WO2023124299A1 - 太阳能电池板、电池片及电池片的生产工艺 - Google Patents

太阳能电池板、电池片及电池片的生产工艺 Download PDF

Info

Publication number
WO2023124299A1
WO2023124299A1 PCT/CN2022/120749 CN2022120749W WO2023124299A1 WO 2023124299 A1 WO2023124299 A1 WO 2023124299A1 CN 2022120749 W CN2022120749 W CN 2022120749W WO 2023124299 A1 WO2023124299 A1 WO 2023124299A1
Authority
WO
WIPO (PCT)
Prior art keywords
type silicon
silicon layer
concentration
phosphine
layer
Prior art date
Application number
PCT/CN2022/120749
Other languages
English (en)
French (fr)
Inventor
徐文州
孟夏杰
姚骞
王秀鹏
刑国强
Original Assignee
通威太阳能(眉山)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通威太阳能(眉山)有限公司 filed Critical 通威太阳能(眉山)有限公司
Priority to AU2022428730A priority Critical patent/AU2022428730A1/en
Priority to EP22913564.5A priority patent/EP4318611A1/en
Publication of WO2023124299A1 publication Critical patent/WO2023124299A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of photovoltaic technology, in particular to a solar cell panel, a battery sheet and a production process of the battery sheet.
  • the traditional method includes first depositing a certain thickness of ultra-thin intrinsic polysilicon on the tunnel oxide layer on the back of the N-type silicon wafer, and then injecting phosphine in situ to prepare the doped polysilicon.
  • N-type polysilicon has the effect of selective passivation on the back side.
  • a production process of a battery sheet including the following steps:
  • An anti-reflection layer is formed on the N-type silicon layer and a back electrode is formed on the anti-reflection layer.
  • the step of forming an N-type silicon layer on the silicon oxide layer includes:
  • the phosphine concentration of the first N-type silicon layer being within a first preset concentration range
  • a second N-type silicon layer is formed on the first N-type silicon layer, the phosphine concentration of the second N-type silicon layer is within a first preset concentration range, and the phosphorane concentration of the second N-type silicon layer is The alkane concentration is greater than the phosphine concentration of the first N-type silicon layer.
  • the step of forming a second N-type silicon layer on the first N-type silicon layer includes:
  • the phosphine concentration of the second N-type silicon layer is at least twice that of the first N-type silicon layer.
  • a first N-type silicon layer is formed on the silicon oxide layer, and the step in which the phosphine concentration of the first N-type silicon layer is within a first preset concentration range includes: Or equal to 1000 sccm of phosphine.
  • the first N-type silicon layer is formed on the silicon oxide layer, and the step of forming the phosphine concentration of the first N-type silicon layer within a first preset concentration range includes: Or phosphine equal to 500 sccm and less than or equal to 1000 sccm.
  • a second N-type silicon layer is formed on the silicon oxide layer, the phosphine concentration of the second N-type silicon layer is within a first preset concentration range, and the second N-type silicon layer
  • the step that the phosphine concentration of the layer is greater than the phosphine concentration of the first N-type silicon layer includes: feeding phosphine greater than or equal to 2000 sccm.
  • a second N-type silicon layer is formed on the silicon oxide layer, the phosphine concentration of the second N-type silicon layer is within a first preset concentration range, and the second N-type silicon layer
  • the step that the phosphine concentration of the layer is greater than the phosphine concentration of the first N-type silicon layer includes: feeding phosphine greater than or equal to 2500 sccm.
  • a first N-type silicon layer is formed on the silicon oxide layer, and the step of forming a phosphine concentration of the first N-type silicon layer within a first preset concentration range includes: the first N-type silicon layer The phosphine concentration of an N-type silicon layer increases gradually as the thickness of the first N-type silicon layer increases.
  • a second N-type silicon layer is formed on the silicon oxide layer, the phosphine concentration of the second N-type silicon layer is within a first preset concentration range, and the second N-type silicon layer
  • the step in which the phosphine concentration of the layer is greater than the phosphine concentration of the first N-type silicon layer includes: the phosphine concentration of the second N-type silicon layer increases with the thickness of the second N-type silicon layer increment.
  • the step of forming an N-type silicon layer on the silicon oxide layer, wherein the phosphine concentration of the N-type silicon layer is within a first preset concentration range includes:
  • the concentration of silane introduced into the second N-type silicon layer is the same, and the concentration of silane is greater than the concentration of phosphine in the first N-type silicon layer.
  • the concentration is less than the phosphine concentration of the second N-type silicon layer.
  • the step of forming an N-type silicon layer on the silicon oxide layer includes:
  • Silane of 1200 sccm or more and 1800 sccm or less is passed.
  • the step of forming the first N-type silicon layer and forming the second N-type silicon layer with the same concentration of silane further comprising: introducing methane, and the methane concentration is less than or equal to Triple the silane concentration.
  • Another aspect of the present application provides a battery sheet, which is produced by using the production process.
  • the battery sheet includes:
  • An N-type silicon chip the N-type silicon chip has a back side
  • the N-type silicon layer is disposed on the side of the silicon oxide layer away from the N-type silicon wafer, and the phosphine concentration of the N-type silicon layer is within a first preset concentration range, so as to Capable of binding hydrogen atoms during the high temperature annealing process.
  • the N-type silicon layer includes a first N-type silicon layer and a second N-type silicon layer, and the first N-type silicon layer is disposed on the side of the silicon oxide layer away from the N-type silicon wafer.
  • the second N-type silicon layer is disposed on the side of the first N-type silicon layer away from the silicon oxide layer, the phosphine concentration of the first N-type silicon layer and the second N-type silicon layer.
  • the phosphine concentrations of the silicon layers are all within the first predetermined concentration range, and the phosphine concentrations of the second N-type silicon layer are greater than the phosphine concentrations of the first N-type silicon layer.
  • the phosphine concentration of the first N-type silicon layer increases gradually along the thickness direction away from the silicon oxide layer.
  • the phosphine concentration of the second N-type silicon layer increases gradually in the direction away from the first N-type silicon layer in the thickness direction.
  • a solar cell panel including the cell sheet described above.
  • Fig. 1 is the flow chart of the production process of the battery sheet of an embodiment of the present application
  • Fig. 2 is the flow chart of the production process of the battery sheet of another embodiment
  • Fig. 3 is a comparison diagram of the traditional method and the production process of the battery sheet of the present application.
  • Fig. 4 is a comparison chart of the battery efficiency and open circuit voltage of the battery sheet produced in the traditional way and the battery efficiency and open circuit voltage of the battery sheet of the production process of the present application;
  • Fig. 5 is the ECV test diagram of the production process of the battery sheet of the present application.
  • FIG. 6 is a schematic structural diagram of a cell produced by the production process in FIG. 1 .
  • N-type silicon wafer 100, N-type silicon wafer; 200, silicon oxide layer; 300, N-type silicon layer; 310, first N-type silicon layer; 320, second N-type silicon layer; 400, anti-reflection layer; 500, back electrode.
  • the traditional production process of solar cells includes: depositing a certain thickness of ultra-thin intrinsic polysilicon on the tunnel oxide layer on the back of the N-type silicon wafer, and using the intrinsic polysilicon to effectively prevent phosphine from entering the N-type silicon wafer. Play a certain barrier effect; then pass through in-situ phosphine to prepare a doped N-type polysilicon layer, and play the effect of selective passivation on the back side.
  • hydrogen gas is usually introduced during the preparation of the doped N-type polysilicon layer.
  • hydrogen will escape due to heat, thereby causing film explosion.
  • a production process of a battery sheet comprising the following steps:
  • a SiOx tunneling silicon oxide layer 200 is prepared on the back of the N-type silicon wafer 100 .
  • the back of the N-type silicon wafer 100 can be polished or polished and then textured, and then the SiOx tunneling silicon oxide layer 200 can be prepared on the back of the N-type silicon wafer 100 .
  • an N-type silicon layer 300 is prepared on the side of the silicon oxide layer 200 away from the N-type silicon wafer 100 by PECVD (Plasma Enhanced Chemical Vapor Deposition, plasma enhanced chemical vapor deposition method), Moreover, a certain amount of phosphine is injected during the preparation of the N-type silicon layer 300 so that the concentration of phosphine on the N-type silicon layer 300 is within a first preset concentration range. In this way, in the subsequent high-temperature annealing process, since the N-type silicon layer 300 is doped with a certain concentration of phosphine, the hydrogen atoms can be bound, and the explosion caused by the escape of hydrogen atoms can be avoided. film, which can improve the open circuit voltage, conversion efficiency and fill factor, and can also enhance the back passivation effect and improve the quality of the cell.
  • PECVD Plasma Enhanced Chemical Vapor Deposition, plasma enhanced chemical vapor deposition method
  • the N-type silicon layer 300 can be in the form of polysilicon alone, can also be in the form of amorphous silicon alone, and can also be in the form of a combination of polysilicon and amorphous silicon, as long as it can be doped with the first preset concentration of phosphine That's it.
  • the specific value range or value value of the first preset concentration range can be flexibly designed or adjusted according to actual process conditions or production needs, as long as it is satisfied that phosphine can carry out hydrogen atoms in the subsequent high-temperature annealing process. Constraint, to avoid the escape of hydrogen atoms and cause membrane explosion.
  • gases such as methane, hydrogen, and laughing gas may also be introduced to enhance passivation.
  • the side of the silicon oxide layer 200 away from the N-type silicon wafer 100 can also be polished or polished and textured before preparing the N-type silicon layer 300, thereby improving the quality of the sink. light effect.
  • the traditional production process prepares intrinsic polysilicon on the silicon oxide layer 200 , and the escape phenomenon of hydrogen atoms is more serious in the subsequent high temperature annealing process.
  • the N-type silicon wafer 100 doped with phosphine is prepared on the silicon oxide layer 200, and the hydrogen atoms are bound by phosphine, so as to avoid the explosion caused by the escape of hydrogen atoms. membrane.
  • the N-type silicon layer 300 has excellent gettering and blocking effects, and has excellent field passivation effect and electron selective transmission.
  • the production process of the battery sheet also includes the process of processing the front side of the N-type silicon wafer 100 , since any conventional processing process can be used, it will not be repeated here.
  • step S200 including:
  • the first N-type silicon layer 310 is prepared by PECVD on the side of the silicon oxide layer 200 away from the N-type silicon layer 300. During the preparation process, a certain concentration of phosphine is introduced so that the first N The phosphine concentration of the type silicon layer 310 is within a first predetermined concentration range.
  • phosphine less than or equal to 1000 sccm is introduced, so that the concentration of phosphine in the first N-type silicon layer 310 is within a first preset concentration range.
  • the first N-type silicon layer 310 is doped with a certain concentration of phosphine, the hydrogen atoms can be bound, and the overflow caused by the escape of hydrogen atoms can be avoided.
  • the explosive film can improve the open circuit voltage, conversion efficiency and fill factor, and improve the quality of the cell.
  • the phosphine concentration greater than or equal to 500 sccm and less than or equal to 1000 sccm is introduced to ensure that the concentration of phosphine in the first N-type silicon layer 310 can effectively bind the hydrogen atoms, effectively avoiding the overflow caused by the escape of hydrogen atoms. Caused membrane burst.
  • the phosphine concentration of the second N-type silicon layer 320 is within the first preset concentration range, and the phosphine concentration of the second N-type silicon layer 320 greater than the phosphine concentration of the first N-type silicon layer 310 .
  • the second N-type silicon layer 320 is prepared by PECVD on the side of the first N-type silicon layer 310 facing away from the silicon oxide layer 200. During the preparation process, a certain concentration of phosphine is introduced so that the first The phosphine concentration of the second N-type silicon layer 320 is within the first preset concentration range, and the phosphine concentration of the second N-type silicon layer 320 is greater than that of the first N-type silicon layer 310 .
  • phosphine greater than or equal to 2000 sccm is introduced, so that the phosphine concentration of the second N-type silicon layer 320 is within the first preset concentration range, and , so that the phosphine concentration of the second N-type silicon layer 320 is greater than the phosphine concentration of the first N-type silicon layer 310 .
  • the second N-type silicon layer 320 is doped with a certain concentration of phosphine, the hydrogen atoms can be bound, and the overflow caused by the escape of hydrogen atoms can be avoided.
  • the explosive film can improve the open circuit voltage, conversion efficiency and fill factor, and improve the quality of the cell.
  • phosphine greater than or equal to 2500 sccm is introduced to ensure that the concentration of phosphine in the second N-type silicon layer 320 is relatively high, so that hydrogen atoms can be effectively bound, effectively To avoid the bursting of the membrane caused by the overflow caused by the escape of hydrogen atoms.
  • the second N-type silicon layer 320 is closer to the outer side of the cell relative to the first N-type silicon layer 310, so hydrogen ions are more likely to escape during the high-temperature annealing process, because the phosphine concentration of the second N-type silicon layer 320 is greater than that of the first The phosphine concentration of the N-type silicon layer 310 can well bind the hydrogen atoms, ensure that the hydrogen atoms will not escape and overflow, and can effectively avoid membrane explosion.
  • the phosphine concentration of the second N-type silicon layer 320 is at least twice that of the first N-type silicon layer 310, ensuring that the first N
  • the concentration of phosphine in the second N-type silicon layer 310 can effectively bind the hydrogen atoms
  • the concentration of phosphine in the second N-type silicon layer 320 is relatively large, so as to better control the hydrogen atoms in the second N-type silicon layer 320.
  • the hydrogen atoms are bound to avoid the escape of hydrogen atoms and the explosion of the membrane.
  • the phosphine concentration of the second N-type silicon layer 320 may be twice, three times, four times or more than that of the first N-type silicon layer 310 .
  • step S210 further comprising: S211 , increasing the phosphine concentration of the first N-type silicon layer 310 as the thickness of the first N-type silicon layer 310 increases.
  • the thickness of the first N-type silicon layer 310 becomes thicker with time, and the concentration of phosphine also increases continuously simultaneously, so that The phosphine concentration of the first N-type silicon layer 310 away from the silicon oxide layer 200 is higher than the phosphine concentration close to the silicon oxide layer 200, so that the binding ability of the first N-type silicon layer 310 to hydrogen atoms is farther away from the silicon oxide layer 200.
  • the direction (shown as the direction A in FIG. 6 ) is continuously strengthened to ensure that all parts of the first N-type silicon layer 310 can effectively bind the hydrogen atoms, which can effectively avoid membrane explosion.
  • the concentration of phosphine can be gradually increased as the thickness of the first N-type silicon layer 310 increases by gradually increasing the supply of phosphine.
  • step S220 further comprising: S221 , increasing the phosphine concentration of the second N-type silicon layer 320 as the thickness of the second N-type silicon layer 320 increases.
  • the thickness of the second N-type silicon layer 320 becomes thicker with time, and the concentration of phosphine also increases continuously simultaneously, so that The phosphine concentration of the second N-type silicon layer 320 away from the first N-type silicon is higher than the phosphine concentration close to the first N-type silicon, so that the binding ability of the second N-type silicon layer 320 to hydrogen atoms is farther away from the first N-type silicon layer.
  • the direction of the N-type silicon (shown as the direction A in FIG. 6 ) is continuously strengthened to ensure that all parts of the second N-type silicon layer 320 can effectively bind the hydrogen atoms and effectively avoid membrane bursting.
  • the concentration of phosphine can be gradually increased as the thickness of the second N-type silicon layer 320 increases by gradually increasing the supply of phosphine. Moreover, the phosphine concentration of the second N-type silicon layer 320 is always greater than that of the first N-type silicon layer 310 .
  • the number of layers of the first N-type silicon layer 310 and the number of layers of the second N-type silicon layer 320 can be flexibly designed or adjusted according to actual use needs, as long as they can be In the high-temperature annealing process, the hydrogen atoms are bound to avoid membrane explosion.
  • the first N-type silicon layer 310 can be at least two layers (two layers, three layers or more), and the second N-type silicon layer 320 can also be at least two layers (two layers, three layers or more), and , the first N-type silicon layer 310 and the second N-type silicon layer 320 are arranged alternately, that is, there is a layer of second N-type silicon layer 320 between two adjacent first N-type silicon layers 310, and two adjacent There is a first N-type silicon layer 310 between the second N-type silicon layers 320 .
  • first N-type silicon layer 310 and the second N-type silicon layer 320 are prepared by PECVD method, which are continuous and dense, and have excellent gettering, impurity blocking, strong field passivation and high electron selectivity. .
  • step S200 further includes: S230, the concentration of silane injected when forming the first N-type silicon layer 310 is the same as that when forming the second N-type silicon layer 320 .
  • the silane concentration in the first N-type silicon layer 310 is the same as the silane concentration in the second N-type silicon layer 320, which meets the performance requirements, and the introduction of silane can also enhance passivation or play a role in isolating impurities .
  • the silane concentration is greater than the phosphine concentration of the first N-type silicon layer 310, and the silane concentration is smaller than the phosphine concentration of the second N-type silicon layer 320, so that the first N-type silicon layer 310 and the second N-type silicon layer 320 are both It can bind hydrogen atoms, and the second N-type silicon layer 320 relatively closer to the outer side has a stronger ability to bind hydrogen atoms, ensuring that hydrogen atoms in each part will not escape, and can effectively avoid membrane bursting.
  • feed silane greater than or equal to 1200 sccm and less than or equal to 1800 sccm, so that the silane concentration of the first N-type silicon layer 310 is the same as that of the second N-type silicon layer 320, and the silane concentration is greater than the first N-type silicon layer 320.
  • the phosphine concentration of the second N-type silicon layer 310 makes the silane concentration smaller than the phosphine concentration of the second N-type silicon layer 320 .
  • step S230 further comprising: S231, introducing methane, and the methane concentration is less than or equal to three times the silane concentration.
  • the introduction of methane can make carbon doping reduce the crystalline quality of polysilicon, reduce the residual stress during high temperature annealing, and form C-Si bonds to increase the strength of chemical bonds.
  • the formation of the C-H bond is beneficial to suppress the release level of hydrogen, which enhances the ability of carbon to capture hydrogen atoms, and also inhibits the escape of hydrogen atoms to cause membrane explosion.
  • the amount of methane introduced can be flexibly designed or adjusted according to actual use needs, as long as the methane concentration is less than or equal to three times the silane concentration, so as to further avoid membrane bursting.
  • the feeding of silane and the feeding of phosphine can be performed simultaneously or sequentially, without limitation.
  • the phosphine concentration of the N-type silicon layer 300 refers to the content of phosphine in the N-type silicon layer 300; the phosphine concentration of the first N-type silicon layer 310 refers to The content of phosphine in the middle; the phosphine concentration of the second N-type silicon layer 320 refers to the content of phosphine in the second N-type silicon layer 320; the silane concentration of the first N-type silicon layer 310 refers to the first N-type silicon layer The content of silane in 310 ; the silane concentration of the second N-type silicon layer 320 refers to the content of silane in the second N-type silicon layer 320 .
  • the battery sheet produced by the production process of the above embodiment does not appear to burst when observed under a microscope.
  • the cells produced by the traditional process are observed under a microscope, as shown in (a) and (b) of Figure 3, there is a problem of membrane bursting.
  • the film bursting problem can be completely solved. After solving the film bursting problem, the battery efficiency and open circuit voltage are significantly improved.
  • SP2 is the battery efficiency and open circuit voltage of the battery sheet produced by the production process of the embodiment of the present application.
  • the ECV Electrochemical capacitance-voltage profiler, electrochemical Differential capacitance voltage
  • the preparation temperatures of the silicon oxide layer 200 , the N-type silicon layer 300 and the anti-reflection layer 400 can be flexibly designed or adjusted according to respective process conditions or process requirements.
  • the temperature for preparing the first N-type silicon layer 310 and the second N-type silicon layer 320 may be 80°C to 380°C.
  • the size and specific shape specifications of the N-type silicon wafer 100 may not be limited.
  • the production process of the battery sheet in the above embodiment has at least the following advantages: 1. Hydrogen atoms can be bound during the high-temperature annealing process to prevent hydrogen atoms from escaping and causing membrane explosion; 2. The ability to bind hydrogen atoms from Continuously strengthened from the inside to the outside, it can effectively bind the hydrogen atoms in various parts and effectively avoid the explosion of the membrane; 3. It can improve the open circuit voltage and conversion efficiency (the average conversion efficiency can be increased by more than 24.67%, and the highest can be increased by 24.9%) %) and fill factor, it can also enhance the back passivation effect and improve the quality of the cell.
  • a battery sheet is also provided, which is obtained by using the production process of any of the above embodiments.
  • the battery sheet of the above embodiment does not have the problem of membrane bursting, and the quality of the product is high. Moreover, the open circuit voltage, conversion efficiency and fill factor are all high.
  • the cell includes an N-type silicon wafer 100 , a silicon oxide layer 200 and an N-type silicon layer 300 .
  • the N-type silicon wafer 100 has a back side; the silicon oxide layer 200 is arranged on the back side; the N-type silicon layer 300 is arranged on the side of the silicon oxide layer 200 away from the N-type silicon wafer 100, and the phosphine of the N-type silicon layer 300
  • the concentration is within a first predetermined concentration range, so as to bind hydrogen atoms in the high temperature annealing process.
  • the N-type silicon layer 300 is doped with a certain concentration of phosphine, the hydrogen atoms can be bound, and the explosion caused by the escape of hydrogen atoms can be avoided. film, which can improve the open circuit voltage, conversion efficiency and fill factor, and can also enhance the back passivation effect and improve the quality of the cell.
  • the N-type silicon layer includes a first N-type silicon layer 310 and a second N-type silicon layer 320 .
  • the first N-type silicon layer 310 is disposed on the side of the silicon oxide layer 200 away from the N-type silicon wafer 100
  • the second N-type silicon layer 320 is disposed on the side of the first N-type silicon layer 310 away from the silicon oxide layer 200
  • Both the phosphine concentration of the first N-type silicon layer 310 and the phosphine concentration of the second N-type silicon layer 320 are within the first preset concentration range.
  • Both 310 and the second N-type silicon layer 320 are doped with a certain concentration of phosphine, so that the hydrogen atoms can be bound, thereby avoiding the bursting of the membrane caused by the overflow caused by the escape of the hydrogen atoms, thereby improving the open circuit. Voltage, conversion efficiency and fill factor improve the quality of the cell. Moreover, the phosphine concentration of the second N-type silicon layer 320 is greater than the phosphine concentration of the first N-type silicon layer 310, so that the hydrogen atoms can be well bound, ensuring that the hydrogen atoms will not escape and overflow, and can Effectively avoid membrane bursting.
  • the phosphine concentration of the first N-type silicon layer increases gradually along the direction away from the silicon oxide layer in the thickness direction.
  • the thickness of the first N-type silicon layer 310 becomes thicker with time, and the concentration of phosphine also increases continuously simultaneously, so that The phosphine concentration of the first N-type silicon layer 310 away from the silicon oxide layer 200 is higher than the phosphine concentration close to the silicon oxide layer 200, so that the binding ability of the first N-type silicon layer 310 to hydrogen atoms is farther away from the silicon oxide layer 200.
  • the direction (shown as the direction A in FIG. 6 ) is continuously strengthened to ensure that all parts of the first N-type silicon layer 310 can effectively bind the hydrogen atoms, which can effectively avoid membrane explosion.
  • the phosphine concentration of the second N-type silicon layer increases gradually along the direction away from the silicon oxide layer in the thickness direction.
  • the thickness of the second N-type silicon layer 320 becomes thicker with time, and the concentration of phosphine also increases continuously simultaneously, so that The phosphine concentration of the second N-type silicon layer 320 away from the first N-type silicon is higher than the phosphine concentration close to the first N-type silicon, so that the binding ability of the second N-type silicon layer 320 to hydrogen atoms is farther away from the first N-type silicon layer.
  • the direction of the N-type silicon (shown as the direction A in FIG. 6 ) is continuously strengthened to ensure that all parts of the second N-type silicon layer 320 can effectively bind the hydrogen atoms and effectively avoid membrane bursting.
  • a solar cell panel is also provided, including the cell sheet of any embodiment above.
  • the solar battery panel of the above embodiment does not have the problem of film bursting, and the quality of the product is high. Moreover, the open circuit voltage, conversion efficiency and fill factor are all high.
  • a certain body and “a certain part” can be part of the corresponding “component”, that is, “a certain body” and “a certain part” are integrally formed with other parts of the “component”; “Other parts of” an independent component that can be separated, that is, “a certain body” and “a certain part” can be manufactured independently, and then combined with “other parts of the component” to form a whole.
  • the expression of the above-mentioned “a certain body” and "a certain part” in this application is only one of the embodiments. For the convenience of reading, it is not to limit the scope of protection of the application. As long as the above-mentioned features are included and the functions are the same, it should be understood as The technical scheme equivalent to this application.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a first feature being "on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • an element when an element is referred to as being “fixed on”, “disposed on”, “fixed on” or “installed on” another element, it can be directly on the other element or there can also be an intervening element .
  • an element When an element is referred to as being “connected to” another element, it can be directly connected to the other element or intervening elements may also be present.
  • one element when one element is considered to be "fixed transmission connection” to another element, the two can be fixed in a detachable connection, or can be fixed in a non-detachable connection, as long as power transmission can be realized, such as socket, snap-in , integral molding, fixing, welding, etc., can be realized in the prior art, and are no longer cumbersome here.
  • connection relationship or positional relationship of elements although not explicitly described, the connection relationship and positional relationship are interpreted as including an error range, and the error range should be accepted by a specific value determined by those skilled in the art. within the range of deviation. For example, “about,” “approximately,” or “substantially” can mean within one or more standard deviations, without limitation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Metallurgy (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Electromechanical Clocks (AREA)

Abstract

本申请涉及一种太阳能电池板、电池片及电池片的生产工艺。通过在N型硅片(100)的背面形成氧化硅层(200);在氧化硅层(200)上形成N型硅层(300),其中,N型硅层(300)的磷烷浓度处于第一预设浓度范围内;在N型硅层(300)上形成减反射层(400)并在减反射层(400)上形成背面电极(500)。在高温退火工序中利用磷烷能够对氢原子进行束缚,避免氢原子发生逃逸而发生爆膜,能够提升开路电压、转换效率与填充因子,还能增强背钝化效果,提升电池片的品质。

Description

太阳能电池板、电池片及电池片的生产工艺
相关申请
本申请要求2021年12月31申请的,申请号为2021116751674,名称为“太阳能电池板、电池片及电池片的生产工艺”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及光伏技术领域,特别是涉及一种太阳能电池板、电池片及电池片的生产工艺。
背景技术
太阳能电池板的电池片在生产过程中,传统的方式包括先在N型硅片的背面隧穿氧化层上沉积一定厚度的超薄的本征多晶硅,再原位通入磷烷制备掺杂的N型多晶硅,起背面选择钝化的效果。
在采用PECVD(Plasma Enhanced Chemical Vapor Deposition,等离子体增强化学的气相沉积法)法制备掺杂的N型多晶硅时,会引入大量的氢以增强钝化效果。然而,在后续的高温退火工序中,氢原子会出现逃逸,从而引起爆膜现象,尤其在抛光片上或者抛光后再制绒的电池片上,高温退火后更容易发生爆膜,用显微镜观察时,在1mm 2内出现爆膜点可高达200多个,爆膜直径约为1um-8um大小。同时,爆膜的点会成为缺陷而引起大量的载流子复合,从而降低了钝化效果,并降低了太阳能电池板的开压。
发明内容
根据本申请的各自实施例,一方面,提供了一种电池片的生产工艺,包括以下步骤:
在N型硅片的背面形成氧化硅层;
在所述氧化硅层上形成N型硅层,其中,所述N型硅层的磷烷浓度处于第一预设浓度范围内;
在所述N型硅层上形成减反射层并在所述减反射层上形成背面电极。
在一个实施例中,在所述氧化硅层上形成N型硅层的步骤中,包括:
在所述氧化硅层上形成第一N型硅层,所述第一N型硅层的磷烷浓度处于第一预设浓度范围内;
在所述第一N型硅层上形成第二N型硅层,所述第二N型硅层的磷烷浓度处于第一预设浓度范围内,且所述第二N型硅层的磷烷浓度大于所述第一N型硅层的磷烷浓度。
在一个实施例中,在所述第一N型硅层上形成第二N型硅层的步骤中,包括:
所述第二N型硅层的磷烷浓度至少为所述第一N型硅层的磷烷浓度的两倍。
在一个实施例中,在所述氧化硅层上形成第一N型硅层,所述第一N型硅层的磷烷浓度处于第一预设浓度范围内的步骤中,包括:通入小于或等于1000sccm的磷烷。
在一个实施例中,在所述氧化硅层上形成第一N型硅层,所述第一N型硅层的磷烷浓度处于第一预设浓度范围内的步骤中,包括:通入大于或等于500sccm并小于或等于1000sccm的磷烷。
在一个实施例中,在所述氧化硅层上形成第二N型硅层,所述第二N型硅层的磷烷浓度处于第一预设浓度范围内,且所述第二N型硅层的磷烷浓度大于所述第一N型硅层的磷烷浓度的步骤中,包括:通入大于或等于2000sccm的磷烷。
在一个实施例中,在所述氧化硅层上形成第二N型硅层,所述第二N型硅层的磷烷浓度处于第一预设浓度范围内,且所述第二N型硅层的磷烷浓度大于所述第一N型硅层的磷烷浓度的步骤中,包括:通入大于或等于2500sccm的磷烷。
在一个实施例中,在所述氧化硅层上形成第一N型硅层,所述第一N型硅层的磷烷浓度处于第一预设浓度范围内的步骤中,包括:所述第一N型硅层的磷烷浓度随所述第一N型硅层的厚度的增加而递增。
在一个实施例中,在所述氧化硅层上形成第二N型硅层,所述第二N型硅层的磷烷浓度处于第一预设浓度范围内,且所述第二N型硅层的磷烷浓度大于所述第一N型硅层的磷烷浓度的步骤中,包括:所述第二N型硅层的磷烷浓度随所述第二N型硅层的厚度的增加而递增。
在一个实施例中,在所述氧化硅层上形成N型硅层,其中,所述N型硅层的磷烷浓度处于第一预设浓度范围内的步骤中,包括:
形成所述第一N型硅层时与形成所述第二N型硅层时通入的硅烷浓度相同,且所述硅烷浓度大于所述第一N型硅层的磷烷浓度,所述硅烷浓度小于所述第二N型硅层的磷烷浓度。
在一个实施例中,在所述氧化硅层上形成N型硅层的步骤中,包括:
通入大于等于1200sccm并且小于等于1800sccm的硅烷。
在一个实施例中,在形成所述第一N型硅层时与形成所述第二N型硅层时通入的硅烷浓度相同的步骤中,还包括:通入甲烷,且甲烷浓度小于等于三倍的硅烷浓度。
本申请的另一方面,提供了一种电池片,采用所述的生产工艺生产得到。
在一个实施例中,所述电池片包括:
N型硅片,所述N型硅片具有背面;
氧化硅层,所述氧化硅层设置于所述背面;及
N型硅层,所述N型硅层设置于所述氧化硅层背离所述N型硅片的侧面上,且所述N型硅层的磷烷浓度处于第一预设浓度范围内,以能够在高温退火工序中对氢原子进行束缚。
在一个实施例中,所述N型硅层包括第一N型硅层和第二N型硅层,所述第一N型硅层设置于所述氧化硅层背离所述N型硅片的侧面上,所述第二N型硅层设置于所述第一N型硅层背离所述氧化硅层的侧面上,所述第一N型硅层的磷烷浓度及所述第二N型硅层的磷烷浓度均处于所述第一预设浓度范围内,且所述第二N型硅层的磷烷浓度大于所述第一N型硅层的磷烷浓度。
在一个实施例中,所述第一N型硅层的磷烷浓度在厚度方向上沿远离所述氧化硅层方向递增。
在一个实施例中,所述第二N型硅层的磷烷浓度在厚度方向上沿远离所述第一N型硅层方向递增。
本申请的再一方面,提供了一种太阳能电池板,包括所述的电池片。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为本申请一个实施例的电池片的生产工艺的流程图;
图2为另一个实施例的电池片的生产工艺的流程图;
图3为传统的方式与本申请的电池片的生产工艺的对比图;
图4为传统的方式生产的电池片的电池效率和开路电压与本申请的生产工艺的电池片的电池效率和开路电压的对比图;
图5为本申请的电池片的生产工艺的ECV测试图;
图6为采用图1的生产工艺生产的电池片的结构示意图。
附图标记:
100、N型硅片;200、氧化硅层;300、N型硅层;310、第一N型硅层;320、第二N型硅层;400、减反射层;500、背面电极。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
电池片传统的生产工艺包括:先在N型硅片的背面隧穿氧化层上沉积一定厚度的超薄的本征多晶硅,利用本征多晶硅能够有效阻止磷烷进入N型硅片的性质,从而起到一定的阻隔作用;接着原位通入磷烷以制备掺杂的N型多晶硅层,起背面选择钝化的效果。其中,为了增强钝化效果,通常会在制备掺杂的N型多晶硅层时通入氢气,然而,在后续的高温退火工序中,氢会受热而出现逃逸,从而引起爆膜。
如图1所示,在一个实施例中,提供了一种电池片的生产工艺,包括以下步骤:
S100、在N型硅片100的背面形成氧化硅层200。
在一个实施例中,在N型硅片100的背面制备SiOx隧穿氧化硅层200。
另外,还可以在N型硅片100的背面进行抛光或者抛光后再制绒,再在N型硅片100的背面制备SiOx隧穿氧化硅层200。
S200、在氧化硅层200上形成N型硅层300,其中,N型硅层300的磷烷浓度处于第一预设浓度范围内。
如图6所示,可选地,采取PECVD(Plasma Enhanced Chemical Vapor Deposition,等离子体增强化学的气相沉积法)法在氧化硅层200背离N型硅片100的侧面上制备N型硅层300,并且,在N型硅层300制备过程中通入一定量的磷烷,使得N型硅层300上的磷烷浓度处于第一预设浓度范围内。如此,在后续的高温退火工序中,由于N型硅层300中掺杂了一定浓度的磷烷,从而能够对氢原子进行束缚,进而能够避免因氢原子的逃逸产生的溢散而引起的爆膜,从而能够提升开路电压、转换效率与填充因子,还能增强背钝化效果,提升电池片的品质。
其中,N型硅层300可以单独为多晶硅的形式,也可以单独为非晶硅的形式,还可以为多晶硅与非晶硅的组合形式,只需满足能够掺杂第一预设浓度的磷烷即可。
其中,第一预设浓度范围的具体取值范围或取值数值可以根据实际工艺条件或生产需 要进行灵活的设计或调整,只需满足在后续的高温退火工序中使得磷烷能够对氢原子进行束缚,避免氢原子发生逃逸而引起爆膜即可。
并且,在制备N型硅层300时,还可以通入甲烷、氢气、笑气等气体以增强钝化。
此外,在氧化硅层200上制备N型硅层300前,还可以在氧化硅层200背离N型硅片100的侧面进行抛光或者抛光并制绒后再制备N型硅层300,从而提高陷光作用。
另外,由于气体在光滑的表面上本身易发生逃逸,传统的生产工艺在氧化硅层200上制备本征多晶硅,在后续的高温退火工序中,氢原子的逃逸现象更加严重。而本申请实施例通过在氧化硅层200上制备掺杂有磷烷的N型硅片100,利用磷烷对氢原子进行束缚,进而能够避免因氢原子的逃逸产生的溢散而引起的爆膜。同时,相比本征多晶硅而言,N型硅层300的吸杂与阻塞效果优异,具有优异的场钝化效果和电子选择透过性。
S300、在N型硅层300上形成减反射层400并在减反射层400上形成背面电极500。
如图6所示,可选地,在N型硅层300背离氧化硅层200的侧面上制备一层含氮化硅的减反射层400,在减反射层400上印刷银浆以形成背面电极500。
需要进行说明的是,在电池片的生产工艺中,还包括对N型硅片100的正面进行加工的工序,由于其可以采用传统的任意一种加工工艺,在此不再赘述。
如图2所示,可选地,在S200步骤中,包括:
S210、在氧化硅层200上形成第一N型硅层310,第一N型硅层310的磷烷浓度处于第一预设浓度范围内。
在一个实施例中,在氧化硅层200背离N型硅层300的侧面上采取PECVD法制备第一N型硅层310,在制备的过程中,通入一定浓度的磷烷,使得第一N型硅层310的磷烷浓度处于第一预设浓度范围内。
在一个实施例中,在制备第一N型硅层310过程中,通入小于等于1000sccm的磷烷,从而使得第一N型硅层310的磷烷浓度处于第一预设浓度范围内。如此,在后续的高温退火工序中,由于第一N型硅层310中掺杂了一定浓度的磷烷,从而能够对氢原子进行束缚,进而能够避免因氢原子的逃逸产生的溢散而引起的爆膜,从而能够提升开路电压、转换效率与填充因子,提升电池片的品质。
优选地,通入大于等于500sccm并小于等于1000sccm的磷烷,保证第一N型硅层310的磷烷浓度能够有效的对氢原子进行束缚,有效的避免因氢原子的逃逸产生的溢散而引起的爆膜。
S220、在氧化硅层200上形成第二N型硅层320,第二N型硅层320的磷烷浓度处于第一预设浓度范围内,并且,第二N型硅层320的磷烷浓度大于第一N型硅层310的磷烷 浓度。
在一个实施例中,在第一N型硅层310背离氧化硅层200的侧面上采取PECVD法制备第二N型硅层320,在制备的过程中,通入一定浓度的磷烷,使得第二N型硅层320的磷烷浓度处于第一预设浓度范围内,并且,使得第二N型硅层320的磷烷浓度大于第一N型硅层310的磷烷浓度。
在一个实施例中,在制备第二N型硅层320过程中,通入大于等于2000sccm的磷烷,从而使得第二N型硅层320的磷烷浓度处于第一预设浓度范围内,并且,使得第二N型硅层320的磷烷浓度大于第一N型硅层310的磷烷浓度。如此,在后续的高温退火工序中,由于第二N型硅层320中掺杂了一定浓度的磷烷,从而能够对氢原子进行束缚,进而能够避免因氢原子的逃逸产生的溢散而引起的爆膜,从而能够提升开路电压、转换效率与填充因子,提升电池片的品质。
优选地,在制备第二N型硅层320过程中,通入大于等于2500sccm的磷烷,保证第二N型硅层320的磷烷浓度较高,从而能够有效的对氢原子进行束缚,有效的避免因氢原子的逃逸产生的溢散而引起的爆膜。
并且,第二N型硅层320相对第一N型硅层310靠近电池片的外侧,从而在高温退火工序中更易发生氢离子的逃逸,由于第二N型硅层320的磷烷浓度大于第一N型硅层310的磷烷浓度,从而能够对氢原子进行很好的束缚,保证氢原子不会出现逃逸而发生溢散,能够有效的避免爆膜。
可选地,在制备第二N型硅层320过程中,使得第二N型硅层320的磷烷浓度至少为第一N型硅层310的磷烷浓度的两倍,在保证第一N型硅层310的磷烷浓度能够满足对氢原子进行有效的束缚的基础上,使得第二N型硅层320的磷烷浓度较大,从而能够更好的对第二N型硅层320内的氢原子进行束缚,避免发生氢原子的逃逸而产生爆膜。
其中,第二N型硅层320的磷烷浓度可以为第一N型硅层310的磷烷浓度的两倍、三倍、四倍或更多。
其中,在后续的高温退火工序中,越靠近电池片的外侧,则发生氢原子的逃逸的可能性越高。
可选地,在步骤S210步骤中,还包括:S211、第一N型硅层310的磷烷浓度随第一N型硅层310的厚度的增加而递增。如此,在采取PECVD法等方法进行第一N型硅层310的制备过程中,第一N型硅层310的厚度随着时间的推移不断变厚,而磷烷浓度也同步不断变高,从而使得第一N型硅层310远离氧化硅层200的磷烷浓度高于靠近氧化硅层200的磷烷浓度,进而使得第一N型硅层310对氢原子的束缚能力沿远离氧化硅层200方向(如 图6的A方向所示)不断加强,保证第一N型硅层310的各个部位均能对氢原子进行有效的束缚,能够有效的避免爆膜。
在一个实施例中,可以通过逐渐提升磷烷的供应量的方式使得磷烷浓度随第一N型硅层310的厚度的增加而递增。
可选地,在步骤S220步骤中,还包括:S221、第二N型硅层320的磷烷浓度随第二N型硅层320的厚度的增加而递增。如此,在采取PECVD法等方法进行第二N型硅层320的制备过程中,第二N型硅层320的厚度随着时间的推移不断变厚,而磷烷浓度也同步不断变高,从而使得第二N型硅层320远离第一N型硅的磷烷浓度高于靠近第一N型硅的磷烷浓度,进而使得第二N型硅层320对氢原子的束缚能力沿远离第一N型硅方向(如图6的A方向所示)不断加强,保证第二N型硅层320的各个部位均能对氢原子进行有效的束缚,能够有效的避免爆膜。
在一个实施例中,可以通过逐渐提升磷烷的供应量的方式使得磷烷浓度随第二N型硅层320的厚度的增加而递增。并且,第二N型硅层320的磷烷浓度始终大于第一N型硅层310的磷烷浓度。
需要进行说明的是,在实际制备过程中,第一N型硅层310的层数和第二N型硅层320的层数可以根据实际使用需要进行灵活的设计或调整,只需满足能够在高温退火工序中对氢原子进行束缚以避免发生爆膜即可。
例如,第一N型硅层310可以至少为两层(两层、三层或更多),第二N型硅层320也可以至少为两层(两层、三层或更多),并且,第一N型硅层310与第二N型硅层320交替设置,即相邻的两个第一N型硅层310之间具有一层第二N型硅层320,相邻的两个第二N型硅层320之间具有一层第一N型硅层310。
此外,采取PECVD法制备得到第一N型硅层310和第二N型硅层320,连续且致密性好,具有十分优异的吸杂,阻塞杂质,强场钝化和高电子选择透过性。
另外,在制备N型硅层300时,还可以通入其他气体,以增强钝化或起到隔绝杂质的作用。
在一个实施例中,在步骤S200中,还包括:S230、形成第一N型硅层310时与形成第二N型硅层320时通入的硅烷浓度相同。如此,使得第一N型硅层310中的硅烷浓度与第二N型硅层320中的硅烷浓度相同,满足性能要求,而且,硅烷的通入还可以增强钝化或起到隔绝杂质的作用。并且,硅烷浓度大于第一N型硅层310的磷烷浓度,硅烷浓度小于第二N型硅层320的磷烷浓度,从而使得第一N型硅层310和第二N型硅层320均能够对氢原子进行束缚,且相对靠近外侧的第二N型硅层320对氢原子的束缚能力更强,保 证各个部分的氢原子均不会发生逃逸,能够有效的避免爆膜。
可选地,通入大于等于1200sccm、小于等于1800sccm的硅烷,从而使得第一N型硅层310的硅烷浓度与第二N型硅层320的硅烷浓度相同,并且,使得硅烷浓度大于第一N型硅层310的磷烷浓度,使得硅烷浓度小于第二N型硅层320的磷烷浓度。
在一个实施例中,在步骤S230中,还包括:S231、通入甲烷,且甲烷浓度小于等于三倍的硅烷浓度。如此,甲烷的通入,能够使得碳掺杂降低多晶硅的结晶质量,降低了高温退火过程中残余应力,C-Si键的形成,提高了化学键的强度,两者共同抑制了起泡爆膜。并且,C-H键的形成则有利于抑制氢气的释放水平,使得碳对氢原子的捕获能力增强,也能抑制氢原子发生逃逸而产生爆膜。
其中,通入的甲烷的量可以根据实际使用需要进行灵活的设计或调整,只需满足甲烷浓度小于等于三倍的硅烷浓度,从而能够进一步避免爆膜即可。
需要进行说明的是,上述实施例电池片的生产工艺中,硅烷的通入和磷烷的通入可以同时进行,也可以分先后进行,不做限制。
另外,需要进行解释的是,N型硅层300的磷烷浓度是指N型硅层300中磷烷的含量;第一N型硅层310的磷烷浓度是指第一N型硅层310中磷烷的含量;第二N型硅层320的磷烷浓度是指第二N型硅层320中磷烷的含量;第一N型硅层310的硅烷浓度是指第一N型硅层310中硅烷的含量;第二N型硅层320的硅烷浓度是指第二N型硅层320中硅烷的含量。
如图3的(c)与(d)所示,采用上述实施例的生产工艺生产出的电池片在显微镜下观察,不会出现爆膜。而采用传统工艺生产的电池片在显微镜下观察,如图3的(a)与(b)所示,存在爆膜问题。
此外,如图4所示,通过调节第一N型硅层310的磷烷浓度,能够完全解决爆膜问题,解决爆膜问题后电池效率与开路电压均有明显提升,其中,SP1为采用传统的方式生产的电池片的电池效率和开路电压,SP2为本申请实施例的生产工艺的电池片的电池效率和开路电压。
另外,本申请实施例的生产工艺,将本征多晶硅层替换为低掺杂的第一N型硅层310后,在不改变其他工艺条件的情况下,ECV(Electrochemical capacitance-voltage profiler,电化学微分电容电压)测试可知电池片整体厚度增加约10nm~30nm左右,使用本申请实施例的生产方法在磷烷浓度为500sccm的电池ECV如图5所示。
需要进行说明的是,氧化硅层200、N型硅层300及减反射层400的制备温度,可以根据各自的工艺条件或工艺要求进行灵活的设计或调整。例如制备第一N型硅层310和第 二N型硅层320的温度可以为80℃~380℃。并且,N型硅片100的尺寸和具体形状规格也可以不做限制。
上述实施例的电池片的生产工艺,至少具有以下几个优点:1、在高温退火工序中能够对氢原子进行束缚,避免氢原子发生逃逸而发生爆膜;2、对氢原子的束缚能力从内到外不断加强,能够有效的对各个部位的氢原子进行束缚,有效的避免爆膜;3、能够提升开路电压、转换效率(转换效率的平均提升可达24.67%以上,最高可提升达24.9%以上)与填充因子,还能增强背钝化效果,提升电池片的品质。
如图6所示,在一个实施例中,还提供了一种电池片,采用上述任意实施例的生产工艺得到。
上述实施例的电池片,不存在爆膜的问题,产品的品质高。并且,开路电压、转换效率与填充因子均较高。
如图6所示,在一个实施例中,电池片包括N型硅片100、氧化硅层200及N型硅层300。其中,N型硅片100具有背面;氧化硅层200设置于背面上;N型硅层300设置于氧化硅层200背离N型硅片100的侧面上,并且,N型硅层300的磷烷浓度处于第一预设浓度范围内,以能够在高温退火工序中对氢原子进行束缚。如此,在后续的高温退火工序中,由于N型硅层300中掺杂了一定浓度的磷烷,从而能够对氢原子进行束缚,进而能够避免因氢原子的逃逸产生的溢散而引起的爆膜,从而能够提升开路电压、转换效率与填充因子,还能增强背钝化效果,提升电池片的品质。
如图6所示,进一步地,N型硅层包括第一N型硅层310和第二N型硅层320。其中,第一N型硅层310设置于氧化硅层200背离N型硅片100的侧面上,第二N型硅层320设置于第一N型硅层310背离氧化硅层200的侧面上,第一N型硅层310的磷烷浓度及第二N型硅层320的磷烷浓度均处于第一预设浓度范围内,如此,在后续的高温退火工序中,由于第一N型硅层310和第二N型硅层320中均掺杂了一定浓度的磷烷,从而能够对氢原子进行束缚,进而能够避免因氢原子的逃逸产生的溢散而引起的爆膜,从而能够提升开路电压、转换效率与填充因子,提升电池片的品质。并且,第二N型硅层320的磷烷浓度大于第一N型硅层310的磷烷浓度,从而能够对氢原子进行很好的束缚,保证氢原子不会出现逃逸而发生溢散,能够有效的避免爆膜。
其中,第一N型硅层的磷烷浓度在厚度方向上沿远离氧化硅层方向递增。如此,在采取PECVD法等方法进行第一N型硅层310的制备过程中,第一N型硅层310的厚度随着时间的推移不断变厚,而磷烷浓度也同步不断变高,从而使得第一N型硅层310远离氧化硅层200的磷烷浓度高于靠近氧化硅层200的磷烷浓度,进而使得第一N型硅层310对氢 原子的束缚能力沿远离氧化硅层200方向(如图6的A方向所示)不断加强,保证第一N型硅层310的各个部位均能对氢原子进行有效的束缚,能够有效的避免爆膜。
其中,第二N型硅层的磷烷浓度在厚度方向上沿远离氧化硅层方向递增。如此,在采取PECVD法等方法进行第二N型硅层320的制备过程中,第二N型硅层320的厚度随着时间的推移不断变厚,而磷烷浓度也同步不断变高,从而使得第二N型硅层320远离第一N型硅的磷烷浓度高于靠近第一N型硅的磷烷浓度,进而使得第二N型硅层320对氢原子的束缚能力沿远离第一N型硅方向(如图6的A方向所示)不断加强,保证第二N型硅层320的各个部位均能对氢原子进行有效的束缚,能够有效的避免爆膜。
在一个实施例中,还提供了一种太阳能电池板,包括上述任意实施例的电池片。
上述实施例的太阳能电池板,不存在爆膜的问题,产品的品质高。并且,开路电压、转换效率与填充因子均较高。
需要说明的是,“某体”、“某部”可以为对应“构件”的一部分,即“某体”、“某部”与该“构件的其他部分”一体成型制造;也可以与“构件的其他部分”可分离的一个独立的构件,即“某体”、“某部”可以独立制造,再与“构件的其他部分”组合成一个整体。本申请对上述“某体”、“某部”的表达,仅是其中一个实施例,为了方便阅读,而不是对本申请的保护的范围的限制,只要包含了上述特征且作用相同应当理解为是本申请等同的技术方案。
需要说明的是,本申请“单元”、“组件”、“机构”、“装置”所包含的构件亦可灵活进行组合,即可根据实际需要进行模块化生产,以方便进行模块化组装。本申请对上述构件的划分,仅是其中一个实施例,为了方便阅读,而不是对本申请的保护的范围的限制,只要包含了上述构件且作用相同应当理解是本申请等同的技术方案。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。本申请中使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”、“设置于”、“固设于”或“安设于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。进一步地,当一个元件被认为是“固定传动连接”另一个元件,二者可以是可拆卸连接方式的固定,也可以不可拆卸连接的固定,能够实现动力传递即可,如套接、卡接、一体成型固定、焊接等,在现有技术中可以实现,在此不再累赘。当元件与另一个元件相互垂直或近似垂直是指二者的理想状态是垂直,但是因制造及装配的影响,可以存在一定的垂直误差。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
还应当理解的是,在解释元件的连接关系或位置关系时,尽管没有明确描述,但连接关系和位置关系解释为包括误差范围,该误差范围应当由本领域技术人员所确定的特定值可接受的偏差范围内。例如,“大约”、“近似”或“基本上”可以意味着一个或多个标准偏差内,在此不作限定。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (18)

  1. 一种电池片的生产工艺,其特征在于,包括以下步骤:
    在N型硅片的背面形成氧化硅层;
    在所述氧化硅层上形成N型硅层,其中,所述N型硅层的磷烷浓度处于第一预设浓度范围内;
    在所述N型硅层上形成减反射层并在所述减反射层上形成背面电极。
  2. 根据权利要求1所述的电池片的生产工艺,其特征在于,在所述氧化硅层上形成N型硅层的步骤中,包括:
    在所述氧化硅层上形成第一N型硅层,所述第一N型硅层的磷烷浓度处于第一预设浓度范围内;
    在所述第一N型硅层上形成第二N型硅层,所述第二N型硅层的磷烷浓度处于第一预设浓度范围内,且所述第二N型硅层的磷烷浓度大于所述第一N型硅层的磷烷浓度。
  3. 根据权利要求2所述的电池片的生产工艺,其特征在于,在所述第一N型硅层上形成第二N型硅层的步骤中,包括:
    所述第二N型硅层的磷烷浓度至少为所述第一N型硅层的磷烷浓度的两倍。
  4. 根据权利要求2所述的电池片的生产工艺,其特征在于,在所述氧化硅层上形成第一N型硅层,所述第一N型硅层的磷烷浓度处于第一预设浓度范围内的步骤中,包括:通入小于或等于1000sccm的磷烷。
  5. 根据权利要求4所述的电池片的生产工艺,其特征在于,在所述氧化硅层上形成第一N型硅层,所述第一N型硅层的磷烷浓度处于第一预设浓度范围内的步骤中,包括:通入大于或等于500sccm并小于或等于1000sccm的磷烷。
  6. 根据权利要求2至5任一项所述的电池片的生产工艺,其特征在于,在所述氧化硅层上形成第二N型硅层,所述第二N型硅层的磷烷浓度处于第一预设浓度范围内,且所述第二N型硅层的磷烷浓度大于所述第一N型硅层的磷烷浓度的步骤中,包括:通入大于或等于2000sccm的磷烷。
  7. 根据权利要求6所述的电池片的生产工艺,其特征在于,在所述氧化硅层上形成第二N型硅层,所述第二N型硅层的磷烷浓度处于第一预设浓度范围内,且所述第二N型硅层的磷烷浓度大于所述第一N型硅层的磷烷浓度的步骤中,包括:通入大于或等于2500sccm的磷烷。
  8. 根据权利要求2所述的电池片的生产工艺,其特征在于,在所述氧化硅层上形成 第一N型硅层,所述第一N型硅层的磷烷浓度处于第一预设浓度范围内的步骤中,包括:所述第一N型硅层的磷烷浓度随所述第一N型硅层的厚度的增加而递增。
  9. 根据权利要求2至8任一项所述的电池片的生产工艺,其特征在于,在所述氧化硅层上形成第二N型硅层,所述第二N型硅层的磷烷浓度处于第一预设浓度范围内,且所述第二N型硅层的磷烷浓度大于所述第一N型硅层的磷烷浓度的步骤中,包括:所述第二N型硅层的磷烷浓度随所述第二N型硅层的厚度的增加而递增。
  10. 根据权利要求2至9任一项所述的电池片的生产工艺,其特征在于,在所述氧化硅层上形成N型硅层,其中,所述N型硅层的磷烷浓度处于第一预设浓度范围内的步骤中,包括:
    形成所述第一N型硅层时与形成所述第二N型硅层时通入的硅烷浓度相同,且所述硅烷浓度大于所述第一N型硅层的磷烷浓度,所述硅烷浓度小于所述第二N型硅层的磷烷浓度。
  11. 根据权利要求10所述的电池片的生产工艺,其特征在于,在所述氧化硅层上形成N型硅层的步骤中,包括:
    通入大于等于1200sccm并且小于等于1800sccm的硅烷。
  12. 根据权利要求10所述的电池片的生产工艺,其特征在于,在形成所述第一N型硅层时与形成所述第二N型硅层时通入的硅烷浓度相同的步骤中,还包括:通入甲烷,且甲烷浓度小于等于三倍的硅烷浓度。
  13. 一种电池片,其特征在于,采用如权利要求1至12任一项所述的生产工艺生产得到。
  14. 根据权利要求13所述的电池片,其特征在于,所述电池片包括:
    N型硅片,所述N型硅片具有背面;
    氧化硅层,所述氧化硅层设置于所述背面;及
    N型硅层,所述N型硅层设置于所述氧化硅层背离所述N型硅片的侧面上,且所述N型硅层的磷烷浓度处于第一预设浓度范围内,以能够在高温退火工序中对氢原子进行束缚。
  15. 根据权利要求14所述的电池片,其特征在于,所述N型硅层包括第一N型硅层和第二N型硅层,所述第一N型硅层设置于所述氧化硅层背离所述N型硅片的侧面上,所述第二N型硅层设置于所述第一N型硅层背离所述氧化硅层的侧面上,所述第一N型硅层的磷烷浓度及所述第二N型硅层的磷烷浓度均处于所述第一预设浓度范围内,且所述第二N型硅层的磷烷浓度大于所述第一N型硅层的磷烷浓度。
  16. 根据权利要求15所述的电池片,其特征在于,所述第一N型硅层的磷烷浓度在 厚度方向上沿远离所述氧化硅层方向递增。
  17. 根据权利要求15或16所述的电池片,其特征在于,所述第二N型硅层的磷烷浓度在厚度方向上沿远离所述第一N型硅层方向递增。
  18. 一种太阳能电池板,其特征在于,包括如权利要求13至17任一项所述的电池片。
PCT/CN2022/120749 2021-12-31 2022-09-23 太阳能电池板、电池片及电池片的生产工艺 WO2023124299A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2022428730A AU2022428730A1 (en) 2021-12-31 2022-09-23 Solar cell panel, cell piece and production process for cell piece
EP22913564.5A EP4318611A1 (en) 2021-12-31 2022-09-23 Solar cell panel, cell piece and production process for cell piece

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111675167.4A CN114361295B (zh) 2021-12-31 2021-12-31 太阳能电池板、电池片及电池片的生产工艺
CN202111675167.4 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023124299A1 true WO2023124299A1 (zh) 2023-07-06

Family

ID=81105536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120749 WO2023124299A1 (zh) 2021-12-31 2022-09-23 太阳能电池板、电池片及电池片的生产工艺

Country Status (4)

Country Link
EP (1) EP4318611A1 (zh)
CN (1) CN114361295B (zh)
AU (1) AU2022428730A1 (zh)
WO (1) WO2023124299A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114361295B (zh) * 2021-12-31 2023-06-06 通威太阳能(眉山)有限公司 太阳能电池板、电池片及电池片的生产工艺
CN117248199A (zh) * 2023-11-17 2023-12-19 常州亿晶光电科技有限公司 一种防止爆膜的pecvd沉积非晶硅的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105762234A (zh) * 2016-04-27 2016-07-13 中国科学院宁波材料技术与工程研究所 一种隧穿氧化层钝化接触太阳能电池及其制备方法
KR20180050171A (ko) * 2016-11-04 2018-05-14 오씨아이 주식회사 태양 전지 및 이의 제조 방법
CN109786476A (zh) * 2018-12-27 2019-05-21 中国科学院宁波材料技术与工程研究所 一种钝化接触结构及其在硅太阳电池中应用
CN110071182A (zh) * 2019-05-23 2019-07-30 泰州中来光电科技有限公司 一种多层隧道结的钝化太阳能电池及制备方法
CN111952409A (zh) * 2020-06-30 2020-11-17 泰州中来光电科技有限公司 一种具有选择性发射极结构的钝化接触电池的制备方法
WO2021012710A1 (zh) * 2019-07-24 2021-01-28 苏州腾晖光伏技术有限公司 一种n型晶体硅电池的制备方法
CN114361295A (zh) * 2021-12-31 2022-04-15 通威太阳能(眉山)有限公司 太阳能电池板、电池片及电池片的生产工艺

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2722114B2 (ja) * 1989-06-28 1998-03-04 キヤノン株式会社 マイクロ波プラズマcvd法により大面積の機能性堆積膜を連続的に形成する方法及び装置
US6803080B2 (en) * 2000-02-29 2004-10-12 Canon Kabushiki Kaisha Method of forming crystalline silicon film by CVD
US20130174896A1 (en) * 2011-06-30 2013-07-11 California Institute Of Technology Tandem solar cell using a silicon microwire array and amorphous silicon photovoltaic layer
WO2013062727A1 (en) * 2011-10-24 2013-05-02 Applied Materials, Inc. Method and apparatus of removing a passivation film and improving contact resistance in rear point contact solar cells
JP6091458B2 (ja) * 2014-03-26 2017-03-08 三菱電機株式会社 光電変換装置およびその製造方法
CN112736151B (zh) * 2021-01-08 2022-11-15 上海交通大学 基于宽带隙窗口层的背结硅异质结太阳电池
CN113345969B (zh) * 2021-04-28 2024-05-14 中科研和(宁波)科技有限公司 钝化接触结构及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105762234A (zh) * 2016-04-27 2016-07-13 中国科学院宁波材料技术与工程研究所 一种隧穿氧化层钝化接触太阳能电池及其制备方法
KR20180050171A (ko) * 2016-11-04 2018-05-14 오씨아이 주식회사 태양 전지 및 이의 제조 방법
CN109786476A (zh) * 2018-12-27 2019-05-21 中国科学院宁波材料技术与工程研究所 一种钝化接触结构及其在硅太阳电池中应用
CN110071182A (zh) * 2019-05-23 2019-07-30 泰州中来光电科技有限公司 一种多层隧道结的钝化太阳能电池及制备方法
WO2021012710A1 (zh) * 2019-07-24 2021-01-28 苏州腾晖光伏技术有限公司 一种n型晶体硅电池的制备方法
CN111952409A (zh) * 2020-06-30 2020-11-17 泰州中来光电科技有限公司 一种具有选择性发射极结构的钝化接触电池的制备方法
CN114361295A (zh) * 2021-12-31 2022-04-15 通威太阳能(眉山)有限公司 太阳能电池板、电池片及电池片的生产工艺

Also Published As

Publication number Publication date
EP4318611A1 (en) 2024-02-07
CN114361295A (zh) 2022-04-15
AU2022428730A1 (en) 2023-11-16
CN114361295B (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
WO2023124299A1 (zh) 太阳能电池板、电池片及电池片的生产工艺
EP4203081A1 (en) Topcon battery and preparation method therefor, and electrical appliance
AU2003220852B2 (en) Method for fabricating tandem thin film photoelectric converter
CN111341649A (zh) 一种n型太阳能电池硼扩散方法
JP2012506629A (ja) 半導体デバイス製造方法、半導体デバイス、及び半導体デバイス製造設備
CN114520276B (zh) 钝化接触电池及其制备工艺
WO2023036121A1 (zh) 一种电池背钝化结构及其制作方法、太阳能电池
CN113903833A (zh) 一种TOPCon电池LPCVD工艺
CN113488547B (zh) 隧穿氧化层钝化结构及其制作方法与应用
CN112002778B (zh) 硅异质结太阳能电池及其制作方法
CN114267753A (zh) 一种TOPCon太阳能电池及其制备方法、光伏组件
US20120097226A1 (en) Solar cell and method of manufacturing the same
CN114583016A (zh) 一种TOPCon电池及其制备方法
CN115692533A (zh) 一种TOPCon电池及其制备方法
CN115985991A (zh) 太阳电池及其制备方法
CN114725239A (zh) 一种异质结电池的制备方法
CN114597267A (zh) 一种TOPCon电池及其制备方法
JPS6132416A (ja) 半導体装置の製造方法
CN116913984B (zh) 电介质层及制备方法、太阳电池、光伏组件
CN115036388B (zh) 太阳能电池及其制作方法
CN216054727U (zh) 太阳能电池
CN115863490A (zh) Pecvd法沉积本征非晶硅薄膜的方法、电池制备方法及电池
CN117038797A (zh) 太阳能电池的制作方法及太阳能电池
CN116544314A (zh) TOPCon太阳能电池及其制备方法
CN117199190A (zh) 一种N-TOPCon电池的制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913564

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022428730

Country of ref document: AU

Ref document number: AU2022428730

Country of ref document: AU

Ref document number: 2022913564

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022913564

Country of ref document: EP

Effective date: 20231031

ENP Entry into the national phase

Ref document number: 2022428730

Country of ref document: AU

Date of ref document: 20220923

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18565329

Country of ref document: US