻壳纤维粉、竹纤维粉、秸秆纤维粉中的一种或多种经碱性氧化腐化后制得。
  4. 如权利要求1所述的一种可降解材料,其特征在于:所述的天然塑化剂为甘油、山里醇、环氧大豆油中的一种或多种。
  5. 如权利要求1所述的一种可降解材料,其特征在于:所述的改性淀粉由糯米淀粉、玉米淀粉、木薯淀粉中的一种或多种经酸性氧化后制得,酸性氧化后的羟基含量高于4wt%,pH值为4~6。
  6. 如权利要求1所述的一种可降解材料,其特征在于:所述的助剂为麦芽糊精、黄糊精、白糊精中的一种或多种。
  7. 如权利要求1-6中任一项所述的可降解材料的制备方法,其特征在于,包括如下步骤:
    S1.将油脂性麸片过20目筛,将筛上粗纤维粉水分保持在12~15%进行粉碎,粉碎至80~120目得到粗麸粉,将筛下油脂性种子及缺口芽头粉碎至200~300目得到细麸粉,再将粗麸粉和细麸粉进行球磨混合,制得混合麸粉;
    S2.将植物纤维进行碱性氧化腐化后,加入1~5份天然塑化剂,搅拌10~30min后过60目筛除去结团颗粒,制得改性植物纤维粉;
    S3.取40~60份步骤S1中所制得的混合麸粉、15~25份步骤S2中所制得的改性植物纤维粉、5~10份改性淀粉加入热供球磨机中,在70~80℃条件下混合20~30min,制得混合粉末;
    S4.将步骤S3中所制得的混合粉末与1~10份三聚氰胺甲醛树脂、1~5份助剂、0.1~0.5份固化剂球磨混合1.5~2h;
    S5.将步骤S4中所制得的粉末制成成品后装箱。
  8. 如权利要求7所述的一种可降解材料的制备方法,其特征在于,所述步骤S2中,将植物纤维进行碱性氧化腐化具体包括如下步骤:将100份植物纤维、0.1~0.5份氧化钙、5~10份10wt%含量双氧水加入高速搅拌机中,先在2000~3000r/min的转速下混合1~3min, 然后降低转速至30~50r/min并打开搅拌机排气口搅拌1~1.5h。
  9. 如权利要求7所述的一种可降解材料的制备方法,其特征在于,所述步骤S5中,将粉末制成成品具体包括如下步骤:
    Q1.将粉末经过自动称量机后由自动制块机制成限定重量的原料块;
    Q2.将原料块放置于模具中,采用模压工艺成型,模压参数:上模温度155~180℃,下模温度165~190℃,机台压力10~15Mpa,保压时间8~10s;
    Q3.将模压成品运输至热通道,温度控制在130~150℃,保证每个成品的通过时间大于40s;
    Q4.将成品进行磨边,磨边完成后装箱。
  10. 如权利要求1-6中任一项所述的可降解材料或采用权利要求7-9中任一项方法所制得的可降解材料的应用,其特征在于:用于制成环保可降解的一次性用品。
PCT/CN2022/126302 2021-12-29 2022-10-20 一种可降解材料及其制备方法和应用 WO2023124438A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111634459.3 2021-12-29
CN202111634459.3A CN114231047B (zh) 2021-12-29 2021-12-29 一种可降解材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023124438A1 true WO2023124438A1 (zh) 2023-07-06

Family

ID=80744058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126302 WO2023124438A1 (zh) 2021-12-29 2022-10-20 一种可降解材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114231047B (zh)
WO (1) WO2023124438A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114231047B (zh) * 2021-12-29 2023-04-11 厦门糠宝瑞新材料科技有限公司 一种可降解材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030068427A1 (en) * 1999-12-06 2003-04-10 Jerzy Wysocki Material for making biodegradable mouldings from bran and method thereof
CN100999608A (zh) * 2007-01-08 2007-07-18 华东理工大学 可热塑性加工的小麦麸质蛋白材料的制备方法
CN111675916A (zh) * 2020-04-14 2020-09-18 安徽壳氏环保科技有限公司 一种绿色环保可降解植物纤维餐具及其加工工艺
CN114231047A (zh) * 2021-12-29 2022-03-25 厦门糠宝瑞新材料科技有限公司 一种可降解材料及其制备方法和应用

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932319A (en) * 1972-07-28 1976-01-13 Union Carbide Corporation Blends of biodegradable thermoplastic dialkanoyl polymer, a naturally occurring biodegradable product, a plastic additive and a filler
US6488997B1 (en) * 2000-03-31 2002-12-03 Enviro Concept Ltd. Degradable composite material, its disposable products and processing method thereof
CN101003955B (zh) * 2007-01-18 2012-10-10 清华大学 植物纤维原料温和碱/氧化法预处理及溶剂循环利用工艺
KR20090058685A (ko) * 2007-12-05 2009-06-10 박근성 일회용 생분해성 용기 및 그 제조방법
PT106039A (pt) * 2010-12-09 2012-10-26 Hcl Cleantech Ltd Processos e sistemas para o processamento de materiais lenhocelulósicos e composições relacionadas
CN102229177B (zh) * 2011-04-28 2013-04-24 中华人民共和国台州出入境检验检疫局 一种含有竹纤维的餐具的制备方法
CN105440719A (zh) * 2015-12-15 2016-03-30 郭锐 一种用植物秸秆制造缓冲材料的方法
CN107129700A (zh) * 2017-05-13 2017-09-05 厦门壳氏新材料科技有限公司 一种植物纤维板的防翘曲方法
CN107083081A (zh) * 2017-06-08 2017-08-22 合肥峰腾节能科技有限公司 一种植物纤维环保一次性餐具及其制备方法
CN109370244A (zh) * 2018-09-21 2019-02-22 席小兵 可降解的植物纤维一次性餐具及其制备方法
CN109504031A (zh) * 2018-10-31 2019-03-22 安徽绿之态新材料有限公司 一种纤维素/三聚氰胺甲醛复合树脂及其制备方法
CN109651782B (zh) * 2018-12-11 2020-12-22 黄河科技学院 一种复合植物纤维生物可降解材料的制备方法
CZ308646B6 (cs) * 2019-06-06 2021-01-27 Mlýny J. Voženílek, Spol. S R.O. Výlisek z biologicky odbouratelného materiálu s obsahem obilných otrub a způsob jeho výroby
CN113355933B (zh) * 2020-10-23 2023-06-20 高树森 一种环保制浆造纸用组合物、改性剂及环保制浆、造纸方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030068427A1 (en) * 1999-12-06 2003-04-10 Jerzy Wysocki Material for making biodegradable mouldings from bran and method thereof
CN100999608A (zh) * 2007-01-08 2007-07-18 华东理工大学 可热塑性加工的小麦麸质蛋白材料的制备方法
CN111675916A (zh) * 2020-04-14 2020-09-18 安徽壳氏环保科技有限公司 一种绿色环保可降解植物纤维餐具及其加工工艺
CN114231047A (zh) * 2021-12-29 2022-03-25 厦门糠宝瑞新材料科技有限公司 一种可降解材料及其制备方法和应用

Also Published As

Publication number Publication date
CN114231047B (zh) 2023-04-11
CN114231047A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
CN104969866B (zh) 一种利用小麦秸秆制作的猫用秸秆香砂及其方法
CN100589705C (zh) 一种鳖用湿性膨化颗粒料的生产工艺
WO2023124438A1 (zh) 一种可降解材料及其制备方法和应用
JP3893142B1 (ja) 自然分解される無公害の使い捨て容器及びその製造方法
CN101712804B (zh) 植物纤维组成物、复合材料及其制法与应用
CN104725721A (zh) 一种可降解的复合薄膜及其制备方法和应用
CN103214694A (zh) 一种苎麻骨可降解餐具及其制造方法
CN102715363B (zh) 一种罗非鱼富铁配合硬颗粒饲料及其制备方法
CN102432942A (zh) 一种非淀粉类可生物降解的塑料膜
CN104744733A (zh) 一种松针粉生物降解塑料及其制备方法
CN109577100A (zh) 一种可光氧降解的聚乙烯淋膜纸及其制备方法与应用
CN106589140A (zh) 一种改性植物纤维模压制品及其制造方法
CN115260784A (zh) 可方便降解的一次性环保餐具制作方法
CN105112116A (zh) 一种洁净烧烤炭及其制备方法
KR100685775B1 (ko) 부레풀이 포함된 완전히 썩는 일회용 용기 제조용미분파우더 조성물
CN107880502A (zh) 一种生物全降解塑料及其制备方法
CN106398259A (zh) 一种可降解复合材料、植物营养钵及其制备方法
CN112552702B (zh) 一种环保型稻壳基一次性餐具
CN1065122C (zh) 由植物纤维制做的全降解餐具和包装物及其制造方法
CN113563702B (zh) 一种可降解塑料袋及其制备方法
CN102550873B (zh) 一种生长肥育猪微粒型浓缩饲料及其制备方法
CN101255239A (zh) 一种水溶性橡胶隔离剂的生产方法
TWI768869B (zh) 生物降解植物纖維顆粒母料之製法
TW201809149A (zh) 含有麥粕纖維的生質複合塑料及其製造方法
CN106592103A (zh) 一种用秸秆生产包装材料的生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913701

Country of ref document: EP

Kind code of ref document: A1