WO2023122946A1 - 正极材料及其制备方法、具备其的二次电池 - Google Patents

正极材料及其制备方法、具备其的二次电池 Download PDF

Info

Publication number
WO2023122946A1
WO2023122946A1 PCT/CN2021/142035 CN2021142035W WO2023122946A1 WO 2023122946 A1 WO2023122946 A1 WO 2023122946A1 CN 2021142035 W CN2021142035 W CN 2021142035W WO 2023122946 A1 WO2023122946 A1 WO 2023122946A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode material
salt
solution
cobalt
Prior art date
Application number
PCT/CN2021/142035
Other languages
English (en)
French (fr)
Inventor
陈强
吴奇
范敬鹏
黄涛
柳娜
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202180095471.3A priority Critical patent/CN116982172A/zh
Priority to EP21962752.8A priority patent/EP4228029A4/en
Priority to PCT/CN2021/142035 priority patent/WO2023122946A1/zh
Priority to US18/326,025 priority patent/US20230322579A1/en
Publication of WO2023122946A1 publication Critical patent/WO2023122946A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of electrochemistry, and in particular to a positive electrode material and a preparation method thereof, a secondary battery equipped with the same, a battery module, a battery pack and an electrical device.
  • lithium-ion batteries have been widely used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, as well as power tools, electric bicycles, electric motorcycles, electric vehicles, Military equipment, aerospace and other fields. Due to the great development of lithium-ion batteries, higher requirements have been put forward for their energy density, cycle performance and safety performance. In addition, due to the increasingly limited selection of positive electrode active materials, high-nickel positive electrode active materials are considered to be the best choice to meet the requirements of high energy density.
  • the present application is made in view of the above-mentioned problems, and its purpose is to provide a positive electrode material and a preparation method thereof, a secondary battery equipped with the same, a battery module, a battery pack, and an electric device, and the positive electrode material maintains a high specific capacity. At the same time, the cycle performance, rate performance and safety performance of the secondary battery can be improved.
  • the first aspect of the present application is to provide a positive electrode material, which includes: an inner core; and a shell layer, the molecular formula of the inner core is Li 1+a Ni x Co y Mn 1-xy M1 z O 2 , Wherein: 0.8 ⁇ x ⁇ 1.0, 0 ⁇ y ⁇ 0.2, 0 ⁇ a ⁇ 0.1, 0 ⁇ z ⁇ 0.1, M1 is selected from at least one of Al, Ta, B; the molecular formula of the shell is Li 1+ b Co m Al n Nb 1-mn M2 c O 2 , where: 0.85 ⁇ m ⁇ 1.0, 0 ⁇ n ⁇ 0.15, 0 ⁇ b ⁇ 0.1, 0.001 ⁇ 1-mn ⁇ 0.02, 0 ⁇ c ⁇ 0.05, M2 selection At least one of W, Mo, Ti, Zr, Y, Yb.
  • the positive electrode material includes the core and the shell layer, and the Nb content of the shell layer is within the above range, the cycle performance, rate performance and safety performance of the secondary battery can be improved while maintaining the high specific capacity of the positive electrode material.
  • the average aspect ratio of the primary particles of the cathode material is 2-11, optionally 5-8.
  • the average aspect ratio of the primary particles can be controlled within the above range, thereby improving the structural stability of the primary particles and improving the long-term performance of the positive electrode material.
  • the inner core has an average diameter of 2 ⁇ m to 10 ⁇ m
  • the shell has an average thickness of 0.5 ⁇ m to 3 ⁇ m.
  • the positive electrode material has a volume average particle diameter Dv50 of 3 ⁇ m to 16 ⁇ m, optionally 5 ⁇ m to 11 ⁇ m.
  • Dv50 volume average particle diameter of the positive electrode material
  • the volume average particle diameter Dv50 of the positive electrode material is within the above range, primary particles with stable structure can be obtained, while maintaining high capacity, taking into account the cycle performance, rate performance and safety performance of the secondary battery.
  • the radial distance of the positive electrode material is 1.35 ⁇ (Dv90 ⁇ Dv10)/Dv50 ⁇ 1.50. If the radial distance of the positive electrode material is within the above range, it will have a wide particle size distribution, which is beneficial to increase the compaction density of the sintered positive electrode material, thereby further increasing the energy density of the secondary battery.
  • the positive electrode material has a specific surface area of 0.2m 2 /g to 1m 2 /g, optionally 0.3m 2 /g to 0.7m 2 /g.
  • the specific surface area of the positive electrode material is within the above range, the corrosion of the electrolyte can be reduced and the storage performance of the material can be optimized.
  • the tap density TD of the positive electrode material is 1.8 g/cm 3 to 2.5 g/cm 3 , optionally 1.9 g/cm 3 to 2.3 g/cm 3 .
  • the second aspect of the present application is to provide the preparation method of the positive electrode material according to the first aspect of the present application, including the following steps (1) to (4):
  • Step (1) preparing a first mixed solution comprising a soluble nickel salt, a first cobalt salt and a manganese salt, preparing a second mixed solution comprising a second cobalt salt and an aluminum salt, preparing an alkali solution, an ammonia solution and a niobium salt solution;
  • Step (2) Add pure water in the reaction kettle as the bottom liquid, add ammonia solution and alkali solution to adjust the pH value and ammonia value in the bottom liquid, stir, and maintain a stable reaction temperature, and the first mixed solution .
  • the alkali solution and the ammonia solution are added to the reaction kettle in parallel, the pH value and the ammonia value are kept constant, and an inert gas is introduced at the same time for protection, and the first precursor slurry is synthesized;
  • Step (3) adding the second mixed solution, the niobium salt solution, the alkali solution, and the ammonia solution into the reactor in parallel, keeping the pH value and ammonia value constant, and synthesizing the second precursor Body slurry;
  • Step (4) mixing and sintering the second precursor slurry and lithium salt synthesized in the step (3) according to a certain ratio to obtain a positive electrode material, the positive electrode material comprising: an inner core; and a shell layer,
  • the molecular formula of the inner core is Li 1+a Ni x Co y Mn 1-xy M1 z O 2 , wherein: 0.8 ⁇ x ⁇ 1.0, 0 ⁇ y ⁇ 0.2, 0 ⁇ a ⁇ 0.1, 0 ⁇ z ⁇ 0.1, M1 At least one selected from Al, Ta, B;
  • the molecular formula of the shell layer is Li 1+b Co m Al n Nb 1-mn M2 c O 2 , wherein: 0.85 ⁇ m ⁇ 1.0, 0 ⁇ n ⁇ 0.15, 0 ⁇ b ⁇ 0.1, 0.001 ⁇ 1-mn ⁇ 0.02, 0 ⁇ c ⁇ 0.05, M2 is at least one selected from W, Mo, Ti, Zr, Y, and Yb.
  • a high-nickel ternary material with a good core-shell structure can be obtained, and the difference of main components in the core-shell can be controlled, thereby taking into account high capacity and high safety.
  • a radially distributed shell structure can be synthesized on the inner core, which can significantly improve the high temperature after sintering. Long-term cycle performance of nickel cathode materials.
  • the soluble nickel salt includes one or more of nickel sulfate, nickel nitrate, nickel acetate, and/or, the first cobalt salt and the second cobalt
  • the salts independently include one or more of cobalt sulfate, cobalt oxalate, cobalt nitrate, and cobalt acetate
  • the manganese salt includes one or more of manganese sulfate, manganese nitrate, and manganese acetate
  • the aluminum salt includes one or more of aluminum sulfate, aluminum nitrate, aluminum chloride, aluminum acetate, aluminum sulfite
  • the niobium salt includes niobium oxalate, sodium niobate, niobium nitrate, chloride
  • the base includes one or more of alkali metal hydroxides, alkaline earth metal
  • the concentration of all metal ions in the first mixed solution is 1 mol/L to 5 mol/L, and/or, all the metal ions in the second mixed solution
  • the concentration of the alkali in the alkaline solution is 1mol/L to 5mol/L, and/or, the concentration of the alkali in the alkaline solution is 1mol/L to 10mol/L, and/or, the concentration of the ammonia in the ammonia solution is 5mol/L to 10 mol/L, and/or, the concentration of the niobium salt in the niobium salt solution is 0.5 mol/L to 2 mol/L. Therefore, under this raw material concentration, continuous feeding can ensure the stable synthesis of high-nickel ternary precursors, which can not only avoid process changes caused by system fluctuations due to excessive concentration, but also ensure the production capacity of the precursors.
  • the pH value of the reaction is 11.0 to 12.0, preferably 11.2 to 11.6, and/or the ammonia value of the reaction is 0.1mol/L to 0.6mol/L, preferably 0.2mol/L to 0.5mol/L, and/or, the reaction temperature is 50°C to 70°C, and/or the stirring rate is 200rpm to 600rpm. Therefore, when the pH value and ammonia value of the reaction are within the above ranges, it is possible to continuously and stably produce core-shell structure high-nickel ternary precursor products with an average volume distribution particle size Dv50 in a specific range (for example, 3 ⁇ m to 16 ⁇ m).
  • a high-nickel ternary precursor crystal structure with good primary grain stacking can be formed.
  • a high-nickel ternary precursor with dense particles and uniform porosity can be synthesized, while avoiding large particle breakage.
  • the molar ratio Li/Me of the lithium salt to the metal in the second precursor slurry is 0.9 to 1.1, and Me is nickel, cobalt, manganese metal
  • the sintering temperature is 700°C to 900°C
  • the sintering time is 10h to 20h
  • the sintering atmosphere is air or an oxygen-containing atmosphere.
  • the third aspect of the present application is to provide a secondary battery, which includes the positive electrode material according to the first aspect of the present application or the positive electrode material prepared according to the preparation method described in the second aspect of the present application.
  • a fourth aspect of the present application is to provide a battery module, which includes the secondary battery according to the third aspect of the present application.
  • a fifth aspect of the present application is to provide a battery pack, which includes the battery module according to the fourth aspect of the present application.
  • the sixth aspect of the present application is to provide an electric device, which includes the secondary battery according to the third aspect of the present application, the battery module according to the fourth aspect of the present application, and the secondary battery according to the fifth aspect of the present application. At least one of the battery packs mentioned above.
  • FIG. 1 is a scanning electron microscope image of a positive electrode material according to an embodiment of the present application.
  • Fig. 2 is the first charging and discharging curve of the positive electrode material shown in Fig. 1 made into a buckle charge.
  • FIG. 3 is a schematic diagram of a secondary battery according to an embodiment of the present application.
  • FIG. 4 is an exploded view of the secondary battery according to one embodiment of the present application shown in FIG. 3 .
  • FIG. 5 is a schematic diagram of a battery module according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a battery pack according to an embodiment of the present application.
  • FIG. 7 is an exploded view of the battery pack according to one embodiment of the present application shown in FIG. 6 .
  • FIG. 8 is a schematic diagram of an electrical device in which a secondary battery is used as a power source according to an embodiment of the present application.
  • a "range” disclosed herein is defined in terms of lower and upper limits, and a given range is defined by selecting a lower limit and an upper limit that define the boundaries of the particular range. Ranges defined in this manner may be inclusive or exclusive and may be combined in any combination, ie any lower limit may be combined with any upper limit to form a range. For example, if a range of 60 to 120 and 80 to 110 is listed for a particular parameter, it is understood that ranges of 60 to 110 and 80 to 120 are also contemplated. Additionally, if the minimum range values of 1 and 2 are listed, and if the maximum range values of 3, 4, and 5 are listed, the following ranges are all contemplated: 1 to 3, 1 to 4, 1 to 5, 2 to 3, 2 to 4 and 2 to 5.
  • the numerical range “a to b” represents an abbreviated representation of any combination of real numbers between a and b, where a and b are both real numbers.
  • the numerical range “0 to 5" means that all real numbers between “0 to 5" have been listed in this article, and "0 to 5" is only an abbreviated representation of the combination of these values.
  • a certain parameter is an integer ⁇ 2
  • it is equivalent to disclosing that the parameter is an integer such as 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, etc.
  • the “comprising” and “comprising” mentioned in this application mean open or closed.
  • the “comprising” and “comprising” may mean that other components not listed may be included or included, or only listed components may be included or included.
  • the term "or” is inclusive unless otherwise stated.
  • the phrase "A or B” means “A, B, or both A and B.” More specifically, the condition "A or B” is satisfied by either of the following: A is true (or exists) and B is false (or does not exist); A is false (or does not exist) and B is true (or exists) ; or both A and B are true (or exist).
  • a positive electrode material including: an inner core; and a shell layer, the molecular formula of the inner core is Li 1+a Ni x Co y Mn 1-xy M1 z O 2 , wherein: 0.8 ⁇ x ⁇ 1.0, 0 ⁇ y ⁇ 0.2, 0 ⁇ a ⁇ 0.1, 0 ⁇ z ⁇ 0.1, M1 is selected from at least one of Al, Ta, B; the molecular formula of the shell is Li 1+b Co m Al n Nb 1-mn M2 c O 2 , where: 0.85 ⁇ m ⁇ 1.0, 0 ⁇ n ⁇ 0.15, 0 ⁇ b ⁇ 0.1, 0.001 ⁇ 1-mn ⁇ 0.02, 0 ⁇ c ⁇ 0.05, M2 is selected from W, Mo , Ti, Zr, Y, Yb at least one.
  • the inventor of the present application speculates: the high-nickel ternary material of synthesizing core-shell structure, wherein core part is nickel-cobalt-manganese ternary material, and shell part is doped with Nb, can make the synthetic
  • the side reaction between the surface layer of the high-nickel cathode material and the electrolyte is reduced, and the long-term storage performance is improved.
  • the uniform doping of Nb elements in the shell layer increases the average aspect ratio of the primary particles of the positive electrode material, which is conducive to enhancing the structural stability of the primary particles and improving the long-term performance (cycle performance and long-term storage) of the high-nickel positive electrode material after sintering. performance) is improved.
  • FIG. 1 is a scanning electron microscope image of the positive electrode material obtained in Example 1 of the present application.
  • Fig. 2 is the first charge and discharge curve of a button battery made of the cathode material shown in Fig. 1 .
  • the primary particles have an appropriate aspect ratio and a stable structure, thereby improving the long-term performance of the positive electrode material.
  • the positive electrode material of the present application has good initial charge and discharge efficiency.
  • the average aspect ratio of the primary particles of the positive electrode material is 2-11, optionally 5-8.
  • the average aspect ratio of the primary particles can be controlled within the above range, thereby improving the structural stability of the primary particles and improving the long-term performance of the positive electrode material.
  • the inner core has an average diameter of 2 ⁇ m to 10 ⁇ m
  • the shell has an average thickness of 0.5 ⁇ m to 3 ⁇ m.
  • the positive electrode material has a volume average particle diameter Dv50 of 3 ⁇ m to 16 ⁇ m, optionally 5 ⁇ m to 11 ⁇ m.
  • Dv50 volume average particle diameter of the positive electrode material
  • the volume average particle diameter of the positive electrode material is within the above range, primary particles with a stable structure can be obtained, while maintaining a high capacity, taking into account the cycle performance, rate performance and safety performance of the secondary battery.
  • the radial distance of the positive electrode material is 1.35 ⁇ (Dv90 ⁇ Dv10)/Dv50 ⁇ 1.50. If the radial distance of the positive electrode material is within the above range, it will have a very wide particle size distribution, which is beneficial to increase the compaction density of the positive electrode material after sintering, thereby further increasing the energy density of the secondary battery.
  • the positive electrode material has a specific surface area of 0.2m 2 /g to 1m 2 /g, optionally 0.3m 2 /g to 0.7m 2 /g.
  • the specific surface area of the positive electrode material is within the above range, the corrosion of the electrolyte can be reduced and the storage performance of the material can be optimized.
  • the positive electrode material has a tap density TD of 1.8 g/cm 3 to 2.5 g/cm 3 , optionally 1.9 g/cm 3 to 2.3 g/cm 3 .
  • the present application proposes a method for preparing a positive electrode material, including the following steps (1) to (4):
  • Step (1) preparing a first mixed solution comprising a soluble nickel salt, a first cobalt salt and a manganese salt, preparing a second mixed solution comprising a second cobalt salt and an aluminum salt, preparing an alkali solution, an ammonia solution and a niobium salt solution;
  • Step (2) Add pure water in the reaction kettle as the bottom liquid, add ammonia solution and alkali solution to adjust the pH value and ammonia value in the bottom liquid, stir, and maintain a stable reaction temperature, and the first mixed solution .
  • the alkali solution and the ammonia solution are added to the reaction kettle in parallel, the pH value and the ammonia value are kept constant, and an inert gas is introduced at the same time for protection, and the first precursor slurry is synthesized;
  • Step (3) adding the second mixed solution, the niobium salt solution, the alkali solution, and the ammonia solution into the reactor in parallel, keeping the pH value and ammonia value constant, and synthesizing the second precursor Body slurry;
  • Step (4) mixing and sintering the second precursor slurry synthesized in the step (3) and the lithium salt according to a certain ratio to obtain a core-shell structure positive electrode material whose shell layer is doped with Nb element.
  • a high-nickel ternary material with a good core-shell structure can be obtained, and the difference of main components in the core-shell can be controlled, thereby taking into account high capacity and high safety.
  • a radially distributed shell structure can be synthesized on the core, which can significantly improve the high temperature after sintering. Long-term cycle performance of nickel cathode materials.
  • the soluble nickel salt includes one or more of nickel sulfate, nickel nitrate, nickel acetate, and/or, the first cobalt salt and the second cobalt
  • the salts independently include one or more of cobalt sulfate, cobalt oxalate, cobalt nitrate, and cobalt acetate
  • the manganese salt includes one or more of manganese sulfate, manganese nitrate, and manganese acetate
  • the aluminum salt includes one or more of aluminum sulfate, aluminum nitrate, aluminum chloride, aluminum acetate, aluminum sulfite
  • the niobium salt includes niobium oxalate, sodium niobate, niobium nitrate, chloride
  • the base includes one or more of alkali metal hydroxides, alkaline earth metal
  • the concentration of all metal ions in the first mixed solution is 1 mol/L to 5 mol/L, and/or, all the metal ions in the second mixed solution
  • the concentration of the alkali in the alkaline solution is 1mol/L to 5mol/L, and/or, the concentration of the alkali in the alkaline solution is 1mol/L to 10mol/L, and/or, the concentration of the ammonia in the ammonia solution is 5mol/L to 10 mol/L, and/or, the concentration of the niobium salt in the niobium salt solution is 0.5 mol/L to 2 mol/L. Therefore, under this raw material concentration, continuous feeding can ensure the stable synthesis of high-nickel ternary precursors, which can not only avoid process changes caused by system fluctuations due to excessive concentration, but also ensure the production capacity of the precursors.
  • the pH value of the reaction is 11.0 to 12.0, preferably 11.2 to 11.6, and/or the ammonia value of the reaction is 0.1mol/L to 0.6mol/L, preferably 0.2mol/L to 0.5mol/L, and/or, the reaction temperature is 50°C to 70°C, and/or the stirring rate is 200rpm to 600rpm.
  • the reaction pH value and ammonia value are within the above ranges, it is possible to continuously and stably produce core-shell structure nickel-rich ternary precursor products with an average volume distribution particle size Dv50 in a specific range (for example, 3 ⁇ m to 16 ⁇ m).
  • a high-nickel ternary precursor crystal structure with good primary grain stacking can be formed.
  • a high-nickel ternary precursor with dense particles and uniform porosity can be synthesized, while avoiding large particle breakage.
  • the molar ratio Li/Me of the lithium salt to the metal in the second precursor slurry is 0.9 to 1.1, and Me is nickel, cobalt, manganese metal
  • the sintering temperature is 700°C to 900°C
  • the sintering time is 10h to 20h
  • the sintering atmosphere is air or an oxygen-containing atmosphere.
  • a secondary battery is provided.
  • a secondary battery typically includes a negative pole piece, a positive pole piece, an electrolyte, and a separator.
  • active ions are intercalated and extracted back and forth between the positive electrode and the negative electrode.
  • the electrolyte plays the role of conducting ions between the positive pole piece and the negative pole piece.
  • the separator is arranged between the positive pole piece and the negative pole piece, which mainly plays a role in preventing the short circuit of the positive and negative poles, and at the same time allows ions to pass through.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode film layer disposed on at least one surface of the positive electrode collector, and the positive electrode film layer includes the positive electrode active material according to the first aspect of the present application.
  • the positive electrode current collector has two opposing surfaces in its own thickness direction, and the positive electrode film layer is disposed on any one or both of the two opposing surfaces of the positive electrode current collector.
  • the positive electrode current collector can be a metal foil or a composite current collector.
  • aluminum foil can be used as the metal foil.
  • the composite current collector may include a polymer material base and a metal layer formed on at least one surface of the polymer material base.
  • the composite current collector can be formed by forming metal materials (aluminum, aluminum alloy, nickel, nickel alloy, titanium, titanium alloy, silver and silver alloy, etc.) on a polymer material substrate (such as polypropylene (PP), polyethylene terephthalic acid It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PET polyethylene glycol ester
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the positive electrode film layer may further optionally include a binder.
  • the binder may include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), vinylidene fluoride-tetrafluoroethylene-propylene terpolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene At least one of ethylene terpolymer, tetrafluoroethylene-hexafluoropropylene copolymer and fluorine-containing acrylate resin.
  • the positive electrode film layer may also optionally include a conductive agent.
  • the conductive agent may include at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • the positive electrode sheet can be prepared in the following manner: the above-mentioned components used to prepare the positive electrode sheet, such as positive electrode active material, conductive agent, binder and any other components, are dispersed in a solvent (such as N -methylpyrrolidone) to form a positive electrode slurry; the positive electrode slurry is coated on the positive electrode current collector, and after drying, cold pressing and other processes, the positive electrode sheet can be obtained.
  • a solvent such as N -methylpyrrolidone
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode film layer arranged on at least one surface of the negative electrode current collector, and the negative electrode film layer includes a negative electrode active material.
  • the negative electrode current collector has two opposing surfaces in its own thickness direction, and the negative electrode film layer is disposed on any one or both of the two opposing surfaces of the negative electrode current collector.
  • the negative electrode current collector can use a metal foil or a composite current collector.
  • copper foil can be used as the metal foil.
  • the composite current collector may include a base layer of polymer material and a metal layer formed on at least one surface of the base material of polymer material.
  • Composite current collectors can be formed by metal materials (copper, copper alloys, nickel, nickel alloys, titanium, titanium alloys, silver and silver alloys, etc.) on polymer material substrates (such as polypropylene (PP), polyethylene terephthalic acid It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • the negative electrode active material can be a negative electrode active material known in the art for batteries.
  • the negative electrode active material may include at least one of the following materials: artificial graphite, natural graphite, soft carbon, hard carbon, silicon-based material, tin-based material, lithium titanate, and the like.
  • the silicon-based material may be selected from at least one of elemental silicon, silicon-oxygen compounds, silicon-carbon composites, silicon-nitrogen composites, and silicon alloys.
  • the tin-based material may be selected from at least one of simple tin, tin oxide compounds and tin alloys.
  • the present application is not limited to these materials, and other conventional materials that can be used as negative electrode active materials of batteries can also be used. These negative electrode active materials may be used alone or in combination of two or more.
  • the negative electrode film layer may further optionally include a binder.
  • the binder can be selected from styrene-butadiene rubber (SBR), polyacrylic acid (PAA), sodium polyacrylate (PAAS), polyacrylamide (PAM), polyvinyl alcohol (PVA), sodium alginate (SA), poly At least one of methacrylic acid (PMAA) and carboxymethyl chitosan (CMCS).
  • the negative electrode film layer may also optionally include a conductive agent.
  • the conductive agent can be selected from at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
  • the negative electrode film layer may optionally include other additives, such as thickeners (such as sodium carboxymethylcellulose (CMC-Na)) and the like.
  • thickeners such as sodium carboxymethylcellulose (CMC-Na)
  • CMC-Na sodium carboxymethylcellulose
  • the negative electrode sheet can be prepared in the following manner: the above-mentioned components used to prepare the negative electrode sheet, such as negative electrode active material, conductive agent, binder and any other components, are dispersed in a solvent (such as deionized water) to form a negative electrode slurry; the negative electrode slurry is coated on the negative electrode current collector, and after drying, cold pressing and other processes, the negative electrode sheet can be obtained.
  • a solvent such as deionized water
  • the electrolyte plays the role of conducting ions between the positive pole piece and the negative pole piece.
  • the present application has no specific limitation on the type of electrolyte, which can be selected according to requirements.
  • electrolytes can be liquid, gel or all solid.
  • the electrolyte is an electrolytic solution.
  • the electrolyte solution includes an electrolyte salt and a solvent.
  • the electrolyte salt may be selected from lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium hexafluoroarsenate, lithium bisfluorosulfonyl imide, lithium bistrifluoromethanesulfonyl imide, trifluoromethane At least one of lithium sulfonate, lithium difluorophosphate, lithium difluorooxalate borate, lithium difluorooxalate borate, lithium difluorodifluorooxalatephosphate and lithium tetrafluorooxalatephosphate.
  • the solvent may be selected from ethylene carbonate, propylene carbonate, ethyl methyl carbonate, diethyl carbonate, dimethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, Butylene carbonate, fluoroethylene carbonate, methyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, ethyl butyrate At least one of ester, 1,4-butyrolactone, sulfolane, dimethyl sulfone, methyl ethyl sulfone and diethyl sulfone.
  • the electrolyte may optionally include additives.
  • additives may include negative electrode film-forming additives, positive electrode film-forming additives, and additives that can improve certain performances of the battery, such as additives that improve battery overcharge performance, additives that improve high-temperature or low-temperature performance of batteries, and the like.
  • a separator is further included in the secondary battery.
  • the present application has no particular limitation on the type of the isolation membrane, and any known porous structure isolation membrane with good chemical stability and mechanical stability can be selected.
  • the material of the isolation film can be selected from at least one of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride.
  • the separator can be a single-layer film or a multi-layer composite film, without any particular limitation. When the separator is a multilayer composite film, the materials of each layer may be the same or different, and there is no particular limitation.
  • the positive pole piece, the negative pole piece and the separator can be made into an electrode assembly through a winding process or a lamination process.
  • the secondary battery may include an outer package.
  • the outer package can be used to package the above-mentioned electrode assembly and electrolyte.
  • the outer packaging of the secondary battery may be a hard case, such as a hard plastic case, aluminum case, steel case, and the like.
  • the outer packaging of the secondary battery may also be a soft bag, such as a bag-type soft bag.
  • the material of the soft case may be plastic, and examples of the plastic include polypropylene, polybutylene terephthalate, polybutylene succinate, and the like.
  • FIG. 3 shows a square-shaped secondary battery 5 as an example.
  • the outer package may include a housing 51 and a cover 53 .
  • the housing 51 may include a bottom plate and a side plate connected to the bottom plate, and the bottom plate and the side plates enclose to form an accommodating cavity.
  • the housing 51 has an opening communicating with the accommodating cavity, and the cover plate 53 can cover the opening to close the accommodating cavity.
  • the positive pole piece, the negative pole piece and the separator can be formed into an electrode assembly 52 through a winding process or a lamination process.
  • the electrode assembly 52 is packaged in the accommodating chamber. Electrolyte is infiltrated in the electrode assembly 52 .
  • the number of electrode assemblies 52 contained in the secondary battery 5 can be one or more, and those skilled in the art can select according to specific actual needs.
  • the secondary battery can be assembled into a battery module, and the number of secondary batteries contained in the battery module can be one or more, and the specific number can be selected by those skilled in the art according to the application and capacity of the battery module.
  • FIG. 5 is a battery module 4 as an example.
  • a plurality of secondary batteries 5 may be arranged in sequence along the length direction of the battery module 4 .
  • the plurality of secondary batteries 5 may be fixed by fasteners.
  • the battery module 4 may also include a case having a housing space in which a plurality of secondary batteries 5 are accommodated.
  • the above-mentioned battery modules can also be assembled into a battery pack, and the number of battery modules contained in the battery pack can be one or more, and the specific number can be selected by those skilled in the art according to the application and capacity of the battery pack.
  • the battery pack 1 may include a battery box and a plurality of battery modules 4 disposed in the battery box.
  • the battery box includes an upper box body 2 and a lower box body 3 , the upper box body 2 can cover the lower box body 3 and form a closed space for accommodating the battery module 4 .
  • Multiple battery modules 4 can be arranged in the battery box in any manner.
  • the present application also provides an electric device, which includes at least one of the secondary battery, battery module, or battery pack provided in the present application.
  • the secondary battery, battery module, or battery pack can be used as a power source of the electric device, and can also be used as an energy storage unit of the electric device.
  • the electric devices may include mobile devices (such as mobile phones, notebook computers, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf carts, etc.) , electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc., but not limited thereto.
  • a secondary battery, a battery module or a battery pack can be selected according to its use requirements.
  • FIG. 8 is an example of an electrical device.
  • the electric device is a pure electric vehicle, a hybrid electric vehicle, or a plug-in hybrid electric vehicle.
  • a battery pack or a battery module may be used.
  • a device may be a cell phone, tablet, laptop, or the like.
  • the device is generally required to be light and thin, and a secondary battery can be used as a power source.
  • Example 1 the preparation method of the positive electrode material includes the following steps (1) to (4):
  • Adopt nickel sulfate, cobalt sulfate, manganese sulfate in molar ratio Ni:Co:Mn 8:1:1 to configure mixed salt solution A with a concentration of 4mol/L, and use cobalt sulfate, aluminum sulfate, niobium chloride to massage
  • Lithium salt and high-nickel ternary precursor are mixed according to the Li/Me molar ratio of 1.01, and Me is the total metal mole of nickel, cobalt, and manganese, and put into the coulter mix for mixing, and the mixed material is put into the kiln for Sintering, the sintering temperature is 800°C, the sintering time is 20h, the sintering atmosphere is O2, and the core-shell high-nickel ternary material with the shell uniformly doped with Nb elements is obtained by sintering.
  • Negative electrode active material artificial graphite, conductive agent carbon black, and binder SBR are mixed according to the mass ratio of 96:2.5:1.5, and fully stirred in an appropriate amount of deionized water to form a uniform negative electrode slurry;
  • the negative electrode slurry is coated on the surface of the copper foil of the negative electrode current collector, and after drying and cold pressing, the negative electrode sheet is obtained.
  • the positive electrode material prepared by the above method, the conductive agent (Super P), and the binder PVDF are fully stirred and mixed in an appropriate amount of NMP in a weight ratio of 96.5:2.5:1 to form a uniform positive electrode slurry; the positive electrode slurry
  • the material is coated on the surface of the positive electrode current collector aluminum foil, and after drying and cold pressing, the positive electrode sheet is obtained.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • PE film Polyethylene (PE) film is used.
  • Static image measurement technology use the static powder SEM pictures taken, through software intelligent identification, randomly select 20 particles and obtain the long diameter and short diameter data, and calculate the average aspect ratio.
  • Acid-base titration method add 30g of sample into 100ml of pure water, stir for 30min, let it stand for 5min, filter with suction, take 10ml of supernatant, and titrate the dissolved lithium carbonate and Lithium hydroxide, using the pH electrode as the indicator electrode, determines the end point by means of the jump generated by the potential change, and calculates the amount of residual lithium on the surface of the positive electrode material.
  • a lithium sheet is used as a counter electrode, a polypropylene separator is used, and 1mol/L LiPF6/(EC+DEC+DMC) (volume ratio 1:1:1) electrolyte is injected , assembled to obtain a button cell.
  • Capacity test in a constant temperature environment of 25°C, let stand for 5 minutes, discharge to 2.8V according to 1/3C, stand still for 5 minutes, charge to 4.25V according to 1/3C, and then charge at a constant voltage at 4.25V to a current ⁇ 0.05mA, Stand still for 5 minutes, the charging capacity at this time is recorded as C0, and then discharged to 2.8V according to 1/3C, the discharge capacity at this time is the initial gram capacity, recorded as D0, and the first effect is D0/C0*100%.
  • Example 2 to 20 and Comparative Examples 1 to 3 except that the composition of each solution was changed as shown in Table 1, the same preparation method as in Example 1 was used to obtain the positive electrode material.
  • the shell layer contains Nb in a specific range, which can significantly improve the content of miscellaneous lithium on the surface of the high-nickel ternary positive electrode material.
  • the capacity and first effect of the material can be significantly improved, and the cycle, storage and gas production performance of the high-nickel ternary cathode material can be significantly improved.
  • Example 21 the preparation method of the positive electrode material includes the following steps (1) to (4):
  • the ammoniacal liquor of 8mol/L is as complexing agent solution E;
  • Lithium salt and high-nickel ternary precursor are mixed according to the Li/Me molar ratio of 1.01, and Me is the total metal mole of nickel, cobalt, and manganese, and put into the coulter mix for mixing, and the mixed material is put into the kiln for Sintering, the sintering temperature is 800°C, the sintering time is 20h, the sintering atmosphere is O2, and the core-shell high-nickel ternary material with the shell uniformly doped with Nb elements is obtained by sintering.
  • Example 21 The preparation method of other structures of Example 21 is the same as that of Example 1, and will not be repeated here.
  • Example 22 to 29 and Comparative Examples 4 to 11 except that the preparation parameters were changed as shown in Table 3, the same preparation method as in Example 1 was adopted to obtain positive electrode materials.
  • Table 4 shows the test results of the positive electrode materials and secondary batteries obtained in Examples 21 to 29 and Comparative Examples 4 to 11.
  • the present application is not limited to the above-mentioned embodiments.
  • the above-mentioned embodiments are merely examples, and within the scope of the technical solutions of the present application, embodiments that have substantially the same configuration as the technical idea and exert the same effects are included in the technical scope of the present application.
  • various modifications conceivable by those skilled in the art are added to the embodiments, and other forms constructed by combining some components in the embodiments are also included in the scope of the present application. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本申请提供一种正极材料,包括:内核;以及壳层,所述内核的分子式为Li 1+aNi xCo yMn 1-x-yM1 zO 2,其中:0.8≤x<1.0,0<y<0.2,0<a<0.1,0≤z<0.1,M1选自Al、Ta、B中的至少一种;所述壳层的分子式为Li 1+bCo mAl nNb 1-m-nM2 cO 2,其中:0.85≤m<1.0,0<n<0.15,0<b<0.1,0.001≤1-m-n≤0.02,0≤c<0.05,M2选自W、Mo、Ti、Zr、Y、Yb中的至少一种。

Description

正极材料及其制备方法、具备其的二次电池 技术领域
本申请涉及电化学领域,尤其涉及一种正极材料及其制备方法、具备其的二次电池、以及电池模块、电池包和用电装置。
背景技术
近年来,随着锂离子电池的应用范围越来越广泛,锂离子电池广泛应用于水力、火力、风力和太阳能电站等储能电源系统,以及电动工具、电动自行车、电动摩托车、电动汽车、军事装备、航空航天等多个领域。由于锂离子电池取得了极大的发展,因此对其能量密度、循环性能和安全性能等也提出了更高的要求。另外,由于正极活性材料的选择越发局限,高镍正极活性材料被认为是满足高能量密度要求的最佳选择。
但是随着镍含量的不断提高,其结构稳定性越来越差。通过包覆或掺杂等手段来改善材料的倍率性能和循环性能等是目前比较有效的手段,然而现有的方法均会导致对锂离子电池性能不同程度的破坏,例如,锂离子电池的克容量降低、循环性能变差等。因此,现有的包覆或掺杂的正极材料仍有待改进。
发明内容
本申请是鉴于上述课题而进行的,其目的在于,提供一种正极材料及其制备方法、具备其的二次电池、以及电池模块、电池包和用电装置,该正极材料在保持高比容量的同时,能够改善二次电池的循环性能、倍率性能以及安全性能。
为了实现上述目的,本申请第一方面在于提供一种正极材料,其中,包括:内核;以及壳层,所述内核的分子式为Li 1+aNi xCo yMn 1-x-yM1 zO 2,其中:0.8≤x<1.0,0<y<0.2,0<a<0.1,0≤z<0.1,M1选自Al、Ta、B中的至少一种;所述壳层的分子式为 Li 1+bCo mAl nNb 1-m-nM2 cO 2,其中:0.85≤m<1.0,0<n<0.15,0<b<0.1,0.001≤1-m-n≤0.02,0≤c<0.05,M2选自W、Mo、Ti、Zr、Y、Yb中的至少一种。
通过正极材料包括上述内核以及壳层,并且壳层的Nb含量在上述范围内,能够在保持正极材料高比容量的同时,能够改善二次电池的循环性能、倍率性能以及安全性能。
在一些实施方式中,所述正极材料的一次颗粒的平均长宽比为2至11,可选地为5至8。通过在壳层掺杂Nb元素,使得一次颗粒平均长宽比能够被控制在上述范围内,从而改善一次颗粒的结构稳定性,改善正极材料的长期性能。
在一些实施方式中,所述内核的平均直径为2μm至10μm,所述壳层的平均厚度为0.5μm至3μm。通过正极材料的内核和壳层的平均直径在上述范围内,可以得到良好的核壳结构的高镍三元材料,并可以控制核壳中主成分的差异性,在保持高容量的同时,兼顾二次电池的循环性能、倍率性能以及安全性能。
在一些实施方式中,所述正极材料的体积平均粒径Dv50为3μm至16μm,可选为5μm至11μm。通过正极材料的体积平均粒径Dv50在上述范围内,能够获得结构稳定的一次颗粒,在保持高容量的同时,兼顾二次电池的循环性能、倍率性能以及安全性能。
在一些实施方式中,所述正极材料的径距1.35≤(Dv90-Dv10)/Dv50≤1.50。通过正极材料的径距在上述范围内,则具有很宽的粒度分布,有利于提升烧结后的正极材料的压实密度,从而进一步提高二次电池的能量密度。
在一些实施方式中,所述正极材料的比表面积为0.2m 2/g至1m 2/g,可选为0.3m 2/g至0.7m 2/g。通过正极材料的比表面积在上述范围内,能够减少电解液的腐蚀,优化材料的存储性能。
在一些实施方式中,所述正极材料的振实密度TD为1.8g/cm 3至2.5g/cm 3,可选为1.9g/cm 3至2.3g/cm 3。通过将正极材料的振实密度TD设置在上述范围内,能够提升正极材料的加工性能。
本申请第二方面在于提供根据本申请第一方面所述的正极材料的制备方法,包括以下工序(1)至(4):
工序(1):准备包含可溶性镍盐、第一钴盐及锰盐的第一混合溶液,准备包含第二钴盐、铝盐的第二混合溶液,准备碱溶液、氨溶液及铌盐溶液;
工序(2):在反应釜中加入纯水作为底液,加入氨溶液和碱溶液调节底液中的pH值及氨值,进行搅拌,并保持稳定的反应温度,将所述第一混合溶液、所述碱溶液、所述氨溶液并流加入至反应釜中,维持pH值及氨值不变,同时通入惰性气体保护,合成出第一前驱体浆料;
工序(3):将所述第二混合溶液、所述铌盐溶液、所述碱溶液、所述氨溶液并流加入至反应釜中,维持pH值及氨值不变,合成出第二前驱体浆料;
工序(4):将所述工序(3)中合成的所述第二前驱体浆料与锂盐按照一定比例进行混合烧结,得到正极材料,所述正极材料包括:内核;以及壳层,
所述内核的分子式为Li 1+aNi xCo yMn 1-x-yM1 zO 2,其中:0.8≤x<1.0,0<y<0.2,0<a<0.1,0≤z<0.1,M1选自Al、Ta、B中的至少一种;
所述壳层的分子式为Li 1+bCo mAl nNb 1-m-nM2 cO 2,其中:0.85≤m<1.0,0<n<0.15,0<b<0.1,0.001≤1-m-n≤0.02,0≤c<0.05,M2选自W、Mo、Ti、Zr、Y、Yb中的至少一种。
通过上述方法,能够得到良好的核壳结构的高镍三元材料,并可以控制核壳中主成分的差异性,从而兼顾高容量和高安全性。并且,上述方法中,通过成核(工序(2))与核生长(工序(3))这两个步骤,能在内核上合成出径向分布的壳层结构,能明显改善烧结后的高镍正极材料的长期循环性能。
在一些实施方式中,在工序(1)中,所述可溶性镍盐包括硫酸镍、硝酸镍、乙酸镍的一种或多种,和/或,所述第一钴盐和所述第二钴盐分别独立地包括硫酸钴、草酸钴、硝酸钴、乙酸钴的一种或多种,和/或,所述锰盐包括硫酸锰、硝酸锰、乙酸锰的一种或多种,和/或,所述铝盐包括硫酸铝、硝酸铝、氯化铝、醋酸铝、亚硫酸铝的一种或多种,和/或,所述铌盐包括草酸铌、铌酸钠、硝酸铌、氯化铌的一种或多种,和/或,所述碱包括碱金属的氢氧化物、碱土金属的氢氧化物、碱金属的碳酸盐中的一种或多种。由此,能够容易地形成各成分含量 的正极材料。
在一些实施方式中,在工序(1)中,所述第一混合溶液中的全部金属离子的浓度为1mol/L至5mol/L,和/或,所述第二混合溶液中的全部金属离子的浓度为1mol/L至5mol/L,和/或,所述碱溶液中的碱的浓度为1mol/L至10mol/L,和/或,所述氨溶液中的氨的浓度为5mol/L至10mol/L,和/或,所述铌盐溶液中的铌盐的浓度0.5mol/L至2mol/L。由此,在此原料浓度下,连续进料,可以保证稳定合成高镍三元前驱体,既避免浓度过高因系统的波动导致工艺变化,又可以保证前驱体的产能。
在一些实施方式中,在所述工序(2)和所述工序(3)中,反应的pH值为11.0至12.0,优选为11.2至11.6,和/或,反应的氨值为0.1mol/L至0.6mol/L,优选为0.2mol/L至0.5mol/L,和/或,反应温度为50℃至70℃,和/或,搅拌速率为200rpm至600rpm。由此,在反应的pH值和氨值在上述范围内,能够连续稳定产出平均体积分布粒径Dv50在特定范围(例如3μm至16μm)的核壳结构高镍三元前驱体产品。在上述反应温度下,能形成一次晶粒堆叠良好的高镍三元前驱体晶体结构。在上述搅拌速率下,能合成颗粒致密、孔隙率均匀的高镍三元前驱体,同时避免大颗粒破碎。
在一些实施方式中,所述工序(4)中,所述锂盐与所述第二前驱体浆料中的金属的摩尔比Li/Me为0.9至1.1,Me为镍、钴、锰金属的总摩尔,和/或,烧结温度为700℃至900℃,和/或,烧结时间为10h至20h,和/或,烧结气氛为空气或者含氧气氛。由此,合成出的高镍三元材料,具有良好的结构稳定性,同时杂锂较低,副反应较少,具有较好的长期循环性能。
本申请第三方面在于提供一种二次电池,该二次电池包括根据本申请第一方面所述的正极材料或根据本申请第二方面所述的制备方法制得的正极材料。
本申请第四方面在于提供一种电池模块,该电池模块包括根据本申请第三方面所述的二次电池。
本申请第五方面在于提供一种电池包,该电池包包括根据本申请第四方面所述的电池模块。
本申请第六方面在于提供一种用电装置,该用电装置包括根据本申请第三方面所述的二次电池、根据本申请第四方面所述的电池模块和根据本申请第五方面所述的电池包中的至少一种。
根据本申请,能够兼顾二次电池的循环性能、倍率性能以及安全性能。
附图说明
图1为本申请一实施方式的正极材料的扫描电镜图。
图2为图1所示的正极材料制作成扣电的首次充放电曲线。
图3是本申请一实施方式的二次电池的示意图。
图4是图3所示的本申请一实施方式的二次电池的分解图。
图5是本申请一实施方式的电池模块的示意图。
图6是本申请一实施方式的电池包的示意图。
图7是图6所示的本申请一实施方式的电池包的分解图。
图8是本申请一实施方式的二次电池用作电源的用电装置的示意图。
附图标记说明:
1电池包;2上箱体;3下箱体;4电池模块;5二次电池;51壳体;52电极组件;53顶盖组件
具体实施方式
以下,适当地参照附图详细说明具体公开了本申请的正极材料及其制造方法、二次电池、电池模块、电池包和电学装置的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域技术人员的理解。此外,附图及以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包 括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60至120和80至110的范围,理解为60至110和80至120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1至3、1至4、1至5、2至3、2至4和2至5。在本申请中,除非有其他说明,数值范围“a至b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0至5”表示本文中已经全部列出了“0至5”之间的全部实数,“0至5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
本申请的一个实施方式中,提出了一种正极材料,包括:内核;以及壳层,所述内核的分子式为Li 1+aNi xCo yMn 1-x-yM1 zO 2,其中:0.8≤x<1.0,0<y<0.2,0<a<0.1,0≤z<0.1,M1选自Al、Ta、B中的至少一种;所述壳层的分子式为Li 1+bCo mAl nNb 1-m-nM2 cO 2,其中:0.85≤m<1.0,0<n<0.15,0<b<0.1,0.001≤1-m-n≤0.02,0≤c<0.05,M2选自W、Mo、Ti、Zr、Y、Yb中的至少一种。
虽然机理尚不明确,但本申请人意外地发现:通过使正极材料包 括高镍内核以及掺杂Nb的壳层,能够在保持正极材料高比容量的同时,能够改善二次电池的循环性能、倍率性能以及安全性能(长期存储性能)。
本申请发明人推测:合成核壳结构的高镍三元材料,其中核部分为镍钴锰三元材料,壳部分掺杂Nb,可以在保持整体颗粒Ni含量较高的前提下,使合成的高镍正极材料表层与电解液的副反应降低,提升长期存储性能。此外,在壳层中均匀掺杂Nb元素,使得正极材料一次颗粒的平均长宽比增加,有利于增强一次颗粒的结构稳定性,对烧结后的高镍正极材料长期性能(循环性能及长期存储性能)有改善效果。
图1为本申请实施例1得到的正极材料的扫描电镜图。图2为图1所示的正极材料制作成扣式电池的首次充放电曲线。如图1所示,本申请的正极材料中,一次颗粒具有合适的长宽比,其结构稳定,由此能够改善正极材料的长期性能。如图2所示,本申请的正极材料具有良好的首次充放电效率。
在一些实施方式中,可选地,所述正极材料的一次颗粒的平均长宽比为2至11,可选地为5至8。通过在壳层掺杂Nb元素,使得一次颗粒的平均长宽比能够被控制在上述范围内,从而改善一次颗粒的结构稳定性,改善正极材料的长期性能。
在一些实施方式中,可选地,所述内核的平均直径为2μm至10μm,所述壳层的平均厚度为0.5μm至3μm。通过正极的内核及壳体的平均厚度在上述范围内,可以得到良好的核壳结构的高镍三元材料,并可以控制核壳中主成分的差异性,在保持高容量的同时,兼顾二次电池的循环性能、倍率性能以及安全性能。
在一些实施方式中,可选地,所述正极材料的体积平均粒径Dv50为3μm至16μm,可选为5μm至11μm。通过正极材料的体积平均粒径在上述范围内,能够获得结构稳定的一次颗粒,在保持高容量的同时,兼顾二次电池的循环性能、倍率性能以及安全性能。
在一些实施方式中,可选地,所述正极材料的径距1.35≤(Dv90-Dv10)/Dv50≤1.50。通过正极材料的径距在上述范围内,则具有很宽的粒度分布,有利于提升烧结后的正极材料的压实密度,从 而进一步提高二次电池的能量密度。
在一些实施方式中,可选地,所述正极材料的比表面积为0.2m 2/g至1m 2/g,可选为0.3m 2/g至0.7m 2/g。通过正极材料的比表面积在上述范围内,能够减少电解液的腐蚀,优化材料的存储性能。
在一些实施方式中,可选地,所述正极材料的振实密度TD为1.8g/cm 3至2.5g/cm 3,可选为1.9g/cm 3至2.3g/cm 3。通过将正极材料的振实密度TD设置在上述范围内,能够提升材料的加工性能。
进一步,在本申请的另一个实施方式中,本申请提出了正极材料的制备方法,包括以下工序(1)至(4):
工序(1):准备包含可溶性镍盐、第一钴盐及锰盐的第一混合溶液,准备包含第二钴盐、铝盐的第二混合溶液,准备碱溶液、氨溶液及铌盐溶液;
工序(2):在反应釜中加入纯水作为底液,加入氨溶液和碱溶液调节底液中的pH值及氨值,进行搅拌,并保持稳定的反应温度,将所述第一混合溶液、所述碱溶液、所述氨溶液并流加入至反应釜中,维持pH值及氨值不变,同时通入惰性气体保护,合成出第一前驱体浆料;
工序(3):将所述第二混合溶液、所述铌盐溶液、所述碱溶液、所述氨溶液并流加入至反应釜中,维持pH值及氨值不变,合成出第二前驱体浆料;
工序(4):将所述工序(3)中合成的所述第二前驱体浆料与锂盐按照一定比例进行混合烧结,得到壳层掺杂Nb元素的核壳结构正极材料。
通过上述方法,能够得到良好的核壳结构的高镍三元材料,并可以控制核壳中主成分的差异性,从而兼顾高容量和高安全性。并且,上述方法中,通过成核(工序(2))与核生长(工序(3))这两个步骤,能在核上合成出径向分布的壳层结构,能明显改善烧结后的高镍正极材料的长期循环性能。
在一些实施方式中,在工序(1)中,所述可溶性镍盐包括硫酸镍、硝酸镍、乙酸镍的一种或多种,和/或,所述第一钴盐和所述第二钴盐分别独立地包括硫酸钴、草酸钴、硝酸钴、乙酸钴的一种或多种,和/或,所述锰盐包括硫酸锰、硝酸锰、乙酸锰的一种或多种,和/或,所 述铝盐包括硫酸铝、硝酸铝、氯化铝、醋酸铝、亚硫酸铝的一种或多种,和/或,所述铌盐包括草酸铌、铌酸钠、硝酸铌、氯化铌的一种或多种,和/或,所述碱包括碱金属的氢氧化物、碱土金属的氢氧化物、碱金属的碳酸盐中的一种或多种。由此,能够容易地形成各成分含量的正极材料。
在一些实施方式中,在工序(1)中,所述第一混合溶液中的全部金属离子的浓度为1mol/L至5mol/L,和/或,所述第二混合溶液中的全部金属离子的浓度为1mol/L至5mol/L,和/或,所述碱溶液中的碱的浓度为1mol/L至10mol/L,和/或,所述氨溶液中的氨的浓度为5mol/L至10mol/L,和/或,所述铌盐溶液中的铌盐的浓度0.5mol/L至2mol/L。由此,在此原料浓度下,连续进料,可以保证稳定合成高镍三元前驱体,既避免浓度过高因系统的波动导致工艺变化,又可以保证前驱体的产能。
在一些实施方式中,在所述工序(2)和所述工序(3)中,反应的pH值为11.0至12.0,优选为11.2至11.6,和/或,反应的氨值为0.1mol/L至0.6mol/L,优选为0.2mol/L至0.5mol/L,和/或,反应温度为50℃至70℃,和/或,搅拌速率为200rpm至600rpm。由此,在反应的pH值和氨值在上述范围内,能够连续稳定产出平均体积分布粒径Dv50在特定范围(例如3μm~16μm)的核壳结构高镍三元前驱体产品。在上述反应温度下,能形成一次晶粒堆叠良好的高镍三元前驱体晶体结构。在上述搅拌速率下,能合成颗粒致密、孔隙率均匀的高镍三元前驱体,同时避免大颗粒破碎。
在一些实施方式中,所述工序(4)中,所述锂盐与所述第二前驱体浆料中的金属的摩尔比Li/Me为0.9至1.1,Me为镍、钴、锰金属的总摩尔,和/或,烧结温度为700℃至900℃,和/或,烧结时间为10h至20h,和/或,烧结气氛为空气或者含氧气氛。由此,合成出的高镍三元材料,具有良好的结构稳定性,同时杂锂较低,副反应较少,具有较好的长期循环性能。
另外,以下适当参照附图对本申请的二次电池、电池模块、电池包和用电装置进行说明。
[二次电池]
本申请的一个实施方式中,提供一种二次电池。
通常情况下,二次电池包括负极极片、正极极片、电解质和隔离膜。在电池充放电过程中,活性离子在正极极片和负极极片之间往返嵌入和脱出。电解质在正极极片和负极极片之间起到传导离子的作用。隔离膜设置在正极极片和负极极片之间,主要起到防止正负极短路的作用,同时可以使离子通过。
[正极极片]
正极极片包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,所述正极膜层包括本申请第一方面的正极活性材料。
作为示例,正极集流体具有在其自身厚度方向相对的两个表面,正极膜层设置在正极集流体相对的两个表面的其中任意一者或两者上。
在一些实施方式中,所述正极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,正极膜层还可选地包括粘结剂。作为示例,所述粘结剂可以包括聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物及含氟丙烯酸酯树脂中的至少一种。
在一些实施方式中,正极膜层还可选地包括导电剂。作为示例,所述导电剂可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,可以通过以下方式制备正极极片:将上述用于制备正极极片的组分,例如正极活性材料、导电剂、粘结剂和任意其他的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成正极浆料; 将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到正极极片。
[负极极片]
负极极片包括负极集流体以及设置在负极集流体至少一个表面上的负极膜层,所述负极膜层包括负极活性材料。
作为示例,负极集流体具有在其自身厚度方向相对的两个表面,负极膜层设置在负极集流体相对的两个表面中的任意一者或两者上。
在一些实施方式中,所述负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基材至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,负极活性材料可采用本领域公知的用于电池的负极活性材料。作为示例,负极活性材料可包括以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂等。所述硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的至少一种。所述锡基材料可选自单质锡、锡氧化合物以及锡合金中的至少一种。但本申请并不限定于这些材料,还可以使用其他可被用作电池负极活性材料的传统材料。这些负极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
在一些实施方式中,负极膜层还可选地包括粘结剂。所述粘结剂可选自丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的至少一种。
在一些实施方式中,负极膜层还可选地包括导电剂。导电剂可选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,负极膜层还可选地包括其他助剂,例如增稠剂(如羧甲基纤维素钠(CMC-Na))等。
在一些实施方式中,可以通过以下方式制备负极极片:将上述用于制备负极极片的组分,例如负极活性材料、导电剂、粘结剂和任意其他组分分散于溶剂(例如去离子水)中,形成负极浆料;将负极浆料涂覆在负极集流体上,经烘干、冷压等工序后,即可得到负极极片。
[电解质]
电解质在正极极片和负极极片之间起到传导离子的作用。本申请对电解质的种类没有具体的限制,可根据需求进行选择。例如,电解质可以是液态的、凝胶态的或全固态的。
在一些实施方式中,所述电解质采用电解液。所述电解液包括电解质盐和溶剂。
在一些实施方式中,电解质盐可选自六氟磷酸锂、四氟硼酸锂、高氯酸锂、六氟砷酸锂、双氟磺酰亚胺锂、双三氟甲磺酰亚胺锂、三氟甲磺酸锂、二氟磷酸锂、二氟草酸硼酸锂、二草酸硼酸锂、二氟二草酸磷酸锂及四氟草酸磷酸锂中的至少一种。
在一些实施方式中,溶剂可选自碳酸亚乙酯、碳酸亚丙酯、碳酸甲乙酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸亚丁酯、氟代碳酸亚乙酯、甲酸甲酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丁酸甲酯、丁酸乙酯、1,4-丁内酯、环丁砜、二甲砜、甲乙砜及二乙砜中的至少一种。
在一些实施方式中,所述电解液还可选地包括添加剂。例如添加剂可以包括负极成膜添加剂、正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温或低温性能的添加剂等。
[隔离膜]
在一些实施方式中,二次电池中还包括隔离膜。本申请对隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。
在一些实施方式中,隔离膜的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的至少一种。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时, 各层的材料可以相同或不同,没有特别限制。
在一些实施方式中,正极极片、负极极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。
在一些实施方式中,二次电池可包括外包装。该外包装可用于封装上述电极组件及电解质。
在一些实施方式中,二次电池的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。二次电池的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,作为塑料,可列举出聚丙烯、聚对苯二甲酸丁二醇酯以及聚丁二酸丁二醇酯等。
本申请对二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。例如,图3是作为一个示例的方形结构的二次电池5。
在一些实施方式中,参照图2,外包装可包括壳体51和盖板53。其中,壳体51可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体51具有与容纳腔连通的开口,盖板53能够盖设于所述开口,以封闭所述容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件52。电极组件52封装于所述容纳腔内。电解液浸润于电极组件52中。二次电池5所含电极组件52的数量可以为一个或多个,本领域技术人员可根据具体实际需求进行选择。
电池模块
在一些实施方式中,二次电池可以组装成电池模块,电池模块所含二次电池的数量可以为一个或多个,具体数量本领域技术人员可根据电池模块的应用和容量进行选择。
图5是作为一个示例的电池模块4。参照图5,在电池模块4中,多个二次电池5可以是沿电池模块4的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个二次电池5进行固定。
可选地,电池模块4还可以包括具有容纳空间的外壳,多个二次电池5容纳于该容纳空间。
电池包
在一些实施方式中,上述电池模块还可以组装成电池包,电池包所含电池模块的数量可以为一个或多个,具体数量本领域技术人员可根据电池包的应用和容量进行选择。
图6和图7是作为一个示例的电池包1。参照图6和图7,在电池包1中可以包括电池箱和设置于电池箱中的多个电池模块4。电池箱包括上箱体2和下箱体3,上箱体2能够盖设于下箱体3,并形成用于容纳电池模块4的封闭空间。多个电池模块4可以按照任意的方式排布于电池箱中。
用电装置
另外,本申请还提供一种用电装置,所述用电装置包括本申请提供的二次电池、电池模块、或电池包中的至少一种。所述二次电池、电池模块、或电池包可以用作所述用电装置的电源,也可以用作所述用电装置的能量存储单元。所述用电装置可以包括移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等,但不限于此。
作为所述用电装置,可以根据其使用需求来选择二次电池、电池模块或电池包。
图8是作为一个示例的用电装置。该用电装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该用电装置对二次电池的高功率和高能量密度的需求,可以采用电池包或电池模块。
作为另一个示例的装置可以是手机、平板电脑、笔记本电脑等。该装置通常要求轻薄化,可以采用二次电池作为电源。
实施例
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
<实施例1>
①制备方法
正极材料的制备
在实施例1中,正极材料的制备方法包括以下工序(1)至(4):
(1)采用硫酸镍,硫酸钴、硫酸锰按摩尔比Ni:Co:Mn=8:1:1配置成浓度为4mol/L的混合盐溶液A,采用硫酸钴、硫酸铝、氯化铌按摩尔比Co:Al:Nb=84.4:15:0.6配置成浓度为4mol/L的混合盐溶液B,采用NaOH配置成浓度为8mol/L的沉淀剂溶液D,采用浓度为8mol/L的氨水作为络合剂溶液E;
(2)在18L反应釜中加入10L去离子水,加入一定量氨水使其氨浓度为0.4mol/L,加入一定量NaOH溶液使其pH为11.20,记为底液F。在N2气氛下,将底液F加热至60℃并维持,在400rpm搅拌转速下,将混合盐溶液A、沉淀剂溶液D,络合剂溶液E并流加入底液F中,维持pH值及氨值不变,反应一段时间,当前驱体Dv50达到8μm时,停止加入溶液A;
(3)加入溶液B继续反应,反应过程中维持控制结晶反应釜中氨值为0.4mol/L,pH为11.20,直至合成得到Dv50=10μm的高镍三元前驱体,停止反应,陈化2h,将获得的三元前驱体进行洗涤,固液分离,干燥,即可得到壳层掺杂Nb元素6000ppm的核壳结构高镍三元前驱体;
(4)将锂盐、高镍三元前驱体按照Li/Me摩尔比为1.01,Me为镍、钴、锰总金属摩尔,放入犁刀混中进行混合,混合物料放入窑炉中进行烧结,烧结温度为800℃,烧结时间为20h,烧结气氛为O2,烧结得到壳层均匀掺杂Nb元素的核壳高镍三元材料。
负极极片的制备
将负极活性材料人造石墨、导电剂碳黑、粘结剂SBR按照质量比96:2.5:1.5进行混合的质量比混合,并在适量的去离子水中充分搅拌,使其形成均匀的负极浆料;将负极浆料涂覆于负极集流体铜箔的表面上,经干燥、冷压后,得到负极极片。
正极极片的制备
将通过上述方法制备的正极材料、导电剂(Super P)、粘结剂PVDF按96.5:2.5:1的重量比在适量的NMP中充分搅拌混合,使其形成均匀 的正极浆料;将正极浆料涂覆于正极集流体铝箔的表面上,经干燥、冷压后,得到正极极片。
电解液的制备
将碳酸亚乙酯(EC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)体积比1:1:1混合,然后将LiPF 6均匀溶解在上述溶液中得到电解液,其中LiPF 6的浓度为1mol/L。
隔离膜
采用聚乙烯(PE)薄膜。
二次电池的制备
将正极极片、隔离膜、负极极片按顺序叠好,经卷绕后得到电极组件,将电极组件装入外包装中,加入上述电解液,经封装、静置、化成、老化等工序后,得到二次电池。
性能评价
对于上述①中制得的正极材料,通过下述方法进行性能测试。结果示于表2中。
(i)正极材料的一次颗粒的平均长宽比测定
静态图像测量技术:使用拍摄的静态粉体SEM图片,通过软件智能识别,随机选取20个颗粒并得到长径和短径数据后,计算平均长径比。
(ii)测试杂锂含量
酸碱滴定法:加30g样品放入100ml纯水中,搅拌30min后静置5min,抽滤,取10ml上清液,用0.05mol/L的盐酸标准溶液滴定正极材料中溶解下来的碳酸锂及氢氧化锂,以PH电极为指示电极,借助于电位变化产生的突跃来确定终点,并计算正极材料表面残锂量。
(iii)扣式电池的制备方法
对于上述①中制得的正极材料,以锂片作为对电极,采用聚丙烯隔离膜,并注入1mol/L的LiPF6/(EC+DEC+DMC)(体积比为1:1:1)电解液,组装得到扣式电池。
(iv)扣式电池初始放电克容量和首次效率测试
在2.8~4.3V下,按照0.1C充电至4.3V,然后在4.3V下恒压充电 至电流≤0.05mA,静置2min,此时的充电容量记为C0,然后按照0.1C放电至2.8V,此时的放电容量为初始克容量,记为D0,首效即为D0/C0*100%。
(v)全电池的容量测试及循环测试
容量测试:在25℃恒温环境下,静置5min,按照1/3C放电至2.8V,静置5min,按照1/3C充电至4.25V,然后在4.25V下恒压充电至电流≤0.05mA,静置5min,此时的充电容量记为C0,然后按照1/3C放电至2.8V,此时的放电容量为初始克容量,记为D0,首效即为D0/C0*100%。
循环测试:在25℃或者45℃的恒温环境下,在2.8~4.25V下,按照1C充电至4.25V,然后在4.25V下恒压充电至电流≤0.05mA,静置5min,然后按照1C放电至2.8V,容量记为Dn(n=0,1,2……),重复前面过程,直至容量达到80%
(vi)全电池的产气测试
70℃100%SOC存储,存储前后及过程中测量电芯OCV,IMP,体积(排水法测试),存储结束测试电芯残余容量和可逆容量,每48h出炉,静置1h后测试OCV、IMP,冷却至室温后用排水法测试电芯体积,存储20天结束测试,或者体积膨胀超过50%停止存储,保护电压范围:2.7-4.3V。
<实施例2>至<实施例20>、<对比例1>至<对比例3>
在实施例2至20、以及对比例1至3中,除了如表1所示变更各溶液的组成以外,采用与实施例1相同的制备方法,由此得到正极材料。
[表1]
Figure PCTCN2021142035-appb-000001
Figure PCTCN2021142035-appb-000002
[表2]
Figure PCTCN2021142035-appb-000003
从表1、2的结果可知,通过实施例1~20与对比例1~3的比较可知,通过壳层含有特定范围的Nb,既能明显改善高镍三元正极材料表面的杂锂含量,明显提高材料的容量、首效,又能明显改善高镍三元正极材料的循环、存储产气性能。
此外,通过实施例1、4、7的比较可知,壳层Co、Al含量对材料性能影响不明显。通过实施例2、10、11、13、15的比较可知,适当Nb含量对材料性能有较大提升。
<实施例21>
在实施例21中,正极材料的制备方法包括以下工序(1)至(4):
(1)采用硫酸镍,硫酸钴、硫酸锰按摩尔比Ni:Co:Mn=90:5:5配置成浓度为4mol/L的混合盐溶液A,采用硫酸钴、硫酸铝按摩尔比Co:Al=85:15配置成浓度为4mol/L的混合盐溶液B,采用氯化铌配置 成1mol/L的盐溶液C,采用NaOH配置成浓度为8mol/L的沉淀剂溶液D,采用浓度为8mol/L的氨水作为络合剂溶液E;
(2)在18L反应釜中加入10L去离子水,加入一定量氨水使其氨浓度为0.4mol/L,加入一定量NaOH溶液使其pH为11.00,记为底液F。在N2气氛下,将底液F加热至60℃并维持,在400rpm搅拌转速下,将混合盐溶液A、沉淀剂溶液D,络合剂溶液E并流加入底液F中,反应一段时间,当前驱体Dv50达到8μm时,停止加入溶液A;
(3)加入溶液B和C继续反应,反应过程中维持控制结晶反应釜中氨值为0.4mol/L,pH为11.00,直至合成得到Dv50=10μm的高镍三元前驱体,停止反应,陈化2h,将获得的三元前驱体进行洗涤,固液分离,干燥,即可得到壳层掺杂Nb元素的核壳结构高镍三元前驱体;
(4)将锂盐、高镍三元前驱体按照Li/Me摩尔比为1.01,Me为镍、钴、锰总金属摩尔,放入犁刀混中进行混合,混合物料放入窑炉中进行烧结,烧结温度为800℃,烧结时间为20h,烧结气氛为O2,烧结得到壳层均匀掺杂Nb元素的核壳高镍三元材料。
实施例21的其他结构的制备方法与实施例1相同,在此不再赘述。
<实施例22>至<实施例29>、<对比例4>至<对比例11>
在实施例22至29、对比例4至11中,除了如表3所示变更各制备参数以外,采用与实施例1相同的制备方法,得到正极材料。
对各实施例21至29、对比例4至11中获得的正极材料和二次电池的测试结果如表4所示。
[表3]
Figure PCTCN2021142035-appb-000004
[表4]
Figure PCTCN2021142035-appb-000005
从表3、表4可知,在对比例4~7中,前驱体合成pH过低/氨值过高时,会使材料快速长大,不利于稳定结晶,pH过高/氨值过低时,材料一次颗粒偏薄,不利于长期稳定性;在对比例8~11中,物料烧结温度过低/时间过短时,材料结晶生长不够,材料的循环性能较差,物料烧结温度过高/时间过长时,会破坏一次颗粒的结构,使之向球形颗粒生长,长宽比降低,均没有较好的综合性能发挥。而实施例21~29中,在合理的共沉淀条件及烧结工艺下,合成的高镍材料容量较高,循环性能较好,产气量较少,表明材料具有较高的结构稳定性。
需要说明的是,本申请不限定于上述实施方式。上述实施方式仅为示例,在本申请的技术方案范围内具有与技术思想实质相同的构成、发挥相同作用效果的实施方式均包含在本申请的技术范围内。此外,在不脱离本申请主旨的范围内,对实施方式施加本领域技术人员能够 想到的各种变形、将实施方式中的一部分构成要素加以组合而构筑的其它方式也包含在本申请的范围内。

Claims (16)

  1. 一种正极材料,其中,
    包括:
    内核;以及
    壳层,
    所述内核的分子式为Li 1+aNi xCo yMn 1-x-yM1 zO 2,其中:0.8≤x<1.0,0<y<0.2,0<a<0.1,0≤z<0.1,M1选自Al、Ta、B中的至少一种;
    所述壳层的分子式为Li 1+bCo mAl nNb 1-m-nM2 cO 2,其中:0.85≤m<1.0,0<n<0.15,0<b<0.1,0.001≤1-m-n≤0.02,0≤c<0.05,M2选自W、Mo、Ti、Zr、Y、Yb中的至少一种。
  2. 根据权利要求1所述的正极材料,其中,
    所述正极材料的一次颗粒的平均长宽比为2至11,可选地为5至8。
  3. 根据权利要求1或2所述的正极材料,其中,
    所述内核的平均直径为2μm至10μm,所述壳层的平均厚度为0.5μm至3μm。
  4. 根据权利要求1或2所述的正极材料,其中,
    所述正极材料的体积平均粒径Dv50为3μm至16μm,可选为5μm至11μm。
  5. 根据权利要求1至3中任一项所述的正极材料,其中,
    所述正极材料的径距1.35≤(Dv90-Dv10)/Dv50≤1.50。
  6. 根据权利要求1至4中任一项所述的正极材料,其中,
    所述正极材料的比表面积为0.2m 2/g至1m 2/g,可选为0.3m 2/g至0.7m 2/g。
  7. 根据权利要求1至5中任一项所述的正极材料,其中,
    所述正极材料的振实密度TD为1.8g/cm 3至2.5g/cm 3,可选为1.9g/cm 3至2.3g/cm 3
  8. 一种正极材料的制备方法,其中,
    包括以下工序(1)至(4):
    工序(1):准备包含可溶性镍盐、第一钴盐及锰盐的第一混合溶液,准备包含第二钴盐、铝盐的第二混合溶液,准备碱溶液、氨溶液及铌盐溶液;
    工序(2):在反应釜中加入纯水作为底液,加入氨溶液和碱溶液调节底液中的pH值及氨值,进行搅拌,并保持稳定的反应温度,将所述第一混合溶液、所述碱溶液、所述氨溶液并流加入至反应釜中,维持pH值及氨值不变,同时通入惰性气体保护,合成出第一前驱体浆料;
    工序(3):将所述第二混合溶液、所述铌盐溶液、所述碱溶液、所述氨溶液并流加入至反应釜中,维持pH值及氨值不变,合成出第二前驱体浆料;
    工序(4):将所述工序(3)中合成的所述第二前驱体浆料与锂盐按照一定比例进行混合烧结,得到正极材料,所述正极材料包括:内核;以及壳层,
    所述内核的分子式为Li 1+aNi xCo yMn 1-x-yM1 zO 2,其中:0.8≤x<1.0,0<y<0.2,0<a<0.1,0≤z<0.1,M1选自Al、Ta、B中的至少一种;
    所述壳层的分子式为Li 1+bCo mAl nNb 1-m-nM2 cO 2,其中:0.85≤m<1.0,0<n<0.15,0<b<0.1,0.001≤1-m-n≤0.02,0≤c<0.05,M2选自W、Mo、Ti、Zr、Y、Yb中的至少一种。
  9. 根据权利要求7所述的正极材料的制备方法,其中,
    在工序(1)中,所述可溶性镍盐包括硫酸镍、硝酸镍、乙酸镍的一种或多种,和/或,
    所述第一钴盐和所述第二钴盐分别独立地包括硫酸钴、草酸钴、硝酸钴、乙酸钴的一种或多种,和/或,
    所述锰盐包括硫酸锰、硝酸锰、乙酸锰的一种或多种,和/或,
    所述铝盐包括硫酸铝、硝酸铝、氯化铝、醋酸铝、亚硫酸铝的一 种或多种,和/或,
    所述铌盐包括草酸铌、铌酸钠、硝酸铌、氯化铌的一种或多种,和/或,
    所述碱包括碱金属的氢氧化物、碱土金属的氢氧化物、碱金属的碳酸盐中的一种或多种。
  10. 根据权利要求7或8所述的正极材料的制备方法,其中,
    在工序(1)中,所述第一混合溶液中的全部金属离子的浓度为1mol/L至5mol/L,和/或,
    所述第二混合溶液中的全部金属离子的浓度为1mol/L至5mol/L,和/或,
    所述碱溶液中的碱的浓度为1mol/L至10mol/L,和/或,
    所述氨溶液中的氨的浓度为5mol/L至10mol/L,和/或,
    所述铌盐溶液中的铌盐的浓度0.5mol/L至2mol/L。
  11. 根据权利要求7至9中任一项所述的正极材料的制备方法,其中,
    在所述工序(2)和所述工序(3)中,反应的pH值为11.0至12.0,优选为11.2至11.6,和/或,
    反应的氨值为0.1mol/L至0.6mol/L,优选为0.2mol/L至0.5mol/L,和/或,
    反应温度为50℃至70℃,和/或,
    搅拌速率为200rpm至600rpm。
  12. 根据权利要求7至10中任一项所述的正极材料的制备方法,其中,
    所述工序(4)中,所述锂盐与所述第二前驱体浆料中的金属的摩尔比Li/Me为0.9至1.1,Me为镍、钴、锰金属的总摩尔,和/或,
    烧结温度为700℃至900℃,和/或,
    烧结时间为10h至20h,和/或,
    烧结气氛为空气或者含氧气氛。
  13. 一种二次电池,其中,
    所述二次电池包括权利要求1至6中任一项所述的正极材料或由权利要求7至11中任一项所述的制备方法制得的正极材料。
  14. 一种电池模块,其中,
    所述电池模块包括权利要求12所述的二次电池。
  15. 一种电池包,其中,
    所述电池包包括权利要求13所述的电池模块。
  16. 一种用电装置,其中,
    所述用电装置包括选自权利要求12所述的二次电池、权利要求13所述的电池模块和权利要求14所述的电池包中的至少一种。
PCT/CN2021/142035 2021-12-28 2021-12-28 正极材料及其制备方法、具备其的二次电池 WO2023122946A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180095471.3A CN116982172A (zh) 2021-12-28 2021-12-28 正极材料及其制备方法、具备其的二次电池
EP21962752.8A EP4228029A4 (en) 2021-12-28 2021-12-28 POSITIVE ELECTRODE MATERIAL, PRODUCTION METHOD THEREOF AND SECONDARY BATTERY THEREFOR
PCT/CN2021/142035 WO2023122946A1 (zh) 2021-12-28 2021-12-28 正极材料及其制备方法、具备其的二次电池
US18/326,025 US20230322579A1 (en) 2021-12-28 2023-05-31 Positive electrode material, preparation method thereof, and secondary battery including same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142035 WO2023122946A1 (zh) 2021-12-28 2021-12-28 正极材料及其制备方法、具备其的二次电池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/326,025 Continuation US20230322579A1 (en) 2021-12-28 2023-05-31 Positive electrode material, preparation method thereof, and secondary battery including same

Publications (1)

Publication Number Publication Date
WO2023122946A1 true WO2023122946A1 (zh) 2023-07-06

Family

ID=86996955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142035 WO2023122946A1 (zh) 2021-12-28 2021-12-28 正极材料及其制备方法、具备其的二次电池

Country Status (4)

Country Link
US (1) US20230322579A1 (zh)
EP (1) EP4228029A4 (zh)
CN (1) CN116982172A (zh)
WO (1) WO2023122946A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104485443A (zh) * 2015-01-09 2015-04-01 刘娜 一种石墨烯聚合物包覆铌掺杂钴铝酸锂复合正极材料的制备方法
CN107732193A (zh) * 2017-10-09 2018-02-23 天津理工大学 一种应用核壳结构高镍正极材料的全固态锂电池及其制备方法
US20190027782A1 (en) * 2015-06-30 2019-01-24 Sumitomo Chemical Company, Limited Lithium-containing composite oxide, cathode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
CN110112393A (zh) * 2019-05-17 2019-08-09 东莞维科电池有限公司 一种正极材料、及其制备方法和用途
CN110165192A (zh) * 2019-06-12 2019-08-23 江苏翔鹰新能源科技有限公司 一种核壳型高电压单晶镍钴锰酸锂正极材料及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9774036B2 (en) * 2012-08-28 2017-09-26 Sumitomo Metal Mining Co., Ltd. Method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same
KR102476586B1 (ko) * 2018-08-03 2022-12-12 제이엑스금속주식회사 전고체 리튬 이온 전지용 정극 활물질, 전고체 리튬 이온 전지용 정극, 전고체 리튬 이온 전지
CN110422889B (zh) * 2019-06-24 2021-07-16 当升科技(常州)新材料有限公司 锂离子电池正极材料前驱体和锂离子电池正极材料及各自的制备方法和锂离子电池
CN113437266A (zh) * 2020-03-23 2021-09-24 飞翼新能源公司 用于锂离子电池的阴极组合物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104485443A (zh) * 2015-01-09 2015-04-01 刘娜 一种石墨烯聚合物包覆铌掺杂钴铝酸锂复合正极材料的制备方法
US20190027782A1 (en) * 2015-06-30 2019-01-24 Sumitomo Chemical Company, Limited Lithium-containing composite oxide, cathode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
CN107732193A (zh) * 2017-10-09 2018-02-23 天津理工大学 一种应用核壳结构高镍正极材料的全固态锂电池及其制备方法
CN110112393A (zh) * 2019-05-17 2019-08-09 东莞维科电池有限公司 一种正极材料、及其制备方法和用途
CN110165192A (zh) * 2019-06-12 2019-08-23 江苏翔鹰新能源科技有限公司 一种核壳型高电压单晶镍钴锰酸锂正极材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4228029A4

Also Published As

Publication number Publication date
CN116982172A (zh) 2023-10-31
EP4228029A1 (en) 2023-08-16
EP4228029A4 (en) 2024-02-14
US20230322579A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
WO2022121570A1 (zh) 普鲁士蓝类过渡金属氰化物、其制备方法、及其相关的正极极片、二次电池、电池模块、电池包和装置
CN111422919A (zh) 四元正极材料及其制备方法、正极、电池
WO2023174050A1 (zh) 三元正极材料、其制造方法以及使用其的二次电池
WO2024040829A1 (zh) 正极活性材料、电池及其制备方法
WO2023133811A1 (zh) 一种单晶低钴三元材料及其制备方法、二次电池、电池包、用电装置
WO2023082182A1 (zh) 正极活性材料、正极极片、二次电池、电池模块、电池包和用电装置
WO2024113942A1 (zh) 正极活性材料及其制备方法、二次电池和用电装置
WO2023040357A1 (zh) 改性的高镍三元正极材料及其制备方法,以及用电装置
WO2023205993A1 (zh) 尖晶石镍锰酸锂材料及其制备方法
WO2023173403A1 (zh) 高镍三元正极材料及其制备方法、二次电池、电池模块、电池包和用电装置
WO2023060529A1 (zh) 锂离子电池
WO2023122946A1 (zh) 正极材料及其制备方法、具备其的二次电池
WO2023065359A1 (zh) 正极活性材料、正极极片、二次电池、电池模块、电池包和用电装置
WO2024065157A1 (zh) 正极活性材料及其制备方法、正极极片、二次电池、电池模块、电池包和用电装置
WO2024020795A1 (zh) 一种复合正极材料、其制备方法、二次电池、电池模块、电池包和用电装置
WO2024113200A1 (zh) 正极活性材料及其制备方法、正极极片、二次电池和用电装置
WO2023092491A1 (zh) 一种正极活性材料及其制备方法和应用
WO2023236010A1 (zh) 改性高镍三元正极材料及其制备方法、应用
WO2023040358A1 (zh) 三元前驱体及其制备方法,三元正极材料以及用电装置
WO2024113299A1 (zh) 正极材料及其制备方法和包含其的二次电池和用电装置
WO2023225985A1 (zh) 正极活性材料及其制备方法、二次电池、电池模块、电池包和用电装置
WO2023133882A1 (zh) 隔膜及其相关的二次电池、电池模块、电池包和用电装置
WO2024011594A1 (zh) 正极活性材料及其制备方法、正极极片、二次电池、电池模块、电池包及用电装置
WO2023245597A1 (zh) 一种正极活性材料、二次电池、电池模块、电池包和用电装置
WO2024065647A1 (zh) 正极活性材料及其制备方法、二次电池和用电装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021962752

Country of ref document: EP

Effective date: 20230509

WWE Wipo information: entry into national phase

Ref document number: 202180095471.3

Country of ref document: CN