WO2023122934A1 - 一种las纳米晶玻璃及其制备方法 - Google Patents

一种las纳米晶玻璃及其制备方法 Download PDF

Info

Publication number
WO2023122934A1
WO2023122934A1 PCT/CN2021/141944 CN2021141944W WO2023122934A1 WO 2023122934 A1 WO2023122934 A1 WO 2023122934A1 CN 2021141944 W CN2021141944 W CN 2021141944W WO 2023122934 A1 WO2023122934 A1 WO 2023122934A1
Authority
WO
WIPO (PCT)
Prior art keywords
las
glass
nanocrystalline
raw materials
preparation
Prior art date
Application number
PCT/CN2021/141944
Other languages
English (en)
French (fr)
Inventor
李长久
Original Assignee
海南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海南大学 filed Critical 海南大学
Priority to PCT/CN2021/141944 priority Critical patent/WO2023122934A1/zh
Publication of WO2023122934A1 publication Critical patent/WO2023122934A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition

Definitions

  • the invention relates to the technical field of glass-ceramics, in particular to a LAS nano-crystal glass and a preparation method thereof.
  • Lithium-aluminum-silicon glass-ceramic has good chemical, thermal, and optical properties. It is a new type of glass material widely used in various industries. LAS system glass-ceramic materials have the characteristics of very low thermal expansion coefficient, and materials with near zero expansion or even negative expansion can be obtained. Due to its particularity, it is widely used in various fields such as cutting-edge defense technology, industry, machinery, medical treatment, construction and life.
  • promoting the nucleation and uniform crystallization of glass-ceramics or rapid nucleation and crystallization of glass-ceramics can be achieved by adding components that promote phase separation, adding nucleating agents, and using high-energy instantaneous energy fields such as lasers.
  • LAS Lithium Aluminum Silicon
  • small changes in the heat treatment process can lead to large changes in properties.
  • the traditional heat treatment method is to prolong the nucleation treatment time to achieve the refinement effect.
  • the traditional heat treatment method tends to cause coarse crystals after treatment, resulting in devitrification of glass-ceramics, and it is difficult to control the crystal growth size and grain distribution, which is easy to This results in uneven grain size and uneven distribution.
  • Laser focusing treatment is to locally apply laser beams to break up the existing structure, so that the crystals are remelted and refined and precipitated.
  • laser focusing treatment is difficult to apply to actual production products due to its small area of action and high energy, which is easy to burn samples .
  • the nucleating agent also has limitations on the refinement of the crystal grains, which is difficult to process quickly and requires a long time for nucleation treatment, which consumes a lot of resources and costs high.
  • a two-step crystallization method is usually used. Compared with the two-step crystallization method with a minimum of 2h heat treatment, the one-step crystallization method has a shorter processing time, but the crystal size is too large and unevenly distributed after the one-step method, which makes it difficult to prepare transparent glass-ceramics by the one-step method.
  • the technical problem to be solved by the present invention is to provide a LAS nanocrystalline glass and a preparation method thereof.
  • the LAS nanocrystalline glass provided by the present invention is transparent LAS nanocrystalline glass with a low coefficient of thermal expansion.
  • the invention provides a kind of LAS nanocrystalline glass, which is prepared from raw materials comprising the following components:
  • the content of SiO 2 is 58wt%-62wt%.
  • the content of Sb 2 O 3 is 0.5wt%-1wt%.
  • the content of Na 2 O is 0.5wt%-1.5wt%.
  • the content of ZnO is 0.5wt%-1.5wt%.
  • the content of ZrO2 is 1.5wt% ⁇ 2.5wt%;
  • the content of TiO 2 is 1.5wt%-2.5wt%.
  • the present invention also provides a method for preparing the LAS nanocrystalline glass described above, comprising the following steps:
  • step A) after mixing the raw materials, it also includes: drying;
  • the drying temperature is 100-200° C., and the drying time is 1-2 hours;
  • the smelting time is 2-6 hours.
  • step C) crystallizing the annealed glass material under thermoelectric coupling conditions includes:
  • the temperature of the annealed glass material is raised to 830-880° C., and treated in a DC electric field of 60-140 V/mm.
  • the heating rate is 8-12K/min
  • the LAS nanocrystalline glass provided by the present invention adopts specific components in a specific ratio to prepare transparent LAS nanocrystalline glass, further adopts electric-thermal field coupling treatment, and promotes the uniform distribution of crystals through the action of the electric field on ions in the glass ceramics , Accelerate crystal nucleation and crystallization, use electric field energy to replace a part of temperature field energy to control nanocrystal growth, and significantly reduce the processing time required to achieve the same performance. Under the same treatment temperature and time, the application of an electric field significantly improves the crystal distribution and promotes the rapid precipitation of nanocrystals.
  • the final prepared LAS nanocrystal glass has uniform grain size, high hardness, high light transmittance and low thermal expansion coefficient. .
  • the invention provides a kind of LAS nanocrystalline glass, which is prepared from raw materials comprising the following components:
  • the raw material for preparing the LAS nanocrystalline glass provided by the invention includes SiO 2 .
  • the content of SiO 2 in the preparation raw materials is 58wt%-62wt%. In some embodiments, the content of SiO 2 is 60wt%.
  • the raw materials for preparing the LAS nanocrystalline glass provided by the present invention also include Al 2 O 3 .
  • the content of Al 2 O 3 in the preparation raw materials is 25wt%.
  • the raw materials for preparing the LAS nanocrystalline glass provided by the present invention also include Li 2 CO 3 .
  • the content of Li 2 CO 3 in the preparation raw materials is 8wt%.
  • the raw materials for preparing the LAS nanocrystalline glass provided by the present invention also include Sb 2 O 3 .
  • the content of Sb 2 O 3 in the preparation raw materials is 0.5wt% ⁇ 1wt%. In some embodiments, the content of Sb 2 O 3 is 1 wt%.
  • the raw material for preparing the LAS nanocrystalline glass provided by the present invention also includes Na 2 O.
  • the content of Na 2 O in the preparation raw materials is 0.5wt%-1.5wt%. In some embodiments, the content of Na 2 O is 1 wt%.
  • the raw material for preparing the LAS nanocrystalline glass provided by the invention also includes ZnO.
  • the content of ZnO in the preparation raw materials is 0.5wt%-1.5wt%. In some embodiments, the content of ZnO is 1 wt%.
  • the raw material for preparing the LAS nanocrystalline glass provided by the invention also includes ZrO 2 .
  • the content of ZrO 2 in the preparation raw materials is 1.5wt%-2.5wt%. In some embodiments, the content of ZrO 2 is 2wt%.
  • the raw materials for preparing the LAS nanocrystalline glass provided by the present invention also include TiO 2 .
  • the content of TiO 2 in the preparation raw materials is 1.5wt%-2.5wt%. In some embodiments, the content of TiO 2 is 2 wt%.
  • the preparation raw materials are all analytically pure, and the preparation raw materials are all provided by McLean's reagent.
  • the grain size of the LAS nanocrystalline glass provided by the invention is 50-120nm. In some embodiments, the grain size of the LAS nanocrystalline glass is 80-100 nm, 50-80 nm or 80-120 nm.
  • the present invention also provides a method for preparing the LAS nanocrystalline glass described above, comprising the following steps:
  • the mixing is carried out in a mixer.
  • the melting temperature is 1500°C.
  • the smelting time is 2-6 hours. In some embodiments, the smelting time is 2 hours.
  • the smelting is carried out in a high-temperature silicon-molybdenum lift furnace.
  • the carbonate in the raw material is decomposed, and its oxide enters the solution, and the solution produces violent agitation due to the escape of gas, which helps the mixing to make the reaction proceed quickly, and finally realizes the complete dissolution of the raw material.
  • Melting and melting, followed by the clarification process that is, the bubbles rise and discharge the melt, and after clarification, the glass liquid is obtained.
  • the present invention has no special limitation on the cooling rate, which may be natural cooling.
  • the viscosity of the cooled glass liquid is 102-105 Pa ⁇ s. In some embodiments, the viscosity of the cooled glass liquid is 105 Pa ⁇ s.
  • the annealing temperature is 500°C.
  • the annealing time is 2-4 hours. In some embodiments, the annealing time is 2 hours.
  • the annealing is used to relieve internal stress.
  • the method further includes: cutting.
  • the annealed sample can be cut into glass blocks of required size according to actual needs.
  • the size of the cut glass block is 30mm x 30mm x 3mm.
  • cutting can be performed by a cutting machine.
  • crystallizing the annealed glass material under thermoelectric coupling conditions includes:
  • the temperature of the annealed glass material is raised to 830-880°C, and treated in a DC electric field of 60-140V/mm.
  • the heating rate is 8-12K/min. In some embodiments, the heating rate is 10K/min.
  • the temperature after the heating is 840°C.
  • the dielectric strength of the treatment is 60 V/mm, 100 V/mm or 140 V/mm.
  • the treatment time is 0.5-1.5 hours. In some embodiments, the treatment time is 0.5 h.
  • after the treatment further comprising: cooling to room temperature.
  • the preparation method of the LAS nanocrystalline glass provided by the invention is a one-step thermoelectric coupling treatment crystallization.
  • the LAS glass-ceramic is subjected to electro-thermal coupling treatment nucleation and crystallization at a temperature in the crystallization temperature region, which enables the external electric field to be used to promote the rapid growth of nanocrystals in the nanocrystalline glass, Electric field energy can be used to replace part of the temperature field energy to accelerate crystal growth and shorten the processing time.
  • the electric field also polarizes and promotes the ion migration and crystal nucleus dispersion required for crystal growth in the glass-ceramic to improve the grain distribution; through electro-thermal Coupled heat treatment to obtain LAS nanocrystalline glass materials with excellent properties, laying the foundation for the application of such preparation methods and materials.
  • the preparation raw materials were all analytically pure, and the preparation raw materials were all provided by McLean's reagent.
  • the annealed sample was cut into glass blocks of 30 mm ⁇ 30 mm ⁇ 3 mm with a cutting machine. Put the cut glass block into the thermal-electric coupling treatment fixture in the muffle furnace, raise the temperature to the nucleation temperature of 840 °C at a rate of 10K/min, and apply a DC electric field (0V/mm, 60V /mm, 100V/mm or 140V/mm) treatment for 0.5h, then cooled to room temperature with the furnace to obtain LAS nanocrystalline glass.
  • Example 1 the prepared raw materials and content of Example 1 are prepared under different DC electric field treatments (0V/mm, 60V/mm, 100V/mm or 140V/mm) according to the preparation method described above LAS nanocrystalline glass is transparent, and the raw materials and contents of the preparations of Comparative Examples 1 to 3 are treated in different DC electric fields (0V/mm, 60V/mm, 100V/mm or 140V/mm) according to the preparation method described above.
  • the prepared LAS nanocrystalline glass is devitrified.
  • Example 2 The preparation raw materials and content of Example 1 are used to prepare LAS nanocrystalline glass under different DC electric field treatments (0V/mm, 60V/mm, 100V/mm or 140V/mm) according to the preparation method described above.
  • the properties of LAS nanocrystalline glass are shown in Table 2.
  • 1-1 is the LAS nanocrystalline glass prepared at 0V/mm by using the preparation raw materials and content of Example 1 according to the above-mentioned preparation method
  • 1-2 is using the preparation raw materials and content of Example 1 according to The LAS nanocrystalline glass prepared by the above-mentioned preparation method at 60V/mm
  • 1-3 is the LAS prepared at 100V/mm by the preparation method described above using the raw materials and contents of Example 1 Nanocrystalline glass
  • 1-4 is the LAS nanocrystalline glass prepared at 140V/mm by using the raw materials and content of the preparation in Example 1 according to the above-mentioned preparation method.
  • Table 2 The performance parameters of the LAS nanocrystalline glass obtained under different DC electric field treatments using the raw materials and contents prepared in Example 1
  • the crystal grain size of the LAS nanocrystalline glass prepared by the present invention is 50-120nm, the Vickers hardness is not less than 570HV, the light transmittance is not less than 76%, and the thermal expansion coefficient is less than -2.0 ⁇ 10 - 6 /°C, showing negative expansion, indicating that ⁇ -quartz solid solution is the main crystal phase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)

Abstract

本发明涉及微晶玻璃技术领域,尤其涉及一种LAS纳米晶玻璃及其制备方法。LAS纳米晶玻璃由包括以下组分的原料制备得到:SiO 2 50wt%~65wt%;Al 2O 3 22wt%~28wt%;Li 2CO 3 6wt%~10wt%;Sb 2O 3大于0wt%,小于等于1wt%;Na 2O大于0wt%,小于等于4wt%;ZnO大于0wt%,小于等于4wt%;ZrO 2大于0wt%,小于等于4wt%;TiO 2大于0wt%,小于等于4wt%。本发明采用特定配比的特定组分制得透明LAS纳米晶玻璃,采用电-热场耦合处理,制备的LAS纳米晶玻璃的晶粒尺寸均匀,透光率较高,热膨胀系数较低。

Description

一种LAS纳米晶玻璃及其制备方法 技术领域
本发明涉及微晶玻璃技术领域,尤其涉及一种LAS纳米晶玻璃及其制备方法。
背景技术
锂铝硅系统的微晶玻璃是有着很好的化学、热、光学的性能,它是一种广泛使用在各个行业的新型玻璃材料。LAS系统微晶玻璃材料具有热膨胀系数很低的特点,可以得到近零膨胀甚至负膨胀的材料。由于它的特殊性,被广泛使用在尖端的国防技术、工业、机械、医疗、建筑和生活等各个领域。
现有技术中,促进微晶玻璃成核、析晶均匀或微晶玻璃快速成核、析晶可通过添加促进分相的成分、添加成核剂、使用激光等高能瞬时能量场实现。锂铝硅(LAS)微晶玻璃制备过程中,热处理工艺的微小变化都可导致性能大幅度的变动。传统的热处理方法处理是延长成核处理时间,从而达到细化效果,然而,传统的热处理方法处理后容易造成晶体粗大,导致微晶玻璃失透,且难以控制晶体生长尺寸和晶粒分布,易造成晶粒尺寸不一、分布不均。激光聚焦处理是在局部施加激光光束打散现有结构,使得晶体重熔、细化析出,但是,激光聚焦处理由于作用区域小、能量过高,易烧损样品,难以应用到实际生产产品中。成核剂对晶粒的细化也有局限,难以快速处理,需要长时间的成核处理,对资源消耗较大,成本较高。
在众多的研究中,为了获得分布均匀、细小的晶体,通常采用两步结晶法。与最少2h热处理的两步结晶法相比,一步结晶法的处理时间短,但采用一步法后晶体尺寸过大且分布不均,这使得一步法难以制备透明微晶玻璃。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种LAS纳米晶玻璃及其制备方法,本发明提供的LAS纳米晶玻璃为透明LAS纳米晶玻璃,热膨胀系数较低。
本发明提供了一种LAS纳米晶玻璃,由包括以下组分的原料制备得到:
Figure PCTCN2021141944-appb-000001
上述各组分的用量之和为100%。
优选的,所述原料中,SiO 2的含量为58wt%~62wt%。
优选的,所述原料中,Sb 2O 3的含量为0.5wt%~1wt%。
优选的,所述原料中,Na 2O的含量为0.5wt%~1.5wt%。
优选的,所述原料中,ZnO的含量为0.5wt%~1.5wt%。
优选的,所述原料中,ZrO 2的含量为1.5wt%~2.5wt%;
TiO 2的含量为1.5wt%~2.5wt%。
本发明还提供了一种上文所述的LAS纳米晶玻璃的制备方法,包括以下步骤:
A)将原料混匀后,在1400~1650℃下熔炼;
B)将所述熔炼后的玻璃液冷却后成型,在400~600℃下退火;
C)将所述退火后的玻璃材料在热电耦合条件下析晶,得到LAS纳米晶玻璃。
优选的,步骤A)中,将原料混匀后,还包括:烘干;
所述烘干的温度为100~200℃,时间为1~2h;
所述熔炼的时间为2~6h。
优选的,步骤C)中,将所述退火后的玻璃材料在热电耦合条件下析晶包括:
将所述退火后的玻璃材料升温至830~880℃,在60~140V/mm的直流电场中处理。
优选的,步骤a)中,所述升温的速率为8~12K/min;
所述处理后,还包括:冷却至室温。
本发明提供的LAS纳米晶玻璃采用特定配比的特定组分,制得透明LAS纳米晶玻璃,进一步采用电-热场耦合处理,通过电场在微晶玻璃中对离子的作用促进了晶体均匀分布、加速晶体成核和析晶,用电场能量替代一部分温度场能量控制纳米晶体生长,显著减少达到同一性能所需的处理时间。在相同的处理温度和时间下,施加电场显著改善了晶体分布,促进纳米晶快速析出,最终制备的LAS纳米晶玻璃的晶粒尺寸均匀,硬度较高,透光率较高,热膨胀系数较低。
实验结果表明,本发明制备的LAS纳米晶玻璃的晶粒在50~120nm,维氏硬度为不低于570HV,透光率不低于76%,热膨胀系数小于-2.0×10 -6/℃。
具体实施方式
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种LAS纳米晶玻璃,由包括以下组分的原料制备得到:
Figure PCTCN2021141944-appb-000002
上述各组分的用量之和为100%。
本发明提供的LAS纳米晶玻璃的制备原料包括SiO 2。在本发明的某些实施例中,所述制备原料中,SiO 2的含量为58wt%~62wt%。在某些实施例中, 所述SiO 2的含量为60wt%。
本发明提供的LAS纳米晶玻璃的制备原料还包括Al 2O 3。在本发明的某些实施例中,所述制备原料中,Al 2O 3的含量为25wt%。
本发明提供的LAS纳米晶玻璃的制备原料还包括Li 2CO 3。在本发明的某些实施例中,所述制备原料中,Li 2CO 3的含量为8wt%。
本发明提供的LAS纳米晶玻璃的制备原料还包括Sb 2O 3。在本发明的某些实施例中,所述制备原料中,Sb 2O 3的含量为0.5wt%~1wt%。在某些实施例中,所述Sb 2O 3的含量为1wt%。
本发明提供的LAS纳米晶玻璃的制备原料还包括Na 2O。在本发明的某些实施例中,所述制备原料中,Na 2O的含量为0.5wt%~1.5wt%。在某些实施例中,所述Na 2O的含量为1wt%。
本发明提供的LAS纳米晶玻璃的制备原料还包括ZnO。在本发明的某些实施例中,所述制备原料中,ZnO的含量为0.5wt%~1.5wt%。在某些实施例中,所述ZnO的含量为1wt%。
本发明提供的LAS纳米晶玻璃的制备原料还包括ZrO 2。在本发明的某些实施例中,所述制备原料中,ZrO 2的含量为1.5wt%~2.5wt%。在某些实施例中,所述ZrO 2的含量为2wt%。
本发明提供的LAS纳米晶玻璃的制备原料还包括TiO 2。在本发明的某些实施例中,所述制备原料中,TiO 2的含量为1.5wt%~2.5wt%。在某些实施例中,所述TiO 2的含量为2wt%。
在本发明的某些实施例中,制备原料均采用分析纯,制备原料均由麦克林试剂提供。
本发明提供的LAS纳米晶玻璃的晶粒尺寸在50~120nm。在某些实施例中,所述LAS纳米晶玻璃的晶粒尺寸为80~100nm、50~80nm或80~120nm。
本发明还提供了一种上文所述的LAS纳米晶玻璃的制备方法,包括以下步骤:
A)将原料混匀后,在1400~1650℃下熔炼;
B)将所述熔炼后的玻璃液冷却后成型,在400~600℃下退火;
C)将所述退火后的玻璃材料在热电耦合条件下析晶,得到LAS纳米晶玻 璃。
本发明提供的LAS纳米晶玻璃的制备方法中,采用的原料组分和配比同上,在此不再赘述。
步骤A)中:
在本发明的某些实施例中,所述混匀在混料机中进行。
在本发明的某些实施例中,所述熔炼的温度为1500℃。
在本发明的某些实施例中,所述熔炼的时间为2~6h。在某些实施例中,所述熔炼的时间为2h。
在本发明的某些实施例中,所述熔炼在高温硅钼升降炉中进行。
本发明中,在熔炼的过程中,原料中的碳酸盐进行分解,其氧化物进入溶液,由于气体的逸出溶液产生剧烈的搅动,这帮助了混合使反应快速进行,最后实现原料的完全熔解和融化,接下来是澄清过程,就是气泡上升排出熔体,澄清后,得到玻璃液。
步骤B)中:
本发明对所述冷却的速率没有特殊的限制,可以为自然冷却。
在本发明的某些实施例中,所述冷却后的玻璃液的粘度为102~105Pa·s。在某些实施例中,所述冷却后的玻璃液的粘度为105Pa·s。
在本发明的某些实施例中,所述退火的温度为500℃。
在本发明的某些实施例中,所述退火的时间为2~4h。在某些实施例中,所述退火的时间为2h。
所述退火用于消除内应力。
步骤C)中:
将所述退火后的玻璃材料在热电耦合条件下析晶前,还包括:切割。本发明中,可以根据实际需要将所述退火后的样品切割成所需尺寸的玻璃块。在本发明的某些实施例中,切割后的玻璃块的尺寸为30mm×30mm×3mm。本发明中,切割可以通过切割机进行。
在本发明的某些实施例中,将所述退火后的玻璃材料在热电耦合条件下析晶包括:
将所述退火后的玻璃材料升温至830~880℃,在60~140V/mm的直流电 场中处理。
在本发明的某些实施例中,所述升温的速率为8~12K/min。在某些实施例中,所述升温的速率为10K/min。
在本发明的某些实施例中,所述升温后的温度为840℃。
在本发明的某些实施例中,所述处理的介电强度为60V/mm、100V/mm或140V/mm。
在本发明的某些实施例中,所述处理的时间为0.5~1.5h。在某些实施例中,所述处理的时间为0.5h。
在本发明的某些实施例中,所述处理后,还包括:冷却至室温。
本发明提供的LAS纳米晶玻璃的制备方法为一步法热电耦合处理析晶。
本发明中,通过辅助外加电场,LAS微晶玻璃在晶化温度区域的温度下电-热耦合处理成核和析晶,这使得外加电场可以用来促进纳米晶玻璃中纳米晶体的快速生长,可以用电场能量替代一部分温度场能量加速晶体生长,缩短处理时间,同时电场也极化促进了微晶玻璃中晶体生长所需离子迁移和晶核分散以致改善了晶粒分布;通过电-热耦合热处理得到具有优异性能的LAS纳米晶玻璃材料,为此类制备方法和材料的应用奠定基础。
实验结果表明,本发明制备的LAS纳米晶玻璃的晶粒在50~120nm,维氏硬度为不低于570HV,透光率不低于76%,热膨胀系数小于-2.0×10 -6/℃。
为了进一步说明本发明,以下结合实施例对本发明提供的一种LAS纳米晶玻璃及其制备方法进行详细描述,但不能将其理解为对本发明保护范围的限定。
以下实施例中,制备原料均采用分析纯,制备原料均由麦克林试剂提供。
实施例1和对比例1~3
按照表1所示的组分选取原料(原料总量为300g),将制备原料用混料机混合均匀后,在130℃下烘干1.6h,放入氧化铝坩埚内,将坩埚放入高温硅钼升降炉内,在1500℃熔炼2h;
熔炼完成后,冷却到粘度为105Pa·s后成型,在500℃下退火2h;
将所述退火后的样品用切割机分割成30mm×30mm×3mm的玻璃块。将切割完成的玻璃块体放入马弗炉中的热-电耦合处理夹具中,以10K/min的速率 升温至成核温度840℃,在成核温度下施加直流电场(0V/mm、60V/mm、100V/mm或140V/mm)处理0.5h后,随炉冷却至室温,得到LAS纳米晶玻璃。
表1 实施例1和对比例1~3的LAS纳米晶玻璃的制备原料、含量及性能(原料含量的单位是wt%)
Figure PCTCN2021141944-appb-000003
从表1可以看出,采用实施例1的制备原料及含量按照上文所述的制备方法在不同直流电场处理(0V/mm、60V/mm、100V/mm或140V/mm)下制得的LAS纳米晶玻璃是透明的,而采用对比例1~3的制备原料及含量按照上文所述的制备方法在不同直流电场处理(0V/mm、60V/mm、100V/mm或140V/mm)下制得的LAS纳米晶玻璃是失透的。
采用实施例1的制备原料及含量按照上文所述的制备方法在不同直流电场处理(0V/mm、60V/mm、100V/mm或140V/mm)下制备得到LAS纳米晶玻璃,考察得到的LAS纳米晶玻璃的性能,结果如表2所示。其中,1-1为采 用实施例1的制备原料及含量按照上文所述的制备方法在0V/mm下制备得到的LAS纳米晶玻璃,1-2为采用实施例1的制备原料及含量按照上文所述的制备方法在60V/mm下制备得到的LAS纳米晶玻璃,1-3为采用实施例1的制备原料及含量按照上文所述的制备方法在100V/mm下制备得到的LAS纳米晶玻璃,1-4为采用实施例1的制备原料及含量按照上文所述的制备方法在140V/mm下制备得到的LAS纳米晶玻璃。
表2中,将制备的LAS纳米晶玻璃抛光后,使用质量浓度为5%的HF进行表面腐蚀30s,进行扫描电镜(使用SEM扫描电镜)分析,得到晶粒尺寸。
表2 采用实施例1的制备原料及含量在不同直流电场处理下得到的LAS纳米晶玻璃的性能参数
Figure PCTCN2021141944-appb-000004
从表2可以看出,本发明制备的LAS纳米晶玻璃的晶粒尺寸在50~120nm,维氏硬度为不低于570HV,透光率不低于76%,热膨胀系数小于-2.0×10 -6/℃,呈现负膨胀,说明β-石英固溶体为主要晶相。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种LAS纳米晶玻璃,由包括以下组分的原料制备得到:
    Figure PCTCN2021141944-appb-100001
    上述各组分的用量之和为100%。
  2. 根据权利要求1所述的LAS纳米晶玻璃,其特征在于,所述原料中,SiO 2的含量为58wt%~62wt%。
  3. 根据权利要求1所述的LAS纳米晶玻璃,其特征在于,所述原料中,Sb 2O 3的含量为0.5wt%~1wt%。
  4. 根据权利要求1所述的LAS纳米晶玻璃,其特征在于,所述原料中,Na 2O的含量为0.5wt%~1.5wt%。
  5. 根据权利要求1所述的LAS纳米晶玻璃,其特征在于,所述原料中,ZnO的含量为0.5wt%~1.5wt%。
  6. 根据权利要求1所述的LAS纳米晶玻璃,其特征在于,所述原料中,ZrO 2的含量为1.5wt%~2.5wt%;
    TiO 2的含量为1.5wt%~2.5wt%。
  7. 权利要求1所述的LAS纳米晶玻璃的制备方法,包括以下步骤:
    A)将原料混匀后,在1400~1650℃下熔炼;
    B)将所述熔炼后的玻璃液冷却后成型,在400~600℃下退火;
    C)将所述退火后的玻璃材料在热电耦合条件下析晶,得到LAS纳米晶玻璃。
  8. 根据权利要求7所述的制备方法,其特征在于,步骤A)中,将原料 混匀后,还包括:烘干;
    所述烘干的温度为100~200℃,时间为1~2h;
    所述熔炼的时间为2~6h。
  9. 根据权利要求7所述的制备方法,其特征在于,步骤C)中,将所述退火后的玻璃材料在热电耦合条件下析晶包括:
    将所述退火后的玻璃材料升温至830~880℃,在60~140V/mm的直流电场中处理。
  10. 根据权利要求9所述的制备方法,其特征在于,步骤a)中,所述升温的速率为8~12K/min;
    所述处理后,还包括:冷却至室温。
PCT/CN2021/141944 2021-12-28 2021-12-28 一种las纳米晶玻璃及其制备方法 WO2023122934A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/141944 WO2023122934A1 (zh) 2021-12-28 2021-12-28 一种las纳米晶玻璃及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/141944 WO2023122934A1 (zh) 2021-12-28 2021-12-28 一种las纳米晶玻璃及其制备方法

Publications (1)

Publication Number Publication Date
WO2023122934A1 true WO2023122934A1 (zh) 2023-07-06

Family

ID=86996869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141944 WO2023122934A1 (zh) 2021-12-28 2021-12-28 一种las纳米晶玻璃及其制备方法

Country Status (1)

Country Link
WO (1) WO2023122934A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1556053A (zh) * 2004-01-12 2004-12-22 同济大学 一种可控分布的纳米晶及微晶玻璃的制备方法
CN1789792A (zh) * 2005-12-09 2006-06-21 桂林迪华特种玻璃有限公司 一种微晶玻璃灯罩及其制备方法
CN1847181A (zh) * 2005-03-29 2006-10-18 长兴县昌盛有限公司 一种超低膨胀透明微晶玻璃以及该玻璃的连续压延法生产工艺
CN1872752A (zh) * 2006-06-06 2006-12-06 青岛大学 极性微晶玻璃的制备方法
CN101538118A (zh) * 2009-04-30 2009-09-23 北京中材人工晶体有限公司 一种激光陀螺仪用超低膨胀微晶玻璃及其制备方法
US20140135201A1 (en) * 2012-05-15 2014-05-15 Eurokera Transparent, colorless, tin-fined las glass-ceramics with improved microstructure and optical properties
CN106630569A (zh) * 2015-10-30 2017-05-10 尤世元 一种玻璃微晶的制备方法
CN114133143A (zh) * 2021-12-28 2022-03-04 海南大学 一种las纳米晶玻璃及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1556053A (zh) * 2004-01-12 2004-12-22 同济大学 一种可控分布的纳米晶及微晶玻璃的制备方法
CN1847181A (zh) * 2005-03-29 2006-10-18 长兴县昌盛有限公司 一种超低膨胀透明微晶玻璃以及该玻璃的连续压延法生产工艺
CN1789792A (zh) * 2005-12-09 2006-06-21 桂林迪华特种玻璃有限公司 一种微晶玻璃灯罩及其制备方法
CN1872752A (zh) * 2006-06-06 2006-12-06 青岛大学 极性微晶玻璃的制备方法
CN101538118A (zh) * 2009-04-30 2009-09-23 北京中材人工晶体有限公司 一种激光陀螺仪用超低膨胀微晶玻璃及其制备方法
US20140135201A1 (en) * 2012-05-15 2014-05-15 Eurokera Transparent, colorless, tin-fined las glass-ceramics with improved microstructure and optical properties
CN106630569A (zh) * 2015-10-30 2017-05-10 尤世元 一种玻璃微晶的制备方法
CN114133143A (zh) * 2021-12-28 2022-03-04 海南大学 一种las纳米晶玻璃及其制备方法

Similar Documents

Publication Publication Date Title
US10913681B2 (en) Glass-ceramic article and glass-ceramic for electronic device cover plate
WO2023011105A1 (zh) 一种高强度和高透性二硅酸锂玻璃陶瓷及其制备方法和应用
WO2016078473A1 (zh) 高硬度透明微晶玻璃及其制备方法
WO2022228583A1 (zh) 一种微晶玻璃材料及其制备方法和在半导体器件中的应用
CN110577365A (zh) 一种纳米晶玻璃陶瓷及其制备方法
JP2010064900A (ja) Las系フロートガラス
CN110407459B (zh) 一种弥散强化的视窗玻璃及其制备方法
CN110577364A (zh) 一种锂铝硅酸盐纳米晶玻璃陶瓷及其制备方法
CN112552032A (zh) 一种合成β-锂辉石固溶体、含该合成β-锂辉石固溶体制造的微晶玻璃及其制造方法
JP2010503601A (ja) 薄板形状でのガラスセラミック素材の製造方法、それらを含んだ薄板及びそれらの使用方法
CN114133143A (zh) 一种las纳米晶玻璃及其制备方法
CN108821570B (zh) 一种制备表面强化的透明平板玻璃的配方及方法
JPH09255354A (ja) 基板用ガラス組成物
CN108083641B (zh) 一种高力学性能的微晶玻璃的制备方法
WO2023122934A1 (zh) 一种las纳米晶玻璃及其制备方法
CN113831016A (zh) 一种具有高透明度的荧光玻璃陶瓷及其制备方法
CN110937805B (zh) 一种可光刻的锂铝硅系玻璃材料及其制备方法和应用
CN106007385B (zh) 表面析晶微晶玻璃的制备方法
CN113929307B (zh) 一种定向析晶las微晶玻璃及其制备方法
WO2023092260A1 (zh) 一种定向析晶las微晶玻璃及其制备方法
US3834911A (en) Glass composition and method of making
CN115893845A (zh) 玻璃陶瓷组合物及其制备方法和应用
JP5096289B2 (ja) ガラス成形体および結晶化ガラス成形体の製造方法
CN115304259A (zh) 一种低膨胀镁铝硅堇晶石微晶玻璃及其制备方法
CN111646704B (zh) 掺杂β-锂霞石晶须的玻璃陶瓷及其制备方法、化学强化玻璃陶瓷

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969316

Country of ref document: EP

Kind code of ref document: A1