WO2023123747A1 - 夺氢型光引发剂及其制备方法和应用 - Google Patents

夺氢型光引发剂及其制备方法和应用 Download PDF

Info

Publication number
WO2023123747A1
WO2023123747A1 PCT/CN2022/087184 CN2022087184W WO2023123747A1 WO 2023123747 A1 WO2023123747 A1 WO 2023123747A1 CN 2022087184 W CN2022087184 W CN 2022087184W WO 2023123747 A1 WO2023123747 A1 WO 2023123747A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen abstraction
photoinitiator
abstraction type
diisocyanate
type photoinitiator
Prior art date
Application number
PCT/CN2022/087184
Other languages
English (en)
French (fr)
Inventor
郑超
阳志荣
唐舫成
汪加胜
叶迪辉
Original Assignee
广州鹿山光电材料有限公司
广州鹿山新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州鹿山光电材料有限公司, 广州鹿山新材料股份有限公司 filed Critical 广州鹿山光电材料有限公司
Publication of WO2023123747A1 publication Critical patent/WO2023123747A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/02Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups from isocyanates with formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/06Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups by reactions not involving the formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/40Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings
    • C07C271/42Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/48Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/40Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings
    • C07C271/56Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a ring other than a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers

Definitions

  • the disclosure relates to the technical field of photoinitiator synthesis, in particular to a hydrogen abstraction type photoinitiator and its preparation method and application.
  • Photoinitiator is a key component of UV curing system, which is directly related to whether the oligomer and diluent of the formulation system can quickly change from liquid to solid when light is irradiated. With the continuous development of technology and the higher requirements of the market, the migration and tendency of photoinitiators to be captured should be minimized after the curing process is completed.
  • benzophenone As a widely used hydrogen abstraction photoinitiator, benzophenone is cheap, has good surface curing, is not easy to yellow, and has good solubility. It is one of the most widely used photoinitiators in UV curing systems. However, the tendency of benzophenone to migrate or be captured from the cured product is severe. In order to improve the migration and odor problems of benzophenone, the patent application publication number CN101012180A discloses that benzophenone and amine are combined in one molecule by chemical methods to make a single-component hydrogen abstraction type photoinitiator.
  • the full bonding technology of display devices is divided into OCA (Optical Clear Adhesive) and LOCA (Liquid Optical Clear Adhesive) full bonding.
  • the LOCA glue currently in the market is a kind of UV glue, which needs to be cured by UV light irradiation.
  • the screen frame and the functional sheet FPC are opaque, and the UV light cannot penetrate to the LOCA glue, resulting in LOCA glue slowly overflows during subsequent storage or use, causing appearance pollution or even damage to the product interior, and finally leads to product damage.
  • the existing technology adds a side UV curing process to achieve curing and sealing the outer edge and reduce the risk of glue overflow.
  • side curing can only seal the edges, and there is still a problem of liquid not drying in the larger light-shielding part, which requires heating and pressure (such as heating when laminating OCA later) During pressure defoaming), the uncured liquid optical glue will overflow;
  • side curing requires high energy to cure the edge, but high energy side curing will cause the white cover to turn yellow and affect the appearance. Therefore, in order to solve the problem of side curing, it is necessary to use the liquid optical adhesive with an accelerator.
  • the accelerator accelerates the curing speed of the liquid optical adhesive and solves the problem that the light blocking part is not cured.
  • the promotion efficiency of the current liquid optical adhesive accelerator is low, and the curing effect of the outer edge exposed to oxygen is poor.
  • the existing liquid optical adhesive has the problem of poor storage stability, which makes it impossible to better solve the side curing problem.
  • the present disclosure provides a hydrogen abstraction type photoinitiator, and its structural formula is as follows:
  • At least one of X1 and X2 is selected from
  • R 1 is containing The organic group of structural unit, R 2 is selected from any one in alkylene group and alkyleneoxy group, R 3 is selected from any one in alkyl group and alkoxy group; R 4 is selected from H and any of methyl;
  • Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , Y 7 and Y 8 are each independently selected from any one of H, alkyl, alkoxy and aromatic groups.
  • both X1 and X2 are Alternatively, one of X1 and X2 is The other is H.
  • R 2 is selected from any one of branched alkylene, linear alkylene, branched alkyleneoxy and linear alkyleneoxy with 2 to 12 carbons .
  • R 3 is selected from any one of branched alkyl, straight-chain alkyl, branched alkoxy and straight-chain alkoxy having 2 to 12 carbons.
  • one of X 1 and X 2 is The other is selected from any one of H, alkyl, alkoxy and aromatic groups.
  • R 1 is R 5 is selected from an alkylene group with 1 to 5 carbon atoms, and R 6 is selected from an asymmetric cycloalkyl group.
  • R 6 is
  • R 1 is any of the.
  • the hydrogen abstraction type photoinitiator has any one of the following structural formulas:
  • the hydrogen abstraction type photoinitiator has any one of the following structural formulas:
  • the present disclosure also provides a method for preparing any one of the hydrogen abstraction photoinitiators described above, comprising the following steps:
  • the polyaspartate polyamine is mainly obtained by reacting dialkyltriamine and butenedioic acid diester; the dialkyltriamine and butenedioic acid diester
  • the structural formulas are
  • the dialkyltriamine includes any one or more of diethylenetriamine, dipropylenetriamine, dipropylenetriamine and bis-hexamethylenetriamine.
  • the butenedioic acid diester includes maleic acid diester and/or fumaric acid diester, wherein the maleic acid diester is selected from diethyl maleate, maleic acid Any one or more of dipropyl ester, dibutyl maleate and methyl propyl maleate, the diester of fumarate is selected from diethyl fumarate, dipropyl fumarate, fumarate Any one or more of dibutyl maleate and methyl propyl fumarate.
  • the molar ratio of the dialkyl triamine to butenedioic acid diester is 1:(1.8 ⁇ 2.2).
  • step (b) the reaction molar ratio of the polyaspartate polyamine to the benzophenone derivative is 1:(0.9 ⁇ 1.1).
  • the diisocyanate includes toluene diisocyanate and/or isophorone diisocyanate.
  • the hydroxyl group-containing (meth)acrylates include hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate and methyl At least one of hydroxybutyl acrylate.
  • step (b) the polyaspartate polyamine is added to the benzophenone derivative.
  • the present disclosure also provides another preparation method of any one of the hydrogen abstraction photoinitiators described above, comprising the following steps:
  • R 2 is selected from any one of alkylene and alkyleneoxy groups
  • R 3 is selected from any of alkyl and alkoxy groups
  • R 4 is selected from any of H and methyl kind
  • Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , Y 7 and Y 8 are each independently selected from any one of H, alkyl, alkoxy and aromatic groups.
  • the isocyanate- and (meth)acrylate-containing monomers include isocyanate ethyl acrylate and/or isocyanate ethyl methacrylate.
  • the present disclosure also provides the application of any one of the hydrogen abstraction type photoinitiators mentioned above in the OCA adhesive film.
  • the present disclosure also provides an OCA composition, including 1%-10% of hydrogen abstraction type photoinitiator in mass percentage.
  • the OCA composition includes the following components by mass percentage: 70%-97% of acrylate monomers and prepolymers, 1%-97% of the hydrogen abstraction type photoinitiator 10%, and blocked isocyanate 2% to 20%;
  • the blocked isocyanate includes acetone oxime, cyclohexanone oxime, acetyl ketone oxime, methyl ethyl ketone oxime, diethyl malonate blocked hexamethylene diisocyanate, octamethylene diisocyanate , decamethylene diisocyanate, dodecamethylene diisocyanate, tetradecamethylene diisocyanate, 1,4-cyclohexyl diisocyanate, 4,4'-dicyclohexylmethane diisocyanate and isophorone diisocyanate Any one or more of isocyanates.
  • the photocuring conditions of the OCA composition include: UV curing energy of 1000-2500mJ/cm 2 ; the thermal curing conditions of the OCA composition include: a curing temperature of 70-90°C, The curing time is 10-20 minutes.
  • the hydrogen abstraction type photoinitiator provided by some embodiments of the present disclosure solves technical problems such as migration and exudation of the photoinitiator in the prior art.
  • Some embodiments of the present disclosure provide a hydrogen abstraction photoinitiator whose structural formula is as follows:
  • At least one of X1 and X2 is selected from
  • R 1 is containing The organic group of structural unit, R 2 is selected from any one in alkylene group and alkyleneoxy group, R 3 is selected from any one in alkyl group and alkoxy group; R 4 is selected from H and any of methyl;
  • Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , Y 7 and Y 8 are each independently selected from any one of H, alkyl, alkoxy and aromatic groups.
  • the structural formula of the hydrogen abstraction type photoinitiator can be ( X can be selected from any one of H, alkyl, alkoxy and aromatic groups) or
  • Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , Y 7 and Y 8 are each independently selected from any of H, alkyl, alkoxy and aromatic groups A sort of.
  • the alkyl group may be an alkyl group with 1-4 carbon atoms, such as methyl, ethyl, propyl, butyl, etc.
  • the alkoxy group may be an alkoxy group with 1-4 carbon atoms, such as methoxy, ethoxy, propoxy, butoxy and the like.
  • the aromatic group can be an aromatic ring such as benzene, an aromatic fused ring such as naphthalene, and the like.
  • the hydrogen abstraction type photoinitiator of the present disclosure has both tertiary amine and polyaspartate structures, is a single-component initiator with light-thermal dual curing, does not need to add tertiary amine co-initiators, and has extremely low Small molecule migration and exudation rate, extremely low odor, and good photoinitiating activity and solubility.
  • both X1 and X2 are Alternatively, one of X1 and X2 is The other is H.
  • R 2 is selected from any one of branched alkylene, linear alkylene, branched alkyleneoxy and linear alkyleneoxy with 2 to 12 carbons .
  • the carbon number of R2 can be 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12; n is an integer between 2 and 12, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12; if the branched chain alkylene structure formula can be n 1 is an integer between 1 and 11, such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or there may be multiple branches; such as straight-chain alkyleneoxy
  • n 2 is an integer between 2 and 12, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12; if the branched chain alkyleneoxy group can be n 3 is an integer between 1 and 11, such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or there may be multiple branches.
  • R 2 is selected from linear alkylene groups with 2 to 6 carbons, and R 2 can be such as -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, -CH 2 CH2CH2CH2- , -CH2CH2CH2CH2CH2- , or -CH2CH2CH2CH2CH2CH2- .
  • R 3 is selected from any one of branched alkyl, straight-chain alkyl, branched alkoxy and straight-chain alkoxy having 1 to 12 carbons.
  • the carbon number of R3 can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12; such as straight-chain alkyl can be methyl, ethyl , propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, if the structural formula is n 4 is an integer between 0 and 11, such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11; such as branched chain alkyl can be isopropyl, isobutyl, iso Pentyl, isohexyl, isoheptyl, isooctyl, etc., if the structural formula is n 5 is an integer between 1 and 10, such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or there may be multiple branched chains; such as a straight-chain alkoxy group, which may be For example methoxy, ethoxy, propoxy, butoxy,
  • R 3 is selected from linear alkyl groups with 1 to 4 carbons, for example, R 3 may be methyl, ethyl, propyl, or butyl.
  • R 1 is R 5 is selected from an alkylene group with 1 to 5 carbon atoms, and R 6 is selected from an asymmetric cycloalkyl group.
  • R 5 may be -CH 2 -, -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, -CH 2 CH 2 CH 2 CH 2 -, -CH 2 CH 2 CH 2 CH 2 CH 2 - and so on.
  • the position connected to the benzophenone group in R 1 is the urethane structure side, and the position connected to N is the (meth)acrylate side.
  • R 6 is
  • R 1 is any of the.
  • the hydrogen abstraction type photoinitiator has any one of the following structural formulas:
  • the length of the alkylene chain or alkyl chain at the corresponding R 2 and R 3 positions can be adjusted according to the carbon numbers of R 2 and R 3 ; and on the benzophenone skeleton, the corresponding X 1 and X 2 can be One is the above-mentioned substitution structure, the other is H, and both X 1 and X 2 may be the above-mentioned substitution structure.
  • the hydrogen abstraction type photoinitiator can be as follows:
  • the present disclosure also provides a method for preparing any one of the hydrogen abstraction photoinitiators described above, comprising the following steps:
  • the structural formulas of compound A1 and compound A2 can be respectively (4-hydroxybenzophenone) and (4,4'-Dihydroxybenzophenone).
  • the polyaspartate polyamine is mainly obtained by reacting dialkyltriamine and butenedioic acid diester; the dialkyltriamine and butenedioic acid diester
  • the structural formulas are
  • the dialkyltriamine includes, but is not limited to, any one or more of diethylenetriamine, dipropylenetriamine, dipropylenetriamine and bis-hexamethylenetriamine.
  • the butenedioic acid diester includes but not limited to maleic acid diester and/or fumaric acid diester, wherein the maleic acid diester is selected from diethyl maleate, maleic acid Any one or more of dipropyl ester, dibutyl maleate and methyl propyl maleate, the diester of fumarate is selected from diethyl fumarate, dipropyl fumarate, fumarate Any one or more of dibutyl maleate and methyl propyl fumarate.
  • the polyaspartate polyamine is mainly obtained by Michael addition reaction of dialkyl triamine and butenedioic acid diester.
  • the primary amine groups of dialkyltriamine react with butenedioic acid diesters, while the secondary amine groups hardly participate in the addition reaction due to steric hindrance. Then, the sterically hindered secondary amine generated by the primary amine in the Michael addition reaction, and the further Michael addition reaction of the (meth)acrylate unit in the benzophenone derivative is inhibited by the steric hindrance effect, and the activity is extremely low. , while the secondary amine retained in the dialkyltriamine has further reactivity with the (meth)acrylate unit, so the target product can be obtained in high yield.
  • the preparation of polyaspartic acid ester polyamine includes: slowly adding butenedioic acid diester to dialkyl triamine, and after the addition is completed, the temperature is raised to 40-60°C for 3-6 hours , such as reaction 3h, 4h, 5h, 6h.
  • N 2 is introduced into the system for 10-30 min, such as 10 min, 15 min, 20 min, 25 min, 30 min; the time for adding butenedioic acid diester is 0.5-1 h, such as 0.5 h, 0.6 h, 0.7h, 0.8h, 0.9h, 1h, the temperature during the dropping process is controlled at 25-30°C.
  • the molar ratio of the dialkyl triamine and butenedioic acid diester is 1:(1.8-2.2), optionally for example 1:(1.9-2.2), 1: (1.9 ⁇ 2.1) or 1:(1.9 ⁇ 2.0), such as 1:1.8, 1:1.9, 1:2, 1:2.1 or 1:2.2.
  • step (a) compound A 1 or compound A 2 is first reacted with diisocyanate to obtain an intermediate, and then reacted with hydroxyl-containing (meth)acrylate.
  • the intermediates need to be NCO-capped products, and the obtained intermediates containing monofunctionality and bifunctionality NCO have the following structural formulas:
  • Isophorone diisocyanate IPDI is used as a raw material for synthesis.
  • the diisocyanate is optionally IPDI.
  • the reaction in step (a), is carried out under the action of a catalyst. to increase the difference in NCO reactivity.
  • the catalyst is an organotin catalyst, such as dibutyltin dilaurate (DBTDL).
  • DBTDL dibutyltin dilaurate
  • the catalyst is used in an amount of 0.02%-0.2% of the total mass of reactants, such as 0.05%-0.2%, 0.05%-0.18%, or 0.08%-0.15%.
  • the reaction temperature of compound A 1 or compound A 2 with diisocyanate is 30-60°C, such as 30°C, 40°C, 50°C, 60°C.
  • the reaction time of this step is regulated by monitoring the NCO peak area of the reaction solution by infrared spectroscopy. When the NCO peak area in the reaction solution is constant, the reaction is stopped, and then the next step is carried out with the hydroxyl-containing (meth)acrylate Reaction.
  • the hydroxyl group-containing (meth)acrylates include but are not limited to hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate At least one of esters and hydroxybutyl methacrylate.
  • the reaction temperature between the intermediate and the hydroxyl-containing (meth)acrylate is 20-50°C, such as 20°C, 30°C, 40°C, 50°C °C.
  • the reaction time of this step is regulated by monitoring the NCO peak area of the reaction solution by infrared spectroscopy. When the NCO peak area in the reaction solution disappears, the reaction is stopped.
  • the reaction molar ratio of the polyaspartate polyamine to the benzophenone derivative is 1: (0.9-1.1), optionally For example, 1:0.9, 1:1, 1:1.1.
  • the reaction molar ratio refers to the molar ratio of the non-sterically hindered secondary amine of the polyaspartate polyamine to the terminal alkenyl group in the benzophenone derivative.
  • the temperature of the reaction is 25-60°C, such as 20°C, 25°C, 30°C, 35°C, 40°C, 45°C, 50°C.
  • the unsaturation value in the reaction system is measured by the thiol-iodine titration method, the reaction conversion rate is obtained, and the reaction time is adjusted.
  • step (b) the polyaspartate polyamine is added to the benzophenone derivative.
  • the polyaspartate polyamine is slowly added dropwise to the reaction liquid of the benzophenone derivative obtained in step (a).
  • step (b) the polyaspartate polyamine is added dropwise for 1 to 3 hours, such as 1 hour, 2 hours, and 3 hours.
  • the temperature of the reaction system Control within 40°C; after the dropwise addition, keep the temperature at 45-50°C for 2-4 hours, such as 2h, 3h, 4h.
  • the sterically hindered secondary amine groups in polyaspartate polyamines have low reactivity due to steric hindrance, and are far less reactive with (meth)acrylate units in benzophenone derivatives than polytianmen
  • the other secondary amines in the particic acid ester polyamines can further reduce the probability of reaction between the sterically hindered secondary amines and the (meth)acrylate units by adding them dropwise.
  • the reaction process is as follows:
  • the present disclosure also provides another preparation method of any one of the hydrogen abstraction photoinitiators described above, comprising the following steps:
  • the monomers containing isocyanate and (meth)acrylate include but are not limited to isocyanate ethyl acrylate and/or isocyanate ethyl methacrylate.
  • the reaction in step (a1), is performed under the action of a catalyst.
  • the catalyst is an organotin catalyst, such as dibutyltin dilaurate (DBTDL).
  • DBTDL dibutyltin dilaurate
  • the catalyst is used in an amount of 0.02% to 0.2% of the total mass of the reactants, such as 0.05% to 0.2%, 0.05% to 0.15%, or 0.1% to 0.15%, such as 0.02%, 0.04%, 0.06%, 0.06%, 0.1%, 0.12%, 0.14%, 0.16%, 0.18%, 0.2%.
  • the temperature of the reaction is 20-30°C, such as 20°C, 25°C, 30°C, such as at room temperature.
  • the reaction time of this step can be regulated by monitoring the NCO peak area of the reaction solution by infrared spectroscopy. When the NCO peak area in the reaction solution disappears, the reaction is stopped.
  • step (b1) the operating conditions of step (b1) are the same as those of step (b) in the above method.
  • step (a) and step (a1) are carried out in the presence of an organic solvent, for example, the organic solvent may be ethyl acetate.
  • the ratio of the added amount of the organic solvent to the compound A 1 or compound A 2 is (0.9-1.1) L: 1 mol, such as 0.9 L: 1 mol, 0.95 L: 1 mol, 1 L : 1mol, 1.05L: 1mol or 1.1L: 1mol.
  • a polymerization inhibitor is added to the reaction solution containing benzophenone derivative obtained in step (a) or step (a1).
  • the polymerization inhibitor can be p-methoxyphenol.
  • the solvent is removed to obtain the photoinitiator.
  • the hydrogen abstraction type photoinitiator prepared in the present disclosure can be used for downstream applications of subsequent products without further separation and purification.
  • the present disclosure also provides the application of any one of the hydrogen abstraction type photoinitiators mentioned above in the OCA adhesive film.
  • OCA In order to better remove air bubbles during the lamination process of full lamination OCA film, OCA needs to have better fluidity.
  • the photoinitiator disclosed in the present disclosure can act as a plasticizer in the composition of the OCA film when laminating, reducing the modulus of the film and improving fluidity. After the bonding is completed, in order to improve the bonding reliability of the bonding, the adhesive film is required to have a higher modulus.
  • the hindered secondary amine reacts with the blocked NCO to form a urea group, which can also undergo the following photochemical reaction with the tertiary C-H, thereby further increasing the crosslinking density, increasing the modulus of the OCA film, and greatly reducing The mobility of the photoinitiator. Because of the heat-induced reaction in the light-shielded region, low mobility is exhibited even in the light-shielded region.
  • a wavy line referred to in this disclosure indicates the position of attachment of the group to the rest of the compound.
  • the present disclosure also provides an OCA composition, comprising 1% to 10% of a hydrogen abstraction type photoinitiator by mass percentage, such as 1% to 8%, 2% to 7% or 3% to 6%, such as 1 %, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%.
  • a hydrogen abstraction type photoinitiator by mass percentage such as 1% to 8%, 2% to 7% or 3% to 6%, such as 1 %, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%.
  • the OCA composition includes the following components by mass percentage: 70%-97% of acrylate monomers and prepolymers, 1%-10% of hydrogen abstraction photoinitiators , and blocked isocyanate 2% to 20%.
  • the OCA composition also includes a radiation curing photoinitiator or a thermal cracking free radical initiator, such as Irgacure 651, where the photoinitiator is cured by a low-pressure mercury lamp when the OCA film is prepared at the front end ; and the hydrogen abstraction type photoinitiator of the present disclosure is cured by a high-pressure mercury lamp after the lamination is completed;
  • the amount of the Irgacure 651 photoinitiator is 0.1wt% to 0.2wt% of the mass sum of acrylate monomers, prepolymers, hydrogen abstraction photoinitiators and blocked isocyanates, such as 0.1 wt% ⁇ 0.15wt%.
  • the method for preparing an OCA film by using the OCA composition may include: after mixing an acrylate monomer and a prepolymer, a hydrogen abstraction type photoinitiator and an Irgacure 651 photoinitiator, under the condition of 70-100mJ/cm Irradiate for 3-6 minutes to obtain a viscous liquid; then mix the viscous liquid with blocked isocyanate and Irgacure 651 photoinitiator evenly, and after coating, irradiate for 3-6 minutes under the condition of 70-100mJ/ cm2 .
  • the amount of Irgacure 651 photoinitiator added for the first time is 0.01wt% to 0.02wt% of the mass sum of acrylate monomers, prepolymers, hydrogen abstraction photoinitiators and blocked isocyanates, such as 0.02wt%;
  • the amount of Irgacure 651 photoinitiator added for the second time is 0.09wt%-0.18wt%, such as 0.1wt%, of the mass sum of the acrylate monomer, prepolymer, hydrogen abstraction photoinitiator and blocked isocyanate.
  • the blocked isocyanate includes but not limited to acetone oxime, cyclohexanone oxime, acetyl ketone oxime, methyl ethyl ketone oxime, diethyl malonate blocked hexamethylene diisocyanate, octamethylene diisocyanate, decamethylene diisocyanate, dodecamethylene diisocyanate, tetradecamethylene diisocyanate, 1,4-cyclohexyl diisocyanate, 4,4'-dicyclohexylmethane diisocyanate and isofluoro Any one or more of ketone diisocyanates.
  • the acrylate monomer includes, but is not limited to, an acrylate monomer containing a tertiary carbon. In some embodiments, the acrylate monomer includes but not limited to isooctyl acrylate and/or 2-ethylhexyl acrylate.
  • the photocuring conditions of the OCA composition include: UV curing energy of 1000-2500mJ/cm 2 , such as 1500-2500mJ/cm 2 , 1600-2400mJ/cm 2 , 1800-2200mJ/cm 2 cm 2 ;
  • the thermal curing conditions of the OCA composition include: the curing temperature is 70-90°C, such as 75-90°C, 78-85°C or 80-85°C, and the curing time is 10-20min, such as 12-20min, 12 ⁇ 18min, 15 ⁇ 18min.
  • the OCA composition can be cured by heat first and then cured by light, or can be cured by light and heat at the same time.
  • the hydrogen abstraction photoinitiator of the present disclosure does not need to add a tertiary amine co-initiator, and has an extremely low small molecule migration and exudation rate ⁇ 0.01% (even in shading area), extremely low odor, and good photoinitiating activity and solubility;
  • the OCA film system obtained by compounding the hydrogen abstraction photoinitiator of the present disclosure has a storage period of more than 3 months, and the viscosity only increases slightly during the process, which can well realize the side curing of the light-shielding part and avoid sticking Glue overflow on the edge after bonding and insufficient adhesion;
  • IPN Polymer interpenetrating network
  • Part of the raw material information adopted in the following examples can be as follows, but not limited thereto:
  • IPDI Isophorone diisocyanate
  • Dibutyltin dilaurate DBTDL purity > 95%, TCI; 4-(2-hydroxyethoxy) benzophenone, purity > 98%, Tianjin Rijiu New Materials Co., Ltd.;
  • Infrared Fourier transform infrared spectroscopy is used to qualitatively characterize the product structure.
  • Instrument model Bruker Vector 33 FT-IR spectrometer; the detection range is mainly between 400 and 4000 cm -1 , and the degree of reaction is detected by monitoring the change of the absorption peak area of the characteristic group.
  • NMR Qualitative characterization of PAE products by 1 H NMR using nuclear magnetic resonance. Instrument model: Bruker 400MHz. Test conditions: use deuterated DMSO as solvent for sample preparation.
  • UV spectrophotometer U-3900 using acetonitrile as a solvent, test the UV absorption spectrum of the photoinitiator in the range of 200-350nm, you can get the main absorption range of the initiator and the absorbance value at the maximum absorption wavelength, through the following The formula can be used to know the maximum molar extinction coefficient. During the test, the sample concentration was 5 ⁇ 10 -5 mol/L.
  • A c ⁇ l, where A is the absorbance; c is the concentration of the substance; ⁇ is the molar extinction coefficient; l is the optical path length.
  • TPGDA tripropylene glycol dipropylene glycol dipropylene ester
  • R C 1 /C 2 x 100%.
  • C is the relative molar concentration of photoinitiator in the extract (aforesaid soaking liquid); A is the absorbance at the photoinitiator maximum absorption peak place; L is the optical path length; ⁇ is the mole at the photoinitiator maximum absorption peak place Absorption coefficient; C 1 is the relative molar concentration of the synthetic photoinitiator of the present disclosure embodiment and comparative example; C 2 is the relative molar concentration of BP; R is the relative mobility of the present disclosure embodiment and comparative example synthetic photoinitiator.
  • This embodiment provides a hydrogen abstraction type photoinitiator and a preparation method thereof, and the hydrogen abstraction type photoinitiator has the following structure:
  • the preparation method of hydrogen abstraction type photoinitiator comprises:
  • the structure characterized by NMR is: 1 H NMR (DMSO), ⁇ : 7.72 (d, 4H), 7.43 (d, 4H), 6.76 (s, 2H), 4.01 ⁇ 4.11 (m, 24H), 3.76 (m, 4H) , 3.14(m,4H), 2.90(m,8H), 2.65(m,8H), 2.48(m,12H), 1.21(m,24H). Confirm that the obtained hydrogen abstraction photoinitiator is the target product structure.
  • This embodiment provides a hydrogen abstraction type photoinitiator and a preparation method thereof, and the hydrogen abstraction type photoinitiator has the following structure:
  • the preparation method of hydrogen abstraction type photoinitiator comprises:
  • the structure characterized by NMR is: 1 H NMR (DMSO), ⁇ : 7.81 (d, 2H), 7.72 (d, 2H), 7.61 (m, 1H), 7.51 (m, 2H), 7.43 (m, 2H), 4.31 (m,4H), 4.01 ⁇ 4.11(m,10H), 3.76(m,2H), 3.54(m,1H), 2.90 ⁇ 3.01(m,10H), 2.5(m,6H), 1.67(m,4H) ), 1.29 ⁇ 1.39(m,16H), 1.07(m,14H), 0.94(s,3H), 0.87(s,6H). Confirm that the obtained hydrogen abstraction photoinitiator is the target product structure.
  • This embodiment provides a hydrogen abstraction type photoinitiator and a preparation method thereof, and the hydrogen abstraction type photoinitiator has the following structure:
  • the preparation method of hydrogen abstraction type photoinitiator comprises:
  • the structure characterized by NMR is: 1 H NMR (DMSO), ⁇ : 7.81 (d, 2H), 7.72 (d, 2H), 7.61 (m, 1H), 7.51 (m, 2H), 7.43 (m, 2H), 4.06 ⁇ 4.13(m,12H), 3.15(m,2H), 2.9(d,4H), 2.75(m,2H), 2.68(m,2H), 2.54(m,4H), 2.35(m,2H), 1.54(m,8H), 1.40(m,8H), 1.11(d,6H), 0.90(m,12H). Confirm that the obtained hydrogen abstraction photoinitiator is the target product structure.
  • This example provides OCA composition and its preparation, wherein, the formulation system of each group of OCA composition is shown in Table 1:
  • EHA is 2-ethylhexyl acrylate (Changxing Chemical Industry); HEA is 2-hydroxyethyl acrylate (Changxing Chemical Industry); THFA is tetrahydrofuryl acrylate (Changxing Chemical Industry); ACMO is acryloylmorpholine ( Kejuxi Japan); methyl ethyl ketoxime blocked IPDI (Wanhua Chemical).
  • the photoinitiator is the hydrogen abstraction type photoinitiator prepared in Example 1 ⁇ Example 3, 1# (1-1#, 2-1#, 3-1#), 2# (1-2#, 2- 2#, 3-2#), 3# (1-3#, 2-3#, 3-3#) respectively correspond to the photoinitiators of Examples 1 to 3.
  • the preparation of the OCA composition includes:
  • step (3) The composition obtained in step (2) is coated between light and heavy two-layer ethylene terephthalate (PET) release films to form an OCA coating film with a thickness of 175 ⁇ m.
  • the OCA film was prepared by irradiating with a low-pressure UV mercury lamp at a dose of 1000mJ/cm 2 .
  • Comparative example 1 provides photoinitiator and preparation method thereof, and photoinitiator has following structure:
  • the preparation method of photoinitiator comprises:
  • the structure characterized by NMR is: 1 H NMR (DMSO), ⁇ : 7.84 (d, 2H), 7.77 (d, 2H), 7.59 (t, 1H), 7.49 (t, 2H), 7.00 (d, 2H), 6.48 (d,1H), 6.19(dd,1H), 5.89(d,1H), 4.57(m,2H), 4.32(m,2H). Confirm that the prepared photoinitiator is the target product structure.
  • Comparative example 2 provides photoinitiator and preparation method thereof, and photoinitiator has following structure:
  • the preparation method of photoinitiator comprises:
  • the photoinitiator 4296.5g (1mol) that comparative example 1 obtains and 500g ethanol are added in the 2L jacketed glass reactor, jacketed still is equipped with mechanical stirring paddle, thermometer, constant pressure dropping funnel, bubbler, is cooled to 0 °C, add 105.2 (1mol) diethanolamine into the constant pressure dropping funnel, slowly drop diethanolamine into the glass reaction kettle under the condition of stirring at 0-5°C, drop it at a constant speed for 2 hours, then keep the reaction at 0°C overnight, and rotate to evaporate Remove the solvent, and recrystallize with ethyl acetate solvent to obtain a light yellow solid, which is a one-component photoinitiator.
  • the structure characterized by NMR is: 1 H NMR (DMSO), ⁇ : 7.81(d,2H), 7.73(d,2H), 7.60(t,1H), 7.50(t,2H), 7.01(d,2H),4.43 (m,4H), 3.76(m,2H), 3.42(m,4H), 2.57(m,4H), 2.49(m,2H). Confirm that the prepared photoinitiator is the target product structure.
  • Comparative Example 3 Referring to Example 4, an OCA composition is provided.
  • the formula system of each group of OCA compositions is shown in Table 2, and the preparation method is the same as that of Example 4.
  • 4# (1-4#, 2-4#, 3-4#), 5# (1-5#, 2-5#, 3-5#) respectively correspond to the lights of Comparative Example 1 and Comparative Example 2 Initiator.
  • Uncured sample the OCA adhesive film prepared by the method of Example 4 and Comparative Example 3, cut it into an adhesive film with a size of 100mm ⁇ 25mm ⁇ 175 ⁇ m (length ⁇ width ⁇ thickness), peel off and remove the light PET release type
  • the film is pasted on a glass sheet, and then degassed under high temperature and high pressure conditions of 60°C/0.5MPa for 30min, and naturally cooled to room temperature.
  • Sample after light-heat dual curing The above uncured sample was further cured by light-heat under a high-pressure mercury lamp at 85°C for 10 minutes.
  • the uncured OCA film is subjected to this test to evaluate the filling and wetting ability of the OCA film to the ink step when laminating, and the ability to prevent the formation of new air bubbles after deformation at the larger ink step.
  • a vacuum laminator lamination under 13N/ cm2 pressure for 15s, 30Pa vacuum
  • a regular rectangular (19cm ⁇ 12cm) glass panel and a rectangle (19cm ⁇ 12cm) with black ink (50 ⁇ m high ⁇ 0.6cm wide) along the four edges (19cm ⁇ 12 cm) OCA samples were laminated between glass panels. Then, the laminate was degassed under high pressure (60° C.
  • the wetting effect is represented by the following symbols: 0 means minimal air bubbles around the ink ( ⁇ 5), ⁇ means some air bubbles around the ink (>5 but ⁇ 10), and X means a lot of air bubbles around the ink (> 10).
  • the sample was placed in a constant temperature and humidity chamber with a temperature of 85°C and a relative humidity of 85%. After 1000 hours, the appearance observation, light transmittance and haze test, and 180° peel force test were carried out.
  • Judging criteria whether there are bubbles; whether the edge is whitish.
  • Test standard GB/T 2410-2008 "Determination of light transmittance and haze of transparent plastics", the test light wavelength range is 380-780nm.
  • Test standard GB/T2792-1998 "Test method for 180° peel strength of pressure-sensitive adhesive tape”.
  • Relative mobility refers to the ratio of the distance that a certain component moves in the stationary phase to the distance that a standard substance moves in the stationary phase under certain conditions and within the same time.
  • the relative mobility can characterize the amount of exudation of the initiator from the bulk material during the use process/environment, and the photoinitiator with low relative mobility shows lower exudation from the bulk material during the use process/environment Therefore, it is relatively safer and more environmentally friendly, especially in the application field of materials that may affect the health of users such as food and human bodies. This indicator is very important and must be strictly controlled within a lower numerical level.
  • the comparative results of the initiator mobility of each of the above examples and comparative examples show that the photo-thermal dual curing initiator prepared by the present disclosure is compared with the polymerizable photoinitiator of Comparative Example 1 or the single-component photoinitiator of Comparative Example 2 , with a much lower solvent extraction rate, i.e. significantly lower initiator mobility.
  • the dual curing initiator of the present disclosure not only has a relatively larger molecular weight, but also has better compatibility and dispersion in the system, and the dual curing effect gives the initiator a more sufficient way to integrate into the polymer chain, so Resulting in a significant reduction in the proportion of free initiator. Even after pure heat curing, it has relatively low mobility.
  • the performance test results of the OCA adhesive film obtained by the initiators of the above various examples and comparative examples show that the photo-thermal dual curing initiator prepared by the present disclosure is more effective than the polymerizable photoinitiator of Comparative Example 1 or Comparative Example 2.
  • One-component photoinitiator due to good plasticizing effect, the wettability to the ink level difference and the peeling force after bonding are obviously better than the polymerizable photoinitiator or comparative example 1 under the same formula system.
  • One-component photoinitiator in Example 2 After light-heat dual curing, due to the generation of crosslinking, the adhesive film will shrink and produce stress, and the peeling force will be slightly reduced.
  • the photo-thermal dual curing agent in the embodiment of the present disclosure is superior to the comparative example in terms of appearance, light transmittance, haze and peeling force after a reliable test.
  • the initiator of the present disclosure forms an interpenetrating network structure of acrylate polymer and polyurethane after thermal curing of the adhesive film, thereby endowing the adhesive film in the shading area with better lamination, adhesion and peel strength , can better block the penetration of water vapor, better bonding reliability after the double 85 test, showing no visible deterioration in appearance, and maintaining satisfactory bonding strength.
  • the initiators of Comparative Example 1 and Comparative Example 2 do not have a thermal curing effect, they are prone to delamination and air bubbles under high temperature and high humidity, and the adhesive force drops sharply, which may cause glue overflow and Adhesive defects.
  • the light-thermal dual curing initiator of the present disclosure can solve the problem of better curing effect in opaque areas, and endow the OCA film composition with more excellent ink step filling performance, Adhesion and bonding reliability.
  • the hydrogen abstraction type photoinitiator provided by the present disclosure does not need to add a tertiary amine co-initiator, and has an extremely low small molecule migration and exudation rate ⁇ 0.01% (even in light-shielding region), extremely low odor, and has good photoinitiating activity and solubility; meanwhile, the OCA film system obtained by compounding the hydrogen abstraction type photoinitiator of the present disclosure has a storage period of more than 3 months, and can be well Realize the side curing of the light-shielding part, avoiding the problems of edge overflow and insufficient adhesion after lamination; at the same time, the OCA film prepared by the OCA composition provided by the present disclosure not only has cohesion, but also has high holding power and reliable bonding properties, and greatly improved creep resistance on the basis of maintaining good elasticity.
  • the hydrogen abstraction type photoinitiator and OCA film system provided by the present disclosure have excellent application properties and broad market

Abstract

本公开涉及光引发剂合成技术领域,尤其是涉及一种夺氢型光引发剂及其制备方法和应用。本公开的夺氢型光引发剂,同时具备叔胺和聚天门冬氨酸酯结构,是具有光-热双重固化的单组分引发剂,无需添加叔胺类助引发剂,具有极低的小分子迁移渗出率,极低的气味,同时具有良好的光引发活性和溶解性能。

Description

夺氢型光引发剂及其制备方法和应用
相关申请的交叉引用
本公开要求于2021年12月29日提交中国专利局的申请号为“CN 202111636130.0”名称为“夺氢型光引发剂及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光引发剂合成技术领域,尤其是涉及一种夺氢型光引发剂及其制备方法和应用。
背景技术
光引发剂是紫外光固化体系的关键组成部分,它直接关系到配方体系在光照射时低聚物及稀释剂能否迅速由液态转变成固态。随着技术的不断发展和市场提出的更高的要求,光引发剂在固化过程完成后,其迁移性和被夺取的倾向应尽量减少。
二苯甲酮作为广泛使用的夺氢型光引发剂,价廉且表面固化良好,不易泛黄、溶解性良好,是紫外光固化体系中最广泛使用的光引发剂之一。但二苯甲酮从已固化产品中迁移或被夺取的倾向严重。为了改善二苯甲酮的迁移性和气味问题,公开号为CN101012180A的专利申请公开了通过化学方法将二苯甲酮和胺结合在一个分子中,做成单组分夺氢型光引发剂。
显示器件全贴合技术分为OCA(Optical Clear Adhesive)和LOCA(Liquid Optical Clear Adhesive)全贴合。目前市场里面存在的LOCA胶属于UV胶的一种,需要通过UV光照射固化,但由于触摸屏TP结构设计的原因,导致屏幕边框与功能片FPC不透明,UV光无法穿透到达LOCA胶处,导致LOCA胶在后续存放或使用过程中缓慢溢出,造成外观污染甚至损坏产品内部,最后导致产品损坏。在固化时,屏幕边框处及传感器上不透明的软性线路板处难以彻底固化,需要再次固化,溢胶难以控制,溢到边缘的胶又难以清理,特别是对于大尺寸的贴合溢胶很难控制,生产成本高,生产效率低。
为解决产品挡光部件固化不干的溢胶问题,现有技术增加了侧面UV固化工序,以达到外边缘固化封边,减少溢胶的风险。但是侧固化存在两个问题:一是侧固化只能对边缘封边,面积较大的挡光部分里面仍然存在液体不干问题,在遇到需要加热加压(如后续贴合OCA时需加热加压脱泡)时,未固化的液态光学胶会溢出;二是侧固化需要较高的能量才能使边缘固化,但是高能量的侧固化会导致白色的盖板发黄,影响外观。因此,为解决侧固化存在的问题,需要液态光学胶搭配促进剂使用,通过促进剂加快液态光学胶的固化速度,解决挡光部分固化不干的问题。但目前的液态光学胶促进剂的促进效率低,接触氧气的外边缘固化效果差,同时现有的液态光学胶存在存储稳定性差的问题,导致无法更好地解决侧固化问题。
综上所述,目前商业化二苯甲酮类光引发剂存在迁移渗出问题造成的污染,同时在OCA的紫外线-热双重固化领域,多采用过氧化物为热引发剂,且需要预涂促进剂搭配使用,工艺步骤的增加带来了操作难度和贴合成本的上升。因此,如果通过光引发剂化学结构设计同时解决上述两种技术难题,将极大提升OCA产品的市场竞争力。
发明内容
本公开提供了夺氢型光引发剂,其结构式如下:
Figure PCTCN2022087184-appb-000001
其中,X 1和X 2中至少一个选自
Figure PCTCN2022087184-appb-000002
R 1为含有
Figure PCTCN2022087184-appb-000003
结构单元的有机基团,R 2选自亚烷基和亚烷氧基基团中的任一种,R 3选自烷基和烷氧基基团中的任一种;R 4选自H和甲基中的任一种;
Y 1、Y 2、Y 3、Y 4、Y 5、Y 6、Y 7和Y 8各自独立的选自H、烷基、烷氧基和芳香基团中的任一种。
在本公开的一些实施方式中,X 1和X 2均为
Figure PCTCN2022087184-appb-000004
或者,X 1和X 2中一个为
Figure PCTCN2022087184-appb-000005
另一个为H。
在本公开的一些实施方式中,R 2选自碳数为2~12的支链亚烷基、直链亚烷基、支链亚烷氧基和直链亚烷氧基中的任一种。
在本公开的一些实施方式中,R 3选自碳数为2~12的支链烷基、直链烷基、支链烷氧基和直链烷氧基中的任一种。
在本公开的一些实施方式中,X 1和X 2中一个为
Figure PCTCN2022087184-appb-000006
另一个选自H、烷基、烷氧基和芳香基团中的任一种。
在本公开的一些实施方式中,R 1
Figure PCTCN2022087184-appb-000007
Figure PCTCN2022087184-appb-000008
R 5选自碳数为1~5的亚烷基基团,R 6选自非对称的环烷基基团。
在本公开的一些实施方式中,R 6
Figure PCTCN2022087184-appb-000009
在本公开的一些实施方式中,R 1
Figure PCTCN2022087184-appb-000010
Figure PCTCN2022087184-appb-000011
中的任一种。
在本公开的一些实施方式中,所述夺氢型光引发剂具有如下结构式中的任一种:
Figure PCTCN2022087184-appb-000012
在本公开的一些实施方式中,所述夺氢型光引发剂具有如下结构式中的任一种:
Figure PCTCN2022087184-appb-000013
Figure PCTCN2022087184-appb-000014
Figure PCTCN2022087184-appb-000015
本公开还提供了上述任意一种所述夺氢型光引发剂的制备方法,包括如下步骤:
(a)化合物A 1或化合物A 2与二异氰酸酯和含羟基(甲基)丙烯酸酯反应,得到含有
Figure PCTCN2022087184-appb-000016
结构单元的二苯甲酮衍生物;
(b)聚天门冬氨酸酯多胺与所述二苯甲酮衍生物进行Michael加成反应得到所述光引发剂;
其中,化合物A 1和化合物A 2的结构式分别为
Figure PCTCN2022087184-appb-000017
聚天门冬氨酸酯多胺的结构式为
Figure PCTCN2022087184-appb-000018
在本公开的一些实施方式中,所述聚天门冬氨酸酯多胺主要由双烷基三胺和丁烯二酸二酯反应得到;所述双烷基三胺和丁烯二酸二酯的结构式分别为
Figure PCTCN2022087184-appb-000019
在本公开的一些实施方式中,所述双烷基三胺包括二乙烯三胺、二丙烯三胺、二亚丙基三胺和双六亚甲基三胺中的任一种或多种.
在本公开的一些实施方式中,所述丁烯二酸二酯包括马来酸二酯和/或富马酸二酯,其中马来酸二酯选自马来酸二乙酯、马来酸二丙酯、马来酸二丁酯和马来酸甲基丙基酯中的任一种或多种,富马酸二酯选自富马酸二乙酯、富马酸二丙酯、富马酸二丁酯和富马酸甲基丙基酯中的任一种或多种。
在本公开的一些实施方式中,所述双烷基三胺和丁烯二酸二酯的摩尔比为1﹕(1.8~2.2)。
在本公开的一些实施方式中,步骤(b)中,所述聚天门冬氨酸酯多胺与所述二苯甲酮衍生物的反应摩尔比为1﹕(0.9~1.1)。
在本公开的一些实施方式中,所述二异氰酸酯包括甲苯二异氰酸酯和/或异佛尔酮二异氰酸酯。
在本公开的一些实施方式中,所述含羟基(甲基)丙烯酸酯包括丙烯酸羟乙酯、丙烯酸羟丙酯、丙烯酸羟丁酯、 甲基丙烯酸羟乙酯、甲基丙烯酸羟丙酯和甲基丙烯酸羟丁酯中的至少一种。
在本公开的一些实施方式中,步骤(b)中,将所述聚天门冬氨酸酯多胺加入所述二苯甲酮衍生物中。
本公开还提供了上述任意一种所述夺氢型光引发剂的另一种制备方法,包括如下步骤:
(a1)化合物A 1或化合物A 2与含异氰酸酯及(甲基)丙烯酸酯的单体反应,得到含有
Figure PCTCN2022087184-appb-000020
Figure PCTCN2022087184-appb-000021
结构单元的二苯甲酮衍生物;
(b1)聚天门冬氨酸酯多胺与所述二苯甲酮衍生物进行Michael加成反应得到所述光引发剂;
其中,化合物A 1和化合物A 2的结构式分别为
Figure PCTCN2022087184-appb-000022
聚天门冬氨酸酯多胺的结构式为
Figure PCTCN2022087184-appb-000023
R 2选自亚烷基和亚烷氧基基团中的任一种,R 3选自烷基和烷氧基基团中的任一种;R 4选自H和甲基中的任一种;
Y 1、Y 2、Y 3、Y 4、Y 5、Y 6、Y 7和Y 8各自独立的选自H、烷基、烷氧基和芳香基团中的任一种。
在本公开的一些实施方式中,所述含异氰酸酯及(甲基)丙烯酸酯的单体包括异氰酸酯丙烯酸乙酯和/或异氰酸酯甲基丙烯酸乙酯。
本公开还提供了上述任意一种所述夺氢型光引发剂在OCA胶膜中的应用。
本公开还提供了一种OCA组合物,包括按质量百分数计的夺氢型光引发剂1%~10%。
在本公开的一些实施方式中,所述OCA组合物包括按质量百分数计的如下组分:丙烯酸酯类单体和预聚物70%~97%、所述夺氢型光引发剂1%~10%、以及封闭型异氰酸酯2%~20%;
在本公开的一些实施方式中,所述封闭型异氰酸酯包括丙酮肟、环己酮肟、乙酰酮肟、甲乙酮肟、丙二酸二乙酯封闭六亚甲基二异氰酸酯、八亚甲基二异氰酸酯、十亚甲基二异氰酸酯、十二亚甲基二异氰酸酯、十四亚甲基二异氰酸酯、1,4-环己基二异氰酸酯、4,4’-二环己基甲烷二异氰酸酯和异氟尔酮二异氰酸酯中的任一种或多种。
在本公开的一些实施方式中,所述OCA组合物的光固化条件包括:UV固化能量为1000~2500mJ/cm 2;所述OCA组合物的热固化条件包括:固化温度为70~90℃,固化时间为10~20min。
具体实施方式
下面将结合一些实施方式对本公开的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本公开一部分实施例,而不是全部的实施例,仅用于说明本公开,而不应视为限制本公开的范围。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
本公开一些实施方式提供的夺氢型光引发剂,解决了现有技术中存在的光引发剂的迁移渗出等技术问题。本公开一些实施方式提供了夺氢型光引发剂,其结构式如下:
Figure PCTCN2022087184-appb-000024
其中,X 1和X 2中至少一个选自
Figure PCTCN2022087184-appb-000025
R 1为含有
Figure PCTCN2022087184-appb-000026
结构单元的有机基团,R 2选自亚烷基和亚烷氧基基团中的任一种,R 3选自烷基和烷氧基基团中的任一种;R 4选自H和甲基中的任一种;
Y 1、Y 2、Y 3、Y 4、Y 5、Y 6、Y 7和Y 8各自独立的选自H、烷基、烷氧基和芳香基团中的任一种。如在不同实施方式中,夺氢型光引发剂的结构式可以为
Figure PCTCN2022087184-appb-000027
(X 1可选自选自H、烷基、烷氧基和芳香基团中的任一种)或
Figure PCTCN2022087184-appb-000028
如在不同实施方式中,Y 1、Y 2、Y 3、Y 4、Y 5、Y 6、Y 7和Y 8各自独立的选自H、烷基、烷氧基和芳香基团中的任一种。在一些实施方式中,烷基可以为碳数为1~4的烷基,如甲基、乙基、丙基、丁基等。在一些实施方式中,烷氧基可以为碳数为1~4的烷氧基,如甲氧基、乙氧基、丙氧基、丁氧基等。在一些实施方式中,芳香基团可以为芳环如苯,芳稠环如萘等。
本公开的夺氢型光引发剂,同时具备叔胺和聚天门冬氨酸酯结构,是具有光-热双重固化的单组分引发剂,无需添加叔胺类助引发剂,具有极低的小分子迁移渗出率,极低的气味,同时具有良好的光引发活性和溶解性能。
在本公开的一些实施方式中,X 1和X 2均为
Figure PCTCN2022087184-appb-000029
或者,X 1和X 2中一个为
Figure PCTCN2022087184-appb-000030
另一个为H。
在本公开的一些实施方式中,R 2选自碳数为2~12的支链亚烷基、直链亚烷基、支链亚烷氧基和直链亚烷氧基中的任一种。
如在不同实施方式中,R 2的碳数可以为2、3、4、5、6、7、8、9、10、11、12;如直链亚烷基结构式可为
Figure PCTCN2022087184-appb-000031
n为2~12之间的整数,诸如2、3、4、5、6、7、8、9、10、11、12;如支链亚烷基结构式可为
Figure PCTCN2022087184-appb-000032
n 1为1~11之间的整数,诸如1、2、3、4、5、6、7、8、9、10、11,或者也可以有多个支链;如直链亚烷氧基结构式可为
Figure PCTCN2022087184-appb-000033
n 2为2~12之间的整数,诸如2、3、4、5、6、7、8、9、10、11、12;如支链亚烷氧基结构式可为
Figure PCTCN2022087184-appb-000034
n 3为1~11之间的整数,诸如1、2、3、4、5、6、7、8、9、10、11,或者也可以有多个支链。
在本公开的一些实施方式中,R 2选自碳数为2~6的直链亚烷基,R 2可以为诸如-CH 2CH 2-、-CH 2CH 2CH 2-、-CH 2CH 2CH 2CH 2-、-CH 2CH 2CH 2CH 2CH 2-或-CH 2CH 2CH 2CH 2CH 2CH 2-。
在本公开的一些实施方式中,R 3选自碳数为1~12的支链烷基、直链烷基、支链烷氧基和直链烷氧基中的任一种。
如在不同实施方式中,R 3的碳数可以为1、2、3、4、5、6、7、8、9、10、11、12;如直链烷基可以为甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基,如结构式为
Figure PCTCN2022087184-appb-000035
n 4为0~11之间的整数,诸如1、2、3、4、5、6、7、8、9、10、11;如支链烷基可以为异丙基、异丁基、异戊基、异己基、异庚基、异辛基等等,如结构式为
Figure PCTCN2022087184-appb-000036
n 5为1~10之间的整数,诸如1、2、3、4、5、6、7、8、9、10,或者也可以有多个支链;如直链烷氧基,可以为例如甲氧基、乙氧基、丙氧基、丁氧基、戊氧基、己氧基、庚氧基、辛氧基、壬氧基、癸氧基、十一烷氧基、十二烷氧基等;如支链烷氧基,可以为例如异丙氧基、异丁氧基、异戊氧基、异己氧基、异庚氧基、异辛氧基、异壬氧基、异癸氧基等。
在本公开的一些实施方式中,R 3选自碳数为1~4的直链烷基,诸如R 3可以为甲基、乙基、丙基、丁基。
在本公开的一些实施方式中,R 1
Figure PCTCN2022087184-appb-000037
R 5选自碳数为1~5的亚烷基基团,R 6选自非对称的环烷基基团。
如在不同实施方式中,R 5可以为-CH 2-、-CH 2CH 2-、-CH 2CH 2CH 2-、-CH 2CH 2CH 2CH 2-、-CH 2CH 2CH 2CH 2CH 2-等等。
在本公开的一些实施方式中,R 1中与二苯甲酮基团相连接的位点为氨基甲酸酯结构侧,与N相连接的位点为(甲基)丙烯酸酯侧。
在本公开的一些实施方式中,R 6
Figure PCTCN2022087184-appb-000038
在本公开的一些实施方式中,R 1
Figure PCTCN2022087184-appb-000039
Figure PCTCN2022087184-appb-000040
中的任一种。
在本公开的一些实施方式中,所述夺氢型光引发剂具有如下结构式中的任一种:
Figure PCTCN2022087184-appb-000041
Figure PCTCN2022087184-appb-000042
其中,对应的R 2和R 3位置的亚烷基链或烷基链的长度可根据R 2和R 3的碳数进行调整;且二苯甲酮骨架上,对应的X 1、X 2可一个为上述取代结构,另一个为H,也可X 1、X 2均为上述取代结构。如一些实施方式中,夺氢型光引发剂,可以如下:
Figure PCTCN2022087184-appb-000043
Figure PCTCN2022087184-appb-000044
本公开还提供了上述任意一种所述夺氢型光引发剂的制备方法,包括如下步骤:
(a)化合物A 1或化合物A 2与二异氰酸酯和含羟基(甲基)丙烯酸酯反应,得到含有
Figure PCTCN2022087184-appb-000045
结构单元的二苯甲酮衍生物;
(b)聚天门冬氨酸酯多胺与所述二苯甲酮衍生物进行Michael加成反应得到所述光引发剂;
其中,化合物A 1和化合物A 2的结构式分别为
Figure PCTCN2022087184-appb-000046
聚天门冬氨酸酯多胺的结构式为
Figure PCTCN2022087184-appb-000047
如在一些实施方式中,化合物A 1和化合物A 2的结构式可分别为
Figure PCTCN2022087184-appb-000048
(4-羟基二苯甲酮)和
Figure PCTCN2022087184-appb-000049
(4,4’-二羟基二苯甲酮)。
在本公开的一些实施方式中,所述聚天门冬氨酸酯多胺主要由双烷基三胺和丁烯二酸二酯反应得到;所述双烷基三胺和丁烯二酸二酯的结构式分别为
Figure PCTCN2022087184-appb-000050
在一些实施方式中,所述双烷基三胺包括但不限于二乙烯三胺、二丙烯三胺、二亚丙基三胺和双六亚甲基三胺中的任一种或多种。在一些实施方式中,所 述丁烯二酸二酯包括但不限于马来酸二酯和/或富马酸二酯,其中马来酸二酯选自马来酸二乙酯、马来酸二丙酯、马来酸二丁酯和马来酸甲基丙基酯中的任一种或多种,富马酸二酯选自富马酸二乙酯、富马酸二丙酯、富马酸二丁酯和富马酸甲基丙基酯中的任一种或多种。
在本公开的一些实施方式中,所述聚天门冬氨酸酯多胺主要由双烷基三胺和丁烯二酸二酯进行Michael加成反应得到。
在聚天门冬氨酸酯多胺的制备中,双烷基三胺的伯胺基团和丁烯二酸二酯发生反应,而仲胺基团由于位阻效应几乎不参与加成反应。继而,伯胺在Michael加成反应中生成的位阻型仲胺,与二苯甲酮衍生物中的(甲基)丙烯酸酯单元进一步Michael加成反应受到空间位阻效应的抑制,活性极低,而双烷基三胺中保留的仲胺却具备进一步和(甲基)丙烯酸酯单元的反应活性,因此可以高产率的得到目标产物。
聚天门冬氨酸酯多胺的制备中,反应过程如下所示:
Figure PCTCN2022087184-appb-000051
在实际操作中,聚天门冬氨酸酯多胺的制备包括:将丁烯二酸二酯缓慢滴加至双烷基三胺中,滴加完成后,升温至40~60℃反应3~6h,诸如反应3h、4h、5h、6h。在一些实施方式中,向体系中通入N 2 10~30min,诸如10min、15min、20min、25min、30min;丁烯二酸二酯的滴加时间为0.5~1h,诸如0.5h、0.6h、0.7h、0.8h、0.9h、1h,滴加过程中的温度控制在25~30℃。
在本公开的一些实施方式中,所述双烷基三胺和丁烯二酸二酯的摩尔比为1﹕(1.8~2.2),可选地为例如1﹕(1.9~2.2)、1﹕(1.9~2.1)或1﹕(1.9~2.0),诸如1﹕1.8、1﹕1.9、1﹕2、1﹕2.1或1﹕2.2。
在本公开的一些实施方式中,步骤(a)中,化合物A 1或化合物A 2先与二异氰酸酯反应得到中间体,再与含羟基(甲基)丙烯酸酯反应。为了高产率的得到二苯甲酮衍生物,中间体需要为NCO封端产物,得到的含单官能度和双官能度NCO的中间体的结构式分别如下:
Figure PCTCN2022087184-appb-000052
为了减少二苯甲酮封端产物或低聚物的生成(以化合物A 2如4,4’-二羟基二苯甲酮为原料时),优先选用NCO反应活性存在差异的甲苯二异氰酸酯TDI、异佛尔酮二异氰酸酯IPDI作为合成用原料,出于耐黄变性能的考量,二异氰酸酯可选地为IPDI。
在本公开的一些实施方式中,步骤(a)中,所述反应在催化剂的作用下进行。以提高NCO反应活性的差异。在一些实施方式中,所述催化剂为有机锡类催化剂,如二月桂酸二丁基锡(DBTDL)。在一些实施方式中,所述催化剂的用量为反应物总质量的0.02%~0.2%,诸如0.05%~0.2%、0.05%~0.18%或0.08%~0.15%。
在本公开的一些实施方式中,步骤(a)中,化合物A 1或化合物A 2与二异氰酸酯的反应温度为30~60℃,诸如30℃、40℃、50℃、60℃。在实际操作中,该步骤反应的时间通过红外光谱监测反应液的NCO峰面积进行调控,当反应液中NCO峰面积恒定不变,停止反应,再进行下一步与含羟基(甲基)丙烯酸酯的反应。
在本公开的一些实施方式中,所述含羟基(甲基)丙烯酸酯包括但不限于丙烯酸羟乙酯、丙烯酸羟丙酯、丙烯酸羟丁酯、甲基丙烯酸羟乙酯、甲基丙烯酸羟丙酯和甲基丙烯酸羟丁酯中的至少一种。
在本公开的一些实施方式中,步骤(a)中,所述中间体与所述含羟基(甲基)丙烯酸酯的反应温度为20~50℃,诸如20℃、30℃、40℃、50℃。在实际操作中,该步骤的反应时间通过红外光谱监测反应液的NCO峰面积进行调控,当反应液中NCO峰面积消失,停止反应。
在本公开的一些实施方式中,步骤(b)中,所述聚天门冬氨酸酯多胺与所述二苯甲酮衍生物的反应摩尔比为1﹕(0.9~1.1),可选地例如为1﹕0.9、1﹕1、1﹕1.1。其中,反应摩尔比是指聚天门冬氨酸酯多胺的非位阻型仲胺与所述二苯甲酮衍生物中的端烯基的摩尔数比例。
在本公开的一些实施方式中,所述聚天门冬氨酸酯多胺的制备中,所述反应的温度为25~60℃,诸如20℃、25℃、30℃、35℃、40℃、45℃、50℃。在实际操作中,通过硫醇-碘滴定方法测得反应体系中不饱和值,得到反应转化率,调控反应时间。
在本公开的一些实施方式中,步骤(b)中,将所述聚天门冬氨酸酯多胺加入所述二苯甲酮衍生物中。在实际操作中,将所述聚天门冬氨酸酯多胺缓慢滴加至步骤(a)得到的二苯甲酮衍生物的反应液中。
在本公开的一些实施方式中,步骤(b)中,所述聚天门冬氨酸酯多胺的滴加时间为1~3h,诸如1h、2h、3h,滴加过程中,反应体系的温度控制在40℃以内;滴加完成后,于45~50℃保温反应2~4h,诸如2h、3h、4h。
聚天门冬氨酸酯多胺中的位阻型仲胺基团由于空间位阻效应导致反应活性低,与二苯甲酮衍生物中的(甲基)丙烯酸酯单元的反应活性远小于聚天门冬氨酸酯多胺中的其它仲胺,通过滴加的方式可进一步降低位阻型仲胺和(甲基)丙烯酸酯单元反应的概率。以单官能二苯甲酮衍生物为例,反应过程如下:
Figure PCTCN2022087184-appb-000053
本公开还提供了上述任意一种所述夺氢型光引发剂的另一种制备方法,包括如下步骤:
(a1)化合物A 1或化合物A 2与含异氰酸酯及(甲基)丙烯酸酯的单体反应,得到含有
Figure PCTCN2022087184-appb-000054
Figure PCTCN2022087184-appb-000055
结构单元的二苯甲酮衍生物;
(b1)聚天门冬氨酸酯多胺与所述二苯甲酮衍生物进行Michael加成反应得到所述光引发剂;
其中,化合物A 1和化合物A 2的结构式分别为
Figure PCTCN2022087184-appb-000056
聚天门冬氨酸酯多胺的结构式为
Figure PCTCN2022087184-appb-000057
在本公开的一些实施方式中,所述含异氰酸酯及(甲基)丙烯酸酯的单体包括但不限于异氰酸酯丙烯酸乙酯和/或异氰酸酯甲基丙烯酸乙酯。
在本公开的一些实施方式中,步骤(a1)中,所述反应在催化剂的作用下进行。在一些实施方式中,所述催化剂为有机锡类催化剂,如二月桂酸二丁基锡(DBTDL)。在一些实施方式中,所述催化剂的用量为反应物总质量的0.02%~0.2%,例如为0.05%~0.2%、0.05%~0.15%或0.1%~0.15%,诸如0.02%、0.04%、0.06%、0.06%、0.1%、0.12%、0.14%、0.16%、0.18%、0.2%。
在本公开的一些实施方式中,步骤(a1)中,所述反应的温度为20~30℃,诸如20℃、25℃、30℃,如在室温下进行。在实际操作中,该步骤的反应时间可通过红外光谱监测反应液的NCO峰面积进行调控,当反应液中NCO峰面积消失,停止反应。
上述方法中,步骤(b1)与前述方法中步骤(b)的操作条件相同。
在本公开的一些实施方式中,步骤(a)和步骤(a1)均是在有机溶剂的存在下进行的反应,如所述有机溶剂可以为乙酸乙酯。
在本公开的一些实施方式中,所述有机溶剂的加入量与所述化合物A 1或化合物A 2的比例为(0.9~1.1)L﹕1mol,例如0.9L﹕1mol、0.95L﹕1mol、1L﹕1mol、1.05L﹕1mol或1.1L﹕1mol。
在本公开的一些实施方式中,在步骤(a)或步骤(a1)得到的含二苯甲酮衍生物的反应液中加入阻聚剂。其中,所述阻聚剂可以为对甲氧基苯酚。
在本公开的一些实施方式中,在步骤(b)或步骤(b1)反应完成后,除去溶剂,得到所述光引发剂。本公开制备得到的夺氢型光引发剂无需进一步分离纯化,即可用于后续产品的下游应用。
本公开还提供了上述任意一种所述夺氢型光引发剂在OCA胶膜中的应用。全贴合OCA胶膜贴合过程中为了更好地脱除气泡,需要OCA具备较好的流动性。本公开的光引发剂在贴合时,在OCA胶膜组成中可以起到增塑剂的作用,降低胶膜模量,提高流动性。而在贴合完成后,为了提高贴合的粘接可靠性,要求胶膜具备更高的模量,进行高温高压脱泡时,本公开的光-热双重夺氢型光引发剂不但可以起到光引发作用,位阻型仲胺与封闭型NCO发生反应生成脲基,还可以和叔C-H发生如下所示的光化学反应,从而进一步提高交联密度增大OCA胶膜模量,并大幅降低光引发剂的迁移率。因为遮光区域的热引发反应,即使在遮光区域依然表现出低的迁移率。
Figure PCTCN2022087184-appb-000058
本公开中所涉及的波浪线表示该基团中与化合物其余部分的连接位置。
本公开还提供了一种OCA组合物,包括按质量百分数计的夺氢型光引发剂1%~10%,例如1%~8%、2%~7%或3%~6%,诸如1%、2%、3%、4%、5%、6%、7%、8%、9%、10%。
在本公开的一些实施方式中,所述OCA组合物包括按质量百分数计的如下组分:丙烯酸酯类单体和预聚物70%~97%、夺氢型光引发剂1%~10%、以及封闭型异氰酸酯2%~20%。在实际操作中,所述OCA组合物还包括辐照固化光引发剂或者热裂解自由基引发剂,如Irgacure 651,此处的光引发剂是在前端制备OCA胶膜时,采用低压汞灯固化;而本公开的夺氢型光引发剂在贴合完成后,采用高压汞灯固化;二者固化采用的波段及处于的流程不同。如在不同实施方式中,所述Irgacure 651光引发剂的用量为丙烯酸酯类单体、预聚物、夺氢型光引发剂和封闭型异氰酸酯质量和的0.1wt%~0.2wt%,如0.1wt%~0.15wt%。
采用所述OCA组合物制备OCA胶膜的方法可以包括:将丙烯酸酯类单体和预聚物、夺氢型光引发剂以及Irgacure 651光引发剂混合后,于70~100mJ/cm 2条件下辐照处理3~6min,得到粘性液体;然后将粘性液体与封闭型异氰酸酯以及Irgacure 651光引发剂混合均匀,进行涂布后,以70~100mJ/cm 2条件下辐照处理3~6min。第一次加入的Irgacure 651光引发剂的用量为丙烯酸酯类单体、预聚物、夺氢型光引发剂和封闭型异氰酸酯质量和的0.01wt%~0.02wt%,如0.02wt%;第二次加入的Irgacure 651光引发剂的用量为丙烯酸酯类单体、预聚物、夺氢型光引发剂和封闭型异氰酸酯质量和的0.09wt%~0.18wt%,如0.1wt%。
在本公开的一些实施方式中,所述封闭型异氰酸酯包括但不限于丙酮肟、环己酮肟、乙酰酮肟、甲乙酮肟、丙二酸二乙酯封闭六亚甲基二异氰酸酯、八亚甲基二异氰酸酯、十亚甲基二异氰酸酯、十二亚甲基二异氰酸酯、十四亚甲基二异氰酸酯、1,4-环己基二异氰酸酯、4,4’-二环己基甲烷二异氰酸酯和异氟尔酮二异氰酸酯中的任一种或多种。
在本公开的一些实施方式中,所述丙烯酸酯类单体包括但不限于含有叔碳的丙烯酸酯类单体。在一些实施方式中,所述丙烯酸酯类单体包括但不限于丙烯酸异辛酯和/或2-乙基己基丙烯酸酯。
在本公开的一些实施方式中,所述OCA组合物的光固化条件包括:UV固化能量为1000~2500mJ/cm 2,诸如1500~2500mJ/cm 2、1600~2400mJ/cm 2、1800~2200mJ/cm 2;所述OCA组合物的热固化条件包括:固化温度为70~90℃,诸如75~90℃、78~85℃或80~85℃,固化时间为10~20min,诸如12~20min、12~18min、15~18min。
在实际操作中,所述OCA组合物可先进行热固化再进行光固化,也可光固化和热固化同时进行。
本公开的有益效果为:
(1)本公开的夺氢型光引发剂,作为可双重固化的单组分引发剂,无需添加叔胺类助引发剂,具有极低的小分子迁移渗出率<0.01%(即使是在遮光区域),极低的气味,同时具有良好的光引发活性和溶解性能;
(2)本公开的夺氢型光引发剂复配得到的OCA胶膜体系在存储期达到3个月以上,过程中粘度仅略微增加,可以很好的实现挡光部分的侧固化,避免贴合后的边缘溢胶以及黏附力不足的问题;
(3)本公开的夺氢型光引发剂得到的OCA胶膜结构中形成了聚氨酯/聚脲和丙烯酸酯的聚合物互穿网络(IPN)结构,聚氨酯/聚脲结构中的氨基甲酸酯和脲基间强氢键作用作为物理交联点,不但可以增强胶膜的内聚力从而提高持粘力和粘接可靠性,而且在保持良好弹性的基础上极大改善抗蠕变性能。
下面分多个实施例对本公开实施例进行进一步的说明。其中,本公开实施例不限定于以下的具体实施例。在保护范围内,可以适当的进行变更实施。
实施例
下述实施例中采用的部分原料信息可以如下,但不局限于此:
二乙烯三胺、二丙烯三胺、双六亚甲基三胺,纯度大于98%,TCI;
马来酸二乙酯,纯度大于99%,安耐吉;
马来酸二丁酯,纯度大于99.5%,阿拉丁;
富马酸二乙酯,纯度大于98.5%,阿拉丁;
异氰酸酯丙烯酸乙酯AOI和异氰酸酯甲基丙烯酸乙酯MOI,纯度大于97%,张家港托普化工;
异氟尔酮二异氰酸酯IPDI,纯度>99%,万华化学;
4-羟基二苯甲酮和4,4’-二羟基二苯甲酮,纯度>98%,TCI;
二月桂酸二丁基锡DBTDL,纯度>95%,TCI;4-(2-羟基乙氧基)二苯甲酮,纯度>98%,天津日久新材料有限公司;
丙烯酰氯,纯度>98%,TCI;
三乙胺,纯度>99%,TCI;
二乙醇胺,纯度>99%,TCI。
测试与表征:
1、红外:采用傅里叶变换红外光谱对产品结构进行定性表征。仪器型号:Bruker Vector 33型FT-IR光谱仪;检测范围主要在400~4000cm -1之间,通过监测特征基团吸收峰面积的变化来检测反应程度。
2、核磁:采用核磁共振仪对PAE产品进行 1H NMR定性表征。仪器型号:Bruker 400MHz。测试条件:以氘代DMSO为溶剂制样。
3、紫外吸收光谱:
采用紫外分光光度计U-3900型,选用乙腈为溶剂,测试光引发剂在200~350nm范围内的紫外吸收光谱,即可得到引发剂的主要吸光范围和最大吸收波长处的吸光度值,通过下式计算可知其最大摩尔消光系数。测试过程中样品浓度均为5×10 -5mol/L。
A=c·ε·l,其中,A为吸光度;c为该物质浓度;ε为摩尔消光系数;l为光程长。
4、光引发剂的相对迁移率:
分别配制含有以下摩尔分数光引发剂的二缩三丙二醇二丙烯酯(TPGDA)溶液:
(1)1wt%二苯甲酮(BP)和1wt%三乙醇胺的TPGDA溶液;
(2)1wt%实施例光引发剂的TPGDA溶液;
(3)1wt%比较例光引发剂的TPGDA溶液。
将它们分别注入尺寸为40mm*6mm*1mm的硅胶垫模具中,在高压汞灯UV固化箱中光照5min,光强为40mW/cm 2。然后将固化好的样条捣碎,称取0.1g,用10mL二氯甲烷室温浸泡5d,用紫外-可见分光光度计测量浸泡液中光引发剂在最大吸收峰处的吸光度。由下式计算出各种光引发剂的相对浓度,以光引发剂BP的相对浓度值作为参照基准,可测算出实施例和比较例合成光引发剂的相对迁移率。
C=A/(ε×L×V)×10 -2
R=C 1/C 2×100%。
式中:C为萃取液(前述浸泡液)中光引发剂的相对摩尔浓度;A为光引发剂最大吸收峰处的吸光度;L为光程长;ε为光引发剂最大吸收峰处的摩尔吸光系数;C 1为本公开实施例和比较例合成光引发剂的相对摩尔浓度;C 2为BP的相对摩尔浓度;R为的本公开实施例和比较例合成光引发剂相对迁移率。
实施例1
本实施例提供了夺氢型光引发剂及其制备方法,夺氢型光引发剂具有如下结构:
Figure PCTCN2022087184-appb-000059
其合成路线如下:
Figure PCTCN2022087184-appb-000060
夺氢型光引发剂的制备方法包括:
(1)氨基甲酸酯合成:溶剂乙酸乙酯用4A分子筛预先干燥除水;反应用玻璃器皿用鼓风烘箱干燥。称取142g(1.0mol)异氰酸酯丙烯酸乙酯(AOI)、2g二月桂酸二正丁基锡(DBTDL)加入到3L装配有机械搅拌且遮光的夹套玻璃反应釜中,室温搅拌,得到混合物。将107g(0.5mol)4,4’-二羟基二苯甲酮(4,4’-DHBP)加入到1L乙酸乙酯中溶解,置于1.5L恒压滴液漏斗中,逐滴加入到上述混合物中,2.5h滴完。滴完后继续反应至红外监测NCO峰面积(2268cm -1)减小至消失为止,加入0.3g对甲氧基苯酚阻聚剂,搅拌均匀。
(2)Michael加成1:将103.2g(1mol)二乙烯三胺加入1L四口圆底烧瓶中,烧瓶装配有机械搅拌桨、温度计、恒压滴液漏斗、连接有N 2气路管、鼓泡器,将344.4g(2mol)马来酸二乙酯加入恒压滴液漏斗中,体系中通入N 2 10min,置换体系中空气;在25℃搅拌条件下在烧瓶中缓慢滴入马来酸二乙酯,1h匀速滴完,控制反应温度为30℃,然后升温至60℃反应3h,通过硫醇-碘滴定方法测得反应体系中不饱和值为0.33mg马来酸/g树脂,表明马来酸酯反应转化率99.9%,停止反应,得到聚天门冬氨酸酯多胺。
(3)Michael加成2:在1L恒压滴液漏斗中加入步骤(2)得到的聚天门冬氨酸酯多胺,缓慢滴加至步骤(1)得到的反应液中,2h滴完,滴加时反应体系温度控制在30℃以内,滴加完成后,保温25℃反应5h,通过红外监测反应液,直至丙烯酸酯C=C双键特征峰(1637cm -1)反应至消失为止,停止搅拌,旋蒸脱除反应溶剂乙酸乙酯,得到夺氢型光引发剂。
制得的夺氢型光引发剂的结构表征数据:
红外光谱(KBr压片),ν(cm -1):3319(仲胺N-H的伸缩振动峰),2980、2920、2850(甲基、亚甲基、次甲基的伸缩振动峰),1725(酯基、酮、氨基甲酸酯的羰基C=O的伸缩振动峰),1538(氨基甲酸酯的酰胺N-H的变形振动峰和C-N伸缩振动峰的耦合)。
NMR表征结构为: 1H NMR(DMSO),δ:7.72(d,4H),7.43(d,4H),6.76(s,2H),4.01~4.11(m,24H),3.76(m,4H),3.14(m,4H),2.90(m,8H),2.65(m,8H),2.48(m,12H),1.21(m,24H)。确认制得的夺氢型光引发剂为目标产物结构。
实施例2
本实施例提供了夺氢型光引发剂及其制备方法,夺氢型光引发剂具有如下结构:
Figure PCTCN2022087184-appb-000061
其合成路线如下:
Figure PCTCN2022087184-appb-000062
夺氢型光引发剂的制备方法包括:
(1)氨基甲酸酯合成:溶剂乙酸乙酯用4A分子筛预先干燥除水;反应用玻璃器皿用鼓风烘箱干燥。称取222.3g(1.0mol)异氟尔酮二异氰酸酯(IPDI)、2g二月桂酸二正丁基锡(DBTDL)加入到3L装配有机械搅拌且遮光的夹套玻璃反应釜中,室温搅拌,得到混合物。将198g(1mol)4-羟基二苯甲酮(4-HBP)加入到1L乙酸乙酯中溶解,置于1.5L恒压滴液漏斗中,逐滴加入到上述混合物中,2.5h滴完。滴完后继续反应至红外监测NCO峰面积(2268cm -1)不再变化为止;再在滴液漏斗中加入116.2(1mol)丙烯酸羟乙酯(HEA),室温下滴至反应液中,2.5h滴完,然后逐步升温至50℃,继续反应至红外监测NCO峰面积(2268cm -1)减小至消失为止,加入0.3g对甲氧基苯酚阻聚剂,搅拌均匀。
(2)Michael加成1:将215.38g(1mol)双六亚甲基三胺加入1L四口圆底烧瓶中,烧瓶装配有机械搅拌桨、温度计、恒压滴液漏斗、连接有N 2气路管、鼓泡器,将344.36g(2mol)马来酸二乙酯加入恒压滴液漏斗中,体系中通入N 2 10min,置换体系中空气;在25℃搅拌条件下在烧瓶中缓慢滴入马来酸二乙酯,1h匀速滴完,控制反应温度为30℃,然后升温至60℃反应3h,通过硫醇-碘滴定方法测得反应体系中不饱和值为0.33mg马来酸/g树脂,表明马来酸酯反应转化率99.9%,停止反应,得到聚天门冬氨酸酯多胺。
(3)Michael加成2:在1L恒压滴液漏斗中加入步骤(2)中得到的聚天门冬氨酸酯多胺,缓慢滴加至步骤(1)的反应液中,2h滴完,滴加时反应体系温度控制在30℃以内,滴加完成后,保温25℃反应5h,通过红外监测反应液,直至丙烯酸酯C=C双键特征峰(1637cm -1)反应至消失为止,停止搅拌,旋蒸脱除反应溶剂乙酸乙酯,得到夺氢型光引发剂。
制得的夺氢型光引发剂的结构表征数据:
红外光谱(KBr压片),ν(cm -1):3319(仲胺N-H的伸缩振动峰),2980、2920、2850(甲基、亚甲基、次甲基的伸缩振动峰),1725(酯基、酮、氨基甲酸酯的羰基C=O的伸缩振动峰),1538(氨基甲酸酯的酰胺N-H的变形振动峰和C-N伸缩振动峰的耦合)。
NMR表征结构为: 1H NMR(DMSO),δ:7.81(d,2H),7.72(d,2H),7.61(m,1H),7.51(m,2H),7.43(m,2H),4.31(m,4H),4.01~4.11(m,10H),3.76(m,2H),3.54(m,1H),2.90~3.01(m,10H),2.5(m,6H),1.67(m,4H),1.29~1.39(m,16H),1.07(m,14H),0.94(s,3H),0.87(s,6H)。确认制得的夺氢型光引发剂为目标产物结构。
实施例3
本实施例提供了夺氢型光引发剂及其制备方法,夺氢型光引发剂具有如下结构:
Figure PCTCN2022087184-appb-000063
其合成路线如下:
Figure PCTCN2022087184-appb-000064
夺氢型光引发剂的制备方法包括:
(1)氨基甲酸酯合成:溶剂乙酸乙酯用4A分子筛预先干燥除水;反应用玻璃器皿用鼓风烘箱干燥。称取142g(1.0mol)异氰酸酯丙烯酸乙酯(AOI)、2g二月桂酸二正丁基锡(DBTDL)加入到3L装配有机械搅拌且遮光的夹套玻璃反应釜中,室温搅拌,得到混合物。将198.3g(1mol)4-羟基二苯甲酮(4-HBP)加入到1L乙酸乙酯中溶解,置于1.5L恒压滴液漏斗中,逐滴加入到上述混合物中,2.5h滴完。滴完后继续反应至红外监测NCO峰面积(2268cm -1)减小至消失为止,加入0.3g对甲氧基苯酚阻聚剂,搅拌均匀。
(2)Michael加成1:将131.2g(1mol)二丙烯三胺加入1L四口圆底烧瓶中,烧瓶装配有机械搅拌桨、温度计、恒压滴液漏斗、连接有N 2气路管、鼓泡器,将456.6g(2mol)马来酸二丁酯加入恒压滴液漏斗中,体系中通入N 2 10min,置换体系中空气;在25℃搅拌条件下在烧瓶中缓慢滴入马来酸二丁酯,1h匀速滴完,控制反应温度为30℃,然后升温至60℃反应24h,通过硫醇-碘滴定方法测得反应体系中不饱和值为0.33mg马来酸/g树脂,表明马来酸酯反应转化率99.9%,停止反应,得到聚天门冬氨酸酯多胺。
(3)Michael加成2:在1L恒压滴液漏斗中加入步骤(2)得到的聚天门冬氨酸酯多胺,缓慢滴加至步骤(1)得到的反应液中,2h滴完,滴加时反应体系温度控制在30℃以内,滴加完成后,保温25℃反应5h,通过红外监测反应液,直至丙烯酸酯C=C双键特征峰(1637cm -1)反应至消失为止,停止搅拌,旋蒸脱除反应溶剂乙酸乙酯,得到夺氢型光引发剂。
制得的夺氢型光引发剂的结构表征数据:
红外光谱(KBr压片),ν(cm -1):3319(仲胺N-H伸缩振动峰),2980、2920、2850(甲基、亚甲基、次甲基的伸缩振动峰),1725(酯基、酮、氨基甲酸酯的羰基C=O的伸缩振动峰),1538(氨基甲酸酯的酰胺N-H的变形振动峰和C-N伸缩振动峰的耦合)。
NMR表征结构为: 1H NMR(DMSO),δ:7.81(d,2H),7.72(d,2H),7.61(m,1H),7.51(m,2H),7.43(m,2H),4.06~4.13(m,12H),3.15(m,2H),2.9(d,4H),2.75(m,2H),2.68(m,2H),2.54(m,4H),2.35(m,2H),1.54(m,8H),1.40(m,8H),1.11(d,6H),0.90(m,12H)。确认制得的夺氢型光引发剂为目标产物结构。
实施例4
本实施例提供了OCA组合物及其制备,其中,各组OCA组合物的配方体系见表1:
表1 不同OCA组合物的配方体系
Figure PCTCN2022087184-appb-000065
其中,EHA为2-乙基己基丙烯酸酯(长兴化学工业);HEA为2-羟乙基丙烯酸酯(长兴化学工业);THFA为丙烯酸四氢呋喃酯(长兴化学工业);ACMO为丙烯酰吗啉(日本科巨希);甲乙酮肟封闭IPDI(万华化学)。光引发剂为实施例1~实施例3制备得到的夺氢型光引发剂,1#(1-1#、2-1#、3-1#)、2#(1-2#、2-2#、3-2#)、3#(1-3#、2-3#、3-3#)分别对应实施例1~实施例3的光引发剂。
OCA组合物的制备包括:
(1)在反应器中充分混合上述配方体系Step1中的所有组分和0.02%质量百分数(此处的0.02%是指:Step1和Step2中所有组分的用量和的0.02%)的光引发剂(Irgacure 651)。用N 2置换其中的溶解氧后,使用低压汞灯辐照(辐照剂量约为70~100mJ/cm 2)若干分钟(3~6min),从而制备25℃下具有2000~5000cp黏度的粘性液体。
(2)将Step2中的组分以及0.1%质量百分数(此处的0.1%是指:Step1和Step2中所有组分的用量和的0.1%)的光引发剂Irgacure 651加入到反应器中,充分混合均匀,从而制备得到OCA组合物。
(3)将步骤(2)得到的组合物涂布到轻、重两层对苯二甲酸乙二醇(PET)离型膜之间,形成175μm厚度的OCA涂层膜。用低压UV汞灯以1000mJ/cm 2的剂量辐照,从而制备OCA胶膜。
比较例1
比较例1提供了光引发剂及其制备方法,光引发剂具有如下结构:
Figure PCTCN2022087184-appb-000066
其合成路线如下:
Figure PCTCN2022087184-appb-000067
光引发剂的制备方法包括:
将484.6g(2mol)4-(2-羟基乙氧基)二苯甲酮、222.6g(2.2mol)三乙胺和1kg二氯甲烷加入3L夹套玻璃反应釜中,夹套釜装配有机械搅拌桨、温度计、恒压滴液漏斗、连接有N 2气路管、鼓泡器,降温至0℃,将199.2g(2.2mol)丙烯酰氯加入恒压滴液漏斗中,体系中通入N 2 20min,置换体系中空气;在0~5℃搅拌条件下向玻璃反应釜中缓慢滴入丙烯酰氯,2h匀速滴完,然后自然升温至10℃反应过夜,过滤除去三乙胺盐酸盐,并用NaHCO 3饱和溶液萃取,旋蒸除去溶剂,用正己烷/二氯甲烷混合溶剂重结晶,得到白色颗粒状晶体,即得光引发剂。
制得的光引发剂的结构的表征数据:
红外光谱(KBr压片),ν(cm -1):1725(酯基羰基C=O的伸缩振动峰),1650(酮羰基C=O的伸缩振动峰),808(碳碳双键=C-H的弯曲振动峰)。
NMR表征结构为: 1H NMR(DMSO),δ:7.84(d,2H),7.77(d,2H),7.59(t,1H),7.49(t,2H),7.00(d,2H),6.48(d,1H),6.19(dd,1H),5.89(d,1H),4.57(m,2H),4.32(m,2H)。确认制得的光引发剂为目标产物结构。
比较例2
比较例2提供了光引发剂及其制备方法,光引发剂具有如下结构:
Figure PCTCN2022087184-appb-000068
其合成路线如下:
Figure PCTCN2022087184-appb-000069
光引发剂的制备方法包括:
将比较例1得到的光引发剂4296.5g(1mol)和500g乙醇加入2L夹套玻璃反应釜中,夹套釜装配有机械搅拌桨、温度计、恒压滴液漏斗、鼓泡器,降温至0℃,将105.2(1mol)二乙醇胺加入恒压滴液漏斗中,在0~5℃搅拌条件下向玻璃反应釜中缓慢滴入二乙醇胺,2h匀速滴完,然后保持0℃反应过夜,旋蒸除去溶剂,用乙酸乙酯溶剂重结晶,得到浅黄色固体,即为单组分光引发剂。
制得的光引发剂的结构表征数据:
红外光谱(KBr压片),ν(cm -1):3449(羟基O-H伸缩振动峰),1725(酯基羰基C=O的伸缩振动峰),1650(酮羰基C=O的伸缩振动峰),1351(叔胺C-N的伸缩振动峰)。
NMR表征结构为: 1H NMR(DMSO),δ:7.81(d,2H),7.73(d,2H),7.60(t,1H),7.50(t,2H),7.01(d,2H),4.43(m,4H),3.76(m,2H),3.42(m,4H),2.57(m,4H),2.49(m,2H)。确认制得的光引发剂为目标产物结构。
比较例3
比较例3参考实施例4,提供了OCA组合物,各组OCA组合物的配方体系见表2,制备方法同实施例4。
表2 不同OCA组合物的配方体系
Figure PCTCN2022087184-appb-000070
其中,4#(1-4#、2-4#、3-4#)、5#(1-5#、2-5#、3-5#)分别对应比较例1和比较例2的光引发剂。
实验例1
性能表征用试样的制备:
未固化试样:通过实施例4和比较例3的方法制备的OCA胶膜,将其裁切成尺寸为100mm×25mm×175μm(长×宽×厚)的胶膜,剥离除去轻型PET离型膜,贴合在玻璃薄片上,然后60℃/0.5MPa高温高压条件下进行脱泡30min,自然冷却至室温。
热固化后试样:将上述未固化试样,遮光条件下进一步在85℃热固化10min,自然冷却至室温。
光-热双重固化后试样:将上述未固化试样,进一步在85℃,高压汞灯下光-热固化10min,高压UV汞灯辐照能量为2000mJ/cm 2,自然冷却至室温。
对制备得到的OCA胶膜进行性能评价,制样和表征方法如下:
1、油墨润湿性能:
将未固化的OCA胶膜进行此测试,评估贴合时OCA胶膜对油墨梯级的填充和润湿能力,在较大油墨梯级处变形后防止新的气泡形成的能力。使用真空层合机(13N/cm 2压力下层合15s,30Pa真空),在普通矩形(19cm×12cm)玻璃面板和沿四个边缘具有黑色油墨(50μm高×0.6cm宽)的矩形(19cm×12cm)玻璃面板之间层合OCA样品。然后,将层合制品高压脱泡(60℃和0.5MPa压力下进行30min),随后检查形成在靠近油墨边缘的OCA胶层中的气 泡,这些气泡将妨碍显示器的可视区。通过以下符号表示润湿效果:0意指油墨周围有最少的气泡(<5),△意指油墨周围有一些气泡(>5但<10),以及X意指油墨周围有大量的气泡(>10)。
2、粘接可靠性检验:
为了对比说明本公开不同实施例和比较例的光引发剂制得的OCA胶膜的粘接可靠性,采用实施例4和比较例3制得的OCA胶膜进行贴合后固化后,对耐高温高湿老化性能进行测试。
测试标准:GBT2423.3-2006《电工电子产品环境试验》。
将样品置于温度为85℃、相对湿度为85%的恒温湿热箱中,1000h后进行外观观察、透光率和雾度测试和180°剥离力测试。
外观检验:
检验方法:将经过可靠性实验后的样条进行外观检验,检验人员在普通光源(背景为黑色)下与成品成0~90°角目测。
判断标准:有无气泡;边缘有无发白。
透光率和雾度测试:
测试标准:GB/T 2410-2008《透明塑料透光率和雾度的测定》,测试光波长范围380~780nm。
180℃剥离强度(单位N/25mm):
测试标准:GB/T2792-1998《压敏胶粘带180°剥离强度试验方法》。
引发剂迁移率表征结果如下表3所示:
表3 OCA固化胶膜的引发剂相对迁移率
Figure PCTCN2022087184-appb-000071
相对迁移率是指在一定条件下,在相同时间内,某一组分在固定相中移动的距离与某一标准物质在固定相中移动的距离之比值。相对迁移率可以表征引发剂在使用过程/环境中从本体材料中的渗出量的高低,相对迁移率低的光引发剂在使用过程/环境中表现出更低的从本体材料中的渗出量,因而相对更加安全环保,特别是在可接触食品和人体等可能影响使用者健康方面的材料应用领域中,该项指标至关重要,需严格控制在较低的数值水平以内。通过以上各个实施例和比较例的引发剂迁移率对比结果表明,本公开制备的光-热双重固化引发剂相比于比较例1的可聚合光引发剂或比较例2的单组分光引发剂,具备低得多的溶剂萃取率,即显著低的引发剂迁移率。这主要是因为本公开的双重固化引发剂不但分子量相对更大,在体系中的相容性和分散更好,并且双重固化效果更赋予引发剂更充足的整合进高分子链中的途径,因而导致游离的引发剂比例大幅降低。即使是在单纯热固化后,也具备相对更低的迁移率。
为了对比不同引发剂对OCA胶膜性能的影响,对按照表1和表2配方所得到的OCA胶膜性能进行评估,结果见表4。
表4 光-热双重后固化前后OCA胶膜的性能测试结果
Figure PCTCN2022087184-appb-000072
Figure PCTCN2022087184-appb-000073
通过以上各个实施例和比较例的引发剂得到的OCA胶膜的性能测试结果表明,本公开制备的光-热双重固化引发剂相比于比较例1的可聚合光引发剂或比较例2的单组分光引发剂,由于良好的增塑效果,贴合时对油墨段差的润湿性以及粘接后的剥离力明显优于相同配方体系下的比较例1中的可聚合光引发剂或比较例2中的单组分光引发剂。光-热双重固化后,由于交联的产生,会导致胶膜收缩产生应力,剥离力略有降低。但交联的产生同时赋予了在贴合胶膜在双85实验(85℃/85%RH湿度)条件下更优异的粘接可靠性。本公开中实施例中的光-热双重固化剂,在可靠试验后,在外观、透光率、雾度以及剥离力方面均优于比较例。
为了考察在遮光条件下,单纯热固化对于OCA胶膜性能的影响,通过表征得到如表5所示的性能数据。
表5 热固化前后OCA胶膜的性能测试结果
Figure PCTCN2022087184-appb-000074
通过上述对比结果表明,相同配方体系下,本公开引发剂使胶膜热固化后形成丙烯酸酯聚合物和聚氨酯互穿网络结构,从而赋予遮光区域胶膜具备了更优的贴合粘接剥离强度,可以更好地阻挡水汽的渗透,在双85试验后更好地粘接可靠性,表现在外观无可见劣化,并且保持了令人满意的粘接强度。而比较例1和比较例2的引发剂由于并不具备热固化效果,容易在高温高湿下造成脱层,出现气泡,粘接力大幅下滑,这就有可能造成显示器边框处出现溢胶和粘接缺陷。
综上所述,相比于现有的光引发剂,本公开的光-热双重固化引发剂,可以解决不透明区域更好的固化效果,赋予OCA胶膜组合物更加优异的油墨段差填充性能、粘接力以及粘接可靠性。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。
工业实用性
本公开提供的的夺氢型光引发剂,作为可双重固化的单组分引发剂,无需添加叔胺类助引发剂,具有极低的小分子迁移渗出率<0.01%(即使是在遮光区域),极低的气味,同时具有良好的光引发活性和溶解性能;同时本公开的夺氢型光引发剂复配得到的OCA胶膜体系在存储期达到3个月以上,可以很好的实现挡光部分的侧固化,避免贴合后的边缘溢胶以及黏附力不足的问题;同时由本公开提供的OCA组合物制备的OCA胶膜不仅具有内聚力,而且具有高持粘力和粘接可靠性,并且在保持良好弹性的基础上极大改善抗蠕变性能。综上所述,本公开提供的夺氢型光引发剂和OCA胶膜体系具有优良的应用性能和广阔的市场前景。

Claims (13)

  1. 夺氢型光引发剂,其特征在于,结构式如下:
    Figure PCTCN2022087184-appb-100001
    其中,X 1和X 2中至少一个选自
    Figure PCTCN2022087184-appb-100002
    R 1为含有
    Figure PCTCN2022087184-appb-100003
    结构单元的有机基团,R 2选自亚烷基和亚烷氧基基团中的任一种,R 3选自烷基和烷氧基基团中的任一种;R 4选自H和甲基中的任一种;
    Y 1、Y 2、Y 3、Y 4、Y 5、Y 6、Y 7和Y 8各自独立的选自H、烷基、烷氧基和芳香基团中的任一种。
  2. 根据权利要求1所述的夺氢型光引发剂,其特征在于,X 1和X 2均为
    Figure PCTCN2022087184-appb-100004
    或者,X 1和X 2中一个为
    Figure PCTCN2022087184-appb-100005
    另一个为H;
    优选的,R 2选自碳数为2~12的支链亚烷基、直链亚烷基、支链亚烷氧基和直链亚烷氧基中的任一种;
    R 3选自碳数为2~12的支链烷基、直链烷基、支链烷氧基和直链烷氧基中的任一种。
  3. 根据权利要求1或2所述的夺氢型光引发剂,其特征在于,
    X 1和X 2中一个为
    Figure PCTCN2022087184-appb-100006
    另一个选自H、烷基、烷氧基和芳香基团中的任一种。
  4. 根据权利要求1所述的夺氢型光引发剂,其特征在于,R 1
    Figure PCTCN2022087184-appb-100007
    Figure PCTCN2022087184-appb-100008
    R 5选自碳数为1~5的亚烷基基团,R 6选自非对称的环烷基基团;
    优选的,R 6
    Figure PCTCN2022087184-appb-100009
    优选的,R 1
    Figure PCTCN2022087184-appb-100010
    中的任一种。
  5. 根据权利要求1所述的夺氢型光引发剂,其特征在于,所述夺氢型光引发剂具有如下结构式中的任一种:
    Figure PCTCN2022087184-appb-100011
    Figure PCTCN2022087184-appb-100012
  6. 根据权利要求5所述的夺氢型光引发剂,其特征在于,所述夺氢型光引发剂具有如下结构式中的任一种:
    Figure PCTCN2022087184-appb-100013
    Figure PCTCN2022087184-appb-100014
  7. 权利要求1-6任一项所述的夺氢型光引发剂的制备方法,其特征在于,包括如下步骤:
    (a)化合物A 1或化合物A 2与二异氰酸酯和含羟基(甲基)丙烯酸酯反应,得到含有
    Figure PCTCN2022087184-appb-100015
    结构单元的二苯甲酮衍生物;
    (b)聚天门冬氨酸酯多胺与所述二苯甲酮衍生物进行Michael加成反应得到所述光引发剂;
    其中,化合物A 1和化合物A 2的结构式分别为
    Figure PCTCN2022087184-appb-100016
    聚天门冬氨酸酯多胺的结构式为
    Figure PCTCN2022087184-appb-100017
    R 2选自亚烷基和亚烷氧基基团中的任一种,R 3选自烷基和烷氧基基团中的任一种;R 4选自H和甲基中的任一种;
    Y 1、Y 2、Y 3、Y 4、Y 5、Y 6、Y 7和Y 8各自独立的选自H、烷基、烷氧基和芳香基团中的任一种。
  8. 根据权利要求7所述的夺氢型光引发剂的制备方法,其特征在于,所述聚天门冬氨酸酯多胺主要由双烷基三 胺和丁烯二酸二酯反应得到;所述双烷基三胺和丁烯二酸二酯的结构式分别为
    Figure PCTCN2022087184-appb-100018
    优选的,所述双烷基三胺包括二乙烯三胺、二丙烯三胺、二亚丙基三胺和双六亚甲基三胺中的任一种或多种;
    优选的,所述丁烯二酸二酯包括马来酸二酯和/或富马酸二酯,所述马来酸二酯选自马来酸二乙酯、马来酸二丙酯、马来酸二丁酯和马来酸甲基丙基酯中的任一种或多种,所述富马酸二酯选自富马酸二乙酯、富马酸二丙酯、富马酸二丁酯和富马酸甲基丙基酯中的任一种或多种;
    优选的,所述双烷基三胺和丁烯二酸二酯的摩尔比为1﹕(1.8~2.2);
    优选的,步骤(b)中,所述聚天门冬氨酸酯多胺与所述二苯甲酮衍生物的反应摩尔比为1﹕(0.9~1.1)。
  9. 根据权利要求7或8所述的夺氢型光引发剂的制备方法,其特征在于,所述二异氰酸酯包括甲苯二异氰酸酯和/或异佛尔酮二异氰酸酯;
    优选的,所述含羟基(甲基)丙烯酸酯包括丙烯酸羟乙酯、丙烯酸羟丙酯、丙烯酸羟丁酯、甲基丙烯酸羟乙酯、甲基丙烯酸羟丙酯和甲基丙烯酸羟丁酯中的至少一种。
  10. 权利要求1-6任一项所述的夺氢型光引发剂的制备方法,其特征在于,包括如下步骤:
    (a1)化合物A 1或化合物A 2与含异氰酸酯及(甲基)丙烯酸酯的单体反应,得到含有
    Figure PCTCN2022087184-appb-100019
    Figure PCTCN2022087184-appb-100020
    结构单元的二苯甲酮衍生物;
    (b1)聚天门冬氨酸酯多胺与所述二苯甲酮衍生物进行Michael加成反应得到所述光引发剂;
    其中,化合物A 1和化合物A 2的结构式分别为
    Figure PCTCN2022087184-appb-100021
    聚天门冬氨酸酯多胺的结构式为
    Figure PCTCN2022087184-appb-100022
    R 2选自亚烷基和亚烷氧基基团中的任一种,R 3选自烷基和烷氧基基团中的任一种;R 4选自H和甲基中的任一种;
    Y 1、Y 2、Y 3、Y 4、Y 5、Y 6、Y 7和Y 8各自独立的选自H、烷基、烷氧基和芳香基团中的任一种;
    优选的,所述含异氰酸酯及(甲基)丙烯酸酯的单体包括异氰酸酯丙烯酸乙酯和/或异氰酸酯甲基丙烯酸乙酯。
  11. 权利要求1-6任一项所述的夺氢型光引发剂在制备OCA胶膜中的应用。
  12. OCA组合物,其特征在于,包括权利要求1-6任一项所述的夺氢型光引发剂1wt%~10wt%;
    优选的,所述OCA组合物包括按质量百分数计的如下组分:丙烯酸酯类单体和预聚物70%~97%、所述夺氢型光引发剂1%~10%、以及封闭型异氰酸酯2%~20%;
    优选的,所述封闭型异氰酸酯包括丙酮肟、环己酮肟、乙酰酮肟、甲乙酮肟、丙二酸二乙酯封闭六亚甲基二异氰酸酯、八亚甲基二异氰酸酯、十亚甲基二异氰酸酯、十二亚甲基二异氰酸酯、十四亚甲基二异氰酸酯、1,4-环己基二异氰酸酯、4,4’-二环己基甲烷二异氰酸酯和异氟尔酮二异氰酸酯中的任一种或多种。
  13. 根据权利要求12所述的OCA组合物,其特征在于,所述OCA组合物的光固化条件包括:UV固化能量为1000~2500mJ/cm 2;所述OCA组合物的热固化条件包括:固化温度为70~90℃,固化时间为10~20min。
PCT/CN2022/087184 2021-12-29 2022-04-15 夺氢型光引发剂及其制备方法和应用 WO2023123747A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111636130.0 2021-12-29
CN202111636130.0A CN114276279B (zh) 2021-12-29 2021-12-29 夺氢型光引发剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023123747A1 true WO2023123747A1 (zh) 2023-07-06

Family

ID=80877933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087184 WO2023123747A1 (zh) 2021-12-29 2022-04-15 夺氢型光引发剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114276279B (zh)
WO (1) WO2023123747A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114276279B (zh) * 2021-12-29 2022-12-30 广州鹿山先进材料有限公司 夺氢型光引发剂及其制备方法和应用
CN115286738B (zh) * 2022-09-15 2023-09-26 佛山市万化科技有限公司 一种聚丙烯酸天门冬氨酸酯树脂及其制备方法
CN115745844B (zh) * 2022-11-30 2024-04-16 厦门琪星新材料有限公司 一种光引发剂、应用其的粘合剂及二者的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101012180A (zh) * 2007-02-05 2007-08-08 武汉大学 单组分夺氢型光引发剂及其制备方法和用途
WO2011012560A1 (en) * 2009-07-30 2011-02-03 Basf Se Macrophotoinitiators
CN103755842A (zh) * 2014-01-17 2014-04-30 常州大学 一种侧链含二苯甲酮的夺氢型大分子复合型光引发剂及其制备方法
CN106279470A (zh) * 2016-08-08 2017-01-04 上海交通大学 基于超支化聚醚胺的两亲性高分子夺氢型光引发剂及其制备方法
CN109761856A (zh) * 2018-12-28 2019-05-17 天津久日新材料股份有限公司 一种自供氢型大分子二苯甲酮的制备及应用
CN110407719A (zh) * 2018-04-27 2019-11-05 北京化工大学常州先进材料研究院 一种可聚合单组分夺氢型光引发剂及其制备方法
CN114276279A (zh) * 2021-12-29 2022-04-05 广州鹿山光电材料有限公司 夺氢型光引发剂及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100551935C (zh) * 2007-02-13 2009-10-21 武汉大学 一种单组分夺氢型光引发剂及其制备方法和用途

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101012180A (zh) * 2007-02-05 2007-08-08 武汉大学 单组分夺氢型光引发剂及其制备方法和用途
WO2011012560A1 (en) * 2009-07-30 2011-02-03 Basf Se Macrophotoinitiators
CN103755842A (zh) * 2014-01-17 2014-04-30 常州大学 一种侧链含二苯甲酮的夺氢型大分子复合型光引发剂及其制备方法
CN106279470A (zh) * 2016-08-08 2017-01-04 上海交通大学 基于超支化聚醚胺的两亲性高分子夺氢型光引发剂及其制备方法
CN110407719A (zh) * 2018-04-27 2019-11-05 北京化工大学常州先进材料研究院 一种可聚合单组分夺氢型光引发剂及其制备方法
CN109761856A (zh) * 2018-12-28 2019-05-17 天津久日新材料股份有限公司 一种自供氢型大分子二苯甲酮的制备及应用
CN114276279A (zh) * 2021-12-29 2022-04-05 广州鹿山光电材料有限公司 夺氢型光引发剂及其制备方法和应用

Also Published As

Publication number Publication date
CN114276279B (zh) 2022-12-30
CN114276279A (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2023123747A1 (zh) 夺氢型光引发剂及其制备方法和应用
CN102099432B (zh) 压敏粘合剂组合物、偏振片和液晶显示器
TWI404783B (zh) 壓感性黏合組成物以及含彼之偏光板與液晶顯示器
KR101380850B1 (ko) 보호 점착 필름, 스크린 패널 및 휴대 전자단말
TWI448468B (zh) An organic silicon compound, a method for producing the same, an adhesive composition containing the organic silicon compound, an adhesive polarizing plate, and a liquid crystal display device
CN114806418B (zh) 一种用于触摸屏的oca光学胶的制备及其应用
TW201107416A (en) Photocurable resin composition and cured product of same
KR20170074198A (ko) 액상의 광학 투명 접착제 (loca)를 위한 반응성 올레핀계 화합물 및 디이소시아네이트로부터의 저 단량체 1:1 1부가물 및 히드록시-종결된 폴리부타디엔으로부터의 아크릴레이트-종결된 우레탄 폴리부타디엔
TW201219481A (en) Optical resin composition, optical resin material using the same, optical filter for image display device, and image display device
KR101611934B1 (ko) 방사선 경화형 수지 조성물
CN106753184B (zh) 一种紫外线固化型透明粘合剂组合物
CN102102007B (zh) 一种用于ito电路及模组保护的辐射固化胶粘剂
CN110591633A (zh) 一种聚氨酯改性丙烯酸酯uv固化压敏胶
CN109575871A (zh) 一种紫外辐射和湿气双重固化的粘合剂组合物及其用途
CN105400251A (zh) 硬涂层组合物及应用其的偏光膜和显示器
CN105378020A (zh) 紫外线固化型粘合剂组合物、粘合剂及粘合膜
CN112760044B (zh) 一种高介电光学胶
CN115873511B (zh) 无溶剂型uv减粘组合物及其制备方法和应用
CN113861854B (zh) 一种图像显示装置用粘着胶膜及图像显示装置
WO2019193966A1 (ja) 硬化性組成物、液晶用シール剤、液晶パネル、及び液晶パネルの製造方法
CN114539196A (zh) 可逆光交联的单组分夺氢型光引发剂及其制备方法和应用
KR101550756B1 (ko) 터치스크린 패널용 점착 수지 조성물 및 이를 이용한 점착 필름
JP2008195754A (ja) 活性エネルギー線硬化型樹脂組成物及び賦型物
KR101842249B1 (ko) 점착제 조성물, 이를 이용한 점착제층 및 편광판
KR102018061B1 (ko) 경화수축율이 작은 자외선 경화형 점착 조성물 및 이를 포함하는 점착 테이프

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913049

Country of ref document: EP

Kind code of ref document: A1